CORRECTIONS TO SOLUTIONS MANUAL

In the new edition, some chapter problems have been reordered and equations and figure references have changed. The solutions manual is based on the preview edition and therefore must be corrected to apply to the new edition. Below is a list reflecting those changes.

The "NEW" column contains the problem numbers in the new edition. If that problem was originally under another number in the preview edition, that number will be listed in the "PREVIEW" column on the same line. In addition, if a reference used in that problem has changed, that change will be noted under the problem number in quotes. Chapters and problems not listed are unchanged.

For example:

NEW	PREVIEW

4.18	4.5
"Fig. $4.38 "$	"Fig. $4.35 "$
"Fig. 4.39 "	"Fig. 4.36 "

The above means that problem 4.18 in the new edition was problem 4.5 in the preview edition. To find its solution, look up problem 4.5 in the solutions manual. Also, the problem 4.5 solution referred to "Fig. 4.35" and "Fig. 4.36" and should now be "Fig. 4.38" and "Fig. 4.39," respectively.

CHAPTER 3

NEW	PREVIEW

3.1	3.8
3.2	3.9
3.3	3.11
3.4	3.12
3.5	3.13
3.6	3.14
3.7	3.15
"From 3.6"	"From 3.14"
3.8	3.16
3.9	3.17
3.10	3.18
3.11	3.19
3.12	3.20
3.13	3.21
3.14	3.22
3.15	3.1

3.16	3.2
3.17	3.2
3.18	3.3
3.19	3.4
3.20	3.5
3.21	3.6
3.22	3.7
3.23	3.10
3.24	3.23
3.25	3.24
3.26	3.25
3.27	3.26
3.28	3.27
3.29	3.28

CHAPTER 4

NEW	PREVIEW

4.1	4.12
4.2	4.13
4.3	4.14
4.4	4.15
4.5	4.16
4.6	4.17
4.7	4.18
"p. 4.6 "	"p. $4.17 "$
4.8	4.19
4.9	4.20
4.10	4.21
4.11	4.22
4.12	4.23
4.13	4.24
"p. 4.9 "	"p. 4.20 "
4.14	4.1
"(4.52)"	"(4.51)"
"(4.53)"	"(4.52)"
4.15	4.2
4.16	4.3
4.17	4.4
4.18	4.5
"Fig. $4.38 "$	"Fig. $4.35 "$
"Fig. $4.39 "$	"Fig. 4.36 "
4.19	4.6
"Fig $4.39(c) "$	"Fig 4.36(c)"

4.20	4.7
4.21	4.8
4.22	4.9
4.23	4.10
4.24	4.11
4.25	4.25
4.26	4.26
"p. 4.9 "	"p. 4.20 "

CHAPTER 5

NEW	PREVIEW
----	$--\ldots--$
5.1	5.16
5.2	5.17
5.3	5.18
5.4	5.19
5.5	5.20
5.6	5.21
5.7	5.22
5.8	5.23
5.9	5.1
5.10	5.2
5.11	5.3
5.12	5.4
5.13	5.5
5.14	5.6
5.15	5.7
5.16	5.8
5.17	5.9
5.18	5.10
"Similar to 5.18 (a)"	"Similar to $5.10(a)$ "
5.19	5.11
5.20	5.12
5.21	5.13
5.22	5.14
5.23	5.15

CHAPTER 6

NEW

6.1
6.2

PREVIEW

6.7
6.8

6.3	"from eq(6.23)" "from eq(6.20)"
6.4	6.10
6.5	6.11
"eq (6.52)"	"eq (6.49)"
6.6	6.1
6.7	6.2
6.8	6.3
6.9	6.4
6.10	6.5
6.11	6.6
6.13	6.13
"eq (6.56)"	"eq (6.53)"
"problem 3"	"problem 9"
6.16	6.16
"to (6.23) \& (6.80)"	"to (6.20) \& (6.76)"
6.17	6.17
"equation (6.23)"	"equation (6.20)"

CHAPTER 7

NEW

7.2
"eqn. (7.59)"
7.17
"eqn. (7.59)"
7.19
"eqns 7.66 and 7.67"
7.21
"eqn. 7.66"
7.22
"eqns 7.70 and 7.71 "
7.23
"eqn. 7.71"
7.24
"eqn 7.79"

PREVIEW
7.2
"eqn. (7.57)"
7.17
"eqn. (7.57)
7.19
"eqns 7.60 and 7.61 "
7.21
"eqn. 7.60"
7.22
"eqns. 7.64 and 7.65"
7.23
"eqn. 7.65"
7.24
"eqn 7.73"

CHAPTER 8

NEW

8.1
8.2

PREVIEW

8.5
8.6
$8.3 \quad 8.7$
$8.4 \quad 8.8$
$8.5 \quad 8.9$
$8.6 \quad 8.10$
$8.7 \quad 8.11$
$8.8 \quad 8.1$
$8.9 \quad 8.2$
$8.10 \quad 8.3$
$8.11 \quad 8.4$
$8.13 \quad 8.13$
"problem 8.5" "problem 8.9"

CHAPTER 13

NEW

3.17
"Eq. (3.123)"

PREVIEW

3.17
"Eq. (3.119)"

CHAPTER 14 - New Chapter, "Oscillators"
CHAPTER 15 - New Chapter, "Phase-Locked Loops"
CHAPTER 16 - Was Chapter 14 in Preview Ed.
Change all chapter references in solutions manual from 14 to 16 .
CHAPTER 17 - Was Chapter 15 in Preview Ed.
Change all chapter references in solutions manual from 15 to 17 .

CHAPTER 18 - Was Chapter 16 in Preview Ed.

NEW	PREVIEW
18.3	16.3
"Fig. 18.12(c)"	"Fig. 16.13(c)"
18.8	16.8
"Fig. 18.33(a,b,c,d)"	"Fig. 16.34(a,b,c,d)"

Also, change all chapter references from 16 to 18.
14.1 Open-Loop Transfer Function:

$$
H(s)=\frac{-\left(8_{m} R_{D}\right)^{2}}{\left(1+\frac{s}{\omega_{0}}\right)^{2}} \quad, \omega_{0}=\frac{1}{R_{D} C_{L}}
$$

The gain drops to unity at $\quad \frac{g_{m} R_{D}}{\left(1+\frac{k_{N}^{2}}{\omega_{0}^{2}}\right)^{1 / 2}}=1$, which for $g_{m} R_{D} \gg 1$, yields, $v_{u} \gg \omega_{0}$ and $\omega_{u} \cong \omega_{0} \cdot g_{m} R_{D}=\frac{8 m}{c_{L}}$. The phase changes from -180° at $\omega \approx 0$ to $-2 \tan ^{-1} \frac{\omega_{u}}{\omega_{0}}-180^{\circ}$ at ω_{k}; ie., the phase change at ω_{k} is $-2 \tan ^{-1}\left(g_{m} R_{D}\right)$ and the phouse margin is equal to $180^{\circ}-2 \tan ^{-1}\left(2 m R_{D}\right)$.
14.2 (a) $g_{m} R_{D} \geq 2 \Rightarrow R_{D} \geq 400 \Omega$.
(b) $\left\{\begin{array}{l}\omega_{\text {SC }}=\sqrt{3} \omega_{0}=\sqrt{3} /\left(R_{D} C_{L}\right) \\ \text { Total Gain }=\left(g_{m} R_{D}\right)^{3}=16 \Rightarrow R_{D}=504 \Omega\end{array} \Rightarrow C_{L}=0.547 \mathrm{pF}\right.$
14.3 Each stage must provide a small-sbinal gain of 2 . That is, $\theta_{m} R_{1}=2$. With small swings, each transistor carried half of the tail current. For square-law devices, therefore, we have

$$
\begin{aligned}
& \operatorname{Sm}_{m}, R_{1}=2=\sqrt{\mu_{n} C_{0 x} \frac{w}{L} I_{s s}} R_{1}=2 \Rightarrow \\
& I_{s s} \geq \frac{4}{\mu_{n} C_{0 \times} \frac{W}{L} R_{1}^{2}}
\end{aligned}
$$

14.4 Neglecting body effect of M_{s}, we have $V_{N} \approx V_{x}$. Thus, the gate and drain of M_{3} experience equal voltage variations. That is, M_{3} operates as a diode-connected device,
 providing an impedance of V Oms.
14.5

$$
\begin{aligned}
& \frac{V_{N}}{V_{x}}=\frac{\frac{1}{G_{05} S}}{\frac{1}{G_{03} S^{\prime}}+\frac{1}{g_{m 5}}} \quad(r=\lambda=0) \\
& =\frac{g_{m 5}}{g_{m 5}+c_{G 53} S^{\prime}} \Rightarrow \frac{I_{x}}{V_{x}}=\frac{g_{m 3} g_{m 5}}{g_{m 5}+C_{G 53} 5} \\
& \Rightarrow \frac{V_{x}}{I_{X}}=\frac{1}{g_{3}}+\frac{C_{G S 3}}{g_{m 3} \operatorname{Im}_{5}} S^{\prime} \Rightarrow \text { The impedance is always inductive. }
\end{aligned}
$$

14.6 To avoid latchup, $g_{m} R_{s}<1 \Rightarrow R_{S}<\frac{1}{8 m}$.
14.7 The drain currents saturate near Iss and 0 for a short while, creating a "squarish" waveform. The output voltages are the result of injecting the currents into the tanks. since the tanks provide suppression at higher harmonics, v_{x} and k_{y} are filtered versions of $I_{D 1}$ and $I_{D_{2}}$.
14.8 For the circuit to oscillate, the loop gain must exceed unity: $g_{n} k p>1 \Rightarrow$ $g_{m}>1_{R_{p}}$. For square-law devices, $\sqrt{\mu_{n} C_{a x} \frac{W}{L} I_{s s}}>\frac{1}{k_{p}}$. Thus, $I_{s s}>\frac{1}{\mu_{n} C_{0 \times} \frac{W}{L} R_{p}^{-2}}$.
For M_{1} and M_{2} not to enter the triode region, the maximum value of V_{x} and the minimum value of V_{y} must differ no move than $V_{\text {THE }}$. That is, the peak-to-peak swing at X or Y must be less than $V_{T H}$. Since the peak-to-peak swing is $\approx I_{S S} R_{p}$, we must have $I_{S S} R_{P}<V_{T H}$.
14.9 Since the total current flowing thru M_{1} and C_{2} is equal to I_{b}, a constant value.
Thus, $\quad \frac{V_{\text {out }}}{I_{\text {in }}}=\left(L_{p} S\right)\left\|R_{p}\right\| \frac{1}{C_{p S}}$,

14.10 Replace R_{p} with $R_{p} / 1 \frac{1}{C_{p} s}=\frac{R_{p}}{R_{p} C_{p} S+1}$ in Eq. (14.40), The denominator then reduces to:

$$
R_{p} C_{1} c_{2} L_{p} S^{3}+\left(C_{1}+C_{2}\right) L_{p} R_{p} C_{p} S^{3}+\left(c_{1}+c_{2}\right) L_{p} S^{2}+\left[g_{m} L_{p} R_{p} C_{p} S_{1} g_{m} L_{p}+R_{D}\left(C_{1}+C_{2}\right)\right] S
$$ $+\theta_{n} R_{p}$

Grouping the imaginary terms and equating theirswm to zero, we have

$$
-R_{p} L_{p} \omega^{3}\left[c_{1} c_{2}+\left(c_{1}+c_{2}\right) c_{p}\right]+\left[g_{m} L_{p}+R_{p}\left(c_{1}+c_{2}\right)\right] w=0
$$

Assuming $g_{m} L_{p} \ll p_{p}\left(c_{1}+c_{2}\right)$, we obtain

$$
\omega^{2}=\frac{1}{L_{p}\left(\frac{c_{1} c_{2}}{c_{1}+c_{2}}+c_{p}\right)}
$$

14.11

The current thru $R_{p l l}(L p S)$ is equal to $\operatorname{Vout}\left(\frac{1}{R_{p}}+\frac{1}{L_{p} S}\right)$. The negative of this current flows thru C_{1}, generating a voltage - Lout $\left(\frac{1}{R_{p}}+\frac{1}{L_{p} S}\right) \frac{1}{C_{15}}$ across it. Thus, $V_{x}=V_{\text {in }}+1$ out $\left(\frac{1}{R_{p}}+\frac{1}{L_{0}}\right) \frac{1}{C_{1 S}}$, Also, the
current the $u C_{2}$ is equal to $\left[\operatorname{Vout}+\operatorname{Vout}\left(\frac{1}{P_{p}}+\frac{L}{L_{p S}}\right) \frac{1}{C_{1, ~}}\right] C_{2} S$.
Adding $I_{m} U_{x}$ and the current thru $4 C_{2}$ and equating the result to

- Wat $\left(\frac{1}{R_{p}}+\frac{1}{L_{p}}\right)$, we have

$$
\left[V_{\text {in }}+V_{\text {out }}+\left(\frac{1}{R_{p}}+\frac{1}{L_{p S} S}\right) \frac{1}{C_{1} S}\right] g_{m 1}+\left[V_{o u t}+V_{o u t}\left(\frac{1}{R_{p}}+\frac{1}{L_{p} S}\right) \frac{1}{C_{1 S}}\right] C_{2 S}=-V_{\text {out }}\left(\frac{1}{R_{p}}+\frac{1}{L_{p s} S}\right)
$$

It follows that

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-g_{m} L_{p} R_{p} C_{1} S^{2}}{R_{p} L_{p} C_{2} C_{1} S^{3}+L p\left(c_{1}+c_{2}\right) S^{2}+\left[g_{m} L_{p}+R_{p}\left(C_{1}+C_{2}\right)\right] s+g_{m} R_{p}}
$$

Note that the denomintor is the same as in Eq. (14.40).
14.12

$$
\begin{aligned}
& V_{1}=-\left(I_{\text {in }} V_{\text {out }} C_{2} s+g_{m} V_{1}\right) / C_{1} s \Rightarrow V_{1}\left(1+g_{m} / C_{1} s\right)=\frac{-I_{\text {in }}+V_{\text {out }} C_{2} s}{C_{1} s} \\
& \Rightarrow V_{1}=\frac{-I_{\text {in }}+V_{o u t} C_{2,} s}{g_{m}+C_{1} s} \\
& \text { writing a KVL, we have }-V_{1} C_{1} s \frac{R_{p} L_{1} s}{R_{p}+L_{1} s}=V_{1}+V_{\text {out }} .
\end{aligned}
$$ It follows that

$$
V_{\text {out }}=-\frac{I_{\text {in }}+V_{\text {out }} C_{2 S} S}{g_{m}+C_{1} S}\left[1+\frac{C_{1} S R_{p} L, S}{R_{p}+L, S}\right]
$$

Simplifying and calculating the denominator of bout $/ I_{\text {in }}$, we heave $R_{p} L, C_{1} C_{2} S^{3}+L_{1}\left(C_{1}+C_{2}\right) s^{2}+\left[R_{p}\left(C_{1}+C_{2}\right)+g_{m} L_{1}\right] S+g_{m} R_{p}$, munich is the same as eq. (14.40). Thus, the oscillation conditions are the same as those of colpitts oscillator.

We can consider Y as the output because for oscillation begin the gain from In to V must be infinite ids well. First, assume Roan:

$$
\begin{aligned}
I_{x}= & +V_{1} C_{1} S\left(L, S+\frac{1}{C_{1} S}\right) C_{2} S=-g_{m} V_{1}+I_{i n}-V_{1} C_{1} S \\
& \Rightarrow V_{1}\left[C_{1} C_{2} \cdot S^{2}\left(L_{1} S+\frac{1}{C_{1} S}\right)+g_{m}+C_{1} S\right]=I_{i n}
\end{aligned}
$$

Now, include $R_{p}: \quad V_{1}\left[C_{1} C_{2} S^{2}\left(\frac{R_{p} L, 5}{R_{p}+L_{1} S}+\frac{1}{C_{1} S}\right)+g_{m}+C_{1} S\right]=I_{\text {in }}$

$$
\Rightarrow V_{1}\left[R_{1} \hat{c}_{2} s^{2}\left(R_{p} c_{1} L_{1} s^{2}+R_{p}+L_{1} s\right)+\left(g_{m}+c_{1, s)\left(C_{1}\right)\left(R_{p}+L_{1} s\right)}^{C_{1} s\left(R_{p}+L_{1} s ;\right.}\right]=I\right. \text { in }
$$

\Rightarrow denominator of $V_{1} / I_{\text {in }}$ is
(C_{1} s is factored from numerator \& denominator.)

$$
\begin{aligned}
& R_{p} C_{1} C_{2} L, s^{3}+R_{p} C_{2} s+L, c_{2} s^{2}+g_{m} R_{p}+g_{m} L, s+c_{1} R_{p} s+C_{1} L_{1} s^{2} \\
= & R_{p} c_{1} C_{2} L, s^{3}+L_{1}\left(c_{1}+C_{2}\right) s^{\prime 2}+\left[R_{p}\left(c_{1}+c_{2}\right)+g_{n} L,\right] s^{\prime}+g_{n} R_{p}
\end{aligned}
$$

the same as that in Eq. (14.40).
$14.13 \quad I_{T}=1 \mathrm{~mA},\left(\frac{W}{L}\right)_{1,2}=5010.5$
(a) For a three-stage ring, the minimum gain per stage at low frogs must be 2 . Thus, $g_{m 1,2} R_{1,2}=2$ (when no current flows thru M_{3} and M_{4}). $\Rightarrow R_{1,2}=2 / 8 m 1,2 . \quad\left(g_{m, 2}=\sqrt{\mu_{n} C_{0} \times\left(\frac{U}{L}\right)_{1,2} I_{T}}.\right)$
(b) Im3,4 $R=0.5$ with $I_{D 3,4}=0.5 \mathrm{~mA}$.

$$
\begin{aligned}
& g_{m 3,4}=\sqrt{\mu_{n} C_{0 \times(}\left(\frac{W}{L}\right)_{3,4} I_{T}}=\underbrace{g_{m}, 2}_{=\frac{2}{R}} \sqrt{\frac{(\omega / L) 3,4}{(\omega / L)_{1,2}}} \\
& \Rightarrow \frac{2}{R} \sqrt{\frac{(\omega / L) 3,4}{(\omega / L) 1,2}} R=0.5 \\
& \Rightarrow(\omega / L)_{3,4}=0.25^{2}(\omega / L) 1,2 .
\end{aligned}
$$

(c) The voltage gain must be equal to 2 with a diff pair tail current of I_{H} while M_{3} and H_{4} carry all of I_{T}.

$$
\begin{aligned}
& \left|A_{v}\right|=g_{m 1,2}\left(R_{1,2} \| \frac{-1}{g_{m 3,4}}\right) \\
& =g_{m, 2} \frac{R_{1,2}}{1-g_{m} 3,+R_{3,2}}
\end{aligned}
$$

If $g_{m 3,4} R_{1,2}<1$ (to avoid lath-up), then

$$
\begin{gathered}
\theta_{m 1,2} R_{1,2}>2\left(1-\theta_{m 3,4} R_{1,2}\right) \\
\Rightarrow \sqrt{2 \frac{I_{H}}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1,2}} R_{1,2}>2\left(1-\sqrt{2 \frac{I_{r}}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{3,4}} R_{1,2}\right)
\end{gathered}
$$

Thus, I_{H} can be determined.
(d) Neglecting body effect for simplicity,
we have

$$
0.5 \underline{t} I_{T}
$$

$$
\begin{aligned}
& \frac{I_{T}}{2}=\frac{1}{2} \mu_{n} C_{0 \times}\left(\frac{w}{L}\right)_{5,6}\left(V_{G 5,5,6} V_{T H 5,6}\right)^{2} \\
& \Rightarrow\left(\frac{\omega}{L}\right)_{5,6}=\frac{I_{T}}{\mu_{n} C_{0 X}\left(V_{6,5}-V_{T H, 5,6}\right)^{2}} \text { and } V_{655,6}+0.5 \mathrm{~V}=1.5 \mathrm{I} \text {. }
\end{aligned}
$$

14.14 If each inductor contributes a cap of C_{1}, then

$$
f_{05 c, \text { min }}=\frac{1}{2 \pi \sqrt{L\left(C_{0}+C_{1}\right)}}, f_{\text {ore, max }}=\frac{1}{2 \pi \sqrt{L\left(0.62 C_{0}+C_{1}\right)}}
$$

Thus, the tuning range is given by $\frac{f_{0} c_{, ~ m a x ~}}{f_{0} c_{1}, m i n}=\sqrt{\frac{c_{0}+C_{1}}{0.62 C_{0}+C_{1}}}$, which is less than 27%. For example, if $C_{1}=0.2 C_{0}$, then, $f_{\text {osee, }}$ max $/ f_{a x, \min } \simeq 1.21$.
14.15 (a) $L_{p}=5 n H, c_{x}=0.5 p F \quad f_{05 c}=1 G 1 l_{z}=\frac{1}{2 \pi \sqrt{5 n H x\left(c_{x}+c_{D}\right)}}$

$$
\Rightarrow C_{D}=4.566 \mathrm{pF} .
$$

(b) $Q=\frac{L \omega}{R_{p}}=4 \Rightarrow R_{p}=125.7 \Omega \Rightarrow$
with a 1-mA tail current, the peak-to-peak swing on each side is approximately equal to $126 \mathrm{~m}^{2}$.

Chapter 15
Phase-Locked Loops
15.1 With two signals $v_{1} \cos \omega t$ and $v_{2} \cos (\omega t+\theta)$, the product is $V_{\text {out }}=\frac{1}{2} v_{1} v_{2}[\cos (2 \omega t+\theta)+\cos \theta]$. If the hight rag. component is filtered out, Fut $\propto \cos \theta$.

The phase detector is linear only
for a small neighborhood around

$$
\theta= \pm \frac{\pi}{2}
$$

15.2

The difference between the two frequencies is integrated between t, and t_{2} to accumulate a difference of ϕ_{0} :

$$
\begin{aligned}
\left(f_{H}-f_{L}\right)\left(t_{2}-t_{1}\right) & =\frac{\phi_{0}}{2 \pi} \\
\Rightarrow \quad t_{2}-t_{1} & =\frac{\phi_{0}}{2 \pi\left(f_{H}-f_{L}\right)}
\end{aligned}
$$

15.3 The vCO still requires a de voltage that defines the frequency of operation. A high-pass filter would not provide the de component.
15.4 The loop must lock such that the phase difference is away from zero because the $P D$ gain dirges to zero at $\Delta \phi=0$. with a large loop gain, the PD output settles around half of its full scale. This point can be better seen in a fully-differentral implementation:

15.5 Suppose the loop begins with $\Delta \phi=\phi_{1}$. If the feedback is positive, the loop accumulates somuch phase to drive the PD toward ϕ_{2}, where the feedback
 is negative and the loop can settle.
15.6 Note: $\phi_{\text {ex }}$ should be changed to Ex.

$\left(-\phi_{\text {but }} \cdot K_{P D} \cdot \frac{1}{1+\frac{S}{\omega_{L F F}}}+V_{\text {ex }}\right) \frac{K_{V_{c o}}}{S}=\phi_{\text {out }}$

$$
\Rightarrow \text { tout }\left(1+\frac{k_{P_{D}} k_{v_{C O}}}{s\left(1+\frac{S}{\omega_{L P F}}\right)}\right)=k_{e_{x}} \frac{k_{v c o}}{S} \Rightarrow
$$

$$
\frac{\phi_{o u t}}{K_{\text {ex }}}=\frac{K_{V_{C O}}}{s+\frac{K_{P D} K_{V C D}}{1+\frac{s}{\omega_{L P F}}}}=\frac{K_{V C O}\left(1+\frac{s}{\omega_{L P F}}\right)}{\frac{S^{2}}{c_{L P F}}+s+K_{P D} K_{V C O}}
$$

15.7

$$
\begin{aligned}
& \vec{s}=\frac{1}{2} \sqrt{\frac{C_{V P P}}{K_{P D} K_{V C O}}} \quad \sqrt{\frac{K_{V C O 1}}{K_{V C O 2}}}=1.5 \\
& \Rightarrow \frac{K_{V C O 1}}{K_{V C O 2}}=2.25
\end{aligned}
$$

The slope can vary by a factor of 2.25 .
$15.8 \quad \tan \varphi=\frac{\operatorname{Im}\left(p_{0} / e\right)}{-R_{c}(p d e)}=\frac{\sqrt{1-S^{2}}}{5}$
This is indeed as if $\xi=\cos \varphi$ and

$$
\sqrt{1-\xi^{2}}=\sin \varphi
$$

$15.9 \quad \mathrm{KV}_{C O}=100 \mathrm{Mtz} / V, K_{P D}=1 \mathrm{~V}$ rad, $\omega_{\angle P F}=2 \pi(1 \mathrm{MItz})$

If the control voltage is sensed at node X, then R_{p} appears in series cuith the current sources in the charge pump, failing to provide a zero.
15.11 From (15.40), $\frac{\text { Tout }}{\Delta \phi}(5)=\frac{I_{p}}{2 \pi}$. Since Tout is multiplied by the Series combination of P_{p} and c_{p} :

$$
\frac{V_{\text {out }}}{\Delta \phi}(s)=\frac{I_{p}}{2 \pi}\left(R_{p}+\frac{1}{c_{p} s}\right) .
$$

15.12

$\Delta \phi$ must be such that the net current is zero. If the current mismatch equals ΔI and the width of $\left|I_{D 4}\right|$ pules is $4 T$, then
$\left(\frac{\Delta \phi}{2 \pi} \cdot T_{P}\right) I_{p}=\Delta T . \Delta I$, where T_{p} is the period.

$$
\Rightarrow \Delta \phi=2 \pi \frac{\Delta T}{T_{p}} \cdot \frac{\Delta I}{I_{P}}
$$

15.13 $\omega_{o u t ~}=\omega_{0}+K_{v c o} V_{\text {cont }}, V_{\text {cont }}=V_{m} \cos \omega_{m} t$. The vcooutput is

$$
\begin{aligned}
& V_{\text {out }}=V_{0} \cos \left[\int \omega_{\text {bent }} d t\right]=V_{0} \cos \left[\omega_{0} t+K_{v_{c o}} V_{m} \int \cos \omega_{m} t d t\right] \\
& =V_{0} \cos \omega_{0} t \cos \left(K_{V c o} \frac{V_{m}}{\omega_{m}} \sin \omega_{m} t\right)-V_{0} \sin \omega_{0} t \sin \left(K_{V_{c o}} \frac{V_{m}}{\omega_{m}} \sin \omega_{m} t\right) .
\end{aligned}
$$

For small $V_{m}, V_{o u t}(t) \approx V_{0} \cos \omega_{b} t-\frac{K_{V c o l} V_{m} V_{0}}{2 \omega_{m}}\left[\cos \left(\omega_{b}-\omega_{m}\right) t-\cos \left(\omega_{b}+\omega_{m}\right) t\right]$.
The divider output is expressed as

$$
\begin{aligned}
V_{0 u}, M & =V_{0} \cos \left[\frac{\omega_{0} t}{M}+\frac{K_{V_{c o}} V_{m}}{M M} \int \cos \omega_{m} t d t\right] \\
& \approx V_{0} \cos \frac{\omega_{0}}{M} t-\frac{K_{V_{c}} V_{m} V_{0}}{2 M \omega_{m}}\left[\cos \left(\frac{\omega_{0}}{M}-\omega_{m}\right) t-\cos \left(\frac{\omega_{0}}{M}+\omega_{m}\right) t\right]
\end{aligned}
$$

If $\frac{\omega_{0}}{M}>\omega_{m}$,

If $\frac{\omega_{0}}{M}>\omega_{m}$, output:
(aliasing)
$15.14 \quad S_{1,2}=-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1} \quad \sum_{\omega_{n} \alpha \sqrt{I_{p} k v c o}}^{I_{p} k_{v c o}}$
As I_{p} Kike stats from small valued, 51,2 are complex: $\operatorname{Re}\left\{S_{1,2}\right\}=-\xi \omega_{n} \quad \operatorname{Im}\left\{s_{1,2}\right\}= \pm \omega_{n} \sqrt{1-\xi^{2}}$.
Noting that $\omega_{n}=\frac{2 \xi}{R_{p} c_{p}}$, we can write $\omega_{n}{ }^{2}-\frac{2 \xi \omega_{n}}{R_{p} c_{p}}=0$
Adding $\left(\frac{1}{R_{p} C_{p}}\right)^{2}$ to both sides and subtracting and adding
$-\xi^{2} \omega_{n}^{2}$, we obtain $\left(-\xi \omega_{n}+\frac{1}{R_{p} C_{p}}\right)^{2}+\omega_{n}^{2}\left(1-\xi^{2}\right)=\left(\frac{1}{R_{p} C_{p}}\right)^{2}$, which is a circle centered at $-\frac{1}{R_{p} C_{p}}$ with a radius equal to $\frac{1}{R_{p} C_{p}}$.

For $\xi \geq 1$, the poles become real and move away from each other: $-\xi \omega_{n}+\omega_{n} \sqrt{\xi^{2}-1}$ and $-\xi \omega_{n}-\omega_{n} \sqrt{\xi^{2}-1}$. If $\xi \rightarrow \infty$, then $-\xi \omega_{n}+\omega_{n} \sqrt{\xi^{2}-1}=\omega_{n}\left(-\xi+\sqrt{\xi^{2}-1}\right)=\omega_{n} \xi\left(-1+\sqrt{1-\frac{1}{\xi^{2}}}\right)$

$$
\approx \omega_{n} \xi\left(-1+\left(1-\frac{1}{2 \xi^{2}}\right)\right) \approx \frac{-\omega_{n}}{2 \xi}=\frac{-1}{R_{p} c_{p}} .
$$

15. 15 Note: tex should be changed to Vex.

$$
\begin{aligned}
& {\left[- \text { out } \frac{I_{p}}{2 \pi}\left(\frac{R_{p} C_{p} S+1}{C_{p} S}\right)+V_{e x}\right] \frac{K_{V c o}}{S}=\text { Pout }^{S}} \\
& \Rightarrow \phi_{\text {out }}\left[1+\frac{I_{p} K_{V_{e 0}}\left(R_{0} C_{p} S+1\right)}{2 \pi C_{p} S^{2}}\right]=V_{e x} \frac{K_{V c o}}{S} \Rightarrow \\
& \frac{\phi_{\text {out }}}{V_{e x}}=\frac{K_{v c o}\left(2 \pi C_{p} S^{2}\right)}{2 \pi C_{p} S^{2}+I_{p} K_{v c o} R_{p} C_{p} S^{\prime}+1}
\end{aligned}
$$

15.16 When the VCO frequency is for from the input frequency, The PFD operates as a froqkency detector, comparing the VCO and input frequencies. Thus, the VCO transfer function must relate the output frequency to the control voltage: $\Delta w_{\text {out }}=K_{v_{0}} \Delta V_{\text {cont }} \rightarrow$ the ordergf the system falls by one (compared to when the vo phase is of interest: Kvco/s.)
2.1) a) NMOS:

for $v_{x} \geqslant 0.7$

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} C_{D x} \frac{W}{L_{\text {eff }}}\left(V_{x}-0.7\right)^{2}\left(1+\lambda \cdot 3^{v}\right) \quad\left(L_{C f}=0.5^{\mu}-2 L_{0}\right) \\
& I_{D}=12.8\left(\frac{m A}{V^{2}}\right) \cdot\left(V_{x}-0.7\right)^{2}
\end{aligned}
$$

b) PMOS:

Solution is the same

for $\left|V_{G S}\right|<V_{T H}(=0.8) \quad I_{D} \approx 0$
for $\left|v_{G S}\right| \geqslant 0.8$

$$
I_{D}=\frac{1}{2} \mu_{p} C_{Q_{x}} \frac{W}{L_{C H}}\left(V_{x}-0.8\right)^{2}\left(1+\lambda \cdot 3^{v}\right)
$$

2.2)
a) Nmos

$$
\begin{aligned}
& \left.g_{m}=\sqrt{2 \mu_{n} C_{0 x} \frac{w}{L} I_{0}}=3.66 \frac{\mathrm{~mA}}{\mathrm{~V}} \quad \text { (Neglecting } L_{D}\right) \\
& r_{0}=\frac{1}{\lambda I_{D}}=20^{\mathrm{k} \Omega} \\
& \text { Intrinsic gain }=g_{m} r_{0}=73.3 \frac{\mathrm{v}}{\mathrm{~V}}
\end{aligned}
$$

b) PMOS

$$
\begin{gathered}
g_{m}=\sqrt{2 \mu_{p} C_{0 x} \frac{W}{L}} I_{D}=1.96 \frac{\mathrm{~mA}}{\mathrm{~V}} \\
r_{0}=\frac{1}{\lambda I}=\frac{1}{0.2 \cdot 0.5 \mathrm{~mA}}=10^{\mathrm{k} \Omega} \\
g_{m} r_{0}=19.6 \frac{\mathrm{v}}{\mathrm{~V}}
\end{gathered}
$$

2.3) $\quad g_{m}=\sqrt{2 \mu c_{0 x} \frac{W}{L} I_{D}}$
$r_{0}=\frac{1}{\lambda I_{D}}$
Assume $\quad \lambda=\frac{\alpha}{L}$

$$
A=g_{m} r_{0}=\sqrt{2 \mu C_{0 x} \frac{w}{L} I_{D}} \cdot \frac{L}{\alpha I_{D}}
$$

I_{D} versus $V_{G S}$: (for NMOS)
I) for $V_{G S}<V_{T H}, I_{0} \approx 0$
II) for $V_{\pi H}<V_{G S}<V_{T H}+V_{D S} \Rightarrow$ Device is in the Saturation region

$$
I_{D}=\frac{1}{2} \mu_{n} C_{o_{x}} \frac{w}{L}\left(V_{G s}-V_{T_{1}}\right)^{2}
$$

III) for $V_{G S}>V_{T H}+V_{D S} \Rightarrow$ Device operates in the triode region

$$
I_{D}=\mu_{n} C_{\partial_{x}} \frac{w}{L}\left[\left(V_{a s}-V_{T_{H}}\right) V_{D S}-\frac{1}{2} V_{D S}^{2}\right]
$$

Changing $V_{S B}$ just shifts the curve to the right for $V_{S B}>0$ or to the left for $v_{S B}<0$
2.5) a)

$$
\lambda=0.1, \gamma=0.45, \quad 2 \Phi_{F}=0.9, \quad V_{T H O}=0.7
$$

$$
\begin{aligned}
& V_{G S}=3-V_{x}, V_{D S}=3-V_{x}, V_{S B}=V_{x} \\
& V_{T H}=V_{T H O}+\gamma\left(\sqrt{2 \phi_{F}+V_{S B}}-\sqrt{2 \varphi_{F}}\right)
\end{aligned}
$$

So, $I_{x}=\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left(3-v_{x}-0.7-0.45\left(\sqrt{0.9+v_{x}}-\sqrt{0.9}\right)\right)^{2}\left(1+\lambda\left(3-v_{x}\right)\right)$

The above equation is valid for

$$
3-v_{x}-0.7-0.45\left(\sqrt{0.9+v_{x}}-\sqrt{0.9}\right)>0 \quad, \text { i.e. } \quad v_{x}<1.97^{v}
$$

So, $\quad I_{x}=\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left(2.727-V_{x}-0.45 \sqrt{0.9+V_{x}}\right)^{2}\left(1.3-0.1 V_{x}\right)$

2.5) b,

$$
\lambda=\gamma=0 \quad V_{T H}=0.7
$$

for $0<V_{x}<1$, is and D exchange their roles.

$$
\begin{aligned}
& V_{G S}=1.9-V_{x} \quad V_{D S}=1-V_{x}, V_{O D}=1.2-V_{x} \\
& I_{x}=-\frac{1}{2} \mu_{n} C_{\Delta x} \frac{w}{L}\left[\left(1.2-V_{x}\right) \times 2 \times\left(1-V_{x}\right)-\left(1-V_{x}\right)^{2}\right] \\
& I_{x}=-\frac{1}{2} \mu_{n} C_{o_{x}} \frac{w}{L}\left(1-v_{x}\right)\left(1.4-v_{x}\right) . \\
& g_{m}=\mu_{n} C_{0 x} \frac{w}{L} V_{D S}=\mu_{n} C_{0 x} \frac{w}{L}\left(1-V_{x}\right) \quad \text { (absolute value) }
\end{aligned}
$$

The above equations are valid for $V i<1$

Then the direction of current is reversed.

$$
V_{G S}=1.9-1=0.9 \quad V_{D S}=V_{x}-1 \quad, V_{O D}=0.9-0.7=0.2
$$

for $v_{x}<1.2$, device operates in the triode region.

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left[2 \times 0.2 \times\left(v_{x-1}\right)-\left(v_{x}-1\right)^{2}\right] \\
& g_{m}=\mu_{n} c_{o x} \frac{w}{L}\left(v_{x}-1\right)
\end{aligned}
$$

for $v_{x}>1.2$, Device goes into saturation region
$2.5) b$ cont
So, $I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}(0.2)^{2}$,

$$
g_{n}=\mu_{n} c_{0 x} \frac{w}{L}(0.2)
$$

2.5) C

$$
\lambda=\gamma=0
$$

$$
V_{T H}=0.7
$$

S and D exchange their roles.

$$
V_{G S}=1-v_{x} \quad v_{D S}=1.9-v_{x} \quad v_{O D}=v_{G S}-v_{T H}=0.3-v_{x}
$$

Device is in saturation region, $S_{0,} I_{x}=-\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left(0.3-V_{x}\right)^{2}$ Device turns of when $v_{x}=0.3$ and never turns on again.

So, $I_{x}=-\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(0.3-v_{x}\right)^{2} ; x<0.3$.

$$
I_{x}=0
$$

; other wise

Then $\quad g_{m}=-\mu_{n} c_{0 x} \frac{\omega}{L}\left(0.3-v_{x}\right) ; x<0.3$

$$
g_{m}=0 \quad ; \quad 0 . \text { the wise }
$$

2.5) d,

$$
V_{T H}=-0.8 \quad \gamma=0
$$

D and s exchang their roles.

$$
v_{G s}=-0.9 \quad v_{o s}=v_{x}-1.9
$$

for $v_{x}<1.8$:

$$
\begin{aligned}
& I_{x}=-\frac{1}{2} \mu_{p} C_{o x} \frac{w}{L}(0.1)^{2} \\
& g_{m}=-\mu_{p} C_{o x} \frac{w}{L}(0.1)
\end{aligned}
$$

Device remains in the saturation region until
$v_{x}=1.9-0.1=1.8$, then device goes into the triode
region.

$$
\begin{aligned}
& I_{x}=-\mu_{p} C_{o_{x}} \frac{w}{L}\left[(-0.1)\left(v_{x}-1.9\right)-\frac{1}{2}\left(v_{x}-1.9\right)^{2}\right] \\
& g_{m}=+\mu_{p} C_{0 x} \frac{w}{L}\left(v_{x}-1.9\right)
\end{aligned}
$$

for $v_{x}>1.9: \quad S$ and D exchange their roles again, when $v_{x}=1.9$ for $v_{x}>1.9$, Device operates in the triode region.

$$
\begin{aligned}
& v_{G S}=1-v_{x}, \quad v_{D S}=1.9-v_{x} \\
& I_{x}=+\mu_{p} c_{o_{x}} \frac{w}{L}\left[\left(1.8-v_{x}\right)\left(1.9-v_{x}\right)-\frac{i}{2}\left(1.9-v_{x}\right)^{2}\right] \\
& g_{m}=-\mu_{p} C_{0 x} \frac{w}{L}\left(1.9-v_{x}\right)
\end{aligned}
$$

2.5)d So, $\quad 0<V_{x}<1.8 \quad I_{x}=-\frac{1}{2} \mu_{p} C_{0 x} \frac{w}{L}(0.1)^{2}$

$$
\left.\begin{array}{rl}
g_{m} & =-\mu_{p} c_{0 x} \frac{w}{L}(0.1) \\
1.8<v_{x}<3 & I_{x}
\end{array}\right)+\mu_{p} c_{0 x} \frac{w}{L} \times \frac{1}{2}\left(v_{x}-1.9\right)\left(v_{x}-1.7\right) ~=~ g_{m}=\mu_{p} c_{0 x} \frac{w}{L}\left(v_{x}-1.9\right)
$$

2.5) e)

$$
\begin{aligned}
& V_{T H O}=0.7 \quad \gamma=0.45 \quad 2 Q_{F}=0.9, \lambda=0 \\
& V_{S B}=1-V_{X} \\
& V_{T H}=0.7+0.45\left(\sqrt{0.9+1-V_{x}}-\sqrt{0.9}\right) \\
& V_{G S}=0.9 \quad V_{O S}=0.5
\end{aligned}
$$

for $V_{x}=0, V_{T H}=0.893$ so device is in Saturation region.

So

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(0.2-0.45\left(\sqrt{1.9-V_{x}}-\sqrt{0.9}\right)\right)^{2} \\
& g_{m}=\mu_{n} C_{0 x} \frac{w}{L}\left(0.2-0.45\left(\sqrt{1.9-V_{x}}-\sqrt{0.9}\right)\right)
\end{aligned}
$$

These equations are valid upto the edge of triode region, ie.

$$
0.2-0.45\left(\sqrt{1.9-v_{x}}-\sqrt{0.9}\right)=0.5 \quad \Rightarrow \quad v_{x}=1.82
$$

Above $V_{x}=1.82$, device is in the triode region.

$$
I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[2 \times 0.5 \times\left(0.2-0.45\left(\sqrt{1.9-v_{x}}-\sqrt{0.9}\right)\right)-0.5^{2}\right]
$$

$g_{m}=\mu_{n} C_{0 x} \frac{w}{L}$ (0.5) ; This problem has been Considered Only for $0<v_{x}<1.9$ in which Schichman-Hodges Eq. is valid for $V_{T H}$.

2. (i) al

for $V_{S G}>\left|V_{T M}\right|$ Device is in the Saturation region (Device is of; otherwise $\quad\left(V_{D D}-V_{x}\right) \frac{R_{1}}{R_{1}+R_{2}}>-V_{T H}$

$$
\begin{aligned}
v_{x}<v_{O D}+v_{T H}\left(1+\frac{R_{2}}{R_{1}}\right) \Rightarrow I_{x} & =\frac{1}{2} \mu_{p} C_{0} \frac{w}{L}\left[\left(v_{D D}-v_{x}\right) \frac{R_{1}}{R_{1}+R_{2}}+v_{T H}\right]^{2} \\
g_{n} & =\mu_{p} C_{0 x} \frac{w}{L}\left[\left(V_{D D}-v_{x}\right) \frac{R_{1}}{R_{1}+R_{2}}+V_{T H}\right]
\end{aligned}
$$

If $V_{D D}+V_{T N}\left(1+\frac{R_{2}}{R_{1}}\right)<0$ (e.g. for small value of $\left.R_{1}\right)$, device never turns on!
2.6) b)

$$
\begin{aligned}
& \gamma=0 \\
& v_{G S}=\left(v_{D D}-v_{x}\right) \frac{R_{2}}{R_{1}+R_{2}} \quad v_{D S}=v_{D D}-v_{x}
\end{aligned}
$$

for $V_{G S}>V_{T H}$, Device is in the saturation region and

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0_{x}} \frac{w}{L}\left[\left(v_{\Delta 0}-v_{x}\right) \frac{R_{2}}{R_{1}+R_{2}}-v_{T H}\right]^{2} \\
& g_{m}=\mu_{n} c_{0_{x}} \frac{w}{L}\left[\left(v_{D_{D}}-v_{x}\right) \frac{R_{2}}{R_{1}+R_{2}}-v_{T H}\right]
\end{aligned}
$$

for $\quad V_{x}<V_{D O}-V_{T H}\left(1+\frac{R_{1}}{R_{2}}\right) \quad$ (ie. $\left.v_{G S}>V_{T H}\right)$

If $V_{O B}-V_{T H}\left(1+\frac{R_{2}}{R_{1}}\right)<0$ device doesn't turn on.

I_{x} and $I_{R}=I_{1}-I_{x}$ have the same polarity
So, $0 \leqslant I_{x} \leqslant I_{1}$
for $0<v_{x}<2-v_{T W}$ (1.3) Device is in the triode.

$$
\begin{aligned}
& V_{G S}=2-V_{x}+R_{1}\left(I_{1}-I_{x}\right), V_{D S}=R_{1}\left(I_{1}-I_{x}\right) \\
& I_{x}=I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{2}\left[2\left(V_{G S}-V_{T H}\right)-V_{D S}\right] V_{D S} \\
& \Rightarrow(x) I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[R_{1}\left(I_{1}-I_{x}\right)+2\left(2-V_{T W}-V_{x}\right)\right]\left(R_{T}\left(I_{1}-I_{x}\right)\right]
\end{aligned}
$$

The above equation peresents $I_{x}-V_{x}$ characteristics in this region.
In this region $g_{m}=\mu_{n} \delta_{0 x} V_{o s}=\mu_{n} C_{o x} R_{1}\left(I_{1}-I_{x}\right)$

Then device enters the Saturation region; $V_{G s}=2-V_{x}+R_{1}\left(I,-I_{x}\right)$

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[2-V_{x}+R_{1}\left(I_{1}-I_{x}\right)-V_{T H}\right]^{2} \\
& g_{m}=\mu_{n} C_{0} \frac{w}{L}\left[2-V_{x}+R_{1}\left(I_{1}-I_{x}\right)-V_{T H}\right]
\end{aligned}
$$

Then device turns of when $V_{x}=2-V_{T W}+R_{1} I_{1}$

I_{x} is a constant that can be derived by solving the above equation.

Then device enters the triode region for $v_{x}>2+v_{T n}$

Intis case $V_{G S}=R_{1}\left(I_{1}-I_{x}\right) \quad V_{O S}=2-\left[V_{x}-R_{1}\left(I_{1}-I_{x}\right)\right]=2-V_{x}+R_{1}\left(I_{1}-I_{x}\right)$

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[2\left(V_{G S}-V_{T H}\right) V_{D S}-V_{\Delta S}^{2}\right]=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}[\left.2\left[R\left(I_{1}-I_{x}\right)-V_{T H}\right]-2+V_{x}-R_{1}\left(I_{1}-I_{x}\right)\right] x \\
&\left(2-V_{x}+R_{1}\left(I_{1}-I_{x}\right)\right) \\
& I_{x}=\frac{1}{2} \mu_{n} C_{o r} \frac{w}{L}\left[\left(R_{1}\left(I_{1}-I_{x}\right)-V_{T H}\right)+\left(V_{x}-2-V_{T H}\right)\right]\left[\left(R_{1}\left(I_{1}-I_{x}\right)-V_{T H}\right)-\left(V_{x}-2-V_{T H}\right)\right]
\end{aligned}
$$

(*) $I_{x}=\frac{1}{2} \mu_{n} c_{0} \frac{\omega}{L}\left[\left(R_{1}\left(I_{1}-I_{x}\right)-v_{T H}\right)^{2}-\left(V_{x}-2-V_{T H}\right)^{2}\right]$
The second tern shows that I_{x} decreases when we increase v_{x}

The polarity of I_{x} Changes for higher V_{x} (Device still is in triode)
(*) presents $I_{x}-V_{x}$ relationship in this region.

$$
\begin{aligned}
& g_{m}=\mu_{n} C_{x} \frac{w}{L}\left[R_{1}\left(I_{1}-I_{x}\right)-V_{T H}\right] \quad ; V_{x}<2+V_{T H} \\
& g_{m}=\mu_{n} C_{0 x} \frac{w}{L} V_{D_{s}}=\mu_{n} C_{0} \frac{w}{L}\left[R_{1}\left(I_{1}-I_{x}\right)+2-V_{x}\right] \quad V_{x}>2+V_{T H}
\end{aligned}
$$

for $0<v_{x}<v_{T_{W}}$
Device is off $I_{x}=0 \quad g_{m}=0$

Then device turns on (in the Saturation region)

$$
I_{x}=\frac{1}{2} \mu_{H} C_{0 x} \frac{w}{L}\left(v_{x}-v_{T H}\right)^{2}
$$

Transistor is in the saturation until $\quad V_{G D}=R_{1}\left(I_{x}-I_{1}\right)=V_{T H}$, Then device
enters the triode $\begin{aligned} & \text { region. (when } \\ & I_{x}\end{aligned}=I_{1}+\frac{V_{T H}}{R_{1}}$, i.e. $V_{x}=V_{T_{1}}+\sqrt{\frac{2 I_{1}+2 V_{T H} / R_{1}}{\mu_{n} C_{0 x} \frac{w}{L}}}$)
So, $\quad V_{T H}<V_{x}<V_{T H}+\sqrt{\frac{2 I_{1}+2 V_{T H / R_{1}}}{\mu_{n} C_{0 x} \frac{w}{L}}} \quad I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{x}-V_{T H}\right)^{2}$

$$
g_{m}=\mu_{n} c_{o x} \frac{w}{L}\left(v_{x}-v_{T H}\right)
$$

2.6)e Cont.

Then device enters the triode region.

$$
\begin{gathered}
v_{s}=v_{x} \quad v_{0 S}=v_{x}-R_{1}\left(I_{x}-I_{1}\right) \\
\ln _{0 x} \underline{w}\left[2\left(v_{x}-v_{n 1}\right)-v_{x}+R_{1}\left(I_{x}-I_{1}\right.\right. \\
\\
\left(v_{x}-R_{1}\left(I_{x}-I_{1}\right)\right)
\end{gathered}
$$

$$
I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[2\left(v_{G S}-V_{T H}\right)-v_{D S}\right] v_{D S}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left[2\left(v_{x}-V_{T H}\right)-V_{x}+R_{1}\left(I_{x}-I_{1}\right)\right] x
$$

(*) $I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{x}+R_{1}\left(I_{x}-I_{1}\right)-2 V_{\pi}\right)\left(V_{x}-R_{1}\left(I_{x}-I_{1}\right)\right)$

The above equation presents $I_{x}-V_{x}$ relationship in triode region.
I_{n} this region, $\quad g_{m}=\mu_{n} C_{0 x} \frac{w}{L} V_{\Delta s}=\mu_{n} C_{0 r} \frac{w}{L}\left(V_{x}-R_{1}\left(I_{x}-I_{1}\right)\right)$

2.7) a

for $0<V_{i_{\text {in }}}<0.7$ device is off $\quad V_{\text {out }}=0$
for $0.7<v_{\text {in }}<1.7$ device is in the saturation region
(*) $\quad I_{0}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{\text {in }}-V_{\text {out }}-0.7\right)^{2} \Rightarrow I_{\text {nput-output }}$ relationship
for $1.7<v_{\text {in }}<3$ device is in the triode region

$$
V_{G S}=V_{\text {in }}-V_{\text {out }} \quad V_{D S}=1-V_{\text {out }}
$$

(*) $I_{D}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{\text {ox }} \frac{w}{L}\left[2\left(V_{\text {in }}-V_{\text {out }}-0.7\right)\left(1-V_{\text {out }}\right)-\left(1-V_{\text {out }}\right)^{2}\right]$
\Rightarrow Input-output relationship

2.7) b

for $0<v_{\text {in }}<1.3$ device is in triode

$$
V_{G s}=2-V_{\text {out }} \quad V_{D_{s}}=V_{\text {in }}-V_{\text {out }}
$$

(*) $I_{0}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{\text {ox }} \frac{W}{L}\left[2\left(2-V_{\text {out }}-0.7\right)\left(V_{\text {in }}-V_{\text {out }}\right)-\left(V_{i_{n}}-V_{\text {out }}\right)^{2}\right]$

Input output relationship is presented by the above equation.
for $1.3<V_{\text {in }}<3$ device is in the saturation region

$$
\Gamma_{0}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(2-V_{\text {out }}-0.7\right)^{2}
$$

$V_{\text {out }}$ doesn't depend on $V_{\text {in }}$ and it is constant for $V_{\text {in }} \geqslant 1.3$

2.7) C

$\gamma=\lambda=0 \quad V_{\text {TH }}=0.7$
for $0<v_{\text {in }}<2.3$ device is in triode

$$
V_{G s}=3-V_{\text {out }} \quad V_{\text {os }}=V_{\text {in }}-V_{\text {out }}
$$

(*) $\quad I_{D}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{o x} \frac{\omega}{L}\left[2\left(3-V_{\text {out }}-0.7\right)\left(V_{\text {in }}-V_{\text {out }}\right)-\left(V_{\text {in }}-V_{\text {out }}\right)^{2}\right]$

Input-output relationship is presented by the above equation.
for $2.3<v_{\text {in }}<3$ device is in the saturation region

$$
I_{D}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{o_{n}} \frac{w}{L}\left(3-V_{\text {out }}-0.7\right)^{2}
$$

$V_{\text {out }}$ is constant for $V_{\text {in }}>2.3$ (It doesn't depend on $v_{\text {in }}$)

2.7)d

$$
\left|V_{T H}\right|=0.8
$$

$$
\gamma=\lambda=0
$$

for $0<V_{\text {in }}<1.8$ device is $\Delta A \Rightarrow V_{\text {out }}=0$

Then device tunns on (in sat.) and rout goes up

Until $V_{\text {out }}=1.8$, then device enters the triode region
for $V_{\text {in }}>1.8$ and $V_{\text {out }}<1.8$

$$
I_{D}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{p} C_{\text {ox }} \frac{w}{L}\left(V_{\text {in }}-1.8\right)^{2} \quad \Rightarrow V_{\text {out }}=\frac{1}{2} \mu_{p} C_{o x} R_{1} \frac{w}{L}\left(V_{\text {in }}-1.8\right)^{2}
$$

This is good for

$$
1.8<V_{\text {in }}<1.8+\sqrt{\frac{2 \times 1.8^{v}}{\mu_{p} C_{0 \times} \frac{w}{L} R_{1}}}
$$

for $V_{\text {in }}>1.8+\sqrt{\frac{2 \times 1.8}{\mu_{p} c_{0 \times} \frac{w}{L} R_{1}}}$

$$
I_{D}=\frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{p} C_{\text {on }} \frac{w}{L}\left[2\left(V_{\text {in }}-1.8\right)\left(V_{\text {in }}-V_{\text {out }}\right)-\left(V_{\text {in }}-V_{\text {out }}\right)^{2}\right]
$$

Input -output relationship is presented by the above equation.

2.8) 9

$$
v_{S}=v_{O D}-v_{\text {out }} \quad v_{B}=v_{\text {in }}, v_{S B}=v_{O D}-v_{\text {out }}-v_{\text {in }}
$$

$$
V_{T H}=V_{T H O}+\gamma\left(\sqrt{2 \phi_{F}+V_{S B}}-\sqrt{2 Q_{F}}\right)
$$

$$
\Rightarrow I_{1}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{\text {out }}-V_{T H O}-\gamma\left(\sqrt{2 \phi_{F}+V_{D D}-V_{\text {out }}-V_{\text {in }}}-\sqrt{2 \varphi_{F}}\right)\right)^{2}
$$

for each $v_{\text {in }}$, the above equation should be solved to obtain $V_{\text {out }}$ for $\frac{w}{L}=\frac{50}{0.5} \quad I_{1}=1 m 1$

Assumption: $2 a_{f}+V_{D}-V_{\text {out }}-V_{\text {in }}>0$
$2.8) b$

$$
\begin{array}{ll}
V_{S B}=1-V_{i n} & v_{g S}=1 \\
V_{T H}=V_{T H O}+\gamma\left(\sqrt{2 \Phi_{F}+V_{S B}}-\sqrt{2 \Phi_{F}}\right) \\
V_{T H}=0.7+0.45\left(\sqrt{1.9-v_{i n}}-\sqrt{0.9}\right)
\end{array}
$$

Assumption: $V_{\text {in }}$ varies from 0 to 1.9 and R_{1} is small enough to guarantee that the device remains in the Saturation region.

$$
V_{\text {out }}=3-R_{1} \cdot \frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(0.3-0.45\left(\sqrt{1.9-V_{i n}}-\sqrt{0.9}\right)\right)^{2}
$$

2.8) C Drain and Source exchange their roles, $\therefore \quad V_{\text {THO }}=0.7 \quad \gamma=0.45 \quad 2 \varphi_{F}=0.9$

$\left(V_{\text {out }}-V_{\text {in }}>-2 q_{f}\right) \quad \Rightarrow$ Device is in the Saturation

$$
\begin{aligned}
& V_{T H}=0.7+0.45\left(\sqrt{0.9+V_{\text {out }}-V_{\text {in }}}-\sqrt{0.9}\right) \quad V_{\text {Gs }}=2-V_{\text {out }} \\
& I_{D}=\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L}\left(2-V_{\text {out }}-0.7-0.45\left(\sqrt{0.9+V_{\text {out }}-V_{\text {in }}}-\sqrt{0.9}\right)\right)^{2} \\
& I_{D}=\frac{V_{\text {out }}}{R_{1}}
\end{aligned}
$$

(*) $\quad \frac{V_{\text {out }}}{R_{1}}=\frac{1}{2} \mu_{n} C_{n} \frac{w}{L}\left(2-v_{\text {out }}-0.7-0.45\left(\sqrt{0.9+v_{\text {out }}-V_{\text {in }}}-\sqrt{0.9}\right)\right)^{2}$

Input-output relationship is presented by the above equation.

$2.9) a$

$$
\gamma=\lambda=0 \quad V_{T H}=0.7
$$

for $v_{b}-0.7<v_{x}<3$ device is in saturation
Assume $\quad V_{b}>V_{T H}$

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{b}-V_{T H}\right)^{2} \\
& V_{x}=-\frac{1}{C_{1}} \int I_{x} d t+3^{V}=3-\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{b}-V_{T H}\right)^{2} t
\end{aligned}
$$

Then device goes into triode, for $0<v_{x}<v_{b}-0.7$

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{o x} \frac{w}{L}\left[2\left(v_{b}-0.7\right) v_{x}-v_{x}^{2}\right]=-\frac{d v_{x}}{d t} \times C_{1} \\
& \Rightarrow \quad-d t \underbrace{\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L} \times \frac{1}{c_{1}}}_{\alpha}=\frac{d v_{x}}{v_{x}\left[2\left(v_{b}-0.7\right)-v_{x}\right]} \\
& -\alpha d t=\left[\frac{1}{v_{x}}+\frac{1}{2\left(v_{b}-0.7\right)-v_{x}}\right] \times \frac{1}{2\left(v_{b}-0.7\right)} \\
& \Rightarrow-\alpha\left(t-t_{0}\right)=\left[\ln \frac{v_{x}}{2\left(v_{b}-0.7\right)-v_{x}}\right] \frac{1}{2\left(v_{b}-0.7\right)} \quad Q t=t_{0}, v_{x}=v_{b}-0.7 \\
& \Rightarrow \frac{2\left(V_{b}-0.7\right)-V_{x}}{v_{x}}=e^{2 \alpha\left(V_{b}-0.7\right)\left(t-t_{0}\right)} \\
& \Rightarrow \quad v_{x}=\frac{2\left(v_{b}-0.7\right)}{1+e^{2 \alpha\left(v_{b}-0.7\right)\left(t-t_{0}\right)}} \\
& I_{x}=-c_{1} \frac{d v_{x}}{d t}=\frac{4 \alpha c_{1}\left(v_{b}-0.7\right)^{2} e^{2 \alpha\left(v_{b}-0.7\right)\left(t-t_{0}\right)}}{\left(1+e^{2 \alpha\left(v_{b}-0.7\right)\left(t-t_{0}\right)}\right)^{2}}
\end{aligned}
$$

2.9) b

Device is always in the saturation region.

$$
I_{x}=-c_{1} \frac{d v_{x}}{d t}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{x}-0.7\right)^{2}
$$

$$
\Rightarrow \underbrace{\frac{1}{2} \mu_{n} C_{x} \frac{w}{L} \frac{1}{c_{1}}}_{\alpha} d t=-\frac{d v_{x}}{\left(v_{x}-0.7\right)^{2}} \quad \Rightarrow \alpha t=\frac{1}{v_{x}-0.7}+K
$$

$$
\text { @ } t=0, v_{x}=3 \Rightarrow \alpha t=\frac{1}{v_{x}-0.7}-\frac{1}{2.3} \Rightarrow v_{x}=0.7+\frac{1}{\alpha t+1 / 2.3}
$$

$$
I_{x}=-c \frac{d v_{x}}{d t}=\frac{\alpha c_{1}}{\left(\alpha t+\frac{1}{2 \cdot 3}\right)^{2}}
$$

2.9) C

2.9)d

(a) $t=0$

$$
V_{x}=3, V_{O D}=3^{v} \Rightarrow V_{D S}=0 \quad \Rightarrow I_{x}=0
$$

And the circuit remains in this state

$$
\begin{aligned}
& I_{x}=I_{1} \\
& -c_{1} \frac{d V_{x}}{d t}=I_{1} \Rightarrow V_{x}=3-\frac{I_{1}}{c} t
\end{aligned}
$$

Infact these Equations are valid until I_{1} is no longer an ideal current source.

2.9)e Initially, the current thru $M_{1}=I_{1} \Rightarrow$ certain $b_{\text {as }}$ is developed and $V_{x}=V_{B}-V_{G S 1}+3 V$ and $I_{x}=I_{1}$. However, at $t=0^{+}$, the drain current of M_{1} flows from $C_{1}: I_{D_{1}}-I_{c_{1}}=I_{1}$. But,
 $I_{D_{1}}=I_{C_{1}} \Rightarrow I_{1}=0$. If the current source is ideal, $1 / y$ jumps to $-\infty$ (actually about 0.6 V below 0 , where the $5-B$ diode turns on.) If I_{1} is not ideal, V_{N} jumps to zero and c_{1} discharges
2.9)e (Cnt'd)
through M_{1} :

$$
t
$$

2.10) a

$$
V_{G}=3+\frac{I_{1} t}{C}
$$

This circuit settles at $t=\infty$, when $V_{G}=\infty$ $I_{D}=-I_{1}, V_{D S}=0$ (Actually, Drain and Source exchange their roles after a specific time at which $I_{x}=I_{1}$ and afterward V_{x} becomes negative) However, transistor always operates in the triode region.

$$
I_{x}=I_{1}+\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left[2\left(3+\frac{I_{1}}{c_{2}} t-0.7\right) v_{x}-v_{x}^{2}\right]=-c_{1} \frac{d v_{x}}{d t}
$$

The values of v_{x} can be obtained by numerical methods

2.10)

Drain and source exchange their roles.

$$
(\gamma=\lambda=0) \quad \nu_{T H}=0.7
$$

$$
\int I_{0} d t=9
$$

$$
V_{x}=1+\frac{q}{c_{1}} \quad, V_{D}=V_{c_{2}}=3-\frac{q}{c_{2}}
$$

v_{x} goes up until transistor turns off when $v_{x}=1.3$

Assumption: Transistor is in Saturation.

This assumption is correct if: $\quad V_{D}=3-\frac{9}{c_{2}}>1.3(2-0.7)$

$$
\begin{aligned}
& V_{x}(\infty)=1+\frac{9(\infty)}{c_{1}}=1.3 \quad V_{0}(\infty)=3-\frac{9(\infty)}{c_{2}}=3-0.3 \frac{c_{1}}{c_{2}}>1.3 \\
& 0.3 \frac{c_{1}}{c_{2}}<1.7 \\
& c_{1}<5.67 c_{2} \\
& I_{0}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(2-1-\frac{q}{C_{1}}-0.7\right)^{2}=\frac{d q}{d t} \\
& \Rightarrow \underbrace{\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L} \frac{1}{c_{1}}}_{\alpha} d t=\frac{d q / c_{1}}{\left(0.3-q_{1}\right)^{2}} \quad \Rightarrow \alpha t=\frac{1}{0.3-\frac{q}{c_{1}}}+k \quad(t=0, q=0) \\
& \Rightarrow \alpha t=\frac{1}{0.3-\frac{q}{c_{1}}}-\frac{1}{0.3} \quad \Rightarrow \quad \frac{q}{c_{1}}=0.3-\frac{1}{\alpha++\frac{1}{0.3}} \quad v_{x}=1+\frac{q}{c_{1}} \\
& \Rightarrow v_{x}=1.3-\frac{1}{\alpha t+1 / 6.3} \quad I_{x}=-c_{1} \frac{d v_{x}}{d t}=\frac{-\alpha c_{1}}{\left(\alpha t+1 / 0_{3}\right)^{2}}
\end{aligned}
$$

$$
2 \cdot 10) c
$$

$$
\text { At too } \quad V_{G}=2 \quad V_{S}=3 \quad V_{0}=4
$$

Device is off and doesn't turn on.

The Circuit remains in this state.

So, $\quad V_{x}=4 \quad I_{x}=0$

$$
\gamma=\lambda=0 \quad V_{T H}=0.7
$$

At $t=0^{+}$, device turns on (in sat), and starts Charging the capacitor, until device turns off when; $\quad V_{x}=v_{\text {in }}-V_{\text {tu }}=3-07=2.3$

$$
\begin{aligned}
& I_{c}=\frac{1}{2} \mu_{n} c_{o x} \frac{\omega}{L}\left(2.3-v_{x}\right)^{2} \\
& \text {; } v_{\infty}=3-v_{x}-0.7 \\
& I_{c}=c_{1} \frac{d v_{x}}{d t} \\
& \Rightarrow \quad \frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L} \times \frac{1}{C_{1}}\left(2.3-v_{x}\right)^{2}=\frac{d v_{x}}{d t} \\
& \Rightarrow \alpha d t=\frac{d v_{x}}{\left(2.3-v_{x}\right)^{2}} \quad \Rightarrow \alpha t+k_{0}=\frac{1}{2.3-v_{x}} \\
& \left(t=0, v_{x}=1\right) \quad \alpha \times 0+k_{0}=\frac{1}{2.3 .1} \quad \Rightarrow \quad k_{0}=1 / 1.3 \\
& \Rightarrow \frac{1}{1.3}+\alpha t=\frac{1}{2.3-v_{x}} \quad \Rightarrow \quad 2.3-v_{x}=\frac{1}{\alpha t+\frac{1}{1.3}} \\
& \Rightarrow \quad v_{x}=2.3-\frac{1}{\alpha++\frac{1}{1.3}}
\end{aligned}
$$

2.11) b

Transistor turns on at $t=0$, and discharges c_{1} until $v_{x}=0$, (device always operate in triode)

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left[2(3-0.7) v_{x}-v_{x}^{2}\right]=-c_{1} \frac{d v_{x}}{d t} \\
& \underbrace{\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L} \times \frac{1}{c_{1}}}_{\alpha}\left[4.6 v_{x}-v_{x}^{2}\right]=-\frac{d v_{x}}{d t} \Rightarrow-\alpha d t=\frac{d v_{x}}{v_{x}\left(4.6-v_{x}\right)} \\
& \Rightarrow-\alpha t=\left(\frac{1}{v_{x}}+\frac{1}{4.6-v_{x}}\right) \frac{1}{4.6}+k \quad, Q t=0 \quad, v_{x}=1 \\
& \frac{1}{3.6} e^{-\alpha t}=\frac{v_{x}}{4.6-v_{x}} \quad \rightarrow v_{x}=\frac{4.6}{1+3.6 e^{4.6 \alpha t}}
\end{aligned}
$$

2.11) C

At $t=0^{+}, V_{x}=5$, device is in Saturation region

$$
I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}(3-0.7)^{2}, v_{x} \text { decreases until }
$$

$v_{x}=2.3$ at $t=t_{0}$, then device enters triode region
for $t<t_{0}\left(v_{x}>2.3\right) \quad v_{x}=5-\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}(2.3)^{2} t / c_{1}$
for $t>t_{0} \quad I_{0}=-c_{1} \frac{d v_{x}}{d t}=\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}\left[2(3-0.7) v_{x}-v_{x}^{2}\right]$

$$
\Rightarrow \frac{d v_{x}}{v_{x}\left(4.6-v_{x}\right)}=-\frac{1}{2} \frac{\mu_{n} c_{i_{x}} \frac{w}{L} \cdot \frac{1}{c_{1}}}{\alpha} d t
$$

2. 11) c, cont. $\quad-\alpha\left(t-t_{0}\right)=\left[\ln \frac{v_{x}}{4.6-v_{x}}\right] \times \frac{1}{4.6} \quad t=t_{0}, v_{x}=2.3$

$$
\Rightarrow v_{x}=\frac{4.6}{1+e^{4.6 \alpha\left(t-t_{0}\right)}}
$$

$2.11) d \quad$ At $t=0^{+}, v_{x}=3$ device is in Saturation

$$
I_{D}=\frac{1}{2} \mu_{n} C_{0} \frac{w}{L}(3-0.7)^{2}, \quad v_{x} \text { decreases until }
$$

$V_{x}=2.3$ at $t=t_{0}$, then device enters triode region.
for $t<t_{0}$

$$
v_{x}=3-\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L}(2.3)^{2} \frac{t}{c_{1}} ; \quad 2.3<v_{x}<3
$$

for $t>t_{0} \quad I_{D}=-c_{1} \frac{d v_{x}}{d t}=\frac{1}{2} \mu_{n} C_{0} \frac{w}{L}\left[2(3-0.7) v_{x}-v_{x}^{2}\right]$

$$
\frac{d v_{x}}{v_{x}\left(4.6-v_{x}\right)}=-\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L} \frac{1}{c_{1}} d t \quad,\left(t=t_{0}, v_{x}=2.3\right)
$$

$$
-\alpha\left(t-t_{0}\right)=\left[\ln \frac{v_{x}}{4.6-v_{x}}\right] \frac{1}{4.6} \quad \Rightarrow v_{x}=\frac{4.6}{1+e^{4.6 \alpha\left(t-t_{0}\right)}}
$$

2.12) a)

$$
\begin{aligned}
& t \geqslant 0^{+}+3^{v} \\
& \left\{\begin{array}{l}
v_{G S}=3-v_{x} \\
v_{D S}=-v_{x}
\end{array}\right. \\
& I_{D}=c_{1} \frac{d v_{x}}{d t} \\
& \Rightarrow \underbrace{\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L} \times \frac{1}{c_{1}}}_{\alpha}\left[v_{x}^{2}-4.6 v_{x}\right]=\frac{d v_{x}}{d t} \\
& \Rightarrow \alpha d t=\frac{d v_{x}}{v_{x}^{2}-4.6 v_{x}}=d v_{x}\left(\frac{1}{v_{x}-4.6}+\frac{-1}{v_{x}}\right) \times \frac{1}{4.6} \\
& \Rightarrow-4.6 \alpha t+k_{0}=\ln \left(\frac{v_{x}-4.6}{v_{x}}\right) ; \quad v_{x}\left(0^{+}\right)=-3 \\
& \Rightarrow \quad K_{0}=\ln \frac{7.6}{3} \quad \Rightarrow \quad \frac{v_{x}-4.6}{v_{x}}=\frac{7.6}{3} e^{4.6 \alpha t} \\
& \Rightarrow \quad \frac{4.6}{V_{x}}=1-\frac{7.6}{3} e^{4.6 \alpha t} \\
& \Rightarrow \quad v_{x}=\frac{-4.6}{\frac{7.6}{3} e^{4.6 \alpha t}-1}
\end{aligned}
$$

$2.12) 6$

> Device is in Saturation region
$t=0^{+}$

$I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(3-v_{x}-0.7\right)^{2}=c_{1} \frac{d v_{x}}{d t}$
$\frac{\frac{d v_{x}}{\left(2.3-v_{x}\right)^{2}}}{\underbrace{\frac{1}{2} \mu_{n} c_{0 x} \frac{w}{L} \cdot \frac{1}{c_{1}}}_{\alpha} d t}$

$$
\Rightarrow \frac{1}{2 \cdot 3-v_{x}}=\alpha t+k \quad\left(t=0, v_{x}=0\right) \quad \Rightarrow \frac{1}{2 \cdot 3-v_{x}}-\frac{1}{2 \cdot 3}=\alpha t
$$

$$
\Rightarrow \quad v_{x}=2.3-\frac{1}{\alpha t+1 / 2.3}
$$

$2.12) c$ 㳑
$+3^{2}-0_{2}+a^{3}$

$$
\text { At } t=0^{+} \quad V_{0}=3 \quad V_{S}=3 \quad V_{G}=6
$$

SO, $V_{D S}=0$ and $I_{C}=I_{D}=0$ And circuit remains

2.12)d

Assume that the device remains in the saturation region until it turns off when $v_{g s}=0.7$

$$
V_{c_{1}}=V_{g s}=3-\frac{1}{c_{1}} \int I_{0} d t \quad V_{c_{2}}=V_{d g}=3-\frac{1}{c_{2}} \int I_{0} d t
$$

This assumption is correct if $v_{d g}>-0.7$ when $v_{g s}=0.7$

$$
\begin{array}{ll}
\int I_{D} d t=q(t) & V_{g}=3-\frac{q}{c_{1}}=0.7 \quad \\
\Rightarrow \frac{q}{c_{1}}=2.3 \quad V_{d g}=3-\frac{q}{c_{2}}>-0.7 \\
c_{2} & >3.7
\end{array} \quad 2.3 \frac{c_{1}}{c_{2}}<3.7 \quad \Rightarrow \quad c_{1}<1.61 c_{2} .
$$

With this assumption,

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} c_{0 \times \frac{}{} \frac{w}{L}\left(3-\frac{q}{c_{1}}-0.7\right)^{2}=\frac{d q}{d t}, ~(3)} \\
& \Rightarrow \underbrace{\frac{1}{2} \mu_{n} c_{0}, \frac{\omega}{L} \cdot \frac{1}{c_{1}}} d t=\frac{d q / c_{1}}{\left(3-\frac{q}{c_{1}}-0.7\right)^{2}} \quad \Rightarrow \alpha t=\frac{1}{3-\frac{q}{q}-0.7}+K \quad(t=0, q=0) \\
& \Rightarrow \alpha t=\frac{1}{2.3-\frac{9}{c_{1}}}-\frac{1}{2.3} \quad \Rightarrow \frac{q}{c_{1}}=2.3-\frac{1}{\alpha t+\frac{1}{2.3}} \\
& v_{x}=3+3-\frac{9}{c_{1}}+3-\frac{9}{c_{2}}=9-\frac{q}{c_{1}}\left(1+\frac{c_{1}}{c_{2}}\right) \\
& v_{x}(t)=9-\left(1+\frac{c_{1}}{c_{2}}\right) \frac{2.3 \alpha t}{\alpha t+1 / 2.3}
\end{aligned}
$$

2.13) a)

$$
\begin{aligned}
& i_{i}=\left(C_{G S}+C_{G D}\right) s V_{g s} \\
& i_{0}=\rho_{m} V_{g s} \\
& \beta=\frac{i_{0}}{i_{i}}=\frac{g_{m}}{\left(c_{a s}+c_{a 0}\right) S} ;|\beta|=1 \Rightarrow \frac{g_{m}}{\left(c_{a s}+c_{a_{0}}\right) \omega_{T}}=1 \\
& \Rightarrow \omega_{T}=\frac{g_{m}}{\left(C_{a_{s}}+C_{G 0}\right)} \Rightarrow f_{T}=\frac{\omega_{T}}{2 \pi}=\frac{g_{m}}{2 \pi\left(C_{G S}+C_{G 0}\right)}
\end{aligned}
$$

Approximation: $g_{m} \nu_{g s}$ is the output current.
b)

$$
i_{k}=\frac{1}{n}\left(c_{a s}+c_{90}\right) s v_{9 s_{k}} \quad k=1 . . n
$$

(*) $i_{i}=i_{1}+i_{2}+\cdots+i_{n}=\frac{1}{n}\left(c_{G s}+c_{90}\right) s\left(v_{9 s 1}+v_{g s 2}+\cdots+v_{9 n n}\right)$
(**) $i_{0}=\frac{g_{m}}{n} v_{g s_{1}}+\cdots+\frac{g_{m}}{n} v_{g s_{n}}=\frac{g_{m}}{n}\left(v_{g s_{1}}+v_{g s_{2}}+\cdots+v_{g g_{n}}\right)$

$$
(x),(x *) \Rightarrow \beta=\frac{i_{0}}{i_{i}}=\frac{g_{m}}{\left(C_{G D}+C_{a S}\right) S} ;|\beta|=1 \Rightarrow f_{T}=\frac{\omega_{T}}{2 \pi}=\frac{g_{m}}{2 \pi\left(C_{G S}+C_{G D}\right)}
$$

C)

$$
\begin{aligned}
& f_{T}=\frac{g_{m}}{2 \pi\left(C_{a s}+C_{G O}\right)} \\
& g_{m}=\mu C_{0 x} \frac{w}{L}\left(V_{G S}-V_{T H}\right) \\
& C_{G S}+C_{G O} \simeq C_{o x} w L \\
& \Rightarrow f_{T}=\frac{\mu C_{0 \times \frac{}{} \frac{w}{L}\left(V_{G S}-V_{T u}\right)}^{2 \pi C_{o x} w L} \simeq \frac{\mu}{2 \pi} \frac{\left(V_{G S}-V_{T N}\right)}{L^{2}}}{}
\end{aligned}
$$

2.14)

$$
f_{T}=\frac{\rho_{m}}{2 \pi\left(C_{G S}+C_{G D}\right)} \quad ; \quad g_{m}=\frac{I_{D}}{5 V_{T}}
$$

In the subth reshold $\quad C_{G S}=C_{G D}=W C_{o v} \quad\left(F_{\text {ig 2 }} .33\right.$)
So, $f_{T}=\frac{I_{D} / S V_{T}}{4 \pi W C_{O V}}=\frac{I_{D}}{4 \pi \xi V_{T} W L_{D} C_{0 x}}$
2.151

$$
\begin{aligned}
c_{j_{s w 0}} & =0.35 \mathrm{e}-11 \mathrm{~F} / \mathrm{m} \\
m_{j \omega w} & =0.2
\end{aligned}
$$

$$
C_{D B}=\frac{w}{2} E C_{j}+2\left(\frac{w}{2}+E\right) C_{j s w}
$$

$$
C_{s_{B}}=2\left[\frac{w}{2} E C_{i}^{\prime}+2\left(\frac{w}{2}+E\right) C_{i s w}^{\prime}\right)
$$

$$
C_{G D}=2\left(\frac{w}{2} C_{o v}\right) \quad C_{o r}=L_{0} C_{0 x}
$$

$$
C_{G S}=\frac{2 w L C_{0 x}}{3}+w C_{o r}
$$

$$
C_{G B}=\left(w L C_{0 x}\right) C_{d} /\left(w L C_{O x}+C_{d}\right) ; C_{d}=w L \sqrt{9 \epsilon_{S i} N_{S_{0}} / 2 \Phi_{F}}
$$

$$
W=50 \mu \quad L=0.5 \mu \quad E=1.5^{\mu}
$$

$$
\begin{aligned}
& I=\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L-U_{D}}\left(V_{G S}-V_{T H}\right)^{2}, 1^{m A}=\frac{1}{2} \times 0.13429 \times \frac{50}{0.5-0.16}\left(V_{G S}-0.7\right)^{2} \\
& V_{G S}=1.0182 \quad \quad g_{m}=\frac{2 I_{D}}{V_{G S}-V_{T H}}=6.285 \mathrm{~mA} / \mathrm{y}, \quad V_{D B}=1.0182
\end{aligned}
$$

$$
\begin{array}{ll}
\lambda=0, L_{D}=0.08 \mu \mathrm{~m} \\
\frac{W}{L}=\frac{50 \mu}{0.5 \mu}, v_{m_{H}}=0.7 & C_{G D}=15.4 \mathrm{fF} \\
\mu_{1} C_{0 x}=134.29 \mu_{\mathrm{A}} / \mathrm{V}^{2} & C_{S B}=42.4 \mathrm{fF} \\
C_{0 x}=3.84 \times 10^{-3} \mathrm{~F}_{\mathrm{m}} & \\
f_{T}=\frac{9_{m}}{2 \pi\left(C_{G D}+C_{G S}\right)}=10.6 \mathrm{GH3}
\end{array}
$$

$$
C_{D B}=13.5 \mathrm{fF}
$$

2.16)

CASE, M_{1} : Triode M_{2} : Triode

$$
\begin{align*}
& v_{D S 1}=v_{x} \quad v_{D S_{2}}=v_{D S}-v_{x} \\
& I_{a}=\frac{1}{2} \mu_{n} c_{o x} \frac{w}{L}\left[2\left(v_{G S}-v_{T N}\right) v_{x}-v_{x}^{2}\right] \tag{*}\\
& I_{D 2}=\frac{1}{2} \mu_{n} c_{O x} \frac{w}{L} \quad\left[2\left(v_{G S}-v_{T H}-v_{x}\right)\left(v_{D S}-v_{x}\right)-\left(v_{D S}-v_{x}\right)^{2}\right] \\
& I_{Q}=I_{D 2} \quad \Rightarrow \quad 2\left(v_{G S}-v_{T H}\right) v_{x}-v_{x}^{2}=2\left(v_{G S}-v_{T H}\right) v_{O S}+2 v_{x}^{2}-2 v_{x}\left(v_{G S}-v_{T H}\right) \\
& -2 v_{x} \sigma_{D s}-v_{o s}^{2}-v_{x}^{2}+2 v_{x} W_{D S} \\
& \Rightarrow 2\left[2\left(v_{a s}-v_{T H}\right) v_{x}-v_{x}^{2}\right]=2\left(v_{G S}-v_{T H}\right) v_{D S}-v_{\Delta S}^{2} \tag{**}
\end{align*}
$$

$(*),(* *) \Rightarrow I_{D_{1}}=I_{D_{2}}=\frac{1}{2} \mu_{n} C_{D x} \frac{w}{L} \times \frac{1}{2}\left[2\left(V_{G S}-V_{T H}\right) V_{D S}-V_{D S}^{2}\right]\left(\frac{w}{2 L}\right.$ in Triode)

CASE II, M_{1} : Triode, M_{2} : Sat

$$
\begin{aligned}
& I_{D_{1}}=\frac{1}{2} \mu_{n} c_{D x} \frac{\omega}{L}\left[2\left(V_{Q S}-V_{T H}\right) V_{x}-V_{x}^{2}\right] \\
& I_{D 2}=\frac{1}{2} \mu_{n} C_{0 x} \frac{\omega}{L}\left(v_{a s}-v_{x}-V_{T t}\right)^{2} \\
& I_{D_{1}}=I_{D_{2}} \Rightarrow \quad V_{x}^{2}-2 V_{x}\left(V_{G S}-V_{T H}\right)+\left(V_{G S}-V_{T H}\right)^{2}=2\left(V_{G S}-V_{M H}\right) V_{x}-V_{x}^{2} \\
& \Rightarrow \quad\left(v_{G S}-v_{T H}\right)^{2}=2\left[2\left(v_{a s}-v_{T m}\right) v_{x}-v_{x}^{2}\right] \quad(* *)
\end{aligned}
$$

2.16) Cont. (*), (**) $\Rightarrow I_{D_{1}}=I_{D_{2}}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L} \times \frac{1}{2}\left(V_{G S}-V_{T H}\right)^{2}\left(\frac{W}{2 L}\right.$ in $\left.S_{a t}\right)$

Note that M, is always in triode, because V_{002} is always positive

$$
\text { ie. } \quad V_{G S_{2}}-V_{T H}>0 \Rightarrow V_{G S}-V_{X}-V_{T H}>0 \Rightarrow V_{G S}-V_{T H}>V_{X}
$$

$\Rightarrow V_{G S_{1}}-V_{T H}>V_{O S 1} \Rightarrow M_{1}$ is in the triode region.
Saturation-triode transition edge of M_{2} :
We show that the transition point the saturation and triode region of the equivalent transitor is the same as that of M_{2}.

$$
V_{O D 2}=V_{G S}-v_{x}-V_{T H} \quad v_{D S 2}=v_{D S}-v_{X}
$$

for $V_{O D 2}>V_{D S 2}, M_{2}$ is in the triode region, i.e. $V_{G S}-V_{T H}>V_{D S}$

If means that when M_{2} is in the saturation, then the equivalent transistor is in the saturation, and vice versa.
2.17)

In Saturation region, $\quad I_{D}=\frac{1}{2} \mu_{n} C_{D x} \frac{W}{L}\left(V_{G S}-V_{T H}\right)^{2}$

$$
\Rightarrow \frac{w}{L}=\frac{2 I_{D}}{\mu_{n} C_{o_{X}}\left(V_{G S}-V_{T H}\right)^{2}}
$$

2.18)

These structures cannot operate as current sources, because
\square
their currents strongly depend on source voltages, but
an ideal current source should provide a constant current,
independent of its Voltage.
2.19) From Eq. (2.1) we know that $V_{T H}=\varphi_{M S}+2 \varphi_{F}+\frac{Q_{\text {dep }}}{C_{0 x}}$, where
$A_{\text {res }}$ and T_{f} are constant values, so any changes in $V_{T H}$

Come from the third term, infect $\Delta V_{T H}=\frac{\Delta Q_{\text {dee }}}{C_{\text {ox }}}$ and
From Eq (2.22), we lave $\Delta v_{T H}=\gamma\left(\sqrt{2 a_{F}+v_{S B}}-\sqrt{2 q_{F}}\right)$ (intact,
this is definition of γ). from in Junction theory we know
that $Q_{\text {dep }}$ is proportional to $\sqrt{N_{\text {sUb }}}$, so γ is directly
proportional to $\sqrt{N_{s t h}}$ and inversely proportional to $C_{0 x}$.
2.20)

This structure operates as a traditional device does, infect if we neglect edges we have tour Mosfets in parallel, Where the aspect ratio of each is $\frac{w}{L}$. So the overal aspect ratio is almost $\frac{4 \mathrm{~W}}{L}$

Drain Junction capacitance: $\quad C_{D B}=W^{2} C_{J}+4 W C_{\text {sw }}$
Drain junction capacitance of devices shown in fig $2.32 a, b$ for the aspect ratio of $\frac{4 w}{L}$

$$
\begin{aligned}
& C_{D B(a)}=4 W E C_{3}+(8 W+2 E) C_{j w} \\
& C_{D B(b)}=2 W E C_{3}+(4 w+2 E) C_{j s w}
\end{aligned}
$$

The value of side wall capacitance in the ring structure is less than that in filed and traditional structures, but the bottom capacitance of ring structure
is higher than that of the other two structures. (for $w>4 \in$)
2.21) We first check the terminals of the device with a multimeter
in order to find BS or BD junctions. There are 12 experiments
in total of which two lead to conduction and remaining ones show
no conduction. If we find one of those two conduction then we \qquad are done. Finding B and $S($ orD), we need to do one other experiment between B (Cathode of junction) and one of the two
remaining terminals; In case of no connection, the terminal under test is G, otherwise it is D (or $s)$. In worst case with a maximum of 8 experiments, each terminal can be specified. It is as follows: Ass in the, the two selected terminals do not conduct in both directions and this is the case for the other two terminals. Unto this point, four experiments have been done while not yet encountering any conduction. It is clear that one group Consists of
G and B and the other Comprises from D and S, Because at least

One conduction should be observed if B were in the same group with one of the source or Drain. In the next step, we pick up one terminal from each group to undergo the conductivity test. Assume, no Conduction happens in either direction (worst case). It means that we had chosen G from (GB) group. Thusfor, we have done six experiments. We change both of terminals and now we have chosen B for sure. and in worst case, we will find a connection in 8 th experiment.

Now, we know B and $S(D)$, Bulk's groupmate is Gate and Source's (Drain's) groupmate is Dram (Source).
2.22) If we don't know the type of device, In eight experiment we cannot distinguish between B and $S(D)$ and we should perform another experiment, which is exchanging one of
2.22) Cont. terminals with its groupmate. If we still had the

Conduction then the exchanged terminal and its graupmate
are source and Drain, otherwise the exchanged terminal is Bulk.
2.23) a) NO, Because in DC model equations of MOSFET, we always have the product of $\mu_{n} C_{0 x}$ and $\frac{w}{L}$.
b) No, Because we cannot obtain as many independent equations as the unknown quantities. Bot if the difference between the aspect ratios is known, then $\mu_{n} c_{0 x}$ and both $\frac{w}{L}$, are attainable.
$2.24) b$

CASE I: $V_{G}<V_{T H N} \Rightarrow M_{1}$: Off $I_{x}=0$

$$
g_{n}=0
$$

CASE II: $\quad V_{G}>V_{\text {TIN }}$
for $0<V_{x}<V_{G}+\left|V_{T \pi p}\right| \quad \Rightarrow \quad I_{x}=0 \quad\left(M_{2}: O H\right) \quad g_{m}=\frac{\partial I_{x}}{\partial V_{G}}=0$

Then M_{2} tums on (in Sat), M_{1} still is in triode region

$$
I_{x}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{w}{L}\right)_{p}\left(v_{x}-V_{G}-\left|V_{T_{p}}\right|\right)^{2}
$$

This is correct until M_{1}, goes into saturation, when

$$
\begin{aligned}
& \frac{1}{2} \mu_{p} C_{O_{x}}\left(\frac{w}{L} \|_{p}\left(V_{x}-V_{G}-\left|V_{T H P}\right|\right)^{2}=\frac{1}{2} \mu_{n} C_{O_{x}}\left(\frac{w}{L}\right)_{N}\left(V_{G}-V_{T H N}\right)^{2}\right. \\
& \text { ie. } \quad V_{x}=\cdot V_{G}+\left|V_{T T_{P}}\right|+\sqrt{\frac{\mu_{n}}{\mu_{p} \frac{(w / L)_{n}}{\left(\omega_{L L}\right)_{p}}}}\left(V_{G}-V_{T H N}\right)
\end{aligned}
$$

And afterward, M_{2} goes into triode region and $I_{x}=\frac{1}{2} \mu_{n} C_{0 n}\left(\frac{\omega}{L}\right)_{N}\left(V_{a}-V_{T+N}\right)^{2}$

So, $0<V_{x}<V_{G}+\left|V_{T u p}\right| \quad \Rightarrow I_{x}=0 \quad g_{m}=\frac{\partial I_{x}}{\partial y_{G}}=0$

$$
\begin{aligned}
& V_{G}+\left|V_{T_{P}}\right|<v_{x}<V_{G}+\left|V_{T_{H}}\right|+\alpha\left(V_{G}-V_{T H N}\right) \quad I_{x}=\frac{1}{2} \mu_{p} C_{0 x}\left(\frac{w}{L}\right)_{p}\left(v_{x}-V_{G}-\mid V_{T H} d\right)^{2} \quad g_{m}=\mu_{p} C_{0 x}\left(\frac{w}{L}\right)_{p}\left(V_{G}+\left|V_{\text {eMP }}\right|-V_{x}\right. \\
& V_{G}+\left|V_{m p}\right|+\alpha\left(V_{G}-V_{N W}\right)<v_{x} \quad I_{x}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{N}\left(V_{G}-V_{T H N}\right)^{2} \quad g_{m}=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{N}\left(V_{G}-V_{T M N}\right)
\end{aligned}
$$

2:24) a
CASE I: $\quad V_{G}<V_{\text {TAN }} \quad M_{1}: O A$
for $0<V_{x}<V_{G}+\left|V_{T H P}\right| \quad I_{x}=0 \quad, g_{m}=\frac{\partial I_{x}}{\partial V_{G}}=0$
for $V_{a}+\left|V_{\text {Tip }}\right|<v_{x} \quad \Rightarrow I_{x}=\frac{1}{2} \mu_{p} C_{o x}\left(\frac{w}{L}\right)_{p}\left(v_{x}-V_{G}-\left|V_{\text {TAp }}\right|\right)^{2}$

CASE II: $\quad V_{G}>V_{T H N}$
for $\quad 0<V_{x}<V_{G}-V_{\text {TiN }} \quad\left(M_{2}\right.$:of M_{1} : triode)

$$
I_{x}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{n}\left[2\left(v_{G}-v_{T H N}\right) v_{x}-V_{x}^{2}\right] \quad g_{m}=\mu_{n} C_{o x}\left(\frac{w}{L}\right)_{n} V_{x}
$$

for $V_{G}-V_{\pi N}<v_{x}<V_{9}+\left|V_{\text {TiP }}\right| \quad\left(M_{2}: 0 \nmid H \quad M_{1}:\right.$ sat $)$

$$
I_{x}=\frac{1}{2} \mu_{n} C_{a x}\left(\frac{w}{L}\right)_{n}\left(V_{G}-V_{T H N}\right)^{2} \quad g_{m}=\mu_{n} C_{0 n}\left(\frac{w}{L}\right)_{n}\left(V_{G}-V_{T+N}\right)
$$

for $V_{G}+\left|V_{m p}\right|<V_{x} \quad\left(M_{2}:\right.$ sat $\quad M_{1}:$ Sat $)$
2.24) a Cont.

$$
\begin{aligned}
& I_{x}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{n}\left(V_{G}-V_{T H N}\right)^{2}+\frac{1}{2} \mu_{P} C_{\partial x}\left(\frac{w}{L}\right)_{P}\left(V_{x}-V_{G}-\left|V_{T H P}\right|\right)^{2} \\
& g_{m}=\frac{\partial I_{x}}{\partial V_{G}}=\mu_{n} C_{O x}\left(\left.\frac{w}{L}\right|_{n}\left(V_{G}-V_{T A N}\right)-\mu_{P} C_{O X}\left(\frac{w}{L}\right)_{P}\left(V_{x}-V_{G}-\left|V_{T U P}\right|\right)\right.
\end{aligned}
$$

2.25)
$V_{T H}=0.7 \quad \lambda=0.1 \quad$ (for $L=0.5^{\mu}$)

for $L=0.5^{\mu} \quad \lambda=0.1 \quad \rightarrow r_{0}=\frac{1}{\lambda I_{0}}=20^{\mathrm{k} \Omega}$

$$
V_{\infty}=V_{G S}-V_{T H}=0.4 \Rightarrow V_{G S}=1.1^{V}
$$

Calculating W,

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L_{e f f}}\left(V_{G_{S}}-V_{T A}\right)^{2} \\
& 0.5^{\mathrm{mA}}=\frac{1}{2} \times 0.1343 \frac{\mathrm{~mA}}{V^{2}} \times \frac{w}{0.5^{\mu}-016^{4}} \times(0.4)^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{w}{L_{\text {eff }}}=47 \quad & W=15.82 \mu H \\
C_{g S}=\frac{2}{3} w L C_{O x}+w C_{o v}=25 \mathrm{fF} \\
C_{G D}=w C_{o v}=4.85 \mathrm{fF} \\
C_{O B}=\frac{w}{2} E C_{j}+2\left(\frac{w}{2}+E\right) C_{j s w} \quad\left(@ v_{0}=0.4\right)=10.7 \mathrm{fF}
\end{array}
$$

(for folded structure)

$$
\begin{aligned}
& \left(C_{j}=\frac{C_{i o}}{\left(1+\frac{V_{D B}}{2 q_{F}}\right)^{m_{j}}}=0.449 \times 10^{-3} \frac{F}{\mathrm{H}^{2}} \quad, \quad C_{j \omega \omega}=\frac{c_{j w o}}{\left(1+\frac{V_{D O}}{2 q_{F}}\right)^{m_{j j w}}}=0.325 \times 10^{-11} \frac{\mathrm{~F}}{\mathrm{M}}\right) \\
& C_{0 x}=3.84 \times 10^{-3} \mathrm{~F} / \mathrm{m} \quad C_{j 0}=0.56 \times 10^{-3} \quad m_{j}=0.6 \\
& C_{j s \omega_{0}}=0.35 \times 10^{-11} \quad M_{j s \omega_{0}}=0.2
\end{aligned}
$$

2.26) a

Before applying the pulse

$$
\begin{array}{ll}
\Gamma_{0}^{V_{0}>V_{T H}} & x\left(0^{-}\right)=V_{D D} \\
Y\left(0^{-}\right)=V_{O D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{0 x} \frac{W}{L}}}
\end{array}
$$

After Applying the Pulse

$$
\begin{aligned}
& x\left(O^{+}\right)=V_{D D}+V_{0} \\
& Y\left(O^{+}\right)=V_{O D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{O X} \frac{W}{L}}}+V_{0}
\end{aligned}
$$

for $t>0$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(t)=V_{O D}+\alpha(t) \\
Y(t)=V_{D D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{0 X W}^{W}}}+\alpha(t)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{T H}+\sqrt{\frac{2 I_{1}}{\mu_{n} C_{*} \frac{w}{L}}}-\alpha(t)\right) \\
& I_{D}=\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L}\left[\frac{2 I_{1}}{\mu_{n} C_{0 \times \frac{w}{L}}}-\left(\alpha(t)-V_{T H}\right)^{2}\right]=I_{1}-\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L}\left(\alpha(t)-V_{T H}\right)^{2} \\
& I_{C_{2}}=I_{D}-I_{1}=-\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(\alpha(t)-V_{T H}\right)^{2}=c_{2} \frac{d V_{C_{2}}}{d t}=c_{2} \frac{d \alpha(t)}{d t} \\
& \underbrace{\frac{1}{2} \mu_{n} c_{0 k} \frac{\omega}{L} \cdot \frac{1}{c_{2}}}_{K} d t=\frac{-d \alpha}{\left(\alpha-V_{T H}\right)^{2}} \Rightarrow K t=\frac{1}{\alpha-V_{T H}}-\frac{1}{V_{0}-V_{T H}} \\
& \Rightarrow \alpha(t)=V_{T H}+\frac{1}{k t+\frac{1}{V_{0}-V_{T M}}} \quad \alpha(\infty)=V_{T H} \\
& \alpha\left(0^{+}\right)=V_{0} \text {, Device is in trade }
\end{aligned}
$$

2.26) a cont.

$$
\begin{aligned}
& X(\infty)=V_{D O}+V_{T H} \\
& T(\infty)=V_{O D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{00} \frac{w}{L}}}+V_{T H}=V_{D D}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{0 x} \frac{w}{L}}}
\end{aligned}
$$

2.26)b Before applying the pulse.

$$
\begin{array}{ll}
X\left(O^{-}\right)=V_{O D} & X\left(0^{+}\right)^{\prime}=V_{D D}-V_{T H} \\
Y\left(O^{-}\right)=V_{O D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{0 x} \frac{w}{L}}} & Y\left(O^{+}\right)=V_{D D}-V_{T H}-\sqrt{\frac{2 I_{1}}{\mu_{n} C_{O 2} \frac{w}{L}}}-V_{T H}
\end{array}
$$

After applying the pulse

After applying the pulse, device remains in the saturation
region, and its current doesn't chang., so, $I_{c_{1}}=I_{c_{2}}=0$

Therefore, The circuit Keeps its state.

$$
X(t)=X\left(0^{+}\right)=V_{D O}-V_{T H}
$$

2.27)

$$
\begin{aligned}
& I_{D}=I_{0} \exp \frac{V_{G S}}{\xi V_{T}} \\
& \frac{I_{D_{2}}}{I_{D_{1}}}=\exp \frac{V_{G G_{2}}-V_{G G 1}}{\xi V_{T}} \quad \quad I_{D_{2}}=10 \Rightarrow \Delta V_{G S}=\xi V_{T} \ln 10 \\
& \Delta V_{G S}=1.5 \times \ln 10 \times 26 \mathrm{mV}=89.8 \mathrm{mV} \\
& g_{m}=\frac{I_{D}}{\xi V_{T}}=\frac{10 \mu \mathrm{~A}}{1.5 \times 26^{\mathrm{mV}}}=0.26 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

2.28)

a) If we decrease V_{0} below zero.
, Source and drain exchange their roles and device operates in the triode region.
b) If we increase V_{B}, $V_{T H}$ decreases, because $\Delta V_{T H}=\gamma\left(\sqrt{2 a_{F}-V_{B}}-\sqrt{2 a_{F}}\right)$ is negative.

Therefore, I_{D} increases.

Chapter 3
3.1.

(a)

We assume that M_{1} is saturated when $-V_{i n}=\infty$

(c)

$$
\text { if } \dot{V}_{\text {in }}\left\langle\tau_{T H 1} \rightarrow \gamma_{\text {out }}=\frac{R_{F}}{R_{F}+R_{D}} V_{D D}+\frac{R_{D}}{R_{F+}+R_{D}} V_{\text {in }}\right.
$$

(e)

$$
\text { if } V_{i n}\left\langle\left(1+R_{s} / R_{F}\right) V_{r H} \rightarrow V_{0}=\frac{R_{s}}{R_{s}+R_{F}} V_{i n}\right.
$$

(b)

(a)

M1 off M2triode

(c)

(a)

(b)

(C)

$\left(v_{01}-v_{\text {rin }}\right)-\left(v_{b_{2}}-v_{r+1}\right) \sqrt{\frac{\left(\frac{w}{L}\right)_{1}}{\left(\frac{w}{L}\right)_{2}}}$

(d)
3.3.

(a)
$V_{x}^{*}=V_{D D-} R_{D}\left[\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left(v_{b b}-v_{\mid H 1}\right)^{2}\right]$

$$
-\frac{V_{D D}}{R_{D}} \text { M1triode } \quad M 1 \text { sat. }
$$

(b)

$\begin{array}{ll}\text { If } V_{x}<V_{D D-}\left(1+\frac{R_{2}}{R_{1}}\right) V_{H+2} & I_{x}=\frac{1}{2} \mu_{n} C o x\left(\frac{W}{L}\right)_{2}\end{array}\left[\frac{\left(V_{D D-} V_{x} \mid\right.}{R_{1}+R_{2}} \cdot R_{1}-V_{\Pi+2}\right]^{2}+\frac{V_{D D-} V_{x}}{R_{1}+R_{2}}$

$$
\begin{align*}
& V_{X \Phi}=V_{D D}-\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(V_{b}-V_{T+1}\right)^{2} \cdot R_{D} \\
& V_{x T}=V_{b}-V_{T H T}-\left(\frac{2\left(V_{D D}-V_{D}+V_{T H 1}\right)}{\mu_{n} C o x\left(\frac{W}{L}\right)_{1} \cdot R_{D}}\right)^{1 / 2}
\end{align*}
$$

3.4.

(a)

(b)

It's worth mentioning that the I_{x} / V_{x} Curve varies with the value of bias voltages and aspect nations, therefore, some regions), based
 on the aforementioned parameters, gets wider or narrower, especially the region called "A" in the above figure.

(C) we assume $V_{b 1}>V_{b 2}$ and both M_{1} and M_{2} operate in saturation Region if $V_{x}=V_{O D}$

Below V_{x}, for which $V_{x}=V_{y}$, drain current Of M_{2} flows in opposit direction, revealing the fact the drain and source terminals of $\int_{v_{x}=v_{4}}^{y_{y}} v_{Y}=v_{b_{2}-V_{H 1 T}} V_{b 1-}-V_{T H 2}$ M_{2} are reversed. As expected, most of I_{1} flow through M_{2} when $V_{x}=0$, because M_{2} triode $\quad M_{2}$ triode Ma sat. we assume that $V_{b_{1}}>V_{b_{2}}$.

(d)

(e)

(a)

(b)

$$
\frac{V_{0}-V_{i n}}{R_{F}}+V_{m 1} V_{i n}+\frac{V_{0}}{r_{01}}+\frac{V_{0}}{R_{\Delta}}=0
$$

$$
A_{V}=\frac{V_{0}}{V_{i n}}=-\frac{g_{m 1}-1 / R_{F}}{\frac{1}{R_{F}}+\frac{1}{r_{01}}+\frac{1}{R_{0}}}
$$

$$
\begin{aligned}
& \frac{V_{0}}{R_{2}}+\left(V_{0}-V_{i n}\right)\left(\frac{1}{R_{1}}+\frac{1}{r_{01}}\right)-g_{m 1} V_{i n}=0 \\
& \frac{V_{0}}{V_{i n}}=\frac{I_{m 1}+\frac{1}{R_{1}}+\frac{1}{r_{01}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}+\frac{1}{r_{01}}}
\end{aligned}
$$

$$
g_{m 2}\left(V_{\text {in }}-V_{\text {out }}\right)+\frac{-V_{\text {out }}}{r_{02}}=V_{m 1} V_{\text {in }}+\frac{V_{\text {out }}}{r_{01}}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m_{1}}-g_{m 2}}{g_{m 2}+\frac{1}{r_{02}}+\frac{1}{r_{01}}}
$$

(C)

$$
\begin{aligned}
& \text { (1) }\left(g_{m 1} V_{1 n}+\frac{V_{x}}{r_{01}}\right) R_{D}+V_{x}=V_{\text {out, }},(2)\left(g_{m 2} V_{x}+\frac{V_{\text {out }}}{r_{02}}\right)=g_{m 1} V_{\text {in }}+\frac{V_{x}}{r_{01}}, \\
& \text { (2) } \rightarrow V_{x}\left(-g_{m 2}-\frac{1}{r_{01}}\right)=g_{m 1} V_{\text {in }}+\frac{V_{\text {out }}}{r_{02}} \text { (2) } \rightarrow V_{x}=-\frac{g_{m 1} \cdot V_{i n}+V_{\text {ouf }} / r_{02}}{g_{m 2}+\frac{1}{r_{01}}}
\end{aligned}
$$

$$
\begin{equation*}
0+V_{m 1} R_{D} V_{i n}+\left(1+\frac{R_{D}}{r_{01}}\right) V_{x}=V_{0} \tag{④}
\end{equation*}
$$

$$
\begin{gathered}
\text { (d) }(3),(4) \rightarrow g_{m} R_{D} V_{i n}-\frac{\left(1+\frac{R_{D}}{r_{01}}\right)\left(g_{m 1} V_{i n}+\frac{V_{\text {out }}}{r_{02}}\right)}{g_{m 2}+\frac{1}{r_{01}}}=V_{\text {out }} \\
{\left[g_{m 1} R_{D}-\frac{g_{m 1}\left(1+R_{D} / r_{01}\right.}{g_{m 2}+\frac{1}{r_{01}}}\right] V_{i n}=\left[1+\frac{\frac{1}{r_{02}}\left(1+R_{D} / r_{01}\right)}{g_{m 2}+\frac{1}{r_{01}}}\right] V_{\text {out }}} \\
{\left[g_{m 1} \cdot R_{D}\left(g_{m 2}+\frac{1}{r_{01}} \left\lvert\,-g_{m 1}\left(1+\frac{R_{D}}{r_{01}}\right)\right.\right] V_{\text {in }}=\left[g_{m 2}+\frac{1}{r_{01}}+\frac{1}{r_{02}}\left(1+\frac{R_{D}}{r_{01}}\right)\right] V_{\text {out }}\right.} \\
V_{\text {out }} \\
V_{\text {in }}
\end{gathered} \frac{g_{m 1}\left(g_{m 2} R_{D}-1\right)}{g_{m 2}+\frac{1}{r_{01}}+\frac{1}{r_{02}}\left(1+\frac{R_{D}}{r_{01}}\right)}
$$

(2), (3)
(e)

$$
(1),(3) \rightarrow v_{x}=-\frac{V_{\text {out }}}{r_{02}\left(\theta_{m 2}+\frac{1}{R_{s}}\right)}
$$

$$
\begin{equation*}
-\left(\frac{V_{\text {out }}}{r_{02}}+g_{m 2} V_{x}\right)=\frac{V_{\text {out }}-V_{x}}{r_{01}}+g_{m 1}\left(V_{\text {in }}-V_{x}\right)=\frac{V_{x}}{R_{s}} \tag{3}
\end{equation*}
$$

$$
\frac{V_{\text {out }}}{r_{01}}+g_{m 1} V_{\text {in }}=-\frac{V_{\text {out }}}{r_{02}\left(g_{m 2}+\frac{1}{R_{s}}\right)}\left(\frac{1}{R_{s}}+g_{m 1}+\frac{1}{r_{01}}\right)
$$

$$
\begin{aligned}
& \frac{V_{\text {out }}}{r_{11}} \cdot r_{02}\left(g_{m_{2}}+\frac{1}{R_{s}}\right)+g_{m 1} \cdot V_{\text {in }} \cdot r_{02}\left(g_{m 2}+\frac{1}{R_{s}}\right)=-V_{\text {out }}\left(\frac{1}{R_{s}}+g_{m 1}+\frac{1}{r_{01}}\right) \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m_{1}}\left(g_{m 2}+1 / R_{s}\right) r_{02}}{g_{m 1}+\frac{1}{R_{s}}+\frac{1}{r_{01}}\left[1+r_{02}\left(g_{m 2}+\frac{1}{R_{s}}\right)\right]}
\end{aligned}
$$

3.6.

(1)
(2)
(3)

$$
-\frac{V_{x}}{r_{\text {OS }}}=\theta_{m_{2}} V_{x}+\frac{V_{x}-V_{\text {out }}}{r_{\text {OI }}}=\frac{V_{\text {out }}-V_{\text {in }}}{r_{01}}-g_{m 1} V_{\text {in }}
$$

$$
(1),(2) \rightarrow V_{x}=\frac{V_{\text {out }}}{1+r_{2}\left(g_{m_{2}}+\frac{1}{r_{93}}\right)}
$$

(a)

$$
\text { (1). (3) } \rightarrow \frac{V_{\text {out }}-V_{\text {in }}}{r_{01}}-I_{m 1} V_{\text {in }}=-\frac{V_{\text {out }}}{r_{03}+r_{02}\left(1+\theta_{m 2} \cdot r_{03}\right)}
$$

$$
V_{\text {out }}\left[\frac{1}{r_{01}}+\frac{1}{r_{03}+r_{02}\left(1+g_{m_{2}} \cdot r_{03}\right)}\right]=\left(g_{m_{1}}+\frac{1}{r_{01}}\right) v_{\text {in }}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\left(1+g_{m_{1}} \cdot r_{01}\right)\left[r_{03}+r_{02}\left(1+g_{m_{2}} \cdot r_{03}\right)\right]}{r_{01}+r_{03}+r_{02}\left(1+g_{m_{2}} r_{03}\right)}
$$

$$
\begin{aligned}
& \left\|_{M_{1}} R_{\text {out }}=\left(\frac{1}{g_{m 3}} \| r_{03}\right)\right\|\left\{\left[1+g_{m 2}\left(\frac{1}{g_{m 1}} \| r_{01}\right)\right] r_{02}+\left(\frac{1}{g_{m 1}} \| r_{01}\right)\right\} \\
& \text { (b) } A_{r}=-G_{m} \cdot R_{o u t}=-\frac{g_{m 2} r_{02}\left(\frac{1}{g_{m 3}} \| r_{03}\right)}{\left(\frac{1}{g_{m 3}} \| r_{03}\right)+\left\{\left[1+g_{m 2}\left(\frac{1}{g_{m 1}} \| r_{01}\right)\right\} r_{02}+\left(\frac{1}{g_{m 1}} \| r_{01}\right)\right\}}
\end{aligned}
$$

(C)
resistance seen looking us at the source of $\mathrm{M}_{2},\left(\frac{1}{g_{\mathrm{m}}}\left(1 r_{03}\right)+r_{02}\right.$ $1+9 m 2 \cdot 102$

(d)

(e)

$$
\begin{aligned}
& G_{m}=\frac{g_{m 2} \cdot r_{02}}{r_{01}+\left[1+g_{m 2} \cdot r_{01}\right] r_{02}} \\
& R_{\text {out }}=r_{03} \|\left[\left(1+g_{m 2} \cdot r_{01}\right) r_{02}+r_{01}\right] \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 2} \cdot r_{02} \cdot r_{03}}{r_{03}+\left(1+g_{m 2} \cdot r_{01}\right) r_{02}+r_{01}}
\end{aligned}
$$

resistance seen looking up at the source of M_{2}

$$
R_{\text {in }}=\frac{r_{03}+r_{02}}{1+g_{m 2} \cdot r_{02}}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{r_{01}}{r_{01}+\frac{r_{03}+r_{02}}{1+g_{m_{2}} r_{02}}}=\frac{r_{01}\left(1+g_{m_{2}} \cdot r_{02}\right)}{r_{01}\left(1+g_{m_{2}} \cdot r_{02}\right)+r_{02}+r_{03}}
$$

(1)
(2)
(3)

$$
-\left(\frac{V_{\text {out }}}{r_{03}}+g_{m 3} V_{x}\right)=\left(\frac{V_{\text {out }}-V_{x}}{r_{02}}-g_{m 2} V_{x}\right)=\frac{V_{x}}{r_{01}}+g_{m_{1}} V_{\text {in }}
$$

$$
\text { (1), (2) } \rightarrow \frac{V_{x}}{r_{02}}+g_{m 2} V_{x}-g_{m 3} V_{x}=\frac{V_{\text {out }}}{r_{02}}+\frac{V_{0 u t}}{r_{03}} \rightarrow V_{x}=\frac{\frac{1}{r_{02}}+\frac{1}{r_{03}}}{\frac{1}{r_{02}}+\sigma_{m 2}-V_{m 3}} V_{\text {out }}
$$

$$
\text { (1),(3) }-\frac{V_{\text {out }}}{r_{03}}-V_{m 3} V_{x}=\frac{V_{x}}{r_{01}}+g_{m 1} V_{\text {in }}
$$

$-\frac{\gamma_{\text {out }}}{r_{03}}-\left(\eta_{m 3}+\frac{1}{r_{01}}\right) \frac{\frac{1}{r_{02}}+\frac{1}{r_{03}}}{\frac{1}{r_{02}}+g_{m 2}-\sigma_{m 3}} V_{\text {out }}=g_{m 1} \cdot V_{i n}$
$-V_{\text {out }}\left[\frac{1}{r_{03}}+\frac{\left(g_{m 3}+\frac{1}{r_{01}}\right)\left(\frac{1}{r_{02}}+\frac{1}{r_{03}}\right)}{\frac{1}{r_{02}}+g_{m 2}-g_{m 3}}\right]=g_{m 1} \cdot V_{1 n}$
$-\gamma_{\text {out }}\left[\frac{1}{r_{03}}+\frac{\left(1+g_{m_{3}} r_{01}\right)\left(r_{03}+r_{0_{2}}\right)}{r_{01} r_{03}\left[1+\left(g_{m_{2}}-g_{m 3}\right) r_{02}\right]}\right]=g_{m_{1}} \cdot V_{\text {in }}$

(9)

$$
\frac{V_{\text {out }}}{r_{\text {in }}}=-\frac{g_{m 1} r_{1} r_{03}\left[1+\left(g_{m 3}-g_{m 3}\right) r_{0_{02}}\right]}{r_{01}\left[1+\left(\theta_{m 2}-g_{m 3}\right) r_{02}\right]+\left(1+g_{m_{3}} \cdot r_{01}\right)\left(r_{03}+r_{02}\right)}
$$

$$
\begin{aligned}
& V_{x}=\frac{\frac{1}{r_{02}}+g_{m 2}-g_{m 3}}{\frac{1}{r_{02}}+\frac{1}{r_{03}} \cdot V_{\text {out }}} \\
& -\frac{V_{x}}{r_{03}}-g_{m 3} V_{\text {out }}=\frac{V_{\text {out }}}{r_{01}}+g_{m 1} \cdot V_{\text {in }} \\
& -\frac{\frac{1}{r_{02}}+g_{m 2}-g_{m 3}}{\frac{r_{03}}{r_{02}}+1} V_{\text {out }}-g_{m 3} V_{\text {out }}=\frac{V_{\text {out }}}{r_{01}}+g_{m 1} V_{\text {in }}
\end{aligned}
$$

$$
-V_{\text {out }}\left[\frac{1+\left(g_{m_{2}}-g_{m_{3}}\right)_{r_{02}}}{r_{03}+r_{02}}+g_{m_{3}}+\frac{1}{r_{1}}\right]=g_{m_{1}} V_{\text {in }}
$$

$$
\frac{V_{\text {out }}}{r_{\text {in }}}=-\frac{g_{m_{1}} r_{01}\left(r_{02}+r_{03}\right)}{r_{01}\left[1+\left(g_{m 2}-g_{m 3}\right) r_{02}\right]+\left(r_{02}+r_{03}\right)\left(1+g_{m 3} \cdot r_{01}\right)}
$$

(2)

$$
-\left(\frac{V_{x}}{r_{03}}+g_{m 3} V_{\text {out }}\right)=g_{m,} V_{\text {in }}+\frac{V_{x}}{r_{01}}
$$

$$
\begin{equation*}
-\frac{V_{\text {out }}}{r_{02}}+g_{m 2}\left(V_{x}-V_{\text {out }}\right)=0 @ \text { output } 100 \text { le } \tag{3}
\end{equation*}
$$

(h)

$$
\begin{aligned}
& \text { (1). (2) } \rightarrow-\left[\left(\frac{1}{r_{03}}+\frac{1}{r_{01}}\right) \frac{1+g_{m 2} \cdot r_{02}}{g_{m 2} \cdot r_{02}}+g_{m 3}\right] V_{\text {out }}=g_{m 1} \cdot v_{i n} \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1} \cdot g_{m 2} r_{01} r_{0_{2}} r_{03}}{\left(r_{01}+r_{03}\right)\left(1+g_{m_{2}} \cdot r_{02}\right)+g_{m_{2}} g_{m 3} r_{01} r_{02} r_{03}}
\end{aligned}
$$

3.7.

$$
I_{D 1}=I_{D 2} \rightarrow \frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left[V_{b 1}-V_{x}(t=0)-V_{T+1}\right]^{2}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{2}\left(V_{b_{2}}-V_{T+2}\right)^{2}
$$

(a)

$$
V_{x}(t=0)=V_{b_{1}}-V_{n+1}-\sqrt{\frac{\left(\frac{w}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}}\left(r_{b_{2}}-V_{T+2}\right)
$$

We assume that $V_{x}(t=0)>V_{b_{2}}-V_{\text {rin2 }}$, therefore, M_{2} is always saturated.

$$
\frac{1}{2} \mu_{n} c_{0 x}\left(\frac{w}{L}\right)_{1}\left(v_{b 1}-v_{x}-v_{n+1}\right)^{2}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{2}\left(v_{b x}-v_{y}-v_{n+2}\right)^{2}=C_{1} \frac{d v_{y}}{d t}
$$

$$
\begin{aligned}
& \text { (2), (3) } \rightarrow \frac{d v_{Y}}{\left(V_{D 2}-v_{Y}-V_{T H I}\right)^{2}}=\frac{1}{2} \mu_{n} \frac{C_{O X}}{C_{1}}\left(\frac{W}{L}\right)_{2} \cdot d t \\
& \frac{1}{v_{B 2}-v_{Y}-v_{T T / 2}}=\frac{1}{2} \mu_{n} \frac{C_{0 x}}{C_{1}}\left(\frac{W}{L}\right)_{2} t+k, k=\frac{1}{v_{D 2}-V_{T H 2}} \text { because } v_{y}(t=0)=0 \\
& v_{y}=v_{b 2}-v_{T H 2}-\frac{1}{\frac{1}{2} \mu_{n} \frac{C_{0 x}}{C_{1}}\left(\frac{W}{L} l_{2} t+\frac{1}{V_{b 2}-V_{T+2}}\right.}, v_{x}=V_{b 1}-V_{\pi+1}-\left(V_{b 2}-V_{Y}-V_{\pi+2}\right) \sqrt{\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}}+\text { (2) , (1) }
\end{aligned}
$$

3-14
The drain current of M_{2} is Zero, therefore, M_{2} operates in deep triode region, pulling down V_{x} to zero potential. $V_{X}=0$ for $0<t<\infty$
(b)
$V_{y}(t=0)=V_{D D} \rightarrow M_{7}$ starts in saturation.

$$
\frac{1}{2} \mu_{n} c_{0 x}\left(\frac{w}{L}\right)_{1}\left(v_{b 1}-V_{r+1}\right)^{2}=-C_{7} \frac{d r c_{r}}{d t}=-C_{7} \frac{d v_{y}}{d t}
$$

$$
\text { (1) } V_{Y}=V_{C T}=V_{D D-\frac{1}{2}} \mu_{n} \frac{C_{D X}}{C_{1}}\left(\frac{W}{L}\right)_{1}\left(V_{b T}-V_{T H T}\right)^{2} t
$$

When $-V_{Y}=V_{B_{1}}-V_{T_{H 1}}$, M_{T} enters triode region.

Substituting (2) in (7), we calculate the time when M_{1} is at the edge of triode region.

$$
t_{7}=\frac{V_{D D}-V_{D T}+V_{T+1}}{\frac{1}{2} \mu_{n} \frac{C_{0 x}}{C_{1}}\left(\frac{w}{L} l_{1}\left(V_{b-}-V_{T+1}\right)^{2}\right.}
$$

for $t>t_{1}: \quad \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{1}\left[\left(V_{b_{1}}-V_{T H 1}\right) V_{Y}-\frac{V_{Y}^{2}}{2}\right]=-C_{1} \frac{d V_{Y}}{d t} \rightarrow V_{Y}=\ldots$

(c)
$V_{Y}(t=0)=V_{D D}+V_{b 1}$, both transistors are Saturated.

$$
\begin{gathered}
\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right)_{2}\left(V_{b 2}-V_{T H 2}\right)^{2}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right)_{1}\left(V_{b T}-V_{x}-V_{T H 1}\right)^{2} \\
V_{x}=V_{b 1}-V_{T H T}-\left(V_{b 2}-V_{T H 2}\right) \sqrt{\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{w}{L}\right)_{1}}}
\end{gathered}
$$

$$
\begin{aligned}
& C_{1} \frac{d V_{C 1}}{d t}=-\frac{1}{2} \mu_{n} C_{o x}\left(\frac{w}{L}\right)_{2}\left(V_{b 2}-V_{D+2}\right)^{2} \rightarrow V_{C 1}=V_{D D}-\frac{1}{2} \mu_{n} \frac{C_{o x}}{C_{1}}\left(\frac{w}{L}\right)_{2}\left(V_{b 2}-V_{C+2}\right)^{2} t \\
& V_{Y}=V_{c 1}+V_{b 1}=V_{D D}+V_{b 1}-\frac{1}{2} \mu_{n} \frac{C_{o x}}{C_{1}}\left(\frac{w}{L}\right)_{2}\left(V_{b 2}-V_{T H 2}\right)^{2} t
\end{aligned}
$$

@ $t=t_{1}$, we have $\gamma_{Y}=V_{B 1}-V_{H T}$, polarity of voltage across c_{T} has already changed.

$$
\begin{aligned}
& V_{D D}+V_{b 1}-\frac{1}{2} \mu_{n} \frac{C_{o x}}{C_{1}}\left(\frac{w}{L}\right)_{2}\left(V_{b 2}-V_{T H 2}\right)^{2} t_{1}=V_{b 1}-V_{T+1} \\
& t_{1}=\frac{2\left(V_{D D}+V_{D+1}\right) C_{1}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{D 2}-V_{T+2}\right)^{2}}
\end{aligned}
$$

for $t>t_{7}, M_{1}$ enters triode region. We assume that still M_{2} is saturated.

$$
V_{Y}=V_{D D+}+V_{D 1}-\frac{1}{C_{1}} I_{D 2 \cdot t} \quad \text { where } I_{D 2}=\frac{1}{2} \mu_{0} C_{0 x}\left(\frac{W}{L} I_{2}\left(V_{D 2}-V_{T+1}\right)^{2}\right.
$$

and $I_{D_{2}}=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left[\left(V_{b T}-T_{x}\right)\left(V_{D D}+V_{b 1}-\frac{1}{C_{1}} I_{D_{2}} \cdot t-V_{x}\right)-\frac{\left(V_{D D}+V_{b 1}-\frac{1}{C_{1}} I_{D_{2}} \cdot t-V_{x}\right)^{2}}{2}\right]$
$\rightarrow V_{x}$ is obtained

When $V_{x}=V_{b 2}-V_{r+12}, M_{2}$ enters the triode region, too.

$$
\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{2}\left[\left(V_{b 2}-V_{n+2}\right) V_{x}-\frac{Y_{x}^{2}}{2}\right]=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left[\left(V_{b 1}-V_{x}-V_{n+1}\right)\left(V_{y}-V_{x}\right)-\frac{\left(V_{y}-V_{x}\right)^{2}}{2}\right]=-C_{7} \frac{d V_{y}}{d t}
$$

V_{x} and V_{y} are obtained. This regime continues until V_{x} and V_{y} drop to Hero, and C_{y} Charges up to $-V_{b y}$.

for $0<t<t_{1}, M_{1}$, Sat, M_{2} Sat, for $t_{1}<t<t_{2} M_{7}$ triode, M_{2} sat.
for $t_{2}\left\langle t \quad M_{7}\right.$ Triode, M_{2} triode
3.8

$$
\begin{gathered}
\left(\frac{w}{L}\right)_{1}=\frac{50}{0.5} \cdot\left(\frac{w}{L}\right)_{2}=\frac{10}{0.5} \cdot I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA} \\
\mu_{n} C_{0 x}=350 \frac{\mathrm{Cn}^{2}}{\mathrm{~V} .5} \times \frac{8.85 \times 10^{-14} \times 3.9 \mathrm{Farad} / \mathrm{Cn}}{9 \times 10^{-7} \mathrm{~cm}}= \\
1.34225 \times 10^{-4} \mathrm{~A} / \mathrm{v}^{2} \\
\mu_{0} C_{0 x}=\frac{100 \mathrm{Cm}^{2}}{\mathrm{~V} .5} \times \frac{8.85 \times 10^{-14} \times 3.9 \mathrm{Farad} / \mathrm{Cm}}{9 \times 10^{-7} \mathrm{Cm}}= \\
3.835 \times 10^{-5} \mathrm{~A} / \mathrm{v}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& r_{01}=r_{02}=\frac{1}{\lambda_{N I}}=20 \mathrm{~K}, \quad I_{D_{2}}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{\mathrm{~W}}{L_{2}}\right)_{2}\left(V_{\mathrm{GS} 2}-V_{D_{H 2}}\right)^{2}\left(1+\lambda_{N} V_{\mathrm{OS}_{2}}\right), \\
& 0.5 \times 10^{-3}=\frac{\lambda_{N} I_{1}}{2} \times 1.34225 \times 10^{-4} \times 20\left[3-V_{0}-0.7-0.45\left(\sqrt{0.9+V_{0}} \sqrt{0.9}\right)\right]^{2}\left[1+0.1\left(3-V_{0}\right)\right] \\
& 2.3-0.45\left(\sqrt{0.9+T_{0}}-\sqrt{0.9}\right)-\sqrt{\frac{1}{2.6845\left(1.3-0.1 V_{0}\right)}}=V_{0} \rightarrow V_{0}=1.466 \mathrm{~V} \\
& g_{m_{1}} \sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 0.5 \times 10^{-3}}=3.66 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
& g_{m_{2}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 20 \times 0.5 \times 10^{-3}}=1.03 \times 10^{-3} \mathrm{~A} / \mathrm{y} \\
& g_{m_{O 2}}=\frac{\gamma . g_{m_{2}}}{2 \sqrt{2 \phi_{F}+V_{S B}}}=\frac{0.45}{2 \sqrt{0.9+1.466}} \times 1.63 \times 10^{-3}=2.3843 \times 10^{-4} 4 / \mathrm{v}
\end{aligned}
$$

$$
\text { Rout }=\frac{1}{9_{m_{2}}+9 \mathrm{mb}_{2}+\mathrm{ro2}^{-1}} / 1 r_{0}=\frac{1}{1.63 \times 10^{-3}+2.3843 \times 10^{-4}+\left(20 \times 10^{3}\right)^{-1}} / 120 \times 10^{3}
$$

$$
R_{\text {out }}=508 \Omega \quad A_{V}=-9_{m} . R_{\text {out }}=-3.66 \times 10^{-3} \times 508=-1.85
$$

$$
\begin{aligned}
& g_{m_{2}}=\sqrt{2 \times 3.835 \times 10^{-5} \times 20 \times 0.5 \times 10^{-3}}=8.7578 \times 10^{-4} \\
& r_{02}=\frac{1}{\lambda_{0} I}=\frac{1}{0.2 \times 0.5 \times 10^{-3}}=10 \mathrm{~K}
\end{aligned}
$$

$$
R_{\text {out }}=\frac{1}{g_{m_{2}}+r_{02}^{-1}} \| r_{0}=974.8628 \Omega
$$

$$
A_{v}=-g_{m}, \text { Rout }=-0.8537
$$

$$
\begin{aligned}
& \left(\frac{W}{L}\right)_{1}=50 / 0.5, \quad\left(\frac{W}{L}\right)_{2}=50 / 2, I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA} \\
& r_{0}=\frac{1}{\lambda_{N} I}=\frac{1}{0.1 \times 0.5 \times 10^{-3}}=20 \mathrm{~K}, r_{02}=\frac{1}{\lambda_{0 I} I}=\frac{1}{0.2 \times 0.5 \times 10^{-3}} \\
& =40 \mathrm{~K}
\end{aligned} \begin{aligned}
g_{m 1}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 0.5 \times 10^{-3}}=3.6636 \times 10^{-3}
\end{aligned} ~ \begin{aligned}
& A_{V}=-g_{m 1}\left(r_{0}, 11 r_{02}\right)=-48.84
\end{aligned}
$$

If we assume that M_{7} is in the edge of the triode region, then, we have:

$$
\begin{aligned}
& V_{G S}-V_{T H 1}=V_{O S 1}=V_{o v t}, I_{D}=\frac{1}{2} \quad \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H 1}\right)^{2}\left(1+\lambda_{N} V_{D S}\right) \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4} \times 100 V_{0 S}^{2}\left(1+0.1 V_{D S}\right) \rightarrow \sqrt{\frac{1}{13.4225\left(1+0.1 V_{D S}\right)}}=V_{D S S} \\
& V_{D S \text { min }}=V_{0 \text { min }}=0.2693
\end{aligned}
$$

If we assume that M_{2} is in the edge of the triode region, then, we have:

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{P} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{S G}-\left|V_{T H 2}\right|\right)^{2}\left(1+\lambda_{P} V_{S D}\right), 0.5 \times 10^{-3}=\frac{1}{2} \times 3.835 \times 10^{-5} \times 25 V_{S D}^{2}\left(1+\lambda_{P} V_{S D}\right) \\
& \sqrt{\frac{1}{0.95875\left(1+0.05 V_{S D}\right)}}=V_{S D} \rightarrow V_{S D_{\min }=0.9967 V, V_{O \text { max }}=V_{D D}-V_{S D \text { min }},}^{V_{O \text { max }}=2 V}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{W}{L}\right)_{1}=50 / 0.5, \quad\left(\frac{W}{L}\right)_{2}=10 / 0.5 I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA} \\
& R_{D}=1 \mathrm{k} \Omega \\
& V_{D S, \text { Sat }}=Y_{G S 1}-V_{T H 1}=\left(\frac{2 I_{D 1}}{\mu_{n} C_{0 \times}\left(\frac{W}{L}\right)_{1}}\right)^{1 / 2}=\left(\frac{2 \times 0.5 \times 10^{-3}}{1.34225 \times 10^{-4} \times 100}\right)^{1 / 2} \\
& V_{D S, S a T 1}=0.2729 V \\
& V_{X, B 19 J}=0.2729+50 \times 10^{-3}=0.3229 \mathrm{~V} \\
& V_{T H 2}=V_{T H 0}+\gamma\left(\sqrt{2 \phi_{F}+V_{S B}}-\sqrt{2 \phi_{F}}\right)=0.7+0.15(\sqrt{0.9+0.3229}-\sqrt{0.9}) \\
& V_{T H 2}=0.770737
\end{aligned}
$$

$$
A_{v}=-G_{m} R_{\text {out }}=-3.57
$$

We obtain the small signal voltage gain from input to node x.

$$
\begin{aligned}
& R_{\text {out }} @_{x}=r_{0} / 11 \frac{R_{\Delta t}+r_{02}}{1+(9 m 2+\theta m 02) r_{02}}=20 \times 10^{3} / 1 \frac{10^{3}+20 \times 10^{3}}{1+\left(1.6384 \times 10^{-3}+3.3336 \times 10^{-4}\right) 20 \times 10^{3}} \\
& R_{\text {out } @_{x}}=506.2 \\
& A_{V_{x}}=-g_{m 1} \cdot R_{\text {out } @_{x}}=-1.8545 \\
& I f V_{x}=V_{x \min }=V_{\Delta 5, \text {,att }}, \Delta V_{x}=-50 \mathrm{mv} \rightarrow \Delta V_{\text {in }}=\frac{-50 \times 10^{-3}}{-1.85 \% 15}=26.96 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
V_{G S 2}=V_{T+2}+\left(\frac{2 I_{\Delta 2}}{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{2}}\right)^{1 / 2}=0.77073+\left(\frac{2 \times 0.5 \times 10^{-3}}{1.34225 \times 10^{-4} \times 20}\right)^{1 / 2}=1.38107 \mathrm{~V},
\end{array} \\
& V_{b}=1.38107+0.3229=1.7 V, 9_{m_{1}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 0.5 \times 10^{-3}}=3.6636 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
& g_{m_{2}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 20 \times 0.5 \times 10^{-3}}=1.6384 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
& g_{\text {mon }}=\frac{0.45}{2 \sqrt{0.9+0.3229}} 1.6384 \times 10^{-3}=3.3336 \times 10^{-4}, r_{0}=r_{02}=\frac{1}{\lambda_{N} I}=\frac{1}{0.1 \times 0.5 \times 10^{-3}}=20 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
-3 & r_{0}, r_{02}\left(g_{m 2}+O_{m b 2}\right)+r_{0}+r_{2} \\
-3 & -3
\end{array} \\
& G_{m}=\frac{3.6636 \times 10^{-3} \times 20 \times 10^{3}\left[20 \times 10^{3}\left(1.6384 \times 10^{-3}+3.3336 \times 10^{-4}\right)+1\right]}{\left(20 \times 10^{3}\right)^{2}\left(1.6384 \times 10^{-3}+3.3336 \times 10^{-4}\right)+2 \times 20 \times 10^{3}}=3.5751 \times 10^{-3} \mathrm{t} / \mathrm{v}
\end{aligned}
$$

$$
\begin{align*}
& \Delta V_{\text {out }}=26.96 \times 10^{-3} \times(-3.57)=-96.25 \times 10^{-3} \\
& V_{\text {out min }}=V_{\Delta 0}-R_{\Delta} I_{D}+\Delta V_{0}=3-1 \times 0.5-96.25 \times 10^{-3}=2.4 \mathrm{~V} \\
& V_{\text {out, max }}=3 V, \quad \Delta V_{0}=3-2.5=0.5 \mathrm{~V}, \quad \Delta V_{\text {in }}=\frac{0.5}{-3.57}=-0.14 \mathrm{~V} \\
& \Delta V_{x}=-1.8515(-0.14)=0.2597 \quad V_{x, \text { max }}=V_{x, \text { Bias }}+0.2597=0.3229+0.2597=0.5826 \mathrm{~V}
\end{align*}
$$

If we take $V_{\text {out, min }}=V_{b}-V_{T H 2}=1.7-0.77073=0.92924 \mathrm{~V}, \Delta V_{0}=-1.57$ which translates into a huge negative vowing at x that makes the final voltage at node x negative. Therefore, M_{1} limits the negative going output saving because the voltage gain from input to node x is quite lace.

$$
\begin{aligned}
& \left(\frac{W}{L}\right)_{1}=50 / 0 . \sigma, R_{D}=2 \mathrm{~K} \Omega, \lambda=\varnothing \\
& r_{0}=\frac{1}{\lambda_{N} I_{D}}=\frac{1}{0.1 \times 10^{-3}}=10 \mathrm{~K} \\
& R_{\text {out }}=O_{0}, 11 R_{D}=10 \mathrm{~K} 112 \mathrm{~K}=\frac{5000}{3} \Omega \\
& g_{m_{1}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 10^{-3}}=5.1812 \times 10^{-3}
\end{aligned}
$$

$A_{v}=-g_{m} \cdot R_{\text {out }}=-5.1812 \times 10^{-3} \times \frac{5000}{3}=-8.6353$
At the edge of the triode region: $V_{\text {out }}=V_{G S}-V_{T H}=V_{G S}-0.7, I_{D I}=\frac{V_{D D}-V_{\text {out }}}{R_{D}}=$

$$
\frac{3-r_{q S}+0.7}{2 \times 10^{3}}=\frac{3.7-V_{q S}}{2 \times 10^{3}}
$$

$$
\begin{aligned}
& I_{0}=\frac{1}{2} \mu_{n} C_{0 \times}\left(\frac{w}{L}\right)_{1}\left(V_{G S}-V_{\text {TH }}\right)^{2} \\
& \frac{3.7-V_{G S}}{2 \times 10^{3}}=\frac{1}{2} \times 1.34225 \times 10^{-4} \times 100\left(V_{G S}-0.7\right)^{2}
\end{aligned}
$$

$13.4225 V_{G S}^{2}-17.7915 V_{G S}-10.277025=0 \rightarrow V_{G S}=1.137 \mathrm{~V}$
I_{0} @ the edge of the triode $=\frac{1}{2} \times 1.34225 \times 10^{-4} \times 100(1.137-0.7)^{2}=1.28151 \times 10^{-3}$
In/ @ the edge of the Triode $=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 1.28151 \times 10^{-3}}=5.8653 \times 10^{-3}$

$$
r_{0}=\frac{1}{0.1 \times 1.2815110^{-3}}=7.8 \times 10^{3}
$$

Av@ the edge of the Triode $=-9_{m /}\left(r_{0,11} R_{D} \mid=-5.8653 \times 10^{-3}\left(7.8 \times 10^{3} 112 \times 10^{3}\right)\right.$

$$
A_{V}=-9.3374
$$

Vo@ the edge of the triode $=V_{D D}-R_{D} \times I_{D}=3.2 \times 1.2815 \times 10^{-3}=0.4369 \mathrm{~V} \quad 3-20$

$$
\begin{aligned}
& V_{D S}=V_{D S, \text { Sat 1 }}-50 \times 10^{-3}=0.4369-50 \times 10^{-3}=0.3869 \mathrm{~V} \\
& I_{D}=\frac{V_{D D}-V_{D S}}{R_{D}}=\frac{3-0.3869}{2 \times 10^{3}}=1.3065 \times 10^{-3} \\
& I_{D}=\mu_{n} C_{0 \times}\left(\frac{W}{2}\right)_{1}\left[\left(V_{G S}-V_{T H 1}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right] \\
& 1.3065 \times 10^{-3}=1.34225 \times 10^{-4} \times 100\left[\left(V_{G S}-0.7\right) 0.3869-\frac{(0.3869)^{2}}{2}\right] \Rightarrow V_{G S}=1.145
\end{aligned}
$$

$$
g_{m 1}=\frac{\partial I_{D}}{\partial V_{q S}}=\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1} \cdot V_{D S}
$$

$$
=1.34225 \times 10^{-4} \times 100 \times 0.3869=5.1942 \times 10^{-3}
$$

Om/@ The point where 50 mv into the triode

$$
\begin{aligned}
& R_{0}^{-1}=\frac{\partial I_{D}}{\partial V_{D S}}=\mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H 1}-V_{D S}\right) \rightarrow R_{0}=\frac{1}{1.34225 \times 10^{-4} \times 100(1.145-0.7-0.30)} \\
& R_{0}=1.2835 \times 10^{3} \Omega \\
& A_{V_{@}} @ 50 \mathrm{mV} \text { into the trade region }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{W}{L}\right)_{1}=50 / 0.5 \quad R_{D}=2 k, \quad \lambda=0 \\
& I_{D /} @ V_{\text {out }}=7 V \\
& =\frac{V_{D D}-V_{0}}{R_{D}}=\frac{3-1}{2 \times 10^{3}}=10^{-3} \mathrm{~A}
\end{aligned}
$$

$$
V_{i n}=V_{T H 1}+\left(\frac{2 I_{D 1}}{\mu_{n} C_{0 x}\left(\left.\frac{W}{h}\right|_{1}\right.}\right)^{1 / 2}=0.7+\left(\frac{2 \times 10^{-3}}{1.34225 \times 10^{-4} \times 100}\right)^{1 / 2} \rightarrow V_{\text {in }} \text { @ } V_{\text {out }=1 V}=1.086 \mathrm{~V}
$$

$$
I_{D 1} @ V_{\text {out }}=2.5 V=\frac{3-2.5}{2 \times 10^{3}}=2.5 \times 10^{-4}, V_{\text {in }} @_{V_{0 u t}=2.5 V}=0.7+\left(\frac{2 \times 2.5 \times 10^{-4}}{1.34225 \times 10^{-4} \times 100}\right)^{1 / 2}=
$$

$$
g_{m 1} @_{V_{\text {out }}}=17=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 10^{-3}}=5.1812 \times 10^{-3}
$$

$$
0.893 \mathrm{~V}
$$

$$
\theta_{m 1} @ \text { Your }=2.5 V=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 2.5 \times 10^{-4}}=2.59 \times 10^{-3}
$$

$$
\begin{aligned}
& r_{01} @ V_{\text {out }}=71=\frac{1}{0.1 \times 10^{-3}}=10 \mathrm{~K}, \quad R_{\text {out }}=r_{0}, 11 R_{D}=10000 / 12000=\frac{5000}{3} \Omega \\
& A_{V} @ V_{\text {out }=7 V}=-g_{m,} \cdot R_{\text {out }}=-5.1812 \times 10^{-3} \times \frac{5000}{3}=-8.6353 \\
& r_{0} @ V_{\text {out }}=2.5 \mathrm{~V}=\frac{1}{0.1 \times 2.5 \times 10^{-\gamma}}=40 \mathrm{~K}, R_{\text {out }}=r_{0}, 11 R_{D}=40000112000=1.9 \times 10^{3} \\
& A_{V} @ V_{\text {out }}=2.5 V=-V_{m,} . R_{\text {out }}=-2.59 \times 10^{-3} \times 1.9 \times 10^{3}=-4.9221
\end{aligned}
$$

3.13. $\quad\left(\frac{w}{L}\right)=5.0 / 0.5 \quad\left|I_{D}\right|=0.5 \mathrm{~mA}$
$\not \subset 100 / 1$
For naos device with $\left(\frac{W}{L}\right)=50 / 0.5, r_{0}=\frac{1}{\lambda_{N} I_{0}}=\frac{1}{I_{m}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 0.5 \times 10^{-3}}=3.6636 \times 10^{-3} \times 0.5 \times 10^{-3}}=20 \mathrm{~K}$

$$
\begin{aligned}
& I_{m}=\sqrt{2 \times 1.34225 \times 10^{-4} \times 100 \times 0.5 \times 10^{-3}}=3.6636 \times 10^{-3} \\
& g_{m} 0=73.27
\end{aligned}
$$

For PMOS device with $\left(\frac{W}{\mathrm{~L}}\right)=50 / 0.5, r_{0}=\frac{1}{\lambda_{0} I_{0}}=\frac{1}{0.2 \times 0.5 \times 10^{-3}}=10 \mathrm{~K}$
$g_{m}=\sqrt{2 \times 3.835 \times 10^{-5} \times 100 \times 0.5 \times 10^{-3}}=1.9583 \times 10^{-3}$

$$
g_{m} r_{0}=19.5831
$$

For NMOS device with $\left(\frac{w}{h}\right)=100 / 1, r_{0}=\frac{1}{\frac{0.1}{2} \times 0.5 \times 10^{-3}}=40 \mathrm{~K}$

$$
g_{m}=3.6636 \times 10^{-3}, \quad g_{m} r_{0}=146.5469 \quad \frac{0.1 \times 0.5 \times 10^{-3}}{2}
$$

For PMOS device, with $\left(\frac{W}{L}\right)=100 / 1, r_{0}=\frac{1}{\frac{0.2}{2} \times 0.5 \times 10^{-3}}=20 \mathrm{~K}$
$g_{m}=1.9583 \times 10^{-3}, \quad g_{m} r_{0}=39.1663 \quad$
3.14. $\quad I_{D}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)$

$$
\begin{equation*}
g_{m}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T H}\right)\left(1+\lambda V_{D S}\right) \tag{1}
\end{equation*}
$$

Substituting ($1+\lambda V_{D S}$) from (1) in (2), we have.

$$
\begin{aligned}
& g_{m}=\mu_{n} C_{0 x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T H}\right) \frac{I_{D}}{\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)\left(V_{G S}-V_{T H}\right)^{2}}=\frac{2 I_{D}}{V_{G S}-V_{T H}} \\
& g_{m} r_{0}=\frac{2 I_{D}}{V_{G S}-V_{T H}} \frac{1+\lambda V_{O S}}{\lambda I_{D}}=\frac{2\left(1+\lambda V_{D S}\right)}{\lambda\left(V_{G S}-V_{T H}\right)}=\frac{4 I_{D}}{\mu_{n} C_{0 x}\left(V_{G S}-V_{T H}\right)^{3} \lambda\left(\frac{W}{L}\right)}
\end{aligned}
$$

3.15. From 3.14. we have:

$$
I_{m} r_{0}=\frac{4 I_{D}}{\mu_{n} C_{0 x}\left(v_{G S}-\left.v_{T H}\right|^{3} \lambda\left(\frac{W}{L}\right)\right.}
$$

(a)

3.16. $\frac{W}{L}=50 / 0.6 \quad V_{G}=+1.2 \mathrm{~V} \quad V_{S}=0 \quad 0<V_{D}<3 \quad V_{\text {bulk }}=0$
$V_{D_{\text {sat }}}=V_{G S}-V_{T H}=1.2-0.7=0.5 v$, for a saturated device $\theta_{m} r_{0}=\frac{2\left(1+\lambda V_{\Delta S}\right)}{\lambda\left(V_{G S}-V_{T H}\right)}$ (a) the edge of the triode region $g_{m} r_{0}=\frac{2(1+0.5 \times 0.1)}{0.1(1.2-0.7)}=42$

We cannot neglect the channel-length modulation in the triode region, because it would lead to a discontinuity at the transition point between the saturation and the triode region.
@ triode region

$$
\begin{aligned}
& \theta_{m}=\frac{\partial I_{D}}{\partial V_{g S}}=\mu_{n} C_{\Delta x}\left(\frac{W}{L}\right) V_{D S}\left(1+\lambda V_{D S}\right) \\
& g_{0}=\frac{\partial I_{D}}{\partial V_{d s}}=\mu_{n} C_{0 x}\left(\frac{W}{L}\right)\left\{\left(V_{G S}-V_{T H}-V_{D S}\right)\left(1+\lambda V_{D S}\right)+\lambda\left[\left(V_{G S}-V_{\pi H}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right]\right\}
\end{aligned}
$$

in the triode region $g_{m} r_{0}=\frac{\left(1+\lambda V_{D S} / V_{D S}\right.}{\left(V_{G S}-V_{T H}-V_{D S}\right)\left(1+\lambda V_{D S}\right)+\lambda\left[\left(V_{G S}-V_{I H}\right) V_{D S}-\frac{V_{D S}}{2}\right]}$
In Saturation $\quad \sigma_{m} r_{0}=\frac{2\left(1+0.1 V_{D S} \mid\right.}{0.1(1.2-0.7)}=40+\Delta V_{D S} \quad V_{D S}>0.5 V$
In triode

$$
\begin{aligned}
& I_{m} r_{0}=\frac{\left(1+0.1 V_{D S}\right) V_{D S}}{\left(0.5-\gamma_{D S}\right)\left(1+0.1 V_{D S}\right)+0.1 \times 0.5 V_{D S}\left(1-V_{D S}\right)} \\
& \theta_{m} r_{0}=\frac{0.1 V_{D S}^{2}+V_{D S}}{-0.15 V_{D S}^{2}-0.9 V_{D S}+0.5}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {bulk }}=-7 v, V_{S B}=+7 v \\
& V_{T H}=V_{T H O}+\gamma\left(\sqrt{2\left|\phi_{F}\right|+V_{S B}}-\sqrt{2\left|\phi_{F}\right|}\right)=0.7+0.45(\sqrt{0.9+1}-\sqrt{0.9})=0.8933 v
\end{aligned}
$$

In Saturation $g_{m} r_{0}=\frac{2\left(1+0.1 V_{D S}\right)}{0.1(1.2-0.0933)}=65.2262+6.5226 V_{D S}$
$V_{D S_{\text {Sat }}}=V_{G S}-V_{T H}=1.2-0.8933=0.3066 \mathrm{~V}$, @the edged the triode $g_{m} r_{0}=67.2262$

$$
\begin{aligned}
& V_{m} r_{0}=\frac{\left(1+0.1 V_{D S}\right) V_{D S}}{\left(1.2-0.8933-V_{D S}\right)\left(1+0.1 V_{D S} 1+0.1\left((1.2-0.8933) V_{D S}-0.5 V_{D S}^{2}\right]\right.} \\
& \theta_{m r_{0}}=\frac{\left(1+0.1 V_{D S}\right) V_{D S}}{-0.15 V_{D S}^{2}-0.9386 V_{D S}+0.3066}
\end{aligned}
$$

3.17. $\theta_{m}=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)\left[v_{G S}-v_{T H O}-\gamma\left(\sqrt{2\left|\phi_{F}\right|+v_{S B}}-\sqrt{2 \mid \phi F 1}\right)\right]\left(1+\lambda v_{D S}\right)$

$$
r_{0}=\frac{1}{\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{h}\right)\left(V_{G S}-V_{m H}\right)^{2} \lambda}, g_{m} r_{0}=\frac{2\left(1+\lambda V_{D S}\right)}{\lambda\left(V_{G S}-V_{m H}\right)}
$$

3.18.

M_{T} at the edge of the triode region $\rightarrow V_{\text {out }}=V_{\text {in }}-V_{\text {ri }}$

$$
\begin{aligned}
& I_{D 1}=I_{D 2}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(V_{1 n}-V_{n+1}\right)^{2}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{i n}+V_{r+1}-V_{r H 2}\right)^{2} \\
& \left(\frac{w}{L}\right)_{1}^{1 / 2}\left(V_{i n}-V_{T H 1}\right)=\left(\frac{W}{L}\right)_{2}^{1 / 2}\left(V_{D D}-V_{i n}\right) \rightarrow\left(V_{i n}-V_{\pi+1}\right)=\sqrt{\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}}\left(V_{D D}-V_{i n}\right) \\
& V_{\text {in }}=\left(\sqrt{\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}} V_{D D}+V_{T H T}\right) /\left(1+\sqrt{\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}}}\right)=\left[\left(\frac{10}{50}\right)^{1 / 2} \times 3+0.7\right] /\left[1+\left(\frac{10}{50}\right)^{1 / 2}\right]=1.41 \mathrm{~V} \\
& A_{v}=-\sqrt{\frac{\left(\frac{w}{L}\right)_{1}}{\left(\frac{w}{L}\right)_{2}}}=-\sqrt{\frac{50}{10}}=-2.236 .
\end{aligned}
$$

At the edge of the triode region Tout $=1.41-0.7=0.71 \mathrm{~V}$
50 mV into the trade region $V_{\text {out }}=0.71-50 \times 10^{-3}=0.66 \mathrm{~V}$

$$
\begin{aligned}
& \frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{\text {out }}-V_{H 2}\right)^{2}=\mu_{n} C_{o x}\left(\frac{w}{L}\right)_{1}\left[\left(V_{\text {in }}-V_{H H 1}\right) V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}\right] \\
& V_{\text {in }}=\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} \frac{\left(V_{\text {DD }}-V_{\text {out }}-V_{T H 2}\right)^{2}}{V_{\text {out }}}+\frac{V_{\text {out }}}{2}+V_{\pi+1}=\frac{10}{50} \frac{(3-0.66-0.7)^{2}}{0.66}+\frac{0.66}{2}+0.7 \\
& V_{\text {in }}=1.8437, \quad I_{D}=\mu_{n} C_{o x}\left(\frac{w}{L}\right)_{1}\left[\left(V_{i n}^{\cdot}-V_{\text {IHs }}\right) V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}\right], \frac{\partial I_{D}}{\partial Y_{\text {in }}}=\mu_{n} C_{o x}\left(\frac{w}{L}\right)_{1} \cdot V_{\text {out }} \\
& A_{Y}=-\frac{\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1} \cdot Y_{\text {out }}}{\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{2}\left(V_{D D}-V_{\text {out }}-V_{T-12}\right)}=-\frac{\frac{50}{0.5} \times 0.66}{\frac{10}{0.5} \times(3-0.66-0.7)}=-2.015
\end{aligned}
$$

3.19.

$$
\begin{gathered}
I_{D_{1}}=I_{D_{2}} \Rightarrow \frac{1}{2} \mu_{n} C \operatorname{Cox}\left(\frac{W}{L}\right)_{1}\left(V_{\text {in }}-V_{I H 1}\right)^{2}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{\text {in }}+V_{T H 1}-V_{T H 2,0}-0.45\left(\sqrt{0.9+V_{\text {OUT }}}\right.\right. \\
-\sqrt{0.9}))^{2}
\end{gathered}
$$

$$
\left(\frac{w}{L}\right)_{1}\left(V_{I n}-V_{D N_{1}}\right)^{2}=\left(\frac{W}{L}\right)_{2}\left[V_{D D}-V_{i n}-0.45\left(\sqrt{0.9+V_{\text {in }}-0.7}-\sqrt{0.9}\right)\right]^{2}
$$

$V_{\text {in }}=\sqrt{\frac{1}{5}}\left[3-V_{i n}-0.15\left(\sqrt{0.2+V_{i n}}-\sqrt{0.9}\right)\right]+0.7 \rightarrow$ fter enough iterations \rightarrow $V_{\text {in }}=1.3685, V_{\text {out }}=0.6685, \quad \eta_{2}=\frac{\gamma}{2\left(21 / f /+V_{S B}\right)^{1 / 2}}=\frac{0.15}{2(0.9+0.6685) \frac{w}{1 / 2}}=0.1796$ $A_{V}=-\frac{g_{m 1}}{g_{m 2}\left(1+\eta_{2}\right)}=-\sqrt{\frac{\left(\left.\frac{w}{L}\right|_{1}\right.}{\left(\frac{w}{L}\right)_{2}}} \frac{1}{1+\eta_{2}}=-\sqrt{\frac{50}{10}} \frac{1}{1+0.1796}=-1.8955$

$$
V_{\text {out }}=0.6685-50 \times 10^{-3}=0.6185
$$

$$
\begin{aligned}
& \frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right)_{2}\left(V_{\text {OD }}-V_{\text {out }}-V_{\text {TH2 }}\right)^{2}=\mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right)_{1}\left[\left(V_{\text {in }}-V_{\text {rH1 }}\right) V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}\right] \\
& V_{\text {TRI } 2}=V_{T H 2,0}+\gamma\left(\sqrt{21 \phi f 1+V_{S B}}-\sqrt{2 \mid \ell_{f} 1}\right)=0.7+0.45(\sqrt{0.9+0.6105}-\sqrt{0.9})=0.0276 \\
& 24.1453=\frac{50}{0.5}\left[\left(Y_{\text {in }}-0.7\right) 0.6185-\frac{0.6185^{2}}{2}\right] \rightarrow Y_{i n}=1.3996 \\
& \eta=\frac{0.45}{2(0.9+0.0105)^{1 / 2}}=0.1025 \quad A_{v}=-\frac{\mu_{0} C_{0 x}\left(\frac{w}{L}\right)_{1} \cdot V_{\text {out }}}{\mu_{1} C_{0 x}\left(\frac{w}{L}\right)_{2}\left(V_{\text {Gs2 }}-V_{\text {TH2 }}\right)(1+\eta)}= \\
& \frac{\left(\frac{w}{L}\right)_{1} V_{\text {out }}}{\left(\frac{w}{L}\right)_{2}\left(V_{D D}-V_{\text {OUt }}-V_{\text {IH2 }}\right)\left(1+\eta_{2}\right)}=\frac{50 \times 0.6185}{10(3-0.6185-0.8276)(1+0.1025)}=-1.6829
\end{aligned}
$$

3.20.

$$
\left(\frac{W}{L}\right)_{1}=20 / 0.5, I_{1}=1 \mathrm{~mA}, I_{3}=0.75 \mathrm{~mA}, \lambda=0 \quad 3.27
$$

M_{1} at the edge of the triode region $V_{\text {out }}=V_{\text {in }}-V_{T H 1}$

$$
\begin{aligned}
& V_{\text {in }} \cdot \operatorname{ll}_{1}^{{ }_{1} I_{1}} M_{1} \quad \frac{1}{2} \mu_{p} C_{o x}\left(\left.\frac{W}{L}\right|_{2}\left(V_{D D}-V_{\text {out }}\left|V_{T H 2}\right|\right)^{2}+\frac{I_{s}}{2}=\frac{1}{2} \mu_{n} C_{o x}\left(V_{\text {In }}-V_{T H 1}\right)^{2}=10^{-3}\right. \\
& \frac{1}{2} \mu_{p} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{I n}+V_{T H 1}-\left|V_{T H 2}\right|\right)^{2}+I_{S}=\frac{1}{2} \mu_{1} C_{o x}\left(V_{I n}-\left.V_{T H 1}\right|^{2}=10^{-3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(V_{1 n}-V_{T H 1}\right)^{2}=\frac{2 I_{1}}{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}} \rightarrow V_{i n}=\sqrt{\frac{2 I_{1}}{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}}}+V_{T H 1}=0.7+\sqrt{\frac{2 \times 10^{-3}}{1.34225 \times 10^{-4} \times 20 / 0.5}}=1.31 \\
& \frac{1}{2} \times 3.835 \times 10^{-5}\left(\frac{W}{L}\right)_{2}(3-1.31+0.7-0.8)^{2}+0.75 \times 10^{-3}=10^{-3} \cdot\left(\frac{W}{L}\right)_{2}=5.159 \\
& A_{V}=-\frac{I_{m 1}}{I_{m 2}}=-\sqrt{\frac{\mu_{1} C_{0 x}}{\mu_{0} C_{0 x}} \times \frac{\left(\frac{W}{L}\right)_{1}}{\left(\frac{W}{L}\right)_{2}} \times \frac{I_{1}}{I_{2}}}=-\sqrt{\frac{1.34225 \times 10^{-4}}{3.835 \times 10^{-5}} \times \frac{20 / 0.5}{5.159} \times \frac{10^{-3}}{2.5 \times 10^{-4}}}=-10.118
\end{aligned}
$$

3.21. $\quad A_{r}=-\sqrt{\frac{\mu_{0} C_{o x}}{\mu_{0} C_{o x}} \frac{\left(\frac{W}{L}\right)_{1}}{\left(\frac{W}{L}\right)_{2}} \frac{I_{1}}{I_{1}-I_{0}}}$

3.22 .

out out voltage Sang $=2.2$

$$
\begin{aligned}
& I_{D_{1}}=I_{O_{2}}=1 \mathrm{nA} \\
& A_{Y}=100
\end{aligned}
$$

$$
V_{\text {OUT, min }}=\left(\frac{2 I_{D 1}}{\mu_{0} C_{o x}\left(\frac{w}{L} l_{1}\right.}\right)^{1 / 2}, V_{\text {out, max }}=V_{D D}-\left(\frac{2 I_{D 2}}{\mu_{D} C_{o x}\left(\frac{w}{L}\right)_{2}}\right)^{1 / 2}
$$

$$
\begin{aligned}
& V_{D O}-\left(\frac{2 I_{0}}{\mu_{P} C_{0 x}\left(\frac{w}{L}\right)_{2}}\right)^{1 / 2}-\left(\frac{2 I_{D}}{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}}\right)^{1 / 2}=2.2, \quad r_{0},=\frac{1}{\lambda_{1} I_{0}}=\frac{1}{0.1 \times 10^{-3}}=10 \mathrm{~K} \\
& r_{02}=\frac{1}{\lambda_{2} I_{D}}=\frac{1}{0.2 \times 10^{-3}}=5 K, r_{0}, 11 r_{02}=\frac{10^{4}}{3}, \quad \theta_{m_{1}}\left(r_{0}, \| r_{0_{2}}\right)=100 \rightarrow g_{m_{1}}=\frac{100 \times 3}{104}=0 . a^{3} \\
& 2 \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1} \times 10^{-3}=9 \times 10^{-4} \rightarrow\left(\frac{W}{L}\right)_{1}=\frac{9 \times 10^{-4}}{2 \times 1.34225 \times 10^{-4} \times 10^{-3}}=3352.5796 \\
& 3-\left(\frac{2 \times 10^{-3}}{1.314225 \times 10^{-4} \times 3352.5796}\right)^{1 / 2}-2.2=\left(\frac{2 \times 10^{-3}}{3.835 \times 10^{-5}\left(\frac{w}{L}\right)_{2}}\right)^{1 / 2} \rightarrow\left(\frac{w}{L}\right)_{2}=96.97
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{W}{L}\right)_{1}=50 / 0.5 \quad R_{D}=2 K \quad R_{S}=200 \Omega \\
& r_{0}=\frac{1}{\lambda I_{D}}=\frac{1}{0.1 \times 0.5 \times 10^{-3}}=20 \mathrm{~K}, V_{S}=R_{S} I_{D}=200 \times 0.5 \times 10^{-3}=0.1 \\
& V_{\text {THIs }}=0.723, V_{\text {OUt }}=V_{D D}-R_{D} . I_{D}=3-2 \times 10^{3} \times 0.5 \times 10^{-3}=2 \\
& V_{D S}=2-0.1=1.9 \\
& I_{D}=\frac{1}{2} \mu_{n} C_{0 x} \cdot\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& g_{n}=\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H}\right)\left(1+\lambda V_{D S}\right)=\sqrt{2 \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(1+\lambda V_{D S}\right) I_{D}} \\
& g_{m_{1}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times \frac{50}{0.5}(1+0.1 \times 0.9) \times 0.5 \times 10^{-3}}=3.8249 \times 10^{-3} \\
& \eta=\frac{0.45}{2(0.1+0.9)^{1 / 2}}=0.225 \quad G_{m}=\frac{\theta_{m 1} \cdot r_{0}}{R_{s}+\left[1+\left(1+\eta_{1}, I_{m} \cdot R_{s}\right]_{r_{0}}\right.}= \\
& G_{m}=\frac{3.8249 \times 10^{-3} \times 20 \times 10^{3}}{200+\left[1+(1+0.225) 3.8249 \times 10^{-3} \times 200\right] 20 \times 10^{3}}=1.9644 \times 10^{-3} \\
& R_{\text {out }}=\left[1_{+}\left(g_{m+} \theta_{m o}\right) r_{0}\right] R_{3}+r_{0}
\end{aligned}
$$

Seen looking down at the drain of My

$$
\begin{aligned}
& R_{\text {out }}=\left[\begin{array}{l}
\left.1+(1+0.225) 3.8249 \times 10^{-3}\right]^{2} 200+20 \times 10^{3}=20.2 \times 10^{3} \\
R_{\text {out }}, \text { total }
\end{array}=R_{\text {out }} / 1 R_{D}=1819.8274, A_{V}=-G_{m} \cdot R_{\text {out }, \text { total }}=-1.96 \times 10 \times 1819.8\right. \\
& A_{Y}=-3.57
\end{aligned}
$$

$V_{\text {out }}=V_{\text {In }}-V_{T H 1} @$ the edge of the triode region
3.24

$$
A_{Y}=-5,\left(\frac{W}{L}\right)_{1}=20 / 0.5, I_{D_{1}}=0.5 \mathrm{~mA}, V_{b}=0
$$

$$
V_{m_{1}}=2 \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{1}\left(1+\lambda V_{D S}\right) I_{D}
$$

$$
g_{m_{1}}=\sqrt{2 \times 1.34225 \times 10^{-4} \times \frac{20}{0.5}\left(1+0.1 \eta_{D S}\right) \times 0.5 \times 10^{-3}}
$$

$$
r_{01}=\frac{1}{\lambda_{N} I}=\frac{1}{0.1 \times 0.5 \times 10^{-3}}=20 \mathrm{~K}, \quad r_{0_{2}}=\frac{1}{\lambda_{\rho} I}=\frac{1}{0.2 \times 0.5 \times 10^{-3}}=10 \mathrm{~K}
$$

The key point here is that the channel length modulation effect in M_{1} Cannot be neglected because its drain-Source voltage is quite large. We take this effect into account with a dew iterations.

$$
\begin{aligned}
& V_{\text {in }}=V_{G S 1}+R_{J} I_{D} \\
& V_{D D}-R_{D} I_{D}=V_{O U T,}, V_{D D}-R_{D} I_{D}=V_{G S 1}+R_{S} I_{D}-V_{D H 1}, V_{D D}-\left(R_{S}+R_{D}\right)-I_{D}=V_{G S 1}-V_{T H 1} \\
& I_{D}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left(V_{G S I}-V_{D H 11}\right)^{2}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left[V_{D D}-\left(R_{S}+R_{D}\right) I_{D}\right]^{2}= \\
& \frac{1}{2} \times 1.34225 \times 10^{-4} \times \frac{50}{0.5}\left[3-(2000+200) I_{D}\right]^{2} \\
& I_{D}=6.71125 \times 10^{-3}\left(3-2200 I_{D}\right)^{2} \rightarrow 32482.45 I_{D}^{2}-89.5885 I_{D}+60.40125 \times 10=< \\
& I_{D 1}=1.5844 \times 10^{-3} \text { (not acceptable), } I_{D_{2}}=1.17355 \times 10^{-3} \text { (acceptable!) } \\
& V_{i n}=V_{D D}-R_{D} I_{D}+V_{T H 1}=3-2000 \times 1.17355 \times 10^{-3}+0.7=1.35280 \mathrm{~V} \\
& g_{m}=\sqrt{2 \times 1.34225 \times 10^{-4} \times \frac{50}{0.5} \times 1.17355 \times 10^{-3}}=5.8128 \times 10^{-3} \\
& G_{m}=\frac{g_{m 1}}{1+g_{m,} \cdot R_{s}}=2.6443 \times 10^{-3} \quad A_{Y}=-G_{m} R_{D}=-2.6443 \times 10^{-3} \times 2000=-5.2887
\end{aligned}
$$

First we let $V_{D s_{1}}=0$, then, we have, $g_{m_{1}}=2.31711 \times 10^{-3}$ (as $A_{v}=-\sigma$)
$R_{\text {out }}$ total $=2157.86 \Omega$

$$
\begin{aligned}
& r_{02}=\frac{1}{\mu_{0} C_{0 x}\left(\left.\frac{W}{L}\right|_{2}\left(V_{S G}-\left|V_{T H 2}\right|-V_{S D}\right)\right.}=2418.8350 \\
& 0.5 \times 10^{-3}=\mu_{P} C_{0 x}\left(\frac { W } { L } | _ { 2 } \left[\left(V_{S G}-\left|V_{T H 2}\right| \left\lvert\, V_{S D}-\frac{V_{S D}^{2}}{2}\right.\right]\right.\right. \text { by dividing these two relations } \\
& 1.2094=\frac{(3-0.8) V_{S D}-0.5 V_{S D}^{2}}{3-0.8-V_{S D}}=\frac{4.4 V_{S D}-V_{S D}^{2}}{4.4-2 V_{S D}}, V_{S D}^{2}-6.8188 V_{S D+}+5.3214=0
\end{aligned}
$$

$Y_{s 0}=0.8909$, now second iteration starts, with the aid of the value we obtain for $V_{S D}$ (or $V_{D S}$ / from the first iteration, we have:

$$
\begin{aligned}
& g_{m_{1}}=2.5489 \times 10^{-3}, R_{\text {OUt }}=1961.6020 \Omega \\
& r_{02}=2174.9182, \quad 1.087459=\frac{4.4 V_{S O}-V_{S D}^{2}}{4.4-2 V_{S D}}, V_{S D}^{2}-6.5749 V_{S O}+4.7848=0 \\
& V_{S D}=0.8336 \mathrm{~V}
\end{aligned}
$$

Third iteration starts now:
By substituting the value of Viofrom the second iteration in the relation for $g_{m,}$, we get:

$$
\begin{aligned}
& g_{m_{1}}=2.55=8 \times 10^{-3}, R_{\text {OUt }}=1956.3119, r_{02}=2168.4169 \Omega \\
& 1.0 .812=4.4 V_{S D}-V_{S D}^{2}, V_{S O}^{2}-6.5684 V_{S D}+4.77051=0 \\
& V_{S D}=0.8315^{4.4}-2 V_{S O}
\end{aligned}
$$

By doing the forth iteration:

$$
\begin{aligned}
& g_{g_{1}}=2.5560 \times 10^{-3} \\
& R_{\text {out }}=1956.1662, r_{02}=2168.2379,1.084118 \%=\frac{4.4 V_{S D}-V_{S D}^{2}}{4.4-2 V_{S D}} \\
& V_{S O-6.5682}^{2} V_{S D}+4.77012=0
\end{aligned}
$$

$$
V_{S D}=0.8315
$$

$$
\begin{aligned}
& I=\mu_{p} C_{o x}\left(\frac{W}{L}\right)_{2}\left[\left(V_{S G}-\left|V_{H H 2}\right|\right) V_{S D}-\frac{V_{S D}^{2}}{2}\right] \cdot\left(\frac{W}{L}\right)_{2}=\frac{0.5 \times 10^{-3}}{3.835 \times 10^{-5}\left[(3-0.8) 0.8315-\frac{0.8315^{2}}{2}\right]} \\
& \left(\frac{W}{L}\right)_{2}=8.7878
\end{aligned}
$$

If M_{1} is at the edge of the triode region: $V_{\text {out }}=V_{\text {in }}-V_{\text {MI }}=V_{M_{n}}-0.7$

$$
\begin{aligned}
& I_{D 1}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H 1}\right)=I_{D 2}=\mu_{p} \operatorname{Cox}\left(\frac{w}{L}\right)_{2}\left[\left(V_{D D}-\left|V_{T H 2}\right|\right)\left(V_{D D}-V_{0}\right)-\frac{\left(V_{D D}-V_{0}\right)^{2}}{2}\right] x \\
& V_{\text {out }}=\sqrt{\frac{2 \times 3.835 \times 10^{-5}}{1.34225 \times 10^{-4}} \frac{8.7878}{40}\left[2.2\left(3-V_{0}\right)-\frac{\left(3-V_{0}\right)^{2}}{2}\right]\left(1.6-0.2 V_{0}\right)} \quad \quad \quad\left(1+0.2\left(V_{00}-V_{0}\right),\right. \\
& V_{0}=0.6663, V_{\text {in }}=1.3663, g_{m_{1}}=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left(V_{G S}-V_{T H 1}\right)=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1} V_{\text {out }}= \\
& 1.34225 \times 10^{-4} \times \frac{20}{0.5} \times 0.6663=3.5773 \times 10^{-3}
\end{aligned}
$$

However, M_{2} is 10 longer in triode region because $T_{0}=0.66\left\langle V_{b}+\right| V_{\text {DH }} \mid=0.8$
Therefore, we should recalculate V_{0} with the assumption that M_{2} is saturated

$$
\begin{aligned}
& 536.9 V_{0}^{2}+32.623 V_{0}-260.9845=0, V_{\text {out }}=0.6674, V_{\text {in }}=1.3674 \\
& g_{m_{1}}=\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left(V_{G S}-V_{T H}\right)=3.5837 \times 10^{-3}, I_{O_{1}}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1} V_{0 u t}^{2}=1.196 \times 10^{-3} \\
& r_{\text {out }}=r_{0}, 1 / r_{02}=\frac{1}{\left(\lambda_{P}+\lambda_{N}\right) I}=2786.962 \Omega \\
& A_{v}=-g_{m 1} . \text { rout }=-9.9877 \\
& V_{\text {out }}=0.8, \frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{h}\right)_{1}\left(V_{G S}-V_{T H_{1}}\right)^{2}=\frac{1}{2} \mu_{p} C_{0 x}\left(\frac{w}{h}\right)_{2}\left(V_{D D}-\left|V_{T H 2}\right|^{2}\left[1+\lambda_{\rho}\left(V_{D O}-V_{0}\right)\right]\right. \\
& \begin{array}{l}
1.34225 \times 10^{-4} \times 40 \times\left(V_{95}-0.7\right)^{2}=3.835 \times 10^{-5} \times 8.7878(3-0.8)^{2}[1+0.2(3-0.8)] \\
V_{\text {in }}=1.3614
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& g_{m i}=\mu_{n} C o x\left(\frac{w}{h}\right)_{1}\left(V_{q S}-V_{n+1}\right)=3.5512 \times 10^{-3} \\
& I=\frac{1}{2} \mu_{n} C_{0 \times}\left(\frac{w}{L}\right)_{1}\left(V_{q S}-V_{n+1}\right)^{2}=1.1744 \times 10^{-3} \\
& r_{\text {out }}=\frac{1}{\left(\lambda_{p}+\lambda_{N}\right) I}=2838.2553
\end{aligned}
$$

$$
A_{v}=-g_{m}, r_{\text {out }}=-10.08
$$

M_{1} sat.

For M_{1} to enter the triode region before M_{2} is saturated, the overdrive voltage of M_{1} must be increased.

Comparing the two curves, we observe that at $V_{b}=0$ small signal voltage gain in (a) is higher than that V_{b} in (b). That is because $I_{m,}$ in (a) is higher than that in (b). However,
generally, small signal M_{1} triode voltage gain in (a) is M_{2} sat. less than that in (b), $\left\{\begin{array}{l}\left(\frac{w}{h}\right)_{1}=\frac{1.4}{0.5} \text { because when } v_{b} \\ \left(\frac{w}{h}\right)_{2}=\frac{2}{0.5} \text { sweeps all the way } \\ V_{\text {in }}=0.8938 \text { from o to } V_{D D} \text {, nowhere }\end{array}\right.$ are both devices simultaneously in the saturation region.
M_{2} Sat.
3.26.

$$
\begin{aligned}
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4}\left(\frac{W}{L}\right)_{1}^{\frac{1}{2} \mu_{n} C_{0 x}}(1-0.7)^{2} \\
& \left(\frac{W}{L}\right)_{1}=82.77 \quad V_{G S 2}=0.5+1=1.5 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4}\left(\frac{W}{L}\right)_{2}(1.5-0.7)^{2} \rightarrow\left(\frac{W}{L}\right)_{2}=11.64 \\
& \gamma_{=}=0.45 \mathrm{~V}^{-1}, V_{\text {in }}=2.5 \mathrm{~V}, V_{\text {in- }} V_{\text {out }}=1, I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA}, V_{G O 2}-V_{G S 1}=0.5 \\
& V_{\text {out }}=V_{\text {In-1 }}=2.5-1=1.5, V_{\text {GUt }}=0.5+(2.5-1.5)=1.5 V \\
& V_{T H 1}=V_{\pi H 0}+\gamma\left(\sqrt{21 f_{f} 1+V_{0}}-\sqrt{21 t_{f} 1}\right)=0.7+0.45(\sqrt{0.9+1.5}-\sqrt{0.9})=0.97022 \\
& I_{D_{1}}=I_{D_{2}}=0.5 \times 10^{-3}=\frac{1}{2} \mu_{n} C_{0 \times} S_{1}\left(V_{G S 1}-V_{H H 1}\right)^{2}=\frac{1}{2} \mu_{n} C_{0 \times} S_{2}\left(V_{G S 2}-V_{T H 2}\right)^{2} \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4} U_{1}(1-0.97)^{2}=\frac{1}{2} \times 1.34225 \times 10^{-4} S_{2}(1.5-0.7)^{2} \\
& S_{1}=\left(\frac{W}{L}\right)_{1}=8278 \\
& S_{2}=\left(\frac{w}{L}\right)_{2}=11.64 \\
& V_{\text {out }}=V_{b}-V_{\text {THe }}=1.5-0.7=0.8 \\
& V_{T H 1}=0.7+0.15(\sqrt{0.9+0.8}-\sqrt{0.9})=0.8598 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.31225 \times 10^{-4} \times 8278\left(V_{\text {in }}-0.8-0.8598\right)^{2} \\
& V_{\text {in }}=1.6897
\end{aligned}
$$

3.26.

$$
\begin{aligned}
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4}\left(\frac{W}{L}\right)_{1}^{\frac{1}{2} \mu_{n} C_{0 x}}(1-0.7)^{2} \\
& \left(\frac{W}{L}\right)_{1}=82.77 \quad V_{G S 2}=0.5+1=1.5 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4}\left(\frac{W}{L}\right)_{2}(1.5-0.7)^{2} \rightarrow\left(\frac{W}{L}\right)_{2}=11.64 \\
& \gamma=0.45 V^{-1}, V_{\text {in }}=2.5 \mathrm{~V}, V_{\text {in }} V_{\text {out }}=7, I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA}, V_{G O 2}-V_{G 31}=0.5 \\
& V_{\text {out }}=V_{\text {In-1 }}=2.5-1=1.5, V_{\text {GU2 }}=0.5+(2.5-1.5)=1.5 \mathrm{~V} \\
& V_{7 H 1}=V_{T H O}+\gamma\left(\sqrt{21 t_{f} l+V_{0}}-\sqrt{21 t_{f} l}\right)=0.7+0.45(\sqrt{0.9+1.5}-\sqrt{0.9})=0.97022
\end{aligned}
$$

$$
\begin{aligned}
& I_{D_{1}}=I_{D_{2}}=0.5 \times 10^{-3}=\frac{1}{2} \mu_{n} C_{0 \times} S_{1}\left(V_{G S 1}-V_{T+1}\right)^{2}=\frac{1}{2} \mu_{n} C_{0 \times} S_{2}\left(V_{G S 2}-V_{\pi H 2}\right)^{2} \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4} S_{1}(1-0.97)^{2}=\frac{1}{2} \times 1.34225 \times 10^{-4} S_{2}(1.5-0.7)^{2} \\
& S_{1}=\left(\frac{W}{2}\right)_{1}=8278 \\
& S_{2}=\left(\frac{W}{L}\right)_{2}=11.64
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {out }}=V_{b}-V_{\text {TH2 }}=1.5-0.7=0.8 \\
& V_{\text {TH1 }}=0.7+0.15(\sqrt{0.9+0.8}-\sqrt{0.9})=0.8598 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4} \times 8278\left(V_{\text {in }}-0.8-0.8598\right)^{2} \\
& V_{\text {in }}=1.6897
\end{aligned}
$$

3.27.

(1) In this region V_{B} is less than $V_{T H 2}$, so M_{7} and M_{2} are \&ff. It is worth mentioning that M_{2} is saturated off and M_{7} is of in triode region. (2) V_{b} is increasing above $V_{T H 2}$, as a result, a current establishes in circuit. M_{T} operates in triode region and M_{2} does in saturation. The higher V_{b}, the higher the drain-source voltage of M1. increasing the output impedance of M_{1} which, in tum. Causes the small signal voltage gain of the circuit increases.
(3) Both devices are in saturation region and the maximum gain is a ttainable in this region. The slight increase in Av is because of increasing the transconductance of M_{1} with increasing $V_{x}\left(o r V_{b}\right)$.
(4) M_{2} enters the triode region, as a result, the total output impedance decreases down to the limit of roll l R_{0}. Consequently, the small signal voltage gain experiences a similar change.
3.28

$$
\begin{aligned}
& 1.1=2 \sqrt{2 I_{D}}\left(\frac{1}{\sqrt{\mu C_{o x}}}+\frac{1}{\sqrt{\mu_{n} C_{o x}}}\right) \frac{1}{\sqrt{s}} \rightarrow S=\frac{8 I_{D}\left(\sqrt{\mu_{p D} C_{o x}}+\frac{1}{\mu_{n} C_{0 x}}\right)^{2}}{1.1^{2}} \\
& S=\frac{8 \times 0.5 \times 10^{-3}\left(\frac{1}{\sqrt{1.34225 \times 10^{-4}}}+\frac{1}{\sqrt{3.835 \times 10^{-5}}}\right)^{2}}{1.1^{2}}=202.98 \rightarrow S=203 \\
& V_{D S \text { min }, 1}=\left(\frac{2 I_{D}}{\mu_{n} C_{0 \times S}}\right)^{1 / 2}=\left(\frac{2 \times 0.5 \times 10^{-3}}{1.34225 \times 10^{-1} \times 203}\right)^{1 / 2}=0.1915 \\
& V_{S D \text { min }, 4}=\left(\frac{2 \times 0.5 \times 10^{-3}}{3.835 \times 10^{-5} \times 203}\right)^{1 / 2}=0.3584 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 1.34225 \times 10^{-4} \times 203\left(V_{b}-V_{x}-0 . z\right)^{2} \\
& V_{b_{1}}-V_{x}=0.8915 \\
& 0.5 \times 10^{-3}=\frac{1}{2} \times 3.835 \times 10^{-5} \times 203\left(V_{y}-V_{b_{2}}-0.8\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{y}-V_{b_{2}}=1.1584 \\
& V_{b_{2}}-V_{b_{1}}=0.4 \\
& \text { If } V_{x}=0.1915 \rightarrow V_{b_{1}}=1.083, V_{b_{2}}=1.483, V_{y}=2.6414
\end{aligned}
$$

$V_{S D H}=V_{D D}-Y_{Y}=0.3586$, as a result, M_{7} and M_{2} are at the edge of the triode region.

$$
\begin{aligned}
& g_{m_{1}}=\sqrt{2 \mu_{n} C_{0 x} S\left(1+\lambda V_{D S}\right) I_{D}}=\sqrt{2 \times 1.31225 \times 10^{-4} \times 203 \times 0.5 \times 10^{-3}} \\
& g_{m_{1}}=g_{m_{2}}=5.2199 \times 10^{-3} \\
& r_{0}=r_{02}=\frac{1}{0.1 \times 0.5 \times 10^{-3}}=20 \mathrm{~K} \quad r_{03}=r_{0} y=\frac{1}{0.2 \times 0.5 \times 10^{-3}}=10 \mathrm{~K} \\
& G_{m}=\frac{g_{m_{1}} \cdot r_{01} \cdot\left(1+g_{m 2} \cdot r_{02}\right)}{r_{01} \cdot r_{02} g_{m 2}+r_{0}+r_{22}}=\frac{5.2199 \times 10^{-3} \times 20 \times 10^{3}\left(20 \times 10^{5} \times 5.2199 \times 10^{-3}+1\right)}{\left(20 \times 10^{3}\right)^{2} \times 5.2199 \times 10^{-3}+2 \times 20 \times 10^{3}}
\end{aligned}
$$

$q_{m}=5.17 \times 10^{-3}$, neglecting the body effect.

$$
\begin{aligned}
& R_{\text {out }}=\left[\left(1+g_{m 2} r_{02}\right) r_{01}+r_{02}\right] 11\left[\left(1+g_{m 3} r_{03}\right) r_{01}+r_{03}\right] \\
& \left.R_{\text {out }}=\left[\left(1+5.2199 \times 10^{-3} \times 20 \times 10^{3}\right) 20 \times 10^{3}+20 \times 10^{3}\right]^{3}\left(1+2.79 \times 10^{-3} \times 10 \times 10^{3}\right) 10 \times 10^{3}+10 \times 10^{3}\right] \\
& R_{\text {out }}=262.1766 \times 10^{3}, \quad A_{V}=-G_{m} R_{\text {out }}=-5.17 \times 10^{-3} \times 262.1766 \times 10^{3} \\
& A_{V}=-1355.45 \quad \quad g_{m 3}=g_{m \gamma}=\sqrt{2 \times 3.835 \times 10^{-5} \times 203 \times 0.5 \times 10^{-3}}=2.79 \times 10^{-3}
\end{aligned}
$$

Chapter 4
Ditterential Ampliters
4.1
(a)

$$
\begin{aligned}
& A_{V} \cong-\frac{g_{m N}}{g_{m P}}=-\sqrt{\frac{\mu_{n}(w / L)_{N}}{\mu_{P}(W / L) P}} \quad \text { (4.52) } \\
& A_{V}=-\sqrt{\frac{350}{100} \times \frac{5010.5}{50 / 1}}=-\sqrt{7}=-2.65
\end{aligned}
$$

$$
\begin{equation*}
\text { (b) } \quad A_{v}=-g_{m N}\left(v_{O N} / / r_{O p}\right) \tag{4.53}
\end{equation*}
$$

$$
\begin{aligned}
& I_{D}=\frac{I_{s S}}{2}=0.5^{\mathrm{mA}} \quad \mu_{n} C_{0 x}=350 \times \frac{8.85 \times 10^{-14} \times 3.9}{9 \times 10^{-7}}=0.134 \mathrm{~mA} / \mathrm{v}^{2} \\
& g_{m_{N}}=\sqrt{2 I_{D} \mu_{n} C_{0 \times} \frac{W}{L}}=\sqrt{2 \times 0.5^{m} \times 0.134^{\mathrm{m} \times 100}}=3.66 \mathrm{~m}^{-1}
\end{aligned}
$$

$$
L_{N}=0.5 \mathrm{M} \Rightarrow \lambda_{n}=0.1 \Rightarrow r_{O N}=\frac{1}{\lambda_{n} I_{D}}=\frac{1}{0.1 \times 0.5 \mathrm{~m}}=20 \mathrm{k} \mathrm{\Omega}
$$

$$
L_{p}=1^{\mu} ; \lambda_{p}=0.2 \text { for } L=0.5^{\mu} ; \lambda \propto \frac{1}{L} \Rightarrow \lambda_{p}=0.1
$$

$$
r_{0 p}=\frac{1}{\lambda_{p} I_{D}}=\frac{1}{0.1 \times 0.5^{\mathrm{m}}}=20^{\mathrm{k} \Omega}
$$

$$
A_{V}=-g_{m N}\left(r_{O N} / / r_{O P}\right)=-3.66^{m}\left(20^{k} / / 20^{k}\right)=-36.6
$$

$\left(v_{\text {in, }} \mathrm{cm}\right)_{\text {min }}=0.4+v_{\text {Gs }}$ for both circuits

$$
v_{G S_{1}}=v_{T_{H}}+\sqrt{\frac{2 I_{D}}{\mu_{n} C_{0 x}(\omega / L) N}}=0.7+\sqrt{\frac{2 \times 0.5^{m}}{0.134^{m} \times 100}}=0.7+0.27=0.97^{v}
$$

$$
\rightarrow\left(v_{\text {in }}, \mathrm{cm}\right)_{\text {min }}=0.4+0.97=1.37^{\mathrm{V}}
$$

max eutput voltage swing:
(a) $\left(v_{\text {out } 1,2}\right)_{\text {max }}=V_{D D}-\left|V_{T H, P}\right|=3-0.8=2.2 \mathrm{~V}$

There are two constraints for $\left(V_{0 w t},-2\right)_{\text {min }}$:

$|$| $+v_{\text {out }}$ |
| :---: |
| $v_{\text {out 1 }}$ |
| $v_{\text {out }}$ |

1) M, enters triode: $\left(V_{\text {out }} \text {, } 2\right)_{\text {min }}=0.4+V_{G S 1}-V_{T H, \mathrm{I}}$

$$
=0.4+0.97-0.7=0.67^{v}
$$

2) all of $I_{s 5}$ goes through M3:

$$
\begin{aligned}
&\left(v_{\text {out ,ir }}\right)_{\text {min }}=v_{D D}-\left|v_{G S 3}\right|_{I_{D}=I_{S S}}\left|=v_{D D}-\left|v_{T H, P}\right|+\sqrt{\frac{2 I_{S S}}{\mu_{P} C_{0 \times}\left(\frac{W}{L}\right)_{3}}}\right. \\
&=3-0.8-\sqrt{\frac{2 \times 1 m}{38 . \mu^{\mu}{ }^{m}}}=3-0.8-1.02=1.18^{v} \\
& \mu_{P} C_{0 x}=100 \times \frac{8.85 \times 10_{0}^{-14} \times 3.9}{9 \times 10^{-7}}=38.3^{\mu / v^{2}} \Rightarrow\left(v_{\text {out } 1,2}\right)_{\text {min }}=1.18^{v}
\end{aligned}
$$

Max swing of $V_{\text {mut } 1,2}=2.2-1.18=1.02^{\mathrm{V}}$

Max swing of $v_{\text {out }}=2 \times 1.02=2.04^{V}$
(b) $\left(V_{\text {out }}^{1,2}\right)_{\text {max }}=V_{D D}-\left|V_{G S 3}-V_{T H, P}\right|=3-0.72=2.28^{\mathrm{V}}$

$$
\left(v_{\text {out }}, 2\right)_{\min }=0.4+v_{\text {as }}-v_{T H, n}=0.67^{\mathrm{V}}
$$

Max swing of $v_{\text {out }}=2(2.28-0.67)=3.22^{\mathrm{V}}$
$4.2 \quad I_{s s}=1 \mathrm{~mA}$
(a)

$$
\begin{aligned}
A_{v} & =-g_{m 1}\left(\frac{1}{g_{m 3}}\left\|r_{01}\right\| n_{0_{3}} \| r_{05}\right) \approx-\frac{g_{m 1}}{g_{m_{3}}}=\sqrt{\frac{\mu_{n}}{\mu_{p}} \times \frac{I_{\Delta 1}}{I_{\Delta 3}}} \\
& =\sqrt{\frac{350}{100} \cdot \frac{\frac{1}{2} I_{s S}}{0.2 \frac{I_{s 5}}{2}}}=-4.18
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left|v_{G S 5}\right|=v_{D D}-v_{b} \Rightarrow v_{b}=v_{D D}-\left|v_{G S S}\right|=v_{D D}-\left|v_{T H, P}\right|-\sqrt{\frac{2 I_{D S}}{\mu_{P} C_{O X} \frac{W}{L}}} \\
& v_{b}=3-0.8-\sqrt{\frac{2 \times 0.4^{m}}{38.3 \mu_{\times 100}}}=1.74
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \left.\quad V_{G S_{1}}\right|_{I_{D}=0.6 I_{S S}}=V_{T H, n}+\sqrt{\frac{2 \times 0.6 I_{S S}}{\mu_{n} C_{0 \times} \frac{W}{L}}}=v_{T H, n}+0.299^{v} \\
& \left|V_{G S_{3}}\right|_{I_{D}=0.2 I_{s S}}=\left|v_{T H, P}\right|+\sqrt{\frac{2 \times 0.2 I_{s S}}{\mu_{P} C_{0 \times} \frac{W}{L}}}=0.8+0.323^{v}=1.12^{v} \\
& \left(V_{\text {out } 1,2}\right)_{\text {min }}=\max (0.4+0.299,3-1.12)=1.88^{\mathrm{V}}
\end{aligned}
$$

Max swing of $\quad V_{\text {out }}=2(2.2-1.88)=0.64^{V}$
$4.2 \quad I_{s s}=1 \mathrm{~mA}$
(a)

$$
\begin{aligned}
A_{V} & =-g_{m 1}\left(\frac{1}{g_{m 3}}\left\|r_{01}\right\| n_{03} \| r_{05}\right) \approx-\frac{g_{m 1}}{g_{m_{3}}}=\sqrt{\frac{\mu_{n}}{\mu_{p}} \times \frac{I_{D 1}}{I_{D 3}}} \\
& =\sqrt{\frac{350}{100} \cdot \frac{\frac{1}{2} I_{S S}}{0.2 \frac{I_{S 5}}{2}}}=-4.18
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (b) } \quad I_{D S}=I_{D 6}=0.8\left(\frac{I_{S S}}{2}\right)=0.4 \mathrm{~mA} \\
& \left|v_{\text {GS }}\right|=v_{D D}-v_{b} \Rightarrow v_{b}=v_{D D}-\left|v_{\text {GSS }}\right|=v_{D D}-\left|v_{T H, P}\right|-\sqrt{\frac{2 I_{D S}}{\mu_{P} C_{D \times} \frac{W}{L}}} \\
& v_{b}=3-0.8-\sqrt{\frac{2 \times 0.4^{m}}{38 . \mu_{\times 100}}}=1.74
\end{aligned}
$$

(c)

$$
\begin{aligned}
&\left.V_{G S 1}\right|_{I_{D}=0.6 I_{S S}}=v_{T H, n}+\sqrt{\frac{2 \times 0.6 I_{S S}}{\mu_{n} C_{0 \times} \frac{w}{L}}}=v_{T_{H, n}}+0.299^{v} \\
&\left.\left|v_{G S_{3}}\right|\right|_{I_{D}=0.2}=\mid V_{T H} \\
&=\sqrt{\frac{2 \times 0.2 I_{S S}}{\mu_{P} C_{0 \times} \frac{N}{L}}}=0.8+0.323^{v}=1.12^{v} \\
&\left(V_{\text {out } 1,2}\right)_{\text {min }}=\max (0.4+0.299,3-1.12)=1.88^{v}
\end{aligned}
$$

Max swing of $V_{\text {eut }}=2(2.2-1.88)=0.64^{\text {V }}$

$$
4 \cdot 3
$$

(a)

(d)

Same as (a)

4. 4
(a)

(b)

(C)

4. 5

Fig. 4.35 Using half circuit we have:
(a) we detine $v_{\text {id }}=v_{\text {in }}-v_{\text {in2 }}$

$$
\begin{aligned}
A_{v}=\frac{v_{\text {out }}}{v_{\text {id }}} & =-g_{m_{1}}\left(\frac{1}{g_{m_{3}}}\left\|\frac{R_{1}}{2}\right\| r_{0_{1}} \| r_{0_{3}}\right) \\
& \approx-g_{m_{1}}\left(\frac{1}{g_{m_{3}}} \| \frac{R_{1}}{2}\right)=-\frac{g_{m_{1} R_{1}}^{2}}{2+g_{m_{3}} R_{1}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
A_{v} & =-g_{m_{1}}\left[r_{0_{1}} / /\left(R_{1} g_{m_{3}} r_{0_{3}}+R_{1}+r_{0_{3}}\right)\right] \\
& \approx-g_{m_{1}}\left(r_{0_{1}} / / R_{1} g_{m_{3}} r_{0_{3}}\right)
\end{aligned}
$$

(C)

$$
A_{v}=-g_{m_{1}}\left(r_{0_{1}} / / n_{o_{3}} / / \frac{R_{1}}{2}\right) \quad \frac{v_{i d}-1 l_{1}^{2}}{M_{1}} \frac{r_{0 d}}{2}
$$

(d)

$$
\frac{v_{\text {out }}}{2} \cdot \int_{v_{i d}}^{M_{2}} \lim _{R_{1}}^{M_{1}}
$$

(e)

$$
\begin{aligned}
& K \subset C: \quad \frac{v_{x}}{r_{01}}+\frac{v_{x}-v_{\text {out } / 2}}{R_{1}}+g_{m_{1}} \frac{v_{\text {id }}}{2}=0 . \\
& \frac{V_{\text {out } / 2}}{r_{0_{3}}}+\frac{V_{\text {out } / 2}-V_{x}}{R_{1}}+g_{m_{3}} v_{x}=0 \quad \Rightarrow v_{x}=\frac{\left(r_{03}+R_{1}\right) v_{\text {out }}}{2 r_{03}\left(1-R_{1} g_{m 3}\right)} \\
& \left(\frac{R_{1}+n_{01}}{R_{1} n_{1}} \times \frac{r_{0}+R_{1}}{r_{03}\left(1-R_{1} g_{m_{3}}\right)}-\frac{1}{R_{1}}\right) v_{\text {end }}+g_{m_{1}} v_{1} d=0 \\
& \frac{\left(R_{1}+r_{0}\right)\left(R_{1}+r_{3}\right)-r_{01} r_{03}\left(1-R_{1} g_{m_{3}}\right)}{R_{1} r_{0} r} v_{\text {out }}+g_{m_{1}} v_{1} d=0 \\
& R_{1} n_{0}, r_{0_{3}}\left(1-R_{1} g_{m}\right) \\
& \frac{R_{1}+n_{0}+r_{02}+n_{0} r_{03} g_{m 3}}{v_{01} t+g_{m_{1}} v_{1} d=0 \quad r_{0} r_{03}(1)} \\
& r_{0} r_{0}\left(1-R_{1} g_{m_{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{1} g_{m_{3}}<1
\end{aligned}
$$

Fig. 4.36
(a)

$$
\begin{aligned}
A_{v} & =-g_{m_{1}}\left(\frac{1}{g_{m_{3}}}\left\|r_{01}\right\| r_{03} \| r_{05}\right) \\
& \approx-\frac{g_{m_{1}}}{g_{m_{3}}}
\end{aligned}
$$

(b)

(c)
if we neglect $n_{0} \& r_{0}$ at the moment, we have:

$$
\begin{aligned}
I_{x} & =g_{m_{3}} v_{2} \quad g_{m_{3}}=g_{m_{4}}=g_{m_{3,4}} \\
I_{x} & =-g_{m_{4}} v_{1} \\
2 I_{x} & =-g_{m_{3,4}}\left(v_{1}-v_{2}\right)=-g_{m_{3,4}} v_{x} \\
\Rightarrow \frac{v_{x}}{I_{x}} & =-\frac{2}{g_{m 3,4}} \\
A_{v} & =-g_{m 1}\left(r_{01}\left\|r_{03}\right\| \frac{-1}{g_{m 3}}\right) \\
A_{v} & =-\frac{g_{m 1}}{\frac{1}{r_{01}}+\frac{1}{r_{03}}-g_{m 3}}\left(\frac{1}{r_{01}}+\frac{1}{r_{03}}>g_{m 3}\right)
\end{aligned}
$$

if $g_{m_{3}} \geq \frac{1}{r_{01}}+\frac{1}{r_{03}}$ then the circuit is not stable and small signal model is not valid.
4.6
(a)

(b)

Similar to what wee had in the previous problem (Fig 4.36 (c)), M_{3} gives a negative resistance at the output.

$$
\begin{aligned}
& A_{v}=-g_{m 1}\left(\frac{1}{g_{m 5}} \| \frac{-1}{g_{m 3}}\right) \quad(\lambda=\infty) \\
& A_{v}=-\frac{g_{m 1}}{g_{m 5}-g_{m 3}} \quad\left(g_{m 3} \quad \text { must be less them } g_{m 5}\right) \\
& g_{m}=\mu_{p} C_{0 x} \frac{w}{L}\left(v_{G 5}-v_{T}\right) \quad v_{G 5}{ }_{3,4}=v_{G 55,6} \\
& \Rightarrow \frac{g_{m 3,4}}{g_{m 5,6}}=\frac{(w / L)_{3,4}}{(w / L)_{5,6}}=0.8 \\
& \Rightarrow A_{v}=-\frac{5}{g_{m 5}-0.8 g_{m 5}}=-\frac{5 g_{m 1}}{g_{m 5}}
\end{aligned}
$$

4.7
(a)

$$
v_{o d_{1}}=v_{G S 1}-\left.v_{T H, n}\right|_{I_{D}=\frac{I_{S s}}{2}}
$$

(b)

$$
\begin{aligned}
A_{v} & =\frac{v_{\text {ant }}}{v_{i d}}=-g_{m_{1}}\left(\frac{R_{1}}{2} \| \frac{1}{g_{m_{3}}}\right) g_{m_{3}} g_{m_{5}}^{-1} \\
& =-\frac{g_{m_{1}}}{g_{m_{5}}\left(1+\frac{2}{R_{1} g_{m 3}}\right)}
\end{aligned}
$$

4.8

By using Superposition, we have:

$$
\begin{aligned}
& \text { (Transcenductance of } c s \text {) }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& I_{\text {out }}=I_{1}-I_{2} \\
& I_{\text {out }}=I_{2}-I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{\text {out }}=v_{\text {out }}-v_{\text {out }}=-R_{D_{1}} I_{\text {eat }}+R_{D_{2}} I_{\text {out }} \\
& v_{\text {out }}=-R_{D_{1}}\left(I_{1}-I_{2}\right)-R_{D_{2}}\left(I_{1}-I_{2}\right) \\
& v_{\text {out }}=-\left(R_{D_{1}}+R_{D_{2}}\right)\left(I_{1}-I_{2}\right) \\
& v_{\text {out }}=-\left(R_{D_{1}}+R_{D_{2}}\right)\left(G_{m_{1}} v_{\text {in }}-G_{m_{2}} v_{\text {in } 2}\right)
\end{aligned}
$$

or equivalently:

$$
v_{\text {out }}=-\left(R_{D_{1}}+R_{D_{2}}\right)\left[\left(G_{m_{1}}+G_{m_{2}}\right) \frac{v_{i n_{1}}-v_{i n_{2}}}{2}+\left(G_{m_{1}}-G_{m_{2}}\right) \frac{v_{i_{1}+} v_{i_{2}}}{2}\right]
$$

4.9

(1) $\int \frac{v_{01}}{R_{B}}+\frac{v_{01}-v_{x}}{r_{0}}+g_{m}\left(v_{\text {in }}-v_{x}\right)-g_{m_{b}} v_{1}+\frac{v_{01}-v_{x}}{R_{P}}=0$
(2) $\left\{\begin{array}{l}\frac{v_{02}}{R_{D}}+\frac{v_{02}-v_{x}}{r_{0}}+g_{m}\left(v_{i n_{2}}-v_{x}\right)-g_{m b} v_{x}=0 \\ \frac{v_{01}}{R_{D}}+\frac{v_{02}}{R_{D}}+\frac{v_{x}}{r_{03}}=0 \quad \Longrightarrow \quad v_{x}=-v_{03} \frac{v_{01}+v_{02}}{R_{D}}\end{array}\right.$
we define: $\left\{\begin{array}{l}v_{0 d}=v_{01}-v_{02} \\ v_{0 c}=\frac{v_{01}+v_{02}}{2}\end{array} \Rightarrow\left\{\begin{array}{l}v_{01}=v_{o c}+\frac{v_{0 d}}{2} \\ v_{02}=v_{0 c}-\frac{v_{0 d}}{2}\end{array}\right.\right.$
Now by substitutay n_{01}, v_{02} and v_{x} in Q and (3) we have:

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(v_{o c}+\frac{v_{0 d}}{2}\right)\left(\frac{1}{R_{D}}+\frac{1}{R_{p}}+v_{0}\right)+g_{m} v_{n_{1}}-\left(\frac{1}{R_{p}}+g_{m}+g_{m b}+\frac{1}{r_{0}}\right)\left(-\frac{2 r_{03}}{R_{D}} v_{o c}\right)=0 \\
\left(v_{o c}-\frac{v_{o d}}{2}\right)\left(\frac{1}{R_{D}}+\frac{1}{r_{0}}\right)+g_{m} v_{i n_{2}}-\left(g_{m}+g_{m b}+\frac{1}{r_{0}}\right)\left(-\frac{2 r_{03}}{R_{D}} v_{o c}\right)=0
\end{array}\right. \\
& {\left[\frac{1}{R_{D}}+\frac{1}{R_{P}}+\frac{1}{r_{0}}+\left(\frac{1}{R_{D}}+\frac{1}{r_{0}}+g_{m}+g_{m b}\right)\left(\frac{2 r_{03}}{R_{D}}\right)\right] v_{0 c}} \\
& +\frac{1}{2}\left(\frac{1}{R_{D}}+\frac{1}{R_{p}}+\frac{1}{r_{0}}\right) v_{0 d}+g_{m} v_{i n_{1}}=0 \tag{3}
\end{align*}
$$

$$
\begin{align*}
& {\left[\frac{1}{R_{D}}+\frac{1}{r_{0}}+\left(g_{m}+g_{m b}+\frac{1}{r_{0}}\right)\left(\frac{2 r_{03}}{R_{D}}\right)\right] v_{0 c}-\frac{1}{2}\left(\frac{1}{R_{0}}+\frac{1}{r_{0}}\right) v_{0} d} \\
& +g_{m} u_{\text {in } 2}=0 \tag{4}
\end{align*}
$$

From equation (3) and (4) God and V_{0} can be solved in terms of v int and $v_{\text {in z }}$.

Now if $\lambda=\gamma=0$, we have:
(5)

$$
\left\{\begin{array}{l}
\frac{v_{01}}{R_{0}}+g_{m}\left(v_{\text {in 1 }}-v_{x}\right)+\frac{v_{01}-v_{x}}{R_{p}}=0 \\
\frac{v_{02}}{R_{0}}+g_{m}\left(v_{\text {in }}-v_{x}\right)=0 \Rightarrow v_{x}=v_{\text {in } 2}+\frac{v_{02}}{g_{m} R_{D}} \\
v_{01}+v_{02}=0 \quad, v_{\text {out }}=v_{01}-v_{02} \Rightarrow v_{01}=\frac{v_{0 u t}}{2} \quad v_{02}=-\frac{v_{01}}{2}
\end{array}\right.
$$

$\stackrel{5}{5}$

$$
\frac{v_{\text {ont }}}{2 R_{D}}+g_{m} v_{\text {in }}-g_{m} v_{\text {in }_{2}}+\frac{v_{\text {ont }}}{2 R_{D}}+\frac{v_{\text {ont }}}{2 R_{p}}-\frac{v_{\text {in } 2}}{R_{p}}+\frac{v_{\text {out }}}{2 R_{p} g_{m} R_{D}}=0
$$

$$
v_{\text {out }}\left(\frac{1}{R_{D}}+\frac{1}{2 R_{p}}+\frac{1}{2 g_{m} R_{p} R_{D}}\right)=-g_{m}\left(v_{\text {in } 1}-v_{\text {in } 2}\right)+\frac{v_{\text {in } 2}}{R_{p}}
$$

$$
v_{\text {in } 2}=\frac{v_{\text {in }}+v_{\text {in } 2}}{2}-\frac{v_{\text {in } 1}-v_{\text {in } 2}}{2}
$$

$$
\Rightarrow v_{\operatorname{aut}}\left(\frac{1}{R_{\Delta}}+\frac{1}{2 R_{P}}+\frac{1}{2 g_{m} R_{\Delta} R_{P}}\right)=-\left(g_{m}+\frac{1}{2 R_{P}}\right)\left(v_{\text {in }_{1}}-v_{\text {in }_{2}}\right)+\frac{\left(v_{\text {in }_{1}+v_{\text {in }}^{2}}\right)}{2 R_{P}}
$$

$$
v_{\text {out }}=\left[-\left(g_{m}+\frac{1}{2 R_{p}}\right)\left(v_{\text {in 1 }}-v_{\text {in } 2}\right)+\frac{v_{\text {in 1 }}+v_{\text {in }}}{2 R_{p}}\right]\left(R_{D}\left\|2 R_{p}\right\| 2 g_{m} R_{D} R_{p}\right)
$$

$$
C_{M R R}=\frac{g_{m}+\frac{1}{2 R p}}{\frac{1}{R_{p}}}=\frac{2 R p g_{m}+1}{2}
$$

$$
A_{d m-d m}=-\left(g_{m}+\frac{1}{2 R_{p}}\right)\left(R_{\Delta}\left\|2 R_{p}\right\| 2 g_{m} R_{\Delta} R_{p}\right) \quad A_{c m-}=-\frac{R_{\Delta}\left\|2 R_{p} /\right\| 2 g_{m} R_{\Delta} R_{p}}{R_{p}}
$$

4.10
$\lambda=0$, so for a differential input, symmetry in the input is enough to for the tail node to be ground. in other words:

$$
\begin{aligned}
g_{m_{1}}=g_{m_{2}} \rightarrow v_{x}=0 \\
\left(v_{G_{s_{1}}}=v_{c_{5}} \rightarrow g_{m 1}=g_{m_{2}}\right. \\
\text { but } g_{m_{3}} \neq g_{m 4}
\end{aligned}
$$

For the outsets shown:

$$
\begin{gather*}
\frac{v_{\text {out }}}{R_{D}}+\frac{v_{\text {out }}}{R_{D}}+\frac{v_{i d}}{2} g_{m_{1}}-\frac{v_{i d}}{2} g_{m_{2}}=0 \Rightarrow v_{\text {out }}+v_{\text {out } 2}=0 \tag{1}\\
K_{C L}: \quad \frac{v_{\text {out }}}{R_{D}}+I-\frac{v_{i d}}{2} g_{m_{2}}=0 \quad g_{m_{1}}=g_{m_{2}} \tag{2}\\
\end{gather*}
$$

KVL: $v_{\text {out } 2}=I R_{P}+\frac{I_{1}}{g_{m_{3}}}$, but $\quad I_{1}=\frac{V_{\text {out }}}{R_{D}}$

$$
\begin{equation*}
\Rightarrow V_{\text {out }_{2}}=I R_{P}+\frac{V_{\text {out }}^{1}}{} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (2), (3) } \Rightarrow v_{\text {out }}^{2}=\left(\frac{v_{\text {id }} g_{m 1}}{2}-\frac{v_{\text {out }}}{R_{D}}\right) R_{p}+\frac{v_{\text {out }}}{R_{D} g_{m 3}} \\
& v_{\text {out }}=-v_{\text {out } 2} \Rightarrow-v_{\text {out }}\left(1+\frac{R_{P}}{R_{D}}+\frac{1}{R_{D} g_{m 3}}\right)=\frac{g_{m_{1}} R_{P}}{2} v_{\text {id }}
\end{aligned}
$$

$$
\begin{aligned}
A_{v_{d}} & =\frac{v_{\text {out }}-v_{\text {out }}}{v_{i d}}=2 \frac{v_{\text {ant }}}{v_{\text {id }}}=-\frac{g_{m_{1}} R_{P}}{1+\frac{R_{P}}{R_{D}}+\frac{1}{R_{D} g_{m_{3}}}} \\
& =-\frac{g_{m_{1}} R_{D}}{1+\frac{R_{D}}{R_{P}}+\frac{1}{R_{P} g_{m 3}}}=-\frac{g_{m_{1} R D} R_{D}}{1+\frac{1}{R_{P}}\left(R_{D}+\frac{1}{g_{m 3}}\right)}
\end{aligned}
$$

Since $\lambda=0 \Rightarrow r_{05}=\infty \Rightarrow A_{\mathrm{cm}}=0 \Rightarrow C M R R=\infty$
4. 11

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu_{P} C_{0 x} \frac{W}{L}\left[2\left(v_{G S}-v_{T H, P}\right) v_{D S}-v_{D S}^{2}\right] \cong \mu_{P} C_{0 x} \frac{W}{L}\left(v_{G S}-v_{T H, P}\right) v_{D S} \\
& R_{\text {on }}=\frac{\left|y_{D S}\right|}{I_{D}}=\frac{1}{\mu_{p} C_{0 x}\left|v_{G S}-v_{T H}\right| P \mid} \\
& \text { if Ron }=22^{k \Omega} \Rightarrow\left|V_{G s_{3}}-V_{T H, P}\right|=\frac{1}{2^{k} \times 38.3^{\mu}{ }_{\times 100}}=0.131^{V} \\
& I_{S S}=20 \mu_{A} \Rightarrow v_{G S I}=v_{T_{H, N}}+\sqrt{\frac{2 I_{D}}{\mu_{n} C_{A N} \frac{\omega}{L}}}=0.7+\sqrt{\frac{2 \times 10^{\mu}}{0.134^{m}}}=0.739^{v} \\
& v_{D D}=\left|v_{G S_{3}}\right|-v_{G S 1}+v_{i n, c m} \\
& \Rightarrow v_{\text {in, } \mathrm{cm}}=3-(0.131+0.8)+0.739=2.81^{v} \\
& \left.\left|v_{D S_{3}}\right|=R \frac{I_{S S}}{2}=2^{k} * 10^{\mu}=20^{m v} \Rightarrow\left|v_{D S}\right|<\left|v_{G_{2} S_{3}}-v_{T H}\right| P \right\rvert\, \Rightarrow M_{3} \& M_{4}
\end{aligned}
$$

are in triode

$$
v_{D_{1}}-v_{G_{1}}=\left(3-20^{m}\right)-2.81=0.17^{v}>-v_{T H, n} \Rightarrow M_{1} \& M_{2} \text { ane }
$$ in sat.

(a) $\sqrt{1_{3}}$

$$
\Delta v_{u_{1}}=\frac{10}{10+100} 3^{v}=\frac{3}{11}=0.273^{v}
$$

(b)

$$
\Delta v_{2}=\frac{9}{9+100} \times 3^{v}=0.248^{v}
$$

$$
\sqrt{4} v
$$

$$
\Delta V_{3}=\frac{10}{10+100} \times 3^{v}=0.273^{v}
$$

$$
\Rightarrow \Delta V_{23}=0.273-0.248=25 \mathrm{mv}
$$

4.13

Fig. $4.8(a) \quad I_{s s}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{3}\left(v_{\operatorname{Gss}}-v_{\text {Tu, }}\right)^{2}$

$$
V_{G S_{3}}=V_{b}=1^{V} \Rightarrow I_{s s}=0.5 \times 0.134^{m} \times 100(1-0.7)^{2}=0.603^{m A}
$$

A AV all transistors in triode

$$
\begin{aligned}
& V_{d d} \\
V_{i n, G M} & -V_{T H, n}+R_{D} \frac{I_{s s}}{2}=0.6^{v}+0.3^{m} R_{D} \\
& -g_{m,} R_{D} \\
G_{0} & \text { all transistors in sat. }
\end{aligned}
$$

M_{3} enters
saturation

$$
4.14
$$

$$
v_{B D}-v_{T H, P} \frac{1}{}
$$

$$
I_{D_{1,2}}=\frac{v_{\text {out }}, 2}{R_{p}}
$$

4.15 (a) (Lout 1,2$)_{\max }=v_{\Delta D}=3^{v}$

$$
\left(V_{\text {out }} 1,2\right)_{\text {min }}=V_{\text {in }} C M-V_{T H, N}=1.2-0.7=0.5^{V}
$$

Max swing of $v_{\text {out }}=2(3-0.5)=5^{v}$
(b) $\quad A_{v}=-g_{m} R_{D} \quad g_{m}=\sqrt{2 \mu_{n} C_{0} \times\left(\frac{W}{L}\right) I}=\sqrt{2 \times 0.134^{m} \times 100 \times \frac{0.5^{m}}{2}}=2.59^{m}$
to get max swing: $R_{D} \frac{I_{s}}{2}=\frac{\left(V_{\text {ant }}, 2\right) \max -\left(V_{\text {ant }}, 2\right)_{\min }}{2}=1.25$

$$
\Rightarrow R_{D}=5^{k \Omega} \quad \Rightarrow \quad A_{V}=-2.59^{m} \times 5^{k}=-13
$$

4.16
(a)

$$
v_{G S}-v_{T H}=\sqrt{\frac{2 I D}{\mu_{n} C_{0 \times} \frac{w}{L}}}=\sqrt{\frac{2 \times 0.5^{m}}{0.134^{m} \times 100}}=0.273^{v}
$$

(b)

$$
\begin{align*}
& \Delta I_{\Delta}=\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L}\left(v_{\text {in }}-v_{\text {in } 2}\right) \sqrt{\frac{4 I_{s s}}{\mu_{n} C_{0 \times} \frac{w}{L}}-\left(v_{\text {in } 1}-v_{\text {in- }}\right)^{2}} \\
& \Delta I_{\Delta}=\frac{1}{2} \times 0.134 \times \frac{50}{0.5} \times 50^{m} \sqrt{\frac{4 \times 11^{m}}{0.134^{m} \times \frac{50}{0.5}}-(50 \mathrm{~m})^{2}} \\
& \Delta I_{\Delta}=182 \mu_{A} \Rightarrow\left\{\begin{array}{l}
I_{D-1}=0.5^{m}+\frac{0.182^{m}}{2}=0.591^{\mathrm{m}} \\
I_{D 2}=0.5^{\mathrm{m}}-\frac{0.182^{\mathrm{m}}}{2}=0.409^{\mathrm{m}}
\end{array}\right.
\end{align*}
$$

(c)
(d) $\Delta v_{i n}=0 \Rightarrow G_{m_{0}} \doteq 3.66 \mathrm{~m}^{-1}$

$$
G_{m}=\frac{1}{2} \mu_{n} C_{0 \alpha} \frac{w}{L} \frac{\frac{4 I_{s s}}{\mu_{n} C_{n} w / L}-2 \Delta V_{i n}^{2}}{\sqrt{\frac{4 I_{s s}}{\mu_{n} C_{0 x} \frac{w}{L}}-\Delta V_{i n}^{2}}}
$$

if we define $A=\frac{4 I_{s s}}{\mu_{n} C_{0 \times} \frac{w}{L}}, \quad B=\left(\frac{G_{m}}{\frac{1}{2} \mu_{n} C_{0 n} \frac{w}{L}}\right)^{2}$

$$
\Rightarrow \quad B=\frac{\left(A-2 \Delta v_{i n}^{2}\right)^{2}}{A-\Delta v_{i n}^{2}} \quad 4 \Delta v_{i n}^{4}-(4 A-B) \Delta v_{i n}^{2}+A^{2}-A B=0
$$

$$
\Delta v_{i n}^{2}=\frac{4 A-B \pm \sqrt{(4 A-B)^{2}-16\left(A^{2}-A B\right)}}{8}
$$

taking the smaller value: $\quad \Delta V_{i n}^{2}=\frac{4 A-B-\sqrt{8 A B+B^{2}}}{8}$
So for different value of G_{m}, B can be calculated then $\Delta v_{\text {in }}$ is found.

$$
\begin{aligned}
& G_{m o \%}=0.9 \times 3.66^{m}=3.294^{m \Omega^{-1}} \Rightarrow\left|\Delta v_{\text {in }}\right|=139^{m v} 10 \% \text { drop } \\
& G_{m}{ }_{90 \%}=0.1 \times 3.66^{m}=0.366^{m \Omega^{-1}} \Rightarrow\left|\Delta v_{\text {in }}\right|=372^{\mathrm{mv} \quad 90 \% \text { drop }}
\end{aligned}
$$

4. 17
(a) $v_{\text {od }}=v_{G S}-v_{\text {TH }}=0.386 \mathrm{~V}$
(b) $\Delta I_{\Delta}=0.129 \mathrm{~mA} \quad \rightarrow \quad I_{D_{1}}=0.565 \mathrm{~mA}$

$$
I_{D_{2}}=0.435 \mathrm{~mA}
$$

(c) $\quad G_{m}=2.57 \mathrm{~m}^{-1}$
(d) $\quad \Delta v_{\text {in }}=0 \Rightarrow \quad g_{m_{0}}=2.59 \mathrm{ma}^{-1}$

$$
\begin{aligned}
& G_{10 \%}=0.9 \times G_{m_{0}}=0.9 \times 2.59^{\mathrm{m}} \Rightarrow \Delta v_{\text {in }}=197^{\mathrm{mv}} \\
& G_{m}{ }_{90 \%}=0.1 \cdot G_{m_{0}}=0.1 \times 2.59^{\mathrm{m}} \Rightarrow \Delta v_{\text {in }}=52.0^{\mathrm{mv}}
\end{aligned}
$$

For a given current, by reducing $\frac{W}{L}$, overdrine voltage
increases while germ decreases. In this case for a fixed $\Delta V_{i n}, I \Delta$ and $G m$ Change less so the circuit has a wider linear range.
4. 18
(a)

$$
v_{\text {od }}=0.386 \mathrm{v}
$$

(b) $\Delta I_{\Delta}=0.258^{\mathrm{mA}}$

$$
\left\{\begin{array}{l}
I_{\Delta_{1}}=1.13 \mathrm{~mA} \\
I_{\Delta_{2}}=0.87 \mathrm{~mA}
\end{array}\right.
$$

(C) $\quad G_{m}=5.14 \mathrm{~m} \Omega^{-1}$
(d)

$$
\begin{aligned}
& \Delta v_{\text {in }}=0 \rightarrow G_{m 0}=5.18 \mathrm{~m}^{-1} \\
& G_{m_{10 \%}}=0.9 \times 5.18^{\mathrm{m}} \Rightarrow \Delta v_{\text {in }}=197 \mathrm{mv} \\
& G_{m} 90 \%=0.1 \times 5.18^{m} \Rightarrow \Delta v_{\text {in }}=526^{m v}
\end{aligned}
$$

In this case rod and Gm have increased but the linearity range of Gam is same as (ip. 4.17)
4.19

$$
\begin{aligned}
& I_{D_{1}}=\frac{1}{2} \mu_{n} C_{0 x} \frac{W}{L}\left(v_{i n^{\prime}}-v_{T H, n}\right)^{2} \\
& I_{D 2}=\frac{1}{2} \mu_{n} e_{e x} \frac{2 W}{L}\left(v_{i n_{2}}-v_{T H, n}\right)^{2}
\end{aligned}
$$

$$
I_{D_{1}+} I_{D_{2}}=I_{s s}
$$

if $I_{D 1}=I_{D_{2}}$ then:

$$
\begin{aligned}
I_{D 1}=\frac{I_{s s}}{2} \Rightarrow v_{\text {in }} & =v_{T H, n}+\sqrt{\frac{I_{s s}}{\mu_{n} C_{0 \times} \frac{w}{L}}} \\
I_{D_{2}}=\frac{I_{s s}}{2} \Rightarrow v_{i n 2} & =v_{T H, n}+\sqrt{\frac{I_{s s}}{2 \mu_{1} C_{0 \times} \frac{w}{L}}} \\
v_{\text {in } 1}-v_{i n 2} & =\sqrt{\frac{I_{s s}}{\mu_{n} C_{0 \times} \frac{w}{L}}\left(1-\frac{1}{\sqrt{2}}\right)}
\end{aligned}
$$

If $v_{\text {in }_{1}}=v_{\text {in }_{2}} \Rightarrow I_{D_{1}}=\frac{I_{S S}}{3}, \quad I_{D_{2}}=\frac{2 I_{S S}}{3}$
4. 20

$$
\begin{aligned}
& A_{d_{m-d_{m}}}=-g_{m} R_{D} \\
& A_{c m-d m}=\frac{g_{m}}{1+2 g_{m} R_{s s}} R_{D}-\frac{g_{m}}{1+2 g_{m} R_{s s}}\left(R_{D}+\Delta R_{D}\right)
\end{aligned}
$$

or $S N R=10 \log 22000=43.4 \mathrm{~dB}$

$$
C M R R=\left|\frac{A_{d m}-d m}{A_{c m}-d m}\right|=\frac{g_{m} R_{D}}{\frac{g_{m} \Delta R_{D}}{1+2 g_{m} R_{s s}}}=\frac{1+2 g_{m} R_{s s}}{\Delta R_{D} / R_{\Delta}}
$$

$$
C M R R=1484 \quad \text { or } \quad C M R R=20 \log 1484=63.4 \mathrm{~dB}
$$

$$
4.21 \quad A_{c m-d m}=-\frac{\Delta g_{m} R_{D}}{\left(g_{m_{1}}+g_{m_{2}}\right) R_{s s}+1} \quad g_{m_{1}}+g_{m_{2}}=2 g_{m}
$$

$$
S N R=\left(\frac{A_{d_{m}-d_{m}} \times V_{i n-d m}}{A_{c m}-d_{m} \times V_{i n}-c m}\right)^{2}=\left(\frac{g_{m} R_{D}}{\left.\frac{\Delta g_{m} R_{D}}{\left(g_{m_{1}}+g_{m 2}\right) R_{S S}+1}\right)^{2}\left(\frac{10^{m}}{100^{m}}\right)^{2}}\right.
$$

$$
\begin{aligned}
& A_{c m-d m}=-\frac{g_{m}}{1+2 g_{m} R_{s s}} \Delta R_{D} \\
& S_{N R}=\frac{\left(A_{d_{m}} d_{m} \cdot v_{i n}, d_{M}\right)^{2}}{\left(A_{c m}-d_{m} \cdot v_{\text {in }, \mathrm{cm}}\right)^{2}}=\left(\frac{g_{m} R \Delta \times 10^{m}}{\frac{g_{m}}{1+2 g_{m} R_{s s}} \Delta R_{\Delta \times 100^{m}}}\right)^{2} \\
& S_{N R}=\frac{\left(1+2 g_{m} R_{s s}\right)^{2}}{\left(\frac{\Delta R}{R}\right)^{2}} \cdot\left(\frac{1}{10}\right)^{2} \\
& g_{m}=\sqrt{2 \mu_{n} C_{0 \wedge} \frac{W}{L} I_{\Delta}}=3.66^{\mathrm{m}^{-1}} \quad\left(I_{D}=0.5^{\mathrm{m}}\right) \\
& L_{s s}=0.5 \mu \mathrm{~m} \Rightarrow \lambda=0.1 \mathrm{v}^{-1} \Rightarrow R_{s s}=\frac{1}{\lambda I_{0}}=\frac{1}{0.1 \times 1 \mathrm{~m}}=10 \mathrm{k} \Omega \\
& \Rightarrow S N R=\left(\frac{1+2 \times 3.66^{m} \times 10^{k}}{0.05}\right)^{2}\left(\frac{1}{10}\right)^{2}=22000
\end{aligned}
$$

$$
\begin{aligned}
S N R & =\left(\frac{2 g_{m} R_{s s}+1}{\left.\frac{\Delta g_{m}}{g_{m}}\right)^{2} \times\left(\frac{1}{10}\right)^{2}}\right. \\
g_{m} & =\mu_{n} C_{0 \times} \frac{W^{\prime}}{L}\left(V_{G s}-V_{T H}\right) \Rightarrow \Delta g_{m}=-\mu_{n} C_{0 \times \frac{W}{L}} \Delta V_{T H} \\
\left|\Delta g_{m}\right| & =0.134^{m} \times 100 \times 1^{m v} \\
\Rightarrow S N R & \left.=\frac{\left(2 \times 3.66^{m} \times 10^{k}+1\right)^{2}}{13.4 \mu}\right)^{2}
\end{aligned}
$$

$$
\text { or } S N R=10 \log 4.1 \times 10^{6}=66.1 \mathrm{~dB}
$$

$$
C_{M R R}=\left|\frac{A_{m}-d_{m}}{A_{c m}-d_{m}}\right|=\frac{1+2 g_{m} R_{s s}}{\Delta g_{m} / g_{m}}=20300
$$

$$
\text { Or CMRR }=20 \log 20300=86.1 \mathrm{~dB}
$$

$$
\begin{aligned}
& \text { 4.22 (a) } \\
& \left(\frac{W}{L}\right)_{S S}=\frac{50}{0.5}, I_{S S}=0.5^{m A} \\
& v_{o d_{S S}}=v_{G S 3}-v_{T H}=\sqrt{\frac{2 I_{S S}}{\mu_{n} C_{0 \times}\left(\frac{W}{L}\right)_{S S}}}=0.273^{v} \\
& I_{D 1}=\frac{I_{S S}}{2}=0.25^{m A} \Rightarrow V_{0 d_{1}}=\sqrt{\frac{2 I_{D_{1}}}{\mu_{n} C_{0 \times \frac{W}{L}}}}=0.193^{\mathrm{V}} \\
& \left(v_{\text {in, cm }}\right)_{\min }=v_{G s i}+v_{o d}=0.7+0.193+0.273=1.17^{v} \\
& \left(V_{\text {in }}, c_{m}\right)_{\max }=V_{D D}-\left|V_{\text {as } 3}\right|+V_{T H, N}
\end{aligned}
$$

$$
\begin{aligned}
& \left|v_{\text {GS } 3}\right|=\left|v_{T H, P}\right|+\sqrt{\frac{2 I_{D 3}}{\mu_{P} C_{0 \times\left(\frac{w}{L}\right)_{3}}}=1.61^{\mathrm{V}}} \\
& \left(v_{\text {in }, \mathrm{cm}}\right)_{\text {max }}=3-1.61+0.7=2.09^{\mathrm{V}}
\end{aligned}
$$

(b) $v_{\text {in }}$ cm $=1.2^{2}$

4.23

This mismatch in $V_{T H}$ of M_{1} and M_{2} makes $I_{D 1}$ and I_{D} unequal: Therefore $g_{m_{1}} \neq g_{m_{2}}, g_{m_{3}} \neq g_{m_{4}}$. Using the equivalant circuit below to calculate $A_{c m-d m}$, we have:

$$
\begin{aligned}
& i_{D_{1}}=g_{m_{1}}\left(v_{\text {in, } \mathrm{Cm}_{m}}-v_{p}\right) \\
& i_{\Delta_{2}}=g_{m_{2}}\left(v_{i n_{i n}, c_{m}}-v_{p}\right) \\
& v_{\text {out }}=-\frac{\dot{i}_{D 1}}{g_{m_{3}}}=-\frac{g_{m 1}}{g_{m 3}}\left(v_{\text {in }, c_{m}}-v_{P}\right) \\
& v_{\text {out }_{2}}=-\frac{\dot{z}_{D_{2}}}{g_{m 4}}=-\frac{g_{m_{2}}}{g_{m_{4}}}\left(v_{\text {in,cm }}-v_{p}\right) \\
& \frac{g_{m_{1}}}{g_{m 3}}=\frac{\sqrt{2 I_{D 1} \mu_{n} C_{D \times}\left(\frac{W}{L}\right)_{1,2}}}{\sqrt{2 I_{D 3} \mu_{P} C_{0 \times}\left(\frac{W}{L}\right)_{3,4}}}=\sqrt{\frac{\mu_{n}\left(\frac{W}{L}\right)_{1,2}}{\mu_{P}\left(\frac{W}{L}\right)_{3,4}}} \text {, Similarly } \frac{g_{m_{2}}}{g_{m 4}}=\sqrt{\frac{\mu_{n}\left(\frac{W}{L}\right)_{1,2}}{\mu_{P}\left(\frac{W}{L}\right)_{3,4}}} \\
& \Rightarrow v_{\text {out }}=v_{\text {out }} \Rightarrow A_{c m-d_{m}}=0, C M R R=\infty
\end{aligned}
$$

$$
4.25
$$

(a) $\quad A_{V}=-g_{m_{1}}\left(r_{01} / l r_{03}\right)$

$$
\begin{aligned}
& g_{m_{1}}=3.66^{\mathrm{m} \Omega^{-1}} \quad r_{01}=\frac{1}{\lambda I_{D}}=\frac{1}{0.1 \times 05^{m}}=20^{\mathrm{k} \Omega} \\
& r_{0}=\frac{1}{\lambda I_{D}}=\frac{1}{0.2 \times 0.5^{m}}=10^{\mathrm{k} \Omega} \Rightarrow A_{v}=-3.66^{\mathrm{m}}\left(10^{\mathrm{k}} / 120^{\mathrm{k}}\right)=-24.4
\end{aligned}
$$

(b) $\quad\left(V_{\text {out } 1,2}\right)_{\text {min }}=1.5-V_{T H, n}=1.5-0.7=0.8^{2}$

$$
\begin{aligned}
\left(v_{\text {out }}, 2\right)_{\text {max }} & =v_{D D}-\left(\left|v_{G S_{3}}\right|-\left|v_{T H, P}\right|\right) \\
& =v_{D D}-\sqrt{\frac{2 I_{D}}{\mu_{P} C_{0 x}\left(\frac{w}{L}\right)_{3}}}=3-\sqrt{\frac{2 \times 0.5^{m}}{38.3^{\mu}, 100}}=2.49^{v}
\end{aligned}
$$

Max swing of $v_{\text {out }}=2(2.49-0.8)=3.38^{\mathrm{V}}$

$$
\begin{aligned}
& 4.24 \\
& P 420 \quad C M R R=\frac{1+2 g_{m} R_{S S}}{\Delta R_{D} / R_{D}} \\
& R_{D_{1}}=\frac{1}{g_{m 3}}, \quad R_{D 2}=\frac{1}{g_{m 4}} \\
& \frac{\Delta R_{D}}{R_{D}}=\frac{R_{D_{1}}-R_{D_{2}}}{R_{D_{1}}}=1-\frac{R_{D_{2}}}{R_{D_{1}}}=1-\frac{g_{m_{3}}}{g_{m_{4}}}=1-\frac{\sqrt{2 \mu_{P} C_{0 \times}\left(\frac{w}{L}\right)_{3} I_{D}}}{\sqrt{2 \mu_{P} C_{0 \times}\left(\frac{w}{L}\right)_{4} I_{D}}} \\
& \frac{\Delta R_{D}}{R_{D}}=1-\sqrt{\frac{10}{11}}=0.0465 \\
& \Rightarrow C M R R=2248 \quad \text { or } \quad C M R R=20 \log 2247=67 \mathrm{~dB}
\end{aligned}
$$

$$
\begin{align*}
& 4.2 .6 \\
& p-4.20: \quad C_{M R R}=\frac{1+2 g_{m_{1}} R_{S S}}{\Delta R_{\Delta} / R_{D}} \\
& R_{D}=\frac{1}{g_{m_{3}}}\left\|r_{01}\right\| r_{0_{3}} \| r_{05} \approx \frac{1}{g_{m_{3}}} \\
& I_{D 3}+I_{D 5}=I_{\Delta 4}+I_{D 6}=\frac{I_{S 5}}{2} \rightarrow \Delta I_{\Delta 3}=-\Delta I_{\Delta 5} \\
& I_{\Delta S}=\frac{1}{2} \mu_{P} C_{O x}\left(\frac{W}{L}\right)_{S}\left(v_{G S 5}-v_{T H, P}\right)^{2} \Rightarrow \frac{\partial I_{D S}}{\partial V_{T H, P}}=-\mu_{P} C_{O \times}\left(\frac{w}{L}\right)_{5}\left(v_{G S 5}-v_{T H, P}\right) \\
& \Delta I_{D S} \approx \mu_{P} C_{O x}\left(\frac{w}{L}\right)_{S}\left(v_{D \Delta}-v_{b}-\left|v_{T H, P}\right|-\right) \Delta v_{T H, P} \\
& g_{m_{3}}=\sqrt{2 \mu_{p} C_{0 \times(}\left(\frac{w}{L}\right)_{3} I_{D_{3}}} \quad \frac{\partial g_{m_{3}}}{\partial I_{D_{3}}}=\sqrt{\frac{\mu_{p} C_{0 \times}\left(\frac{w}{L}\right)_{3}}{2 I_{D 3}}} \\
& \Rightarrow \Delta g_{m_{3}} \approx \sqrt{\frac{\mu_{p} C_{0 x}\left(\frac{w}{u}\right)_{3}}{2 I_{D 3}}} \Delta I_{D_{3}} \tag{3}\\
& R_{\Delta}=\frac{1}{g_{m_{3}}} \frac{\partial R_{\Delta}}{\partial g_{m_{3}}}=-\frac{1}{g_{m_{3}^{2}}^{2}} \Rightarrow \frac{\Delta R_{D}}{R_{\Delta}}=-\frac{\Delta g_{m_{3}}}{g_{m_{3}}}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\Delta I_{D S}}{2 I_{D 3}}=\frac{\mu_{P} C_{D \times}\left(\frac{W}{L}\right)_{S}\left(v_{D D}-v_{b}-\left|v_{T H, P}\right|\right) \Delta v_{T H, P}}{2 I_{D 3}}=\frac{I_{D S}}{I_{D 3}} \cdot \frac{\Delta v_{T H, P}}{v_{D D}-v_{b}-\left|v_{T H, P}\right|} \\
& \text { or } \frac{\Delta R}{R_{\Delta}}=\frac{I_{D 5}}{I_{D 3}} \cdot \frac{v_{T H, P}}{V_{D D}-V_{D}-V_{T H, P} \mid} \times \frac{\Delta V_{T H, P}}{V_{T H, P}} \\
& \text { but } \frac{I_{D 5}}{I_{D 3}}=4 \\
& \Rightarrow \quad \frac{\Delta R_{D}}{R_{D}}=4 \cdot \frac{V_{T H, P}}{V_{D D}-V_{D}-\left|V_{T H, P}\right|} \cdot \frac{\Delta V_{T H, P}}{V_{T H, P}}
\end{aligned}
$$

Chapter 5 .
S. 1 (a) M1 and M_{2} are of when $V_{D D}<V_{T H 1,2}$.... At this time, $V_{x, y}=V_{D D}$ because $I_{1,2}=0$. Once $V_{D D} \geq V_{T H 1,2}, M 1$ and $M 2$ turn on. Since M1 and $M 2$ are symmetric and the $v_{g s}$ for both are the same $I_{1}=I_{2}$ and
 $v_{x}=v_{y}=v_{g s z 1}$. $V_{g s}$ is a quadratic solution as a function off $v_{D D}$ and follows the below relationship.

$$
\begin{aligned}
& V_{g S 2}= V_{D D}-I_{i} R \\
&= V_{D D}-\frac{1}{2} \mu C_{0 x} \frac{w}{L}\left(V_{g S 2}-V_{\text {th }}\right)^{2} \cdot R \\
& K=\frac{1}{2} \mu C_{0 \times} \frac{w}{L}
\end{aligned}
$$

$$
v_{D D}<v_{T H}: \quad v_{x}=v_{y}=v_{D D} .
$$

$$
v_{D D} \geq v_{T H}:
$$

$$
V_{g s}=\frac{2 V_{t n}-\frac{1}{K R}+\sqrt{\left(2 v_{t n}-\frac{1}{k R}\right)^{2}-4\left(v_{t h}^{2}-\frac{V_{v p}}{K R}\right.}}{2}
$$

(b) We have the same solution as $5.1(a)$ because if $M 1, M 2$ are symmetric and $V_{g S_{1}}=V_{g s 2}$ then $V_{x}=V_{y}$ and $I_{1}=I_{2}$, in this case, no current ever flows through R_{2}.

When $V_{D D}<V_{T h 1,2}$ no current flows through MI and M2. the only current that flows is IR through $R_{1,2}$ and $R_{2} \cdot V_{x}$ is set by the resistor divider $\quad V_{x}=V_{D D} \cdot \frac{R_{2}}{R_{1,2}+R_{2}}$ and $V_{y}=V_{D O}$ M1 and M2 turn on only when $V_{x} \geq V_{\text {th li }}$. Once M1 and ML are on, I_{1} and I_{2} are equal because they have the same Vgs. But $v_{y}>v_{x}$ because the current through $R_{1,2}$ consist of I_{2} plus I_{R} which is greater than the current thronaf $R_{1,1}$.
(d) When $V_{D D}<V_{t h_{1,2}}, I_{1}=I_{2}=0$ and $V_{x}=V_{y}=V_{D D}$

Once $V_{D D} \geq V_{\text {th }} 1,2, M 1$ and $M 2$ turn on. the R_{2} at the source of M_{2} causes $V_{g_{2}}<V_{g s 1}$. Thus $I_{2}<I_{1}$ and $V_{x}>V_{y}$. At some point, Vas: becomes so large that MI goes into triode as seen in the graph.

(c) Here when $V_{D D}>V_{t h 1,2}, V_{g S 2}>V_{g S 1}$ and $I_{1}<I_{2}$. Thus $v_{x}<V_{y}$, but because $M 2$ is diode connected, M2 never goes into triode.

5.2 (a) When $V_{D D}<V_{t h 1,2}$, all transistors are off. $v_{x}=V_{D D}$ and V_{y} is floating between $G_{N D}$ and VDDsince it is isolated. from either node.

Once $\quad V_{D D}=V_{\text {th } 1,2}$ all transistors turn on and the voltages at

nodes are as follows: $v_{x}=v_{D D}=v_{\text {th 2 }}$ and $v_{y}=v_{D D}-v_{t h 3} \cong \varnothing$ if we assume $\quad V_{\text {th }}=V_{\mathrm{H}_{3} 3} . \quad M 1$ and $M 4$

are in triode and stay in triode always as $V_{D D}>V_{\text {th }}$.

AS $V_{D D}>V_{\text {th 2 }}, V_{x}=V_{g S 2}$ and $V_{y}=V_{D D}-V_{g S 3} \approx V_{D D}-V_{g S 2}$

$$
v_{x}>v_{y}
$$

(b) when $V_{D O}<V_{t h 1,2} \quad I_{1}, I_{2}=\varnothing$ and $v_{x}=V_{y}=V_{D D}$
when $V_{D D} \geq V_{t h 1,2} \quad I_{1}=I_{2}$ because $V_{g S 1}=V_{g s}$ and therefore $v_{x}=v_{y}$. Since $v_{x} \cong v_{y}, v_{9 s_{3}}=0$ and $M 3$ is always off.

5,3 (a)

for $V_{1}: 0 \leqslant V_{1} \leqslant V_{D D} \quad M_{1}$ and M_{2} are always on: $I_{1}=I_{2}$ v_{y} and V_{x} are related as a function of R_{1}, R_{2} and V_{1}.
(1) $2 I_{1}=I_{\text {ref }}-I_{v_{1}}=I_{\text {ret }}-\frac{V_{y}-V_{1}}{R_{1}}$
(2) $\quad I_{1}=\frac{v_{x}-v_{y}}{R_{2}}-\frac{v_{y}-v_{1}}{R_{1}}$

Solving these 2 equations for V_{y}, we get

$$
v_{y}=\frac{R_{2} V_{1}+2 R_{2} v_{x}-I_{R C f}}{R_{1}+R_{2}}
$$

as v_{1} increase, $I_{1,2}$ increase and therefore v_{x} and v_{y} increase. The slope of v_{y} is greater because it is a linear combination of $v_{x}+v_{1}$, but v_{y} starts off less than v_{x} because of the constant subtraction of I ref/ $/ R_{1}+R_{2}$.

5.3 (b) When $V_{1}=0, I_{1}=I_{2} \cong I_{\text {Ret }}$ and $V_{x} \cong V_{y}, \Delta I=0$

$a_{s} V_{1}$ increases, I_{2} gradually decreases and part of Iref flows throw R_{2}. V_{x} increases and $V_{y}=V_{x}-R_{2} \Delta I$, decreases. Finally when V_{1} is large enough such that M2 turns off
 $V_{y}=V_{x}-R_{2} I_{\text {ref }}$ and both V_{x} and V_{y} are set at a constant voltage.
(c) When $V_{1}=0, I_{1}=I_{2}, V_{x} \sim V_{y}$. there maybe small Variations if $V_{D D}-R_{1} I_{1} \neq V_{g s 1,2}$.
 as V_{1} increases, I_{1} decreases and the extra current flows through M2. I2 increases.

$$
V_{y}=V_{x}+\Delta I R_{z} .
$$

Once V_{1} gers large enough, MI shits off. $v_{y}=\frac{\left(V_{D D}-v_{x}\right) R_{z}}{R_{1}+R_{1}}+v_{x}$

S.4(a) v_{x} is constant until v_{1} gets high enough that $v_{y}-v_{x}$ is greater than $V_{\text {th }} 3$.
Initially M_{1} is in triode with $V_{y}=V_{1} \frac{1}{1+g m_{1} R_{2}}$ until) MI is in saturation.
when MI in sat., $V_{y}=V_{1}-I_{R E E} R_{1}$

(b). When $V_{1}=0, M 1$ and $M 2$ are off and $M 3$ is on, but in a flipped position, source and drain switch as show below. $v_{y}=V_{D D}$ and $V_{x}=V_{1}+V_{D S 3}$ where $v_{D S_{3}}=I_{\text {REF }} / \mathrm{gm}_{3}$ As V_{1} increase, V_{x} increases in the same amount until $V_{x}=V_{\text {th }} 1,2$. Now that M1 and M2 turn on, V_{y} drops down due to $I_{1} R_{1}$ until) M3 turns off. Once M3 is off, $V_{x}=V_{g 81,2}$ and $V_{y}=V_{D D}-R_{1} I_{\text {Ref }}$,
 If at this point, $V_{+h_{3}}<V_{y}-V_{x}$, M3 will turnon to increase the current through M_{2} and hence $M 1$ so $V_{y}=V_{D D}-R_{1}\left(I_{\text {ref }}+2 I_{3}\right)$
$1 \begin{aligned} & M 1, M 2 \text { on } \\ & M 3 \text { turning off }\end{aligned}$
and then possibly on 1
 direction

When $I_{r e f}=0$, current I_{1} and I_{2} are supplied by $V_{D D}$ through R_{1}
The initial points can be solved with

$$
\begin{align*}
& I_{1,2}=\frac{1}{2} \mu C_{0} \times \frac{w}{L}\left(V_{g S 1,2}-v_{+4}\right)^{2} \tag{1}\\
& V_{g S, 1}=V_{D D}-\left(2 R_{1}+R_{2}\right) I_{1,2} \tag{2}
\end{align*}
$$

where $v_{x}=V_{g} 2_{11}$

$$
V_{y}=V_{x}+\frac{V_{D D}-V_{x}}{2 R_{1}+R_{2}} R_{2} .
$$

As Iref increases, I_{2} increases and hence $V_{g_{2}}=v_{g g_{1}}=v_{x}$ increases.
Following KCL, we can find V_{y} as a function of v_{x}, Iref

$$
V_{y}=V_{D D} \frac{R_{2}}{2 R_{1}+R_{2}}-\frac{I_{\text {ret }} R_{1} R_{2}}{2 R_{1}+R_{2}}+\frac{2 R_{1} V_{x}}{2 R_{1}+R_{2}}
$$

5.5(b) Initially when Iref $=0$, this ckt is on with the follow condition $I_{1}=I_{2}=I_{3}$ since all transistors are assumed equal and all on.

$$
\begin{align*}
& I_{1-3}=\frac{1}{2} \mu C_{0 x} \frac{\omega}{L}\left(V_{g S 1-3}-V_{t h}\right)^{2} \tag{1}\\
& 2 V_{g S 1-3}=V_{D D}-R_{1} I_{1-3} \tag{2}
\end{align*}
$$

where $V_{x}=V_{g S 1-3}$ and $V_{y}=2 V_{g S 1-3}$.

Once Iref increase, $V_{g 1,2}$ goes up and V_{y} drops down, decreasing $V_{g s 3}$ until M3 turns off. Then M1 and M2 act as
 a typical current mimer for Inf. Then when Tref get so large, the $I_{\text {ReF }} R_{1}$ drop increases to a point when MI goes into triode and cant sustain the Iref current.
(c) At Iref $=0$, all transistors are in saturation mode with $V_{x}=V_{y}$. Once Iret turns on, M1 goes into triode and then M4 goes in to triode also

$$
v_{x}=V_{g S 2} \text { and } v_{y}=v_{D D}-v_{g S 3} \approx v_{D D}-v_{g \rho 2}
$$

5.6 (a) Fret

Iout follows Iref for all. Iref until $v_{x}>V_{D D}$. Even if $M 1$ and M2 go into triode, they shill generate similar currents since V_{A} and V_{B} match.
As Iref increase, $V_{A, B}$ decrease since $V_{g S} 4,3$ increases and V_{x} increases since $V_{g s 1,2}$ also increase.
Once $V_{X}>V_{D D}, M_{3}$ goes into triad and reduces Tout w.r.t. Iref.
(b) If V_{b} is less than $1 \mathrm{Vgs}_{s}$ for $I_{\text {REF }}$ current, V_{x} goes up to a very large voltage to allow for I REF to flow through M_{2} and M_{4} if we assume channel resistance.

$$
I=\frac{1}{2} \mu\left({ }_{o x} \frac{w}{L}\left(V_{g s}-V_{+h}\right)\left(1+\lambda V_{D s}\right)\right.
$$

Once $V_{b}=1 V_{g s}, V_{A}$ and V_{B} are ϕV and Int = Tref. As V_{b} increases, V_{A} and V_{B} increase to turn $M 1$ and $M 2$ on. V_{x} is then equal to 1 Vgs . As V_{B} increase further, $M 3$ and $M 4$ oo into triode while MI and M2 are still in sat.

5.7 (a) $\gamma=0$

$$
\begin{aligned}
& K_{0}=\frac{1}{2} \mu \operatorname{Cox} \\
& I_{\text {REF }}=K_{0} \frac{w_{0}}{L_{0}}\left(V_{\text {gS }}-V_{\text {th }}\right)^{2}\left(1+\lambda V_{D S 1}\right) \\
& I_{\text {Bht }}=k_{0} \frac{W_{0}}{L_{0}}\left(V_{\text {gS 1 }}-V_{\text {th }}\right)^{2}\left(1+\lambda V_{D S 2}\right)
\end{aligned}
$$

where $V_{D S 1}=V_{g S 1}$ and $V_{D S 2}=2 V_{g s 1}-V_{g S 4}-V_{g s 3}$ if we assume $I_{\text {out }} \sim I_{\text {REF }}, V_{g s 3} \approx V_{g S 1}$, so $V_{b s 2}=V_{g s 1}-V_{g s t}$

$$
\begin{aligned}
& V_{\text {OS }}=V_{\text {th }}+\sqrt{\frac{I_{R E F}}{K_{0}} \frac{L_{0}^{\prime}}{W_{0}}} \quad V_{g S 4}=V_{\text {th }}+\sqrt{\frac{I_{1}}{K_{0}} \frac{L_{4}}{W_{4}}} \quad L^{\prime}=L-2 L_{D} \\
& \frac{I_{\text {out }}}{I_{\text {REF }}}=\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}=\frac{1+\lambda\left(\sqrt{\frac{I_{R E F L}}{K_{0} W_{0}}}-\sqrt{\frac{I_{1} L_{4}^{\prime}}{K_{0} W_{4}}}\right)}{1+\lambda\left(V_{\text {th }}+\sqrt{\frac{I_{L E F}}{K_{0}} \frac{L_{0}}{W_{0}}}\right.} \\
& \gamma \neq 0
\end{aligned}
$$

(b) $\gamma \neq 0$

$$
\begin{array}{ll}
V_{\text {th }}=V_{\text {tho }}+\gamma\left(\sqrt{2 \phi_{f}+V_{S B}}-\sqrt{2 \phi_{f}}\right) \quad & \not f_{f} \simeq .45 v \text { (work func.) } \\
V_{S B} \equiv \text { source -substrate valt }
\end{array}
$$

Find $v_{g s 1}, V_{g s e} V_{g s} 4$ and $V_{g s 3}$

$$
\begin{aligned}
& V_{\text {gS }}=V_{\text {tho }}+\sqrt{\frac{I_{\text {EFF }}}{K_{0}} \frac{L_{0}}{W_{0}}} \\
& V_{\text {gS }}=V_{\text {tho }}+\sqrt{\frac{I_{\text {REF }}}{K_{0}} \frac{L_{0}}{W_{0}}}+\gamma\left(\sqrt{2 \phi_{f}+V_{G S 1}}-\sqrt{2 \phi_{f}}\right) \\
& V_{\text {gS } 3}=V_{t_{h_{0}}}+\sqrt{\frac{I_{0 h t}}{K_{0}} \frac{L_{0}}{W_{0}}}+\gamma\left(\sqrt{2 \phi_{f}+V_{D S 2}}-\sqrt{2 \phi_{f}}\right)
\end{aligned}
$$

if we assume Iout $\sim I_{\text {REF }}$ and $V_{D S 2} \sim \sqrt{\frac{I_{\text {REF }}}{K_{0}} L_{W_{0}}}-\sqrt{\frac{I_{1} L_{1}}{K_{0} W_{4}}}$
we can estimate Vgs3

$$
V_{g S 3} \cong V_{t n_{0}}+\sqrt{\frac{I_{\text {LEE }}}{k_{1}} \frac{L_{0}^{\prime}}{W_{0}}}+\gamma\left(\sqrt{2 \phi_{f}+\sqrt{\frac{I_{R E F_{0}^{\prime}}}{k_{0} w_{0}}}-\sqrt{\frac{I_{1} L_{4}^{\prime}}{k_{0} W_{4}}}}-\sqrt{2 \phi_{f}}\right)
$$

Now we can plug every thing in to the final solution

$$
\frac{I_{\text {out }}}{I_{\text {ret }}} \simeq \frac{1+\lambda\left(V_{g s 1}+V_{g s 0}-V_{g s 4}-V_{g s 3}\right)}{1+\lambda\left(V_{g s 1}\right)}
$$

5.8 (a)

G is continuously charged w / Tref so V_{c} and V_{x} increase with time

$$
\begin{aligned}
& v_{c}=\int_{0}^{t} \frac{I_{\text {REF }}}{c_{1}} d t \\
& v_{x}=V_{c}+v_{g S 2}
\end{aligned}
$$

$V_{g s .}=V_{x}$ and M_{1} goes into triode
(b)

$M 2$ is on with fixed $V_{x}=V_{\text {gs 2 }}$ G_{1} is charged with current I_{1} until mi turns off.
$V_{y}=V_{n n}-I_{1} R_{1}$ where
I_{1} goes from $I_{\text {rect }}$ to $\varnothing A$.
(C)

With G_{1} initially charged w / v_{0}, M_{2} is on and discharges C_{1} until $V_{x}=V_{\text {th }}$ and $I_{2}=0$. $V_{y}=V_{D D}-R_{1} I_{2}$ and as I_{2} goes to ϕ, V_{y} goes to $V_{D D}$.
5.8 (d)

(c)

M2 and M1 are initially both on, MI discharges all the charge in G such that $v_{y}>0$ and MI turns off. Since current through MI reduces, current through $M 2$ increases and V_{x} increases slightly

Since $M 2$ can sustain no current, v_{x} goes up to V_{00}. this pushes MI into triode and Drops v_{y} to very small voltage. The Voltage accross G drops to $V_{\text {th }}$ to sustain $I_{2}=0$.
5.9 (a) At $t=0$, when C_{1} is charged to $O V, V_{x}=V_{B}-V_{g S 3}$ where the $I_{3}=$ ref and $V_{y}=V_{D D}-$ RIVes. As the current flows into C_{1}, the capcharges up and shuts off $M 1$. V_{x} is charged up to $V_{b}-V_{\text {th }}$ to sustain $I_{m}=0$
 and $V_{y}=v_{D D}$
5.9 (b) $A_{t} t=0, v_{x}$ is so high that M_{3} is off, Current for MI and M2 is generated by Irct and as I_{1} flows through $M 1, C_{1}$ discharges enough to allow Current flow throw M3. Once $I_{3}=I_{\text {REF }}, G_{1}$ no longer discharges and has a constant
 set voltage.
(C) At $t=0$, all transistors are on. $V_{y}=V_{g_{s} 2}+V_{D D}$ and V_{x} is such that $I_{3}=\dot{k}_{0} \cdot \frac{w_{3}}{L_{3}}\left(V_{b}-V_{x}-V_{t h}\right)^{2} \cdot\left(1+\lambda V_{\text {bS }}\right)$. as C_{1} discharges, $V_{D S 3}$ decreases and $V_{g s} 3$ increases, lowering V_{x}. At the point where $V_{b}-V_{x}=V_{\text {th }}$ and $I_{3}=I=0$, V_{y} stops decresing.

S.10 (a) at $t=0, v_{g s 2}=3 \mathrm{~V}$ and forces current through M2. since the source of $M 2$ is attached to the gate of $M 1$, no current can flow and $V_{X}=V_{D D}$ G charges up such that $I_{3}=I_{1}$ and $V_{y}=V_{D D}-V_{G p 3}$

(b) Similar to $5.10(a)$, but since current can flow through C_{1} to charge Capacitor. V_{x} cloes n't instantaneously reach $V_{D D}$, but slowly charges to $V_{D D}$. $v_{y}=v_{D D}-v_{g} 3$ also.

5.11 small signal model.

$$
z_{\text {in }}=\frac{v_{\text {in }}}{i_{\text {in }}}=\frac{v_{\text {in }}}{g m_{2} v_{1}} \quad v_{1}=-g m_{1}\left(\frac{1}{c_{1}+g m_{3}}\right) v_{\text {in }}
$$

$$
=-\frac{c_{1} s+g m_{3}}{g m_{2} g m_{1}} \quad \text { if all transistors are equal }
$$

$$
z_{i n}=-\frac{G_{s}}{g m^{2}}-\frac{1}{g m}
$$

$$
g m_{1}=g m_{2}=g m_{3} .
$$

negative $C=-\frac{C_{1}}{g m^{2}}$ and negative $R=-\frac{1}{g m}$.
5.12 (a)

Solve for gain by super position

$$
v_{\text {in }}=\Delta V=\frac{\Delta V}{2}-\left(-\frac{\Delta V}{2}\right)=v_{\text {in }}+v_{\text {in } 2}
$$

1. for $+\frac{\Delta V}{2}$, ground $M 2$ gate and find gain.

$$
\frac{v_{\text {out }}}{v_{\text {in 1 }}}=+g m_{1}\left(\frac{1}{g m_{3}} \| R_{0}\right) g m_{4} R_{\text {ont }}
$$

2. for $-\frac{\Delta V}{2}$

$$
v_{\text {out }}=-g_{m_{2}} v_{\text {In 2 }} \text { Rout. }
$$

assume $g m_{1}=g m_{2}$ and $g m_{3}=g m_{4}$

$$
\text { Gain }=\frac{v_{\text {out }}+v_{\text {but }}}{\Delta V}=\frac{g m_{1}}{2} \text { Rout }\left[1+\frac{R_{g m_{3}}}{1+R_{g m_{3}}}\right]
$$

(b) for $v_{\text {in }}=+\frac{\Delta v}{2}$

$$
\frac{v_{\text {out }}}{v_{\text {in l }}}=g m_{1} R_{\text {out }}\left[\frac{R_{g m_{3}}-1}{R_{\text {gm }}^{3}+2 R_{\text {out }}+1}\right]
$$

for $v_{\operatorname{in} 2}=-\frac{\Delta V}{2}$

$$
\begin{aligned}
& v_{\text {out } 2}=\left(g m_{2} v_{\text {in } 2}-g m_{4} v_{\text {ont }} \frac{2 r_{\text {on }}}{R+2 r_{\text {on }}+2 g m_{3} r_{\text {on }} R}\right)\left[R_{\text {out }} \|\left(R+2 r_{\text {on }} \| \frac{1}{g m_{3}}\right)\right] \\
& \frac{v_{\text {out }}}{v_{\text {in } 2}}=\frac{-g m_{2}\left[R_{\text {out }} \|\left(R+2 r_{\text {on }} \| \frac{1}{g m_{3}}\right)\right]}{1+\frac{g m_{4} 2 r_{\text {on }}}{R+r_{\text {on }}+2 g m_{3} r_{\text {on }} R} \cdot\left[R_{\text {out }} \|\left(R+2 r_{\text {on }} \| \frac{1}{g m_{3}}\right)\right]}
\end{aligned}
$$

$$
G_{\text {ain }}=\frac{v_{\text {ont }}+v_{\text {out 2 }}}{\Delta v}
$$

5.13

$$
\begin{aligned}
v_{\text {min }} & =v_{p}+v_{D S a t 1,2} \quad v_{p}=v_{C M 1,2}-v_{g S 1,2} \\
& =v_{C m 1,2}-v_{g S 1,2}+v_{D S} 1,2
\end{aligned}
$$

$5.14(n)$

M_{3} and M4 are mitially off. M1 is on and M_{2} is in triode. the current through MI initially comes from the C_{1} charge until) v_{x} drops in voltage and M3 and M4 turn on. M2 is shill in triode until the current from $M 4$ charges up V_{y} to the same voltage as V_{x}.
(b)

V_{x} stars at $1.5 \mathrm{~V}-V_{g} \$ 1,2$ where M_{1} is in triode and M3 is on strong. M4 and M2 cant sustain that high current $w 1$ tall current $=$ Iss so V_{y} goes up enough to put M4 in triode and reduce current current through MS M3 charge a and v_{y} reduced its voltage of discharge in parasitics
(c) \qquad Initial short between source 4 drain of $M 2$ puts $M 2$ intriock w/ minimal current flow. Current from $m 4$ is used to charge up C_{1} as C_{1} charges up, some current starts flowing through M2 until $V_{D S} 2$ is high enough that M_{2} is in sat and. all current is diverted to M2
S. 15 initial value $\Rightarrow v_{\text {in }}=v_{1} \quad v_{\text {out }}=v_{x}$

$\Delta V_{\text {out }}=g m_{1} \Delta V_{\text {in }} \frac{1}{g m_{3}} g m_{4} R_{\text {out }} \quad$ (final)
final value $\Rightarrow \quad v_{\text {in }}=V_{1}-\Delta v_{\text {in }} \quad v_{\text {out }}=V_{x}-\Delta v_{\text {out }}$

$$
\tau_{C}=R_{\text {out }} C_{L}
$$

5.16

$$
\begin{aligned}
\frac{\omega}{L}=\frac{50 \mu}{15} \mu ; \lambda=0 ; \quad I=.5 m A \quad ; & K_{P}=\mu C_{2 x}=137 \times 10^{-4} \frac{c}{V} \\
L_{D} & =90 \mathrm{~nm}
\end{aligned}
$$

a) R_{2} / R_{1}

$$
\begin{aligned}
& V_{\text {gS 1 }}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}}=\sqrt{\frac{2 I}{K_{p} \frac{W^{\prime}}{L}}}+V_{\text {th }} \quad L^{\prime}=L-2 L_{D} \\
& \text { Let } R x=R_{2} / R_{1} \\
& R_{x}=\frac{\sqrt{2 I / K_{p}^{W} / L^{\prime}}+V_{t h}}{V_{D D}-\left(\sqrt{2 I / K_{p}^{W} L_{L}}+V_{t h}\right)}=0.4386
\end{aligned}
$$

b)

$$
\begin{aligned}
I_{0} & =\frac{1}{2} \mu \operatorname{Cox}^{\frac{\omega}{L}}\left(V_{D D} \frac{R_{x}}{1+R_{x}}-V_{t h}\right)^{2} \\
\frac{\left(\frac{\partial I_{0}}{\partial V_{D D}}\right)}{I_{0}} & =\frac{\mu C_{0 x} \frac{\omega}{L}\left(V_{D D} \frac{R_{x}}{1+R_{x}}-V_{t h}\right) \frac{R_{x}}{1+R_{x}}}{\frac{1}{2} \mu C_{x x} \frac{\omega}{L}\left(V_{D D} \frac{R_{x}}{1+R_{x}}-V_{t h}\right)^{2}} \\
& =\frac{2}{V_{D D}-V_{t h}\left(1+\frac{1}{R_{x}}\right)}=2.84
\end{aligned}
$$

5.16 (c) $\frac{\partial I_{0}}{\partial V_{t h}}=-\mu \operatorname{cox} \frac{\omega}{L}\left(V_{D D} \frac{R_{x}}{1+R_{x}}-V_{t h}\right)$

$$
\begin{aligned}
& \Delta I_{0} \simeq-\mu C_{0 x} \frac{\omega}{L}\left(V_{D D} \frac{R_{x}}{1+R_{x}}-V_{\text {th }}\right) \Delta V_{\text {th }}=-233 \mu \mathrm{~A} \\
& \Delta I_{0}=I_{0}\left(V_{\text {th }}=.75\right)-I_{0}\left(V_{\text {th }}=.7\right)=-205_{\mu \mathrm{A}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{\partial I_{0}}{\partial T}=-\frac{3}{2}\left(\frac{T}{T_{0}}\right)^{-3 / 2} \cdot \frac{1}{T} \cdot I_{0} * T=T_{0}+\Delta T \\
& \Delta I_{0} \approx-\frac{3}{2}\left(\frac{T}{T_{0}}\right)^{-3 / 2} \frac{1}{T} \cdot I_{0} \Delta T \quad=-103 \mu \mathrm{~A} * \\
& \Delta I_{0} \approx I_{0}(T=3 t 0 \mathrm{~K})-I_{0}(T=300 \mathrm{~K})=-135 \mu \mathrm{~A}
\end{aligned}
$$

(e) $\Delta I_{\text {worst-case }}=I_{\text {worst case }}-I_{0}$

$$
\begin{aligned}
I_{\text {worst case }} & =\frac{1}{2} \mu_{0}\left(\frac{T_{0}+\Delta T}{T_{0}}\right)^{-3 / 2}\left(\left(V_{d d}-\Delta V_{d d}\right) \frac{R_{x}}{1+R_{x}}-\left(V_{+h^{+}} \Delta V_{+h}\right)\right. \\
& =43 \mu \mathrm{~A} \\
\Delta I_{\text {worst case }} & =-457 \mu \mathrm{~A}
\end{aligned}
$$

* Note as temperature changes, so does $V_{\text {th }}$. In this calculation, we do not include the temperature effects on threshold voltage.

(a)

$$
\begin{aligned}
& \lambda=0 \\
& \pm=\frac{1}{2} k_{p} \frac{\omega}{l-2 L_{0}}\left(v_{g s}-v_{+}\right)^{2} \\
& v_{1}=V_{D D}-V_{g S(P)}=V_{D D}-V_{+p}-\sqrt{\frac{22 \cdot I_{R C}}{k_{p} \frac{D}{L-2 L_{D}}}}=1.619 \mathrm{~V} \\
& V_{2}=V_{3}=V_{D D}-V_{g S}(3)=V_{D D}-V_{D D}-\sqrt{\frac{I_{r e f}}{k_{p} \frac{\omega}{L-U_{0}}}}=1.909 \mathrm{~V} \\
& v_{p}=v_{c m}-v_{p s(1)}=1.3-v_{t h}-\sqrt{\frac{2.5 \cdot I_{r f f}}{k_{n} w}}=.3747 v \quad(\gamma=0)
\end{aligned}
$$

v_{p} for $\gamma=.45$ is found iteratively by finding $v_{\text {th }}$ iteratively also.

$$
\begin{aligned}
v_{\text {tn }}\left(v_{p}=.3747\right) & =v_{\text {to }}+\gamma \sqrt{2 \phi+V_{S B}}-\gamma \sqrt{2 \phi} \quad \gamma=.45, \phi=.45 \\
& =.78 \\
v_{p}\left(v_{t n}=.78\right) & =.29 \text { until } \quad v_{t n}(\text { final })=.767 \\
& v_{p}(\text { final })=.307
\end{aligned}
$$

5,18 (b) $\lambda=, 2$
for I_{+}, initially assume $v_{p}=.307$ from $p a n t[a)$
iterate with

$$
\left\{\begin{aligned}
& I_{+}=I_{\text {Ref }} \cdot 5 \cdot \frac{1+\lambda V_{p}}{1+\lambda V_{g(0)}} \\
& \text { and } \\
& V_{p}=V_{C M 1,2}-V_{g S}(1,2) \text { with } V_{t n 1,2}=V_{t_{0}}+\gamma \sqrt{2 \phi+V_{p}}-\gamma \sqrt{2 \phi} \\
& I_{+}=448 \mu A \text { and } V_{p}=0,317
\end{aligned}\right.
$$

for V_{1}, terale also

$$
\left\{\begin{array}{l}
I_{1}=I_{R C f} \cdot 2 \cdot \frac{1+\lambda V_{1}}{1+\lambda V_{g S}(0)} \\
V_{1}=V_{D D}-V_{g g p} \left\lvert\,=V_{D D}-V_{t p}-\sqrt{\frac{2 \cdot I_{1}}{K+\frac{w}{1 \cdot 2 L_{D}}}}\right.
\end{array}\right.
$$

final $I_{1}=222 \mu \mathrm{~A}, \quad V_{1}=1.59 \mathrm{~V}$
for v_{2}, v_{3}, Hecate also.

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{+a}=I_{t / 2}-I_{+b} \\
V_{2,3}=V_{D D}-\left|V_{g S, 6}\right|=V_{D D}-V_{t p}-\sqrt{\frac{2 \cdot I_{+a}}{k_{P} \frac{w}{L-2 L_{D}}}} \\
I_{+b}=I_{1} \cdot \frac{1+\lambda\left|V_{g S 3,6}\right|}{1+\lambda\left|V_{g S p}\right|}
\end{array}\right. \\
& I_{t_{a}}=17.3 \mu \mathrm{~A} ; I_{+b}=207 \mu \mathrm{MA} ; V_{2,3}=2.029 \mathrm{~V}
\end{aligned}
$$

$5.19 \quad V_{\rightarrow p}<V_{t p} \therefore M 2$ and M3 off, $I_{3}=0, V_{\text {out }}=0$
$v_{t p} \leq V_{D g}<V_{D S a t+1}+V_{g S 2}: M_{1}$ in triode, linearly approaching saturation. M2 and M3 are on with Vout increasing linearly.
$V_{D D}>V_{D S a t 1}+V_{g D 2}$: All transistors are on and as $V_{D D}$ increases, VDSI increases so current increases as

$$
\lambda V_{D S 1} \cdot I_{0}
$$

S.20 $\quad \gamma=0 \quad\left(\frac{W}{L}\right)_{1-3}=\frac{40}{5} \quad I_{r e f}=13 \mathrm{~mA} \quad K_{n}=138 \frac{\mu A}{V^{2}} \quad L_{D}=80 \mathrm{~nm}$
(a) $\begin{aligned} v_{b} & =2 V_{g s 1} \\ v_{b} & =1.78 \mathrm{v}\end{aligned} \quad V_{g s 1}=v_{t n}+\sqrt{\frac{2 I_{\text {vet }}}{k_{n} \frac{V}{L-2 L_{D}}}}=.892 \mathrm{v}$
$V_{b}=1.78 v$
(b) $I_{\text {out }}=I_{\text {Ret }} \cdot \frac{\left(1+\lambda\left(V_{g s 1}+\Delta V_{b}\right)\right)}{1+\lambda V_{\text {ck }}}=295 \mu \mathrm{~A} \quad \Delta V_{b}=-.100^{\mathrm{V}}$

$$
\Delta I_{\text {out }}=\frac{I_{\text {kef }} \cdot \lambda \Delta V_{b}}{1+\lambda V_{\text {St }}}
$$

5.20 (c) $\quad v_{p}$ increases by $1 V$
v_{y} increases by Δx
solve for 2 unknowns and 2 equations

$$
\left\{\begin{array}{l}
I_{\text {ont }}=I_{r e f}\left(\frac{1+\lambda\left(V_{g s 1}-\Delta x\right)}{1+\lambda V_{g s 1}}\right) \quad \text { (Hz) } \\
I_{\text {ont }}=\frac{1}{2} k_{n} \frac{n}{L-2 L_{D}}\left(V_{g s 1}-\Delta x\right)^{2}\left(\frac{1+\lambda\left(V_{g s 1}+\mid v-\Delta x\right)}{1+\lambda V_{g s 1}}\right) \text { eq } \\
\Delta x=13_{m V} \\
v_{y}=v_{g s 1}+\Delta x=.905 v
\end{array}\right.
$$

5.21 (a) $\quad V_{x}=V_{g S 1}=V_{t n}+V_{\text {DSat }}=.863$

$$
\begin{aligned}
& V_{\text {saGe }}=\sqrt{\frac{2 I_{\text {er }}}{k_{n} \frac{W}{L-2 L_{D}}}}=.163 \cdot V_{t n}=.7 \mathrm{~V} \\
& V_{b} \geq V_{\text {lsat } 1}+V_{g s 2} \\
& \begin{aligned}
V_{g S 2} & =V_{\text {tn }}+\gamma \sqrt{2 \phi+V_{\text {DSat1 }}}-\gamma \sqrt{2 \phi}+\sqrt{\frac{2 I_{\text {ReF }}}{k_{n} \frac{N}{L-L L_{D}}}} \\
& =.7+.637+.163=.900 \mathrm{v}
\end{aligned}
\end{aligned}
$$

as V_{b} increases, M^{2} and $M 4$ go into triode and $V_{A} \sim V_{X}$ and $V_{B} \sim V_{M 4}$,drain. As fond as $V_{M 4}$, drains does not drop Below $V_{D s a t-1, ~ f o u t ~ w i l l ~ r e a s o n a b l y ~ f o l l o w ~ I r e f . ~}^{\text {I }}$
b) $V_{n 4}$, drain $\uparrow \mathrm{V}, V_{B} \uparrow \Delta x$
use eq 1. and 2. from 5.20 to solve for change in current.

$$
I_{\text {out }}=301.1 \mathrm{AA} \quad \Delta x=21 \mathrm{mV}
$$

5.22 Assume $\lambda=0$ for bias purpose and $\lambda=.2$ for small signal analysis.
(a) $D C$ Bias

Small signal: Gain $=\frac{v_{\text {out }}}{v_{i 1}-v_{i 0}}=\frac{1}{2} g m_{1,2}$ Rout $=21.2$

$$
\text { Rout }=r_{o p} \|\left(2 r_{o n}+\frac{1}{g m_{1}}\right) \simeq \frac{2}{3} r_{0}=13.33 \mathrm{~K}
$$

(b) Maximum output voltage swing.

$$
\begin{aligned}
V_{\text {out }}(\text { min }) & =V_{c m}-V_{\text {gs } 1,2}\left(I=\frac{I_{s s}}{2}\right)+V_{\text {dsat }}, 2 \\
& =V_{c m}-V_{\text {tn } 1,2} \\
& =1.3-.778=.522 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {out }}(\text { max })=V_{\text {dd }} \quad(M 4 \text { in triode }) \\
& \\
& \begin{aligned}
V_{\text {out }}(\text { max })-V_{\text {out }}(\text { min }) & =V_{\text {mn }}-V_{\text {cm }}+V_{\text {tn yt }} \\
& =3 . V-1.3 V+.778=2.48 \mathrm{~V}
\end{aligned} \\
& V_{\text {tn }}=V_{\text {to }}+\sqrt[6]{2 \phi+.36}-V_{\sqrt{2 \phi}}=.778
\end{aligned}
$$

5.23. Assume $I_{3}=I_{4}$ though $V_{\text {th }} \neq V_{\text {th4 }}$
(a)

$$
\begin{aligned}
& I_{3}=\frac{1}{2} K_{p} \frac{\omega}{2-2 L_{0}}\left(V_{g s_{3}}-V_{t h 3}\right)^{2}\left(1+\lambda\left|V_{g s_{3}}\right|\right) \\
& I_{4}=\frac{1}{2} K_{p} \frac{\omega}{L-2 L_{0}}\left(V_{g 3}-V_{t h y}\right)^{2}\left(1+\lambda\left(\left|V_{g s_{3}}\right|-\Delta x\right)\right) \\
& K^{\prime}=\frac{1}{2} K_{p} \frac{\omega}{L-2 L_{0}} \\
& K^{\prime}\left(V_{\text {bsat } 3}\right)^{2}\left(1+\lambda\left|V_{g s_{3}}\right|\right)=K^{\prime}\left(\left|V_{\text {dsat3 }}\right|-\ln V\right)^{2}\left(1+\lambda\left|V_{g s_{3}}\right|+\lambda \Delta x\right) \\
& \Delta x \stackrel{ }{=} \frac{\ln V \cdot\left(1+\lambda\left|V_{g s 3}\right|\right)}{\lambda\left|V_{d \text { dat } 3}\right|} \\
& V_{F}=V_{g s_{3}}-\Delta x .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& C M R R \triangleq\left|\frac{A d m}{A c m}\right| \\
& A_{d m}=g m_{1,2}\left(r_{03,4} \| r_{01,2}\right) \\
& 1 g m_{12}\left(\frac{1}{2} r_{5}\right) \\
& A_{c m} \cong \frac{-1}{1+2 g m_{1,2} r_{0}} \cdot \frac{g m_{1,2}}{g m 3,4} \\
& C M R R=\left(1+2 g_{m 1,2} r_{0}\right) g_{3,4}\left(r_{01,2} \| r_{0,4}\right)
\end{aligned}
$$

Chapter 6
6. 1 (a)

g_{m} : transconductance of M.

$$
\begin{aligned}
& I x_{x}=S C_{1}\left(v_{x}-v_{1}\right)=S C_{2}\left(v_{1}-v_{\text {ort }}\right)=g_{m} v_{1} \\
& \therefore \quad S C_{1} v_{x}=\left(g_{m}+s C_{1}\right) v_{1} \Rightarrow v_{1}=\left[\frac{s C_{1}}{g_{m}+s C_{1}}\right] v_{x} \\
& \Rightarrow I_{x}=g_{m} v_{1}=\left[g_{m} s C_{1} / g_{m}+s c_{1}\right] v_{x} \\
& \Rightarrow Z_{\text {in }}=\frac{v_{x}}{I_{x}}=\frac{g_{m}+s C_{1}}{g_{m} s C_{1}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& g_{m}=g_{m_{1}}+g_{m_{2}} \\
& r_{0}=r_{01} / 1 r_{0_{2}}
\end{aligned}
$$

$g_{m_{1}}, g_{m_{2}}$: transconductance for μ_{1}, μ_{2} $r_{O_{1}}, r_{O_{2}}$: output resistance for M_{1}, M_{2}

$$
\therefore I_{x}=\overbrace{S C_{1}\left(V_{x}-V_{1}\right)}^{\Omega}=\frac{S C_{2}\left(V_{1}-V_{\text {out }}\right)}{(1)}=\operatorname{Sm}_{m} V_{1}+\frac{V_{\text {out }}}{r_{0}}
$$

from (1): $\quad \frac{V_{\text {out }}}{V_{1}}=\frac{s c_{2}-g_{m}}{s c_{2}+\frac{1}{r_{0}}}$
from (3) $\quad\left(S C_{1}+s C_{2}\right) V_{1}=S C_{1} V_{x}+S C_{2} V_{\text {out }}$

$$
\begin{array}{r}
=s C_{1} V_{x}+\frac{s^{2} C_{2}^{2}-g_{m} s C_{2}}{s C_{2}+\frac{1}{r_{0}}} V_{1} \\
\Rightarrow\left[s C_{1}+s C_{2}-\frac{s^{2} C_{2}^{2}-g_{m} s C_{2}}{s C_{2}+\frac{1}{r_{0}}}\right] V_{1}=s C_{1} V_{x}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left[\frac{s^{2} c_{1} c_{2}+\frac{s c_{1}}{r_{0}}+\frac{s c_{2}}{r_{0}}+g_{m} s C_{2}}{s c_{2}+\frac{1}{r_{0}}}\right] v_{1}=s c_{1} v_{x} \\
& \therefore v_{1}=\left[\frac{s c_{1} c_{2}+\frac{c_{1}}{r_{0}}}{s c_{1} c_{2}+\frac{c_{1}}{r_{0}}+\frac{c_{2}}{r_{0}}+g_{m} c_{2}}\right] v_{x} \\
& I_{y}=s c_{1}\left(v_{x}-v_{1}\right)=s c_{1} \cdot\left[\frac{\frac{c_{2}}{r_{0}}+g_{m} c_{2}}{s c_{1} c_{2}+\frac{c_{1}}{r_{0}}+\frac{c_{2}}{r_{0}}+g_{m} c_{2}}\right] v_{x} \\
& Z_{\text {in }}=\frac{v x}{I x}=\frac{s c_{1} c_{2}+\frac{c_{1}}{r_{0}}+\frac{c_{2}}{r_{0}}+g_{m} c_{2}}{s c_{1} c_{2}\left(\frac{1}{r_{0}}+g_{m}\right)}
\end{aligned}
$$

(c)

$$
\begin{gathered}
s C_{2}\left(v_{1}+v_{x}\right)+g_{m} v_{1}=g_{m b} v_{x} \\
\Rightarrow\left(s C_{2}+g_{m}\right) v_{1}=\left(g_{m b}-s c_{2}\right) v_{x} \\
\frac{v_{x}}{v_{1}}=\frac{s C_{2}+g_{m}}{g_{m b}-s C_{2}}
\end{gathered}
$$

$$
\begin{aligned}
I_{x} & =-g_{m} v_{1}+g_{m b} v_{x} \\
& =\left[-g_{m} \cdot \frac{g_{m b}-s C_{2}}{s C_{2}+g_{m}}+g_{m b}\right] v_{x}=\left[\frac{\left(g_{m}+g_{m b}\right) s c_{2}}{s C_{2}+g_{m}}\right] v_{x} \\
Z_{i n} & =\frac{v_{x}}{I_{x}}=\frac{s C_{2}+g_{m}}{s C_{2}\left(g_{m}+g_{m b}\right)}
\end{aligned}
$$

6.2(a)

There are three poles associated with this circuit.

The first pole @ Vout

$$
\omega_{\text {pout }}=\frac{1}{r_{02} \cdot\left(C_{g d_{2}}+C_{d_{B 2}}\right)}
$$

The pole@ the input

$$
\omega_{p, i n}=\frac{1}{R_{s} \cdot\left[\left(1+g_{m_{1}} r_{01}\right) C_{g d_{1}}+c_{g s_{1}}\right]}
$$

The pole@ node x

$$
w_{p_{1} x}=\frac{1}{r_{01} \cdot\left[\left(c_{g d_{1}}+c_{d_{B_{1}}}+\left(_{g s_{2}}\right)+\left(1+g_{m_{2}} r_{0_{2}}\right) \cdot c_{g d_{2}}\right]\right.}
$$

Please note that the above approximation is based on Millereftect. In order to get more accuracy approximation. transfer function has to be derived.
(b) Small signal model

Redraw small signal model

C_{4} where,

$$
\begin{aligned}
& C_{1}=C_{g S_{1}}+C_{S B_{1}} \\
& C_{2}=C_{g S_{2}}+C_{a B_{1}}+C_{g d_{1}} \\
& C_{3}=C_{g d_{2}} \\
& C_{4}=C_{d B_{2}}
\end{aligned}
$$

KCL@Vout: $S C_{3}\left(V_{V}-V_{\text {out }}\right)=g_{m_{2}} V_{r}+S C_{4} V_{\text {out }}$

$$
\Rightarrow \quad \frac{V_{\text {out }}}{V_{Y}}=\frac{-g_{m_{2}}+s c_{3}}{s\left(c_{3}+c_{4}\right)}
$$

$$
\begin{array}{r}
K C L @ v_{Y}: \quad\left(g_{m_{1}}+g_{m_{1}}\right) v_{X}+S C_{2} v_{Y}+S C_{3}\left(V_{Y}-V_{o u t}\right)=0 \\
\left(g_{m_{1}}+g_{m_{1} 1}\right) v_{X}=-v_{Y}\left(S C_{2}+\frac{S^{2} C_{3} C_{4}+S C_{3} \cdot g_{m_{2}}}{s\left(C_{3}+C_{4}\right)}\right) \\
\frac{v_{Y}}{V_{X}}=-\frac{g_{m_{1}}+g_{m_{b}}}{\left[s\left(C_{2} C_{3}+C_{2} C_{4}+C_{7} C_{4}\right)+C_{3} g_{m_{2}}\right] /\left(C_{3}+C_{4}\right)}
\end{array}
$$

$$
\text { kc@ } v_{x}: \quad \frac{v_{i n}+v_{x}}{R_{s}}+s c_{1} v_{x}+\left(g_{m_{1}}+g_{m b 1}\right) v_{x}=0
$$

$$
\frac{V_{x}}{V_{\text {in }}}=-\frac{1}{s c_{1} R_{s}+\left(1+\left(g_{m_{1}}+g_{m_{1}}\right) \cdot R_{s}\right)}
$$

Thus. There are three poles

$$
\begin{aligned}
& \omega_{p_{0}}=0 \\
& \omega_{p_{1}}=\frac{-c_{3} g_{m_{2}}}{c_{2} c_{3}+c_{2} c_{4}+c_{3} c_{4}} \\
& \omega_{p_{2}}=\frac{-\left(1+\left(g_{m_{1}}+g_{m_{1}}\right) \cdot R_{s}\right)}{c_{1} R_{s}}
\end{aligned}
$$

6.3 (a) Small signal

$$
\begin{aligned}
& C_{1}=C_{g s_{1}}+C_{S_{B 2}} \\
& C_{2}=C_{g d_{1}}+C_{g s_{2}} \\
& C_{3}=C_{d_{1}}
\end{aligned}
$$

KCL@Vout:

$$
\begin{gather*}
S C_{2}\left(V_{x}-V_{\text {out }}\right)=g_{m_{1}} V_{x}+S C_{3} V_{\text {out }} \\
\therefore \frac{V_{\text {out }}}{V_{x}}=\frac{S C_{2}-g_{m_{1}}}{S\left(C_{2}+C_{3}\right)}
\end{gather*}
$$

$$
\begin{aligned}
K C L @ V_{x}: & \frac{V_{\text {in }}-V_{x}}{R_{s}}+g_{m_{2}}\left(V_{o u t}-V_{x}\right)=s C_{1} V_{x}+s C_{2}\left(V_{x}-V_{\text {out }}\right) \\
\Rightarrow \frac{V_{i n}}{R_{s}}= & V_{x}\left(\frac{1}{R_{s}}+g_{m 2}+s c_{1}+s c_{2}\right)-\left(g_{m 2}+s C_{2}\right) \cdot\left[\frac{s C_{2}-g_{m 1}}{s\left(c_{2}+c_{3}\right)}\right] v_{x} \\
& =V_{x} \cdot \frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(\frac{1}{R_{s}}\left(c_{2}+c_{3}\right)+g_{m 1} C_{2}+g_{m 2} C_{2}\right)+g_{m 1} g_{m 2}}{s\left(c_{2}+c_{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{V_{\text {out }}}{V_{x}} \cdot \frac{v_{x}}{V_{\text {in }}}=\frac{S_{1}\left(S c_{2}-g_{m_{1}}\right)}{S^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[\frac{1}{R_{5}}\left(c_{2}+c_{3}\right)+g_{m_{1}} c_{2}+g_{m_{2}} c_{3}\right]+g_{m 1} g_{m 2}} \\
& \quad=g_{m_{2}}\left(V_{\text {ont }}-V_{x}\right)
\end{aligned}
$$

 \#
(b)

$$
\begin{aligned}
& C_{1}=C_{g s_{1}}+C_{d B_{2}} \\
& C_{2}=C_{g d_{1}}+C_{g d_{2}} \\
& C_{3}=C_{d B_{1}}+C_{g s_{2}}
\end{aligned}
$$

$K C L$ @ Vout : $S C_{2}\left(V_{x}-V_{\text {out }}\right)=9_{m_{1}} V_{x}+V_{\text {out }}\left(\frac{1}{r_{0}}+S C_{3}\right)$

$$
\frac{V_{\text {out }}}{V_{x}}=\frac{S C_{2}-9 m_{1}}{S\left(c_{2}+c_{3}\right)+\frac{1}{r_{0}}}
$$

KCL@Vx: $\quad \frac{V_{\text {in }}-V_{x}}{R_{s}}=g_{m_{2}} V_{\text {out }}+V_{x}\left(\frac{1}{r_{\mathrm{O}_{2}}}+S c_{1}\right)+S C_{z}\left(V_{x}-V_{\text {out }}\right)$

$$
\begin{aligned}
\frac{V_{\text {in }}}{R_{s}}= & \left(s c_{1}+s\left(c_{2}+\frac{1}{r_{0_{2}}}+\frac{1}{R s}\right) v_{x}-\frac{\left(-g_{m_{2}}+s\left(c_{2}\right)\left(s c_{2}-g_{m_{1}}\right)\right.}{s\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}} \cdot V_{x}}\right. \\
& =\frac{s^{2}\left(c_{1} c_{2}+c_{1} c_{3}+c_{2} c_{3}\right)+s\left[\left(\frac{1}{r_{0_{2}}}+\frac{1}{R_{s}}\right)\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}\left(c_{1}+c_{2}\right)+g_{m 1} c_{2}+g_{m_{2}} c_{2}\right]-g_{m 1} g_{m_{2}}+\frac{1}{r_{0}}\left(\frac{1}{r_{2}}+\frac{1}{R_{2}}\right.}{s\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}} \\
\therefore \quad \frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\frac{1}{R_{s}}\left(s c_{2}-g_{m 1}\right)}{\left.s^{2}\left(c_{1} c_{2}+c_{1} c_{3}+c_{2} c_{3}\right)+s\left[\left(\frac{1}{r_{0_{2}}}+\frac{1}{R_{s}}\right)\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}\left(c_{1}+c_{2}\right)+g_{m} c_{2}+g_{m_{2}} c_{2}\right]-g_{m} g_{m_{2}}+\frac{1}{r_{01}}\left(\frac{1}{r_{02}}+\frac{1}{R_{s}}\right)\right]}
\end{aligned}
$$

For z in

$$
\begin{aligned}
I_{x} & =g_{m_{2}} V_{0 u t}+V_{x}\left(\frac{1}{r_{02}}+s c_{1}\right)+s c_{2}\left(V_{x}-V_{0 n} t\right) \\
& =\left[\frac{\left.s^{2}\left(c_{1} c_{2}+c_{1} c_{3}+c_{2} c_{3}\right)+s\left[\frac{1}{r_{02}}\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}\left(c_{1}+c_{2}\right)+g_{m 1} c_{2}+g_{m 2} c_{2}\right]+\left(-g_{m 1} g_{m 2}+\frac{1}{r_{01}} \frac{1}{r_{02}}\right)\right] v_{x}}{s\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}}\right. \\
Z_{i n} & =\frac{V_{x}}{I_{x}}=\frac{s\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}}{s^{2}\left(c_{1} c_{2}+c_{1} c_{3}+c_{2} c_{3}\right)+s\left[\frac{1}{r_{02}}\left(c_{2}+c_{3}\right)+\frac{1}{r_{01}}\left(c_{1}+c_{2}\right)+g_{m 1} c_{2}-g_{m 2} c_{2}\right]+\left(-g_{m 1} g_{m 2}+\frac{1}{\left.r_{01}, \frac{1}{r_{02}}\right)}\right.}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& C_{1}=C_{g S_{1}}+C_{d_{B 2}}+C_{g d_{2}} \\
& C_{2}=C_{g d_{1}} \\
& C_{3}=C_{d_{1} 1}+C_{S_{B 2}}+C_{g S_{2}}
\end{aligned}
$$

KCL@Vout: $S C_{2}\left(V_{x}-V_{\text {out }}\right)=g_{m_{1}} V_{x}+S C_{3} V_{\text {out }}+g_{m_{2}} V_{\text {out }}$

$$
\begin{aligned}
& \Rightarrow \frac{V_{\text {out }}}{V_{x}}=\frac{S c_{2}-g_{m 1}}{S\left(c_{2}+c_{3}\right)+g_{m z}} \\
& \text { KCL@Vx: } \frac{V_{\text {in }}-V_{x}}{R_{s}}+g_{m_{2}} V_{\text {out }}=S C_{1} V_{x}+S C_{2}\left(V_{x}-V_{\text {out }}\right) \\
& \frac{V \text { in }}{R_{s}}=\left(\frac{1}{R_{s}}+s C_{1}+s C_{2}\right) V_{x}-\left(g_{m 2}+s C_{2}\right) V_{\text {out }}=\left(\frac{1}{R_{s}}+s C_{1}+s C_{2}\right) V_{x}-\frac{\left(g_{m_{2}}+s C_{2}\right)\left(s C_{2}-g_{m_{1}}\right)}{S\left(C_{2}+C_{3}\right)+g_{m 2}} \\
& \frac{V}{V}=\frac{S^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[\frac{1}{R_{s}}\left(c_{2}+c_{3}\right)+g_{m_{2}} c_{1}+g_{m_{1}} c_{2}\right]+\left[\frac{g_{m m_{2}}}{R_{s}}+g_{m_{1}} g_{m_{2}}\right)}{S\left(c_{2}+c_{3}\right)+g_{m_{2}}} \\
& \therefore \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{V_{\text {out }}}{V_{x}} \cdot \frac{V_{x}}{V_{\text {in }}} \\
& =\frac{\frac{1}{R_{s}}\left[s c_{2}-g_{m_{1}}\right]}{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[\frac{1}{R_{s}}\left(c_{2}+c_{3}\right)+g_{m_{2}} c_{1}+g_{m_{1}} c_{2}\right]+\left(\frac{g m_{2}}{R_{s}}+g_{m_{1}} g_{m_{2}}\right)}
\end{aligned}
$$

For zion

$$
\begin{aligned}
I_{x} & =s c_{1} V_{x}-g_{m_{2}} V_{o n t}+S c_{2}\left(V_{x}-V_{\text {ont }}\right) \\
& =\left[\frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(g_{m_{2}} c_{1}+g_{m_{1}} c_{2}\right)+g_{m 1} g_{m_{2}}}{s\left(c_{2}+c_{3}\right)+g_{m 2}}\right] v_{x} \\
Z_{\text {in }} & =\frac{s\left(c_{2}+c_{3}\right)+g_{m 2}}{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(g_{m_{2}} c_{1}+g_{m_{1}} c_{2}\right)+g_{m_{1}} g_{m_{2}}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& C_{1}=C_{g s_{1}}+C_{s_{1}}+C_{D B 2} \\
& C_{2}=C_{g d_{1}}+C_{g_{2}}+C_{B_{1}} \\
& C_{3}=C_{g d_{2}}
\end{aligned}
$$

$K C L @ V_{\text {out }}:-S C_{2} V_{\text {out }}=-g_{m} V_{x}+S C_{3}\left(V_{\text {out }}-V_{x}\right)$

$$
\begin{aligned}
& \frac{\text { out }}{V x}=\frac{S C_{3}+g m_{1}}{S\left(c_{2}+c_{3}\right)} \\
& K C L @ V_{x}: \frac{V_{\text {in }}-V_{x}}{R_{s}}=S c_{1} v_{x}+g_{m_{1}} v_{x}+S C_{3}\left(v_{x}-V_{\text {out }}\right)+g_{m_{2}} v_{\text {out }} \\
& \frac{V_{\text {in }}}{R_{s}}=\left[\frac{1}{R_{s}}+s\left(c_{1}+c_{3}\right)+g_{m_{1}}\right] V_{x}+\frac{\left(S C_{3}+g_{m_{1}}\right)\left(g_{m_{2}}-S C_{3}\right)}{S\left(C_{2}+c_{3}\right)} V_{x} \\
& =V_{x}\left[\frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[\frac{c_{2}}{R_{s}}+\frac{c_{3}}{R_{s}}+g_{m_{1}} c_{2}+g_{m_{2}} c_{3}\right]+g_{m_{1}} g_{m 2}}{s\left(c_{2}+c_{3}\right)}\right] \\
& \therefore \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{s c_{3}+g_{m_{1}}}{s^{2} R_{s}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[c_{2}+c_{3}+R_{s}\left(g_{m_{1}} c_{2}+g_{m 2} c_{3}\right)\right]+g_{m 1} g_{m_{2}} R_{s}}
\end{aligned}
$$

For Z in

$$
\begin{aligned}
I_{x} & =s c_{1} V_{x}+g_{m 1} V_{x}+s c_{3}\left(V_{x}-V_{\text {out }}\right)-g_{m_{2}} V_{\text {out }} \\
& =\left[\frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(g_{m_{1}} c_{2}+g_{m_{2}} c_{3}\right)+g_{m} g_{m_{2}}}{s\left(c_{2}+c_{3}\right)}\right] V_{x} \\
\therefore Z_{\text {in }} & =\frac{s\left(c_{2}+c_{3}\right)}{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(g_{m_{1}} c_{2}+g_{m_{2}} c_{3}\right)+g_{m_{1}} g_{m_{2}}}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& K C L \text { @Volt } \Rightarrow-S C_{2} V_{\text {out }}=-g_{m}, V_{x}+g_{m} V_{\text {out }} \\
& \Rightarrow \frac{V_{\text {out }}}{V_{x}}=\frac{g_{m 1}}{S c_{2}+g_{m_{2}}} \\
& K c L @ V_{x} \Rightarrow \frac{V_{\text {in }}-V_{x}}{R_{s}}=S c_{1} V_{x}+g_{m 1} V_{x}-g_{m 2} V_{\text {out }} \\
& \Rightarrow \frac{v_{i n}}{R_{s}}=\left[\frac{1}{R_{s}}+s c_{1}+g_{m 1}\right] v_{x}-\frac{g_{m 1} g_{m 2}}{\left(s c_{2}+g_{m 2}\right)} v_{x} \\
& =\frac{S^{2} c_{1} c_{2}+s\left[\left(\frac{1}{R_{s}}+g_{m_{1}}\right) c_{2}+g_{m 2} c_{1}\right]+\frac{g_{m_{2}}}{R_{s}}}{S c_{2}+g_{m_{2}}} \\
& \therefore \frac{V_{\text {out }}}{v_{\text {in }}}=\frac{g_{m 1}}{s^{2} R_{s} C_{1} C_{2}+s\left[\left(1+g_{m 1} R_{s}\right) c_{2}+g_{m 2} R_{s} c_{1}\right]+g_{m 2}}
\end{aligned}
$$

For Z in

$$
\begin{aligned}
I_{x} & =s c_{1} V_{x}+g_{m_{1}} V_{x}-g_{m_{2}} V_{\text {out }} \\
& =\left[\frac{s^{2} c_{1} c_{2}+s\left[g_{m_{1}} c_{2}+g_{m_{2}} c_{1}\right]}{s c_{2}+g_{m_{2}}}\right] \\
\therefore z_{\text {in }} & =\frac{s c_{2}+g_{m_{2}}}{s^{2} c_{1} c_{2}+s\left(g_{m_{1}} c_{2}+g_{m_{2}} c_{1}\right)}
\end{aligned}
$$

(f)

$$
\begin{aligned}
& C_{1}=C_{S B_{1}}+C_{S B_{2}}+C_{g S_{1}} \\
& C_{2}=C_{g} d_{1}+C_{g} d_{2}+C_{B_{1}} \\
& C_{3}=C_{g S_{2}}
\end{aligned}
$$

$K C L @ V_{\text {out }}: S C_{2}\left(-V_{\text {out }}\right)=g_{m_{1}}\left(-V_{x}\right)+S C_{3}\left(V_{\text {out }}-V_{x}\right)$

$$
\Rightarrow \frac{V_{\text {out }}}{V x}=\frac{g_{m_{1}}+s c_{3}}{s\left(c_{2}+c_{3}\right)}
$$

$$
K C L @ v_{x}: \frac{v_{\text {in }}-v_{x}}{R_{s}}+g_{m_{1}}\left(-v_{x}\right)+g_{m_{2}}\left(v_{\text {out }}-v_{x}\right)=s c_{1} v_{x}+s c_{3}\left(v_{x}-v_{\text {out }}\right)
$$

$$
\frac{V_{i n}}{R_{s}}=V_{x}\left(\frac{1}{R_{s}}+g_{m 1}+g_{m}+s c_{1}+s c_{3}\right)-\frac{\left(g_{m 2}+s c_{3}\right)\left(g_{m_{1}}+s c_{3}\right)}{s\left(c_{2}+c_{3}\right)} \cdot V_{x}
$$

$$
=\frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[\frac{c_{2}}{R_{s}}+\frac{c_{3}}{R_{s}}+g_{m 1} c_{2}+g_{m_{2}} c_{2}\right]-g_{m_{1}} g_{m_{2}}}{s\left(c_{2}+c_{3}\right)}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m_{1}}+s c_{3}}{s^{2} R_{s}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[c_{2}+c_{3}+R_{s}\left(g_{m_{1}} c_{2}+g_{m_{2}} C_{2}\right)\right]-S_{m_{1}} g_{m} R_{s}}
$$

For $z_{i n}$

$$
\begin{aligned}
I_{x} & =g_{m_{1}} v_{x}+g_{m_{2}}\left(v_{x}-v_{\text {out }}\right)+s c_{1} v_{x}+s c_{3}\left(v_{x}-v_{\text {out }}\right) \\
& =\left[\frac{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left[g_{m 1} c_{2}+g_{m_{2}} c_{2}\right]-g_{m_{1}} g_{m 2}}{s\left(c_{2}+c_{3}\right)}\right] v_{y} \\
Z_{\text {in }} & =\frac{v_{x}}{I_{x}}=\frac{s\left(c_{2}+c_{3}\right)}{s^{2}\left(c_{1} c_{2}+c_{2} c_{3}+c_{1} c_{3}\right)+s\left(g_{m 1} c_{2}+g_{m 2} c_{2}\right)-g_{m 1} g_{m 2}}
\end{aligned}
$$

6.4 (a)

$A=-\infty$
(i) At low frequency, V_{x} is like virtual ground sc1vin:- $S_{2} C_{\text {out }}$
$\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{c_{1}}{c_{2}}$
(ii) At high frequency, C_{1}, C_{2} is like a short circuit

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=1
$$

(b) At low frequency, the equivalent circuit is shown as

$$
A_{v} \cong-g m_{1} r_{03} \rightarrow \infty \text {, if } \lambda=0
$$

(ii) At high frequency, the equivalent circuit

(c) (i) At low frequency, the equivalent circuit

The impedance@Vout $=\frac{1}{g_{m 3}}$

$$
A v \cong-g_{m_{1}} \cdot 1 / g_{m_{3}}=-\frac{g_{m_{1}}}{g_{m_{3}}}
$$

(ii) At high frequency,

$$
\frac{V_{x}}{V_{i n}}=-g_{m_{1}} \cdot \frac{1}{g_{m 2}}
$$

The impedance@Vont $=R_{1} / / R_{2}$

$$
\therefore A_{v}=\left(-g_{m 1} \cdot \frac{1}{g_{m_{2}}}\right) \cdot g_{m 2} \cdot\left(R_{1} / / R_{2}\right)=-g_{m_{1}}\left(R_{1} / / R_{2}\right)
$$

(d) (i) At low frequency, the equivalent circuit is

$$
\begin{aligned}
\frac{\text { Vout }}{\text { vin }}=\frac{g_{m_{2}}\left(r_{03} / /\left(1+g_{m_{2}} r_{0_{z}}\right) z_{x}\right]}{1+g_{m_{2}} z_{x}} \cong \frac{g_{m_{2}}\left(r_{03 / /} r_{02}\right)}{1+\frac{g_{m_{2}}}{g_{m_{1}}} \rightarrow \infty} \text { if } \lambda=0 \\
z_{x}=\frac{1}{g_{m}}
\end{aligned}
$$

(ii) At high frequency

$$
\begin{aligned}
& K c<@ V_{x}, v_{\text {out }}: \frac{V_{x}}{R_{p}}=g_{m_{2}}\left(V_{\text {in }}-v_{x}\right)+\frac{V_{0 u t}-V_{x}}{r_{02}}=-\left(g_{m_{3}} v_{x}+\frac{V_{\text {out }}}{r_{03}}\right) \\
& \frac{V_{x}}{R_{p}}=-\left(g_{m_{3}} V_{x}+\frac{V_{\text {out }}}{r_{03}}\right) \Rightarrow \frac{V_{\text {out }}}{V_{x}}=-r_{03}\left(g_{m_{3}}+\frac{1}{R_{p}}\right) \\
& g_{m 2}\left(V_{\text {in }}-V_{x}\right)+\frac{V_{\text {out }}-V_{x}}{r_{02}}=\frac{V_{x}}{R_{p}} \Rightarrow g_{m_{2}} V_{\text {in }}=\left(\frac{1}{R_{p}}+\frac{1}{r_{02}}+g_{m_{2}}\right) v_{x}+\frac{V_{\text {out }}}{r_{02}} \\
& \Rightarrow g_{m_{2}} V_{\text {in }}=\left[-\left(\frac{1}{R_{p}}+\frac{1}{r_{02}}+g_{m_{2}}\right) \frac{1}{r_{03}\left(g_{m_{2}}+\frac{1}{R_{p}}\right)}+\frac{1}{r_{02}}\right] V_{\text {out }} \\
& \Rightarrow \quad \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-g_{m_{2}} r_{03}\left(g_{m_{3}}+\frac{1}{R_{p}}\right)}{\left(\frac{1}{R_{p}}+\frac{1}{r_{02}}+g_{m 3}\right)-\frac{r_{03}}{r_{02}}\left(g_{m_{3}}+\frac{1}{R_{p}}\right)} \rightarrow \infty \quad i f \lambda=0
\end{aligned}
$$

$$
\begin{aligned}
& 6.14 \\
& p g 13
\end{aligned}
$$

6.5 (a) (i) At low frequency

C_{1} is like an open circint Q very low frequency

$$
\Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=-g_{m}\left(r_{02} / / r_{0+}\right) \rightarrow \infty \text { if } \lambda=0
$$

(ii) At very high frequency, C, is like a short cirait

(b) (i) At low frequency, the equivalent circuit is

$$
\text { Rout } \cong r_{03} / / R_{2} \cong R_{2}
$$

$$
A v=-g_{m_{1}} \cdot\left(R_{2} / / r_{0_{3}}\right) \cong-g_{m} R_{2} \psi
$$

(ii) At high frequency

$$
\begin{aligned}
\frac{V_{y}}{V_{\text {in }}} & =-g_{m 1}\left(\frac{1}{g_{m 6}} / \frac{R_{1}}{2}\right) \quad, \frac{V_{\text {out }}}{V_{y}} \cong+g_{m 6} \cdot R_{2} \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =-\frac{g_{m 1} g_{m 6} R_{1} R_{2}}{\left(2+g_{m 6} \cdot R_{1}\right)}
\end{aligned}
$$

(b) (i) At low frequency, the equivalent circuit is

$V x$ is virtual ground
half circuit

$$
\begin{aligned}
\text { Bout } & \cong r_{03} / / R_{2} \cong R_{2} \\
A v & =-g_{m_{1}} \cdot\left(R_{2} / / r_{0_{3}}\right) \cong-g_{m} R_{2}
\end{aligned}
$$

(ii) At high frequency

$$
\frac{V_{y}}{V_{\text {in }}}=-g_{m 1}\left(\frac{1}{g_{m 6}} / / \frac{R_{1}}{2}\right) \quad, \frac{V_{\text {out }}}{V_{y}} \cong+g_{m 6} \cdot R_{2}
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{g_{m 1} g_{m \in} R_{1} R_{2}}{\left(2+g_{m 6} \cdot R_{1}\right)}
$$

6.6

The impedance z_{12} can be derived from the following small signal model

$$
\begin{aligned}
& \text { KCaL @V: } \frac{V_{0}}{z_{L}}+\frac{V_{0}-V_{x}}{r_{0_{2}}}=\left(9 m_{2}+g_{m_{2}}\right) V_{x} \Rightarrow\left(\frac{1}{z_{L}}+\frac{1}{r_{0_{2}}}\right) v_{0}=\left(9 m_{2}+g_{m_{2}}+\frac{1}{r_{2}}\right) V_{T} \\
& \Rightarrow v_{0}=\left(\frac{g_{m_{2}}+g_{m_{b 2}}+\frac{1}{r_{02}}}{1+\frac{z_{L}}{r_{02}}}\right) v_{x} \\
& \Rightarrow I_{x}=\frac{V_{0}}{Z_{L}}=\left[\frac{g_{m_{2}}+g_{m_{1}+} \frac{1}{r_{O_{2}}}}{1+\frac{Z_{L}}{r_{O_{2}}}}\right] v_{x} \Rightarrow \frac{V_{x}}{I_{x}}=Z_{12}=\frac{1+\frac{z_{L}}{r_{02}}}{g_{m_{2}}+g_{m_{2}}+\frac{1}{r_{O_{2}}}} \\
& \Rightarrow z_{12}=\frac{r_{O_{2}}+z_{L}}{1+\left(g_{m_{2}}+g_{m_{b_{2}}}\right) r_{O_{2}}}
\end{aligned}
$$

The miller multiplication for $C_{G D_{1}}=1+g_{m 1}, z_{12}$

$$
=1+\frac{g_{m_{1}}\left(r_{02}+z_{L}\right)}{1+\left(g_{m_{2}}+g_{m_{1} 2}\right) r_{02}}=0
$$

If C_{L} is relatively large $\Rightarrow\left|\frac{1}{s c_{L}}\right| \ll r_{02}$
eq 0 can be approximated as $\cong 1+\frac{g_{m_{1}} r_{0_{2}}}{1+\left(g_{m_{2}}+g_{m_{b_{2}}}\right) r_{02}} \cong 1+\frac{g_{m_{1}}}{g_{m_{2}}+g_{m_{b_{2}}}}$
6.7 (a)

Assume the amplifier output resistance Rout The small signal model is as follows

As we can see, the above circuit forms a high pass network
 Thus, when there is a step ΔV at the input, output will follow input, a step ΔV, first. Then, it will settle down to - AVin as the steady state
(b) KCL@Vout:

$$
\begin{aligned}
& -\frac{A V_{\text {in }}}{\text { Rout }}=\frac{V_{\text {out }}}{\text { Rout }}+S C\left(V_{\text {out }}-V_{\text {in }}\right) \\
& \Rightarrow\left(S C-\frac{A}{\text { Rout }}\right) V_{\text {in }}=\left(\frac{1}{\text { Rout }}+S C\right) V_{\text {out }} \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{S C R_{\text {out }}-A}{1+S C R_{\text {out }}}
\end{aligned}
$$

for the step response, $x(t)=u(t), t \geqslant 0 \rightarrow X(s)=\frac{1}{s}$

$$
\begin{aligned}
& Y(s)=\frac{1}{s} \cdot \frac{V_{\text {out }}}{\operatorname{Vin}}(s)=\frac{S\left(R_{\text {out }}-A\right.}{S(1+S C \operatorname{Rout})}=\frac{-A}{s}+\frac{(A+1) \cdot R_{\text {out }} C}{1+S C \operatorname{Rout}} \\
& \Rightarrow y(t)=-A u(t)+(A+1) e^{-\frac{t}{\text { Rout } C}}, t \geqslant 0
\end{aligned}
$$

For a ΔV input step, output $=-A \cdot \Delta V+(A+1) \cdot \Delta V \cdot e^{-\frac{t}{R_{\text {out }}}}$
6.8 (a) Small-signal circuit model

When input has ΔV Jump, Vout will follow and the output jump $=\left(\frac{C}{C_{L}+C}\right) \Delta V$
(b) The transfer function $H(s)$

$$
\begin{aligned}
H(s) & =\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}: K C L @ V_{\text {out }} \\
& \Rightarrow \frac{-\frac{A V_{\text {in }}}{\text { Rout }}=\frac{V_{\text {out }}}{\text { Rout }}+S c\left(V_{\text {out }}-V_{\text {in }}\right)+S C L V_{\text {out }}}{} \\
& \Rightarrow \operatorname{Vin}\left(S C-\frac{A}{\text { Rout }^{\prime}}\right)=V_{\text {out }}\left(\frac{1}{\text { Rout }}+S C+S C_{L}\right) \\
& \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{S C R_{\text {out }}-A}{1+S \operatorname{Ront}(C+C L)}
\end{aligned}
$$

step response

$$
\begin{aligned}
& Y(s)=\frac{1}{s} \cdot \frac{S C \operatorname{Rout}-A}{\left[1+S \operatorname{Ront}^{2}\left(C+C_{L}\right)\right]}=\frac{-A}{S}+\frac{\left[(A+1) C+A C_{L}\right] \operatorname{Ront}}{1+S \operatorname{Rout}\left(C+C_{L}\right)}=\frac{-A}{S}+\frac{\frac{(A+1)\left(+A C_{L}\right.}{C+C_{L}}}{S+\frac{1}{\operatorname{Rat}\left(C+C_{L}\right)}} \\
& y(t)=-A u(t)+\frac{(A+1) C+A C_{L}}{C+C_{L}} \cdot e^{-\frac{t}{\operatorname{Ront}\left(C+C_{L}\right)} u(t)}
\end{aligned}
$$

For a stop $\Delta v @$ the input

$$
\text { output }=-A \Delta V+\left[\frac{(A+1) C+A \cdot C_{L}}{C+C_{L}}\right] \cdot \Delta V \cdot e^{-\frac{t}{R a t\left(C+C_{L}\right)}}
$$

$$
C_{g d}=\quad C_{g d_{0}} \cdot w=0.4 \times 10^{-11} \times 50 \times 10^{-6}=2 \times 10^{-16}
$$

$$
C_{d B}=\frac{0.56 \times 10^{-3} \times 75 \times 10^{-12}}{\left(1+\frac{1}{0.9}\right)^{0.6}}+\frac{0.75 \times 10^{-11} \times 103 \times 10^{-6}}{\left(1+\frac{1}{0.9}\right)^{0.2}}=2.714 \times 10^{-14}
$$

According to eq (>0)

$$
\text { zero }=\frac{g_{m}}{C_{g d}}=\frac{6.59 \times 10^{-3}}{2 \times 10^{-6}}=3.3 \times 10^{13} \mathrm{rad} / \mathrm{sec}
$$

pole is the root of $R_{s} R_{p}\left(C_{g s} C_{g d}+C_{a s C d B}+C_{g d} C d B\right) s^{2}$

$$
\begin{gathered}
+\left[R_{s}\left(1+g_{m} R_{0}\right) C_{g d}+R_{s} C_{g s}+R_{D}\left(C_{g d}+C_{d B}\right)\right] s+1 \cdots{ }^{-21} s^{2}+1.112 \times 10^{-10} s+1=0 \\
\Rightarrow 2.95 \text { from eq }(6.20) \\
\omega_{p 1}=-14.82 \times 10^{99} \mathrm{rad} / \mathrm{sec} \\
\omega_{p 2}
\end{gathered}
$$

$$
\begin{aligned}
& \lambda=0.1 \\
& C_{0 x}=\frac{\epsilon_{\operatorname{sio}}}{t_{0 x}}=\frac{3.9 \times 8.85 \times 10^{-14}}{9 \times 10^{-7}}=3.835 \times 10^{-7} \\
& \mu_{n}=350 \\
& I_{D}=10^{-3}=\frac{1}{2} \times 350 \times 3.835 \times 10^{-7} \times\left(\frac{50}{0.5-2 \times 0.08}\right)\left(V_{g S}-V_{T}\right)^{2}(1+0.1 \times \mathrm{Vds}) \\
& =67.113 \times 10^{-6} \times \frac{50}{0.34} \times 1.1 \times(\operatorname{Vin}-0.7)^{2} \\
& \Rightarrow V_{\text {in }}=1.0035 \\
& g_{m}=\frac{2 I_{0}}{\left(v_{g s}-v_{t}\right)}=6.59 \times 10^{-3} \\
& C_{g s}=\frac{2}{3} C_{0 \times w L}+C_{0 v} \cdot w \\
& =\frac{2}{3} \times 3.835 \times 10^{-7} \times 50 \times(0.5-0.08 \times 2) \times 10^{-8}+3.835 \times 10^{-7} \times 0.08 \times 10^{-4} \times 50 \times 10^{-4} \\
& =53.7 \times 10^{-15}
\end{aligned}
$$

6.10

(a) The maximum output level $=2.6 \mathrm{~V}$
$\rightarrow V_{B}$ can be as low as 2.6 $-\left|V_{\text {TH }}\right|=2.6-0.8=1.8 \mathrm{~V}$

Let's choose output DC bias @ 1.5 V , such that M_{1}, M_{2} are both in saturation region
Thus, $\quad I_{D_{1}}=10^{-3}=\frac{1}{2} \times 350 \times 3.835 \times 10^{-7} \times\left(\frac{50}{0.5-2 \times 0.08}\right)(\operatorname{Vin}-0.7)^{2}(1+0.1 \times 1.5)$

$$
\begin{aligned}
\Rightarrow & V_{\text {in }}=0.997 \cong 1 \mathrm{~V} \\
\text { Also, } I_{D_{2}}= & 10^{-3}=\frac{1}{2} \times 100 \times 3.835 \times 10^{-7} \times\left(\frac{w_{P}}{0.5-2 \times 0.09}\right)(3-1.8-0.8)^{2}(1+0.2 \times 1.5 \mathrm{~s} \\
& \omega_{P} \cong 80.5 \mu \mathrm{~m}=81 \mu \mathrm{~m}
\end{aligned}
$$

Therefore, we can choose $\left(\frac{\omega}{L}\right)_{p}=\left(\frac{81 \mathrm{~m}}{0.5 \mathrm{~mm}}\right)$ with gate bias 1.8 V
so that M_{1}, M_{2} are both in saturation region and $V_{\text {ont }} \cong 1.5 \mathrm{~V}$

$$
V_{\text {out }} \text {, low }=V_{\text {in }}-\left|V_{\text {TAN }}\right|=0.3 \mathrm{~V}
$$

Thus, the maximum output peak-to-peak swing $=2.6-0.3=1.3 \mathrm{~V}$
(b) This problem is similar to problem 6.9 except

$$
\begin{aligned}
& R_{D} \rightarrow\left(r_{O_{1}} / / r_{O 2}\right) \\
& C_{D B}=C_{D B_{1}}+C_{D B 2}+C g d z \\
& \therefore g_{M_{1}}=\frac{2 I_{D}}{V_{g S}-V_{t}}=2 \times 10^{-3} / 0.297=6.73 \times 10^{-3} \\
& r_{O P}=1 /\left(\frac{\lambda_{P} I_{D}}{1+\lambda_{0} V_{D S}}\right)=6.5 \mathrm{~K} \\
& r_{O N}=1 /\left(\frac{\lambda N I_{D}}{1+\lambda_{N} V_{D S}}\right)=11.5 \mathrm{~K} \\
& \therefore R_{D}=r_{O p / 1} r_{O N}=4.1 \mathrm{~K} \\
& \quad R_{S}=1 \mathrm{~K} \\
& C_{g S_{1}}=\frac{2}{3} C_{0 \times} \omega . L 1+C_{0 \times} \omega . \Delta L=58.8 \times 10^{-15} \mathrm{~F} \\
& C_{g d_{1}}=2 \times 10^{-16}
\end{aligned}
$$

$$
\begin{aligned}
& C_{B_{1}}=\frac{0.56 \times 10^{-3} \times 75 \times 10^{-12}}{\left(1+\frac{1.5}{0.9}\right)^{0.6}}+\frac{0.35 \times 10^{-11} \times 103 \times 10^{-6}}{\left(1+\frac{1.5}{0.9}\right)^{0.2}}=23.38 \times 10^{-15} \mathrm{~F} \\
& C_{d B 2}=\frac{0.94 \times 10^{-3} \times 121.5 \times 10^{-12}}{\left(1+\frac{1.5}{0.9}\right)^{0.5}}+\frac{0.32 \times 10^{-11} \times 165 \times 10^{-6}}{\left(1+\frac{1.5}{0.9}\right)^{0.3}}=70.33 \times 10^{-15} \mathrm{~F} \\
& C_{g d_{2}}=81 \times 0.3 \times 10^{-11} \times 10^{-6}=0.243 \times 10^{-15} \mathrm{~F} \\
& \omega_{z}=-\frac{S_{\mathrm{m}_{1}}}{C_{g d_{1}}}=-\frac{6.59 \times 10^{-3}}{2 \times 10^{-16}}=-3.3 \times 10^{13} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$\omega_{p_{1}}, \omega_{p_{2}}$ is the root of the equation

$$
\begin{aligned}
& R_{s} R_{D}\left(C_{g s}, C_{g d_{1}}+C_{g s}, C_{d B}+C_{g d_{1}}, C_{d}\right)+\left[R_{s}\left(1+g_{m}, R_{D}\right) C_{g d_{1}}+R_{s} C_{g_{1}}+R_{D}\left(C_{g d_{1}}+C_{d_{B}}\right)\right]+1 \\
\Rightarrow \quad \omega_{p_{1}} & =-2.2 \times 10^{9} \mathrm{rad} / \mathrm{sec} \\
\omega_{p_{2}} & =-17.36 \times 10^{9} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

6.11

Assume $\sigma=0$

$$
\begin{aligned}
g_{m} & =2 \pm /\left(v_{g s} \cdot v_{t}\right) \\
& =\frac{2 \times 10^{-3}}{0.3}=6.67 \times 10^{-3}
\end{aligned}
$$

From eq (6.49) $\quad z_{1}=\frac{R_{s} C_{g s} \cdot s+1}{g_{m}+C_{g s} s}$
Since $\frac{1}{9 m}<R_{s}$
, Thus Z_{1} is inductive and the equivalent inductance is

$$
=\frac{C_{g s}}{g_{m}}\left(R_{s}-\frac{1}{g_{m}}\right)
$$

$$
\begin{aligned}
& C_{g 5}=58 \times 10^{-15} \mathrm{~F} \\
& \therefore \angle=8.56 \times 10^{-8} \mathrm{H}
\end{aligned}
$$

6. 12 (a)

$$
\begin{aligned}
& V_{\text {out }}=-g_{m_{1}} v_{x}\left(R_{D} / / \frac{1}{s C_{1}}\right) \\
& I_{x}=-g_{m_{2}}\left(v_{\text {out }}-v_{x}\right)=-g_{m_{2}} v_{\text {out }}+g_{m_{2}} v_{x}=\left[g_{m_{2}} g_{m_{1}}\left(R_{0} / / \frac{1}{s C_{1}}\right)+g_{m_{2}}\right] v_{x} \\
& Z_{x}=\frac{v_{x}}{I_{x}}=\frac{1}{g_{m_{2}} g_{m_{1}} \frac{R_{D} / s C_{1}}{R_{D}+1 / s C_{1}}+g_{m_{2}}}=\frac{1}{g_{m_{2}}\left[\left(\frac{g_{m_{1}} R_{D}}{1+S R_{D} C_{1}}\right)+1\right]}
\end{aligned}
$$

Thus. $z_{x}(s \rightarrow 0)=1 g_{m_{2}}\left(1+g_{m} R_{0}\right)$

(b)

$\left|z_{x}\right|$

$$
\begin{aligned}
& k c L @ v_{1}: g_{m_{2}}\left(v_{x}-v_{1}\right)=S c_{1} v_{1} \\
& \Rightarrow v_{1}=\left(\frac{g_{m_{2}}}{S c_{1}+g_{m_{2}}}\right) v_{x}
\end{aligned}
$$

KCL@Vout: $I_{X}=\frac{V_{x}}{R_{D}}+g_{m_{1}} V_{1}$

$$
\begin{aligned}
& =\frac{v_{x}}{R_{p}}+\frac{g_{m} g_{m_{2}}}{S c_{1}+g_{m_{2}}} v_{x} \\
\Rightarrow z_{X} & =\frac{1}{\frac{1}{R_{p}}+\frac{g_{m_{1}} g_{m_{2}}}{S C_{1}+g_{2}}}
\end{aligned}
$$

6.13

from eq (6.53)

$$
\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\frac{\left(g_{m}+g_{m b}\right) R_{p}}{1+\left(g_{m}+g_{m b}\right) R_{s}} \frac{1}{\left(1+\frac{C_{s}}{g_{m}+g_{m b}+R_{s}^{-1}} \cdot s\right)\left(1+R_{D} C_{D} s\right)}
$$

Assume V_{b} is chosen appropriately such that $V_{x} \sim 0$ (no body effect)

$$
\begin{aligned}
& g_{m} \sim 6.59 \times 10^{-3} \\
& g_{m b}=\left[\frac{\sigma}{2} \sqrt{2 \phi_{f}}\right] g_{m}=1.563 \times 10^{-3} \\
& \left.C_{S}=C_{S B}+C_{g s}=42.4 \times 10^{-15}+58.8 \times 10^{-15}\right\} \text { from problem } 9 \\
& C_{D}=C_{D B}=27.14 \times 10^{-15} \mathrm{~F} \\
& A_{V}(\text { low frequency })=\frac{\left(g_{m}+g_{m b}\right) R_{D}}{1+\left(g_{m}+g_{m b}\right) R_{s}}=1.44 \\
& \omega_{P_{1}}=-\frac{g_{m}+g_{m b}+R_{s}-1}{C_{s}}=-\frac{6.59 \times 10^{-3}+1.563 \times 10^{-3}+10^{-3}}{42.4 \times 10^{-15}+58.8 \times 10^{-15}}=-9.044 \times 10^{10} \mathrm{rad} / \mathrm{s} \\
& \omega_{P_{2}}=-\frac{1}{R_{D} C_{D}}=-\frac{1}{2 \times 10^{3} \times 2.714 \times 10^{-14}}=-1.84 \times 10^{10} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Compared with the pole locations in problem 9, the poles for common-gate configuration are much larger because there is no Miller-effect for Vga in this case

$$
\begin{align*}
& K C L @ V_{2}: \frac{V_{2}}{R G_{1}}=S C_{g s_{2}}\left(v_{x}-V_{2}\right) \\
& \Rightarrow \frac{V_{2}}{V_{x}}=\frac{S C_{g s_{2}}}{\frac{1}{R_{G}}+S C_{g s_{2}}}=\frac{S R_{G} C_{g s_{2}}}{1+S R_{9} C_{S_{2}}}-\oplus \\
& K C L @ V_{\text {out }}: V_{\text {out }}=-g_{m 2}\left(V_{2}-v_{x}\right) R_{D}=\left[\frac{g_{m_{2}} R_{D}}{1+S R_{G} C_{g s_{2}}}\right] v_{x}
\end{align*}
$$

KCL@Vx:

$$
\begin{align*}
& g_{m_{1}} v_{1}=g_{m_{1}} v_{i n}=\left(g_{m_{2}}+v C_{g_{2}}\right)\left(v_{2}-v_{x}\right) \\
& =\frac{-\left(g_{m_{2}}+s C_{g s_{2}}\right)}{1+S R_{G} C_{g s_{2}}} v_{x} \tag{3}
\end{align*}
$$

$$
\text { from (2,(), } \frac{V_{\text {out }}}{v_{\text {in }}}=\frac{-g_{m_{1}} g_{m_{2}} R_{D}}{g_{m_{2}}+S C_{g g_{2}}}
$$

6.15

For zero frequency, $I_{L}=0$ \& $I_{4}=I_{x}$

$$
\begin{aligned}
& I_{4}=-g_{m p} V_{E} \\
& I_{x}=V_{E}\left(g_{m p}+S C_{E}\right) \\
& \therefore I_{4}=I_{x} \Rightarrow-g_{m p}=g_{m p}+S C_{E} \\
& S_{z}=\frac{-2 I_{m p}}{C_{E}}
\end{aligned}
$$

6.16 Half circuit can be drawn as follows

Since $R_{s}=0$. According to (6.20) \& (6.76)

$$
\frac{V_{\text {out }}}{V_{\text {in }}}(s)=-\frac{\left(C_{g d_{1}} \cdot s-g_{m_{1}}\right) \cdot \frac{1}{g_{m_{3}}}}{\frac{1}{g_{m 3}}\left(C_{g d_{1}}+C_{x}\right) s+1} \cdot g_{m s} \cdot\left(r_{0 s} / / r_{07}\right) \div \frac{1}{1+\left(r_{0 s} / / r_{07}\right) \cdot C_{L} \cdot s}
$$

where $C_{L}=C_{d_{B}}+C_{g d}+C_{d_{B S}}$

$$
\begin{aligned}
& C_{x}=C_{g 53}+C_{d_{B 1}}+C_{g S 5}+C_{D_{3}}+C_{g d_{5}}\left(1+g_{m s}\left(r_{\left.05 / / r_{07}\right)}\right.\right. \\
& \text { out }=\left(r_{05} / r_{01}\right) \\
& Z_{x}=\frac{1}{9 m 3}
\end{aligned}
$$

First of all, leto calculate V_{x} operating point

$$
\begin{aligned}
I_{d_{3}}=50 \times 10^{-6} & =\frac{1}{2} \times 100 \times 3.835 \times 10^{-7} \times \frac{10}{0.5-0.09 \times 2}\left(3-V_{x}-0.8\right)^{2}\left(1+0.2\left(3-V_{x}\right)\right) \\
V_{x} & \cong 1.94 \mathrm{~V}
\end{aligned}
$$

For V in operating point

$$
\begin{aligned}
& I_{d_{1}}=50 \times 10^{-6}=\frac{1}{2} \times 350 \times 3.835 \times 10^{-7} \times \frac{50}{0.5-0.08 \times 2}\left(V_{g s_{1}}-0.7\right)^{2}(1+0.1 .1 .94) \\
& V_{g s_{1}} \cong 0.765 \mathrm{~V} \\
& \Rightarrow g_{m_{1}}= \frac{2 I_{d_{1}}}{\left(V_{g s_{1}}-V_{t}\right)} \equiv 1.54 \times 10^{-3} \\
& g_{m 3}= \frac{2 I_{d 1}}{(3-1.94-0.8)} \cong 3.73 \times 10^{-4} \Rightarrow g_{m 5}=2 . g_{m 3}=7.46 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& g_{d s s}=2 \times 50 \times 10^{-6} \cdot \lambda /(1+\lambda \cdot 1.06)=10^{-4} \cdot 0.2 / 1.212 \cong 1.649 \times 10^{-5} \\
& g_{d s 7}=10^{-4} \times 0.1 /(1+0.196) \cong 8.36 \times 10^{-6}
\end{aligned}
$$

$r_{05} / / r_{07}=40290$

$$
\begin{aligned}
& C_{L}=C_{D B S}+C_{D B 7}+C_{g d 7}=\left[\frac{0.94 \times 10^{-3} \times 30 \times 10^{-12}}{\left(1+\frac{1.06}{0.9}\right)^{0.5}}+\frac{0.32 \times 10^{-11} \times 43 \times 10^{-6}}{\left(1+\frac{1.06}{0.9}\right)^{0.3}}\right] \\
&+\left[\frac{0.56 \times 10^{-3} \times 75 \times 10^{-12}}{\left(1+\frac{1.94}{0.9}\right)^{0.6}}+\frac{0.35 \times 10^{-11} \times 103 \times 10^{-6}}{\left(1+\frac{1.94}{0.9}\right)^{0.2}}\right]+50 \times 0.4 \times 10^{-17} \\
&=19.22 \times 10^{-15}+21.36 \times 10^{-15}+2 \times 10^{-16}=40.78 \times 10^{-15} \\
& C_{g S 3}=\frac{2}{3} \times 3.835 \times 10^{-7} \times 10 \times 0.32+3.835 \times 10^{-7} \times 10 \times 0.09=11.633 \times 10^{-15} \\
& C_{d B 1} \cong C_{d B 7} \cong 21.36 \times 10^{-15} \\
& C_{g S 5}=2 \cdot C_{g S 3}=23.266 \times 10^{-15} \\
& C_{d B j}=\frac{1}{2} \cdot C_{D B 5}=9.61 \times 10^{-15} \\
& C_{g d S}=6.3 \times 10^{-11} \times 20 \times 10^{-6}=6 \times 10^{-17} \\
& C_{X}=\left[11.633+21.36+23.27+9.61+0.06\left(1+g_{M S} \cdot\left(r_{05} 511 r_{07}\right)\right)\right] \times 10^{-15}=67.732 \times 10^{-15} \\
& \therefore \omega_{z}=\frac{g_{M 1}}{C_{g d 1}}=7.7 \times 10^{12} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{p_{1}}=-\frac{1}{c_{2} \cdot\left(r_{0} / / r_{02}\right)}=-\frac{1}{40290 \times 40.78 \times 10^{-15}}=6.08 \times 10^{8} \mathrm{rad} / \mathrm{sec} \\
& \omega_{p_{2}}=-\frac{g_{m 3}}{\left(c_{g d_{1}}+c_{x}\right)}=\frac{-3.73 \times 10^{-4}}{2 \times 10^{-16}+67.732 \times 10^{-15}}=5.5 \times 10^{9} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

6.17 (a)

Both of these two differential pair can be simplified as comenon-source amplifier with different load resistance and capacitance

Since $R_{s}=0$, equation (6.20) can be simplified as

$$
\frac{V_{\text {out }}}{V_{\text {in }}}(s)=\frac{\left(c_{g d} s-g_{m}\right) R_{D}}{s\left[R_{D}\left(c_{g d}+c_{x}\right)\right]+1}
$$

where $\left\{\begin{array}{l}R_{D}=\frac{1}{g_{m p}} \text { for diode connected load } \\ C_{X}=C d B N+C B P+C\end{array}\right.$

$$
\begin{aligned}
& C_{x}=C_{d B N}+C_{d B p}+C_{g s p} \\
& \left\{\begin{array}{l}
R_{p} \cong\left(r_{0 N} / / r_{o p}\right) \text { for current mirror load } \\
C_{x}=C_{d B N}+C_{d B p}+C_{g d p}
\end{array}\right.
\end{aligned}
$$

Although there is right-half-plane zero, however this zero is much larger than the dominant pole.
Therefore, the maximum phase shift it can achieve is $\sim 90^{\circ}$ before the gain is down to unity.
(b)

(i) At low frequency. C_{1} is open circuit, u_{p} is like a diode-connected device \rightarrow Zout $\sim \frac{1}{g_{m p}}$
(ii) At high frequency, C_{1} is short ciran't. μ_{p} is like a cuessent sone device \rightarrow Lout $\sim\left(r_{\text {on }} / / r_{\text {op }}\right.$) Since $\left(r_{\text {on }} \| r_{0}\right) \gg \frac{1}{9 m p}$, Rout exhibits an inductive behavior

For transfer function, smarl-signal model

$$
r_{0}=\left(r_{0,1 /} r_{03}\right)
$$

$$
\begin{aligned}
K C L @ V_{x} & : \frac{V_{\text {out }-V_{x}}^{R_{1}}=S C_{1} V_{x} \Rightarrow V_{\text {out }}=\left(1+S R_{1} C_{1}\right) V_{x}}{} \\
& \Rightarrow V_{x}=\frac{V_{\text {out }}}{1+S R_{1} C_{1}}
\end{aligned}
$$

KCL@ Vout: $-g_{m_{1}} V_{\text {in }}=V_{\text {out }}\left(\frac{1}{r_{0}}+s C_{x}\right)+\frac{1}{R_{1}}\left(V_{\text {out }}-V_{x}\right)+g_{m_{3}} V_{x}$

$$
=V_{\text {out }}\left(\frac{1}{r_{0}}+S C_{x}+\frac{1}{R_{1}}\right)+\left(g m_{3}-\frac{1}{R_{1}}\right) \cdot \frac{V_{\text {out }}}{1+S R_{1} C_{1}}
$$

$$
\begin{aligned}
-g_{n}, V_{\text {in }} & =V_{\text {out }}\left(\frac{\frac{1}{r_{0}}+\frac{1}{R_{1}}+S C_{x}+\left(\frac{R_{1}}{r_{0}}+1\right) S C_{1}+S^{2} R_{1} C_{1} C_{x}+g_{m \Delta}-\frac{1}{R_{1}}}{1+S R_{1} C_{1}}\right) \\
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{-g_{n 1}\left(1+S R_{1} C_{1}\right)}{S^{2} R_{1} C_{1} C_{x}+S\left(C_{1}+\frac{R_{1} C_{1}}{r_{0}}+C_{x}\right)+\left(g_{n}+\frac{1}{r_{0}}\right)}
\end{aligned}
$$

From the above transfer function.

$$
\omega_{z}=-\frac{1}{R_{1} c_{1}}
$$

the sum of two poles $=-\frac{1}{R_{1} c_{1} C_{x}}\left(c_{1}+\frac{R_{1} c_{1}}{r_{0}}+c_{x}\right)=-\frac{1}{R_{1} c_{1}}\left(1+\frac{C_{1}}{c_{x}}\left(1+\frac{R_{1}}{r_{0}}\right)\right)$ usually $C_{1}>C_{x}, C_{1}$ at least $=C_{g s_{3}}$
Thus, the sum of two poles $>-\frac{2}{x_{1} c_{1}}$, which means that at least one of the poles are larger than zero \Rightarrow It's quite impossible to produce 135° phase shift
This, this circuit still cant produce 135° phase shift.
However, it's more likely for it to generate 90° phase shit @unity-gain frequency.

CHAPTER 7: NOISE
$(7,1)$

$$
\begin{aligned}
& \left|A_{v}\right|=g m R_{D} \\
& \overline{V_{n, \text { out }}^{2}}=\left(4 K T \frac{2}{3} \mathrm{gm}+\frac{4 K T}{R_{D}}\right) R_{D}^{2} \\
& \bar{V}_{n}^{2}, \text { in }=\frac{\overline{V_{n, \text { out }}^{2}}}{A_{v}^{2}}=4 K T\left(\frac{2}{3} \frac{1}{g m}+\frac{1}{g_{m}^{2} R_{D}}\right) \\
& \bar{V}_{n, \text { in }}^{\text {io }}=\sqrt{ }=\sqrt{V_{n_{\text {in }}^{2}} \cdot B W} \\
& g m=\sqrt{2 I_{D} \mu_{n} C_{0 x}\left(\frac{w}{L \text { ref }}\right)}=\sqrt{2(1 \mathrm{~mA})\left(134.28 \frac{\mu 4}{v^{2}}\right)\left(\frac{50 \mathrm{~mm}}{0.34 \mu \mathrm{~mm}}\right)} \cong 6.28 \frac{\mathrm{~mA}}{\mathrm{v}} \\
& 4 \mathrm{KT}=1.656 \times 10^{-2 \mathrm{~V} \cdot \mathrm{C},}, \quad R_{D}=2 \mathrm{kR}, \quad B W=100 \mathrm{MHz}
\end{aligned}
$$

(7.2) using eqn. (7.57)

$$
\begin{aligned}
& \overline{V_{n, \text { in }}^{2}}=4 K T\left(\frac{2}{3} \frac{1}{g m_{1}}+\frac{2}{3} \frac{g m_{2}}{g m_{1}^{2}}\right) \\
& \overline{V_{n, \text { in }}}=\sqrt{4 k T \frac{2}{3}} \sqrt{\frac{1}{g m_{1}}+\frac{g m_{2}}{g m_{1}^{2}}} \\
& \frac{g m_{2}}{g m_{1}{ }^{2}}=\left(\frac{1}{5}\right)^{2} \frac{1}{g m_{1}} \Rightarrow g m_{2}=\left(\frac{1}{5}\right)^{2} g m_{1} \\
& g m=\frac{2 I_{D}}{V_{g s}-V_{T}} \Rightarrow V_{g s}-V_{T}=\frac{2 I_{D}}{g_{m}} \\
& \therefore \text { Output swing }=V_{D D}-\left(v_{g S_{1}}-v_{T_{1}}\right)-\left|\left(v_{g S_{2}}-v_{T_{2}}\right)\right| \\
& =V_{D D}-2 I_{D}\left(\frac{1}{g m_{1}}+\frac{1}{g m_{2}}\right) \\
& =V_{D D}-2 I_{D}\left(\frac{1}{g_{1}} 1\right)\left(1+5^{2}\right) \\
& g m_{1}=\sqrt{2 I_{D} \mu_{n} \operatorname{Cox}\left(\frac{v}{u_{a}}\right)}=\sqrt{261 \mathrm{~mA}\left(134.28 \frac{\mu A}{v^{2}}\right)\left(\frac{\left.50 . \mathrm{mam}_{m}\right)}{\left.0.3 \mu_{m}\right)}\right.} \approx 1.986 \frac{\mathrm{~mA}}{v} \\
& \therefore \text { output Swing }=3 \mathrm{~V}-2(1 \mathrm{~mA})\left(\frac{1}{.926 \mathrm{~mm} / \mathrm{J}}\right)(26) \approx 0.38 \mathrm{~V} / /
\end{aligned}
$$

(7.3)

The drain noise current of M_{1} resulting from the gate resistance is $i_{1}=g m_{1} v_{1} \quad$ where v_{1} is the noise voltage of R_{1}.
Similarly, $\quad i_{2}=\operatorname{gm}_{2}\left(v_{1}+v_{2}\right)$
Thus, for transistor $M_{j}, \quad i j=g_{m j}\left(v_{1}+v_{2}+\cdots+v_{j}\right)$
The total drain noise current is,

$$
\begin{aligned}
i_{\text {tot }} & =i_{1}+i_{2}+\cdots+i_{n} \\
& =g m_{1} v_{1}+g m_{2}\left(v_{1}+v_{2}\right)+\cdots+g m_{n}\left(v_{1}+v_{2}+\cdots+v_{n}\right)
\end{aligned}
$$

If $g m_{1}=g m_{2}=\cdots=g m_{n}=\frac{g m_{n}}{n}$ then

$$
i_{\text {tot }}=\frac{9 m}{n}\left[n v_{1}+(n-1) v_{2}+\cdots+v_{n}\right]
$$

Assuming v_{1}, \ldots, v_{n} are uncorrelated,

$$
\overline{i_{+0+}^{2}}=\frac{g m^{2}}{n^{2}}\left[n^{2} \overline{v_{1}^{2}}+(n-1)^{2} \overline{v_{n}^{2}}+\cdots+\overline{v_{n}^{2}}\right]
$$

If $R_{1}=R_{2}=\cdots=R_{n}=\frac{R g}{n}$ then $\overline{V_{1}^{2}}=\overline{V_{2}^{2}}=\cdots=\overline{V_{n}^{2}}=4 \mathrm{kTB} \frac{R g}{n}$

$$
\begin{aligned}
\overline{i_{0+}^{2}} & =\frac{g m^{2}}{n^{2}} \frac{4 k T B R g}{n}\left[n^{2}+(n-1)^{2}+\cdots+1\right] \\
& =g m^{2}(4 k T B) R_{g} \frac{n(n+1)(2 n+1)}{6 n^{3}}
\end{aligned}
$$

As $n \rightarrow \infty$

$$
\overline{i_{\text {tot }}^{2}}=g m^{2}\left(4 k T B \frac{R g}{3}\right)
$$

which can be referred to the input as

$$
\begin{aligned}
\overline{V_{t o t}^{2}} & =\frac{\overline{c_{t_{0}^{2} t}^{2}}}{g m^{2}}=4 k T B\left(\frac{R g}{3}\right) \\
& \Rightarrow \text { lumped resistance }=\frac{R g}{3}
\end{aligned}
$$

$(7,4)$

$$
\begin{aligned}
& I_{n \text {, out }}=I_{D}+I_{n}, \text { KCL@ drain }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore I_{n, \text { out }}^{1}=\left(\frac{-z_{s}}{\left(1_{\text {m }} / / \mathrm{r}_{0}\right)+z_{s}}+1\right) I_{n} \\
& \therefore I_{n, \text { out }}^{1} 10=\frac{I_{n}}{Z_{s}\left(\mathrm{gm}+\frac{1}{r_{0}}\right)+1}
\end{aligned}
$$

(7.5)

$$
\begin{aligned}
& \left|A_{v}\right|=\left(g m_{1}+g m_{2}\right)\left(r_{1} / / r_{o_{2}}\right) \\
& \overline{V_{n_{1} \text { out }}^{2}}=4 k T \frac{2}{3}\left(g m_{1}+g m_{2}\right)\left(r_{9} \| r_{r_{2}}\right)^{2} \\
& \overline{V_{n, i^{2}}{ }^{2}}=\frac{\bar{V}_{n_{m}} n_{1}}{\left|n_{1}\right|^{2}}=4 k T \frac{2}{3}\left(\frac{1}{g m_{1}+g m_{2}}\right) \\
& \operatorname{eqn}(7.57) \quad \overline{V_{n, i n}^{2}}=4 k T \frac{2}{3}\left(\frac{1}{g_{m_{1}}}+\frac{8 m_{2}}{8 m_{1}^{2}}\right)
\end{aligned}
$$

increasing gm_{2} increases $\overline{\mathrm{v}_{n}{ }^{2} \text { in }}$ in ign. (7.57) but reduces $\overline{\sqrt{n, i^{2}}}$ for amplifier in figure 7.49 .
(7.6)(a)

$$
\left.\begin{array}{rl}
\left|A_{0}\right| & =\frac{9 m R_{D}}{1+g_{m} R_{s}} \\
\overline{V_{n, \text { out }}^{2}} & =4 k T R_{D}+4 k T \frac{2}{3} \frac{1}{g m}\left(\frac{g m R_{0}}{1+q m R_{D}}\right)
\end{array}\right)^{2}+4 k T \frac{1}{R_{s}}\left(\frac{R_{S}}{\frac{1}{g m}+R_{S}}\right)^{2} R_{D}^{2} .
$$

$(7.6)(b)$

$$
\begin{aligned}
& \left|A_{v}\right|=g_{m}\left(\frac{1}{\text { 品 }} / R_{s s}\right) \\
& \overline{V_{n \text { pout }}^{2}}=\left(4 k T \frac{2}{3} \text { qu }+4 k T \frac{1}{R s}\right)\left(\frac{1}{\mathrm{~g} m} / / R s\right)^{2} \\
& \overline{V_{n \text { in }}^{2}}=\frac{\overline{V_{n}^{2} \text { ad }}}{\left|A_{v}\right|^{2}}=4 k T \frac{2}{3} \frac{1}{g_{m}}+4 k T \frac{1}{g_{m}^{2} R_{s}}
\end{aligned}
$$

(7.6) (c)

$$
\begin{aligned}
& \left|A_{V}\right|=\frac{\mathrm{gm}}{(1+(\text { qq }} \frac{1}{\left.R_{F}\right)} R_{s} \cdot R_{\text {out }} \\
& R_{\text {out }}=R_{s}+\left(1+g m R_{s}\right) R_{F}
\end{aligned}
$$

(7.6) (d)

$$
\begin{aligned}
& \left|A_{v}\right|=\frac{g M_{1}}{1+\text { goneRS }} \cdot R_{\text {out }} \\
& R_{\text {out }}=\frac{1}{8 m_{2}} \\
& \overline{V_{n_{0} \text { out }}{ }^{2}}=4 k T \frac{2}{3} g_{m_{2}} R_{\text {out }}{ }^{2}+4 k T \frac{2}{3} \frac{1}{g m_{1}}\left|A_{v}\right|^{2}+4 k T \frac{1}{R_{5}}\left(\frac{R_{s}}{\sigma_{1}+R_{5}}\right)^{2} R_{\text {out }}{ }^{2} \\
& \overline{V_{n, i n}^{2}}=\frac{\frac{V_{n_{2}, 2}^{2}}{}}{\left|v_{v}\right|^{2}}=4 k T\left[\frac{2}{3} \frac{1}{q_{m_{1}}}+R_{s}+\frac{2}{3} g m_{2}\left(\frac{1+g q_{1} R_{s}}{g m_{1}}\right)^{2}\right]
\end{aligned}
$$

(7,b)(e) $\quad\left|A_{v}\right|=g m_{1} R_{D}$

$$
\begin{aligned}
& \overline{V_{n, \text { out }}^{2}}=\left(4 k T \frac{2}{3} 9 m_{1}+4 k T \frac{1}{D_{D}}\right) R_{D}^{2}
\end{aligned}
$$

$M 2+R_{F}$ do not contribute noise because $r_{0_{1}}=\infty$
$(7,6)(f)$

$$
\begin{aligned}
& \left|A_{v}\right|=9 m_{1}\left(\frac{q m_{2} R_{S}}{1+q m_{2} R_{s}}\right) R_{D} \\
& \frac{V_{n, \text { out }}^{2}}{2}=\left[4 k T \frac{1}{R_{D}}+4 k T \frac{2}{3} \frac{1}{g_{2}}\left(\frac{g m_{2}}{1+q m_{2} R_{s} R_{s}}\right)^{2}+4 k T \frac{2}{3} \frac{1}{q m_{1}}\left(\frac{9 m_{1} R_{s}}{\frac{1}{m_{m_{2}}}+R_{s} R_{s}}\right)^{2}+4 k T \frac{1}{R_{s}}\left(\frac{R_{S}}{\frac{1}{m_{2}}+R_{s}}\right)^{2}\right] \cdot R_{D}^{2}
\end{aligned}
$$

note: $\frac{R_{s}}{\frac{1}{m_{2}}+R_{s}}=\frac{g m_{2} R_{s}}{1+\delta m_{2} R_{s}}$
(7.7)(a)

$$
\begin{aligned}
& \left|A_{v}\right|=\frac{g m_{1} R_{\text {out }}}{1+\left(g m_{1}+\frac{+R_{F}}{R_{F}}\right) R_{S}} \\
& \text { Rout }=R_{s}+\left(1+\text { gq, } R_{s}\right) R_{F}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{V_{n, \text { in }}^{2}}=\frac{\overline{V_{n_{1}^{2} \text { out }}^{2}}}{\left|A_{v}\right|^{2}}=4 k_{T}\left[\frac{2}{3} \frac{1}{g m_{1}}+\frac{1}{\left(m_{1}^{2} R_{F}\right.}+R_{s}\left(1+\frac{1}{g m_{1} R_{F}}\right)^{2}+\frac{2}{3} g m_{2}\left(\frac{1+\left(g m_{1}+\frac{1}{s_{F}}\right) R_{s}}{g m_{1}}\right)^{2}\right]
\end{aligned}
$$

$(7,7)(b)$

$$
\begin{aligned}
& \left|A_{v}\right|=\left(9 m_{2}+\frac{g m_{1}}{1+\left(g m_{1}+\frac{1}{R_{f}}\right) R_{s}}\right) \cdot R_{\text {out }} \\
& \text { Rout }=R_{s}+\left(1+g m_{1} R_{s}\right) R_{F} \\
& \overline{V_{n_{1} \text { out }}^{2}}=\left[\frac{4 k T \frac{2}{3} g m_{1}}{\left(1+\left(q_{1}+\frac{1}{R_{F}}\right) R_{S}\right)^{2}}+\frac{4 k T \frac{1}{k_{F}}}{\left(1+\left(m_{1}+\frac{1}{F_{F}}\right) R_{S}\right)^{2}}+\frac{4 k T \frac{1}{R_{S}} \cdot R_{S}^{2}}{\left(R_{S}+\frac{1}{\left.\xi_{1} / 1 / R_{F}\right)^{2}}\right.}+4 k T \frac{2}{3} \text { gan }\right] R_{\text {out }}{ }^{2} \\
& \overline{V_{n, i n}^{2}}=\frac{\overline{V_{n-0 x}^{2}}}{\left|A_{v}\right|^{2}}=4 k T\left(\frac{1}{g m_{1}+g m_{2}\left(1+\left(g m_{1}+\frac{1}{R_{F}}\right) R_{s}\right)}\right)^{2}\left[\frac{2}{3} g m_{1}+\frac{1}{R_{F}}+R_{s}\left(g m_{1}+\frac{1}{F_{F}}\right)^{2}+\frac{2}{3} g_{m_{2}}\left(1+\left(g m_{1}+\frac{1}{F_{F}}\right) R_{5}\right)^{2}\right]_{/ /}
\end{aligned}
$$

(7.7) (C) $\left|A_{V}\right|=\left(\frac{g m_{1}}{1+g m_{1} R_{s}}\right)\left(1+g m_{2} R_{s}\right)\left(R_{D}\right)$

$$
\begin{aligned}
& \widetilde{V_{n, 0 u t}^{2}}=4 K T R_{D}+4 K T \frac{2}{3} g m_{2} R_{D}^{2}+4 K T \frac{2}{3} \frac{1}{\frac{1}{m_{1}}}\left|A_{V}\right|^{2}+4 K T \frac{1}{R_{S}}\left[\frac{R_{S}}{\frac{1}{g m_{1}}+R_{S}}-\frac{\frac{1}{g m_{1}} R_{S}}{\frac{1}{m_{1}}+R_{S}} g m_{2}\right]^{2} R_{D}^{2} \\
& \overline{V_{n, i n}^{2}}=\frac{\overline{V_{n \text { put }}^{2}}}{\left|A_{v}\right|^{2}}=4 k T\left[\frac{2}{3} \frac{1}{g m_{1}}+\left(\frac{1}{R_{D}}+\frac{2}{3} g m_{2}\right)\left(\frac{1+g m_{1} R_{s}}{g m_{1}\left(1+q q_{2} R_{s}\right)}\right)^{2}+R_{s}\left(g m_{1}-g m_{2}\right)^{2}\left(\frac{1}{g m_{1}\left(1+g m_{2} R_{s}\right)}\right)^{2}\right],
\end{aligned}
$$

$(7.7)(d) \quad\left|A_{v}\right|=g m_{1} R_{D}$

$$
\overline{V_{n, \text { out }}^{2}}=\left[4 k T \frac{1}{R_{D}}+4 k T \frac{2}{3} g m_{3}+4 k T \frac{2}{3} g m_{1}\right] R_{D}^{2}
$$

M2 does not contribute any noise because $r_{O_{1}}$ and $\mathrm{r}_{3}=\infty$.

$$
\overline{V_{n, \text { in }}^{2}}=\frac{\overline{V_{n}, 0^{2}}}{\left|A_{v}\right|^{2}}=4 k T\left[\frac{2}{3} \frac{1}{g m_{1}}+\frac{2}{3} \frac{g m_{3}}{g m_{1}^{2}}+\frac{1}{g m_{1}^{2} R_{D}}\right]_{1}
$$

(7.8)(a)

$$
\begin{aligned}
& \frac{\left|A_{v}\right|}{}=g m_{1} R_{D} \\
& V_{n, \text { out }}^{2}
\end{aligned}=\frac{\left[4 k T \frac{1}{R_{D}}+4 k T \frac{2}{3} g m_{1}+4 k T R_{G} g m_{1}^{2}\right] R_{D}^{2}}{\frac{V_{1} \text { in }}{V_{n}^{2}}=\frac{V_{\text {out }}}{\left|A_{v}\right|^{2}}=4 k T\left(\frac{2}{3} \frac{1}{g m_{1}}+R_{G}+\frac{1}{g m_{1}^{2} R_{D}}\right)}
$$

(7.8)(b)

$$
\begin{aligned}
& \left|A_{V}\right|=\left(g m_{1}+\frac{1}{R_{1}}\right)\left(R_{1} / / R_{D}\right) \\
& \overline{V_{n_{1} \text { out }}}{ }^{2}=\left[4 k T \frac{2}{3} \text { gl } 1+4 k T \frac{1}{k_{1}}+4 k T \frac{1}{k_{0}}\right]\left(R_{1} \| R_{D}\right)^{2} \\
& \overline{V_{n_{1} \text { in }}}=\frac{\overline{V_{n} \text { out }}}{\left|A_{v}\right|^{2}}=4 k T\left(\frac{1}{g_{1}+\frac{1}{R_{1}}}\right)^{2}\left[\frac{2}{3} \operatorname{con}_{1}+\frac{1}{R_{1}}+\frac{1}{R_{D}}\right] \text { // }
\end{aligned}
$$

(7.8)(c)

$$
\begin{aligned}
& A_{V}=\left(-g m_{1}+\frac{1}{R_{F}}\right)\left(R_{F} / / R_{D}\right) \\
& V_{n, \text { out }}{ }^{2}=4 K T\left(\frac{1}{R_{F}}+\frac{1}{R_{D}}+\frac{2}{3} g m_{1}\right)\left(R_{F} \| / R_{D}\right)^{2} \\
& \overline{V_{n_{1} \text { in }}{ }^{2}}=\frac{V_{n_{1} \text { out }}}{\left|A_{V}\right|^{2}}=4 K T\left(\frac{1}{-g m_{1}+\frac{1}{R_{F}}}\right)^{2}\left[\frac{2}{3} g m_{1}+\frac{1}{R_{F}}+\frac{1}{R_{D}}\right]
\end{aligned}
$$

(7.8)(d) Find short cirain output noise current $\overline{i_{n, \text { put }}}{ }^{2}$

$$
\begin{aligned}
& {\overline{i_{1} \text { out }}}^{2}=4 K T \frac{1}{R_{D}}+4 k T \frac{2}{3} g m_{1}+\overline{i_{\text {noise }}^{2}}{ }_{R_{1}}^{2}+{\overline{i_{\text {noise }}}{ }_{R_{2}}^{2}}^{2} \\
& \mathrm{inoise}_{R_{1}}^{2}=4 k T \frac{1}{R_{1}}\left|A_{I_{1,2}}\right|^{2} \\
& \overline{\overline{i n o i s c}^{2} R_{2}}=4 k T \frac{1}{R_{2}}\left|A_{I, R_{2}}\right|^{2}
\end{aligned}
$$

- small signal model used to find $A_{I, R I}$

$$
A_{I, R_{1}}=\frac{i \text { out }}{i R_{1}}=-\left(1+\left(R_{1} / / / R_{2}\right)\left(g m_{1}-\frac{1}{R_{1}}\right)\right)
$$

(7.8) (d) cont.

- small signal model wed to find $A_{I, R 2}$

$$
\therefore \overline{\text { in out }}^{2}=4 k T \frac{1}{p_{0}}+4 k T \frac{2}{3}, g m_{1}+4 k T \frac{1}{R_{1}}\left(1+\left(e_{1} / / R_{2}\right)\left(g m_{1}-\frac{1}{k_{1}}\right)\right)^{2}+4 k T \frac{1}{R_{2}}\left[\frac{R_{2}}{R_{1}+R_{2}}-g m_{1}\left(R_{1} / / R_{2}\right)\right]^{2}
$$

(7.9)(a)

$$
\begin{aligned}
& \frac{|A v|}{V_{n_{\text {out }}}^{2}}=\frac{g m_{1} R_{D}}{4 k T}\left(\frac{1}{R_{D}}+\frac{2}{3} g m_{1}\right) R_{D}^{2} \\
& \frac{V_{n, i n}^{2}}{V_{n}}=\frac{1}{\left|V_{\left.n_{1}\right|^{2}}\right|^{2}}=4 k T\left(\frac{2}{3} \frac{1}{m_{1}}+\frac{1}{g m_{1}^{2} R_{D}}\right)_{11}
\end{aligned}
$$

$(7.9)(b)$

$$
\begin{aligned}
& \left|A_{V}\right|=g m_{1}\left(R_{D} \| \frac{1}{j_{n}}\right) \\
& \overline{V_{n, 0 u t}^{2}}=4 K T\left(\frac{1}{R_{D}}+\frac{2}{3} g m_{1}+\frac{2}{3} g m_{2}\right)\left(R_{D} \| \frac{1}{g m_{2}}\right)^{2} \\
& \overline{V_{n i n}{ }^{2}}=\frac{V_{V_{\text {nout }}}{ }^{2}}{\left.1 A_{v}\right|^{2}}=4 K T\left(\frac{2}{3} \frac{1}{g_{n_{1}}}+\frac{1}{g_{m_{1}^{2}} R_{D}}+\frac{2}{3} \frac{g_{n 2}}{\left.g_{m_{1}}\right)^{2}}\right)_{1 \prime}
\end{aligned}
$$

(7.9) (c) $\quad\left|A_{v}\right|=g m_{1} R_{D}$

$$
\begin{aligned}
& \overline{V_{n}, \text { out }}=4 K T\left(\frac{2}{3} g M_{1}+\frac{1}{R_{D}}\right) R_{D}^{2} \\
& \bar{V}_{n, \text { in }}^{2}=\frac{\bar{V}_{n_{m_{1}}}^{2}}{A_{\left.N_{1}\right|^{2}}}=4 k T\left(\frac{2}{3} \frac{1}{g m_{1}}+\frac{1}{g m_{1}^{2} R_{D}}\right){ }_{11}
\end{aligned}
$$

(7.9)(d)

$$
\begin{aligned}
& \left|A_{v}\right|=\frac{8 m_{1}}{8 m_{1}+8 m_{2}} \\
& \overline{V_{n_{1} \text { aut }}}=\left(4 k T \frac{2}{3} g m_{1}+4 k T \frac{2}{3} g m_{2}\right)\left(\frac{1}{g m_{1}+g m_{2}}\right)^{2} \\
& \overline{V_{n_{\text {in }}}^{2}}=\frac{\overline{V_{n_{0} \text { out }}{ }^{2}}}{\left|A_{v}\right|^{2}}=4 k T\left(\frac{2}{3} \frac{1}{8 m_{1}}+\frac{2}{3} \frac{g m_{2}}{8 m_{1}^{2}}\right)_{\|}
\end{aligned}
$$

(7.9)(e) $\quad\left|A_{v}\right|=1, \overline{V_{n, i n}^{2}}=\overline{V_{n, \text { out }}^{2}}=4 \mathrm{kT} \frac{2}{3} \frac{1}{\mathrm{gm} m_{1}}$
(7.10). With the input shitted to ground,

$$
\begin{aligned}
& \overline{V_{n \text { out }}^{2}}=\frac{1}{\operatorname{cox} f}\left[\frac{g m_{1}^{2} K_{n}}{(W L)_{1}}+\frac{g m_{3}^{2} k_{p}}{(W L)_{3}}+\frac{g m_{3}^{2} k_{p}}{(W L)_{4}}\right]\left(r_{01} /\left(r_{O_{3}}\right)^{2}\right. \\
& \left|A_{v}\right|=\left(g m_{1}+g m b_{1}\right)\left(r_{01} / / r_{03}\right)
\end{aligned}
$$

- With the input open,

$$
\begin{aligned}
& V_{n, \text { out }}^{2}=\frac{1}{\operatorname{coxf}\left[\mathrm{gm}_{2}^{2} k_{n}\left(\frac{1}{(\omega L)_{0}}+\frac{1}{(\omega L)_{2}}\right)+\operatorname{gm}_{3}^{2} k_{p}\left(\frac{1}{(\omega L)_{3}}+\frac{1}{(\omega L)_{4}}\right)\right] \text { Rout }^{2}} \\
& R_{\text {out }}^{\cong} r_{O_{3}} \|\left(\mathrm{gm}_{1} r_{0} r_{\mathrm{O}_{2}}^{I_{n, \text { in }}^{2}}=\frac{1}{\operatorname{coxf}}\left[\mathrm{gm}_{2}^{2} k_{n}\left(\frac{1}{(\omega L)_{6}}+\frac{1}{(\omega L)_{2}}\right)+\operatorname{gm}_{3}^{2} k_{p}\left(\frac{1}{(\omega L)_{3}}+\frac{1}{(\omega L)_{4}}\right)\right]\right.
\end{aligned}
$$

(7.11)

$$
\begin{aligned}
& \overline{V_{n, \text { ut }}}=\frac{k}{\operatorname{cox}(\omega D)_{1} \cdot \frac{1}{f}}\left(\text { gm, } R_{\text {out }}\right)^{2}+\frac{k}{\operatorname{cox}(\omega L)_{2}} \cdot \frac{1}{f}\left(\text { in } n_{2} \text { Rout }\right)^{2} \\
& R_{\text {out }}=\left(\frac{1}{g_{m_{1}}}\left\|\frac{1}{q_{m_{1}}}\right\| /\left\|r_{o_{1}}\right\| r_{O_{2}}\right) \\
& \left|A_{v}\right|=\text { gm, Rout } \\
& \overline{V_{n, i_{i n}}}=\frac{\left.\overline{V n}_{n, 0 u}\right|^{2}}{\left|A_{v}\right|^{2}}=\frac{k}{c_{0 x} f}\left[\frac{1}{(\omega L)_{1}}+\frac{g_{n}^{2}}{(\omega L)_{2} g n_{1}^{2}}\right]_{/ 1}
\end{aligned}
$$

$(7.12)(a)$

$$
\begin{aligned}
& \overline{V_{n, \text { out }}{ }^{2}}=4 k T \frac{2}{3}\left(g m_{1}+g m_{2}+g m_{3}+g m_{4}+g m_{5}+g m_{6}\right) R_{\text {out }}{ }^{2} \\
& \left|A_{v}\right|=g m_{1} R_{\text {out }} \\
& \frac{g m_{1}}{}=g m_{2}, g m_{3,}=0.5 g m_{5,6} \\
& V_{n, \text { in }}^{2}=4 k T \frac{2}{3}\left[\frac{2}{g m_{1}}+\frac{3 g m_{5}}{8 m_{1}^{2}}\right] \quad / 1
\end{aligned}
$$

$(7.12)(b)$

$$
\begin{aligned}
& \left|A_{v}\right|=g m_{1}\left(r_{o 2} \| r_{04}\right) \\
& \overline{V_{n, \text { out }}{ }^{2}}=4 k T \frac{2}{3}\left[g m_{1}+g m_{2}+g m_{3}+g m_{4}\right] \\
& g m_{1}=g m_{2}, g m_{3}=g m_{4} \\
& \frac{V_{n, \text { in }}^{2}}{}=\frac{V_{n_{1} \text { out }}{ }^{2}}{\left|A_{v}\right|^{2}}=4 k T\left(\frac{2}{3}\right)\left[\frac{2}{g m_{1}}+\frac{2 g m_{3}}{g m_{1}^{2}}\right]
\end{aligned}
$$

(7.13)(a)
$(7,13)(b)$

$$
\begin{aligned}
& I R_{S}=V_{G S}-V_{T} \Rightarrow R_{S}=\frac{V_{G S}-V_{T}}{I} \\
& g m_{1}=\frac{2 I}{V_{G S}-V_{T}}=\frac{2}{R_{S}}
\end{aligned}
$$

$$
\therefore 4 K T\left[\frac{2}{3} \mathrm{gm}\right]=4 \mathrm{KT} \frac{R_{3}}{3} \quad \leftarrow \text { Thermal noise of } M 1
$$

$$
\text { 4KTRS -Thermal noise of } R_{S}
$$

$\therefore R_{s}$ contributes $3 x$ more noise poser ($\overline{V_{n}, i^{2}}$) than $M I$ when $I R_{S}=V_{G S}-V_{T}$.
(7,14) Consider the following crt with noise o vil due to resistor R_{F} :

using the Miller effect, we have the following ckt:

notice: $\overline{V_{n, i n_{1}^{2}}^{2}} \neq \overline{V_{n, i n_{2}}^{2}} \Rightarrow$ cannot use Miller's Theorem II

$$
\begin{aligned}
& A_{V_{2}}=\frac{V_{\text {out }}}{V_{i n} n_{2}}=-g n R_{2}=\frac{-g n R_{F} A v_{1}}{A V_{1}-1}=\left(-g m R_{F}+1\right)=A V_{1} \\
& \overline{V_{n_{\text {out }}}^{2}}=4 k T R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{v_{1}}=\frac{V_{\text {out }}}{V_{\text {in }}}=-\operatorname{gm} R_{F}+1 \\
& \sqrt{n_{1, \text { out }}^{2}}=4 \mathrm{KT} R_{F} \\
& \frac{V_{n, i n}{ }^{2}}{V_{n}}=\frac{\sqrt{V_{n},\left.0 T_{1}\right|^{2}}}{\left|A_{V_{1}}\right|^{2}}=4 \mathrm{KT} R_{F}\left(\frac{1}{-g_{m} R_{F}+1}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{u}\right|=\frac{q m_{1} R_{D}}{1+g m_{1} R_{S}} \\
& \overline{V_{n, \text { out }}^{2}}=4 K T R_{D}+4 K T \frac{2}{3} \frac{1}{g_{m}}\left|A_{N}\right|^{2}+4 K T \frac{1}{R_{S}}\left(\frac{R_{S}}{R_{S}+\bar{m}_{m_{1}}}\right)^{2} R_{D}^{2} \\
& \overline{V_{n, \text { in }}^{2}}=4 k T\left[\frac{2}{3} \frac{1}{\mathrm{~g}}+R_{s}+\frac{1}{R_{0}}\left(\frac{1+\frac{1}{2}, R_{s}}{8 m_{1}}\right)^{2}\right]
\end{aligned}
$$

(7.15) Using equation (7.26)

$$
\begin{aligned}
& \overline{V_{n, \text { out }}^{2}}=4 k T\left(\frac{2}{3} \mathrm{gm}\right){r_{0}^{2}}^{2} \\
& =\left(1.656 \times 10^{-20} \mathrm{~V} \cdot \mathrm{C}\right)\left(\frac{2}{3}\right)\left(4.44 \frac{\mathrm{~mA}}{\mathrm{~V}}\right)(20 \mathrm{kR})^{2} \\
& =19.6 \times 10^{-15} \frac{\mathrm{~V}^{2}}{\mathrm{~Hz}} \\
& \overline{V_{n, \text { OUT TOT }}}=\sqrt{\left(19.6 \times 10^{-15} \frac{\mathrm{Mz}}{\mathrm{~Hz}}\right)(50 \mathrm{MHz})} \cong 990 \mu V_{\mathrm{rms}} / / \\
& \text { (7.16) } \quad\left|A_{V}\right|^{2} \cdot \frac{\left[g m\left(R_{R} / / r_{0}\right)\right]^{2}}{1+\left(2 \pi\left(R_{D} / r_{0}\right) C_{L} F\right)^{2}} \\
& \overline{V_{n, \text { out }}^{2}}=4 K T \frac{\left(R_{D} \| r_{0}\right)^{2}}{R_{D}} \frac{1}{1+\left(2 \pi\left(R_{d} / r_{0}\right) L_{2} f\right)^{2}}+4 K T \frac{2}{3} g m\left(R_{D} / / r_{0}\right)^{2} \frac{1}{1+\left(2 \pi\left(R_{D} \| / r_{0}\right) L_{L} f\right)^{2}} \\
& +\frac{k}{\operatorname{cox} \omega L} g^{2}\left(R_{p} \| r_{0}\right)^{2} \frac{1}{1+\left(2 \pi\left(R_{p} / /_{0}\right) \varepsilon_{L} f\right)^{2}} \\
& \overline{V_{n_{\text {, Out }}{ }_{\text {TOT }}}^{2}}=4 K T\left(R_{0} \| r_{0}\right)\left[\frac{\left(R_{0} \| R_{0}\right)}{\left.R_{1}\right)}+\frac{2}{3} \mathrm{gm}\left(R_{D} \| r_{0}\right)\right] \int_{f_{L}}^{f_{H}} \frac{d f}{1+\left(2 \pi\left(R_{0} \| r_{0}\right) R_{C} f\right)^{2}} \\
& +\frac{k g m^{2}\left(R_{D} / r_{0}\right)^{2}}{\operatorname{cox}^{2} W L} \int_{f_{L}}^{f_{H}} \frac{d f}{f\left(1+\left(2 \pi\left(R_{D} \|_{0}\right) L_{L} f\right)^{2}\right)} \\
& \overline{V_{n, \text { out }}^{2} t_{0 r}}=\frac{2 k T}{\pi C_{L}}\left[\frac{\left(R_{D} \| r_{0}\right)}{R_{D}}+\frac{2}{3} g_{m}\left(k_{D} \| / /_{0}\right)\right]\left[\tan ^{-1}\left(2 \pi\left(R_{D} \| r_{0}\right) C_{L} f_{H}\right)-\tan ^{-1}\left(2 \pi\left(R_{D} \| r_{0}\right) C_{L} f_{L}\right)\right] \\
& +\frac{k g m^{2}\left(R_{D} \| r_{0}\right)^{2}}{\operatorname{cox}^{2} W L} \int_{f_{L}}^{f_{H}} \frac{d f}{f\left[1+\left(2 \pi\left(R_{d} \| r_{0}\right) C_{L} f\right)^{2}\right]}
\end{aligned}
$$

(7.17) Using equation number (7.57)

$$
\begin{aligned}
& \overline{V_{n, i n^{2}}}=4 k T\left(\frac{2}{3}\right)\left(\frac{1}{8 m_{1}}+\frac{\frac{g m_{2}}{8 m_{1}{ }^{2}}}{}\right) \\
& \mathrm{gm}_{1}=\sqrt{2(0.5 \mathrm{~mA})\left(134.29 \frac{4 \mathrm{~V}}{2} \times\left(\frac{50}{34}\right)\right.}=4.44 \frac{\mathrm{~mA}}{\mathrm{v}} \\
& \mathrm{gm}_{2}=\sqrt{2(0.5 \mathrm{~mA})\left(38.37 \frac{\mu^{4}}{\mathrm{v}^{2}}\right)\left(\frac{50}{34}\right)}=2.36 \frac{\mathrm{~mA}}{v} \\
& \therefore \overline{V_{n, i n^{2}}}=\left(1.656 \times 10^{-20} \text { vie }\right)\left(\frac{2}{3}\right)(225.23 \Omega+119.71 \Omega) \\
& \cong 3.81 \times 10^{-18} \frac{v^{2}}{\mathrm{hz}} \\
& \overline{V_{n, \text { in }}} \cong 1.95 \frac{\mathrm{nV}}{\sqrt{1 z z}}
\end{aligned}
$$

$(7,18)(a)$

$$
\begin{aligned}
& \left|A_{v}\right|=g m_{1} R_{\text {out }} \\
& R_{\text {out }}=r_{o_{1}} / /\left(R_{s}+\left(1+g m_{2} R_{s}\right) r_{o_{2}}\right) \\
& \overline{V_{n_{1} \text { out }}{ }^{2}}=\left[4 k T \frac{1}{R_{s}}\left(\frac{R_{s}}{R_{s}+\frac{1}{g m_{2}}}\right)^{2}+4 k T \frac{2}{3} \frac{1}{g m_{2}}\left(\frac{g m_{2}}{1+g m_{2} R_{s}}\right)^{2}+4 k T \frac{2}{3} g m_{1}\right] R_{o u t}{ }^{2} \\
& \overline{V_{n_{1} \text { in }}{ }^{2}}=\frac{\overline{V_{n_{1}}{ }^{2} u_{1}}}{\left|A_{v}\right|^{2}}=4 k T\left[\frac{2}{3} \frac{1}{g m_{1}}+R_{s}\left(\frac{g m_{2}}{1+g m_{2} R_{s}}\right)^{2} \frac{1}{g m_{1}^{2}}+\frac{2}{3} \frac{g m_{2}}{g m_{1}^{2}}\left(\frac{1}{1+g m_{2} R_{s}}\right)^{2}\right]
\end{aligned}
$$

(b) Rs large
(7.19) Neglecting body effect and using equs 7.60 and 7.61

$$
\begin{aligned}
& \overline{V_{n, i n}{ }^{2}}=4 k T\left(\frac{2}{3} \frac{1}{\delta m^{2}}+\frac{1}{8 m^{2} R_{D}}\right) \\
& \overline{I_{n \text { sin }}{ }^{2}}=\frac{4 k T}{R_{D}} \\
& g_{m}=\sqrt{2(1 \mathrm{~mA})\left(134.29 \frac{\mu A}{v_{2}}\right)\left(\frac{50}{34}\right)}=6.28 \frac{\mathrm{~mA}}{\mathrm{~V}} \\
& \therefore \frac{V_{n, i n}^{2}}{V_{n, n^{2}}^{2}}=\left(1.656 \times 10^{-20} \mathrm{~V} \cdot \mathrm{C}\right)\left(\frac{2}{3} 159.24 \Omega+25.36 \Omega\right) \cong 2.18 \times 10^{-18} \frac{\mathrm{v}^{2}}{\mathrm{~Hz}} \mathrm{I} \\
& \overline{I_{n, i n^{2}}}=\frac{\left(1.656 \times 10^{-20} \mathrm{~V} \cdot \mathrm{c}\right)}{1 \mathrm{kn}}=16.56 \times 10^{-24} \frac{\mathrm{~A}^{2}}{\mathrm{~Hz}}
\end{aligned}
$$

(7.20)(a)

$$
\begin{aligned}
& \overline{I_{n, i n}^{2}}=4 k T \frac{1}{R_{D}}+4 k T \frac{2}{3} \mathrm{gm}_{2} \\
& \overline{I_{n, i n}}=\sqrt{4 k T\left(\frac{1}{R_{D}}+\frac{2}{3} g m_{2}\right)} \\
& \therefore \frac{2}{3} g m_{2}=\left(\frac{1}{5}\right)^{2}\left(\frac{1}{R_{D}}\right) \\
& \Rightarrow \mathrm{gm}_{2}=\left(\frac{1}{25}\right)\left(\frac{1}{1000}\right)\left(\frac{3}{2}\right)=60 \frac{\mu A}{\mathrm{~V}} \\
&\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{2}=\frac{\mathrm{gm}_{2}^{2}}{2 I_{D} \mu_{n} c_{0 x}}=\frac{\left(60 \frac{\mu A}{v}\right)^{2}}{2(.05 \mathrm{~mA})\left(134.29 \frac{4 \mathrm{M}}{\mathrm{v}}\right)} \approx 0.268 \mathrm{ll}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& g m_{2}=\frac{2 I_{D}}{\left(V_{S S}-V_{T}\right)_{2}} \Rightarrow\left(V_{g S}-V_{T}\right)_{2}=\frac{2 I_{D}}{g_{m}}=\frac{2(.05 \mathrm{~mA})}{60 \frac{\mu 4}{V}} \cong 1.67 \mathrm{~V} \\
& \left(V_{G S}-V_{T}\right)_{1}=\sqrt{\frac{2 I_{D}}{\mu_{0} N_{x}\left(\frac{M}{1}\right)_{1}}}=\sqrt{\frac{2(.05 \mathrm{nA} A}{134.24 \frac{2 \pi}{V}\left(\frac{50}{34}\right)} \cong 71.2 \mathrm{mV}}
\end{aligned}
$$

neglecting body effect

$$
\begin{aligned}
& V_{b}=\left(V_{g s}-V_{t}\right)_{2}+V_{G s_{1}}=1.67+0.0712+0.7=2.4412 \mathrm{~V} \\
& \text { Output Swing }=V_{c c}-\left(V_{g s}-V_{t}\right)_{1}-\left(V_{g s}-V_{t}\right)_{2}=3-1.67-0.0712=1.2588 \mathrm{~V}
\end{aligned}
$$

Note: output swing is not symmetric.
(7.21) Neglecting body effect and using the result of equ. 7.60

$$
\begin{aligned}
& \overline{V_{n, \text { in }}=} \sqrt{4 K T\left(\frac{2}{3} \frac{1}{g m_{1}}+\frac{1}{g_{1}^{2} R_{D}}\right)}=3 \frac{\mathrm{nV}}{\mathrm{~Hz}} \\
& \quad \frac{2}{3} \frac{1}{\mathrm{gm}_{1}}+\frac{1}{\mathrm{gm}_{1}^{2} R_{D}}=543.4 \Omega
\end{aligned}
$$

note:

$$
\begin{aligned}
& \frac{1}{8 m_{1}}=\frac{\left(V_{\text {os }}-V_{T}\right)}{2 I_{D}} \triangleq \frac{\Delta V}{2 I_{D}} \quad \text { also define } R_{N}=543.4 \Omega \\
& \Rightarrow \Delta V^{2}+\frac{4}{3} I_{D} R_{D} \Delta V-4 I_{D}^{2} R_{D} R_{N}=0 \quad ; \quad I_{D}=0.5 \mathrm{~mA}
\end{aligned}
$$

One possible answer assuming $\left(\frac{\mathrm{w}}{\mathrm{L}}\right)_{1}=\left(\frac{\mathrm{w}}{\mathrm{L}}\right)_{2}$ and a 3 V supply

$$
\begin{aligned}
& \Delta V_{1}=\Delta V_{2}=562 \mathrm{mV} ; \quad R_{D}=1875 \Omega \\
& \Rightarrow \text { Output swing }=2 \cdot I_{D} R_{D}=1.875 \mathrm{~V}_{\text {// }} \\
& g m_{1}=g m_{2}=\frac{2 I_{0}}{\Delta V}=1.78 \mathrm{m4} / \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& V_{b}=\Delta V_{2}+V_{g s_{2}} \simeq 0.562 V+0.562 \mathrm{~V}+0.7 \mathrm{~V}=1.824 \mathrm{~V}
\end{aligned}
$$

(7.22) Neglecting body effect and using eqns $7.64+7.65$

$$
\begin{aligned}
& V_{n, i n}^{2}=4 k T \frac{2}{3}\left(\frac{1}{8 m_{1}}+\frac{8 m_{3}}{8 m_{1}^{2}}\right) \\
& \overline{I_{n, \text { in }}{ }^{2}}=4 k T \frac{2}{3}\left(g m_{2}+g m_{3}\right) \\
& g m_{1}=g m_{2}=\sqrt{2(0.5 \mathrm{~mA})\left(134.29 \frac{4 \mathrm{vin}}{\mathrm{v}^{2}}\right)\left(\frac{50}{34}\right)} \cong 4.44 \frac{\mathrm{~mA}}{\mathrm{v}} \\
& g m_{3}=\sqrt{2(0.5 \mathrm{~mA})\left(38.37 \mathrm{MA} \mathrm{v}^{2}\right)\left(\frac{50}{34}\right)} \cong 2.38 \frac{\mathrm{~mA}}{\mathrm{v}} \\
& \therefore \quad \overline{V_{n, \text { in }}^{2}}=\left(1.656 \times 10^{-20} \mathrm{~V} . c\right)\left(\frac{2}{3}\right)(225.23 \Omega+120.73 \Omega) \cong 3.82 \times 10^{-18} \frac{\mathrm{vz}}{\mathrm{Mz}} / / \\
& \overline{I_{n, i n}{ }^{2}}=\left(1.156 \times 10^{-20} \text { VC }\right)\left(\frac{2}{3}\right)\left(4.44 \frac{\mathrm{~mA}}{\mathrm{v}}+2.38 \frac{\mathrm{~mA}}{\mathrm{v}}\right) \cong 75.3 \times 10^{-24} \frac{\mathrm{~A}^{2}}{\mathrm{~Hz}}
\end{aligned}
$$

(7.23) Neglect body effect and use eqn. 7.65

$$
\begin{aligned}
& \overline{I_{n, i n}{ }^{2}}=4 k T \frac{2}{3}\left(\mathrm{gm}_{2}+g m_{3}\right) \\
& g m_{1}=\sqrt{2(0.5 \mathrm{sAA})\left(134.294 \frac{4}{2}\right)\left(\frac{58}{35}\right)}=4.44 \frac{\mathrm{~mA}}{\mathrm{~V}} \\
& \left(\mathrm{Vgs}-V_{+}\right)_{1}=\frac{2 I_{0}}{g m_{1}}=\frac{2(0.5 \mathrm{~A})}{4.44 \mathrm{~m} V_{v}} \cong 225.23 \mathrm{mV}
\end{aligned}
$$

define $\Delta v_{x}=\left|\left(v_{g s}-v_{t}\right)\right|_{x}$
$\therefore \quad$ Output Swing $=V_{C C}-\left(\Delta V_{1}+\Delta V_{2}+\Delta V_{3}\right)=2 V ; V_{C C}=3 V$

$$
\Rightarrow \Delta V_{2}+\Delta V_{3}=774.77 \mathrm{mV}
$$

note: $\quad g_{m}=\frac{2 I_{p}}{\Delta V}$

$$
\therefore \quad \frac{I_{n, \text { in }}{ }^{2}}{}=4 V T\left(\frac{2}{3}\right) 2 I_{D}\left(\frac{\Delta V_{2}+\Delta V_{3}}{\Delta V_{2} \Delta V_{3}}\right)
$$

to minimize $\overline{I_{n}, \text { in }}{ }^{2}$ let $\Delta v_{2}=\Delta v_{3} \Rightarrow g m_{2}=g m_{3}=\frac{2(0.5 \mathrm{~m} / \mathrm{f})}{0.387 \mathrm{~V}}=2.58 \frac{\mathrm{~mA}}{\mathrm{v}}$

$$
\begin{aligned}
& \left(\frac{w}{L_{46}}\right)_{2}=\frac{\left(g m_{2}\right)^{2}}{2 I_{D} \mu_{1} 6 x}=\frac{\left(2.58 \frac{\mathrm{ma}}{\mathrm{~s}}\right)^{2}}{2(0.5 \mathrm{mat})\left(34.24 \frac{\mathrm{vm}}{\mathrm{v}_{2}}\right)} \cong 49.7
\end{aligned}
$$

(7.24) (a) Neglecting body ffoct and $\mathrm{ro}_{1}, \mathrm{rO}_{2}$

$$
\begin{aligned}
& \left.\left(\frac{w}{L+\frac{1}{n}}\right)_{1}=\frac{1}{2 I_{D} \mu_{n} \operatorname{Cox} R_{\text {aut }}^{2}}=\frac{1}{2(\ln A)(134.29 \mu n} \sqrt{v_{2}}\right)(100 \Omega)^{2} \quad \cong 3723 \text {, }
\end{aligned}
$$

(b) Using the result from eqn 7.73

$$
\begin{aligned}
& \overline{V_{n, i n}}=\sqrt{4 K T\left(\frac{2}{3}\right)\left(\frac{1}{g m_{1}}+\frac{g m_{2}}{g m_{1}}\right)} \\
& \frac{g m_{2}}{g m_{1}^{2}}=\left(\frac{1}{5}\right)^{2} \frac{1}{g m_{1}} \quad \Rightarrow g m_{2}=\left(\frac{1}{5}\right)^{2} g m_{1}=\frac{1}{2500 \Omega}
\end{aligned}
$$

$$
\begin{aligned}
& \left(V_{g S}-V_{T}\right)_{1}=\sqrt{\frac{2 I_{0}}{\operatorname{man} \operatorname{cox}\left(\tilde{V}_{2}\right)}}=\sqrt{\frac{2(0,1 \mathrm{~mA})}{(1349.944)(\mathrm{E} 733)}} \cong 20 \mathrm{mV}
\end{aligned}
$$

réglecting budy effect

$$
\begin{aligned}
& V_{G S_{1}} \approx 0.7+0.02=0.72 \\
& \therefore \text { Output swing } \approx V_{C C}-V_{G S_{1}}-\left(V_{G S}-V_{T}\right)_{2}=3-0.72-0.5=1.78 \mathrm{~V} \text { a }
\end{aligned}
$$

(7.25)
(7.26) (a) $M_{1}=M_{2}, M_{3}$ does not contribute differential noise
(b)

$$
\therefore \overline{V_{n, i n_{b}^{2}}^{2}}=\overline{V_{n, i n_{a}^{2}}^{2}}+2(4 k T)\left(\frac{2}{3} \mathrm{gm}_{3} R_{s}^{2}\right)
$$

MS +My contribute differential noise in (b)

$$
\begin{aligned}
& M 1=M 2, M_{3}=M_{4} \\
& \overline{V_{n, \text { out }}^{2}}=V_{n \text {, out }}^{2}+2(4 \mathrm{kT})\left(\frac{2}{3}\right) \mathrm{gm}_{3}\left(\frac{R_{S}}{\text { gmt }_{1}}+R_{s}\right)^{2} R_{D}^{2} \\
& \overline{V_{n, i_{b}^{2}}^{2}}=\frac{\overline{V_{n, \text { out }}^{2}}}{\left|A_{V}\right|^{2}}=2(4 K T)\left[\frac{2}{3} \frac{1}{g m_{1}}+R_{S}+\frac{1}{R_{D}}\left(\frac{1+\text { gm, }_{1} R_{S}}{g m_{1}}\right)^{2}+\frac{2}{3} g m_{3} R_{S}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{v}\right|=\frac{g m_{1} R_{1}}{1+g m_{1} R_{S}} \\
& \overline{V_{n_{1} \text { out }}^{2}}=\left[2(4 k T) \frac{1}{R_{D}}+2\left(4 K T \frac{2}{3}\right) \frac{1}{8 m_{1}}\left(\frac{g m_{1}}{1+\text { min } R_{s}}\right)^{2}+2\left(4 k T \frac{1}{R_{s}}\right)\left(\frac{R_{S}}{\frac{1}{m}^{R_{1}}+R_{S}}\right)^{2}\right] R_{D}^{2} \\
& \overline{V_{n, i_{a}}{ }^{2}}=\frac{\overline{V_{n \text {, out }}^{2}}}{\left|A_{v}\right|^{2}}=2(4 k T)\left[\frac{2}{3} \frac{1}{g m_{1}}+R_{s}+\frac{1}{R_{D}}\left(\frac{1+g m_{1} R_{s}}{g m_{1}}\right)^{2}\right] \text {./ }
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{v}\right|^{2}=g m_{1}^{2}\left(\frac{g m_{2}}{w c_{x}}\right)^{2}\left(\frac{1}{1+\left(\frac{g m_{2}}{w c_{x}}\right)^{2}}\right) R_{D}^{2} \quad \omega=2 \pi f \\
& \overline{V_{n, \text { out }}^{2}}=\left[4 k T \frac{1}{R_{D}}+4 k T \frac{2}{3} \frac{1}{\delta m_{2}} \frac{g m_{2}^{2}}{1+\left(\frac{q m_{2}}{w C_{x}}\right)^{2}}+4 k T \frac{2}{3} g m_{1}\left(\frac{g m_{2}}{\omega x_{x}}\right)^{2}\left(\frac{1}{1+\left(\frac{m_{2} 2_{2}}{W C x}\right)^{2}}\right)\right] R_{D}^{2} \\
& \overline{V_{n, i n}^{2}}=\frac{\overline{V_{n, 0}{ }_{2 k}^{2}}}{\left|A_{v}\right|^{2}}=4 k T\left[\frac{2}{3} \frac{1}{g m_{1}}+\frac{2}{3} \frac{1}{g m_{2}}\left(\frac{w C_{x}}{g m_{1}}\right)^{2}+\frac{1}{R_{D}}\left(\frac{g m_{2}^{2}+\left(w C_{x}\right)^{2}}{g m_{1}^{2} g m_{2}^{2}}\right)\right]
\end{aligned}
$$

8.1

$$
\begin{aligned}
& V_{\text {in }}=l_{\text {in }}\left(Z_{\text {in }}+G_{22}\right)+G_{21} V_{\text {out }} \\
& \frac{V_{\text {out }}-A_{0} \operatorname{lin} Z_{\text {in }}}{Z_{\text {out }}}=-G_{11} V_{\text {out }}-G_{12} \text { lin } \\
& \Rightarrow \quad \operatorname{lin}\left(\frac{A_{0} Z_{\text {in }}}{Z_{\text {out }}}-G_{12}\right)=\operatorname{Vout}\left(\frac{1}{Z_{\text {out }}}+G_{11}\right) \\
& V_{\text {in }}=\operatorname{Vout}\left[G_{21}+\frac{\left(Z_{\text {in }}+G_{22}\right)\left(\frac{1}{Z_{\text {out }}}+G_{11}\right)}{\frac{A_{0} Z_{\text {in }}}{Z_{\text {out }}}-G_{12}}\right] \\
& \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\frac{A_{0} Z_{\text {in }}-G_{12} \text { out }}{Z_{\text {out }}}}{G_{21}\left(\frac{A_{0} Z_{\text {in }}}{Z_{\text {out }}}-G_{12}\right)+\left(Z_{\text {in }}+G_{22}\right)\left(\frac{1}{Z_{\text {out }}}+G_{11}\right)} \\
& A_{\substack{\text { open } \\
\text { load }}}=\frac{1}{Z_{\text {out }}}\left(A_{0} Z_{\text {in }}-G_{12} Z_{\text {out }}\right) \frac{1}{Z_{\text {in }}+G_{22}} \cdot \frac{1}{\frac{1}{Z_{\text {out }}}+G_{11}} \\
& =\frac{G_{11}^{-1}}{G_{11}^{-1}+Z_{\text {out }}} \cdot \frac{1}{Z_{\text {in }}+G_{22}}\left(A_{0} z_{\text {in }}-G_{12} Z_{\text {out }}\right)
\end{aligned}
$$

if $G_{12} \ll A_{0} Z_{\text {in }} / Z_{\text {out }}$ then the second term can be neglected
8.2

The current through R_{s} :

$$
\begin{aligned}
& \text { The current through } M_{1}: \frac{g_{m_{2}} \cdot v_{t} R_{D_{2}}}{R_{D_{2}}+R_{F}+\left(R_{s} \| \frac{1}{g_{m_{2}}}\right)} \\
& R_{s} R_{D_{D_{2}}} \quad \frac{g_{m_{2}} v_{t} R_{D_{2}}}{R_{D_{2}}+R_{F}+\left(R_{s} \| \frac{1}{g_{m_{2}}}\right)} \cdot \frac{R}{R s+\frac{1}{g_{m_{2}}}}
\end{aligned}
$$

This current is multiplied by $R_{D_{1}}$ to produce V_{f}
loop gain: $\frac{g_{m_{2}} R_{D_{2}} R_{s} R_{D_{1}}}{\left(R_{D_{2}}+R_{F}\right)\left(R_{s}+\frac{1}{g m_{2}}\right)+R_{s} \cdot \frac{1}{g m_{2}}}$
This result is accurate, whereas $G_{21} A_{v o p e n ~ i s ~ a p p r o k i m a t e ~ b e c a u s ~}^{\text {is }}$ it neglects the signal propagating thru the feedback network from the input to the output.
8.3
voltage-current

loop gain: $\frac{R_{s}}{R_{s}+\frac{1}{g_{m_{2}}}} \cdot g_{m_{1}} r_{0}$,

$$
\frac{v_{i n}}{R_{s}} \times\left(R_{s} \| \frac{1}{g_{m 2}}\right) g_{m_{1}} r_{01}=V
$$

$$
\Rightarrow \quad \frac{V_{\text {ow }}}{\left.\frac{V_{n}}{R_{s}}\right|_{\text {open }}}=g_{m_{1}} r_{01}\left(R_{s} \| \frac{1}{g_{m_{2}}}\right) \quad \operatorname{Zin}_{\text {in pen }}=\frac{1}{g_{m_{2}}}
$$

$$
\begin{aligned}
& \left.\frac{V_{\text {out }}}{\frac{V_{n}}{R_{s}}}\right|_{\text {closed }}=\frac{1}{g_{r_{1} \rightarrow \infty}} \Rightarrow \quad A_{r_{\text {closed }}}=\frac{1}{g_{m_{2} R s}} \\
& Z_{\text {in closed }}=0 \quad Z_{r_{1} \rightarrow \infty} \quad Z_{\text {out closed }}^{\text {cod }}=\frac{R_{s}+\frac{1}{g_{m_{2}}}}{g_{m_{1}} R_{s}}=\frac{1}{g_{m_{1}}}+\frac{1}{g_{m_{1} g_{m_{2}} R_{s}}}
\end{aligned}
$$

$$
\frac{v_{F}}{v_{t}}=g_{m_{2}} R_{S} \frac{g_{m_{1}}}{g_{m_{2}}}=g_{m_{1}} R_{S}
$$

$$
\begin{aligned}
& \text { Zinopan }=r_{02} \quad \text { Zoutopen }=\frac{1}{g_{m 2}} \\
& \left.\frac{V_{\text {out }}}{\frac{V_{i n}}{R_{s}}}\right|_{\text {open }}=R_{s} \cdot \frac{g_{m_{1}}}{g_{m_{2}}}
\end{aligned}
$$

$$
R_{s} g_{m_{2}} V_{t} \frac{r_{0_{1}}}{R_{S}+\frac{1}{g_{m_{1}}}}=V_{F} \Rightarrow \text { loopgain: } \frac{R_{S} g_{m_{2}} r_{01}}{R_{S}+\frac{1}{g_{m_{1}}}}
$$

$$
R_{o u t} \text { open }=g_{m_{1}} r_{0} R_{s}+r_{01}+R_{s} \approx g_{m_{1} r_{0}, R_{s}}
$$

$$
R_{\text {in open }}=\frac{1}{g_{m_{1}}}
$$

$$
\left.\frac{V_{\text {out }}}{v_{\text {in }}}\right|_{\text {open }}=\frac{r_{01}}{R_{s}+\frac{1}{g m_{1}}}
$$

$$
r_{0, \rightarrow \infty} \quad A_{u}=\frac{1}{R_{s} g_{m_{2}}} \quad R_{\text {in }}=0 \quad R_{\text {out }}=\frac{g_{m_{1}}\left(R_{s}+\frac{1}{g_{m_{1}}}\right)}{g_{m_{2}}}
$$

$$
\begin{aligned}
& \text { Rinoken }=\frac{1}{g_{m_{1}}+g_{m_{2}}} \quad R_{\text {out open }}=g_{m_{1}} r_{01}\left(R_{s} \| \frac{1}{g_{m_{2}}}\right) \\
& A_{v_{\text {open }} \Rightarrow} \Rightarrow \frac{V_{\text {in }}}{R_{s}}\left(R_{s} \| \frac{1}{g_{m_{2}}}\right) \times g_{m_{1}} r_{o_{1}}=v_{\text {out }} \Rightarrow A_{r_{\text {open }}}=\frac{g_{m_{1}} r_{0}\left(R_{s} \| \frac{1}{g_{m_{2}}}\right)}{R_{s}}
\end{aligned}
$$

$$
A_{v \text { closed }}^{r_{0} \rightarrow \infty}=\frac{\left(R_{s} \| \frac{1}{g_{m_{2}}}\right)\left(\frac{1}{g_{m_{2}}}+R_{s} \| \frac{1}{g_{m m_{1}}}\right)}{R_{s}\left(R_{s} \| \frac{1}{g_{m_{1}}}\right)}
$$

$$
\operatorname{Rin}_{\text {closed }}=0 \quad \operatorname{Ront}_{\text {closed }}=\frac{\left(R_{s} \| \frac{1}{g m_{2}}\right)\left(\frac{1}{g_{m}}+R_{s} \| \frac{1}{g_{m 1}}\right)}{R_{s} \| \frac{1}{g m_{1}}}
$$

8.4

$$
\begin{aligned}
\operatorname{Rin} & =\frac{1}{c_{1} s}+\frac{1}{g_{m}} \\
R_{\text {out }} & =\frac{r_{0}}{1+\frac{c_{2}}{c_{1}+c_{2}} g_{m_{1} r_{0}}}=\frac{c_{1}+c_{2}}{g_{m_{1} C_{2}}}
\end{aligned}
$$

using the results in part (a)

$$
\begin{aligned}
& \operatorname{Rin}=\frac{1}{C_{1} s}+\frac{1}{g_{m_{1}}+g_{m_{2}}} \\
& \text { Rout }=\frac{c_{1}+c_{2}}{\left(g_{m_{1}}+g_{m_{2}}\right) C_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { loop gain }=g_{m_{1}} r_{0} \frac{c_{1}}{c_{1}+c_{2}} \\
& R_{\text {in closed }}=\frac{1}{g_{m_{1}}}+\frac{1}{c_{2 S}} \\
& R_{\text {out closed }}=\frac{r_{0}}{1+g_{m_{1}} r_{0} \frac{c_{1}}{c_{1}+c_{2}}}=\frac{c_{1}+c_{2}}{g_{m_{1}} C_{1}}
\end{aligned}
$$

8.5

$$
-\frac{1}{\left(1+\frac{1}{g_{m_{1}} r_{01}}\right) \frac{c_{2}}{c_{1}}+\frac{1}{g_{m_{1}} r_{01}}}=-0.95 \frac{c_{1}}{c_{2}} \stackrel{g_{m_{1} r_{01}}=50}{\Rightarrow} \quad \frac{c_{1}}{c_{2}}=1.63
$$

Open loop output impedance: r_{0} loop gain: $\frac{C_{2}}{C_{1}+c_{2}} g_{m} r_{0}$

$$
\text { closed loop Rout }=\frac{r_{0}}{1+\frac{c_{2}}{c_{1}+c_{2}} g_{m} r_{0}}=0.49 r_{0}
$$

8.6

$$
\begin{aligned}
& R_{\text {inclosed }}=\frac{1}{g_{m_{1}}} \cdot \frac{1}{1+g_{m_{2}} R_{D} \frac{C_{1}}{G_{1}+c_{2}}} \quad I_{1}=I_{2} \Rightarrow g_{m_{2}}=\sqrt{2} g_{m_{1}} \\
&=\frac{1}{g_{m_{1}}} \cdot \frac{1}{1+1000 \sqrt{2} g_{m_{1}}}=50 \Rightarrow g_{m_{1}}=3.42 \mathrm{mv} \\
& g_{m}=\sqrt{2 \mu_{n} \cos \frac{\mathrm{~W}}{L} I D} \Rightarrow I_{D}=\frac{\left(3.42 \times 10^{-3}\right)^{2}}{2 \times 1.342 \times 10^{-4} \times 100}=435 \mu_{\mathrm{A}}
\end{aligned}
$$

8.7

$$
\begin{aligned}
& \frac{v_{x}}{l_{x}}=\frac{R_{D}}{1+\frac{g_{m 2} R_{s}\left(g_{m_{1}}+g_{m b_{1}}\right) R_{D}}{\left(g_{m_{1}}+g_{m b_{1}}\right) R_{s}+1} \cdot \frac{c_{1}}{c_{1}+c_{2}}}=\frac{R_{D \rightarrow \infty}}{g_{m_{2}} R_{s}\left(g_{m_{1}}+g_{m b_{1}}\right)} \cdot \frac{c_{1}+c_{2}}{c_{1}} \\
& \text { if }\left(g_{m_{1}}+g_{m b_{1}}\right) R_{s} \gg 1 \Rightarrow \frac{v_{x}}{1 x}=\frac{1}{g_{m_{2}}} \cdot \frac{c_{1}+c_{2}}{c_{1}}
\end{aligned}
$$

8.8

If $f_{-3 d B}$ of each stage is ω_{0}

$$
\left|\frac{1}{\left(1+\frac{s}{\omega_{0}}\right)^{n}}\right|=\frac{1}{\sqrt{2}} \Rightarrow\left(1+\left(\frac{w}{w_{0}}\right)^{2}\right)^{n}=2
$$

if we indicate the $\operatorname{Gainx} f_{-3 d B}$ as $k=$ const

$$
\begin{aligned}
& \Rightarrow\left(\frac{k}{\omega_{0}}\right)^{n}=500 \\
& \Rightarrow \frac{\ln 2}{\ln \left(1+\left(\frac{\omega}{\omega_{0}}\right)^{2}\right)}=\frac{\ln 500}{\ln \left(\frac{k}{\omega_{0}}\right)} \Rightarrow 1+\left(\frac{\omega}{\omega_{0}}\right)^{2}=\left(\frac{K}{\omega_{0}}\right)^{\frac{\ln 2}{\ln 500}} \\
& \Rightarrow \sqrt{\left(\frac{k}{\omega_{0}}\right)^{\frac{\ln 2}{\ln 500}}-1} \\
& \frac{d \omega}{d \omega_{0}}=0 \Rightarrow \sqrt{\left(\frac{k}{\omega_{0}}\right)^{\ln \alpha} \ln 500-1}+\frac{\omega_{0}}{2} \cdot \frac{1}{\sqrt{\left(\frac{k}{\omega_{0}}\right)^{\ln 2} \ln 500}-1} \cdot\left(-\frac{\ln 2}{\ln 500} \cdot \frac{1}{\omega_{0}} \cdot\left(\frac{k}{\omega_{0}}\right)^{\frac{\ln 2}{\ln 50 x}}\right. \\
& \Rightarrow\left(\frac{k}{\omega_{0}}\right)^{\frac{\ln 2}{\ln 500}-1-\frac{1}{2} \ln 2}\left(\frac{k}{\ln 500}\left(\frac{\ln 2}{\omega_{0}}\right)^{\ln 500}=0 \Rightarrow \frac{K}{\omega_{0}}=1.67\right. \\
& \Rightarrow G a i n \text { per stage }=1.67 \quad \text { Stage } B W=598 \mathrm{MHZ}
\end{aligned}
$$

8.9

$$
A_{\text {open }}=A_{0} \frac{R_{2}}{R_{1}+R_{2}+R_{0}}
$$

$$
\underset{\text { open }}{R_{\text {out }}}=R_{0} \|\left(R_{t}+R_{2}\right)
$$

Loop gain=

$$
\left(\frac{R_{2}}{R_{1}+R_{2}}\right) A_{0}\left(\frac{R_{2}}{R_{0}+R_{1}+R_{2}}\right)
$$

$$
\begin{aligned}
& A_{v \text { closed }}=\frac{A_{0} \frac{R_{2}}{R_{0}+R_{1}+R_{2}}}{1+\left(\frac{R_{2}}{R_{1}+R_{2}}\right) A_{0}\left(\frac{R_{2}}{R_{0}+R_{1}+R_{2}}\right)} \\
& R_{\text {out closed }}=\frac{R_{0} \|\left(R_{1}+R_{2}\right)}{1+\left(\frac{R_{2}}{R_{1}+R_{2}}\right) A_{0}\left(\frac{R_{2}}{R_{0}+R_{1}+R_{2}}\right)}
\end{aligned}
$$

8.10

$$
\begin{aligned}
& \frac{1+\frac{c_{2}}{c_{1}}}{\left(1+\frac{c_{2}}{c_{1}}\right) \frac{1}{g_{m 1}\left(r_{0_{2}} \| r_{04}\right)}+1}=0.95\left(1+\frac{c_{2}}{c_{1}}\right) \\
& g_{m_{1}}\left(r_{02} \| r_{04}\right) \approx 24.4 \\
& \Rightarrow 1+\frac{c_{2}}{c_{1}} \leq 1.28
\end{aligned}
$$

Iout fully flows through $R_{F} . . \Rightarrow I_{\text {out }}=I_{\text {in }}$ and Tout $=I_{\text {out }} . R_{D 2}$.

Thus, the transimpedancer is equal to $R_{\Phi_{2}}$. (continued an next page)
8.11 (cn'td)

$$
\begin{aligned}
& -(\underbrace{\text { Iou } R_{S}+V_{n R S}}_{V_{Y}}+V_{n R F}+V_{n_{1}}) g_{m_{1} R_{D}}) \\
& \left(V_{X}-V_{Y}\right) g_{m_{2}}=\text { out } \\
& \Rightarrow g_{m_{2}}\left[\left(I_{\text {out }} R_{s}+V_{n_{R_{s}}}+V_{n R_{F}}+V_{n_{1}}\right)\left(-O_{m_{1}} R_{D}\right)+V_{n_{R D}}+V_{n_{2}}-\left(I_{\text {out }} R_{s}+V_{n R_{s}}\right)\right]=I_{\text {out }} \\
& \Rightarrow I_{\text {out }}\left[1+g_{m_{2}} R_{s}\left(g_{m}, R_{D}+1\right)\right]=g_{m_{2}}\left[\left(-g_{m}, R_{D}-1\right) V_{n R s}-g_{m_{1}} R_{D} V_{n R_{F} F}\right. \\
& \left.-S_{m_{1}} R_{D} V_{n_{1}}+V_{n_{R_{D}}}+V_{n_{2}}\right] \\
& \Rightarrow I_{o u t}=\frac{g_{m 2}\left[-\left(1+g_{m_{1}} R_{D}\right) v_{n_{1}} e_{S}-g_{m_{1}} K_{D} v_{n_{R F}}-g_{m_{1}} R_{D} v_{n_{1}}+v_{n R D}+v_{n_{2}}\right]}{1+g_{m 2} R_{S}\left(1+g_{m 1}, R_{D}\right)}
\end{aligned}
$$

If we apply a current of $I_{\text {in }}$ to the input, the resulting output current is obtained as:

$$
\begin{aligned}
& \{\underbrace{\left[\left(I_{\text {in }}+I_{\text {out }}\right) R_{S}+I_{\text {in }} R_{F}\right]\left(-g_{m}, R_{D}\right)}_{V_{x}}-\underbrace{\left(I_{\text {in }}+I_{\text {out }}\right)}_{V_{Y}} R_{S}\} g_{m 2}=I_{\text {out }} \\
& \frac{I_{\text {out }}}{I_{\text {in }}}=\frac{\left[-g_{m} R_{D}\left(R_{S}+R_{F}\right)-R_{S}\right] g_{m z}}{1+g_{m z} R_{S}\left(1+g_{m}, R_{D}\right)}
\end{aligned}
$$

Dividing the output noise current by the gain yields theimputreferred noise current:

$$
I_{n, i n}=\frac{-\left(1+g_{m}, R_{D}\right) V_{n R_{S}}-g_{m 1} R_{D} 1_{n R_{F}}-g_{m}, R_{D} V_{n}+V_{n 12}+V_{n 2}}{-g_{m}, R_{D}\left(R_{S}+R_{F}\right)-R_{S}}
$$

8.12

$$
\begin{aligned}
& I_{D_{2}}=1 \mathrm{~mA} \Rightarrow \frac{1}{2} \mu_{P} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{x}-\left|V_{T P}\right|\right)^{2}=1 \mathrm{~mA} \\
& \Rightarrow V_{x}=1.478 \\
& I_{D_{1}}=761 \mu_{A} \\
&\left\{\begin{array}{l}
V_{y} \\
2 k
\end{array} \frac{V_{y}-V_{\text {out }}}{2 k}=761 \mu_{A} \Rightarrow V_{\text {out }}=1.841\right. \\
& \frac{V_{\text {out }}}{2 k}+\frac{V_{\text {out }}-V_{y}}{2 K}=1 \mathrm{~mA} \Rightarrow V_{y}=1.681
\end{aligned}
$$

$$
\begin{gathered}
I_{D_{1}}=0.761 \mathrm{~mA} \Rightarrow \frac{1}{2} \times 1.342 \times 10^{-4} \times 100\left(V_{\text {in }}-V_{y}-V_{T_{n}}\right)^{2}=0.761 \mathrm{~mA} \\
V_{\text {in }}-V_{Y}=1.037 \Rightarrow \operatorname{Vins} 2.717 \mathrm{~V} \\
\left\{\begin{array}{l}
g_{m_{1}}=\frac{2 \times 0.761 \mathrm{~m}}{1.037-0.7}=4.52 \mathrm{mV} \quad G_{21}=0.5 \\
g_{m_{2}}=\frac{2 \times 1 \mathrm{~mA}}{1.522-0.8}=2.77 \mathrm{mv} \quad \text { open }=\frac{-2 \mathrm{~K}}{1 \mathrm{k}+\frac{1}{4.52 \mathrm{mv}}\left[-2.77\left[2^{\mathrm{k}} 114^{\mathrm{k}}\right]\right]=6.04 i} \\
3
\end{array} \quad A_{v_{\text {closed }}=\frac{6.048}{1+3.024}=1.503}\right.
\end{gathered}
$$

8.13
problem 8.9

$$
\text { Rout }=\frac{R_{0}\left(R_{1}+R_{2}\right)}{R_{0}+R_{1}+R_{2}+\frac{R_{2}^{2}}{R_{1}+R_{2}} \cdot \frac{A_{0}}{1+\frac{S}{\omega_{0}}}}
$$

zero: ω_{0} $D C$ value: $\frac{R_{0}\left(R_{1}+R_{2}\right)}{R_{0}+R_{1}+R_{2}+A_{0} R_{2}^{2} / R_{1}+R_{2}}$ pole: $\omega_{0}+\frac{A_{0} R_{2}^{2}}{\left(R_{1}+R_{2}\right)\left(R_{0}+R_{1}+R_{2}\right)} \omega_{0}$ final value: $R_{0} H\left(R_{1}+R_{2}\right)$

The output impedance is less reduced, as the loop gain gets smaller.
8.12

$$
\begin{aligned}
& I_{D_{2}}=1 \mathrm{~mA} \Rightarrow \frac{1}{2} \mu_{P} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{D D}-V_{x}-\left|V_{T P}\right|\right)^{2}=1 \mathrm{~mA} \\
& \Rightarrow V_{x}=1.478 \\
& I_{D_{1}}=761 \mu_{A} \\
& \quad\left\{\begin{array}{l}
\frac{V_{y}}{2 k}+\frac{V_{Y}-V_{\text {out }}}{2 K}=761 \mu_{A} \Rightarrow V_{\text {out }}=1.841 \\
\frac{V_{\text {out }}}{2 K}+\frac{V_{\text {out }}-V_{Y}}{2 K}=1 \mathrm{~mA} \Rightarrow V_{y}=1.681
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& I_{D_{1}}=0.761 \mathrm{~mA} \Rightarrow \frac{1}{2} \times 1.342 \times 10^{-4} \times 100\left(V_{\text {in }}-V_{y}-V_{T n}\right)^{2}=0.761 \mathrm{~mA} \\
& V_{\text {in }}-V_{y}=1.037 \Rightarrow \operatorname{Vins} 2.717 \mathrm{~V} \\
& \left\{\begin{array}{l}
g_{m_{1}}=\frac{2 \times 0.761 \mathrm{~m}}{1.037-0.7}=4.52 \mathrm{mv} \quad \text { Av }_{\text {open }}=\frac{-2 k}{1 k+\frac{1}{4.52 \mathrm{mv}}}\left[-2.77\left[2^{\mathrm{k}} 114^{\mathrm{k}}\right]\right]=6.04 \\
g_{m_{2}}=\frac{2 \times 1 \mathrm{~mA}}{1.522-0.8}=2.77 \mathrm{mv} \quad A_{v_{\text {closed }}}=\frac{6.048}{1+3.024}=1.503
\end{array}\right.
\end{aligned}
$$

8.13
problem 8.9

$$
\text { Rout }=\frac{R_{0}\left(R_{1}+R_{2}\right)}{R_{0}+R_{1}+R_{2}+\frac{R_{2} 2}{R_{1}+R_{2}} \cdot \frac{A_{0}}{1+\frac{s}{\omega_{0}}}}
$$

zero: ω_{0}
pole: $\omega_{0}+\frac{A_{0} R_{2}^{2}}{\left(R_{1}+R_{2}\right)\left(R_{0}+R_{1}+R_{2}\right)} \omega_{0} \quad$ final value: $R_{0} \|\left(R_{1}+R_{2}\right)$

The output impedance is less reduced, as the loop gain gets smaller.
8.14 The input-referred norse voltage of the circuit is the same as that of the open-loop circuit:

The noise produced by $M_{1}-M_{4}$. dEferred to the input is:

$$
\begin{array}{r}
\overline{V_{n}^{2}}=4 k T\left(\frac{2}{3 g_{m 1,2}}+2 \frac{2 g_{m 3,4}}{3 g_{m, 2}^{2}}\right)+2 \frac{K_{N}}{(w L) 1,2 C_{n} f}+2 \frac{K_{p}}{(w L)_{3,4} C_{x} f} \times \\
\frac{g_{m}^{2} 3,4}{g_{m 1,2}^{2}}
\end{array}
$$

8.15
a) Zin open $=R_{0}$

$$
\operatorname{Zin}_{\text {closed }}=\frac{R_{0}}{1+G_{m_{1}} G_{m_{2}} R_{0} \frac{R_{0}}{1+R_{0} C_{1} s}}=\frac{R_{0}\left(1+R_{0} G_{1} S\right)}{R_{0} C_{1} S+1+G_{m_{1}} G_{m_{2}} R_{0}^{2}}
$$

Zero: $\frac{1}{R_{0} C_{1}}$ pole: $\frac{1+G m_{1} G m_{2} R_{0}^{2}}{R_{0} C_{1}} D C: \frac{R_{0}}{1+G_{m_{1}} G_{m_{2}} R_{0}^{2}}$ final: R_{0}

b) Heavy feedback at lower frequency. As frequency increases, feedback weakens slice the output impedance of the feedforward amplifier reduces
8.15 (C) For input-referred noise voltage, we short the input, hence $\overline{V_{n, \text { out }}^{2}}=4 k T \times 2\left(\frac{2}{3} g_{m}+\frac{1}{R_{0}}\right)\left(R_{0} l_{c_{1}, S} \mid\right)$.
Dividing this by the voltage gain, $2_{m}^{2}\left(\left|R_{0} \| \frac{1}{C_{1} s}\right|^{2}\right.$, we have

$$
\overline{V_{n, i n}^{2}}=8 k T\left(\frac{2}{38 m}+\frac{1}{g_{m^{2} K_{0}}}\right)
$$

For the input noise current, we leave the input open.
Here, $V_{n_{1}}$, and $V_{n_{2}}$ represent the input noise of each differential pair concluding the noise of resistors).

$$
\begin{aligned}
& -V_{n, \text { out }}=G_{m_{2}}\left(R_{0} \| \frac{1}{c_{1} s}\right)\left[\left(V_{n_{1} \text { out }}+V_{n_{1}}\right) G_{m_{1}} R_{0}+V_{n_{2}}\right] \\
& \Rightarrow V_{n, \text { out }}=-\frac{G_{m_{2}}\left(R_{0} \| \frac{1}{c_{1} s}\right)\left(G_{m_{1}} R_{0} V_{n_{1}}+V_{n_{2}}\right)}{1+G_{m_{2}}\left(R_{0} \| \frac{1}{C_{1} s}\right) G_{m}, R_{0}}
\end{aligned}
$$

If ur apply current between the two input terminals with value In, the output voltage is obtained as:

$$
\begin{aligned}
& -V_{\text {out }}=\left(V_{\text {out }} G_{m 1}+I_{\text {in }}\right) R_{0} \cdot G_{m_{2}}\left(R_{0} \| \frac{1}{c_{1} s}\right) \\
\Rightarrow & \frac{V_{\text {out }}}{I_{\text {in }}}=-\frac{G_{m 2} R_{0}\left(R_{0} \| \frac{1}{c_{1} s}\right)}{1+G_{m 1} G_{m 2} R_{0}\left(R_{0} \| \frac{1}{C_{1} s}\right)}
\end{aligned}
$$

Dividining V_{n},out by this gain gives the input-roferred noise
current: $\quad I_{n_{i} i n}=\frac{G_{m,} R_{0} V_{n,}+V_{n i}}{R_{0}} \Rightarrow \bar{I}_{n_{1}, i n}^{2}=G_{m 1}^{2} V_{n_{1}}^{2}+\frac{V_{n 2}^{2}}{R_{0}^{2}}$
8.16
a) Due to symmetry of the π network, no current flows through R_{F}.

$$
\begin{aligned}
& \frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{1}\left(V_{\text {in }}-R_{s_{1}} \cdot I_{D_{1}}-V_{T_{n}}\right)^{2}=0.5 \mathrm{~mA} \\
& \left(V_{\text {in }}-2.2\right)^{2}=\frac{2 \times 0.5 \times 10^{-3}}{1.342 \times 10^{-4} \times 100} \Rightarrow \quad V_{\text {in }}=2.473 \mathrm{~V}
\end{aligned}
$$

$$
A_{v_{\text {open }}}=\frac{r_{02}}{R_{s_{1}} \| R_{F}+\frac{1}{g_{m_{1}}}} \times g_{m_{3}}\left[r_{03}\left\|R_{D_{2}}\right\|\left(R_{F}+R_{s_{1}}\right)\right]=18.42
$$

$$
R_{\text {out }}^{\text {open }}=r_{03}\left\|R_{D_{2}}\right\|\left(R_{F}+R_{s_{1}}\right)=1.667 \mathrm{~K} \Omega
$$

Loop gain: $\quad \frac{V_{t}}{R_{F}} \times\left(R_{F} \| R_{s_{1}}\right) \times \frac{r_{02}}{R_{s_{1}} \| R_{F}+\frac{1}{g_{m_{1}}}} \times g_{m_{3}}\left[r_{03}\left\|R_{s_{2}}\right\|\left(R_{F}+R_{s_{1}}\right)\right] \times \frac{R_{s_{1}}}{R_{F}+R_{s_{1}}}$

$$
=V_{F} \Rightarrow \text { loop gain }=4.605
$$

$$
\begin{aligned}
& A_{v}=\frac{18.42}{1+4.605}=3.286 \\
& R_{\text {out }}=\frac{1.664^{k}}{1+4.605}=297 \Omega
\end{aligned}
$$

8.17

$$
\begin{aligned}
& r_{1}=r_{04}=20 \mathrm{k} \\
& r_{03}=10 \mathrm{k} \quad r_{02}=10^{\mathrm{k}} \\
& g_{m_{1}}=g_{m_{4}}=3.66 \mathrm{mv} \\
& g_{m_{2}}=g_{m_{3}}=1.96 \mathrm{mv}
\end{aligned}
$$

$$
A_{v_{\text {open }}}=\frac{1}{2} g_{m_{1}}\left(r_{01} \| r_{02}\right) g_{m_{3}}\left(r_{03}\left\|R_{D_{2}}\right\|\left(R_{F}+R_{s_{1}}\right)\right)=39.85
$$

Rout $=r_{03}\left\|R_{D_{2}}\right\|\left(R_{F}+R s_{1}\right)=1.667 \mathrm{k}$

$$
v_{t} \frac{R_{s_{1}}}{R_{s_{1}}+R_{F}} \times \frac{g_{m_{1}}}{2} \times\left(r_{01} \| r_{02}\right) g_{i n_{3}}\left(r_{03}\left\|R_{D_{2}}\right\|\left(R_{F}+R_{s_{1}}\right)\right) \frac{R_{s_{1}}}{R_{s_{1}}+R_{F}}=V_{F}
$$

$$
\text { loop gain }=9.96
$$

$$
A_{v}=\frac{39.85}{1+9.96}=3.63 \quad \text { Rout }=\frac{1.667^{k}}{1+9.96}=153 \Omega
$$

Smaller output impedance compared to 8.16 .
8.18
a)

$$
\begin{array}{ll}
I_{D_{n}}=\frac{1}{2} \mu_{n} C_{0 x} \frac{W}{2}\left(V_{G S_{n}}-V_{T H_{n}}\right)^{2} \Rightarrow V_{G S_{n}}=0.973 \mathrm{~V} \quad V_{G S p}=1.311 \Rightarrow 3-V_{b}=1.311 \Rightarrow V_{b}=1.6 i
\end{array}
$$

$M_{3}:$ saturation $\Rightarrow-V_{A}+V_{b}>\left|V_{\text {TH }}\right| \Rightarrow V_{A}<1.689-0.8=0.889$
$M_{4}:$ saturation $\Rightarrow-v_{\text {out }}+V_{b}>V_{\text {TH }} \Rightarrow V_{\text {out }}<0.889 \Rightarrow R_{1} I<0.889 \Rightarrow R_{1}<177$

$$
M_{1}: \text { saturation } \Rightarrow V_{A}>R_{1} I+\left(V_{G S_{1}}-V_{T H_{n}}\right) \Rightarrow 0.273+R \times 0.5 m<0.889
$$

$$
\Rightarrow R_{1}<1232
$$

$378 \leqslant R_{1} \leqslant 1232 \Rightarrow 1.162 \leqslant \operatorname{Vin} \leqslant 1.589$
b)

$$
\begin{array}{ll}
R_{1}=805 \Omega & r_{01}=r_{02}=20 \mathrm{k} \\
g_{m_{1}}=3.66 \mathrm{mv} & r_{03}=r_{04}=10 \mathrm{k} \\
g_{m_{2}}=3.66 \mathrm{mv} &
\end{array}
$$

$$
\text { open loop gain }=\frac{r_{03}}{R_{1} \| R_{2}+\frac{1}{g_{m_{1}}}} \times g_{m_{2}}\left(r_{04}\left\|\left(R_{1}+R_{2}\right)\right\| r_{02}\right)=97_{0} 6
$$

Output impedance $=r_{04}\left\|\left(R_{1}+R_{2}\right)\right\| r_{02}=2422 \Omega$

Loop gain: $\frac{V_{t}}{R_{2}} \times\left(R_{1} \| R_{2}\right) \times \frac{r_{03}}{R_{1} \| R_{2}+\frac{1}{g_{m}}} \times g_{m_{2}}\left(r_{04}\left\|\left(R_{1}+R_{2}\right)\right\| r_{2}\right) \frac{R_{1}}{R_{1}+R_{2}}=V_{F}$

$$
\begin{aligned}
& \Rightarrow \text { loop } \operatorname{gain}=\frac{1}{3000} \times 635 \times 97.6 \times \frac{805}{3805}=4.37 \\
& A_{v}=\frac{97.6}{1+4.37}=18.17 \\
& R_{\text {out }}=\frac{2422}{1+4.37}=451 \Omega
\end{aligned}
$$

vottoge-voltage

next we consider

$$
\begin{aligned}
& R_{i_{2}}=\frac{R_{F_{2}}}{1+g_{m_{2}}\left[R_{D_{2}} \|\left(R_{F_{1}}+R_{s_{1}}\right)\right]}=261 \Omega \\
& R_{\text {out }}=\frac{R_{D_{2}} \|\left(R_{F_{1}}+R_{s_{1}}\right)}{1+g_{m_{2}}\left[R_{D_{2}} \|\left(R_{F_{1}}+R_{s_{1}}\right)\right]}=174 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& A v_{2}=\frac{R_{D}}{R_{D}+R_{F_{2}}}\left(-g_{m_{2}} R_{F_{2}}+1\right)=-3.6 \\
& R_{D}=R_{D_{2}} \|\left(R_{F_{1}}+R_{s_{1}}\right)=1333
\end{aligned}
$$

$$
\text { Open loop gain }=-\frac{R_{D_{1}} \| R_{\text {in 2 }}}{R_{s_{1}} \| R_{F_{1}}+\frac{1}{g_{m_{1}}}} \cdot A_{v_{2}}=\frac{231}{1000+200} \times 3.6=0.69
$$

Open loop output impedance $=$ Rout $_{2}=174 \Omega$
loop gain:

$$
\begin{aligned}
& R_{F_{1}} \frac{V_{t}}{R_{F_{1}}} \times\left(R_{s_{1}} \| R_{F_{1}}\right) \times \frac{R_{D_{1}}}{R_{s_{1}} \| R_{F_{1}}+\frac{1}{g_{m_{1}}} \times A V_{2}} \times \frac{R_{s_{1}}}{R_{s_{1}}+R_{F_{1}}}=V_{f} \\
& s_{S_{1}} \\
& \frac{V_{F}}{V_{t}}=\frac{1}{2000} \times 1000 \times \frac{1000}{1200} \times 3.6 \times \frac{1}{2}=0.75
\end{aligned}
$$

$$
A_{v_{\text {closed }}}=\frac{0.69}{1+0.75}=0.394 \quad R_{\text {out closed }}=\frac{174}{1+0.75}=99.5 \Omega
$$

8.20

$$
I_{D_{1}}=I_{D_{2}} \Rightarrow V_{\text {in }}=1.2538 \Rightarrow I_{D}=2.316 \mathrm{~mA}
$$

$$
\begin{aligned}
& g_{m_{1}}=\mu_{n} \operatorname{Cox}\left(\frac{w}{L}\right)_{1}\left(V_{G S_{1}}-V_{\text {THin }}\right)=1.342 \times 10^{-4} \times 100 \times(1.2538-0.7)=7.432 \mathrm{mv} \\
& g_{m_{2}}=\mu_{p} \operatorname{Cok}\left(\frac{w}{L}\right)_{2}\left(V_{G S_{2}}-V_{\text {THP }}\right)=3.835 \times 10^{-5} \times 100(3-1.2538-0.8)=3.628 \mathrm{mv} \\
& r_{q_{1}}=\frac{1}{\lambda_{1} I_{1}}=\frac{1}{0.1 \times 2.316 \times 10^{-3}}=4.317 \mathrm{~K} \\
& r_{02}=\frac{1}{\lambda_{2} I_{2}}=\frac{1}{0.2 \times 2.316 \times 10^{-3}}=2.159 \mathrm{~K}
\end{aligned}
$$

(a)
a)

$$
\begin{aligned}
& A_{v}=-\left(g_{m_{1}}+g_{m_{2}}\right)\left(r_{01} \| r_{02}\right)=-(7.432+3.628) 1.439=15.91 \\
& R_{\text {out }}=r_{0_{1}} \| r_{02}=1439 \Omega
\end{aligned}
$$

b)
(eq. 8.70)

(b)

$$
\begin{aligned}
& \quad=\frac{1}{1} \times \frac{0.909(7.432+3.628) 1.258}{R_{2}\left\|r_{01}\right\| r_{02} 1+(7.432+3.628) 1.258 \times \frac{1}{11}}=5.58 \\
& R_{\text {out }}=\frac{\left.g_{m_{1}}+g_{m_{2}}\right)\left(R_{2}\left\|r_{01}\right\| r_{02}\right) \frac{R_{1}}{R_{1}+R_{2}}}{1+\left(258^{k} / 2.26=556 \Omega\right.} \\
& \text { Rout }=1.26=5
\end{aligned}
$$

(b) We figure out sensitivity for (b), (a) is a special case where

$$
R_{1}=0 \quad R_{2}=\infty
$$

$$
G_{m}=g_{m 2}
$$

Rout = same as before

$$
A_{v}=\frac{g_{m_{2}}\left(R_{2} l l r_{01 l} r_{02}\right)}{1+\left(g_{m_{1}}+g_{m_{2}}\right)\left(R_{2}\left\|r_{01}\right\| r_{02}\right) \frac{R_{1}}{R_{1}+R_{2}}}=\frac{3.628 \times 1.258}{1+13.913 \times \frac{1.258}{11}}=1.76
$$

if $R_{1}=0$ and $R_{2}=\infty$

$$
A_{u}=g_{n_{2}}\left(r_{01} \| r_{02}\right)=3.628 \times 1.439=5.217
$$

8.21
a)

$$
\begin{aligned}
& \overline{U_{n}}{ }^{2}=4 k T \frac{2}{3}\left(g_{m_{1}}+g_{n_{2}}\right)\left(r_{0_{1}} \| r_{02}\right)^{2} \\
& \overline{U_{n_{\text {in }}}^{2}}=\frac{4 k T \frac{2}{3}}{g_{m_{1}}+g_{m_{2}}}=
\end{aligned}
$$

b)

$$
\begin{aligned}
\overline{U_{n i n}^{2}} & =4 k T R_{1}+\frac{\left[\frac{4 k T}{R_{2}}+4 k T \frac{2}{3}\left(g_{n_{1}}+g_{m_{2}}\right)\right] R_{0}^{2}}{A_{v}^{2}}=4 k T R_{1}+\frac{\frac{4 k T}{R_{2}}+4 k T \frac{2}{3}\left(g_{m_{1}+g_{m}}\right.}{\left(\frac{R_{2}}{R_{1}+R_{2}}\right)^{2}\left(g_{m_{1}}+g_{m_{2}}\right)} \\
& =4 k T R_{1}+\frac{4 k T \frac{2}{3}}{g_{m_{1}}+g_{m_{2}}}+\frac{4 k T / R_{2}}{\left(\frac{R_{2}}{R_{1}+R_{2}}\right)^{2}\left(g_{n_{1}}+g_{m_{2}}\right)^{2}}
\end{aligned}
$$

8.22

Feedback

Vittage-Current

$$
8.23
$$

very low freq.

eq. (8.70)

$$
\begin{array}{rlrl}
A_{v} & =\frac{1}{R_{1}} \cdot \frac{-\left(R_{1} \|\left(R_{2}+R_{3}\right)\right) g_{m_{1}}\left(R_{2}+R_{3}\right)}{1+g_{n_{1}}\left(R_{2}+R_{3}\right) \frac{R_{1}}{R_{1}+R_{2}+R_{3}}} & A_{v}=\frac{R_{2}}{R_{1}+R_{2}}\left(-g_{\left.m_{1} R_{3}\right)}^{k}\right. & =\frac{1}{2 k}\left(-\frac{1}{200} \times 2000\right)=-5 \\
& =-1.739
\end{array}
$$

very high freg.

$$
\begin{aligned}
& \left|\frac{I_{F}}{I_{N}}\right|=r_{02} \cdot g_{m_{1}} \cdot \frac{1}{g_{m_{3}+c_{1 S}}} \cdot g_{m_{2}} \\
& Z_{\text {opon }}=r_{02} \quad Z_{\text {miosed }}=\frac{r_{02}}{1-r_{02} g_{m 1} g_{m_{2}} \frac{1}{g_{m_{3}+c_{15}}}}=-\frac{g_{m_{3}+c_{1} s}}{g_{m_{1}} g_{m 2}} \\
& =-\frac{g_{m_{3}}}{g_{m_{1}} g_{m_{2}}}-\underbrace{\frac{C_{1}}{g_{m_{1}} g_{m_{2}}}} \cdot i
\end{aligned}
$$

Chapter 9
Problem 9.1
(a) For a MOSFET in triode region,

$$
\begin{equation*}
I_{D}=\mu_{n} C_{D x}\left(\frac{W}{L}\right)\left(\left(V_{A S}-V_{T}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \tag{*}
\end{equation*}
$$

Transconductance, $q_{m}=\frac{\partial I_{D}}{\partial V_{G S}}$ (from definition)

$$
\begin{aligned}
& \frac{\partial I_{D}}{\partial V_{G S}}=\mu_{n} \operatorname{Cox} \frac{W}{L} V_{D S} \\
& g_{M}=\mu_{n} \operatorname{Cox} \frac{W}{L} V_{D S}
\end{aligned}
$$

Output resistance, $r_{D}=\frac{\partial V_{D S}}{\partial I_{D}}$
Take derivative of (*) on beth sides

$$
\begin{aligned}
& 1=\mu_{H} C_{O X} \frac{W}{L}\left(V_{G S}-V_{T}-V_{D S}\right) \frac{\partial V_{D S}}{\partial I_{D}} \\
& r_{0}=\frac{\partial V_{D S}}{\partial I_{D}}=\frac{1}{\mu_{n} C_{O x} \frac{W}{L}\left(V_{G S}-V_{T}-V_{D S}\right)}
\end{aligned}
$$

We know in saturation,

$$
g_{m}=\mu_{n} C_{0 x} \frac{w}{L}\left(V_{G s}-V_{t}\right) \quad \&
$$

$r_{0}=\frac{1}{\lambda I_{D}}$

9.1 (b)

Use half-cirente concent:

$$
\left.\begin{array}{rl}
A_{V} & =g_{m_{1}}\left(r_{01} / / / r_{02}\right) \\
g_{m_{1}} & =\sqrt{2 \mu_{n} C_{0 x} \frac{W}{L_{0 f}} I_{D}} \quad \text { where } \quad I_{0}=\frac{T_{s s}}{2}=0.5 \mathrm{~mA} \\
C_{0 x}\left(0 t_{0 x}=400 \AA\right. & A
\end{array}\right)=0.863 \mathrm{fF} / \mu^{2}=86.3 \times 10^{-9} \mathrm{~F} / \mathrm{cm}^{2} .
$$

$$
\begin{aligned}
r_{01} & =\frac{1}{\lambda_{1} I_{01}}=\frac{1}{(0.1)(1 / \mathrm{v})(0.5 \mathrm{~mA})} \\
& =\frac{20 \mathrm{k} \Omega}{r_{03}}
\end{aligned}=\frac{1}{\lambda_{3} I_{0_{3}}}=\frac{1}{(0.2(1 / \mathrm{v}))(0.5 \mathrm{~mA})}, \begin{aligned}
A_{V} & =g_{m 1}\left(r_{01} / / r_{03}\right) \\
& =\left(4.443 \times 10^{-3} \Omega^{-1}\right)\left[\frac{20 \mathrm{k} \cdot 10 \mathrm{k}}{20 \mathrm{k}+10 \mathrm{k}}\right](\Omega) \\
& =29.6=A_{v}
\end{aligned}
$$

To find maximum output swing If we require both transistors are in saturation,

$$
\begin{aligned}
& V_{D S_{1}} \geqslant V_{G S_{1}}-V_{T} \\
& V_{D_{1}}-V_{S_{1}} \geqslant V_{G_{1}}-V_{S_{1}}-V_{T} \\
& V_{D_{1}} \geqslant V_{G_{1}}-V_{T}=1.3-0.7=0.6 \mathrm{~V} . \\
& \Rightarrow V_{\text {out i min }}=0.6 \mathrm{~V}
\end{aligned}
$$

$$
\text { For } M_{3}: \quad I_{D_{3}}=\frac{1}{2} \mu_{P} C_{0 x} \frac{W}{L_{3}}\left(V_{G S_{3}}-V_{T P}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

For simplicity, assume channel length" modulation is negligible, $\quad \lambda \rightarrow 0$.
\therefore One sided output swing $=2.59-0.6=1.99 \mathrm{~V}$. Differential output swing $=(1.99 \times 2) \mathrm{V}$

$$
=3.9 .8 \mathrm{~V}
$$

$$
\begin{aligned}
& k_{p}^{\prime}=\mu_{p} C_{0 x} \\
& =\left(100 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{sec}\right)\left(3.836 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}\right) \\
& =3.836 \times 10^{-5} \mathrm{~A} / \mathrm{v}^{2} \\
& I_{D_{3}}=0.5 \mathrm{~mA}=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L_{f f}}\right)\left(V_{G s_{3}}-V_{T P_{1}}\right)^{2} \\
& V_{G S_{3}}-V_{T P}=\left[\frac{(0.5 \mathrm{~mA})(2)}{\left(3.836 \times 10^{-5} \mathrm{~A} / V^{2}\right)\left(\frac{50}{0.5-0.09 \times 2}\right)}\right]^{\frac{1}{2}}=0.408 \\
& V_{D S_{3}} \geqslant V_{G S_{3}}-V_{T P}=0.408 \mathrm{~V} . \\
& V_{\text {out }} \text { max }=V_{D D}-V_{D S_{3}}=3 V-0.408 \mathrm{~V} \\
& =2.59 \mathrm{~V} \text {. } \\
& a, 6 v \leq V_{\text {out }} \leq 2.59 v
\end{aligned}
$$

9.1 (c). From part (6). M3 will enter the triode region when

$$
V_{D S_{3}}<V_{G S_{3}}-V_{T P}=0.408 \mathrm{~V} .
$$

At the peak of the output swing $\quad V_{D s_{3}}=0.408-50 \mathrm{mV}$

$$
\begin{aligned}
r_{03} & \left.=\frac{1}{\mu_{p} C_{0 x} \frac{W}{L_{\text {tIff }}}\left(V_{G S_{3}} V_{T_{P}}-V_{D S}\right)} \quad \text { (from part } a\right) . \\
& =\left[\left(3.836 \times 10^{-5} \mathrm{~A} / \mathrm{v}^{2}\right)\left(\frac{50}{0.32}\right)(0.408-0.358)\right]^{-1} \\
& =3.337 \mathrm{k} \Omega \\
A_{V} & =g_{M_{1}}\left(r_{01} / / r_{03}\right) \\
& =\left(4.443 \times 10^{-3} \Omega^{-1}\right)\left(\frac{20 \times 3.337}{20+3.337} \mathrm{k} \Omega\right) \\
A_{v} & =12.7
\end{aligned}
$$

Problem 9, 2
(A) $\quad V_{b}=1.4 \mathrm{~V} \quad I_{S S}=1 \mathrm{~mA} \quad\left(\frac{W}{L}\right)_{1-4}=\frac{100}{0.5}$

To keen M_{3} in saturation,

$$
\begin{aligned}
V_{a} & >V_{b}-V_{\tau H_{n}}=1.4 v-0.7 v \\
& =0.7 v
\end{aligned}
$$

Assume $M_{5}-M_{8}$ are identical, So $V_{G S_{5}}=V_{G S 7}$

$$
\begin{aligned}
V_{G S 5} & =\frac{V_{D D}-V_{a}}{2}=\frac{3-0.7}{2}=1.15 \mathrm{v} . \\
I_{D 5} & =\frac{1}{2} \mu_{P} \operatorname{Cox}\left(\frac{W}{L}\right)_{5}\left(V_{G S 5}-V_{T H P}\right)^{2}\left(1+\lambda V_{D S 5}\right) \\
\left(\frac{W}{L_{\text {Af }}}\right)_{5} & =\frac{2 I_{D 5}}{\mu_{P} C_{0 x}\left(V_{G S 5}-V_{T H P}\right)^{2}\left(1+\lambda V_{D S}\right)} \\
& =\frac{2(0.5 \mathrm{~mA})}{(100)\left(3.836 \times 10^{-7}\right)(1.15-0.8)^{2}(1+0.2(1.15))} \\
& =173 . \\
W_{5} & =173 \times L_{\text {eff }}=173 \times(0.5-0.09 \times 2) . \\
W_{5} & \cong 56 \mu \mathrm{~m} \\
W_{5-8} & =56 \mu \mathrm{~m}
\end{aligned}
$$

(b) Max. output swing $=V_{T H 4}-\left(V_{G S 4}-V_{T H_{2}}\right)=V_{T H 4}+V_{T H 2}-V_{G S 4}$ $I_{94}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{4}\left(V_{G S 4}-V_{T H 4}\right)^{2}\left(1+\lambda V_{O S 4}\right)$ assume $\lambda \rightarrow 0$. for simplicity

$$
\begin{aligned}
& V_{\text {ES 4 } 4}-V_{T H 4} \cong\left[\frac{2 I_{D}}{\mu_{H} \operatorname{Cox}\left(W_{N}\right)_{4}}\right]^{\frac{1}{2}} \\
&=\left[\frac{2(0.5 \mathrm{~mA})}{(350)\left(3.836 \times 10^{-7}\right)\left(\frac{100}{0.34}\right)}\right]^{\frac{1}{2}} \\
&=0.159 \mathrm{~V} \\
& \begin{aligned}
V_{G S 4} & =V_{T H 4}
\end{aligned} \\
& \begin{aligned}
\text { Max. } & \text { Output } 0.159=0.859 \mathrm{~V} \\
& =0.541 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

9.2 (c). Ar orenloop $=g_{m 1}$ ($g_{m_{4}} r_{04} r_{02}$ (l g g mb $r_{06} r_{08}$)

$$
\begin{aligned}
g_{m_{1}} & =\sqrt{2 \mu_{n} C_{0 x}\left(\frac{N}{\left.L_{e f f}\right) I_{D}}\right.} \\
& =\sqrt{2(350)\left(383.6 \times 10^{-9}\right)\left(\frac{100}{0.34}\right)(0.5 \mathrm{~mA})} \\
& =6.28 \mathrm{~m} \Omega^{-1}
\end{aligned}
$$

$$
q_{m 4}=g_{m_{1}}=6.28 \mathrm{~m} \Omega^{-1}
$$

$$
g_{m b}=\sqrt{2 \mu_{n} \operatorname{Cox}\left(\frac{W}{L_{e f f}}\right) I_{D}}
$$

$$
=\sqrt{2(100)\left(383.6 \times 10^{-9}\right)\left(\frac{56}{0.5-0.09 \times 2}\right)(0.5 \mathrm{~mA})}
$$

$$
=2.59 \mathrm{~m} \Omega^{-1}
$$

$$
r_{02}=\frac{1}{\lambda I_{0}}=\frac{1}{(0.1)(0.5 \mathrm{~mA})}=20 \mathrm{k} \Omega .
$$

$$
r_{04}=r_{02}=20 \mathrm{k} \Omega .
$$

$$
r_{06}=r_{08}=\frac{1}{(0.2)(0.5 \mathrm{~mA})}=10 \mathrm{k} \Omega .
$$

$$
A_{v}=(6.28 \mathrm{~m})[(6.28 \mathrm{~m} \times 20 \mathrm{k} \times 20 \mathrm{k}) / /(2.59 \mathrm{~m} \times 10 \mathrm{k} \times(0 \mathrm{k})]
$$

$$
A_{v}=1474
$$

(d) Since this is a cascode configuration, the noise due to $M_{3,4,5,6}$ can be neglected.
$\overline{V_{n n}^{2}}$ ane to $M_{1,2}=4 k T \gamma \frac{1}{g_{m_{1,2}}}$
$\underset{V_{n M t}^{2}}{\overline{V_{n}^{2}}}$ due to $M_{8}=4 k T \gamma \frac{g_{m_{1}}}{g_{n 1,2}^{2}} \quad$ same as in cascode. $V_{i n n u t}^{2}$ are to M_{7}

consider M7:
$M \overbrace{\square}^{\square}$

M7 will induce the same noise as M_{8}.
\therefore input-refermed noise voltage

$$
\overline{V_{n}^{2}}=\left[4 k T \gamma \frac{1}{g_{n 1,2}}+4 k T \gamma \frac{g_{n} 7,8}{g_{n}^{2} 1,2}\right] \times 2 \text { where } r=\frac{2}{3}
$$

9.2 (d) cont.

$$
\begin{aligned}
\frac{\text { cont. }}{V_{n}^{2}} & =4 \times 1.38 \times 10^{-23} \times 300 \times \frac{2}{3} \times 2\left[\frac{1}{6.28 \mathrm{~m}}+\frac{2.59 \mathrm{~m}}{(6.28 \mathrm{~m})^{2}}\right] \\
V_{n}^{2} & =4.966 \times 10^{-18} \mathrm{~V}^{3} / \mathrm{Hz} \\
\text { or } & =2.23 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

Problem 9.3
Requirements: Max. diff. suing 2.4 v $P_{\text {tote }}=6 \mathrm{~mW}$
Max diff swing $=$

$$
\begin{aligned}
& =2\left[V_{D D}-\left(V_{O D 3}+V_{O D 5}+\left|V_{D P 7}\right|+\left|V_{O D P}\right|\right)\right] \\
& =2.4 V
\end{aligned}
$$

$$
V_{003}+V_{005}+\left|V_{007}\right|+\left|V_{009}\right|=V_{00}-1.2=1.8
$$

In general, assign $\left|V_{007}\right|$ \& $\left|V_{009}\right|$ to be large than $V_{O D_{3}}$ as PMOS has a smaller μ_{P}. Also M_{5} need large $V_{O D}$ as $I_{O 5}$ is larger.
Let the followings:

$$
\begin{aligned}
& V_{O D 3}=0.3 \mathrm{~V}, \quad V_{O D 5}=0.44 \mathrm{~V} \quad\left|V_{0 D 7}\right|=\left|V_{0 D 9}\right|=0.53 \mathrm{~V} \quad\left|V_{0 D}\right|=0.53 \mathrm{~V} \\
& P_{\text {total }}=6 \mathrm{~mW} . \quad=V_{A D} \times\left(I_{D 5}+I_{D 6}\right) . \\
& I_{D 5}=I_{D 6}=\frac{6 \mathrm{~mW}}{(3)(2)}=1 \mathrm{~mA} . \\
& I_{D}=\frac{1}{2} \mu C_{0 x}\left(\frac{W}{L}\right)\left(V_{Q S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& \left(\frac{W}{L}\right)=\frac{I_{D}}{\mu \operatorname{Cox}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)}
\end{aligned}
$$

$$
\left(\frac{W}{L_{\text {eff }}}\right)_{5,6}=\frac{2(\operatorname{lmA})}{(350)\left(383.6 \times 10^{-9}\right)(0.44)^{2}(1+(0.1)(0.44))}
$$

(Assume $V_{O S} \simeq V_{G S}-V_{T H}$,
Since λ is small, the result

$$
=74
$$ will not be affected too much.)

$$
\begin{aligned}
& W_{5.6}=(74)(0.34 \mu \mathrm{~m})=25.16 \mu \mathrm{~m} . \\
& \text { Let } I_{D_{1,2}}=0.5 \mathrm{~mA}, \quad I_{D_{3,4}}=0.5 \mathrm{~mA} \\
& \left(L_{\text {ref }}\right)_{1,2}=\frac{2(0.5 \mathrm{~mA})}{(100)\left(383.6 \times 10^{-9}\right)(0.53)^{2}(1+(0.2)(0.53))}=84 \\
& W_{1,2}=84(0.32 \mu \mathrm{~m})=26.88 \mu \mathrm{~m} \\
& \left(\frac{W}{L a f f}\right)_{3.4}=\frac{2(0.5 \mathrm{~mA})}{(350)\left(383.6 \times 10^{-9}\right)(0.3)^{2}(1+(0.1)(0.3))}=80 . \\
& W_{3.4}=80 \times 0.34 \mu \mathrm{~m}=27.2 \mu \mathrm{~m} . \\
& \left(\frac{W}{L_{\text {eff }}}\right)_{7,9}=\frac{2(0.5 \mathrm{~mA})}{(100)\left(383.6 \times 10^{-9}\right)(0.53)^{2}(1+(0.2)(0.53))}=84
\end{aligned}
$$

9.3 cont.

$$
\geqslant V_{005}-V_{T H_{1}}=0.44-0.8=-0.36 \mathrm{~V} .
$$

$$
A_{V}=g_{m_{1}}\left[\left(g_{m}, r_{07} r_{09}\right) / /\left(g_{m_{3}} r_{03}\left(r_{01} / / r_{05}\right)\right)\right]
$$

$$
\left(V_{\text {CM }}=0\right)
$$

$$
\begin{aligned}
q_{m 1} & =\frac{2 I_{D_{1}}}{V_{G S}-V_{T H}}=\frac{2(0.5 \mathrm{~mA})}{0.53}=1.89 \mathrm{~m}^{-1} \\
q_{m_{H 7}} & =g_{m_{1}}=1.89 \mathrm{~m} \Omega^{-1} \\
q_{m 3} & =\frac{2 I_{D_{1}}}{V_{G S}-V_{T H}}=\frac{2(0.5 \mathrm{~mA})}{93}=3.33 \mathrm{~m} \Omega^{-1} \\
r_{07} & =r_{09}=\frac{1}{\lambda I_{D}}=\frac{1}{(0.2)(0.5 \mathrm{~mA})}=10 \mathrm{k} \Omega=r_{01} \\
r_{03} & =\frac{1}{\lambda I_{D}}=\frac{1}{(0.1(0.5 \mathrm{~mA})}=20 \mathrm{k} \Omega . \\
r_{0 S} & =\frac{1}{\lambda I_{D}}=\frac{1}{(0.1)(1 \mathrm{~mA})}=10 \mathrm{k} \Omega \\
A_{V} & =(1.89 \mathrm{~m})\left[\left(1.89 \mathrm{~m}(10 \mathrm{k})^{2}\right) / 1(3.33 \mathrm{~m}(20 \mathrm{k})(10 \mathrm{k} / 2))\right] \\
& =228
\end{aligned}
$$

$$
\begin{aligned}
& W_{1,2}=26.88 \mu \mathrm{~m} \\
& W_{3.4}=27.2 \mu \mathrm{~m} \\
& W_{5,6}=25.16 \mu \mathrm{~m} \\
& W_{7,8,9,10}=26.88 \mu \mathrm{~m}
\end{aligned}
$$

$$
V_{b_{1}}=1.53 \mathrm{v}
$$

$$
A_{v}=228 .
$$

$$
V_{b_{2}}=1.04 \mathrm{~V}
$$

$$
V_{b_{3}}=1.67 \mathrm{v}
$$

$$
V_{b 4}=1.14 \mathrm{v}
$$

$$
-0.36 \leqslant v_{\text {in, } \mathrm{cm}} \leqslant 1.37 \mathrm{v}
$$

$$
\begin{aligned}
& W_{7.9}=84 \times 0.32 \mu \mathrm{~m}=26.88 \mu \mathrm{~m} . \\
& V_{b 4}=V_{G S 5}=V_{005}+V_{T H 5}=0.44+0.7 \\
& V_{b 4}=1.14 \mathrm{~V} \\
& V_{b 1}=V_{O D_{5}}+V_{G S_{3}}=V_{O D 5}+V_{O D_{3}}+V_{T H 3}=V_{O D 5}+V_{O D 3}+V_{T H O}+\gamma\left(\sqrt{\mid-2 \phi_{F}+V_{S B \mid}}-\sqrt{\mid-2 A_{F}}\right) \\
& =0.44+0.3+0.7+0.45(\sqrt{0.9+0.44}-\sqrt{0.9}) \\
& =1.53 \mathrm{~V} \\
& V_{b 3}=V_{D D}-\left|V_{G S 9}\right|=V_{D D}-\left[\left|V_{009}\right|+\left|V_{F H G}\right|\right]=3-0.53-0.8 \\
& V_{b_{3}}=1.67 v \\
& V_{b 2}=V_{O D}-\left|V_{009}\right|-\left|V_{\text {OS7 }}\right|=V_{D D}-\left|V_{D O 9}\right|-\left|V_{0 D 7}\right|-\left|V_{T H 7}\right| . \\
& =3-0.53-0.53-[0.8+0.4(\sqrt{0.8+0.53}-\sqrt{0.8})] \\
& V_{b_{2}}=1.04 \mathrm{~V}
\end{aligned}
$$

Problem 9.4

$$
\left(\frac{W}{L}\right)_{1-8}=\frac{100}{0.5}, \quad I s s=1 m A, \quad V_{b_{1}}=1.7 \mathrm{v}, \quad r=0
$$

(a)

$$
\begin{aligned}
V_{\text {in, } C M, \text { min }} & =V_{I S S}+V_{G S_{1}} \\
& =V_{I S S}+V_{T H_{n}}+V_{D D_{1}}
\end{aligned}
$$

where $V_{\text {Iss }}$ is the voltage across $I_{s s}$.
$V_{\text {in, }}, M_{1}$, max $=V_{Y}+V_{T H_{1}}$;

$$
\begin{aligned}
& V_{Y}=V_{b_{1}}-V_{G S 3}=V_{b_{1}}-V_{T H 3}-V_{O D_{3}} \\
& V_{\text {in, } C M, ~ \text { max }}=V_{b_{1}}-V_{T H 3}-V_{O D_{3}}+V_{T H} \\
& V_{\text {in, cM, max }}=V_{b_{1}}-V_{D D_{3}}
\end{aligned}
$$

$$
V_{\text {in, } \mathrm{cH}} \text {, max }=V_{\mathrm{H}_{1}}-V_{T H_{3}}-V_{O D_{3}}+V_{T H_{1}} \quad \text { Assume } V_{T H_{3}}=V_{T H_{1}} L
$$

To calculate $V_{O R_{3}}, \quad I_{D_{3}}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{3}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right) \quad$ Assume $\lambda \rightarrow 0$

$$
\begin{aligned}
& V_{O D_{3}}=V_{G S_{3}} V_{T H}=\left[\frac{2 I_{D 3}}{\mu_{n} C_{0 x}\left(\frac{1}{0 f f}\right)}\right]^{\frac{1}{2}} \\
&=\left[\frac{2(0.5 \mathrm{~mA})}{350\left(383.6 \times 10^{-9}\right)\left(\frac{100}{0.34}\right)}\right]^{\frac{1}{2}}=0.159 \mathrm{~V} . \\
& \therefore V_{\text {in, } M_{M} \text {, max }}=1.7-0.159=1.541 \mathrm{~V}
\end{aligned}
$$

(b) $V_{x}=$? To find V_{x}, we can find V_{057}

$$
\begin{aligned}
V_{G S 7}-V_{T H P} & =\left[\frac{2 I_{D 7}}{\mu_{P} C_{0 x}\left(\frac{W}{V_{A f}}\right)_{7}}\right]^{\frac{1}{2}} \\
& =\left[\frac{2(0.5 \mathrm{~mA})}{(100)\left(383.6 \times 10^{-9}\right)\left(\frac{100}{6.32}\right)}\right]^{\frac{1}{2}}=0.289 \\
V_{A S 7} & =0.289+V_{T H P}=1.089 \mathrm{~V} \\
V_{X}=V_{D D}-V_{A 57} & =3-1.089 \mathrm{~V} \\
V_{X} & =1.911 \mathrm{~V}
\end{aligned}
$$

(c) For details, please see phat 284 (chapter 9).

$$
\text { Max, output swing }=V_{T H 4}-\left(V_{\text {GS 4 }}-V_{\text {TH 2 }}\right)
$$

$V_{G S 3}=V_{T-14}$ by symmetry, $\quad V_{G S 3}-V_{T H A}=V_{G 34}-V_{T H n}=0.159 \mathrm{~V}$

$$
V_{0 s_{4}}=0.7+0.159=0.859 \mathrm{y}
$$

Max output swing $=0.7-(0.859-0.7)=$ Max output suing $=0.541 \mathrm{~V}$.
9.4 cont.
(d). We know $V_{x}=1.911 \mathrm{~V}$. $V_{\text {GS }}=V_{657}=1.089 \mathrm{~V}$

To keep M_{7} in saturation,

$$
\begin{aligned}
& V_{z}<V_{x}+V_{T H P} ; V_{b_{2}}=V_{z}-\left|V_{t S_{5}}\right| \\
& V_{b_{2}}<V_{x}+V_{T H P}-\left|V_{6.55}\right|=1.911 \mathrm{~V}+0.8-1.089 \\
& V_{b_{2}}<1.622 \mathrm{~V} \\
& V_{b_{2}}>V_{x}-V_{t H 5}=1.911-0.8 \Rightarrow V_{b_{2}}>1.111 \mathrm{~V} . \\
& \therefore 1.11 \mathrm{~V}<V_{b_{2}}<1.62 \mathrm{~V}
\end{aligned}
$$

Q, As this is a cascode configuration, $M_{3}, M_{4}, M_{5}, M_{6}$ have negligible.

Input referred noise voltage due to M_{1}, M_{2}

$$
\begin{aligned}
& \overline{V_{n}^{2} \text { input }}=4 k T \gamma \frac{1}{g_{m, 2}} \\
& \bar{V}_{n}^{2} \text { input } M_{t}=4 k T \gamma \frac{\mathrm{gms}}{\mathrm{~g}_{1,2}^{2}} \\
& \overline{V_{n}^{2}} \text { input } M_{7}=\overline{V_{n}^{2}} \text { input ac to } M_{8} \\
& =4 k T \gamma \frac{g_{m 7}}{g_{m, 2}^{2}}
\end{aligned}
$$

\therefore Input referred noise voltage

$$
\begin{aligned}
&=\left[4 k T \gamma\left(\frac{1}{g_{m, 12}}+\frac{g_{m 7,8}}{g_{m}^{1} 1,2}\right)\right] \times 2 \\
& g_{m_{1,2}}=\sqrt{2 \mu_{n} \operatorname{Cox}\left(\frac{w}{L \text { ty }}\right) I_{0}} \\
&=\left[2(350)\left(383.6 \times 10^{-9}\right)\left(\frac{100}{0.34}\right)(0.5 \mathrm{~mA})\right]^{\frac{1}{2}} \\
&=6.28 \times 10^{-3} \Omega^{-1} \\
& g_{m 7,8}=\left[2(100)\left(383.6 \times 10^{-9}\right)\left(\frac{100}{0.32}\right)(0.5 \mathrm{~mA})\right]^{\frac{1}{2}} \\
&=3.46 \mathrm{~m} \Omega^{-1}
\end{aligned}
$$

Input referee noise voltage $=\left[4 \times 1.38 \times 10^{-23} \times 300 \times \frac{2}{3} \times\left(\frac{1}{6.28 \mathrm{~m}}+\frac{3.44 \mathrm{~m}}{6.2 \mathrm{sen}^{2}}\right)\right] \times 2$

$$
\begin{aligned}
& =5.45 \times 10^{-18} \mathrm{~V}^{2} / \mathrm{Hz} \\
o & =2.34 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}} .
\end{aligned}
$$

Problem 9.5.
Requirement: Max. diff. Swing $=24 \mathrm{~V}$

$$
\text { Power max }=6 \mathrm{mw} \text {. }
$$

$$
\begin{aligned}
& V_{D D} \text {. Iss }=P_{\text {owerax }}=G \mathrm{~mW} . \\
& J_{s s}=\frac{6 m W}{3 V}=2 m A \\
& \left|V_{G S 7}\right|-\left|V_{\text {THe }}\right|=\left[\frac{2 I_{D 7}}{\mu_{P} C_{x x}\left(\frac{\left.L_{A F P}\right)_{7}}{}\right.}\right]^{\frac{1}{2}} \text { assume } W_{7,8}=100_{\mu \mathrm{m}} \\
& =\left[\frac{2(1 m A)}{(100)\left(383.6 \times 10^{9}\right)\left(\frac{100}{0.32}\right)}\right]^{\frac{1}{2}}=0.408 \mathrm{~V} \\
& \left|V_{G S T}\right|=0.408+\left|V_{T H P}\right|=1.208 \mathrm{~V} \\
& V_{x}=V_{D D}-\left|V_{\text {GSa }}\right|=3-1.208=1.79 \mathrm{~V} \text {. } \\
& V_{x}-V_{\text {THe }}<V_{b_{2}}<V_{x}+V_{\text {THe }}-\left|V_{\text {GSa }}\right| \\
& 0.99 V<V_{b 2}<1.382 V
\end{aligned}
$$

assume $W_{5.6}=100 \mu \mathrm{~m}$

For larger output swing, choose $V_{b_{2}}=1.3 \mathrm{~V}$.

$$
V_{\text {out max }}=V_{b_{2}}+V_{T H}=1.3+0.8=2.1 \mathrm{~V} .
$$

We need one sided output swing $=1.2 \mathrm{~V}$, so $V_{\text {out min }}=0.9 \mathrm{~V}$.

$$
\begin{aligned}
& \left|V_{O D_{1}}\right|=\left|V_{O D_{3}}\right|=0.3=V_{\text {ISS }} \\
& I_{D}=\frac{1}{2} \mu \operatorname{Cox}\left(\frac{W}{C f f}\right)\left(V_{G S}-V_{T H}\right)^{2}\left(1+a V_{D S}\right) \quad \text { Assume } V_{D S} \simeq V_{G S}-V_{T H} \\
& \left(W_{Q f f}\right)=\frac{2 I_{0}}{\mu_{n} C_{0 x}\left(V_{6 S}-V_{\tau H}\right)^{2}\left(1+\lambda V_{D s}\right)}=\frac{2(1 \mathrm{~mA})}{(350)\left(383.6 \times 10^{-9}\right)(0.3)^{2}(1+(0 . D(0.3))} \\
& \left(\frac{W}{\text { Left }}\right)=160 \Rightarrow W_{(, 2,3,4}=(160)(\text { ref })=(160)(0.34 \mu \mathrm{~m}) \quad \text { let } L=0.5 \mu \mathrm{~m} \\
& W_{1-4}=55 \mu \mathrm{~m} . \\
& V_{\text {IU,CH }}=V_{F S S}+V_{G S G, 2}=V_{\text {ISS }}+V_{T H n}+V_{O D_{1}}=0.3+0.7+0.3 \mathrm{~V} \\
& =1.3 \mathrm{~V} \\
& V_{b 1}=V_{\text {incl }}+V_{O D_{1}}=1.3+0.3 \mathrm{v}=1.6 \mathrm{v} \text {. }
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
\left(\frac{W}{L}\right)_{1-4}=\frac{55}{0.5} & V_{\text {incm }}=1.3 \mathrm{v} \\
\left(\frac{W}{L}\right)_{5-8}=\frac{100}{0.5} & V_{b_{1}}=1.6 \mathrm{v} \\
& V_{b_{2}}=1.3 \mathrm{v}
\end{array} \quad I_{s s}=2 \mathrm{~mA} .
$$

Problem 9.6
(a) Given: $\left(\frac{w}{L}\right)_{1-8}=\frac{100}{0.5} \quad I_{S S}=1 \mathrm{~mA}$

$$
\begin{aligned}
& I_{P 5,6}=\frac{1}{2} \mu_{p} C_{\text {xxx }}\left(\frac{W}{L}\right)_{5,6}\left(V_{\text {Gus } 5.6}-V_{\text {TH, }}\right)^{2}\left(1+\lambda V_{D S 5,6}\right) \\
& V_{655.6}-V_{\text {THe }}=\left[\frac{2 I_{D, 5,6}}{\mu_{P} \operatorname{Cox}\left(\frac{N}{C N}\right)_{5,6}}\right]^{\frac{1}{2}} \\
& =\left[\frac{2(\operatorname{lm} A)}{(100)\left(383.6 \times 10^{-9}\right)\left(\frac{106}{0.32}\right)}\right]^{\frac{1}{2}}=0.408 \mathrm{v} \\
& V_{G 55.6}=0.408+0.8=1.208 \mathrm{~V} \\
& V_{X, Y}=V_{D D}-V_{655.6}=3-1.208 V \\
& V_{X, Y}=1.792 \mathrm{~V}
\end{aligned}
$$

In order to keep M_{1}, M_{2} in saturation,

$$
\begin{aligned}
& V_{\text {in, } \mathrm{CM}}<V_{x, Y}+V_{T H}=1.792+0.7=2.492 \mathrm{~V} \\
& \therefore V_{\text {in, } \mathrm{cm}, \text { max }}=2.49 \mathrm{~V} .
\end{aligned}
$$

(b) Ar of 1 st stage $=g_{m_{1}}\left(r_{01} / / r_{03}\right)$

Ar of 2 nd stage $=g_{m s}\left(r_{05} \| r_{0}\right)$

$$
\begin{aligned}
A_{v+t} & =g_{m m}\left(r_{01} / / r_{03}\right) g_{m 5}\left(r_{05} \| r_{07}\right) . \\
g_{m 1} & =\sqrt{2 \mu_{n} C_{0 x}\left(\frac{\mathrm{~N}}{L_{0 f t}}\right)\left(I_{01}\right)}=\left[2(350)\left(383.6 \times 10^{9}\right)\left(\frac{100}{0.34}\right)(0.5 \mathrm{~mA}) .\right]^{\frac{1}{2}} \\
& =6.28 . \mathrm{m} \Omega^{-1} \\
g_{m 5} & =\frac{2 I_{D}}{V_{G 5}-V_{T H}}=\frac{2(\mathrm{mmA})}{0.408} \\
g_{m 5} & =4.90 \mathrm{~m} \Omega^{-1} \\
r_{01} & =\frac{1}{\lambda I_{0}}=\frac{1}{(0.1)(15 \mathrm{~mA})}=20 \mathrm{k} \Omega \\
r_{03} & =\frac{1}{\lambda I_{D}}=\frac{1}{(0.2)(5 \mathrm{~mA})}=10 \mathrm{k} \Omega \\
r_{05} & =\frac{1}{\lambda I_{D}}=\frac{1}{(0.2)(1 \mathrm{~mA})}=5 \mathrm{k} \Omega \\
r_{07} & =\frac{1}{\lambda I_{0}}=\frac{1}{(0.1)(1 \mathrm{~mA})}=10 \mathrm{k} \Omega \\
A_{v} & =(6.28 \mathrm{~m})[20 \mathrm{k} \| 10 \mathrm{k}](4.90 \mathrm{~m})[5 \mathrm{kl} / 10 \mathrm{k}] \\
A_{V} & =684
\end{aligned}
$$

Max output swing $=2\left(V_{D D}-\left|V_{005}\right|-V_{\text {DD } 7}\right)$

$$
\begin{aligned}
\left|V_{\text {DOS }}\right|=\left|V_{\text {GS5 }}\right|-\left|V_{\text {THP }}\right| & =0.408 \mathrm{~V} \\
V_{\text {ODT }}=V_{\text {GS7 }}-V_{\text {THn }} & =\left[\frac{2 I_{p}}{\left(\mu_{n}\right) \operatorname{Cox}\left(\frac{\mathrm{W}}{L}\right)_{7}}\right]^{\frac{1}{2}} \\
& =\left[\frac{2(m \mathrm{~mA})}{(350)\left(383.6 \times 10^{-9}\right)\left(\frac{100}{0.34}\right)}\right]^{\frac{1}{2}}=0.225 \\
\text { Max oupme swing } & =2(3-0.408-0.225) \\
& =4.734 \mathrm{~V} .
\end{aligned}
$$

Problem 9.7
Design the op amp of fig. 9.21 Max diff, swing $=4 \mathrm{~V}$
total Power $=6 \mathrm{~mW} \quad$ Iss $=0.5 \mathrm{~mA}$

Total current driven by $V_{O D}=\frac{6 m W}{3 V}=2 m A$

$$
I_{D S}+I_{D 6}=2 \mathrm{~mA}-I_{S S}=1.5 \mathrm{~mA} \Rightarrow I_{D 5}=I_{D 6}=0.75 \mathrm{~mA}
$$

Max diff suing $=2\left[V_{D D}-\left|V_{O D 5}\right|-V_{O D 7}\right]=4 \mathrm{v}$
$\Rightarrow\left|V_{\text {ODS }}\right|+\left|V_{\text {OD 7 }}\right|=1 \quad$ choose $\quad V_{O D 5}=0.6 \mathrm{~V}, \quad V_{017}=0.4 \mathrm{~V}$

$$
\begin{aligned}
& I_{D}=\frac{1}{2} \mu C_{0 x}\left(\frac{W}{L_{\text {eff }}}\right)\left(V_{O S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right) \\
&\left(\frac{W}{\left.L_{\text {eff }}\right)_{5}}\right.=\frac{2 I_{D}}{\mu_{P} C_{0 \times}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)}=\frac{2(0.75 \mathrm{~mA})}{(100)\left(383.6 \times 10^{-9}\right)(0.6)^{2}(1+0.2 \times 0.6)} \\
&\left(\frac{W}{\left.L_{\text {eff }}\right)_{5}}\right.=97 \Rightarrow W_{5.6} 97 \times 0.32 \mu=31 \mu \mathrm{~m} \\
&\left(\frac{W}{L_{\text {ff t }}}\right)_{7}=\frac{2(0.75 \mathrm{~m})}{(350)\left(383.6 \times 10^{-9}\right)(0.4)^{2}(1+0.1(0.4))} \\
&=67 \Rightarrow W_{7,8}=67 \times 0.34 \mu \mathrm{~m}=23 \mu \mathrm{~m}
\end{aligned}
$$

We are querally not worried about the swing of $18 t$ stage, assume $\left|\operatorname{VoD}_{3}\right|=1 \mathrm{~V}, \quad V_{O D_{1}}=1 \mathrm{~V}$.

$$
\begin{aligned}
& \left(\frac{W}{C f f}\right)_{3}=\frac{2(0.25 \mathrm{~m})}{(100)\left(383.6 \times 10^{-9}\right)(1)^{2}(1+0.2(1))}=10.86 \\
& W_{3,4}=3.5 \mu \mathrm{~m} \\
& \left(\frac{\left.W_{\text {eff }}\right)_{1}}{}=\frac{2(0.25 \mathrm{~m})}{(350)\left(383.6 \times 15^{9}\right)(1)^{2}(1+0.1)}=3.4\right. \\
& W_{1,2}=1,2 \mu m \\
& V_{D_{1}}=V_{P D}-\left|V_{O D 3}\right|-V_{T H 3}=3-1-0.8=1.2 \mathrm{~V} . \\
& V_{\text {In,CM }}=V_{\text {ISS }}+V_{T H_{1}}+V_{O D_{1}}=0.3+0.7+1.0=2 \mathrm{~V} . \\
& V_{b z}=V_{\text {THe }}+V_{007}=0.7+0.4=1.1 \mathrm{~V} .
\end{aligned}
$$

Summary $L=0.5 \mu \mathrm{~m}$

$$
\begin{array}{ll}
W_{1}=W_{2}=1.2 \mu \mathrm{~m} & V_{b_{1}}=1.2 \mathrm{~V} \\
W_{3 . t}=3.5 \mu \mathrm{~m} & V_{b_{2}}=1.1 \mathrm{~V} \\
W_{5,6}=31 \mu \mathrm{~m} & V_{l_{1}, \mathrm{~cm}}=2 \mathrm{~V} \\
W_{7.8}=23 \mu \mathrm{~m} &
\end{array}
$$

Problem 9,8
Given $I_{s s}=1 \mathrm{~mA}, \quad I_{09}-I_{012}=0.5 \mathrm{~mA}$

$$
\left(\frac{w}{L}\right)_{q-12}=\frac{100}{0.5}
$$

(a) $V_{x, Y}, C M=$?

$$
\begin{aligned}
& V_{x, Y, c M}=? \\
&\left|V_{G S q}\right|-\left|V_{T H p}\right|=\left[\frac{2 I_{p q}}{\mu_{p} C o x x\left(\frac{W}{2}\right)_{q}}\right]^{\frac{1}{2}} \\
&=\left[\frac{2(0.5 \mathrm{~mA})}{(1000.383 .6 \mathrm{nt})\left(\frac{100}{0.32}\right)}\right]^{\frac{1}{2}} \\
&=0.289 \mathrm{~V}, \Rightarrow \\
& V_{X Y, C M}=V_{0 D}-\left|V_{G S q}\right|=1.911 \mathrm{~V}
\end{aligned}
$$

$$
=0.289 \mathrm{v}, \overrightarrow{2} \quad\left|V_{\text {ts } 9}\right|=1.089 \mathrm{v}
$$

(b)

$$
\begin{aligned}
& V_{x} \text { swing }=0.2 \mathrm{~V}, V_{x}, \mathrm{~cm}=1.91 \mathrm{VV} \\
& V_{x \text { max }}=2.011 \mathrm{~V} \\
& V_{x \text { min }}=1.811 \mathrm{~V} \\
& V_{007}=V_{005}=\frac{V_{D D}-V_{X \text { max }}}{2}=\frac{3-2.011}{2}=0.495 \\
& V_{O D 1}=V_{O D 3}=\frac{V_{X \min }-V_{\text {ISS }}}{2}=\frac{1.811-0.4}{2}=0.7055 \\
& \left(\frac{W}{L_{\text {eff }}}\right)_{5-8}=\frac{2 I_{D}}{\mu_{P} C_{O X}\left(V_{\text {SS }}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)} \\
& =\frac{2(0.5 \mathrm{~mA})}{(100)(383.6 \mathrm{n})(6.495)(1+0.2)(0.495)} \\
& =97.02 \\
& W_{5-8} \cdot 97.02 \times \text { ref }=31.05 \mu \mathrm{~m} \simeq 31.1 \mathrm{~mm} \\
& \left(\frac{W}{L_{i f f}}\right)_{1-4}=\frac{2 I_{D}}{\mu_{n} C_{x}\left(V_{\text {OS }}-V_{\text {TH }}\right)^{2}\left(1+\lambda V_{D S}\right)} \\
& =\frac{2(0.5 \mathrm{~mA})}{(350)(383.6 n)(0.7055)(1+0.1 \times 0.7055)} \\
& =14 \\
& W_{1-4} \cong 4.8 \mu \mathrm{~m}
\end{aligned}
$$

(C)

$$
\begin{aligned}
A_{r} & =g_{m 1}\left(g_{m 3} r_{03} r_{01} / / g_{m 5} r_{05} r_{07}\right) g_{m q}\left(r_{09} / / r_{011}\right) \\
g_{m_{1}} & =\frac{2 I_{0}}{r_{6 s_{1}}-V_{T H}}=\frac{2(0.5 \mathrm{~mA})}{0.7055}=1.417 \mathrm{~m} \Omega^{-1} \\
g_{m 3} & =g_{m 1}=1.417 \mathrm{~m} \Omega^{-1} \\
g_{m 5} & =\frac{2 I_{0}}{r_{035}-V_{T H p}}=\frac{2(0.5 \mathrm{~mA})}{0.495}=2.022 \mathrm{~m} \Omega^{-1} \\
g_{m q} & =\frac{2(0.5 \mathrm{~mA})}{0.289}=3.46 \mathrm{~m} \Omega^{1} \\
r_{0 N} & =r_{01}=r_{03}=r_{011}=\frac{1}{\lambda I_{0}}=\frac{1}{(0.1)(0.5 \mathrm{~mA})} \\
& =20 \mathrm{k} \Omega \\
r_{0 p} & =r_{05}=r_{07}=r_{09}=\frac{1}{\lambda I_{D}}=\frac{1}{(0.2)(0.5 \mathrm{~mA})} \\
& =10 \mathrm{k} \Omega \\
A_{r} & =(1.417 \mathrm{~m})\left[1.417 \mathrm{~m}^{2} \times 20 \mathrm{k} \times 20 \mathrm{k} / / 2.022 \mathrm{~m} \times(0 \mathrm{k} \times 10 \mathrm{k}] \times 3.46 \mathrm{~m} \times(10 \mathrm{k} / / 20 \mathrm{k})\right. \\
A_{r} & =4871
\end{aligned}
$$

Problem 9.9

$$
\begin{aligned}
\bar{V}_{n}^{2}, \text { innit }\left.\right|_{M_{1}} & =4 k i \gamma \frac{1}{g_{m_{1}}} \\
\bar{V}_{n}^{2}, \text { input }\left.\right|_{M_{2}} & \simeq 0 \\
\bar{V}_{n}^{2}, \text { out }\left.\right|_{M_{5}} & =4 k T \gamma g_{m_{5}} R_{\text {out }}{ }^{2} \\
\left.\bar{V}_{n, \text { out }}^{2}\right|_{M_{5}} & =\frac{4 k T \gamma g_{m 5} R_{\text {out }}{ }^{2}}{\left(g_{m_{1}} R_{\text {out }}\right)^{2}} \\
& =4 k T \gamma \frac{g_{m s}}{g_{m_{1}}^{2}}
\end{aligned}
$$

Noise due to $\mathrm{M}_{3}, \mathrm{M}_{4}$:

$$
\begin{aligned}
& I_{n, 34}=4 k T r\left(g_{m 3}+g_{m 4}\right) \\
& R_{034}=r_{01} / / r_{04} \\
& V_{x}=r_{01}\left(-\frac{V_{\text {out }}}{r_{05}}\right) \\
& I_{03}=g_{m 3} V_{x}=-\frac{g_{m 3} r_{01} V_{\text {ont }}}{r_{05}} \\
& V_{Y}=R_{034}\left(I_{n, 34}+\frac{g_{m 3} r_{01}}{r_{05}} V_{\text {out }}\right)
\end{aligned}
$$

neglect the r_{02} to approximate the result,

$$
\begin{aligned}
& V_{\text {out }}=\frac{-r_{05}}{\frac{1}{g_{m_{2}}}+r_{01}} V_{Y}=\frac{-r_{05}}{\frac{1}{g_{m_{2}}}+r_{01}} R_{034}\left(I_{n, 34}+\frac{g_{m 3} r_{01}}{r_{05}} V_{\text {sit }}\right) . \\
& V_{\text {out }}\left(\frac{\frac{1}{g_{m 2}}+r_{02}}{+r_{05} R_{034}}+\frac{g_{m 3} r_{01}}{r_{05}}\right)=-I_{\text {n }}
\end{aligned}
$$

$$
V_{\text {out }}: \frac{-I_{n} r_{05} R_{034}}{\frac{1}{g_{M 2}}+r_{02}+g_{m_{3}} r_{1} R_{034}} \approx \frac{-I_{n} r_{05} R_{034}}{g_{m_{3}} r_{01} R_{034}}=\frac{-r_{05}}{r_{01} g_{m 3}} I_{n}
$$

$$
\begin{aligned}
\bar{V}_{n, \text { input }}^{2} \mid m_{3, M_{4}} & =\frac{\left(\frac{r_{05}}{r_{01} g_{m 3}}\right)^{2} I_{n}}{g_{m_{1}}^{2}\left(r_{05} \|\left[g_{m_{2}} r_{02} r_{01} g_{m_{3}}\left(r_{03} / / r_{04}\right)\right]\right)^{2}} \simeq \frac{I_{n}\left(\frac{r_{05}}{g_{m 3} r_{01}}\right)^{2}}{g_{m_{1}}^{2} r_{05}^{2}} \\
& =4 k T \gamma\left(g_{m_{3}}+g_{m 4}\right)\left[\frac{1}{\left.g_{m_{1}}^{2} g_{m 3}^{2} r_{01}{ }^{2}\right]}\right.
\end{aligned}
$$

This is negligible compared with the noise due to M_{1}, M_{5}

$$
\therefore \bar{V}_{n, \text { in total }}^{2}=4 k T \gamma\left[\frac{1}{g_{m_{1}}}+\frac{g_{m_{5}}}{g_{m_{1}}^{2}}\right]
$$

Problem 9.10
(a). $I_{1}=100 \mu A, \quad I_{2}=0.5 \mathrm{~mA},\left(\frac{W}{L}\right)_{1-3}=\frac{100}{0.5}$

$$
\begin{aligned}
& \left(\frac{w}{L}\right)_{p}=\frac{50}{0.5} \\
& I_{D_{3}}=I_{1}=\frac{1}{2} \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{3}\left(V_{G S}-V_{T H}\right)^{2}\left(1+a V_{D S}\right) \\
& V_{\text {GS } 3}-V_{\text {IH }}=\left[\frac{2 I_{1}}{\mu_{4} C_{x}\left(\frac{N}{\left.L_{\text {sff }}\right)_{3}}\right.}\right]^{\frac{1}{2}} \\
& \text { Vin } \\
& =\left[\frac{2(100 \mu \mathrm{~A})}{350 \times(381.6 n)\left(\frac{100}{0.34}\right)}\right]^{\frac{1}{2}}=0.0712 \\
& V_{G S 3}=0.7712 \mathrm{~V}=V_{G 3}=V_{x} \\
& V_{G S_{2}}-V_{T H_{n}}=\left[\frac{2 I_{2}}{\mu_{n} C_{0}\left(W_{\text {off }}\right)_{2}}\right]^{\frac{1}{2}} \\
& =\left[\frac{2(0.5 \mathrm{~mA})}{(350)(383.6 \mathrm{n})\left(\frac{100}{0.34}\right)}\right]^{\frac{1}{2}}=0.159 \mathrm{~V} \\
& V_{G S_{2}}=0.859 \mathrm{~V} \\
& V_{G_{2}}=V_{6 s_{2}}+V_{x}=1.630 \mathrm{~V} .
\end{aligned}
$$

(b) Max output swing:

$$
\begin{aligned}
& V_{\text {outmax }}=V_{D D}-V_{O D 5} \mid \\
& V_{\text {outmin }}=V_{x}+V_{O D 2}=V_{63_{3}}+V_{002}
\end{aligned}
$$

Max output swing $=V_{D D}-\left|V_{O R 5}\right|-V_{O D 2}-V_{Q S 3}$

$$
\begin{aligned}
N_{G S 5}\left|-\left|V_{T H}\right|\right. & =\left[\frac{2 I_{D}}{\mu_{P} \operatorname{Cos}\left(\frac{W}{L_{\text {eff }}}\right)_{5}}\right]^{\frac{1}{2}}=\left[\frac{2(0.5 \mathrm{~mA})}{(100)(3+3.6 n)\left(\frac{50}{0.32}\right)}\right]^{\frac{1}{2}} \\
& =0.408 \mathrm{~V}=\left|V_{005}\right|
\end{aligned}
$$

$$
\begin{aligned}
\text { Max ontput siving } & =3-0.408-0.159-0.7712 \\
& =1.6618 \mathrm{~V}
\end{aligned}
$$

(c)

$$
\begin{aligned}
A_{v} & =g_{m_{1}}\left[r_{05} / /\left(g_{m_{2}} r_{02} r_{01} g_{m_{3}}\left(r_{03} / / r_{04}\right)\right)\right] \quad \text { Note: } \\
& \simeq g_{m_{1}} r_{05} \\
g_{m_{1}} & =\sqrt{2 \mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right) I_{01}}=\sqrt{2(350)(383.6 \mathrm{n})\left(\frac{100}{0.34}\right)(0.5 \mathrm{~mA})} \\
& =6.28 \mathrm{~m} \Omega-1 \\
r_{05} & =\frac{1}{\lambda I_{0}}=\frac{1}{(0.2)(0.5 \mathrm{~mA})}=10 \mathrm{k} \Omega \\
A_{r} & =62.8
\end{aligned}
$$

9.10 cont.
(c)

$$
\begin{aligned}
& \bar{V}_{n, \text { in }}^{2}=4 k T \gamma\left[\frac{1}{g_{m_{1}}}+\frac{g_{m 5}}{g_{m_{1}^{2}}}\right]+4 k T \gamma\left(\frac{1}{g_{m 3}}+\frac{g_{m 4}}{g_{m 3}^{2}}\right)\left[\frac{g_{m_{2}} r_{02} g_{m_{3}}\left(r_{03} / / r_{04}\right)}{g_{m_{1}}\left(r_{01}+r_{02}+r_{05}\right)}\right]_{(\text {see }}^{2} \\
& g_{m_{1}}=g_{m_{2}}=6.28 \mathrm{~m} \Omega^{-1} \\
& g_{m 5}=\left[2(100)(383.6 n)\left(\frac{50}{0.32}\right)(0.5 m)\right]^{\frac{1}{2}}=2.45 \mathrm{~m} \Omega^{-1} \\
& g_{m 3}=\left[2(350)(383.6 n)\left(\frac{100}{134}\right)(100 \mu)\right]^{\frac{1}{2}}=2.81 \mathrm{~m} \Omega^{-1} \\
& g_{m 4}=\left[2(100)(383.6 n)\left(\frac{50}{132}\right)(100 \mu)\right]^{\frac{1}{2}}=1.09 \mathrm{~m} \Omega^{-1} \\
& r_{01}=r_{02}=\frac{1}{\lambda I_{0}}=\frac{1}{(0.1)\left(0.5 \mathrm{~m}_{n}\right)}=20 \mathrm{k} \Omega \\
& r_{03}=\frac{1}{(0,1)(100 \mu)}=100 \mathrm{k} \Omega \\
& r_{04}=\frac{1}{(0.2)(100 \mu)}=50 \mathrm{kS} \\
& r_{05}=\frac{1}{(0.2)(2.5 \mathrm{~m})}=10 \mathrm{k} \Omega \text {. } \\
& \bar{y}_{n / \text { in }}^{2}=4\left(1.38 \times 10^{-23}\right)(300)\left(\frac{2}{3}\right)\left[\frac{1}{6.28 \mathrm{~m}}+\frac{2.45 \mathrm{~m}}{6.28 \mathrm{~m}^{2}}\right] \\
& =2.444 \times 10^{-18} \mathrm{~V}^{2} / \mathrm{Hz} \\
& \bar{V}_{\text {nin }}=1.56 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}_{z}}
\end{aligned}
$$

Problem 9.11

$$
\begin{aligned}
& V_{p}=100 \mathrm{mV} \\
& V_{\text {out, }}, C M=1.5 \mathrm{~V}, \quad I_{D 7,8}=0.5 \mathrm{~mA} \\
& \begin{aligned}
I_{D} & =\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{\mathrm{~W}}{L_{7}}\right)_{7}\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right] \\
\left(\frac{W}{C_{\text {Af }}}\right)_{7} & =\frac{2 I_{D}}{\mu_{n} C_{0 x}\left[\left(V_{G S}-V_{T}\right) V_{D S}-\frac{\left.V_{D S^{2}}^{2}\right]}{2}\right]} \\
& =\frac{2(0.5 \mathrm{~mA})}{(350)(383.6 n)\left[(1.5-0.7)(0.1)-\frac{0.1^{2}}{2}\right]} \\
& =99.3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& W 7.8=99.3 \times 0.34 \mu \mathrm{~m}=33.762 \mu \mathrm{~m} \simeq 34 \mu \mathrm{~m} \\
& \left(\frac{W}{L}\right)_{7.8}=\frac{34}{0.5}
\end{aligned}
$$

Problem q. 12
(a) PMOS devices should be used. Since Vout,cm is in the middle voltage range, (around 1.5 V), and Vas 3.4 are in low voltage range, (around 0.7-0.8V), we should use pros to bring down the voltage.
b,

$$
=
$$

$$
A_{1}=g_{m_{13}}\left(r_{012} \| r_{014}\right)
$$

$$
\text { loop gain }=-g_{m 3,4}\left[\left(g_{m s} r_{05} r_{03}\right) \|\left(g_{m 7} r_{07}\left(r_{01} / / r_{09}\right)\right] g_{m 13}\left(r_{012} \| r_{014}\right)\right.
$$

Problem 9.13
(a) Since we need to bring down Vout,cm to fit the bias voltage of NMOS, which is relatively low, we should use PMOS for the input pair of amplifier.

(b) vice \cdot

$$
\begin{aligned}
& A_{1}=g_{m_{3}}\left(r_{012} \| r_{014}\right) \\
& \frac{r_{\text {outman }}}{r_{E}}=-g_{m 15}\left[\left(g_{m_{5}} r_{05} r_{03}\right) \|\left(g_{m 7} r_{07}\left(r_{09} \| g_{m 1} r_{01} r_{015}\right)\right)\right] \\
& \text { loop gain }=-g_{m 15}\left[\left(g_{m_{5}} r_{05} r_{03}\right) \|\left(g_{m 7} 7 r_{07}\left(r_{09} \| g_{m 1} r_{01} r_{015}\right)\right)\right] g_{m 13}\left(r_{012} \| r_{014}\right)
\end{aligned}
$$

Problem 9.14
(a)

$$
\left(\frac{W}{L}\right)_{1-4}=\frac{100}{0.5}, C_{1}=C_{2}=0.5 p \mathrm{~F}, I_{s s}=1 \mathrm{~mA}
$$

$$
A_{v}=g_{m_{1}}\left(r_{O_{2}} \| r_{04}\right)
$$

$$
R_{\text {ont }}=r_{02} / 1 r_{04}
$$

$$
v_{i n}=v_{1}+v_{x}
$$

$$
V_{x}=\operatorname{Vout} \frac{C_{1}}{C_{1}+C_{2}}
$$

$V_{\text {out }}=A_{v} V_{1}\left[\frac{\frac{1}{C_{1} U C_{2 S}}}{R_{\text {out }}+\frac{1}{G_{1} U C_{2} S}}\right]=A_{v} V_{1} \frac{1 \frac{1}{\frac{1}{T}} C_{2}}{\left(C_{1} \| C_{2}\right) R_{\text {ant }} \delta+1}$

$$
=\frac{A_{1}}{1+\left(C_{1} \| C_{2}\right) R_{\text {out } 5}}\left(V_{\text {in }}-V_{\text {out }} \frac{C_{1}}{C_{1}+C_{2}}\right)
$$

$$
\left(1+\left(C_{1} \| C_{2}\right) R_{\text {out }} S+A_{v} \frac{C_{1}}{C_{1}+C_{2}}\right) V_{\text {ont }}=A_{v} V_{\text {in }}
$$

$$
\tau=\frac{\frac{C_{1} C_{2}}{C_{1}+C_{2}} R_{\text {ont }}}{1+A_{v} \frac{C_{1}}{C_{1}+C_{2}}}
$$

(b) $\quad I_{O_{2}}=0.1$ Iss,

Since $I_{O_{2}}$ is sill l small, we can solve this problem by assuming the current through $C_{1} \& C_{2}$ roughly equal to Iss

$$
V_{x}(t)-V_{x}(0)=\frac{I_{s s}}{C_{2}} t
$$

At $t=0^{-} \quad I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{mt}$

$$
\begin{aligned}
& \text { At } \quad t=0^{-} \quad I_{D_{1}}=I_{D_{2}}=0.5 \mathrm{~mA} \\
& V_{Q_{S, 2}, 2}-V_{T H}=\left[\frac{2 I_{p}}{\mu_{4} C_{0 x}\left(\frac{W_{T H}}{L}\right)}\right]^{\frac{1}{2}}=\left[\frac{2(0.5 \mathrm{~mA})}{(350)(3836 \mathrm{~m})\left(\frac{1000}{0.34}\right)}\right]^{\frac{1}{2}} \\
&=0.159 \mathrm{~V}
\end{aligned}
$$

At t mine $=t$, when $I_{02}=0.1 I_{s s} \Rightarrow I_{D_{1}}=0.9 I_{s s}$

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{N} C_{0 x}\left(\frac{W}{C}\right)\left(V_{G S}-V_{T}\right)^{2} \\
& \frac{I_{D 1}}{I_{D 2}}=\frac{0.9 I_{S S}}{0.1 I_{S S}}=\frac{\left(V_{G S_{L}}-V_{T}\right)^{2}}{\left(V_{S S_{2}}-V_{T}\right)^{2}} \Rightarrow \frac{\left(V_{G S_{1}}-V_{T}\right)}{\left(V_{G S_{2}}-V_{T}\right)}=3 \\
& V_{G S_{1}}(t)-V_{T}=3\left(V_{G S_{2}}-V_{T}\right) \\
& \left(V_{G S_{1}}(t)-V_{T}\right)=\left(V_{G S_{1}}(0)-V_{T}\right)+I V=0.159+1 \mathrm{~V}=1.159 \mathrm{~V}=3\left(V_{G S_{2}}-V_{T}\right) \\
& V_{G S_{2}}(t)-V_{T}=C .386 \mathrm{~V}
\end{aligned}
$$

9.14 cont.

$$
\begin{aligned}
& {\left[V_{G S_{2}}(t)-V_{T}\right]-\left[V_{\theta S_{2}}(0)-V_{T}\right]=V_{x}(t)-V_{(0)}=\frac{I_{\text {IS }}}{c_{2}} t} \\
& 0.386-0.159=0.227=\frac{(\mathrm{mA}}{0.5 \mathrm{pF}}(t) \\
& t=113.5 \mathrm{ps}
\end{aligned}
$$

Problem 9.15
The mistake is made when we say the current from. Vest is equal to $\Delta V / r_{02}$.

We can see it when we start from the amplifier.
If we assume current from V_{-}is very small or negligible, the current through r_{o} is goal to Itest, the current driven from Vent. The current through $r_{o l}$ is $\frac{\Delta V_{x}}{r_{01}}$, which is a much smaller value than $\Delta V / r_{02}$.
The mistake is made because the current through. To z is actually equal to $\Delta V / T_{02}$ or $\cong \frac{\Delta V-\Delta V_{x}}{r_{02}}$. This current is larger since than Itert since some extra current from M_{2} makes the current through row larger. As a result, $\Delta V_{\text {row }}$ (Δ voltage across r_{02}) increases by about ΔV, but the current from $V_{\text {tot }}$ increases only by $\frac{\Delta V_{x}}{r_{01}}$.

Problem 9.16

$$
\begin{aligned}
& \text { MR }=\frac{\text { diff. gain }}{C M \cdot g a i n .} \\
& \text { diff. gain }=g_{m_{1}}\left(r_{02} / / r_{04}\right)
\end{aligned}
$$

$C M$ gain: let R is the resistance of current source

$$
\begin{aligned}
& \Delta V_{\text {in }}=\Delta V_{\text {in }}-V_{C M} \\
& \frac{V_{\text {out }}}{\Delta V_{\text {in }}}=\frac{-\frac{1}{g m_{3}}}{\frac{R}{2}+\frac{1}{g_{m_{1}}}} g_{\text {mir }}\left(R_{\text {out }}\right) \\
& \frac{V_{\text {out }}}{\Delta V_{\text {in }_{2}}}=\frac{-R_{\text {out }}}{\frac{R}{2}+\frac{1}{g g_{m_{2}}}} \\
& \left|\frac{V_{\text {out }}}{V_{\text {CM }}}\right|=\frac{2 R_{\text {out }}}{\frac{R}{2}+\frac{1}{g_{M_{1}}}} \approx \frac{4 R_{\text {out }}}{R}
\end{aligned}
$$

where Rout $=r_{04} / l r_{12}$

$$
\begin{aligned}
& C M \text { gain }=\frac{-4\left(r_{04} / 1 r_{02}\right)}{R} \\
& C M R R=\frac{g_{m_{1}}\left(r_{02 t} r_{04}\right)}{\frac{4\left(r_{02}+r_{04}\right)}{R}} \cdot \frac{g_{m_{1} R}}{4}=C M R R
\end{aligned}
$$

Problem 9.17

Neglect the noise due to $M_{11}, M_{3}, M_{4}, M_{5}, M_{6}$.
Input-refierred flicker noise due to $M_{7,8}=2\left[\frac{\overline{V_{n, 7,8}^{2}} \cdot g_{m i l, 8}^{2} R_{o n t}^{2}}{A_{v}}\right]$
where $A_{v}=g_{m 1}$ (Rout) , $\bar{V}_{n, z_{1,}}^{2}=\frac{K_{p}}{C_{x}(W L)_{72}} \cdot \frac{1}{f}$

Total Input-referred Flicker noise

$$
=\frac{2 K_{N}}{\operatorname{Cox} f}\left[\frac{1}{(W L)_{1,2}}+\frac{1}{(w L)_{q, 10}} \frac{g_{m q, 10}^{2}}{g_{m}^{2} 1,2}\right]+\frac{2 K_{p}}{\operatorname{Cox} f} \frac{1}{(w L)_{7,8}} \frac{\operatorname{gimz,8}^{2}}{g_{m 1,2}^{2}}
$$

Problem 9.18

$$
P=6 \mathrm{~mW} \text {, output swing }=25 \mathrm{~V}
$$

$L_{\text {off }}=0.5 \mu \mathrm{~m}$
(a) $I_{D, 6}=1 \mathrm{~mA} . V_{O D_{5}} \simeq V_{O D 6}=\frac{V_{D D}-\text { Output Sing }^{2}=\frac{3-2.5}{2}=0.25 \mathrm{~V} \text {. } 10 .}{}$

$$
\begin{aligned}
& I_{D}=\frac{1}{2 \mu C_{0 x}\left(\frac{w}{L}\right)\left(V_{G S}-V_{T H}\right)^{2}\left(1+a V_{B S}\right)} \\
&\left(\frac{w}{L}\right)_{T}=\frac{2 I_{D}}{\mu C_{0 x}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right)} \\
&\left(\frac{w}{L}\right)_{5}=\frac{2(1 \mathrm{~mA})}{(350)(383.6 n)(0.25)^{2}(1+10.1)(0.25)} \quad I_{D 5}=I_{P 6}=1 \mathrm{~mA} \\
&=\frac{233}{\left(\frac{W}{L}\right)_{6}} \\
&=\frac{2(1 \mathrm{~mA})}{(100)(383.6 n)(0.25)^{2}(1+0.2(0.25))} \\
&=795 \\
&\left(\frac{W}{L}\right)_{5}=233 \quad\left(\frac{W}{L^{2}}\right)_{6}=795
\end{aligned}
$$

(b. Ar of (st stage $=$ gin $_{1}\left(r_{02} / / r_{04}\right)$

Av of $2 n a$ stage $=g_{m 5}\left(r_{65} / / r_{06}\right)$

$$
\begin{aligned}
& g_{m_{5}}=\frac{2 I_{D}}{V_{G S}-V_{T H}}-\frac{2(1 \mathrm{~mA})}{0.25}=8 \mathrm{~m} \Omega^{-1} \\
& r_{65}=\frac{1}{\lambda I_{p}}=\frac{1}{(0.1)(1 \mathrm{~mA})}=101 \mathrm{k} \Omega \\
& r_{06}=\frac{1}{\lambda I_{D}}=\frac{1}{(0.2)(1 \mathrm{~mA})}=5 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
\text { Ar of output stage } & =(8 \mathrm{~m})(10 \mathrm{k} / 15 \mathrm{k}) \\
& =26167
\end{aligned}
$$

(C) $\left.I_{D}\right]=\operatorname{ImA} \rightarrow I_{03}=I_{04}=0.5 \mathrm{~mA}$

$$
\begin{aligned}
& V_{6 S 5}-V_{T H}=0.25 \mathrm{~V} \Rightarrow V_{G S 5}=0.25+V_{T H}=0.95 \mathrm{~V} \\
& V_{G S_{3}}-V_{T H}=0.25 \\
& \left(\frac{W}{L}\right)_{3.4}=\frac{2(0.5 \mathrm{~mA})}{(350)(383.6 \mathrm{n})(0.25)^{2}(1+0.1 \times 0.25)} \\
& \left(\frac{W}{L}\right)_{3,4}=116
\end{aligned}
$$

9.18
(a)

$$
\begin{aligned}
& \text { Av tot }=g_{m 1}\left(r_{02} / / r_{04}\right) g_{M 5}\left(r_{05} \| / r_{06}\right) \\
& r_{02}=\frac{1}{\lambda I_{0}}=\frac{1}{(0.2)(0.5 \mathrm{~m})}=10 \mathrm{k} \Omega . \\
& r_{04}=\frac{1}{(0.1)(0.5 \mathrm{~m})}=20 \mathrm{k} \Omega \text {. } \\
& r_{62} / / r_{04}=6.67 \mathrm{k} \Omega \\
& \text { Artat }=g_{m,}(6.67 k)(26.7)=500 \\
& g_{m_{1}}=2,81 \mathrm{~m} \Omega^{-1} \\
& g_{m_{1}}=\sqrt{2 \mu_{0} C_{0 x}\left(\frac{W}{L}\right) I_{0}} \Rightarrow \quad\left(\frac{w}{L}\right)=\frac{\xi_{m_{1}}{ }^{2}}{2 \mu_{p} C_{0 x} I_{0}} \\
& \left(\frac{w}{L}\right)_{1,2}=\frac{(2,81 \mathrm{~m})^{2}}{2(000)(383.6 n)(0,5 \mathrm{~m})} \\
& \left(\frac{w}{L}\right)_{1,2}=206
\end{aligned}
$$

Problem 9.19
Av of 2 nd stage $=20 \quad I_{05,6}=\operatorname{lmA}$
(a) $V_{A D_{S}}=V_{\text {ab }}$

$$
\begin{aligned}
\text { Av of 2nd stage } & =g_{M 5}\left(V_{05} / / r_{06}\right) \\
& =\frac{2 I_{0}}{V_{B S_{5}}-V_{T H}} \cdot\left[\frac{1}{{ }_{4}^{I_{D 5}}} \| \frac{1}{\Gamma_{P}^{I_{D 6}}}\right]=20 .
\end{aligned}
$$

$$
\begin{aligned}
& V_{05}=\frac{1}{(0.1)(\operatorname{mAt})}=10 \mathrm{k} \Omega \quad r_{66}=\frac{1}{(0.21(\mathrm{~mA})}=5 \mathrm{k} \Omega \quad r_{05} / 1 / r_{06}=3.33 \mathrm{k} \Omega \\
& V_{655}-V_{T H}=\frac{2 I_{0}\left(r_{05} / / r_{06}\right)}{A_{0}}=\frac{2(1 \mathrm{~mA})(3.33 \mathrm{k} \Omega)}{20}=0.333 \mathrm{~V} \\
& \left(\frac{\mathrm{~W}}{L}\right)_{5}=\frac{21(\mathrm{~mA})}{(350)(383.6 \mathrm{~m})(0.33)^{2}(1+0.1 \times 0.33)}=132=(\mathrm{W} / \mathrm{L})_{5} \\
& \left(\frac{W}{L}\right)_{6}=\frac{2(1 \mathrm{~mA})}{(100)(383.6 \mathrm{~h})(0.33)^{2}(1+0.2 \times 0.33)}=449=(\mathrm{W} / \mathrm{L})_{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
r_{06} & =\frac{1}{\mu_{P} C_{O X}\left(\frac{W}{L}\right)\left(V_{G S 6}-V_{T H P}-V_{O S}\right)} \quad V_{G S G}-V_{T H_{P}}-V_{P S}=56 \mathrm{mV} \\
& =\frac{1}{(100)(383.6 \mathrm{n})(449)(50 \mathrm{~m})}=1.16 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
\text { Av of 2nd stape } & =\left[\frac{2(1 \mathrm{~mA})}{0.333}\right][10 \mathrm{k} / /(1.16 \mathrm{k}] \\
& =6.24=A_{v}
\end{aligned}
$$

Problem 9.20
(a) $\left|r_{G S 7}-V_{T H 7}\right|=0.4 \mathrm{~V}=V_{O D 7}$

$$
\begin{aligned}
& V_{\text {in max }}=V_{D D}-\left|V_{\text {OoF }}\right|-\left|V_{D_{1}}\right|-\left|V_{T H}\right| \\
& I_{n} \text { part id, Prob 9.18. } \quad g_{m c}=3.81 \mathrm{~m} \Omega^{-1}=\frac{2 I_{D}}{V_{6 S}-V_{T H}}=\frac{2(0.5 \mathrm{~m})}{V_{O D}} \\
& \left|V_{O D}\right|=0.356 \mathrm{~V} \\
& V_{\text {m max }}=3-0.4 \mathrm{v}-0.356 \mathrm{v}-0.8=1.444 \mathrm{v} \\
& V_{\text {in,min }}=\left|V_{\text {op } 3}\right|=0.25 \text { from Prob } q_{1}, 8 \text { (c) }
\end{aligned}
$$

Allowable input voltage range: $0.25 \leq \operatorname{Vin} \leq 1.44 \mathrm{~V}$
(b) At $V_{\text {in }}=V_{\text {out, }} V_{\text {in }}=V_{\text {in }}$ since $V_{\text {in z }}$ is connect to Vout Since $V_{\text {in }}=V_{\text {in 2 }}, \quad I_{D_{1}}=I_{D_{2}} \Rightarrow V_{x}=V_{Y}$.

$$
\begin{aligned}
& \Rightarrow I_{D_{5}}=1 \mathrm{~mA} \Rightarrow I_{D_{1}}=I_{O_{2}}=0.5 \mathrm{~mA} \text {. } \\
& I_{P}=\frac{1}{2} \mu \operatorname{Cox}\left(\frac{W}{L}\right)\left(V_{O S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& V_{6 S_{3}}-V_{T H}=0.25 \Rightarrow V_{6 S_{3}}=0.95 \\
& V_{Q S}, V_{H H}=\sqrt{\frac{2 I_{0}}{\mu \operatorname{Cox}\left(\frac{W}{L}\right)\left(1+\lambda V_{D S}\right)}} \\
& \Rightarrow V_{D S} \cong V_{D D}-V_{O S 7}-V_{6 S_{3}} \cong 3-0.7-0.95 \\
& \simeq 1.3 \mathrm{v} \\
& =\left[\frac{2(0.5 \mathrm{~m})}{(100)(383.6 n)(206)(1+0.2 \times(.3)}\right]^{\frac{1}{2}} \\
& =0.317 \mathrm{~V} \\
& V_{G S 1}=0.317+0.7=1.017 \mathrm{v} \\
& V_{\text {in }}=V_{653}+V_{\text {ts }}=0.95+1.017 v \\
& V_{i n}=1.97 \mathrm{~V}
\end{aligned}
$$

Problem 9.21
Noise ane to $M 7$ is negligible since induce common mode gain, which is very small.
Consider lest stage:

$$
\left.V_{n, \text { input }}^{2}\right|_{\text {st stage }}=\left[4 \mathrm{kTV}\left(\frac{1}{g_{n 1,2}}+\frac{g_{m_{3,4}}}{g_{n=1,2}^{2}}\right)\right] \times 2
$$

Overall :

$$
\bar{V}_{n \text { input }}^{2}=\left[4 k \operatorname{Tr}\left(\frac{1}{g_{m, 2}}+\frac{g_{m_{3,4}}}{g_{m_{1}^{2}, 2}}\right)^{7} \times 2+\frac{\left[4 k T \gamma\left(\frac{1}{g_{m 5}}+\frac{g_{m 6}}{g_{m 5}^{2}}\right)\right]}{\left[g_{m 1}\left(r_{02} \| 1 r_{04}\right)\right]^{2}}\right.
$$

From Rob. 9.18°

$$
\begin{aligned}
& g_{m_{1,2}}=281 \mathrm{ma}^{-1}, \quad g_{m 3.4}=\frac{2 I_{D}}{V_{6 S_{3}}-V_{\text {met }}}=\frac{2(0.5 \mathrm{~m})}{0.25}=4 \mathrm{~m} \Omega^{-1} \\
& g_{m s}=g_{\mathrm{m} \Omega^{-1}} \quad g_{m 6}=\mathrm{sm}^{-1}, r_{02}=10 \mathrm{~K} \quad r_{04}=20 \mathrm{k} \quad r_{02} / 1 r_{04}=6.67 \mathrm{k} \Omega \\
& \begin{aligned}
\bar{V}_{n}^{2}{ }_{\text {imp }} & =\left[4 \times 1.38 \times 10^{-23} \times 300 \times \frac{2}{3} \times\left(\frac{1}{2.81 \mathrm{~m}}+\frac{4 \mathrm{~m}}{2.81 \mathrm{~m}^{2}}\right)\right] \times 2+\frac{4 \times 1.38 \times 10^{-23} \times 300 \times \frac{2}{3} \times\left(\frac{1}{8 \mathrm{~m}}+\frac{1}{8 \mathrm{~m}}\right)}{[2.81 \mathrm{~m}(6.67 \mathrm{k})]^{2}} \\
& =1.905 \times 10^{-17} \mathrm{~V}^{2} / \mathrm{Hz}
\end{aligned} \\
& \bar{V}_{n \text { innnut }}^{2}=4.36 \times 10^{-9} \mathrm{~V} / \sqrt{\mathrm{Hz}}
\end{aligned}
$$

9.22.
(a) $\quad A_{v}=g_{m_{1,2}}\left(r_{01} / / r_{03}\right)$
$b_{1} \quad V_{\text {in }}>V_{D D}-V_{D}$, where $V_{D 1}$ is the diode junction voltage of the diode
 between source and body.
(c) $\quad g_{m_{B}}=g_{m} \frac{\gamma}{2 \sqrt{2 \phi_{A}\left|+\left|V_{S B}\right|\right.}}$

As Vin.cM decreases, $\left|V_{S B}\right| \uparrow, 1 g_{M b}$ decreases.
More accurately, $\quad g_{m b} \propto \frac{1}{\sqrt{k \phi_{F} \mid+N_{S B \mid}}}$
As 2 result. Av decreases.
(d)

$$
\begin{aligned}
\overline{V_{n, \text { out }}^{2}} & =\left[4 k T \gamma\left(g_{m_{1}}+g_{m_{3}}\right) R_{\text {ont }}^{2}\right] \times 2 \\
\bar{V}_{n, \text { in }}^{2} & =\frac{4 k T \gamma\left(g_{m_{1}}+g_{m 3}\right) R_{\text {out }}^{2} \times 2}{\left[g_{m b l, 2}\left(R_{\text {ont }}\right)\right]^{2}} \\
& =\left[4 k T \gamma \frac{g_{m 1}+g_{m 3}}{\left(g_{m b l, 2}\right)^{2}}\right] \times 2
\end{aligned}
$$

Problem 9.23
(d) Arg lIst stage $=g_{m_{1,2}}\left(r_{01} / / r_{03}\right)$

Ar of and stage $=\left[g_{m 5,9}\left(r_{07} / / r_{05}\right)\right] \times 2$
$A_{v-t 4}=g_{m_{1,2}}\left(r_{01} \| r_{03}\right) g_{m 519}\left(r_{05} / r_{07}\right) \times 2$
b. lIst major pole:

$$
\omega_{1}=\frac{1}{\left(r_{09} / / r_{011}\right)\left[C_{D G 9}+C_{D B 9}+C_{G S_{11}}+C_{D B_{11}}+C_{G S_{7}}+C_{G D_{7}}\left(1+g_{M 7}\left(r_{05 / /)} r_{07}\right)\right]\right.}
$$

Ind major sole: node X, Y

$$
\omega_{x}=\frac{1}{\left(r_{\left.01 / / r_{03}\right)}\left[\begin{array}{l}
C_{D G_{1}}+C_{D B_{1}}+C_{06_{3}}+C_{0 B_{3}}+C_{6510}+C_{6 D 10}\left(1+\frac{g_{m i 0}}{g_{m / 2}}\right)+C_{655} \\
\\
+C_{6 D 5}\left(1+g_{M 5}\left(r_{05} / / r_{07}\right)\right.
\end{array}\right]\right.}
$$

Ord major pule: hate output

$$
W_{\text {ont }}=\frac{1}{\left(r_{05} \| r_{0}\right)\left(C_{G D_{5}}+C_{D B 5}+C_{C_{7}}+C_{D B_{7}}\right)}
$$

Prob. 9.24.
Ar of f not path: $g_{m, \prime}^{\prime}\left(r_{05} / / r_{07}\right)$
Ar of slow pith: $g_{m}\left(r_{0} / l / r_{03}\right) g_{m 5}\left(r_{05} / / r_{07}\right)$.
Overall gain Av tot $=\left[\frac{g_{m_{1}^{\prime}}^{\prime}+g_{m_{1}} g_{m 5}\left(r_{01 /} / r_{03}\right)}{2}\right]\left(r_{05} / 1 r_{07}\right)$

The output swing is usually limited by $M_{5}-8$. iii. $V_{D D}-\left|V_{0 D 7}\right|-V_{005}$.

Problem 9. 25
Noise due to $M_{1,2}^{\prime}$

$$
\begin{aligned}
& \bar{V}_{n, \text { input }}^{2} / M_{1,2}^{\prime}=4 k T \gamma\left(\frac{1}{8 m} M_{1,2}\right) \times 2 \\
& \bar{V}_{n, \text { inner }}^{2} \left\lvert\, M_{1,2}=4 E T \gamma\left(\frac{1}{\sin , 2}\right) \times 2\right. \\
& \bar{V}_{n}^{2} \text { input } / M_{3.4}=4 k T \gamma\left(\frac{g_{n 3,4}}{g_{m}^{2}, 2}\right) \times 2 \\
& \bar{V}_{n}^{2} \text { output } l_{M_{5,6}}=46 T \gamma g_{m_{5,6}} R_{\text {out }} \times 2
\end{aligned}
$$

10.1 Two poles $w_{p_{1}}=10 \mathrm{MHz} \quad w_{p_{2}}=500 \mathrm{MHz}$

First find $w_{1}(=G X)$ that gives phase $=-120^{\circ}$ (P.M. of 60°)

$$
\begin{aligned}
& -120^{\circ}=-\tan ^{-1} \frac{w_{1}}{w_{p_{1}}}-\tan ^{-1} \frac{w_{1}}{w p_{p_{2}}} \longrightarrow w_{1} \cong 311 \mathrm{MHz} \\
& A_{0}=\left(\log \frac{w_{1}}{w_{p_{1}}}\right)\left(20^{\mathrm{dr}} / \mathrm{dec}\right)=\left(\log \frac{311}{10}\right)(20)=29.9 \mathrm{~dB}
\end{aligned}
$$

10.2 $\quad \omega_{p_{1}}=\omega_{p_{2}}=\omega_{p}$
a)

$$
\begin{aligned}
& 60^{\circ} \cdot \frac{1}{90^{\circ} / \mathrm{dec}}=0.67 \mathrm{decade} \\
& \log \frac{10 \omega_{\rho}}{\omega_{1}}=0.67 \mathrm{dec} \quad\left(\omega_{1} \text { is } G x\right) \\
& \Rightarrow w_{1}=2.14 \omega_{p} \\
& A_{0}=\left(\log \frac{2.14 \omega_{p}}{\omega_{p}}\right)(40 \mathrm{~dB} / \mathrm{dec})=13.2 \mathrm{~dB}
\end{aligned}
$$

$$
(\beta=1)
$$

b) For closed -100 ρ gain $=4 \Rightarrow \beta \approx \frac{1}{4}$

Thus A_{0} can increase by a factor of 4 to maintain $60^{\circ} \mathrm{P} . \mathrm{M}$.

$$
\Rightarrow A_{0}^{\prime}=13.2 \mathrm{~dB}+20 \log 4=25.2 \mathrm{~dB}
$$

$10.3 \quad A_{0}=1000 \quad \omega_{P_{1}}=1 \mathrm{MHz}$
a)

$$
\begin{aligned}
& { }^{60 \mathrm{~dB}} \underset{\omega_{1}}{\cdots \cdots}=60 \mathrm{~dB}-\left(\log \frac{2 M H_{z}}{1 \mathrm{MHz}}\right)\left(20 \frac{\mathrm{~dB}}{\mathrm{dBC}}\right)=54 \mathrm{~dB} \\
& \text { (} \mathrm{HNz} \text {) } \\
& \downarrow \\
& \log \frac{\omega_{1}}{2 M \mathrm{HI}_{2}}=54 \mathrm{~dB} \frac{1}{4018 \mathrm{dece}}=1.35 \mathrm{dec} \\
& \omega_{1}=44.8 \mathrm{MHz}
\end{aligned}
$$

b)

$$
\begin{aligned}
& W_{p_{2}^{\prime}}^{\prime}=4 \mathrm{MHz} \\
& \log \frac{\omega_{1}^{\prime}}{4 \mathrm{MHz}}=\left[60 \mathrm{~dB}-\left(\log \frac{4 \mathrm{MHz}}{1 \mathrm{MHz}}\right)(20 \mathrm{~dB} / \mathrm{dec})\right] \frac{1}{40 \mathrm{~dB} / \mathrm{dec}}=1.199 \mathrm{dec} \\
& \Rightarrow W_{1}^{\prime}=63.2 \mathrm{MHz} \\
& \angle H\left(j \omega_{1}^{\prime}\right)=-175.5^{\circ} \Longrightarrow P_{1} M_{1}=4.5^{\circ}
\end{aligned}
$$

10.4

$$
\begin{aligned}
& \beta=1 \\
& \text { At } G X, H\left(j w_{1}\right)=1 \cdot e^{j \theta_{1}}
\end{aligned}
$$

Closed loop: $\left|\frac{Y}{x}\left(j \omega_{0}\right)\right|=\left|\frac{H\left(j \omega_{1}\right)}{1+H\left(j \omega_{1}\right)}\right|=1.5$

$$
\begin{aligned}
\rightarrow \frac{1}{\sqrt{1+2 \cos \theta_{1}+1}}\left|\frac{1}{1+e^{j 0}}\right|=\frac{1.5}{2+2 \cos \theta_{1}}=1.5^{2} \longrightarrow \theta_{1}=-141.1^{\circ} \\
P_{1} M_{1}=38.9^{\circ}
\end{aligned}
$$

10.5

Breaking the loop at node x as shown by $\}$ \{ and replacing each end by the impedance each sees, we get the next ciraiit:

Next, calculate the loop gain

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}}(s) & =\frac{V_{Y}}{V_{\text {in }}} \cdot \frac{V_{A}}{V_{Y}} \cdot \frac{V_{\text {out }}}{V_{A}} \\
& =A V_{1} \cdot A V_{2} \cdot A V_{3}
\end{aligned}
$$

$Z_{\text {eq }} \cong \frac{1}{S C_{Y}}$ since $R_{F}=10 \mathrm{k} \Omega \gg \frac{1}{g_{m 2}}$

$$
\begin{aligned}
& A v_{1}=\frac{g_{m_{2}} z_{e q 1}}{1+g_{m_{2}} z_{e q} 1} \cong \frac{g_{m_{2}} \frac{1}{s C_{Y}}}{1+g_{m_{2}} \frac{1}{s C_{Y}}}=\frac{1}{s\left(\frac{C_{Y}}{\partial m_{2}}\right)+1} \\
& A v_{2}=\frac{\frac{1}{s C_{A}}}{R_{F}+\frac{1}{s C_{A}}}=\frac{1}{s C_{A} R_{F}+1} \\
& A v_{3}=-g_{m_{1}}\left(R_{D} \| \frac{1}{s C_{X}}\right)=\frac{-g_{m_{1}} R_{D}}{1+s C_{X} R_{D}}
\end{aligned}
$$

Hence $\omega_{P_{1}}=\frac{g m_{2}}{c_{r}}=1 \times 10^{11} \mathrm{rad} / \mathrm{s}, \omega_{P_{2}}=\frac{1}{C_{A} R_{F}}=1 \times 10^{9} \frac{\mathrm{ra}}{\mathrm{s}}, \omega_{P_{3}}=\frac{1}{c_{\times} R_{P}}=1 \times 10^{10} \frac{\mathrm{~m}}{\mathrm{~s}}$ and $g_{m_{1}} R_{D}=10 \longrightarrow 20 \mathrm{~dB}$

$$
\Rightarrow \quad P_{1} M_{1}=45^{\circ}
$$

$10.6 \quad R_{D}^{\prime}=2 \mathrm{k} \Omega$

$$
\begin{aligned}
& \rightarrow g_{m 1} R_{D}^{\prime}=20 \Rightarrow 26.0 \mathrm{~dB}, \quad \omega_{P_{3}^{\prime}}^{\prime}=\frac{1}{C_{\times} R_{D}^{\prime}}=5 \times 10^{9} \mathrm{ml} / \mathrm{s} . \\
& W_{1}^{\prime} \Rightarrow 26 \mathrm{~dB}-\left(\log \frac{W_{p_{3}^{\prime}}}{W_{P_{2}}}\right)(20 \mathrm{~dB} / \mathrm{dcc})-\left(\log \frac{W_{1}}{W_{p_{3}}}\right)\left(40 \frac{\mathrm{~dB}}{\text { dec }}\right)=0 \mathrm{~dB} \\
& \omega_{1}^{\prime}=9.99 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
& \phi=-\tan ^{-1} \frac{w_{1}^{\prime}}{1 \times 10^{9}}-\tan ^{-1} \frac{\omega_{1}^{\prime}}{5 \times 10^{9}}-\tan ^{-1} \frac{\omega_{1}^{\prime}}{1 \times 10^{11}}=-153.4^{\circ} \\
& \text { PpM. }=26.6^{\circ}
\end{aligned}
$$

10.7 From $10.5 \quad W_{P_{1}}=\frac{g_{m_{2}}}{c_{Y}} \quad W_{P_{2}}=\frac{1}{C_{A R}} \quad W_{P_{3}}=\frac{1}{C_{\times R_{D}}}$
a) Increasing C_{Y} causes $W_{p 1}$ to move towards $W_{P_{3}}$ and will be less than 1 decade from $W_{P 3}$. This will reduce the already 45°-phase margin. Hence $c_{y \max }=100 \mathrm{ff}$.
b) Increasing C_{A} will increase phase margin.

Hence $C_{A \max }=100 \mathrm{fF}$.
c) $C_{x_{\max }=100 \mathrm{fF}}$ since increasing C_{x} will reduce p base margin.
10.8 The approximation can be derived from the ideal case in which the circuit looks like the following:

At the zero, $V_{\text {out }}=0$. and

$$
\begin{aligned}
& \frac{-V_{\text {In }}}{R_{z}+\frac{1}{S_{z} C_{c}}}=-g_{m q} V_{\text {in }} \\
& \left(\frac{1}{g_{m q}}-R_{z}\right)^{-1}=S_{z} C_{c} \\
\therefore & S_{z}=\frac{1}{C_{c}\left(g_{m q}^{-1}-R_{z}\right)}
\end{aligned}
$$

$10.9 \quad\left(\frac{w}{L}\right)_{1-4}=\frac{50}{0.5} \quad I_{S S}=I_{1}=0.5 \mathrm{~mA} \quad C_{X}=C_{Y}=0.5 \mathrm{pF}$
a)

$$
w_{p_{X}} \cong \frac{1}{c_{x}\left(r_{o_{3}} \| r_{o \rho_{2}}\right)} \quad w_{\rho_{y}} \cong \frac{1}{c_{Y}-\left(\operatorname{gon}_{4}^{-1}\right)}
$$

In saturation:
$\lambda_{p}=0.2 \quad \lambda_{n}=0.1$ from Table 2.1

$$
\begin{aligned}
& r_{0 p_{3}}=\frac{1}{0.2(0.25 \mathrm{~mA})}=20 \mathrm{k} \Omega \\
& r_{\text {ono }}=2 r_{\text {ops }}=40 \mathrm{k} \Omega \\
& g_{m 4}=\sqrt{2 I_{D} \mu_{n} C_{0} \frac{W}{L}}=\sqrt{2(0.5 m \mathrm{~A})\left(1.34 \times 10^{-4}\right)\left(\frac{50}{0,8)}\right.}=\frac{1}{273} \mathrm{~A} / \mathrm{N} \\
& g_{n_{4}}^{-1}=273.0 \Omega \\
& \Rightarrow w_{p x}=150 \times 10^{6} \mathrm{rad} / \mathrm{s}, \quad w_{p y}=7.33 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
& \mid \text { Low frequency gain } \left\lvert\, \cong g_{m_{2}}\left(r_{0 n_{2}} \| r_{o p_{3}}\right) \cdot(1) \quad\left(g_{m_{2}}=\frac{g_{m_{4}}}{\sqrt{2}}\right)\right. \\
& \cong 34.5 \mathrm{~V} / \mathrm{N} \Longrightarrow 30.8 \mathrm{~dB}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{30.8 \mathrm{~dB}}_{W_{\text {PK }}} \sqrt[w_{1}]{W_{\text {FY }}} \\
& 30.8 \mathrm{~dB}-\left[\log \left(\frac{7.33 \times 10^{9}}{150 \times 10^{6}}\right)\right](20 \mathrm{~dB} / \mathrm{dec})=-3.78 \mathrm{~dB} \\
& \left(\log \frac{w_{1}}{150 \times 10^{6}}\right)(20 \mathrm{~dB} / \mathrm{dec})=30.8 \mathrm{~dB} \\
& \Rightarrow w_{1}=5.20 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
& \phi=-\tan ^{-1} \frac{\omega_{1}}{w_{P_{x}}}-\tan ^{-1} \frac{\omega_{1}}{\omega_{\rho Y}}=-123.7^{\circ} \\
& \Rightarrow P . M_{1}=56.3^{\circ}
\end{aligned}
$$

b)

$$
\phi=-\tan ^{-1} \frac{\omega_{1}}{150 \times 10^{6}}-\tan ^{-1} \frac{w_{1}}{w_{p r}}=-120^{\circ}
$$

If w_{1} in same as (a), then $w_{p y}=8.43 \times 10^{9} \mathrm{rad} / \mathrm{s}$

$$
=\frac{1}{c_{r_{\text {max }}} g_{m 4}^{-1}}
$$

$C_{Y \text { max }}=434 \mathrm{fF}$.
10.10

For large positive step in $V_{\text {in }}$:
M_{2} turns off. M_{3} charges C_{x} and M_{4} charges C_{Y}.
 (My also provides I_{1}.)

The slew rates of V_{x} and V_{y} (or $V_{\text {out }}$ must be exactly the same - regardless of C_{x} or C_{y}.

Hence slew rate due to positive step input $\cong \frac{I_{p 3}}{C_{x}}$ for both parts (a) and (b) of 10.9 .

$$
\text { slew rate } \cong \frac{I_{p_{3}}}{C_{x}} \cong \frac{0.25 \mathrm{~mA}}{0.5 p_{p} F}=5.00 \times 10^{8} \mathrm{~V} / \mathrm{s}
$$

For large negative step in $V_{i n}=$
Again, Vout tracks V_{x} - as Vxarops, Vout drops at the same rate.

$$
\text { Slew rate } \cong \frac{-I_{C x}}{C_{X}}, \quad I_{D 3} \cong 0.25 \mathrm{~mA}, I_{C x} \cong 0.5 \mathrm{~mA}-I_{c x}=0.25 \mathrm{~mA}
$$

For both CY's , slew rate $\cong-\frac{0.25 \mathrm{~mA}}{0.5 \mathrm{pF}}=-5.00 \times 10^{8} \mathrm{~V} / \mathrm{s}$
$10.11\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{5,6}=\frac{60}{0.5} \quad I_{s s}=0.25 \mathrm{~mA}$.
a) $C M$ level $V_{x}=V_{y}=V_{O D}-V_{G S 5}=V_{D D}-V_{a S_{6}}$

$$
\begin{aligned}
& I=\operatorname{ImA}=\frac{1}{2} \mu p \operatorname{Cox}\left(\frac{60}{0.5}\right)\left(\left|V_{g s 6}\right|-\left|V t_{p}\right|\right)^{2} \\
& V_{g S_{6}}=1.46 \mathrm{~V} \longrightarrow V_{x}=V_{y}=3-1.46=1.54 \mathrm{~V} .
\end{aligned}
$$

b) Max. output swing:

$$
\begin{aligned}
& V_{\text {out }, \text { max }}=V_{\text {dd }}-V_{\text {overdrive } 6}=3-(1.46-0.8)=2.34 \mathrm{~V} \\
& V_{\text {out, min }}=V_{\text {overdrive }}=V_{b}-V_{t n}=0.39 \mathrm{~V}
\end{aligned}
$$

(since $V_{b}=1.09 \mathrm{~V}$ tram $\left.\operatorname{lm} A=\frac{1}{2} \mu_{n} \operatorname{cor} \frac{V}{2}\left(V_{b}-0.7\right)^{2}\right)$.
Total max. swing $=2.34-0.39=1.95 \mathrm{~V}$
c)

$$
\begin{aligned}
& \left.\begin{array}{l}
r_{o n 2}=\frac{1}{(0.1)(0.125 \mathrm{~mA})}=80 \mathrm{k} \Omega \\
r_{\text {op }}=40 \mathrm{k} \Omega
\end{array}\right\} \rightarrow r_{\text {on } 2} 11 r_{\text {op } 4}=26.67 \mathrm{k} \Omega \\
& r_{\text {on }}=10 \mathrm{k} \Omega, r_{\text {op }}=5 \mathrm{k} \Omega 了 r_{\text {ans }} / l r_{\text {op }}=3.33 \mathrm{k} \Omega \\
& g_{m_{2}}=\sqrt{2(0.125 \mathrm{~mA})\left(1.34 \times 10^{-4}\right)\left(\frac{50}{0.0-5}\right)}=1.83 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
& g_{m_{6}}=\mu_{p} \operatorname{cox} \frac{w}{L}\left(V_{\text {alt }}-V_{t h}\right)=\left(3.83 \times 10^{-5}\right)\left(\frac{60}{0.5}\right)(1.46-0 . f)=3.03 \times 10^{-3} \mathrm{~A} / 4 \\
& \left.\begin{array}{l}
A_{r_{2}}=g_{m_{6}}(3.33 \mathrm{kN})=-10.09 \mathrm{~V} / \mathrm{V} \\
A_{r_{1}}=\operatorname{gm}_{m_{2}}(26.67 \mathrm{k} \Omega)=-48.8 \mathrm{~V} / \mathrm{V}
\end{array}\right\} A_{r_{1}} A_{r_{2}}=492.4 \rightarrow 53.8 \mathrm{~dB} \\
& C_{\text {out }}=C_{L}+\left[c_{d b_{6}}+\left(1+\frac{1}{|1| a|l|}\right) c_{d d b}\right]+\left(C_{d b 8}+c_{g d A}\right) \\
& \cong 1 \mathrm{pF}+52.1+\left(1+\frac{1}{10.09}\right) 0.18+23.4+0.2=1.076 \mathrm{pF} \\
& C_{Y}=C_{g d_{4}}+C_{d_{4}}+C_{g d_{2}}+C_{d b_{2}}+C_{856}+C_{\text {g16 }}\left(1+\left|A_{v_{2}}\right|\right) \\
& \cong 0.15+43.8+0.2+23.4+76.6+0.18(11.09)=146.1 \mathrm{fF}
\end{aligned}
$$

Using :

$$
\begin{aligned}
C_{\text {overlap }}=C_{G D O} \cdot W, C_{d b} & =\frac{(C J)\left(w \cdot 1 . S_{\text {sm }}\right)}{\left[1-\frac{V_{p}}{P B}\right]^{M I}}+\frac{\operatorname{cJsw}(2 w+3 \mu m)}{\left[1-\frac{V_{D}}{P B}\right]^{M J S} w} \\
\left(V_{D}\right. & =\text { reverse bias Junction voltage. })
\end{aligned}
$$

10.11c) cont. $C_{y s}=\frac{2}{3} C o x W \cdot L$, Values from Table 2.1.

Before compensation:
Dominant Pole $=W_{y}=\frac{1}{C_{y} R_{y}}=\frac{1}{(146.1+t)(26.67 \mathrm{k} \Omega)}=2.57 \times 10^{8} \mathrm{rad} / \mathrm{s}$ 2nd Pole $: \quad W_{\text {out }}=\frac{1}{\text { Cont Rout }}=\frac{1}{(1.076 \mathrm{pF})(3.33 \mathrm{k} \Omega)}=2.79 \times 10^{8} \mathrm{rad} / \mathrm{s}$

* After compensation:

Ind Pole: $W_{\text {out }}{ }^{\prime} \cong \frac{g_{m 6}}{C_{y}+C_{\text {out }}}=\frac{3.03 \times 10^{-3}}{146.1 \mathrm{fF}+1.076 \mathrm{pF}}=2.48 \times 10^{9} \mathrm{rad} / \mathrm{s}$
Dominant Pole: $\quad W_{y^{\prime}}=\frac{1}{\left[C_{y}+\left(1+\left|A v_{2}\right|\right) C_{c}\right] R_{y}}$
(For 60° PM.)

$$
\begin{aligned}
& 90^{\circ}+\tan ^{-1} \frac{w_{1}^{\prime}}{w_{\text {out }}^{\prime}}=120^{\circ} \longrightarrow w_{1}^{\prime}=w_{\text {out }}^{\prime} \tan 30^{\circ}=1.43 \times 10^{9 \mathrm{rad} / \mathrm{s}} \\
& \log \frac{w_{1}^{\prime}}{w_{y^{\prime}}}=\frac{53.8 \mathrm{~dB}}{20 \mathrm{~dB} / \mathrm{dec}} \longrightarrow w_{y}^{\prime}=\frac{1}{10^{53.8 / 2_{0}}} \cdot w_{1}^{\prime}=2.91 \times 10^{6} \mathrm{rad} / \mathrm{s} \\
& C_{C}=\frac{\left[\left(2.91 \times 10^{6}\right)(26.67 \mathrm{kR})\right]^{-1}-146.1 \mathrm{fF}}{1+10.08}=\frac{1.15 \mathrm{pF}}{\left(s_{0} C_{c}>C_{y}\right)} \\
&
\end{aligned}
$$

zero: $w_{z}^{\prime}=\frac{g_{m_{6}}}{c_{c}+c_{g} d_{6}}=\frac{3.03 \times 10^{-3}}{1.15 p F+0.18 f F}=\begin{gathered}\left(\text { so } c_{c} \gg c_{y}\right) \\ 2.63 \times 10^{9} \mathrm{rad} / \mathrm{s}\end{gathered}\left(>w_{y}^{\prime}\right.$, $\omega_{0 u^{\prime}}$)
d) $w_{z}=\frac{1}{C_{c}\left(\frac{1}{g_{m 6}}-R_{z}\right)}=-\left|w_{\text {out }}^{\prime}\right|$

$$
R_{z}=\frac{1}{g_{m 6}}+\frac{1}{\left|\omega_{\text {out }}\right| \cdot c_{c}}=680.7 \Omega
$$

e) Slew rate: Symmetrical for large positive Vim or large negative Via.

Large $+V_{\text {in }}$:
Slew rate of $V_{\text {out }} \cong-\frac{I_{D 4}}{C_{C}} \cong \frac{-0.125 \mathrm{~mA}}{1.15 \mathrm{pF}}=7.09 \times 10^{8} \mathrm{~V} / \mathrm{s}$

$$
\text { Slew rate of } V_{\text {out }}=-\left(\text { slew rate of } V_{\text {out }}\right)=1.09 \times 10^{8} \mathrm{~V} / \mathrm{s}
$$

10.12

Want $\left|V_{G S 13}\right|=\left|V_{G 56}\right|=1.46 \mathrm{~V}$ (from 10.11 a)

$$
\begin{aligned}
100 \mu A= & \frac{1}{2} \mu_{p} \operatorname{Cox}\left(\frac{w}{c}\right)_{13}\left(\left|V_{\text {ass } 6}\right|-\left|V_{t p}\right|\right)^{2} \\
& \longrightarrow\left(\frac{W}{L}\right)_{13}=\frac{2(100 \mu A)}{\left(3.183 \times 10^{-5}\right)(1.46-0.8)^{2}}=12.0 \text { egg. }\left(\frac{W}{L}\right)_{13}=\frac{6}{0.5}
\end{aligned}
$$

Allowing 0.5 V across I_{1} and maximizing $V_{g 514}=V_{g 515}$,
we get $V_{g s 14}=V_{g 515}=V_{y y}-0.5=1.54-0.5=1.04 \mathrm{~V}$

$$
\begin{aligned}
R_{\text {on } 15}= & \frac{1}{\mu_{p} C_{x}\left(\frac{w}{L}\right)_{15}(1.04-0.8)}=680.7 \Omega \\
L\left(\frac{w}{L}\right)_{15}=384 & \text { egg. } \frac{192}{0.5} \\
I_{D 14}= & 100 \mu A=\frac{1}{2} \mu_{p} C_{x}\left(\frac{w}{L}\right)_{14}(1.04-0.8)^{2} \\
& C\left(\frac{w}{L}\right)_{14}=90.7 \text { e.g. } \frac{45.5}{0.5}
\end{aligned}
$$

10.13

$$
\begin{aligned}
& V_{n_{1} \text { out }}=\left(I_{n_{2}}+I_{n 4}\right)\left(r_{02} u r_{04}\right) \cdot A v_{2}+\left(I_{n 6}+I_{n_{8}}\right)\left(r_{66} \| r_{08}\right) \\
& \overline{V_{n, 04 t_{2}^{2}}}=\left(\overline{I_{n_{2}^{2}}^{2}}+\overline{I_{n}^{2}}\right)\left[\left(r_{02} \| r_{04}\right) A_{v_{2}}\right]^{2}+\left(\overline{I_{n 6}^{2}}+\overline{I_{n 8}^{2}}\right)\left(r_{06} \| r_{08}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{V_{n, n t^{2}}}=\overline{V_{n, ~}^{n} t_{2}^{2}}+\overline{V_{n, m t_{1}}^{2}} \\
& \overline{V_{n, i n}^{2}}=\frac{\overline{V_{n, n}, n t^{2}}}{\left(A_{1}, A v_{2}\right)^{2}} \\
& =\left(\frac{1}{A_{v_{1}} A V_{2}}\right)^{2}\left\{\left[\left(r_{02}\left(\left(r_{04}\right) A V_{2}\right]^{2}\left[\overline{I_{n 1}^{2}}+\overline{I_{n_{2}}^{2}}+\overline{I_{n_{3}}^{2}}+\overline{I_{n_{4}}^{2}}\right]+\right.\right.\right. \\
& \left(r_{0 C} \| r_{08}\right)^{2}\left(\overline{I_{n}^{2}}+\overline{I_{n 6}^{2}}+\overline{I_{n 7}^{2}}+\overline{I_{n}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{V_{n, \text { in }}{ }^{2}}=4 \mathrm{kT} \frac{2}{3}[1678.1+0.7511]=4 K T \frac{2}{3}[1678.85] \quad\left(4 \mathrm{KT}=1.658 \times 10^{-2.6} .\right. \\
& =1.86 \times 10^{-17} \mathrm{v}^{2} / \mathrm{Hz}
\end{aligned}
$$

Aside

Break loop.

Cap /s:

a)

$$
\begin{aligned}
& C_{B}=C_{d b_{3}}+\left(1+\frac{1}{\left|A v_{s}\right|}\right) C_{g d_{3}}+C_{g s_{1}}+\left(1+\left|A v_{1}\right|\right) C_{g d_{1}} \\
& C_{A}=\left(1+\frac{1}{\mid A_{v} 1}\right) C_{g d_{1}}+C_{g s_{2}}+\left(1+\left|A v_{2}\right|\right) C_{g} d_{2}+C_{d b_{1}} \\
& C_{Y}=C_{d b_{2}}+\left(1+\frac{1}{\left|A_{v 2}\right|}\right) C_{g d_{2}}+C_{g s_{3}}+\left(1+\left|A_{v_{s}}\right|\right) C_{g d_{3}} \\
& r_{01}=\frac{1}{(0.1)(1 \mathrm{~mA})}=10 \mathrm{k} \Omega \\
& r_{02}=5 \mathrm{k} \Omega \\
& r_{03}=1 \mathrm{M} \Omega
\end{aligned}
$$

Using capacitance formulas of (10.11), we get:

$$
\begin{aligned}
& C_{A}=80.4 \mathrm{fF} \\
& C_{B}=77.1 \mathrm{fF} \\
& C_{Y}=105.6 \mathrm{fF}
\end{aligned}
$$

$$
\begin{aligned}
& V_{A}=1.48 \mathrm{~V} \\
& V_{B}=1.09 \mathrm{~V} \\
& V_{y}=0.822 \mathrm{~V}
\end{aligned}
$$

Also,

$$
\begin{gathered}
g_{m_{1}}=\sqrt{2(1 \mathrm{~mA})\left(1.34 \times 10^{-4}\right)(50 / 0.5)}=5.18 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
g_{m_{2}}=2.77 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
g_{m_{3}}=1.64 \times 10^{-4} \mathrm{~A} / \mathrm{V} \\
A v_{1}=g_{m_{1}} r_{01}=-51.8 \mathrm{~V} / \mathrm{V} \\
A r_{2}=g_{m_{2}} r_{02}=-13.85 \mathrm{~V} / \mathrm{V} \\
A r_{3}=g_{m_{3}} r_{03}=-164.0 \mathrm{~V} / \mathrm{V}
\end{gathered} \rightarrow\left|A v_{1} A v_{2} A r_{3}\right|=1.18 \times 10^{5} \rightarrow 101.4 \mathrm{~dB}
$$

10.14 a) cont.

$$
\left.\begin{aligned}
& W_{A}=\frac{1}{C_{A} r_{01}}=1.24 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
& W_{B}=\frac{1}{C_{B} r_{03}}=1.30 \times 10^{7} \mathrm{rad} / \mathrm{s} \\
& W_{Y}=\frac{1}{C_{Y} r_{02}}=1.89 \times 10^{9} \mathrm{rad} / \mathrm{s}
\end{aligned} \right\rvert\, \leftarrow \text { Ind }
$$

(Phase Margin is $-78.3^{\circ} \rightarrow$ unstable system.)
b) Compensate by adding C_{C} across G and D of M_{1}.

$\rightarrow w_{y}$ unchanged $=1.89 \times 10^{9} \mathrm{rad} / \mathrm{s}$

$$
\begin{gathered}
90^{\circ}+\tan ^{-1} \frac{w_{1}}{w_{y}}=120^{\circ} \quad\left(\text { For } 60^{\circ} \text { P.M. }\right) \\
\tan ^{-1} \frac{w_{1}}{w_{y}}=30^{\circ} \\
w_{1}=1.09 \times 10^{9} \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

$$
\left(\log \frac{w_{1}}{w_{B^{\prime}}}\right) \frac{20 d B}{d e c}=101.4 \mathrm{~dB}
$$

$$
\rightarrow W_{B}^{\prime}=9.28 \times 10^{3} \mathrm{rad} / \mathrm{s}
$$

Dominant: W_{B}^{\prime}, and: W_{y}, $3 r d=W_{A}^{\prime}$

$$
\left.\begin{array}{l}
w_{B}^{\prime}=\frac{1}{\left[C_{B}+\left(1+\left|A_{1}\right|\right) C_{C}\right] r_{03}} \rightarrow C_{C}=\frac{1}{\frac{1}{w_{B}^{\prime}\left(1 \times 10^{6}\right)}-77.1+F} \\
52.8
\end{array} 2.04 \mathrm{pF}\right]
$$

10.14 c)

$$
\begin{aligned}
& W_{z}=\frac{1}{C_{c}\left(g_{w_{1}^{-1}}-R_{z}\right)}=-\left|W_{z y}\right|=-1.89 \times 10^{9} \\
& \quad R_{z}=\frac{1}{g_{m 1}}+\frac{1}{\left|w_{y}\right| c c}=452.4 \Omega
\end{aligned}
$$

10.15 a) Before compensation:

$$
\begin{gathered}
C_{A}=80.4 \mathrm{fF} \\
C_{B}=77.1 \mathrm{fF} \\
C_{Y}=105.6 \mathrm{fF}+0.5 \mathrm{pF}=605.6 \mathrm{fF} \\
W_{A}=1.24 \times 10^{9} \mathrm{rad} / \mathrm{s} \\
w_{B}=1.30 \times 10^{7} \mathrm{rad} / \mathrm{s} \\
W_{y}=\frac{1}{(605.6+\mathrm{F})\left(5 \times 10^{3}\right)}=3.30 \times 10^{8} \mathrm{rad} / \mathrm{s} \quad \leftarrow \text { Domima } \\
\hline \text { and }
\end{gathered}
$$

b) Two choices: We can put C_{C} across $G \alpha D$ of M_{1} OR Just add a C from G of M, to ground. Cannot take advantage of splitting lIst and Ind pole here since 1st pole is at B and Ind pole in at Y and the gain between those two nodes is >0.
Choose to put C_{c} across $M_{1}=$ splits list and 3 rd poles, Ind pole un changed.

ard: $\omega_{A}^{\prime} \cong \frac{g_{m_{1}}}{C_{A}+C_{B}}=3.30 \times 10^{10 \mathrm{rad} / \mathrm{s}}$
Ind: $w_{y}=3.30 \times 10^{8} \mathrm{rad} / \mathrm{s}$ (unchanged).

$$
w_{1}^{\prime}=w_{y} \cdot \tan 30^{\circ}=1.91 \times 10^{\circ} \mathrm{rad} / \mathrm{s}
$$

Dominant: $\quad W_{B}{ }^{\prime}=\frac{1}{10^{(101,4 / 20)}} \cdot \omega_{1}^{\prime}=1.63 \times 10^{3 \mathrm{rad}} / \mathrm{s}$

$$
C_{C}=\frac{\frac{1}{\left(0.63 \times 10^{3}\right)\left(1 \times 10^{6}\right)}-77.1 f{ }^{F}}{52.8}=11.6 \mathrm{pF}
$$

(0.15c)

$$
\begin{gathered}
W_{z}=\frac{1}{C_{c}\left(g_{m_{1}-1}-R_{z}\right)}=-\left|W_{y}\right|=-3.30 \times 10^{8} \mathrm{rad} / \mathrm{s} \\
G R_{z}=\frac{1}{g_{m 1}}+\frac{1}{\left|w_{y}\right| \cdot C c} \\
R_{z}=\frac{1}{518 \times 10^{-3}}+\frac{1}{\left(3.3 \times 10^{8}\right)(11.6 \mathrm{pF})} \\
R_{z}=454.3 \Omega
\end{gathered}
$$

10.16 If M_{1} turns off momentarily, If causes a positive jump in voltage at node A. This causes M_{2} to shut off momentarily so the slew nate is determined by I_{2} and $C y$.
i) Slew rate $=-\frac{I_{2}}{c y}=-\frac{1 \mathrm{~mA}}{105.6 \mathrm{fF}}=\frac{-9.47 \times 10^{9} \mathrm{v} / \mathrm{s}}{(\text { If un } 10 \mathrm{aded})}$
ii) Slew rate $=\frac{-I_{2}}{C_{y}+C_{L}}=\frac{-1 \mathrm{~mA}}{105.6 \mathrm{fF}+0.5 \mathrm{pF}}=\frac{-1.65 \times 10^{9} \mathrm{y} / \mathrm{s}}{(\text { loaded.) }}$
10.17 For problem 10.14, C_{c} should not be placed "across" M2 on M_{3} because of the location of the poles. Since the dominant pole was at node B, the Ind pole at node A, and the Ind pole at node Y, we need to split the list two poles by placing C_{c} across M_{1}.

Putting C_{c} "across" M2 only splits the Ind and Ind pole Keeping the dominant pole unchanged. It moves the Ind pole toward the dominant pole and the 3nd pole away. That cannot give a 60° phase margin.

Putting C_{c} "across' M3 only affects the dominant pole and we cannot take advantage of pole-splitting to widen the bandwidth.
10.18

$$
\begin{aligned}
& V_{B}=-r_{0_{3}}\left(g_{m_{3}} V_{n_{\text {,out }}}+I_{n_{3}}\right) \\
& V_{A}=-r_{01}\left(g_{m_{1}} V_{B}+I_{n_{1}}\right)=-r_{01}\left(-g_{m_{1}} g_{m_{3}} r_{03} V_{n \text {, out }}-g_{m_{1}} r_{3} I_{n_{3}}+I_{n_{1}}\right) \\
& V_{n_{1} \text { out }}=-r_{02}\left(g_{m_{2}} V_{A}+I_{n_{2}}\right) \\
& =-r_{02}\left[I_{n_{2}}+g_{m 1} g_{m_{2}} g_{m_{3}} r_{11} r_{03} r_{n_{1} \text { out }}+g_{m_{1} 1} g_{m_{2}} r_{0_{1}} r_{03} I_{n_{3}}-g_{m_{2}} r_{01} I_{n_{1}}-\right. \\
& \overline{V_{n, n} t^{2}}=\frac{\overline{I_{n 2}^{2}}+\left(g_{m_{1}} g_{m_{2}} r_{01} r_{03}\right)^{2} \overline{I_{n_{3}}^{2}}+\left(g_{m_{2}} r_{01}\right)^{2} \overline{I_{n 1}^{2}}}{\left(\frac{1}{r_{02}}+g_{m_{1}} g_{m_{2}} g_{m_{3}} r_{01} r_{03}\right)^{2}}
\end{aligned}
$$

Trans resistance of the circuit is:

$$
\frac{V_{\text {out }}}{i_{n n}}=\frac{1}{g_{m 3}+\left[g_{m 1} g_{m 2} r_{01} r_{02} r_{03}\right]^{-1}}
$$

$10.19 \quad H_{\text {open }}(s)=\frac{A_{0}\left(1+\frac{s}{\omega_{z}}\right)}{\left(1+\frac{s}{w_{P_{P}}}\right)\left(1+\frac{s}{\omega_{P_{P}}}\right)} \quad w_{z} \cong \omega_{P_{2}}$
a)

$$
\begin{aligned}
H_{\text {closed }}(s) & =\frac{A}{1+A \beta}=\frac{A_{0}\left(1+\frac{s}{w_{z}}\right)}{\left(1+\frac{s}{w_{1}}\right)\left(1+\frac{s}{w_{P 2}}\right)+A_{0}\left(1+\frac{s}{w z}\right)} \\
& =\frac{A_{0}\left(1+\frac{s}{w_{z}}\right)}{\frac{s^{2}}{w_{P_{1}} W_{P_{2}}}+s\left(\frac{1}{w_{P_{1}}}+\frac{1}{w_{P_{2}}}+\frac{A_{0}}{w_{z}}\right)+A_{0}+1} \quad \text { Q.E.D. }
\end{aligned}
$$

b)

$$
\begin{aligned}
& D(s)=\left(1+\frac{s}{w_{P A}}\right)\left(1+\frac{s}{w_{P B}}\right) \cong 1+\frac{s}{w_{P B}}+\frac{s^{2}}{w_{P A} w_{P B}} \cdot\left(w_{P_{B}} \ll w_{P_{A}}\right) \\
& w_{P B}=\frac{A_{0}+1}{\frac{1}{w_{P_{1}}}+\frac{1}{w_{P P_{2}}}+\frac{A_{0}}{w_{z}}} \\
& w_{P A}=\left(1+A_{0}\right) w_{P_{1}} w_{P_{2}} \cdot \frac{1}{w_{P B}}=w_{P_{2}}+w_{P_{1}}+\frac{A_{0}}{w_{z}} w_{P_{1}} w_{P_{2}}
\end{aligned}
$$

c) Using $w_{z} \cong w_{P_{2}}, w_{P_{2}} \ll\left(1+A_{0}\right) w_{P_{1}}$ or $\frac{1}{w_{P_{1}}} \ll \frac{A_{0}+1}{w_{P_{2}}}$

$$
\begin{aligned}
& W_{P B}=\frac{A_{0}+1}{\frac{1}{W_{P_{1}}}+\frac{1}{W P_{P_{2}}}+\frac{A_{0}}{W z}} \cong \frac{A_{0}+1}{\frac{1}{W_{P_{1}}}+\frac{A_{0}+1}{W_{P_{2}}}} \cong \omega_{P_{2}} \\
& W_{P A}=w_{P_{2}}+W_{P_{1}}+\frac{A_{0}}{w_{z}} w_{P_{1}} w_{P_{2}} \cong \omega_{P_{2}}+\left(A_{0}+1\right) w_{P_{1}} \cong\left(A_{0}+1\right) w_{P 1} \\
& H_{\text {closed }}(s) \cong \frac{\frac{A_{0}}{A_{0}+1}\left(1+\frac{s}{w_{z}}\right)}{\left(1+\frac{s}{\left(A_{0}+1\right) w_{p_{1}}}\right)\left(1+\frac{s}{w_{p_{2}}}\right)}
\end{aligned}
$$

10.19 d) Step response: $Y(s)$

$$
\begin{align*}
& Y(s)=\frac{1}{S} \frac{A\left(1+\frac{s}{w_{z}}\right)}{\left(1+\frac{s}{W_{P A}}\right)\left(1+\frac{s}{W_{P B}}\right)} \quad A=\frac{A_{0}}{1+A_{0}}, W_{P A}=\left(1+A_{0}\right) w_{P 1}, \\
& =\frac{K_{1}}{s}+\frac{K_{2}}{\left(1+\frac{s}{W_{W A}}\right)}+\frac{K_{3}}{\left(1+\frac{s}{W_{B B}}\right)} \\
& =\frac{s^{2}\left(\frac{k_{1}}{W_{P A} W_{P B}}+\frac{k_{2}}{W_{P B}}+\frac{K_{3}}{W_{P A}}\right)+s\left(\frac{K_{1}}{W_{P A}}+\frac{K_{1}}{W_{P B}}+K_{2}+K_{3}\right)+K_{1}}{s\left(1+\frac{s}{W_{P A}}\right)\left(1+\frac{s}{W P B}\right)} \\
& K_{1}=A \\
& \frac{A}{w_{P A}}+\frac{A}{w_{P B}}+k_{2}+k_{3}=\frac{A}{w_{z}} \longrightarrow k_{2}+k_{3}=A\left(\frac{1}{w_{z}}-\frac{1}{w_{P A}}-\frac{1}{w_{P B}}\right) \ldots(1) \\
& \frac{A}{w_{P A} W_{P B}}+\frac{K_{2}}{W_{P B}}+\frac{k_{3}}{w_{P A}}=0 \longrightarrow \omega_{P A} K_{2}+W_{P B} K_{3}=-A \tag{2}\\
& -(1) \times w_{P A}+(2) \longrightarrow-\left[w_{P A} k_{2}+w_{P A} k_{3}=A\left(\frac{w_{P A}}{w_{Z}}-1-\frac{w_{P A}}{w_{P B}}\right)\right] \\
& \begin{aligned}
+W_{P A} K_{2}+W_{P S} K_{3} & =-A \\
K_{3}\left(W_{P E}-W_{P A}\right) & =A\left(\frac{W_{P A}}{W_{P G}}-\frac{W_{P A}}{W_{P Z}}\right)
\end{aligned} \\
& K_{3}=\frac{A\left(\frac{W_{P A}}{W_{B}}-\frac{W_{P A}}{W_{Z}}\right)}{W_{P B}-W_{P_{A}}}
\end{align*}
$$

Plug back into (2) to get K_{2} :

$$
\begin{aligned}
& w_{P A} K_{2}+w_{P B}\left[\frac{A w_{P A}\left(\frac{1}{w_{P B}}-\frac{1}{w_{Z}}\right)}{w_{P B}-w_{P A}}\right]=-A \\
& w_{P A} K_{2}=-A\left[1+\frac{w_{P A}-\frac{w_{P A} w_{P B}}{w_{P}}}{w_{P B}-w_{P A}}\right]=-A \cdot \frac{w_{P B}-\frac{w_{P A} w_{P B}}{w_{B}}}{w_{P B}-w_{P A}} \\
& K_{2}=-A \frac{w_{P B}\left(1-\frac{w_{P A}}{w_{Z}}\right)}{w_{P A}\left(w_{P B}-w_{P A}\right)}
\end{aligned}
$$

10.19 d) (cont)
can simplify:

$$
\begin{aligned}
& K_{3}=\frac{A W_{P A}\left(\frac{1}{W_{P Q}}-\frac{1}{W_{Z}}\right)}{W_{P B}-W_{P A}} \cong \frac{A_{0}}{A_{0}+1}\left(A_{0}+1\right) W_{P A}\left(\frac{1}{W_{P 2}}-\frac{1}{W_{Z}}\right) \\
& \cong-\frac{A_{0}}{A_{0}+1}\left(\frac{1}{W_{p 2}}-\frac{1}{W_{p z}}\right)=K_{3} \\
& k_{2}=-A \frac{w_{p_{2}}\left(1-\frac{\left(A_{0}+1\right) w_{\rho_{1}}}{w_{z}}\right)}{\left(A_{0}+1\right) w_{\rho_{1}}\left(w_{p_{2}}-\left(A_{0}+1\right) w_{p_{1}}\right)} \cong \frac{-A_{0}}{A_{0}+1} \frac{-\left(A_{0}+1\right) w_{\rho_{1}}}{-\left(A_{0}+1\right)^{2} w_{p_{1}}^{2}} \\
& \cong \frac{-A_{0}}{\left(A_{0}+1\right)^{2} \omega_{P_{1}}}=K_{2} \\
& Y(s)=\frac{A}{S}+\frac{\frac{-A_{0}}{\left(A_{0}+1\right)^{1} w_{P 1}} \cdot w_{P A}}{W_{P A}+S}+\frac{\frac{-A_{0}}{A_{0}+1}\left(\frac{1}{w_{P P}}-\frac{1}{w_{z}}\right) \cdot W_{P B}}{s+W_{P B}} \\
& \cong \frac{A}{S}+\frac{-\frac{A_{0}}{A_{0}+1}}{S+\left(A_{0}+1\right) w_{P 1}}+\frac{\frac{-A_{0}}{A_{0}+1}\left(1-\frac{w_{P 2}}{w_{z}}\right)}{S+w_{P Z}} \\
& \Rightarrow y(t)=\frac{A_{0}}{1+A_{0}}\left[1-\left(1-\frac{\omega_{p_{2}}}{\omega z}\right) e^{-\omega_{p_{2}} t}-e^{-\left(A_{0}+1\right) \omega_{p_{1}} t}\right] u(t) \\
& \text { = small signal step response. } \\
& \nRightarrow \quad y(t) \cong \frac{A_{0}}{1+A_{0}}\left[1-\left(1-\frac{w_{p_{2}}}{w z}\right) e^{-w_{p_{2}} t}\right] u(t) \text { since }\left(1+A_{0}\right) w_{p_{1}} \gg w_{p_{2}} .
\end{aligned}
$$

Hence if w_{z} and $W_{P 2}$ do not exactly cancel, there is an exponential term $\left(1-\frac{\omega p_{2}}{\omega_{z}}\right) e^{-\omega_{p_{2}} t}$ with a time constant $\frac{1}{\omega_{p_{2}}}=\frac{1}{\omega_{z}} . Q_{1} E_{1} D$.
10.20
a) Perfect pole-zero cancellation.

Then

$$
\begin{aligned}
& y(t) \cong \frac{A_{0}}{1+A_{0}}\left[1-0-e^{-\omega_{p_{1}}\left(A_{0}+1\right) t}\right] u(t) \\
& \cong \frac{A_{0}}{1+A_{0}} u(t) \\
& \Rightarrow \operatorname{step} . \quad \cdots \frac{A_{0}}{1+A_{0}}
\end{aligned}
$$

b) 10% mismatch.

$$
\begin{aligned}
& y(t) \cong \frac{A_{0}}{1+A_{0}}\left[1-0.9 e^{-\omega_{p_{2}} t}\right] u(t) \\
& \Rightarrow \quad \tau=\frac{1}{\omega_{p_{2}}}
\end{aligned}
$$

Chapter 11
11.1 Assuming all transistors are in saturation, we have

$$
I_{\text {out }} R_{s}+\sqrt{\frac{2 I_{\text {out }}}{\mu_{n} C_{\text {ox }}\left(\frac{W}{L}\right)_{2}}}+V_{T H Z}=\sqrt{\frac{2 I_{\text {out }}}{\mu_{n} C_{X X}\left(\frac{W}{L}\right)_{2}}}+V_{T H 1},
$$

where we have assumed $\left(\frac{W}{L}\right)_{4}=\left(\frac{W}{L}\right)_{3}$ and $\lambda=0$.

Thus, $\quad I_{\text {out }}=\frac{1}{\mu_{n} C_{0 x} R_{s}^{2}}\left(\sqrt{\left(\frac{L}{W}\right)_{1}}-\sqrt{\left(\frac{L}{W}\right)_{2}}\right)^{2}$
11.2 when the circuit turns on, initially both M_{5} and M_{6} are off and v_{x} and v_{y} rise together, i.e., $v_{x}=v_{y}$. when V_{Y} reaches $V_{T H G}$, V_{X} is also near $V_{\text {THE }}$. Thus, M_{6} and M_{5} turn on almost simultaneously.
The surge in the drain current of M_{S}
 turns the rest of the circuit on. As V_{y} increases further, v_{x} begins to drop if M_{6} is turned on sufficiently because the voltage gain of M_{6} and R_{b} exceeds unity. For high values of V_{Y}, v_{X} can be lower than $V_{T H T}$.

Since $\left(V_{D D}-I_{D 6} \cdot R_{a}-V_{T H}\right)^{2} \cdot \mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{6}=I_{D 6}$, we solve the quadratic equation :

$$
\begin{aligned}
& R_{a}^{2} I_{D 6}^{2}-I_{D 6}\left(2 R_{a}^{\left(V_{D D}-V_{n}\right)} \frac{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{C}}{\mu_{D}}+\left(V_{D D}-V_{T H}\right)^{2}=0\right. \\
& \Rightarrow I_{D 6}=\frac{2 R_{a}\left(V_{D D}-V_{T H}\right)+\frac{1}{\mu_{n} C_{0}\left(\frac{W}{L}\right)_{6}}+\sqrt{\left.\left[R_{a}\left(V_{D D}-V_{T H}\right)+\frac{1}{\mu_{n} C_{0} \times\left(\frac{W}{L}\right)_{6}}\right]^{2}-4 R_{a}^{2} V_{D D}-V_{D H}\right)^{2}}}{2 R_{a}^{2}}
\end{aligned}
$$

This value is substituted in the other condition:

$$
V_{D D}-I_{D 6}\left(R_{a}+R_{b}\right) \leq v_{T H 5}
$$

to give the condition for turning off M_{S}.
$11.3(a)$ Since the output voltage is near 2.5 V whereas $V_{x} \approx 2 \mathrm{~V} / 3 \mathrm{~V}$,

$$
\begin{aligned}
& \text { we write } \frac{I_{D_{1}}}{I_{D_{2}}} \approx \frac{1+\lambda\left(V_{D D}-2 V_{B E}\right)}{1+\lambda\left(V_{D D}-2.5 V\right)} \\
& \approx 1+\lambda\left(2.5 V-2 V_{B E}\right) \\
& \Rightarrow V_{B E 2}-V_{B E 4}=V_{T} \ln n+V_{T} \ln \frac{I_{D 1}}{I_{D}} \quad \ln (1+\varepsilon) \approx \varepsilon \\
& =V_{T} \ln n+V_{T} \lambda\left(2.5 V-2 V_{B E}\right)
\end{aligned}
$$

The error $V_{T} \lambda(2.5 V-2 V / B E)$ directly appears in Vout. This error is also divided by R_{1} and multijolied by R_{2}, giving another error component at the output. 30 the overall error is equal to $\left(1+\frac{R_{2}}{R_{1}}\right) V_{T} \lambda(2.5 V-21 / B E)$.
(b)

$$
\begin{aligned}
\frac{I_{D_{3}}}{I_{D_{4}}} & \approx \frac{1+\lambda\left(V_{D D}-V_{B E 1}\right)}{1+\lambda\left(V_{D D}-V_{B E_{1}}+V_{T} \ln n\right)} \\
& \approx 1-\lambda V_{T} \ln n
\end{aligned}
$$

The output error is then equal to $V_{T} \ln \left(1-\lambda V_{T} \ln n\right)$

$$
\approx-V_{T}^{2} \lambda \ln n
$$

(c) $\quad V_{T H 1}=V_{T H}, \cdot V_{T H 2}=V_{T H}+\Delta V_{T H}$

For small $V_{T H}$, we have $I_{D_{2}}=I_{D_{1}}+g_{m} \Delta V_{T H}$, where g_{m} is the mean transconductonce of M_{1} and M_{2}. Thus, $\frac{I_{D 1}}{I_{D 2}}=1-\frac{I_{m} \Delta K_{T H}}{I_{D 2}}=1-\frac{2 \Delta V_{T H}}{\left|V_{G S}-\frac{V}{T H}\right|_{2}}$. USing the method of
(d) $\frac{I_{D 3}}{I_{D 4}}=1-\frac{2 \Delta V_{T H}}{\left|V_{G S}-V_{T H}\right|_{4}} \Rightarrow$ output error $=-V_{T} \cdot \frac{2 \Delta V_{T H}}{\left|V_{G S}-V_{T H}\right|_{4}}$
$11.4 \quad-V_{X Y} \cdot A_{1}=V_{D D}-\left|V_{G S 2}\right| \quad\left|V_{G O S 2}\right|=\sqrt{\frac{2\left(V_{T} \ln n\right) / R_{1}}{\mu_{n} \operatorname{Cox}\left(\frac{W}{L}\right)_{2}}}+\left|V_{T H 2}\right|$

$$
A_{1} \geq\left[V_{D D}-\sqrt{\frac{2\left(V_{T} \ln n\right) / R_{1}}{\mu_{n} C_{0 x}\left(\frac{W}{L}\right)_{2}}}-\left|V_{T H 2}\right|\right] /\left(-V_{C}\right)
$$

11.5 The collector current of Q_{4} is less than its emitter current. Thus, the current thru R_{1} and R_{2} is given by $\frac{(1, \ln n)}{R_{1}} \times \frac{\beta+1}{\beta}, \quad$ and hence the output has an error equal to $\frac{1}{\beta} \frac{v_{7} \ln n}{R_{1}} R_{2}$.
Another source of error is the flow of base currents of Q_{2} and Q_{4} from M_{3} and M_{4}, respectively. That is, $\left|M_{B_{E 1}}\right|$ and $\left|V_{13 E 3}\right|$ are slightly less than the predicted value.

$$
\text { error }=v_{T} \ln \frac{\beta}{\beta+1} .
$$

14. 6

For the noise due to M_{1} :

$$
\begin{aligned}
& \quad \frac{V_{n, \text { out }}}{R_{1}+g_{m N}^{-1}} \cdot \frac{1}{g_{m p}}=V_{p},\left(\frac{V_{p}}{A_{0}}+V_{m, \text { out }}\right)_{g_{m N}}=\left|I_{D 1}\right| \\
& \underbrace{\frac{1}{n_{1} u t}+R_{1} \Rightarrow}_{I_{D_{1}}} \Rightarrow \\
& (\underbrace{R_{1}+g_{m N}^{-1}}_{n, \text { out }} \cdot \frac{1}{g_{m p}} \cdot \frac{1}{A_{0}}+V_{n, \text { out }})_{g_{m N}}\left(\frac{1}{g_{m P}}\right)=\frac{V_{n, \text { out }}}{R_{1}+g_{m N}^{-1}} \cdot \frac{1}{g_{m p}}+V_{n 1}
\end{aligned}
$$

$$
\Rightarrow V_{n, \text { out }}=V_{n_{1}} \frac{1}{\left.\left(\frac{1}{R_{1}+g_{n} N^{-1}} \cdot \frac{1}{g_{m p}} \cdot \frac{1}{A_{0}}+1\right) \frac{g_{m N}}{g_{m p}}-\frac{1}{\left(R_{1}+g_{m} N^{-1}\right.}\right) \cdot \frac{1}{g_{m p}}},
$$

where $\overline{V_{n 1}^{2}}=4 k T\left(\frac{2}{3 g_{n P}}\right)+\frac{K_{F j P}}{W_{L} C_{0 x}} \cdot \frac{1}{f}$

For the noise due to $M_{2}:\left\{\begin{array}{l}\frac{V_{n} \text { out }}{R_{1}+g_{m N}-1} \cdot \frac{1}{g_{m p}}+V_{n_{2}}=V_{p} \\ \left(\frac{V_{p}}{A_{0}}+V_{n, \text { out }}\right) g_{m N}=\left|I_{D_{1}}\right|\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow\left[\left(\frac{V_{n}, o u t}{R_{1}+g_{m N}^{-1}} \cdot \frac{1}{g_{m p}}+V_{n_{2}}\right) \frac{1}{A_{0}}+V_{n, o u t}\right]_{g_{m N}}\left(\frac{1}{g_{m p}}\right)=\frac{V_{n, o u} t}{R_{1}+g_{m N}-1} \cdot \frac{1}{g_{m p}+V_{n 2}} \\
& \Rightarrow V_{n, o n t}\left\{\left[\frac{1}{\left(R_{1}+g_{m N}-1\right) g_{m p} A_{0}}+1\right] \times \frac{g_{m N}}{g_{m p}} \frac{1}{R_{1}+g_{m_{n}}-1} \cdot \frac{1}{g_{m p}}\right\}=V_{n_{2}}\left[1-\frac{g_{m N}}{A_{0} g_{m p}}\right]
\end{aligned}
$$

$$
\Rightarrow V_{n, \text { out }}=V_{n_{2}} \frac{1-\frac{\theta_{m} N}{g_{m P}}}{\left(R_{1}+g_{m} N^{-1}\right) g_{m p} g_{m p} A_{0}}+\frac{g_{m N}}{g_{m p}}-\frac{1}{R_{1}+g_{m} N^{-1}} \cdot \frac{1}{g_{m p}},
$$

where $\overline{V_{m_{2}}^{2}}=4 k T\left(\frac{2}{3 g_{m p}}\right)+\frac{K_{F, p}}{W L C_{0 x}} \cdot \frac{1}{f}$
The overall noise r is obtained by adding the noise powers.
$11.7 \quad$ For M to be in saturation, $\quad R I_{R E F} \leq\left|V_{\text {TH I }}\right|$.
For M_{2} to be in saturation,

11.8

when $V_{D D}$ rises, M_{3} turns on because the g ate-drain over lap capacitance of H_{2} must charge. The current flowing thru this capacitance man increase the gate voltage of M_{2} sufficiently, turning this transistor on as well. When H_{3} turns on, M_{4} also turnson.
$11.9 \frac{\partial V_{B E}}{\partial T}=\frac{V_{B E}-E_{g} / q}{T}-(4+m) \frac{k}{q}$
As T increased, $V_{B E}$ drops. Thus, the $T C$ becomes more negative. We can sketch the behavior by a piecewise linear approximation.
11.10

$$
\begin{aligned}
& \frac{\partial^{2} V_{B E}}{\partial T^{2}}=\frac{\left(\partial V_{B E} / \partial T\right) T-\left(V_{B E}-\frac{E_{g}}{q}\right)}{T^{2}}=\frac{1}{T} \frac{\partial V_{B E}}{\partial T}-\frac{1}{T^{2}}\left(V_{B E}-\frac{E_{g}}{q}\right) \\
& =V_{B E}-(4+m) V_{T}-E_{G / Q}
\end{aligned}
$$

$$
=\frac{V_{B E}-(4+m) V_{T}-E_{g} / q}{T^{2}}-\frac{1}{T^{2}} V_{B E+} \frac{1}{T^{2}} \frac{E_{g}}{q}
$$

$$
\frac{\partial^{2} V_{B E}}{}=-(4+m) \frac{V_{T}}{T^{2}}=-(4+m) \frac{k}{q} \cdot \frac{1}{T}
$$

N. $11 \quad V_{Y}-V_{X}=R_{3} I_{r}-V_{T} \ln n$

$$
\Rightarrow-A_{1}\left(R_{3} I_{Y}-Y_{T} \ln n\right)-\operatorname{Rout}\left(2 I_{Y}\right)=V_{\text {out }}
$$

Assumed $I_{X} \approx I_{Y}$ here.
We also note that: $I_{Y}=\frac{V_{\text {out }}-V_{3 E 2}}{R_{2}+R_{3}}$.

Thus, Gout $=\frac{\left(R_{2}+R_{3}\right)\left(V_{T} \ln n\right) A_{1}+\left(A_{1} R_{3}+2 R_{\text {out }}\right) V_{B_{E}}}{R_{2}+2 R_{\text {out }}+A_{1} R_{3}+R_{3}}$

$$
\begin{aligned}
& T=300^{\circ} \mathrm{K}, V_{B E} \approx 750 \mathrm{mV} \Rightarrow T C=-1.45 \mathrm{mV} /{ }^{\circ} \mathrm{K} \\
& T=320^{\circ} \mathrm{K}, \quad V_{B E} \approx 750-20(1.45)=721 \mathrm{mV} \Rightarrow T C=-1.46 \mathrm{mV} / 10 \mathrm{~K} \\
& T=340^{\circ} \mathrm{K}, \quad V_{B E} \approx 721-20(146)=692 \mathrm{mV} \Rightarrow T C=-1.476 \mathrm{mV} / \mathrm{OK}^{\circ} \\
& T=360^{\circ} \mathrm{K}, V_{B E} \approx 692-20(1.476)=662 \mathrm{mV} \Rightarrow T C=-1.489 \mathrm{mV} / \mathrm{KK}
\end{aligned}
$$

Dividing the numerator and denominator by A, R_{3} and assuming $\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}}<1$, we have:

$$
y_{\text {out }} \cong\left[\left(1+\frac{R_{2}}{R_{3}}\right) V_{T} \ln n+V_{B E}+\left(\frac{2 R_{\text {out }}}{A_{1} R_{3}} V_{B E}\right)\right]\left(1-\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}}\right)
$$

The error is then equal to:

$$
\frac{2 R_{\text {out }}}{A_{1} R_{3}} V_{B E}-\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}}\left[\left(1+\frac{R_{2}}{R_{3}}\right) V_{1} \ln n+V_{B E}\right]
$$

$11.12 \quad R_{3}=1 \mathrm{k} \Omega \quad I_{R_{3}}=50 \mu A \quad R_{1}=R_{2}$

$$
\begin{aligned}
& V_{\text {out }}=V_{B E 2}+\left(V_{T} \ln n\right)\left(1+\frac{R_{2}}{R_{3}}\right)=1.25 V, \quad V_{B E 2} \approx 750 \mathrm{mV} \\
& I_{R_{3}}=\frac{V_{\text {out }}-V_{B E 2}}{R_{2}+R_{3}}=\left\{\begin{array}{l}
\frac{\left(V_{T} \ln n\right)\left(1+\frac{R_{2}}{R_{3}}\right)}{R_{2}+R_{3}}=50 \mu A \\
(\ln n)\left(1+\frac{R_{2}}{R_{3}}\right) \cong 17.2 \quad \Rightarrow R_{2}=7.944 \mathrm{k} \Omega \\
\Rightarrow n \approx 6.84 .
\end{array}\right.
\end{aligned}
$$

Some iteration is usually necessary to arrive at an in teger n. (of course, the current thru R_{3} will be slogntly different from $50 \mu \mathrm{~A}$.)
$11.13 \quad I_{C_{1}}=I_{C_{2}}=100 \mu \mathrm{~A} \quad I_{C_{3}}=I_{C_{4}}=50 \mu \mathrm{~A} \quad R_{1}=1 \mathrm{k} \Omega$.
VDD must be equal to $3 V$.
Since Vout $\cong 2.5 \mathrm{~V}, M_{2}$ and hence M_{1} must be sized such that they remain in saturation.

$$
\left\{\begin{array}{c}
\left.V_{B E 3}+V_{13 E 4}+\left(1+\frac{R_{2}}{R_{1}}\right)\left(2 V_{T}\right) R_{n} \sum_{n_{2}} I_{1}\right) \cong 2.5 V \\
V_{\text {out }}-\left(V_{B E 4}+V_{B E 3}\right)=(50 \mu A)\left(R_{1}+R_{2}\right)
\end{array}\right.
$$

The two unknowns here are R_{2} and n. Since P_{3} and Q4 are biased at a relatively low ourrent, ur assume

$$
V_{B E 3}=V_{B E} \approx 700 \mathrm{mV} \Rightarrow\left(1+\frac{R_{2}}{R_{1}}\right)\left(2 V_{T}\right) \ln (m n) \approx 1.8 \mathrm{~V}
$$

From the second equation, $R_{1}+R_{2} \approx 36 \mathrm{k} \Omega, \Rightarrow R_{2}=35 \mathrm{k} \Omega$.

Dividing the numerator and denominator by A, R_{3} and assuming $\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}} \ll 1$, we have:

$$
\text { Vout } \cong\left[\left(1+\frac{R_{2}}{R_{3}}\right) v_{T} \ln n+V_{B E}+\left(\frac{2 R_{\text {out }}}{A_{1} R_{3}} V_{B E}\right)\right]\left(1-\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}}\right)
$$

The error is then equal to:

$$
\frac{2 R_{\text {out }}}{A_{1} R_{3}} V_{B E}-\frac{R_{3}+R_{2}+2 R_{\text {out }}}{A_{1} R_{3}}\left[\left(1+\frac{R_{2}}{R_{3}}\right) V_{T} \ln n+V_{B E}\right]
$$

$11.12 \quad R_{3}=1 \mathrm{k} \Omega \quad I_{R 3}=50 \mu A \quad R_{1}=R_{2}$

$$
\begin{aligned}
& V_{\text {out }}=V_{B E 2}+\left(V_{T} \ln n\right)\left(1+\frac{R_{2}}{R_{3}}\right)=1.25 \mathrm{~V}, \quad V_{B E Z} \approx 750 \mathrm{mV} \\
& I_{R_{3}}=\frac{V_{\text {out }}-V_{B E 2}}{R_{2}+R_{3}}=\left\{\begin{array} { l }
{ \frac { (V _ { T } \operatorname { l n } n) (1 + \frac { R _ { 2 } } { R _ { 3 } }) } { R _ { 2 } + R _ { 3 } } = 5 0 \mu A } \\
{ (\operatorname { l n } n) (1 + \frac { R _ { 2 } } { R _ { 3 } }) \cong 1 7 . 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
R_{2}=7.944 \mathrm{k} \Omega \\
\Rightarrow n \approx 6.84 .
\end{array}\right.\right.
\end{aligned}
$$

Some iteration is usually necessary to arrive at an integer n. (of course, the current thru R_{3} will be slightly different from $50 \mu \mathrm{~A}$.)
$11.13 \quad I_{C_{1}}=I_{C_{2}}=100 \mu \mathrm{~A} \quad I_{C_{3}}=I_{C_{4}}=50 \mu \mathrm{~A} \quad R_{1}=1 \mathrm{k} \Omega$.
$V_{D D}$ must be equal to $3 v$.
Since Vout $\cong 2.5 \mathrm{~V}, M_{2}$ and hence M_{1} must be sized such that they remain in saturation.

$$
\left\{\begin{array}{l}
\left.V_{B E 3}+V_{B E 4}+\left(1+\frac{R_{2}}{R_{1}}\right)\left(2 V_{T}\right) \ln \text { en } n\right) \cong 2.5 V \\
V_{\text {out }}-\left(V_{B E 4}+V_{B E 3}\right)=(50 \mu A)\left(R_{1}+R_{2}\right)
\end{array}\right.
$$

The two unknowns here are R_{2} and n. Since Q_{3} and Q4 are biased at a relatively low ourrent, we assume

$$
V_{B E 3}=V_{B E} \approx 700 \mathrm{mV} \Rightarrow\left(1+\frac{R_{2}}{R_{1}}\right)\left(2 V_{T}\right) \ln (\mathrm{mn}) \approx 1.8 \mathrm{~V}
$$

From the second equation, $R_{1}+R_{2} \approx 36 \mathrm{k} \Omega, \Rightarrow R_{2}=35 \mathrm{k} \Omega$.

From the first equation, $n \cong 1.31$.
Since $\left|V_{D L_{2}}\right| \approx 0.5 \mathrm{~V}$ with a 3-V amply, with $\left|I_{D S}\right|=50 \mu \mathrm{~A}$, we have $(W / L)_{2} \geq 10.4$. with $I_{D_{1}}=2 I_{D_{2}}, \quad(W / L)_{1}=2(W / L)_{2}$. Similarly, $(w / L)_{3}=2(w / L)_{2}$ and $(w / L)_{4}=(w / L)_{2}$.
11.14 when we set (11.34) to zero, we obtain a relationship that is valid at only one temperature. Thus, (11.35) is only valid at one temperature and so is (11.36). In other words, the $U_{B E}$ in (11.35) is at a single temperature T_{0} whereas the $V_{B E}$ in (11.33) is at a general temperature 7. when we say $V_{R E F} \rightarrow \frac{5}{q}$ if $T \rightarrow 0$, we really mean $f V_{\text {REF }}$ is extrapolated, it reaches Eglq.
$11.15 \quad \frac{\partial}{\partial T}\left(g_{m} R_{D}\right)=0 \quad g_{m}=\sqrt{2 \mu_{n} \operatorname{cox} \frac{w}{L} I_{D}} \quad \mu_{n} \propto T^{-3 / 2}$
Thus, $I_{D} \propto T^{3 / 2} \approx \alpha T+\beta T^{2}$.
$\Rightarrow I_{D} \propto 8.66 T+0.0289 T^{2}$ (Note that the coefficient of T^{2} is

$$
\text { PTAT STAT }{ }^{2} \text { quite small.) }
$$

$$
\begin{aligned}
V_{G S 2} & \leqq V_{R}+V_{T H 1} \Rightarrow \\
I_{D_{2}} & =\frac{1}{2} \mu_{n} C_{0 \times}\left(\frac{w}{L}\right)_{2}\left(V_{R}\right)^{2} \\
& \propto T^{2}
\end{aligned}
$$

This current and a PTAT current are simply added with proper weighting to produce $8.66 T+0.0289 T^{2}$.
$11.16 \quad g_{m} \propto T^{-3 / 4}$ Thus, $\frac{\partial R}{\partial T}=T^{3 / 4}$.
11.17 The current thru R, is PTAT and $\quad V_{x}=V_{Y}=V_{B E 1} / R_{3}$.
The current thru each pros device is $\frac{V_{T} \ln n}{R_{1}}+\frac{V_{B E 1}}{R_{3}}$ and hence

$$
\begin{aligned}
V_{\text {out }} & =R_{4}\left(\frac{V_{7} \ln n}{R_{1}}+\frac{V_{B E 1}}{R_{3}}\right) \\
& =\frac{R_{4}}{R_{3}} V_{B E 1}+\frac{R_{4}}{R_{1}} V_{1} \ln n .
\end{aligned}
$$

Since $1 / B E 1$ is multiplied by R_{4} / R_{3}, the output voltage can be arbitrarily scaled.
11.18

$$
\begin{aligned}
V_{X}=V_{Y}-V_{0 S} \Rightarrow V_{\text {REF }} & =V_{B E 1} \frac{R_{4}}{R_{3}}+\frac{R_{4}}{R_{1}} V_{T} \ln n \\
& -\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{05}
\end{aligned}
$$

11.19 (a) when S_{1} is on and S_{2} is off, $V_{\text {out }} \approx V_{T} l_{n} \frac{I_{1}}{I_{S}}$.
(b) When s_{1} turns $\mathscr{f f}$ and s_{2} turns on, $V_{x}=V_{T} \ln \frac{I_{1}+I_{2}}{I_{51}}$. This change is amplified by $\frac{C_{2}}{C_{1}}+1$ and added to the original voltage across $C_{2}: \quad V_{\text {out }}=\left(1+\frac{C_{2}}{C_{1}}\right)\left(V_{T} \ln \frac{I_{1}+I_{2}}{I_{s}}-V_{T} \ln \frac{I_{1}}{I_{s}}\right)$

$$
\begin{aligned}
& \quad+\underbrace{V_{T} \ln \frac{I_{1}}{I_{1}}}_{V_{B E}} \overbrace{1}^{m} \\
& \quad=\left(1+\frac{C_{2}}{C_{1}}\right) V_{T} \ln \left(1+\frac{I_{2}}{I_{1}}\right)+V_{1 B E} \\
& =\left(1+\frac{c_{2}}{C_{1}}\right) V_{T} \ln m+V_{1 B E}
\end{aligned}
$$

$11.16 \quad A_{n} \propto T^{-3 / 4}$ Thus, $\frac{\partial R}{\partial T}=T^{3 / 4}$.
11.17 The current thru R, is PTAT and $\quad V_{x}=V_{Y}=V_{B E 1} / R_{3}$. The current thru each pros device is $\frac{V_{7} \ln n}{R_{1}}+\frac{V_{B E_{1}}}{R_{3}}$ and hence

$$
\begin{aligned}
V_{\text {out }} & =R_{4}\left(\frac{V_{7} \ln n}{R_{1}}+\frac{V_{B E 1}}{R_{3}}\right) \\
& =\frac{R_{4}}{R_{3}} V_{B E 1}+\frac{R_{4}}{R_{1}} V_{7} \ln n .
\end{aligned}
$$

Since $1 / R E$, is multiplied by R_{4} / R_{3}, the output voltage can be arbitrarily scaled.
$11.18 \quad V_{X}=V_{Y}-V_{O S} \quad \Rightarrow \quad V_{\text {REF }}=V_{B E 1} \frac{R_{4}}{R_{3}}+\frac{R_{4}}{R_{1}} V_{T} \ln n$

$$
-\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right) V_{05} .
$$

11.19 (a) when S_{1} is on and S_{2} is off, Vout $\approx v_{T} \ln \frac{I_{1}}{I_{S_{1}}}$.
(b) When s_{1} turns off and s_{2} turns on, $V_{x}=V_{T} \ln \frac{I_{1}+I_{2}}{I_{5}}$. This change is amplified by $\frac{C_{2}}{C_{1}}+1$ and added to the original voltage a cross $c_{2}: \quad V_{\text {out }}=\left(1+\frac{C_{2}}{C_{1}}\right)\left(V_{T} \ln \frac{I_{1}+I_{2}}{I_{s}}-V_{T}\right.$ en $\left.\frac{I_{1}}{I_{5}}\right)$

$$
\begin{aligned}
& +\underbrace{V_{T} \ln \frac{I_{1}}{I_{1}}}_{V_{B E}} \overbrace{m}^{m} \\
& =\left(1+\frac{C_{2}}{C_{1}}\right) V_{T} \ln \left(1+\frac{I_{2}}{I_{1}}\right)+V_{1 B E} \\
& =\left(1+\frac{C_{2}}{C_{1}}\right) V_{T} \ln m+V_{1 B E}
\end{aligned}
$$

(c) for zero $T C$: $\left(1+\frac{c_{2}}{C_{1}}\right) \ln \left(1+\frac{I_{2}}{I_{1}}\right) \approx 17.2$.
$11.20 \quad V_{\text {out }}=\left(1+\frac{c_{2}}{c_{1}}\right) V_{T} \ln \left(1+\frac{I_{2}}{I_{1}}\right)+V_{B E}$
If $\frac{I_{2}}{I_{1}}=N_{+\varepsilon} \Rightarrow V_{\text {out }}=\left(1+\frac{C_{2}}{C_{1}} N_{T} \ln _{n}(1+N+E)+V_{B E}\right.$

$$
\begin{aligned}
& =\left(1+\frac{c_{2}}{c_{1}}\right) v_{T}\left[\ln (1+N)+\ln \left(1+\frac{\varepsilon}{1+N}\right)\right]+V_{B E} \\
& \approx\left(1+\frac{c_{2}}{c_{1}}\right) v_{T}\left[\ln m+\frac{\varepsilon}{1+N}\right]+V_{B E}
\end{aligned}
$$

The error is thus equal to $\left(1+\frac{c_{2}}{c_{1}}\right) v_{T} \frac{\varepsilon}{1+N}$.
$11.21 \quad R_{1}=1 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega$
(a) $V_{\text {out }}=\frac{V_{I} \ln n}{R_{1}} \cdot R_{2}+V_{B E 3} \Rightarrow \ln n \approx \frac{17.2}{2}=8.6$

$$
\Rightarrow n=5432 \quad(!)
$$

Alternatively, are can scale $(W / L)_{5}$ up by a factor α such that: Vout $=\frac{V_{1} \ln n}{R_{1}} \alpha \cdot R_{2}+V_{\text {ME 3 }}$.
For example, for $\alpha=4, n=8.58$.
(b) V_{Y} is given by:

$$
\underbrace{(\underbrace{-g_{m_{3}} v_{x}}_{I_{D_{3}}}-I_{n_{3}}-I_{n_{1}}) \frac{1}{g_{n 1}}}_{\text {current thru } M_{1}}+\underbrace{\left(-g_{n 3} v_{x}-I_{n_{3}}\right) \frac{1}{g_{n+1}} \frac{1}{g_{Q_{1}}}}_{\text {current thru }}
$$

Also:

$$
\begin{aligned}
& \left(-g_{m 4} V_{x}-I_{n 4}\right)\left(R_{1}+\frac{1}{g_{m Q_{2}}}\right)+V_{n R_{1}} \\
& +(\underbrace{-\operatorname{Im}_{m 4} V_{x}-I_{n 4}-I_{n 2}}_{I_{D_{2}}}) \frac{1}{I_{m 2}}=V_{Y}
\end{aligned}
$$

Equating there, we have

$$
V_{x}=\frac{1}{g_{m}+R_{1}}\left[I_{n 3}\left(\frac{1}{g_{n 1}}+\frac{1}{g_{m Q_{1}}}\right)+\frac{I_{n 1}}{g_{n 1}}+I_{n} 4\left(R_{1}+\frac{1}{\left.\left.\left.g_{m+2}+\frac{1}{g_{m 2}}\right)+\frac{I_{n 2}}{I_{n 2}}+V_{n R_{1}}\right],{ }_{n}\right]}\right.\right.
$$

This noise is amplified by $\ln _{5}\left(R_{2}+\frac{1}{8_{m} Q_{3}}\right)$ when it appears at the output.

$$
\begin{aligned}
\overline{V_{n}^{2}, \text { out }, \text { tot }=}= & \frac{g_{m m_{5} s}^{2}\left(R_{2}+\frac{1}{g_{m Q_{3}}}\right)^{2}}{\left(g_{m 4} R_{1}\right)^{2}}\left[2 I_{n 3}^{2}\left(\frac{1}{g_{m 1}}+\frac{1}{g_{m Q_{1}}}\right)^{2}+\frac{2 I_{n 1}^{2}}{g_{m 1}^{2}}+I_{n 4}^{2} R_{1}^{2}+V_{n R_{1}}^{2}\right] \\
& +I_{n s}^{2}\left(R_{2}+\frac{1}{g_{m} \Phi_{3}}\right)^{2}+V_{n R_{2}}^{2}
\end{aligned}
$$

$11.22 f_{C K}=50 \mathrm{MHz}$ pour budget $=1 \mathrm{~mW} . \quad g_{m_{1}}=\frac{1}{500 \Omega}$

$$
\begin{aligned}
& \quad \begin{aligned}
\partial_{m 1}=\frac{2}{R_{S}}\left(1-\frac{1}{\sqrt{k}}\right) \quad R_{S}=\frac{1}{I_{K} C_{S}} \quad I_{D 1}=I_{D_{2}} & =\frac{0.5 \mathrm{~mW}}{3 V} \\
& =167 \mu \mathrm{M}
\end{aligned} \\
& I_{\text {out }}=\frac{2}{\mu_{n} C_{0 x}(w / L)_{N}} \cdot \frac{1}{R^{2}}\left(1-\frac{1}{\sqrt{k}}\right)^{2}=\frac{2}{\mu_{n} C_{0 x}(w / L)_{N}} \quad\left(\frac{g_{n 1}}{2}\right)^{2} \\
& \Rightarrow\left(\frac{W}{L}\right)_{N}=89.4
\end{aligned}
$$

we assume $K=4 \Rightarrow \frac{1}{S 00 \Omega}=\frac{2}{R_{S}}\left(1-\frac{1}{2}\right)=\frac{1}{R_{S}}$

$$
\Rightarrow R_{S}=500 \Omega \Rightarrow C_{s}=40 p F .
$$

$\left(\frac{W}{L}\right)_{2}=4 \times 89.4$ For M_{3} and M_{4}, there is some freedom so long as the transistor remain saturated. For example

$$
\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{4}=50
$$

Chapter 12
12.1 (a)

$$
\begin{aligned}
& \frac{V_{\text {out }}-\left(-A_{V} V_{x}\right)}{R_{\text {out }}}=-\frac{V_{\text {out }}-V_{x}}{\frac{1}{C_{2} S}} \Rightarrow \quad=\frac{C_{2}}{C_{1}+C_{2}} V_{\text {out }}-\frac{C_{1}+C_{2}}{C_{1}+C_{2}} V_{\text {in }} \\
\Rightarrow & V_{\text {out }}\left[1+\frac{C_{2}}{C_{1}+C_{2}}+\frac{C_{2}}{C_{1}+C_{2}} R_{\text {out }} C_{2} S\right]=V_{\text {in }}\left[A_{V} \frac{C_{1}}{C_{1}+C_{2}}+\frac{C_{1}}{C_{1}+C_{2}} R_{\text {out }} C_{2} S\right] \\
\Rightarrow & \frac{V_{\text {out }}}{V_{\text {in }}}=A_{V} \frac{C_{1}}{C_{2}} \frac{1+R_{\text {out }} C_{2} S}{1+\frac{C_{1}}{C_{2}}+A_{V}+R_{\text {out }} C_{2} S}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& A_{V}(S)=-\frac{R_{F} \| \frac{1}{C_{2} S}}{\frac{1}{C_{1} S}}=-\frac{R_{F} C_{1} S}{P_{F} C_{2} S+1} \\
& \text { Nominal Gain }=4 \quad \frac{R_{F} C_{1} \omega}{\sqrt{1+R_{F}^{2} c_{2}^{2} \omega^{2}}}=3.96 \quad \omega=2 \pi(1 \mathrm{MHz}) \\
& \left(3.96^{2} R_{F}^{2} C_{2}^{2}-R_{F}^{2} C_{1}^{2}\right) \omega^{2}+3.96^{2}=0 \Rightarrow R_{F}^{2}=\frac{3.96^{2}}{\omega^{2}\left(C_{1}^{2}-3.96^{2} C_{2}^{2}\right)} \\
& \Rightarrow R_{F}=2.23 \mathrm{MR}
\end{aligned}
$$

12.2 (a)

equivalent to a resistor of $\frac{1}{G_{m}}$

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{\left(\frac{1}{G_{m}} / / R_{\text {out }}\right) c, s}{\left(\frac{1}{G_{m}} \| R_{\text {out }}\right) c, s+1} \\
& \approx \frac{\left(11 G_{m}\right) \infty_{1} S}{\frac{c_{1}}{G_{m}} s+1}
\end{aligned}
$$

(b) $\omega=2 \pi(100 \mathrm{Mtz}), c_{1}=1 p F, \frac{1}{G_{m}}=100 \Omega \Rightarrow \frac{C_{1}}{G_{m}} \omega=0.0628$ $\Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}} \approx 0.0628$, with a phase shift of nearly 90°.
12.3

Since node B is at virtual ground, $\tau \approx$ Ron C.

\Rightarrow Total energy is that stored on $C_{1}=\frac{1}{2} C_{1} v_{\text {in }}^{2}$
12.4 (a) $\left(\frac{w}{L}\right)_{1}=\frac{20}{0.5}, C_{H}=1 \mathrm{pF} \quad I_{D, 5 a t}=20.8 \mathrm{~mA}$

$$
\begin{aligned}
& \Rightarrow t_{1}=146 \mathrm{ps} \\
& +1 \mathrm{mV}=\frac{2(2.3 V) \exp \left[-(2.3 \mathrm{~V}) \frac{\mu_{n} C_{0 x} w / L}{c_{H}}\left(t-t_{1}\right)\right]}{1+\exp \left[-(2.3 v) \frac{\mu_{n} c_{0 x} w / L}{C_{H}}\left(t-t_{1}\right)\right]} \\
& \Rightarrow \exp \left[-(2.3 \mathrm{~V}) \frac{\mu_{n} C_{0 x} w / L}{c_{H}}\left(t-t_{1}\right)\right] \approx \frac{+1 \mathrm{mV}}{2(2.3 V)} \\
& \Rightarrow t-t_{1}=465 \mathrm{ps} \Rightarrow \text { total time }=611 \mathrm{ps}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& R_{\text {on }_{1}}=55 \Omega \Rightarrow \tau=55 \mathrm{ps} \\
& V_{\text {out }}=V_{D_{D}} \exp \frac{t}{\tau} \Rightarrow t=440 \mathrm{ps}
\end{aligned}
$$

It underestimates the required time.
12.5 (a)

$$
\begin{aligned}
& \quad 2.1=2.3-\frac{1}{\frac{1}{2} \frac{\mu_{n} c_{0 x}}{c_{H}} \frac{w}{L} t+\frac{1}{2.3}} \quad(\gamma=0) \\
& \Rightarrow \frac{1}{2} \frac{\mu_{n} c_{0 x}}{c_{H}} \frac{w}{L} t+\frac{1}{2.3}=5 \Rightarrow t \approx 1.16 \mathrm{~ns}
\end{aligned}
$$

(b)

$$
\Rightarrow 8 \mathrm{~m}_{1}(t=0)=0.018 \mathrm{z}
$$

12.6

(a) $R_{o n 1}=55 \Omega$

$$
\begin{aligned}
|\theta| & =\tan ^{-1}(R C \omega) \\
& =1.98^{\circ}
\end{aligned}
$$

(b) $R_{o N_{1}}=97.6 \Omega \Rightarrow 101 \approx 3.96^{\circ}$
12.7

V_{x} is a voltage-dependent voltage source that follows lin with $a, s a y, 20 \mathrm{mV}$ difference. We can then monitor the current drawn by either source, invert it, and normalize it to 20 mV in a dc sweep that varies Vina across the range of interest.
12.8

$$
R_{\text {on l }}=55 \Omega \quad R_{\text {on 2 }}=64.3 \Omega, C_{H}=1, F
$$

$$
\text { Ronal Ron } 2=29.6 \Omega \Rightarrow \tau=29.6 \mathrm{ps}
$$

$$
\Rightarrow+1 m v=+3 v \exp \frac{-t}{\tau}
$$

$\Rightarrow t \approx 237 \mathrm{ps}$.
$12 \cdot 9$

$$
\begin{aligned}
V_{G S}-V_{T H}=2.3 \mathrm{~W} \Rightarrow V_{\text {error }} & =\frac{w \angle c_{0 X}^{e f}\left(V_{G S}-V_{T H}\right)}{c_{H}} \\
& =60 \mathrm{mV}
\end{aligned}
$$

For clock feedttirough: $C_{0 V}=\left(0.4 \times 10^{-11} \mathrm{~F} / \mathrm{m}\right) \times 20 \mu \mathrm{~m}=0.08 \mathrm{fF}$

$$
\text { Verror } \cong \frac{C_{o v}}{C_{H}} V_{C K}=0.24 \mathrm{mV}
$$

The overlap capacitance in Table 2.1. Should actually be $0.4 \mathrm{e}-9$ for NMOS. Thus, the error due to clock feed through will be about 24 mv , somewhat less than that ale to evorst-cave charge injection.
12.10 (a) C_{1} tother with M_{1} and H_{2} can be viewed as a resistor. Thus, C_{2} charges to $2 V$ with an envelope given by $1-\exp \frac{-t}{\tau}$, where $\tau=\frac{1}{f_{12} C_{1}} \cdot c_{2}$.
Gout $\frac{V_{\text {in }}}{\frac{3 V_{i n}}{4}} \sqrt{,}$
(b) The maximum error occurs when $V_{G S}-V_{T H}$ is maximum. If all of M, channel charge is injected onto C_{1}, then after V_{c}, hov reached $V_{i n}$ and M_{1} turns off, V_{c}, incurs an error equal to ($\left.V_{G S}-V_{\text {in }}-V_{T H}\right) W L C_{0 X} / C_{1}$. When H_{2} turns on, it absorbs some charge into its channel and when it turns off, it injects the charge back onto C_{1}, and C_{2}. Thus, only the charge due to M_{1} need be considered. This error is divided equally between C_{1} and C_{2}, yielding an overall output error of $\frac{W L C_{0 X}}{2 C_{1}}\left(V_{G_{S}}-V_{i n}-V_{T H}\right)$.
(c) when M_{1} turns off, a voltage equal to $\sqrt{\frac{K T}{C_{1}}}$ is stored across C_{1}. When M_{2} is on, this voltage is distributed between C_{1} and c_{2}. Moreover, M_{2} itself produces thermal noise:

$$
\begin{aligned}
c_{1} \overbrace{\frac{I}{I} C_{2}}^{R_{0 n 2}} \quad \Rightarrow V_{\text {out }} & \Rightarrow V_{n, \text { out }}=\sqrt{\frac{k T}{2 C_{1}}} \\
& \Rightarrow V_{n, \text { out, tot }}^{2}=\frac{1 k T}{4}+\frac{k T}{2 c_{1}}=\frac{3 k T}{4 c_{1}} \\
& \Rightarrow V_{n, \text { out }, \text { tot }}=\sqrt{\frac{3 k T}{4 c_{1}}}
\end{aligned}
$$

12.12

$12.13 \quad$ Gain error $\approx\left(C_{2}+C_{1}+C_{\text {in }}\right) /\left(C_{2} A_{v_{1}}\right)=0.01$

$$
\begin{aligned}
& \Rightarrow 1+\frac{c_{1}}{c_{2}}+\frac{c_{\text {in }}}{c_{2}}=10 \Rightarrow 9 c_{2}=c_{1}+c_{\text {in }}=2.2 p F \\
& \Rightarrow c_{2}=\frac{2.2 p F}{9} \Rightarrow \\
& \frac{c_{1}}{c_{2}}=8.2 \rightarrow 8.0
\end{aligned}
$$

12.14

$$
\begin{aligned}
G_{m}=100^{-1} v \quad \tau_{a m p} & =\frac{c_{L} c_{\text {eq }}+c_{L} c_{2}+c_{\text {eq }} C_{2}}{G_{m} c_{2}} \\
& =\frac{c_{\text {eq }}}{G_{m}} \text { because } c_{L}=0 \\
& =2 \mathrm{~ns} \Rightarrow c_{\text {eq }}=20 p F
\end{aligned} \quad C_{\text {eq }}=C_{1}+c_{\text {in }}
$$

Since $C_{\text {in }}=0.2 \mathrm{pF}, C_{1}=19.8 \mathrm{pF} . \quad \mathrm{Als0}, 9 C_{2}=20 \mathrm{pF} \Rightarrow$

$$
\frac{c_{1}}{c_{2}}=44
$$

12.15

$$
\begin{aligned}
& C_{1}=C_{2}=1 \mu F \quad C_{K}=100 \mathrm{MHz} \\
& V_{\text {in }}=0.5 \cos [2 \pi(10 \mathrm{MHz}) t]
\end{aligned}
$$

12.16 (a) The minimum level $=1.5 \mathrm{~V}-V_{T H 1,2} \approx 0.8 \mathrm{~V}$.

The maximum level places M_{3} or M_{4} at the edge of the triode region. $\left|V_{G S}-V_{T H}\right|_{3,4}=0.421 \mathrm{~V} \Rightarrow$ max. level $=2.58 \mathrm{~V}$. $\Rightarrow \operatorname{Max}$. Suing $=1.78 \mathrm{~V}$.
(b) $A_{y, \text { open }} \approx g_{m_{1}, 2}\left(r_{0}, 11 r_{02}\right)=27.3$

Gain Error $=\frac{C_{1}+C_{3}}{C_{3} A_{v}}=18.3 \%$
(c) $\operatorname{Tamp} \approx \frac{C_{1}}{G_{m}}=0.488 \mathrm{~ns}$
12.17 (a) same.
(b) The gate-source caps is equal to $\frac{2}{3} w L_{\text {eff }} C_{0 x}+w C_{0}$

$$
\approx 44 f F
$$

(The overlap cap in Table 2.1 must actually be 0.4e-9, in which case $C_{\text {in }} \cong 64$ fF.)

The gate-drain overlap capacitance, (of (11,2) equation because it appears in parallel with the feedback capacitor:

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}} \approx-\frac{c_{1}}{C_{1}+W C_{\text {av }}}\left(1-\frac{c_{3}+W C_{0 v}+c_{1}+c_{\text {in }}}{c_{3}+W C_{0 v}}-\frac{1}{A_{V}}\right) \\
& \approx-\frac{c_{1}}{c_{3}}\left(1-\frac{w C_{0 v}}{c_{3}}\right)\left(1-\frac{c_{3}+w c_{0 v}+c_{1}+c_{\text {in }}}{c_{3}+w c_{0 v}} \cdot \frac{1}{A_{V}}\right)
\end{aligned}
$$

Thus, the gain error rises to $\frac{w c_{0 v}}{c_{3}}+\frac{c_{3}+c_{1}+w c_{o v}+c_{\text {in }}}{c_{3}+w c_{0 x}} \frac{1}{A_{0}}$. Assuming. Cove $=0.4 e-9$, we obtain a gain error of 22.2\%.
(C) Neglecting the drain giunction caps at the output, we have $\tau_{\text {amp }} \approx \frac{\left(c_{1}+c_{\text {in }}\right)}{G_{m}} \cong 0.503 \mathrm{~ns}$
12.13 Plotting the CM level, we see that it changes with the differential output.

This usually means that the CM feedback network, in particular the devices sensing the cM level, are quite nonlinear.
12.19 Since $I_{D S}=1 \mathrm{~mA},\left(V_{G S}-V_{T H}\right)_{S}=319 \mathrm{mV} \Rightarrow$ Minimum input level $=V_{G S 1,2}+319 m V \cong 1.245 \mathrm{~V}$ (neglecting bolyeffect.)

Since $I_{D 6}=50 \mu \mathrm{~A},\left(V_{G S}-V_{T H}\right)_{6}=71.3 \mathrm{mV} \Rightarrow$
$V_{\text {out, }} \mathrm{CM}=71.3 \mathrm{mV}+V_{1+6}+V_{555} \cong 1.79$ (neglecting bo dy effect.)

$$
\Rightarrow Y_{\text {in }} \max =1.79+K_{T H 1,2} \approx 2.49 V
$$

. 12.20 Vine, min remains the same.

$$
\begin{aligned}
V_{\text {in, max }} & =V_{G S 6}+V_{G S 5}+V_{T H 1,2} \\
& =0.859+1.019+0.7=2.578 V_{\text {c neglecting }}
\end{aligned}
$$ body effect)

12.21

The charge resides on $C_{1}+C_{2} \Rightarrow$ output CM level changes by

$$
\sim \frac{\Delta q}{c_{1}+c_{2}} .
$$

The voltage at node x changes by $\frac{\Delta q}{c_{1}+c_{2}} \cdot \frac{1}{A_{v}}$, where $A_{v}=g_{m 5}\left[r_{03+4} / 1\left(g_{m_{1+2}} r_{01+2} r_{05}\right)\right]$.
12.22 For a simple stage:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{c_{1}}{c_{2}} \frac{1}{1+\left(1+\frac{c_{1}}{c_{2}}\right) \frac{1}{G_{m} R_{\text {out }}}}
$$

Thus, the voltage at node X and hence the current drawn by the error amplifier can be easily calculated.

$$
I_{x}=\frac{C_{1}}{C_{2}} \frac{G_{m}}{1+\frac{C_{1}}{C_{2}}+G_{m} R_{\text {out }}} \cdot V_{\text {in }}
$$

Interestingly, the gain error is the same. But if the Gm stage in the error amplifier has a very high output impedance, then the load resistor of the main amplifier is Rout rather than Rout/2 and

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{c_{1}}{c_{2}} \frac{1+2 \frac{1+c_{1} / c_{2}}{G_{m} R_{o u t}}}{1+2 \frac{1+c_{1} / c_{2}}{G_{m} R_{\text {out }}}+\left(\frac{1+c_{1} / c_{2}}{G_{m} R_{\text {out }}}\right)^{2}} \\
&=-\frac{c_{1}}{c_{2}} \frac{1}{1+\frac{1}{\left(1+c_{1}\left(c_{2}\right)^{2} /\left(G_{m} R_{\text {out }}\right)^{2}\right.}} \\
& \underbrace{}_{\approx 1+2 \frac{1+c_{1 /} / c_{2}}{G_{m} R_{\text {out }}}}
\end{aligned}
$$

$$
\equiv-\frac{c_{1}}{c_{2}} \frac{1}{1+\left(\frac{1+C_{1} / C_{2}}{G_{m} R_{o u t}}\right)^{2}} \text {, as of the open-loop }
$$ gain of the amplition is squared.

$$
\begin{aligned}
& {\left[-\operatorname{Cam}\left(V_{\text {in }}-V_{1}\right)+\frac{G_{m} \frac{C_{1}}{C_{2}} V_{\text {in }}}{1+\frac{C_{1}}{C_{2}}+G_{m} K_{\text {out }}}\right] \frac{R_{\text {out }}}{2}=V_{\text {out }}} \\
& V_{1}=\frac{Y_{\text {in }}-Y_{\text {out }}}{1+\frac{c_{1}}{c_{2}}} \\
& \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{C_{1}}{C_{2}} \frac{\frac{G_{m} R_{\text {ont }}}{2}\left(2+2 \frac{C_{1}}{C_{2}}+C_{\text {m }} R_{\text {out }}\right)\left(1+\frac{C_{1}}{C_{2}}+C_{\text {m }} R_{\text {ont }}\right)+\frac{G_{m} R_{\text {ant }}}{2}\left(1+\frac{C_{1}}{C_{2}}+G_{m} R_{\text {out }}\right)}{1} \text { Rout } \\
& =-\frac{C_{1}}{C_{2}} \frac{1+2 \frac{1+\frac{C_{1}}{C_{2}}}{C_{m} R_{0 n} t}}{1+3 \frac{1+C_{1} / C_{2}}{G_{m} R_{\text {out }}}+2\left(\frac{\left(1+C_{1} / C_{2}\right.}{G_{m} R_{\text {out }}}\right)^{2}} \\
& =\frac{-c_{1}}{c_{2}} \frac{1+2 X}{(1+X)(1+2 x)}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{c_{1}}{c_{2}} \frac{1}{1+\frac{1+c_{1} / c_{2}}{G_{m} \operatorname{Rout}}}
\end{aligned}
$$

Chapter 13
$13.1 \quad y(t)=\alpha_{1} x(t)+\alpha_{2} x^{2}(t) \quad x=\left[\begin{array}{ll}0 & x_{\text {max }}\end{array}\right]$
(a) Straight line passing through the end points:

$$
\begin{gathered}
y_{1}=\frac{\alpha_{1} x_{\max }+\alpha_{2} x_{\max }^{2} \cdot x}{x_{\max }}=\left(\alpha_{1}+\alpha_{2} x_{\max }\right) x \\
y(t)-y_{1}=-\alpha_{2} x_{\max } \cdot x+\alpha_{2} x^{2}
\end{gathered}
$$

\Rightarrow error is maximum at $x=\frac{x_{\max }}{2}$ and equal to $-\frac{\alpha_{2} x_{\text {max }}^{2}}{4}$. This value is usually normalized to the maximum output level.
(b)

$$
\begin{aligned}
y(t) & =\alpha_{1} \frac{x_{\max } \cos \omega t}{2 x_{\text {max }}^{2} \cos \omega t}+\alpha_{1} \frac{x_{\max }}{2}+\frac{\alpha_{2}}{4} x_{\text {max }}^{2} \\
& +\frac{\alpha_{2}}{4} \underbrace{\cos ^{2} \omega t}_{\frac{1+\cos 2 \omega t}{2}}
\end{aligned}
$$

\Rightarrow Fundamental : $\left(\frac{\alpha_{1} x_{\max }}{2}+\frac{\alpha_{2}}{2} x_{\text {max }}^{2}\right)$ cos wt
Second Harmonic: $\frac{\alpha_{2}}{8} x_{\max }^{2} \cos 2 \omega t$

$$
\begin{aligned}
\Rightarrow \quad T H D & =\frac{\alpha_{1}^{2} x_{\text {max }}^{4} / 64}{\left(\frac{\alpha_{1} x_{\max }}{2}+\frac{\alpha_{2}}{2} x_{\max }^{2}\right)^{2}} \\
& =\frac{\alpha_{2}^{2} x_{\max }^{2}}{16\left(\alpha_{1}+\alpha_{2} x_{\max }\right)^{2}}
\end{aligned}
$$

13.2 For Fig. 13.6 (a): $\frac{A_{H D 2}}{A_{F}}=\frac{V_{m}}{4\left(V_{G S}-V_{T H}\right)} \quad V_{G S}-V_{T H}=356 \mathrm{mV}$

$$
\Rightarrow \frac{A_{1+2}}{A_{F}}=7 \% \quad(-23 \mathrm{~dB})
$$

For Fig. $13.6(b): \frac{A_{H D 3}}{A_{F}} \approx \frac{V_{m}^{2}}{32\left(V_{G S}-V_{T H}\right)^{2}}$

$$
=0.25 \% \quad(-52 d B)
$$

- If we double $W / L, V_{G S}-V_{T H}$ is divided by $\sqrt{2}$.
\Rightarrow For (a), distortion goes up by $\sqrt{2}$ (3 dB)
and for (b), by $2(6 \alpha \beta)$.
- If we double I, $V_{G S}-V_{T H}$ is multiplied by $\sqrt{2}$.
\Rightarrow Distortion goes down by $\sqrt{2}$ and 2 for $(a) \&(b)$, respectively.
13.3

Figs. 13.6 (a), (b)

Fog. $13.6(a),(b)$
(Note that here THD is the ratio of voltages. If we take the ratio of powers, the relations must be squared.)

Increasing I and hence power dissipation decreases both the noise and the nonlinearity, whereas increasing w/L degrades the linearity while reducing the noise.
13.4 (1) As (w/L) is increased to increase the voltage gain, the linearity degrades (evith a constant I).
(2) As I is increased to linearize the circuit, the load resistance must be decreased to maintain the same voltage headroom \Rightarrow gain \downarrow.
13.5

$$
\begin{aligned}
& \frac{b}{a}=\frac{\alpha_{2}}{2} V_{m} \frac{1}{\alpha_{1}} \frac{1}{\left(1+\beta \alpha_{1}\right)^{2}} \\
& I_{D}=\frac{1}{2} \mu_{n} \operatorname{cox} \frac{w}{L}\left(V_{G S O}+V_{m} \cos \omega t-V_{T H}\right)^{2} \quad V_{G S O}-V_{T H}=\text { overdrive } \\
& =\frac{1}{2} \mu_{n} c_{0} \times \frac{w}{L}\left[V_{m}^{2} \cos ^{2} \omega t+2 V_{m} \cos \omega t \cdot\left(V_{G S O}-V_{T H}\right)+\left(V_{G S O}-V_{T H}\right)^{2}\right] \\
& \Rightarrow\left\{\begin{array}{l}
1 \frac{\alpha_{2}}{\alpha_{1}} \left\lvert\,=\frac{1}{2 \cdot\left(V_{G S O}-V_{T H}\right)}=1.57 V^{-1}\right. \\
\alpha_{1}=\mu_{n} C_{0} \frac{w}{L}\left(V_{G S O}-V_{T H}\right) R_{D}=6286 \mu A / V \times 2 \mathrm{~K} \Omega=12.57
\end{array}\right. \\
& \Rightarrow \frac{b}{a}=6.36 \times 10^{-4}
\end{aligned}
$$

13.6

$$
\begin{aligned}
& {\left[\left(R_{1} I_{\text {out }}+V_{n}\right)\left(-A_{1}\right)-R_{1} I_{\text {out }}\right] g_{m 3}=I_{\text {out }} t} \\
& \quad \Rightarrow I_{\text {out }}=\frac{-g_{m 3} A_{1}}{1+g_{m 3} R_{1} A_{1}+g_{m 3} R_{1}} V_{n} \approx \frac{-A_{1}}{R_{1}\left(A_{1}+1\right)} V_{n} \\
& \approx \frac{-1}{P_{1}} V_{n} \\
& \quad \Rightarrow\left|V_{n, \text { in }}\right|=\frac{\frac{1}{R_{1}} V_{n}}{g_{m 1}}, g_{m 1}=\frac{1}{2} \mu_{n} C_{\text {ox }}\left(\frac{W}{L}\right)_{1}\left(2 V_{D S}\right)
\end{aligned}
$$

13.7 while increasing waL raises the qpen-loop gain, it also makes the circuit more non linear if I remains constant.) Since $\frac{w}{L}$ is multiplied by a factor of $4 \Rightarrow\left|\frac{\alpha_{2}}{\alpha_{1}}\right| \uparrow$ by $2 x$, and $\alpha_{1} \uparrow$ by $2 x \Rightarrow$

$$
\frac{b}{a}=4.32 \times 10^{-4}
$$

13.8

$$
\begin{aligned}
\beta \alpha_{1}=5.03 \Rightarrow \frac{b}{a} & \approx \frac{\alpha_{2}}{\alpha_{1}} \cdot \frac{v_{m}}{2} \cdot \frac{1}{\rho^{2} \alpha_{1}^{2}} \\
& =3.1 \times 10^{-4}
\end{aligned}
$$

13.9

Assume $y=a \cos \omega t+b \cos (3 \omega t)$ and $x=1 / m \cos \omega t$.

$$
\begin{aligned}
y_{s} & =V_{m} \cos \omega t-\beta(a \cos \omega t+b \cos 3 \omega t) \\
\Rightarrow y(t) & =\alpha_{1}\left(V_{m}-\beta a\right) \cos \omega t-\alpha_{1} \beta b \cos 3 \omega t+\alpha_{3}\left(V_{m}-\beta a\right)^{3} \cos ^{3} \omega t \\
& -\alpha_{3} \beta^{3} b^{3} \cos ^{3} 3 \omega t-3 \alpha_{3}\left(V_{m}-\beta a\right)^{2} \cos ^{2} \omega t \cdot \beta b \cos 3 \omega t \\
& +3 \alpha_{3}\left(V_{m}-\beta a\right) \cos \omega t . \beta^{2} b^{2} \cos ^{2} 3 \omega t .
\end{aligned}
$$

Neglecting higher order terms: $\quad \alpha \approx \frac{\alpha_{1}}{1+\beta \alpha_{1}} V_{m}, V_{m}-\beta a \approx \frac{a}{\alpha_{1}}$

$$
b \approx-\alpha, \beta b+\frac{\alpha_{3}}{4}\left(V_{m}-\beta a\right)^{3}
$$

$$
\Rightarrow \frac{b}{a} \approx \frac{1}{4} \frac{\alpha_{3}}{\alpha_{1}} \frac{V_{m}^{2}}{\left(1+\beta \alpha_{1}\right)^{3}}
$$

$13.10 \quad I_{D}=I_{0} \exp \frac{V_{G S}}{3 V_{T}} \quad V_{G S}=V_{G S O}+V_{m} \cos \omega t$

$$
\Rightarrow I_{D}=\left(I_{0} \exp \frac{V_{G s o}}{S V_{T}}\right)\left[1+\frac{V_{m} \cos \omega t}{\zeta V_{T}}+\frac{1}{2}\left(\frac{V_{m} \cos \omega t}{\zeta V_{T}}\right)^{2}+\cdots\right]
$$

If $V_{m} \ll \zeta V_{T}$, only second harmonic is significant: $\frac{1}{4}\left(\frac{V_{m}}{\zeta V_{T}}\right)^{2} \cos 2 \omega t$.
For the differential pair, $I_{D 1}+I_{D 2}=I_{S S}$, and

$$
\begin{aligned}
V_{\text {in }}-V_{G S 1}+V_{\operatorname{CS}} Z=0 \Rightarrow V_{\text {in }} & =\xi V_{T} \ln \frac{I_{D 1}}{I_{0}}-\xi V_{T} \ln \frac{I_{D 2}}{I_{0}} \\
& =\zeta V_{T} \ln \frac{I_{D 1}}{I_{D 2}}
\end{aligned}
$$

It follows that : $I_{D_{1}}=\frac{I_{S S} \exp \left[V_{\text {in }} /\left(\xi V_{T}\right)\right]}{1+\exp \left[V_{\text {in }} /\left(\xi V_{T}\right)\right]}$

$$
I_{D 2}=\frac{I_{s s}}{1+\exp \left[V_{\text {in }} /\left(\zeta V_{T}\right)\right]}
$$

Thus, $I_{D_{1}}-I_{D 2}=I_{S S} \tanh \frac{Y_{\text {in }}}{2 \zeta V_{T}} \quad \tanh \varepsilon \approx \varepsilon-\frac{\varepsilon^{3}}{3}$

$$
\approx I_{S S}\left[\frac{V_{\text {in }}}{2 \zeta V_{T}}-\left(\frac{V_{\text {in }}}{2 \xi V_{T}}\right)^{3}\right]
$$

If $V_{\text {in }}=V_{\text {in }}+V_{m} \cos \omega t$, the third harmonic is given by $-I_{S S} \frac{1}{\left(2 \xi_{T}\right)^{3}} V_{m}^{3} \frac{1}{4} \cos 3 \omega t$.
13.11

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \frac{\mu_{0} C_{0 X}}{1+\theta\left(V_{G S}-V_{T H}\right)} \frac{\omega_{1}}{L}\left(V_{G S}-V_{T H}\right)^{2} \\
& \approx \frac{1}{2} \mu_{0} C_{0 x} \frac{W}{L}\left[1-\theta\left(V_{G S}-V_{T H}\right)\right]\left(V_{G S}-V_{T H}\right)^{2}
\end{aligned}
$$

If $V_{G S}=V_{G S O}+V_{m} \cos \omega t$, then the third harmonic is given by $\frac{1}{2} \mu_{0} \operatorname{cox}_{0} \frac{\omega}{L}(-\theta) \frac{V_{m}^{3}}{4} \cos 3 \omega t$.
$13.12(\alpha) \quad \Delta V_{T H}=\frac{0.1 t_{0 X}}{\sqrt{W L}} \quad t_{0 X}=90 \AA$

$$
\Rightarrow W=6.5 \mathrm{\mu m}
$$

(b)

$$
\begin{aligned}
T H D & =\frac{V_{m}^{2}}{32\left(V_{G S}-V_{T H}\right)^{2}} \quad I_{D}=1 m A \frac{W}{L}=\frac{6.5}{0.5} \\
& \Rightarrow V_{m, \text { max }}=0.61 \mathrm{~V}
\end{aligned}
$$

13.13 (a) $W=6.5 \mu m \times\left(\frac{5 m v}{2 m v}\right)^{2}=41 \mathrm{\mu m}$.
(b)

$$
\begin{aligned}
& V_{G S}-V_{T H}=1.07 V \times \sqrt{\frac{6.5}{41}}=0.426 \mathrm{~V} \\
& \Rightarrow V_{m, \text { max }}=0.61 \times \sqrt{\frac{6.5}{41}}=0.243 \mathrm{~V}
\end{aligned}
$$

We see a trade-off between input offset and non linearity (If the channel length remains constant.)
13.14

$$
\begin{aligned}
& \left.\left|\frac{\Delta I_{D}}{I_{D}}\right|=\frac{2 \Delta V_{T H}}{V / G 5 V_{T H}}=0.02 \Rightarrow \begin{array}{rl}
\Delta V_{T H} & =5 \mathrm{mV} \\
& =\frac{0.1 \times 90{ }^{\circ}}{\sqrt{W L}} \\
I_{D}=\frac{1}{2} \mu_{n} C_{0 x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{T H}\right)^{2} \Rightarrow \frac{W}{L}=29.9
\end{array}\right\} \\
& \Rightarrow\left\{\begin{array}{l}
L=0.033 \mu \mathrm{~m} \\
W=0.984 \quad \text { But } f L_{\min } \approx 0.5 \mu \mathrm{~mm} \Rightarrow \frac{W}{L}=\frac{15 \mu \mathrm{~m}}{0.5 \mu \mathrm{~m}} .
\end{array}\right.
\end{aligned}
$$

$13.15 \quad I_{D} R_{S}+\sqrt{\frac{2 I_{D}}{\mu_{n} C_{0} W / L}}+V_{T H}=V_{b}$
Take the total differential of both sides and substitute $I_{m}=\frac{2 I_{D}}{V_{a s}-V_{\pi t}}$. Then, the result is obtained.
13. 16

$$
\begin{aligned}
& y_{1}(t)=\alpha_{1} A \cos \omega t+\alpha_{2} A^{2} \cos ^{2} \omega t+\alpha_{3} A^{3} \cos ^{3} \omega t \\
& y_{2}(t)=\alpha_{1} A \cos (\omega t+\theta)+\alpha_{2} A^{2} \cos ^{2}(\omega t+\theta)+\alpha_{3} A^{3} \cos ^{3}(\omega t+\theta)
\end{aligned}
$$

The second harmonic arises from $\alpha_{2} A^{2}\left[\cos ^{2} \omega t-\cos ^{2}(\omega t+\theta)\right]$

$$
\begin{aligned}
& =\alpha_{2} A^{2} \frac{\cos (2 \omega t)-\cos (2 \omega t+2 \theta)}{2} \\
& =\frac{\alpha_{2} A^{2}}{4} \sin \theta \sin (2 \omega t)
\end{aligned}
$$

13.17 We calculate the output offset first. Viewing off set as noise, we have the following circuit:

$$
\Rightarrow V_{\text {out }}=\Delta V_{T H} \frac{-8 m_{3} r_{03} R_{D}}{R_{D}+r_{01}+r_{03}+g_{m_{3}} r_{03} r_{01}}
$$

This must be divided by the voltage gain, which for moderate R_{D} is given by $g_{m}, R_{D} \Rightarrow|v o s, i n| \approx \frac{\frac{g_{m 3}}{g_{m 1}} r_{03}}{R_{D}+g_{m_{3}} r_{03} r_{01}}$.

If $R_{D} \rightarrow \infty$, |Youth $\rightarrow \Delta V_{T H} \cdot g_{m 3} r_{03}$. The voltage gain is obtained from eq. (3.119) as $\sim g_{m 1} r_{0}, g_{m 3} r_{03} \Rightarrow$
$\left|V_{o s, i n}\right| \approx \frac{\Delta V_{T H}}{g_{m i} r_{0}}$. Thisis why we usually negle et the offer contributed by cascode devices.
13.18 With a finite input capacitance, the gain of the circuit is no longer $A v$.

$$
\begin{aligned}
A v, t_{0} t & =\frac{c_{1}}{c_{1}+2 C_{\text {in }}} \cdot A_{v} \\
\Rightarrow \quad V_{\text {os, in }} & =\frac{\frac{V_{0 s}}{c_{1}+2 c_{\text {in }}} \cdot A_{v}}{}
\end{aligned}
$$

13.19 If W is doubled, the gain increases by approximately a factor of $\sqrt{2}$. Also, the input devices exhibit a smaller mismatch. For example, the threshold voltage mismatch decrease n by a factor of $\sqrt{2}$. Thus, if the input devices dominate the offset, the overall input offset drops by a factor of 2 .
13.20 To minimize the input offset, we maximize the overdrive of M_{3} and M_{4}. But this limits the high level of the output savings.

Chapter 14
14.1

$$
\begin{aligned}
& I_{D, \text { scaled }}=\frac{1}{2} \mu_{n} C_{0 x} \frac{w \alpha}{L \alpha}\left(\frac{v_{G S}}{\alpha}-\frac{L_{H}}{\alpha}\right)^{2} \\
&=\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(v_{G S}-v_{T H}\right)^{2} \frac{1}{\alpha^{2}} \\
& C_{C h} \\
&=\frac{1}{\alpha^{2}} w L C_{0 x}
\end{aligned}
$$

If the junction capacitances of SID are neglected, then,

$$
\begin{aligned}
T_{d, \text { scaled }} & =\frac{C / \alpha^{2}}{I / \alpha^{2}} \cdot \frac{V_{\Delta D}}{\alpha} \\
& =\left(\frac{C}{I} V_{\Delta \Delta}\right) \frac{1}{\alpha}
\end{aligned}
$$

Same as ideal scaling. But,

$$
\begin{aligned}
\text { gm, scaled } & =\mu \operatorname{Cox}_{0 \times} \frac{\omega / \alpha}{L / \alpha} \frac{V_{G S}-V_{T H}}{\alpha} \\
& =\mu \operatorname{cox} \frac{\omega}{L}\left(V_{G S}-V_{T H}\right) \cdot \frac{1}{\alpha}
\end{aligned}
$$

14.2

$$
\begin{aligned}
w_{d, \text { scaled }} & \approx \sqrt{\frac{2 \varepsilon_{s i}\left(\frac{1}{N_{A}}+\frac{1}{\alpha N_{D}}\right) \frac{V_{R}}{\alpha}}{\underbrace{}_{\text {siD }}}} \quad, \quad N_{A} \gg N_{D} \\
& \approx \frac{1}{\sqrt{\alpha}} \sqrt{\frac{2 \varepsilon_{s i}}{q} \frac{1}{N_{A}} V_{R}}
\end{aligned}
$$

The appletion region cap acitance per unit area therefore increases by $\sqrt{\alpha}$ rather than α. The serves resistance increases.

DIBL arises primarily from the depletion region in the substrate rather than in the drain. Thus, DIBL remains relatively constoust.

143 (a) Since $U_{n, r m s}=\sqrt{\frac{k T}{C}}$, the capacitors must increase by a factor of 4 .
(b) Gm should increase by a factor of 4 .
(c) For square-law devices, WIL and bias current must increase by afactor of $4 . \Rightarrow$ Power increases by a factor of 2 .
(d) $S R=t / C \Rightarrow$ Bias current must increase by a factor of 4 .
14.4

$$
\begin{aligned}
& I_{D}=\mu C_{d} \frac{w}{L} V_{T}^{2}\left(\exp \frac{V_{G S}-V_{T H}}{\xi V_{T}}\right)\left(1-\exp \frac{-V_{D S}}{V_{T}}\right) \\
& C_{d}=\sqrt{\varepsilon_{S i} q-N_{S u b} /\left(4 \phi_{B}\right)} \quad N_{S u b} \rightarrow \alpha N_{\text {sub }}, \phi_{B B} \sim \text { constant. } \\
& V_{G S}-V_{T H} \rightarrow \frac{V_{G S}-V_{T H}}{\alpha} \quad 3=1+\frac{C_{d}}{C_{O X}} \rightarrow 1+\frac{\sqrt{\alpha}}{\alpha} \frac{\varepsilon}{C_{O X}} \\
& V_{D S} \rightarrow \frac{V_{D S}}{\alpha}
\end{aligned}
$$

$S_{\text {scaled }} 2.3 V_{T}\left(1+\frac{\sqrt{\alpha} C_{d}}{\alpha C_{0 x}}\right) \Rightarrow S \downarrow$, ie., subthreshold behavior improves.
14.5

$$
e_{\text {in }}=\frac{1}{\sqrt{\mu_{n} \sigma_{\times} \frac{\omega}{L}\left(V_{G S}-V_{T H}\right)}}=50 \Omega
$$

$$
R_{\text {in, scaled }}=\frac{1}{\sqrt{a \frac{\alpha}{\alpha} \frac{1}{\alpha}}} \times 50 \Omega=50 \Omega
$$

14.6

$$
R_{i n}=\frac{r_{02}+r_{01}}{1+\left(g_{m_{1}}+g_{m b_{1}}\right) r_{01}} \approx \frac{r_{2}+r_{01}}{\left(g_{m_{1}}+g_{m b_{1}}\right) r_{01}}
$$

$$
R_{\text {in, scald }} \cong \frac{r_{02}+r_{01}}{\left(\partial_{m_{1}}+g_{m b_{1}, s c a b a}\right) r_{01}}
$$

14.7

$$
\begin{aligned}
& \left.\frac{\theta_{m}}{I_{D}}\right|_{\text {sat. }}=\frac{\sqrt{2 \mu_{n} C_{0 \times} \frac{w}{L} I_{D}}}{I_{D}}=\sqrt{\frac{2 \mu_{n} C_{0 \times} \frac{w}{L}}{I_{D}}} \\
& \left.\frac{g_{m}}{I_{D}}\right|_{\text {sub. }} \cong \frac{\frac{I_{D}}{\zeta V_{T}}}{I_{D}}=\frac{1}{E_{D} V_{T}}
\end{aligned}
$$

The two are equal at $I_{D}=\frac{2 \mu_{n} c_{0 \times} \frac{\omega}{L}}{\left(\xi_{T}\right)^{2}}$.

$$
\begin{aligned}
& \text { Imbl, scaled }=\frac{\gamma_{\text {scaled }}}{2 \sqrt{2 \phi_{F}+\frac{V_{\text {sub }}}{\alpha}}} g_{m 1} \quad \gamma_{\text {scud }}=\frac{\sqrt{2 q \varepsilon Q N_{\text {sub }}}}{\alpha c_{0 x}} \\
& \text { If } \frac{V_{\text {sub }}}{\alpha}>2 \text { 忠 } \Rightarrow \text { Imp, scaled }=\text { Imp, } \text {. }
\end{aligned}
$$

14.4

$$
\begin{aligned}
& I_{D}=\mu C_{d} \frac{w}{L} V_{T}^{2}\left(\exp \frac{V_{G S}-V_{T H}}{3 V_{T}}\right)\left(1-\exp \frac{-V_{D S}}{V_{T}}\right) \\
& C_{d}=\sqrt{\varepsilon_{S i} q-N_{S u b} /\left(4 \phi_{B}\right)} \quad N_{S u b} \rightarrow \alpha N_{\text {sub }}, \phi_{B B} \sim \text { constant. } \\
& V_{G S}-V_{T H} \rightarrow \frac{V_{G S}-V_{T H}}{\alpha} \quad 3=1+\frac{C_{d}}{C_{O X}} \rightarrow 1+\frac{\sqrt{\alpha}}{\alpha} \frac{\varepsilon_{d}}{C_{O X}} \\
& V_{D S} \rightarrow \frac{V_{D S}}{\alpha}
\end{aligned}
$$

$S_{\text {scaled }} 2.3 V_{T}\left(1+\frac{\sqrt{\alpha} C_{d}}{\alpha C_{0 x}}\right) \Rightarrow S \downarrow$, ie., subthreshold behavior improves.
14.5

$$
e_{i n}=\frac{1}{\sqrt{\mu_{n} \sigma_{\times} \frac{\omega}{L}\left(V_{G S}-V_{T H}\right)}}=50 \Omega
$$

$$
R_{\text {in, scaled }}=\frac{1}{\sqrt{a \frac{\alpha}{\alpha} \frac{1}{\alpha}}} \times 50 \Omega=50 \Omega
$$

14.6

$$
R_{\text {in }}=\frac{r_{02}+r_{01}}{1+\left(g_{m_{1}}+g_{m_{1}}\right) r_{01}} \approx \frac{r_{2}+r_{01}}{\left(g_{m_{1}}+g_{m_{1}}\right) r_{01}}
$$

$$
R_{\text {in, scald }} \cong \frac{r_{02}+r_{01}}{\left(g_{m_{1}}+g_{m b_{1}, \text { scaled }}\right) r_{01}}
$$

14.7

$$
\begin{aligned}
& \left.\frac{g_{m}}{I_{D}}\right|_{\text {sat. }}=\frac{\sqrt{2 \mu_{n} C_{0 \times} \frac{w}{L} I_{D}}}{I_{D}}=\sqrt{\frac{2 \mu_{n} C_{0 \times} \frac{w}{L}}{I_{D}}} \\
& \left.\frac{g_{m}}{I_{D}}\right|_{\text {sub. }} \cong \frac{\frac{I_{D}}{\xi V_{T}}}{I_{D}}=\frac{1}{E_{T} V_{T}}
\end{aligned}
$$

The two are equal at $I_{D}=\frac{2 \mu_{n} c_{0 \times} \frac{\omega}{L}}{\left(\xi_{T}\right)^{2}}$.

$$
\begin{aligned}
& \text { Imbl, scaled }=\frac{\gamma_{\text {scaled }}}{2 \sqrt{2 \phi_{F}+\frac{V_{\text {sub }}}{\alpha}}} g_{m 1} \quad \gamma_{\text {scud }}=\frac{\sqrt{2 q \varepsilon \phi N_{\text {sub }}}}{\alpha c_{0 x}} \\
& \text { If } \frac{V_{\text {sub }}}{\alpha}>2 \text { 忠 } \Rightarrow \text { mb, scaled }=\text { Imp, } \text {. }
\end{aligned}
$$

14.8 Since $I=v . Q, f \subset$ drops to zero, $v \rightarrow \infty$. But the velocity is limited to Usad. Thus, at the pinch-off point, the charge density 15 not zero. Carriers reach their saturated velocity and shoot through the deflation region surrounding the drain.
14.9

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \frac{\mu_{0} C_{0 x}}{1+\theta\left(V_{G S}-V_{T H}\right)} \frac{\omega}{L}\left(V_{G S}-V_{T H}\right)^{2} \\
\frac{\partial I_{D}}{\partial V_{G S}} & =\frac{1}{2} \mu_{0} C_{0 x} \frac{w}{L}\left[\frac{-\theta\left(V_{G S}-V_{T H}\right)^{2}}{\left[1+\theta\left(V_{G S}-V_{T H}\right)\right]^{2}}+\frac{2\left(V_{G S}-V_{T H}\right)}{1+\theta\left(V_{G S}-V_{T H}\right)}\right] \\
& =\mu_{0} C_{0 \times} \frac{W}{L} \frac{V_{G S}-V_{T H}}{1+\theta\left(V_{G S}-V_{T H}\right)}\left[1-\frac{\frac{\theta}{2}\left(V_{G S}-V_{T H}\right.}{1+\theta\left(V_{G S}-V_{T H}\right)}\right] \\
& =\mu_{0} C_{0 x} \frac{W}{L} \frac{V_{G S}-V_{T H}}{1+\theta\left(V_{G S}-V_{T H}\right)} \frac{1+\frac{\theta\left(V_{G S}-V_{T H}\right)}{1+\theta\left(V_{G S}-V_{T H}\right)}}{} \\
& =\frac{2 I_{D}}{V_{G S}-V_{T H}} \cdot \frac{1+\frac{\theta}{2}\left(V_{G S}-V_{T H}\right)}{1+\theta\left(V_{G S}-V_{T H}\right)}
\end{aligned}
$$

For small overdrives, $g_{m} \rightarrow \frac{2 I_{D}}{V_{G S}-V_{T H}}$. For large overdrives,

$$
g_{m} \rightarrow \frac{I_{D}}{V_{\operatorname{Cos}}-V_{T H}}
$$

14.10 Using the results of Prob. 14.9 ama replacing θ with $\frac{\mu_{0}}{2 v_{\text {sat }} L}+\theta$, we have :

$$
\begin{aligned}
\partial_{m} & =\frac{I_{D}}{V_{G S}-V_{T H}} \frac{2+\left(\frac{\mu_{0}}{2 V_{S a t} L}+\theta\right)\left(V_{G S}-V_{T H}\right)}{1+\left(\frac{\mu_{0}}{2 V_{S a t} L}+\theta\right)\left(V_{G S}-V_{T H}\right)} \\
& =\frac{I_{D}}{V_{G S}-V_{T H}}\left[1+\frac{1}{1+\left(\frac{\mu_{0}}{2 V_{\text {Sat }} L}+\theta\right)\left(V_{G S}-U_{T H}\right)}\right]
\end{aligned}
$$

14.11

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \mu_{n} C_{0 \times} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\frac{\lambda}{1+k V_{D S}} V_{D S}\right) \\
r_{0}^{-1} & =\frac{\partial I_{D}}{\partial V_{D S}}=\frac{1}{2} \mu_{n} c_{0 \times} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2} \frac{\lambda V_{D S}}{\left(1+k V_{D S}\right)^{2}} \\
& \approx I_{D} \frac{\lambda V_{D S}}{\left(1+k V_{D S}\right)^{2}} \\
\Rightarrow r_{0} & =\frac{1}{\lambda \frac{I_{D} V_{D S}}{\left(1+k V_{D S}\right)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
I_{D} & \approx \frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2}\left[1+\lambda V_{D S}\left(1-k V_{D S}\right)\right] \quad \text { if } k V_{D S} \ll 1 \\
& =\frac{1}{2} \mu_{n} C_{0 x} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}-\lambda k V_{D S}^{2}\right)
\end{aligned}
$$

We note that the voltage across $R_{D}=V_{D D}-I_{D} R_{D}$

$$
=V_{D D}-\frac{1}{2} \mu_{n} C_{0} \frac{w}{L}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S}-\lambda k V_{D S}^{2}\right) R_{D} .
$$

Thus, even if $V_{G s}$ changed by a very small value, the non linear dependence r on Los results in non linearity in the voltage across R_{D}.
14.12 (a) $g_{m}=v_{\text {sat }} w c_{0 x} \Rightarrow \mid A_{v} / \approx v_{\text {sat }} w c_{0 x}$
(b) $\left|A_{V}\right| \approx \frac{g_{m 1}}{g_{m 3}}=\frac{v_{s a t} w_{1} c_{2 x}}{v_{s a t} w_{3} c_{0 x}}=\frac{w_{1}}{w_{3}}$.
$14.13 \quad g_{m b}=\frac{\partial I_{D}}{\partial V_{B S}}=\mu c_{0 \times} \frac{w}{L}\left(\frac{-2}{3} \gamma \gamma\left(\frac{-\frac{3}{2}}{\sqrt{V_{D S}-V_{B S}+2 \phi_{F}}} \div \frac{-3 / 2}{\sqrt{-V_{B S}+2 \phi_{F}}}\right)\right.$

$$
=\mu C_{0 x} \frac{\omega}{L} \quad \gamma \frac{\sqrt{-V_{B S}+2 \phi_{F}}-\sqrt{V_{D S}-V_{B S}+2 \phi_{F}}}{\sqrt{V_{D S}-V_{1 B S}+2 \phi_{2}} \sqrt{-V_{B S}+2 \phi_{F}}}
$$

14.14

$$
\begin{aligned}
\frac{\partial E_{g}}{\partial T} & =-7.02 \times 10^{-4} \frac{2 T(T+1108)-T^{2}}{(T+1108)^{2}} \\
& =-7.02 \times 10^{-4} \frac{T^{2}+2216 T}{(T+1108)^{2}}
\end{aligned}
$$

For example, at $T=300 \% \mathrm{~K}, \frac{\partial E_{g}}{\partial T}=-0.267 \mathrm{mel} / \mathrm{ok}$
For bandgap references, ε_{q}. (11.10) must be modified:

$$
\begin{aligned}
& \frac{\partial I_{S}}{\partial T}=b(4+m) T^{3+m} \exp \frac{-E_{g}}{k T}+b T^{4+m}\left(\exp \frac{E_{2}}{K T}\right)\left(\frac{E_{2}}{k T^{2}}-\frac{1}{k T} \frac{\partial E_{g}}{\partial T}\right) \\
& \Rightarrow \frac{V_{T}}{I_{S}} \cdot \frac{\partial I_{S}}{\partial T}=(4+m) \frac{V_{T}}{T}+\left(\frac{E_{g}}{k T^{2}}-\frac{1}{k T} \frac{\partial E_{g}}{\partial T}\right) V_{T} \\
& \Rightarrow \frac{\partial V_{B E}}{\partial T}=\frac{V_{B E}-(4+m) V_{T}}{T}-\left(\frac{E_{g}}{q T}-\frac{1}{q} \frac{\partial E_{g}}{\partial T}\right)
\end{aligned}
$$

Thus, the TC of V VE is slightly more positive.
14.15 (a) $\left|A_{\nu}\right|=\frac{g_{m 1}}{g_{m 2}}=\sqrt{\frac{\mu_{n 1} C_{0 x}\left(\frac{W}{L}\right)_{1}}{\mu_{0} C_{0 x}\left(\frac{W}{L}\right)_{2}}} \Rightarrow\left|A_{v}\right|$ is highest for fast N, slow P, etc.
Input thermal norse voltage:
$\overline{v_{n}^{2}}=4 k T \frac{2}{3 g_{m 1}}+4 k T \frac{2}{3} \frac{\theta_{m 2}}{\partial_{n} 1^{2}} \Rightarrow v_{n}$ is lowest for faust N, slow p, etc.
(b) $\left|A_{v}\right|=g_{m},\left(r_{01} \| r_{0_{2}}\right) \Rightarrow\left|A_{v}\right|$ honest for fast N. input noise: same as above.
14.16 (a) If $V_{G S}$, and $V_{G S 2}$ are constant $\Rightarrow g_{m}=\mu_{n} c_{0} \times \frac{w}{L}\left(V_{G s}-V_{n t}\right)$

$$
\Rightarrow\left|A_{i}\right|=\frac{\mu_{n} C_{0 x}\left(\frac{w}{L}\right)_{1}\left(V_{G s}-V_{r H}\right)_{1}}{\mu_{p} C_{0 x}\left(\frac{W}{L}\right)_{2}\left(V_{c o s}-V_{r H}\right)_{2}} \rightarrow\left|A_{V}\right| \text { highest for } \quad \text { fast } N \text {, slow } p \text {, etc. }
$$

same result for thermal nose.

$\Rightarrow|A|$ highest for fast N and slow P, etc.
Noise is as before.

Chapter 15
15.1 Simplifying the flow shown in Fig. 15.8, we note that newell is not necessary.

The back-end processing is similar to that shown in Fgr.15. 10 and 15.11. Thus, the process requires one fewer mask.
15.2 Since the dopants are not concentrated near the surface, their effect is less than expected. For example, if the implant aims to increase the threshold of an NFET firm zero to 0.5 V , the actual value will be less than $0.5 v$.
15.3 (a) For M_{1} in saturation:

$$
\frac{1}{2} \mu_{n} \operatorname{Co}_{x}\left(\frac{w}{L}\right)_{1}\left(V_{\text {in }}-V_{T H N}\right)^{2}=\frac{1}{2} \mu_{p} C_{0} r_{x}\left(\frac{w}{L}\right)_{2}\left(V_{\text {out }}-\left|V_{T H P}\right|\right)^{2}
$$

\Rightarrow result independent of $C_{0 x}$.
when M, enters the triode region:

(b)

Using similar arguments, one can show that the result does not depend on Cox.

15.4 Without a threshdd-adjinst implant, $V_{\text {THU }} \approx 0$ and $V_{\text {TIP }} \approx-1 V$.

$$
V_{D D}=3 V \text { out } V_{D D}
$$

15.5

(a) Source of M_{1} is spiked to the substrate, shorting R_{s} out.
(1) Drain of M_{2} is spiked to its newell.
15.6 (a) Channeling during 5D mplout lead to deep junctions, intensifying DIBL. But the effect is not suyreficant as for as the output impedance is concerned. (Just slightly lower.)
(b) with no ahannel-stop implant, it is possible that an unrelated high-voltage line passing over the field oxide between the transistors creates a channel between them:

parasitic channel

(c) Insufficient gate oxide growth typically does not degrade the outport impedance.
15.7 The zero output current is probably caused by a contact misalignment.

15.8

Long gate axidation cycle is probably the reason: $A_{V}=g_{m 1}, 2\left(r_{2} 11 r_{04}\right)$, Im1,2 is lower than expected. The output resistance remains constant or decreases as tox \uparrow.
15.9 (b) If the bottom plate of C, is heavily doped, then the oxide grows faster in C_{1}, leading to a smaller value for the capacitor. From chapter 12, we note that if the in pout capacitance of the op amp is taken into account, then a lower value of C, yields a higher gain error.
15.10 (a) $R_{o n}=\left[\mu_{n} C_{0 x}\left(\frac{W}{L}\right),\left(V_{V_{P S}}-V_{T H}\right)\right]^{-1}=11 \Omega$

For criticalizy-damped response: $R_{p_{n}}=2 \sqrt{\frac{L_{b}}{c_{1}}} \Rightarrow$

$$
L_{b} \leq 6.37 \mathrm{pH} .
$$

15. 11

$$
\begin{aligned}
& g_{m} r \frac{N(N+1)}{2}=0.01 \\
& g_{m}=\mu_{n} \operatorname{cox} \frac{W}{L}\left(V_{G S}-V_{T H}\right)=1 /(254 \Omega) \\
& \Rightarrow r=4.8 \mathrm{~m} \Omega .
\end{aligned}
$$

$15.12 \quad t=1 \mu \mathrm{~m}, h=3 \mu \mathrm{~m} \quad$ Parallel Plate $\propto \frac{\omega}{h}$, the remaining terms determine the fringe capacitance:

$$
\begin{aligned}
\frac{w}{3} & =0.77+1.06\left(\frac{w}{3}\right)^{0.25}+1.06\left(\frac{1}{3} 9.5\right. \\
& \Rightarrow w \approx 8.25 \mu \mathrm{~m}
\end{aligned}
$$

If $h=5 \mu \mathrm{~m}$, then:

$$
\begin{aligned}
& \frac{W}{8}=0.77+1.06\left(\frac{w}{8}\right)^{0.25}+1.06\left(\frac{1}{8}\right)^{0.5} \\
& \Rightarrow w \approx 19.7 \mu \mathrm{~m}
\end{aligned}
$$

16.1

$$
\begin{aligned}
R_{\square, p o l y}=30 \Omega / \square R_{\square, M 1} & =80 \mathrm{~m} \Omega / \square \\
R_{\square}=\frac{\rho}{t} \Rightarrow \frac{\rho_{P o l y}}{\rho_{M_{1}}} & =\frac{R_{\square, p o l y} \times t_{p o l y}}{R_{\square}, M_{1} \times t_{M_{1}}}=\frac{30 \times 0.2}{0.08 \times 1.0} \\
& =75
\end{aligned}
$$

16.2

$$
\frac{W}{L}=\frac{100}{0.5} \rightarrow \frac{50}{0.25}
$$

The sheet resistivity increases by a factor of 2 . Since the number of squares is constant, the total gate resistance also increases by a factor of 2 .
16.3 For a total gate resistance of 10Ω, suppose each device consists of N fingers each $\frac{100 \mathrm{\mu m}}{\mathrm{~N}}$ wide. The total gate resistance is then equal to

$$
\begin{aligned}
R_{G} & =\left(\frac{200}{N}\right) \cdot \frac{1}{N} \cdot(5 \Omega / \square) \\
& =\frac{1000}{N^{2}} \Omega \\
\Rightarrow N & =10
\end{aligned}
$$

From Fig. 16.13(c), a possible solution is:

16.4. $A_{1}:$ a finite resistance may appear between the drains, degrading the voltage gain.
A_{2} : a large resistance may in series introducing unwanted degeneration or, move importantly, input-referred offset.
A3: Gate of NMOS current source on the bottom may be shorted to its source.
A4: Part of contact hole may fall on Fox, increasing the Contact resistance: source alggeneration or offsets.
A5: If the poly contact area is too close to the active area, the active area may be damaged during the etching \forall poly \Rightarrow offsets, even poor transistor operation.
A6: Latch-up may occur.

A7: Laten-up may occur.

A 8: A finite resistance may appear between the gates of the input transistors.
16.5. In principle, only two layers of interconnect are sufficient for any routing. However, for reasonable symmetry, interconnect resistance, and area, approximately four layers are needed here.

16.6 In Fig. 6.22, temp. gradients introduce threshold and mobility mismatch between MREF and each of M, MM. Thus, the output currents suffer from additional murnather.

In Fig. 6.23, temp. gradients have much less effect because MREF and MREF2 are quite close to their mirrors.
$16.7 R=500 \Omega \Rightarrow p d y$ must be $\frac{500}{60}$ squares long and n-well must be $\frac{500}{2000}$ square long.
Pol width $=3 \mu \mathrm{~m} \Rightarrow$ Poly length $=25 \mu \mathrm{~m}$
n-well length $=6 \mu \mathrm{~m} \Rightarrow n$-well curdth $=24 \mu \mathrm{~m}$.
\Rightarrow Poly cap $=3 \times 25 \times 100 \mathrm{aF} / \mathrm{\mu m}^{2}=7.5 \mathrm{fF}$
newell $c, p=6 \times 24 \times 1000 a F / \mu^{2}=144$ IF.
Thus, the pay structure is preferable.
16.8 Assurning $C_{1}=c_{2}=c_{3}=40 a$ F/ mm ${ }^{2}$ and $C_{4}=60$ a F/mma
in Fig. 16.34(d), we have (neglecting fringe cap.):

$$
\begin{aligned}
& \text { Fig. } 16.34(a): C_{1}=40 \text { aF/ } / \mathrm{Mm}^{2}, C_{p}=9 a F / \mathrm{mm}^{2} \\
& \text { (b): } c_{1}+c_{2}=80 a F_{\mu} \mu^{2}, c_{p}=15 a F_{/ \mu m^{2}} \\
& \text { (c): } c_{1}+c_{2}+c_{3}=120 a \mathrm{~F} / \mu^{2}, \quad c_{\rho}=30 a F_{/} \mathrm{\mu m}^{2} \\
& \text { (d): } c_{1}+\cdots+c_{4}=180 a F_{\mu} \mu \mathrm{m}^{2}, c_{p}=90 a F_{/ \mu \mathrm{m}^{2}}
\end{aligned}
$$

Thus, the lowest c_{p} / C oceursfor (b).
16.9 Wire Propagation Delay $\approx \frac{R_{\text {tot }} C_{\text {tot }}}{2}=\frac{40 \times 37 \mathrm{fF}}{2}$

$$
=0.74 \mathrm{ps}
$$

Lumped Delay $\approx 500 \Omega \times 37$ fF

$$
=18.5 \mathrm{ps}
$$

Thus, the propagation delay thru the wire is negligible.
16.10 Wire $\operatorname{Delay} \approx \frac{20 \Omega \times 44 a F}{2}$

$$
\begin{aligned}
& =0.44 \mathrm{ps} \\
\text { Lumped Delay } & \approx 22 \mathrm{ps}
\end{aligned}
$$

16. I1 Metal 1: $C_{t_{0} t}=\left(1000 \mu \mathrm{~m} \times 0.35 \mu \mathrm{~m} \times 30 \mathrm{aF} / \mu^{2}\right)+1000 \mu \mathrm{~m} \times 80 \mathrm{aE} / \mu \mathrm{m}$

$$
=90.5 \mathrm{fF}
$$

$$
\begin{aligned}
\text { Metal 2: } C_{\text {tot }} & =\left(1000 \mu \mathrm{~m} \times 0.45 \mu \mathrm{~m} \times 15 \mathrm{aF} / \mathrm{\mu m}^{2}\right)+1000 \mu \mathrm{~m} \times 50 \mathrm{aF} / \mu \mathrm{m} \\
& =56.75 \mathrm{fF}
\end{aligned}
$$

Metal 3: $C_{\text {tot }}=\left(1000 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m} \times 9 \mathrm{aF} / \mathrm{\mu m}^{2}\right)+1000 \mu \mathrm{~m} \times 40 \mathrm{aF} / \mu \mathrm{m}$

$$
=44.5 \mathrm{gF}
$$

Metal $4: C_{\text {tot }}=\left(1000 \mu \mathrm{~m} \times 0.6 \mu \mathrm{~m} \times 7 \mathrm{aF} / \mu \mathrm{m}^{2}\right)+1000 \mu \mathrm{~m} \times 30$ aF $\mu \mathrm{mm}$

$$
=34.2 \mathrm{fF}
$$

Thus, metal 4 provided the smallest delay.
16.12 The results do not change because the capacitance metal 4 is still largest.
$16.13(\mathrm{~W} / L),=10010.5, I_{D_{1}}=1 \mathrm{~mA} \Rightarrow g_{m_{1}}=\sqrt{2 \times 1 \mathrm{~mA} \times \frac{100}{0.34} \times 134 \mu \mathrm{M} / \mathrm{V}^{2}}$ $=8.88 \mathrm{~mJ}$

$$
g_{m b,}=\frac{\gamma g_{m 1}}{2 \sqrt{\underbrace{V_{S B}}_{0}+12 \phi_{F} 1}}=\frac{0.45}{2 \sqrt{0.9}} \times 8.88 \mathrm{mv}=2.11 \mathrm{mv}
$$

$g_{m 1} \uparrow \uparrow g_{m b}$
$V_{\text {in }} \cdots V_{\text {sub }}$ Sub generates a drain current of Omb, $^{\prime} V_{\text {sub }}$.
Thus, referred to the gate, the effect is equal to $\frac{\partial_{m_{b 1}}}{g_{m_{1}}}=\frac{\gamma}{2 \sqrt{2 \phi_{F} 1}}=4.21^{-1} \Rightarrow$ input-referred norse $=11.9 \mathrm{mV} / \mathrm{pp}$.
16.14.

(a)

$$
\begin{aligned}
L_{m} & =0.1 \ln \left[1+\left(\frac{10}{1}\right)^{2}\right] \times 4 \mathrm{~mm} \\
& =1.8 \mathrm{~S} \mathrm{nH} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
V & =L_{m} \frac{d i}{d t} \\
& =1.85 \mathrm{nH} \times 2 \pi \times 10^{8} \times 1 \mathrm{~mA} \\
& =1.16 \mathrm{mV} .
\end{aligned}
$$

16.15 Lm must decrease by a factor of $4 . \Rightarrow$

$$
\begin{aligned}
& 0.1 \ln \left[1+\left(\frac{2 h}{d}\right)^{2}\right] \times 4 \mathrm{~mm}=\frac{1.85}{4} \\
& \Rightarrow \frac{2 h}{d}=1.476 \Rightarrow d=6.78 \mathrm{~mm}
\end{aligned}
$$

16.16 (a)

By symmetry:

$$
I_{1}=I_{10}, I_{2}=I_{9}, \ldots, I_{5}=I_{6}
$$

we then construct equations for

$$
\left\{\begin{array}{c}
I_{1}-I_{S} \\
(4 n H) s I_{1}+(2 n H) s I_{2}=V_{x} \\
(4 n H) s I_{2}+(2 n H) s I_{1}+(2 n H) s I_{3}=K_{x} \\
\vdots
\end{array}\right.
$$

$$
\Rightarrow I_{1}=\frac{5}{22} \frac{V_{x}}{5}, I_{2}=\frac{1}{22} \frac{V_{x}}{5}, I_{3}=\frac{4}{22} \frac{V_{x}}{5}, I_{4}=\frac{2}{22} \frac{V_{x}}{5}, I_{5}=\frac{\rho}{22} \frac{V_{x}}{5}
$$

$I_{x}=2\left(I_{1}+\cdots+I_{5}\right) \Rightarrow$ Let $=\frac{22}{30} \mathrm{nH}$ for each of ground and VD Lines.
16.17 (a) $\quad L_{a}=0.2 \ln \frac{2 h}{25 \mu m} \mathrm{nH} \quad C_{a}=100^{2} C_{0}$
(b) $L_{b}=0.2 \ln \frac{2 h}{12.5 \mu \mathrm{~m}} n H \quad C_{b}=50^{2} C_{0}$
$\frac{L_{a} C_{a}}{L_{b} C_{b}}=\frac{\ln \frac{2 h}{25}}{\ln \frac{2 h}{125}} \cdot \frac{4}{1} \quad I_{s}$ the first fraction greater or

$$
\frac{\ln \frac{2 h}{25}}{\ln \frac{2 h}{12.5}}=\frac{1}{4} \Rightarrow h \approx 15.7 \mu \mathrm{~m}
$$ less thanlt?

Thus, for $h>15.7 \mathrm{~km}$ (which is quite realistic), case be is certainly preferable. For $h \ll 15.7$, case (a) may be preferable.

Design of Analog CMOS Integrated Circuits

Behzad Razavi

Errata in Problem Sets

Chapter 2

- In Eq. (2.44), μ_{n} must be in the numerator.

Chapter 3

- Call the third problem 3.2'.
- In Problem 3.2, Fig. 3.68(d), change the gate voltage of M_{2} to $V_{b 2}$.
- In Problem 3.4, Fig. 3.71(a), change the gate voltage of $M_{=} 1$ to $V_{b 1}$.
- In Fig. 3.72(e), $V_{b 1}$ must be changed to $V_{i n}$.
- In Fig. 3.73(h), the output is at the source of M_{2}.
- In Problem 3.10(c), the question must be phrased as: Which device enters the triode region first as $V_{\text {out }}$ falls?
- In Problem 3.13, first sentence should read: ... with $W / L=$ 50/0.5 ...
- In Problem 3.16(a), do not neglect channel-length modulation in the triode region.
Chapter 4
- In Problem 4.2, assume $I_{S S}=1 \mathrm{~mA}$ and change part (a) to: Determine the voltage gain.
- In Problem 4.6, assume $\lambda=0$.
- In Problem 4.9, assume $\lambda=\gamma=0$.
- In Problem 4.11, assume $I_{D 5}=20 \mu \mathrm{~A}$.
- In Problem 4.13, change the figure number to 4.8(a).

Chapter 5

- In Problem 5.16(d), assume $V_{T H}$ does not vary with temperature.
Chapter 6
- In Problem 6.4(b) and (d), assume $\lambda \neq 0$.

Chapter 7

- The second sentence of Problem 7.2 should read: Assume $(W / L)_{1}=50 / 0.5, I_{D 1}=I_{D 2}=0.1 \mathrm{~mA} \ldots$
- In Problem 7.20, change $I_{D 1}$ and $I_{D 2}$ to 0.05 mA .
- In Problem 7.24, change the bias current to 0.1 mA .

Chapter 8

- In Problem 8.10, change the tolerable gain error to 5\%.
\bullet In Problem 8.15, Fig. 8.55(b), call label the top G_{m} block $G_{m 2}$. The output is at the output nodes of $G_{m 2}$.
Chapter 10
- In Problem 10.11, change $I_{S S}$ to 0.25 mA and $(W / L)_{5,6}$ to 60/0.5.
- In Problem 10.12, add: Maximize $V_{G S 14}=V_{G S 15}$ while leaving at least 0.5 V across I_{1}. Also, in part (b), change M_{2} to M_{1}.
- Problem 10.17 should read: ... between the gate and the drain of M_{2} or M_{3}.
- In Fig. 10.42, change the gate voltage of $M_{3,4}$ to $V_{b 1}$.
- In Problem 10.19(c), change A_{0} in the numerator to A.

Chapter 11

- In Problem $11.13, \ldots$ such that the circuit operates with $V_{D D}=3 \mathrm{~V}$.
- In Problems 11.17 and 11.18, the top terminal of R_{2} should be connected to the top terminal of R_{1}.
- In Problem 11.22, assume $K=4$.

Chapter 12

- In Problem 12.8, assume $C_{H}=1 \mathrm{pF}$.
- In Problem 12.12, assume all switches are NMOS devices.
- In Problem 12.14, assume $C_{i n}=0.2 \mathrm{pF}$ and calculate C_{1} and C_{2}.
- In Problem 12.16, the output is sensed at the drains of M_{1} and M_{2}.
Chapter 13
- In Problem 13.5, change the figure number to 13.6(a).

