

AO3410

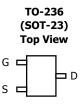
N-Channel Enhancement Mode Field Effect Transistor

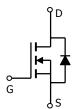
General Description

The AO3410 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V and as high as 12V. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = 30V$


 $I_D = 5.8 A$


 $R_{DS(ON)}$ < 28m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 33m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)} < 52m\Omega (V_{GS} = 2.5V)$

 $R_{DS(ON)}$ < 70m Ω (V_{GS} = 1.8V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	30	V			
Gate-Source Voltage		V_{GS}	±12	V			
Continuous Drain	T _A =25°C		5.8				
Current ^A	T _A =70°C	I _D	4.9	A			
Pulsed Drain Current ^B		I _{DM}	30	7			
	T _A =25°C	В	1.4	10/			
Power Dissipation ^A	T _A =70°C	$-P_D$	1	W			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Тур Мах					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\scriptscriptstyle{ hetaJA}}$	65	90	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$\Gamma_{\theta JA}$	85	125	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	43	60	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS} Zero Gate Voltage Drain Current	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V				1	
	Zero Gale voltage Drain Current		T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.5	0.8	1	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			Α
R _{DS(ON)} Static Drain-Source		V _{GS} =10V, I _D =5.8A			23	28	mΩ
			T _J =125°C		29	39	1115.2
	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =5A			26	33	mΩ
		V_{GS} =2.5V, I_D =4A			35	42	mΩ
		V_{GS} =1.8V, I_D =3A		54	72	mΩ	
9 FS	Forward Transconductance	V_{DS} =5V, I_D =5A		12	17		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.66	1	V
Is	Maximum Body-Diode Continuous Current					2.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			767		pF
C _{oss}	Output Capacitance				111		pF
C _{rss}	Reverse Transfer Capacitance				82		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.3		Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =5.8A			10		nC
Q_{gs}	Gate Source Charge				1.2		nC
Q_{gd}	Gate Drain Charge				3.1		nC
t _{D(on)}	Turn-On DelayTime				5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.7 Ω , R_{GEN} =6 Ω			5.5		ns
$t_{D(off)}$	Turn-Off DelayTime				39		ns
t _f	Turn-Off Fall Time				4.7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=100A/μs			15		ns
Q _{rr}	Body Diode Reverse Recovery Charge	_θ I _F =5A, dI/dt=100A/μs			7.1		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.