

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	R _{0JA}	31	40	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	κ _{θJA}	59	75	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ hetaJL}}$	16	24	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS	·	·			
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
I _{DSS} Z	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μA
		T _J =55°0	5°C		5	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	1	1.8	3	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V	30			Α
R _{DS(ON)} s	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =8.5A		22	26	-mΩ
		T _J =12	5°C			
		V _{GS} =4.5V, I _D =5A		28	34	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =5A				S
V_{SD}	Diode Forward Voltage	Is=1A,V _{GS} =0V		0.76	1	V
I _S	Maximum Body-Diode Continuous Current				4	А
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance			590		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		162		pF
C _{rss}	Reverse Transfer Capacitance			40		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.45		Ω
SWITCHI	NG PARAMETERS					
Q _g	Total Gate Charge			6.04		nC
Q _{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =8.5A		1.46		nC
Q _{gd}	Gate Drain Charge			2.56		nC
t _{D(on)}	Turn-On DelayTime			3.7		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V, R _L =1.8Ω	,	3.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		14.9		ns
t _f	Turn-Off Fall Time			2.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=100A/μs				ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =5A, dI/dt=100A/μs				nC

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The SOA curve provides a single pulse rating.