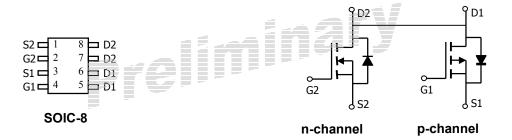


AO4602

Complementary Enhancement Mode Field Effect Transistor

General Description


The AO4602 uses advanced trench technology MOSFETs to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

Features

 $\begin{array}{lll} \text{n-channel} & \text{p-channel} \\ V_{DS}\left(V\right) = 30V & -30V \\ I_{D} = 4.7A & -8A \\ R_{DS(ON)} & R_{DS(ON)} \end{array}$

 $< 55 \text{m}\Omega \text{ (V}_{\text{GS}} = 10 \text{V)}$ $< 18 \text{m}\Omega \text{ (V}_{\text{GS}} = 20 \text{V)}$ $< 70 \text{m}\Omega \text{ (V}_{\text{GS}} = 4.5 \text{V)}$ $< 19 \text{m}\Omega \text{ (V}_{\text{GS}} = 10 \text{V)}$

 $< 110 \text{m}\Omega (V_{GS} = 2.5 \text{V})$

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage		V_{DS}	30	-30	V
Gate-Source Voltage	;	V_{GS}	±12	±25	V
Continuous Drain	T _A =25°C		4.7	-8	
Current ^A	T _A =70°C	I_D	4	-6.9	Α
Pulsed Drain Curren	t ^B	I _{DM}	30	-50	
	T _A =25°C	D	2	2	w
Power Dissipation	T _A =70°C	$-P_{D}$	1.44	1.44	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C

Thermal Characteristics: n-channel and p-channel								
Parameter		Symbol	Device	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s	$ R_{\theta JA}$	n-ch		62.5	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	IN _θ JA	n-ch		110	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	n-ch		50	°C/W		
Maximum Junction-to-Ambient ^A	t ≤ 10s	В	p-ch		62.5	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	$R_{ heta JA}$	p-ch		110	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ hetaJL}}$	p-ch		35	°C/W		

n-channel MOSFET Electrical Characteristics (Tj=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
		T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	0.6	1	1.4	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	10			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =4A		45	55	mΩ
		T _J =125°C				1115.2
		V_{GS} =4.5V, I_D =3A		55	70	mΩ
		V _{GS} =2.5V, I _D =2A		83	110	mΩ
g FS	Forward Transconductance	V_{DS} =5V, I_{D} =4A		8		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.8	1	V
Is	Maximum Body-Diode Continuous Current				2.5	Α
DYNAMIC	PARAMETERS			=	-	•
C _{iss}	Input Capacitance			390		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		54.5		pF
C _{rss}	Reverse Transfer Capacitance			41		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		3		Ω
SWITCHI	NG PARAMETERS			•		
Q_g	Total Gate Charge			0.6		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V, I_{D} =4A		1.38		nC
Q_{gd}	Gate Drain Charge]		4.34		nC
t _{D(on)}	Turn-On DelayTime			3.3		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =3.75 Ω ,		1		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =6 Ω		21.7		ns
t _f	Turn-Off Fall Time]		2.1		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =4A, dI/dt=100A/μs		12		ns
Q_{rr}	·	I _F =4A, dI/dt=100A/μs		6.3		nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

p-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μΑ
טטי	Zero Gate Voltage Drain Gurrent	T _J =55°	С		-5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±25V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.7	-2.5	-3	V
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V	60			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-8A		15	19	mΩ
		T _J =125°	С			1115.2
	Static Dialii-Source Off-Resistance	V_{GS} =-20V, I_D =-8A		14	18	mΩ
		V_{GS} =-4.5V, I_D =-8A		28		mΩ
g _{FS}	Forward Transconductance	V _{DS} = 5V, I-=-5				S
V_{SD}	Diode Forward Voltage Maximum Body-Pinde Continuo is 2i re	1 , 3 0		-0.75	-1	V
I _S	Maximum Body-Dinde Continuo Is Di re	it			-2.6	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitar e			2076		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		503		pF
C_{rss}	Reverse Transfer Capacitance			302		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		2		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			37.2		nC
Q_{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-15V, I_{D} =-12A		7		nC
Q_{gd}	Gate Drain Charge			10.4		nC
t _{D(on)}	Turn-On DelayTime			12.4		ns
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-15V, R _L =1.25Ω	2,	8.2		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		25.6		ns
t _f	Turn-Off Fall Time			12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μs		33		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μs		23		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t $_{\perp}$ ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.