ALPHA & OMEGA SEMICONDUCTOR, LTD. Rev0: May 2004 AO4612, AO4612L (Lead-Free) **Complementary Enhancement Mode Field Effect Transistor General Description** Features n-channel p-channel The AO4612 uses advanced trench $V_{DS}(V) = 60V$ -60V technology MOSFETs to provide excellent $I_{D} = 4.5A$ -3.2A R_{DS(ON)} and low gate charge. The R_{DS(ON)} R_{DS(ON)} complementary MOSFETs may be used < 56mΩ (V_{GS}=10V) $< 105 \mathrm{m}\Omega (\mathrm{V}_{\mathrm{GS}} = 10 \mathrm{V})$ in H-bridge, Inverters and other < 77mΩ (V_{GS}=4.5V) < $135m\Omega$ (V_{GS} = 4.5V) applications. AO4612L is offered in a leadfree package. D1 S2 🗖 **D** D2 G2 🗖 2 7 6 🗖 D1 S1 🗖 3 2,01/ G1 C G2 SOIC-8 n-channel p-channel Absolute Maximum Ratings T_A=25°C unless otherwise noted Max n-channel Units Parameter Symbol Max p-channel Drain-Source Voltage V_{DS} 60 -60 V V Gate-Source Voltage V_{GS} ±20 ±20 T_A=25°C Continuous Drain 4.5 -3.2 Current^A T₄=70°C 3.6 -2.6 А I_D Pulsed Drain Current 20 -20 I_{DM} 2 2 T_A=25°C P_D W T_A=70°C 1.28 1.28 Power Dissipation T_., T_{STG} -55 to 150 -55 to 150 °C Junction and Storage Temperature Range Thermal Characteristics: n-channel and p-channel Parameter Symbol Device Тур Max Units t ≤ 10s Maximum Junction-to-Ambient A 48 62.5 °C/W n-ch $R_{\theta JA}$ Maximum Junction-to-Ambient ^A Steady-State 74 110 °C/W n-ch Maximum Junction-to-Lead ^C Steady-State $R_{\theta JL}$ °C/W n-ch 35 60 t ≤ 10s Maximum Junction-to-Ambient A 48 62.5 °C/W

p-ch

p-ch

p-ch

74

35

°C/W

°C/W

110

40

 $R_{\theta JA}$

 $R_{\theta JL}$

Steady-State

Steady-State

Maximum Junction-to-Ambient A

Maximum Junction-to-Lead ^C

N Channel Electrical Characteristics (Tj=25°C unless otherwise noted)

Symbol	Parameter	Conditions Mi		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V				1	
		Γ	T _J =55°C			5	μA
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = 250 \mu A $		2.1	3	V	
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V 20				А	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =4.5A			46	56	mO
			T _J =125°C				mΩ
		V _{GS} =4.5V, I _D =3A			64	77	mΩ
g fs	Forward Transconductance	V _{DS} =5V, I _D =4.5A			11		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V	
I _S	aximum Body-Diode Continuous Current					3	А
DYNAMIC	C PARAMETERS						
C _{iss}	Input Capacitance				450	540	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =30V, f=	V _{GS} =0V, V _{DS} =30V, f=1MHz		60		pF
C _{rss}	Reverse Transfer Capacitance	1			25		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.65	2	Ω	
SWITCHI	NG PARAMETERS	•	•		•		•
Q _g (10V)	Total Gate Charge				8.5	10.5	nC
Q _g (4.5V)	Total Gate Charge		1 - 4 5 4		4.3	5.5	nC
Q _{gs}	Gate Source Charge	$V_{\rm GS} = 10^{\circ}, V_{\rm DS} = 30^{\circ},$	V _{GS} =10V, V _{DS} =30V, I _D =4.5A		1.6		nC
Q _{gd}	Gate Drain Charge	1			2.2		nC
t _{D(on)}	Turn-On DelayTime				4.7		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =30V, R _L =6.7Ω, R _{GEN} =3Ω			2.3		ns
t _{D(off)}	Turn-Off DelayTime				15.7		ns
t _f	Turn-Off Fall Time				1.9		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =4.5A, dl/dt=100A/µ	uS		27.5	35	ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =4.5A, dI/dt=100A/µ	uS		32		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm \theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm \theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}C$. The SOA curve provides a single pulse rating.

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-48V, V_{GS} =0V				-1	μA
			T _J =55°C			-5	μΛ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250 \mu A -1$		-1	-2.1	-3	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V -20		-20			А
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-3.2A			84	105	mΩ
			T _J =125°C				1115.2
		V _{GS} =-4.5V, I _D =-2.8A			106	135	mΩ
g fs	Forward Transconductance	V _{DS} =-5V, I _D =-3.2A			9		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.73	-1	V
l _s	Maximum Body-Diode Continuous Current					-3	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-30V, f=1MHz			930	1120	pF
C _{oss}	Output Capacitance				85		pF
C _{rss}	Reverse Transfer Capacitance				35		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			7.2	9	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)	V _{GS} =-10V, V _{DS} =-30V, I _D =-3.2A			16	20	nC
Q _g (4.5V)	Total Gate Charge (4.5V)				8	10	nC
Q_{gs}	Gate Source Charge				2.5		nC
Q_{gd}	Gate Drain Charge				3.2		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =-10V, V_{DS} =-30V, R_{L} =9.4 Ω , R_{GEN} =3 Ω			8		ns
t _r	Turn-On Rise Time				3.8		ns
t _{D(off)}	Turn-Off DelayTime				31.5		ns
t _f	Turn-Off Fall Time				7.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-3.2A, dl/dt=100A	/μ s		27	35	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-3.2A, dl/dt=100A	/μ s		32		nC

A: The value of R_{oJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The SOA curve provides a single pulse rating.