AO4826A ## **Dual N-Channel Enhancement Mode Field Effect Transistor** ## **General Description** The AO4826A uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. ### **Features** $V_{DS}(V) = 55V$ $I_{D} = 7.9A$ $R_{DS(ON)}$ < 20m Ω (V_{GS} = 10V) $R_{DS(ON)}$ < 25m Ω (V_{GS} = 4.5V) | Absolute Maximum ₹2: res A-2: Collides otherwise noted | | | | | | | | | |--|----------------------|-------------------|------------|-------|--|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | | Drain-Source Voltage | | V_{DS} | 55 | V | | | | | | Gate-Source Voltage | | V_{GS} | ±20 | V | | | | | | Continuous Drain | T _A =25°C | | 7.9 | | | | | | | Current ^A | T _A =70°C | I_D | 6.3 | Α | | | | | | Pulsed Drain Current ^B | | I _{DM} | 40 | | | | | | | | T _A =25°C | P_{D} | 2 | W | | | | | | Power Dissipation | T _A =70°C | T D | 1.28 | VV | | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 150 | °C | | | | | | Thermal Characteristics | | | | | | | | | |--|--------------|-----------------------|-----|-------|------|--|--|--| | Parameter | Symbol | Тур | Max | Units | | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | Ь | 50 | 62.5 | °C/W | | | | | Maximum Junction-to-Ambient ^A | Steady-State | State $R_{\theta JA}$ | | 110 | °C/W | | | | | Maximum Junction-to-Lead ^C | Steady-State | $R_{ heta JL}$ | 31 | 40 | °C/W | | | | ### Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |-----------------------|------------------------------------|--|-----|------|-----|-------| | STATIC F | PARAMETERS | | | | | | | BV_{DSS} | Drain-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 55 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =48V, V _{GS} =0V | | | 1 | μА | | | | T _J =55°C | | | 5 | | | I _{GSS} | Gate-Body leakage current | V _{DS} =0V, V _{GS} = ±20V | | | 100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS}$ $I_D=250$ μA | 1 | 2.2 | 3 | V | | $I_{D(ON)}$ | On state drain current | V_{GS} =10V, V_{DS} =5V | 40 | | | Α | | R _{DS(ON)} | | V _{GS} =10V, I _D =8.0A | | 17 | 20 | mΩ | | | Static Drain-Source On-Resistance | V_{GS} =4.5V, I_{D} =7A | | 21 | 25 | mΩ | | g FS | Forward Transconductance | $V_{DS} = 5V, I_D = 8.0A$ | | 23 | 20 | S | | V _{SD} | Diode Forward Voltage | $I_S=1A, V_{GS}=0V$ | | 0.76 | 1 | V | | I _S | Maximum Body-Diode Continuous Curr | | | 00 | 3 | A | | | PARAMETERS | | | | | 1 | | C _{iss} | Input Capacitance | | | 1910 | | pF | | C _{oss} | Output Capacitance | V_{GS} =0V, V_{DS} =30V, f=1MHz | | 186 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 128 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | 0.7 | | Ω | | SWITCHI | NG PARAMETERS | | | | | | | Q _g (10V) | Total Gate Charge | | | 42.8 | | nC | | Q _g (4.5V) | Total Gate Charge | V _{GS} =10V, V _{DS} =30V, I _D =8A | | 22 | | nC | | Q_{gs} | Gate Source Charge | V _{GS} -10V, V _{DS} -30V, I _D -6A | | 5.4 | | nC | | Q_{gd} | Gate Drain Charge | | | 13 | | nC | | t _{D(on)} | Turn-On DelayTime | | | 7.7 | | ns | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =30V, R_L =3.9 Ω , | | 6.2 | | ns | | $t_{D(off)}$ | Turn-Off DelayTime | R_{GEN} =3 Ω | | 29.7 | | ns | | t _f | Turn-Off Fall Time | | | 23.4 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =8.0A, dI/dt=100A/μs | | 32 | | ns | | Q_{rr} | Body Diode Reverse Recovery Charge | I _F =8.0A, dI/dt=100A/μs | | 38.4 | | nC | A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.