

AO4826A

Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4826A uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = 55V$

 $I_{D} = 7.9A$

 $R_{DS(ON)}$ < 20m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 25m Ω (V_{GS} = 4.5V)

Absolute Maximum ₹2: res A-2: Collides otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	55	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _A =25°C		7.9					
Current ^A	T _A =70°C	I_D	6.3	Α				
Pulsed Drain Current ^B		I _{DM}	40					
	T _A =25°C	P_{D}	2	W				
Power Dissipation	T _A =70°C	T D	1.28	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	Ь	50	62.5	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	State $R_{\theta JA}$		110	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	31	40	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	55			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V			1	μА
		T _J =55°C			5	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} = ±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=250$ μA	1	2.2	3	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	40			Α
R _{DS(ON)}		V _{GS} =10V, I _D =8.0A		17	20	mΩ
	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_{D} =7A		21	25	mΩ
g FS	Forward Transconductance	$V_{DS} = 5V, I_D = 8.0A$		23	20	S
V _{SD}	Diode Forward Voltage	$I_S=1A, V_{GS}=0V$		0.76	1	V
I _S	Maximum Body-Diode Continuous Curr			00	3	A
	PARAMETERS					1
C _{iss}	Input Capacitance			1910		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz		186		pF
C _{rss}	Reverse Transfer Capacitance			128		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.7		Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			42.8		nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =8A		22		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -30V, I _D -6A		5.4		nC
Q_{gd}	Gate Drain Charge			13		nC
t _{D(on)}	Turn-On DelayTime			7.7		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =3.9 Ω ,		6.2		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		29.7		ns
t _f	Turn-Off Fall Time			23.4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =8.0A, dI/dt=100A/μs		32		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =8.0A, dI/dt=100A/μs		38.4		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.