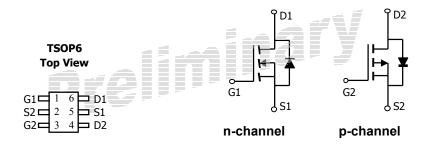


AO6601

Complementary Enhancement Mode Field Effect Transistor

General Description


The AO6601 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications.

Features

 $\begin{array}{ll} \text{n-channel} & \text{p-channel} \\ \text{V}_{\text{DS}}\left(\text{V}\right) = 30\text{V} & -30\text{V} \\ \text{I}_{\text{D}} = 3.4\text{A} & -2.3\text{A} \end{array}$

 $R_{DS(ON)}$

 $< 60 m\Omega$ $< 135 m\Omega (V_{GS} = 10 V)$ $< 75 m\Omega$ $< 185 m\Omega (V_{GS} = 4.5 V)$ $< 115 m\Omega$ $< 265 m\Omega (V_{GS} = 2.5 V)$

Absolute Maximum Ratings T _A =25°C unless otherwise noted									
Parameter		Symbol	Max n-channel	Max p-channel	Units				
Drain-Source Voltage		V_{DS}	30	-30	V				
Gate-Source Voltage		V_{GS}	±12	±12	V				
Continuous Drain	T _A =25°C		3.4	-2.3					
Current ^A	T _A =70°C	I_D	2.7	-1.8	Α				
Pulsed Drain Current B		I_{DM}	30	-30					
	T _A =25°C	P_{D}	1.15	1.15	w				
Power Dissipation	T _A =70°C]' D	0.73	0.73] ^{vv}				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	-55 to 150	°C				

Thermal Characteristics: n-channel and p-channel							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$		110	°C/W		
Maximum Junction-to-Ambient A	Steady-State	Т		150	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$		80	°C/W		

n-channel MOSFET Electrical Characteristics (Tj=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A,\ V_{GS}=0V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
טטי	Zero Gate Voltage Brain Gurrent	T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=250\mu A$	0.6	1	1.4	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V	10			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =3A		50	60	mΩ
		T _J =125°C				11122
		V_{GS} =4.5V, I_D =3A		60	75	mΩ
		V _{GS} =2.5V, I _D =2A		88	115	mΩ
9 _{FS}	Forward Transconductance	V_{DS} =5 V , I_D =3 A		7.8		S
V_{SD}	Diode Forward Voltage	I _s =1A,V _{GS} =0V		8.0	1	V
I_S	Maximum Body-Diode Continuous Current				1.5	Α
DYNAMIC	PARAMETERS			-		-
C_{iss}	Input Capacitance			390		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		54.5		pF
C _{rss}	Reverse Transfer Capacitance			41		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		3		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			0.6		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V, I_{D} =3A		1.38		nC
Q_{gd}	Gate Drain Charge			4.34		nC
$t_{D(on)}$	Turn-On DelayTime			4		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =5 Ω ,		2		ns
$t_{\text{D(off)}}$	Turn-Off DelayTime	R_{GEN} =6 Ω		22		ns
t _f	Turn-Off Fall Time]		3		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =3A, dI/dt=100A/μs				ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =3A, dI/dt=100A/μs				nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

p-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μΑ
טטי	Zero Gate Voltage Drain Gurrent	T _J =5	5°C		-5	μΑ
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-0.6	-1	-1.4	V
$I_{D(ON)}$	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V	-10			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-2.3A		107	135	mΩ
		T _J =12	5°C			1115.2
	Static Dialii-Source Off-Resistance	V_{GS} =-4.5V, I_{D} =-2A		135	185	mΩ
		V _{GS} =-2.5V, I _D =-1A		195	265	mΩ
g _{FS}	Forward Transconductance	V _{DS} =-5'' =-/ A		8		S
V_{SD}	Diode Forward Voltage	R - A 'G =		-0.85	-1	V
I _S	Maximum Bod L c C m L u C r	n.			-1.35	Α
DYNAMIC	PARAMETER					
C _{iss}	Input Capacitance			409		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		55		pF
C_{rss}	Reverse Transfer Capacitance			42		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		12		Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			0.72		nC
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-2.5	5A	1.34		nC
Q_{gd}	Gate Drain Charge			4.8		nC
t _{D(on)}	Turn-On DelayTime			8.5		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =6 Ω	,	10		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =6 Ω		55		ns
t _f	Turn-Off Fall Time			25.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-2.5A, dI/dt=100A/μs		26		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-2.5A, dI/dt=100A/μs		15.6		nC

A: The value of R $_{\theta,JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t $_{\perp}$ ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.