ALPHA & OMEGA SEMICONDUCTOR, INC. August 2003 **AOD422** N-Channel Enhancement Mode Field Effect Transistor **General Description Features** The AOD422 uses advanced trench technology to $V_{DS}(V) = 20V$ provide excellent R_{DS(ON)}, low gate charge and $I_{\rm D} = 10 \, \text{A}$ operation with gate voltages as low as 1.8V. This $R_{DS(ON)} < 22m\Omega (V_{GS} = 4.5V)$ device is suitable for use as a load switch or in PWM $R_{DS(ON)} < 26m\Omega (V_{GS} = 2.5V)$ applications. It is ESD protected. $R_{DS(ON)} < 34 m\Omega (V_{GS} = 1.8V)$ ESD Rating: 2000V HBM TO-252 D-PAK Top View Drain Connected to Tab D Absolute Maximum Ratings T_A=25°C unless otherwise noted Parameter Symbol Maximum Units Drain-Source Voltage V_{DS} 20 V V_{GS} V Gate-Source Voltage +8 Continuous Drain 10 T_C=25°C Current ^G T_C=100°C 10 А I_D Pulsed Drain Current I_{DM} 30 Avalanche Current ^C 15 А I_{AR} Repetitive avalanche energy L=0.1mH ^c 2 mJ EAR T_C=25°C 50 P_D W Power Dissipation ^B T_C=100[°]C 20 T_A=25°C 2.5 $\mathsf{P}_{\mathsf{DSM}}$ W Power Dissipation ^A T₄=70°C 1.6 Junction and Storage Temperature Range T_J, T_{STG} -55 to 150 °C

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{0JA}	16.7	25	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	IN _θ JA	40	50	°C/W			
Maximum Junction-to-Case ^C	Steady-State	$R_{ ext{ heta}JL}$	1.9	2.5	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC I	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V			1	μA
		T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±4.5V			±1	μA
		V _{DS} =0V, V _{GS} =±8V			±10	μA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	0.4	0.6	1	V
I _{D(ON)}	On state drain current	V_{GS} =4.5V, V_{DS} =5V	30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =10A		18	22	— mΩ
		T _J =125°C		25	31	
		V _{GS} =2.5V, I _D =8A		21	26	mΩ
		V _{GS} =1.8V, I _D =5A		26	34	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =10A		30		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.76	1	V
I _S	Maximum Body-Diode Continuous Curr			10	Α	
DYNAMI	C PARAMETERS					•
C _{iss}	Input Capacitance			1160		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		187		pF
C _{rss}	Reverse Transfer Capacitance			146		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.5		Ω
SWITCHI	NG PARAMETERS	· · · ·				•
Q _g	Total Gate Charge			16		nC
Q _{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =10A		0.8		nC
Q _{gd}	Gate Drain Charge			3.8		nC
t _{D(on)}	Turn-On DelayTime			6.2		ns
t _r	Turn-On Rise Time	V_{GS} =5V, V_{DS} =10V, R_L =1 Ω ,		12.7		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		51.7		ns
t _f	Turn-Off Fall Time] [16		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=100A/μs		17.6		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =10A, dI/dt=100A/μs		6.5		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it to.

B. The power dissipation P₀ is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper

dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{(MAX)}$ =150°C.

D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The SOA curve provides a single pulse rating.

G. The maximum current rating is limited by bond-wires.