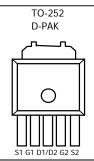


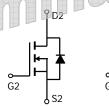
Complementary Enhancement Mode Field Effect Transistor

General Description

The AOD604 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications. Standard product AOD604 is Pbfree (meets ROHS & Sony 259 specifications). AOD604L is a Green Product ordering option. AOD604 and AOD604L are electrically identical.


Features

n-channel p-channel $V_{DS}(V) = 40V$ -40V


 $I_D = 8A (V_{GS} = 10V)$ -8A $(V_{GS} = -10V)$

 $R_{DS(ON)} \hspace{1cm} R_{DS(ON)}$

 $< 33 \text{ m}\Omega \text{ (V}_{GS}=10\text{V)}$ $< 50 \text{ m}\Omega \text{ (V}_{GS}=-10\text{V)}$ $< 47 \text{ m}\Omega \text{ (V}_{GS}=4.5\text{V)}$ $< 75 \text{ m}\Omega \text{ (V}_{GS}=-4.5\text{V)}$

Top View Drain Connected to Tab

p-channel

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage		V_{DS}	40	-40	V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous Drain	T _C =25°C		8	8 8		
Current ^G	T _C =100°C	I_D	8	8	Α	
Pulsed Drain Current C		I _{DM}	30	-30		
Avalanche Current ^C		I _{AR}	8	-8	Α	
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	20	30	mJ	
	T _C =25°C	P_{D}	20	50	W	
Power Dissipation ^B	T _C =100°C	7' 0	10	25	VV	
	T _A =25°C	P _{DSM}	2	2.5	W	
Power Dissipation ^A	T _A =70°C] DSM	1.3	1.6	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	-55 to 175	°C	

Thermal Characteristics: n-channel and p-channel

Parameter	Symbol	Device	Тур	Max		
Maximum Junction-to-Ambient ^A t ≤ 10s		$R_{\scriptscriptstyle{ hetaJA}}$	n-ch	17.4	30	°C/W
Maximum Junction-to-Ambient A	Steady-State	Γ _θ JA	n-ch	50	60	°C/W
Maximum Junction-to-Case ^B Steady-State		$R_{\theta JC}$	n-ch	4	7.5	°C/W
Maximum Junction-to-Ambient ^A	t ≤ 10s	t ≤ 10s		16.7	25	°C/W
Maximum Junction-to-Ambient A	Steady-State	КθЈА	p-ch	40	50	°C/W
Maximum Junction-to-Case ^B	Steady-State	$R_{\theta JC}$	p-ch	2.5	4	°C/W

N-Channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
STATIC F	PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =10mA, V _{GS} =0V		40			V		
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =32V, V_{GS} =0V				1	μА		
-500		T _J =55				5	μΑ		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1	2.3	3	V		
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		30			Α		
		V_{GS} =10V, I_D =8A			25	33	3 mΩ		
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		39	52	11122		
		V_{GS} =4.5V, I_D =6A			34	47	mΩ		
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =8A			25		S		
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.76	1	V		
Is	Maximum Body-Diode Continuous Curr	de Continuous Current				8	Α		
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz V _{GS} =0V, V _{DS} =0V, f=1MHz			404		pF		
C _{oss}	Output Capacitance				95		pF		
C _{rss}	Reverse Transfer Capacitance				37		pF		
R_g	Gate resistance				2.7		Ω		
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, I _D =8A			9.2		nC		
Q _g (4.5V)	Total Gate Charge				4.5		nC		
Q_{gs}	Gate Source Charge				1.6		nC		
Q_{gd}	Gate Drain Charge				2.6		nC		
t _{D(on)}	Turn-On DelayTime				3.5		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_L =2.5 Ω , R_{GEN} =3 Ω			6		ns		
$t_{D(off)}$	Turn-Off DelayTime				13.2		ns		
t _f	Turn-Off Fall Time				3.5		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =8A, dI/dt=100A/μs			22.9		ns		
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =8A, dl/dt=100A/μs			18.3		nC		

A: The value of R $_{0JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The Power dissipation P $_{DSM}$ is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB allows it.

- B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=175$ °C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using $<300~\mu s$ pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

P-Channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS			•	•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-32V, V _{GS} =0V			-1	μА
יטאי		T _J =55°C			-5	μΛ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_D=-250\mu A$	-1	-1.8	-3	V
$I_{D(ON)}$	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-8A		41	50	mΩ
		T _J =125°C		62		11152
		V_{GS} =-4.5V, I_D =-6A		60	75	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-8A		16		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.75	-1	V
Is	Maximum Body-Diode Continuous Current				-8	Α
DYNAMIC	CPARAMETERS					
C _{iss}	Input Capacitance			657		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =-20V, f=1MHz		143		pF
C _{rss}	Reverse Transfer Capacitance			63		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		6.5		Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge (10V)			14.1		nC
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-20V, I _D =-8A		7		nC
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-20V, I _D =-0A		2.2		nC
Q_{gd}	Gate Drain Charge			4.1		nC
t _{D(on)}	Turn-On DelayTime			8		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-20V, R_L =2.5 Ω ,		12.2		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		24		ns
t _f	Turn-Off Fall Time]		12.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-8A, dI/dt=100A/μs		23.2		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-8A, dI/dt=100A/μs		18.2		nC

A: The value of R qJA is measured with the device mounted on 1 in 2 FR-4 board with 2 oz. Copper, in a still air environment with T A =25°C. The Power dissipation PDSM is based on R qJA and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB allows it.

- C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C.
- D. The R qJA is the sum of the thermal impedence from junction to case R qJC and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 ms pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

B. The power dissipation PD is based on $\overline{\text{TJ}}(\text{MAX})=175^{\circ}\text{C}$, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.