June 2004 ## AOU402, AOU402L (Lead-Free) N-Channel Enhancement Mode Field Effect Transistor ## **General Description** The AOU402 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for use in PWM, laod switching and general purpose applications. ## **Features** $V_{DS}(V) = 30V$ $I_{D} = 18 A$ $R_{DS(ON)} < 15.5 \text{ m}\Omega (V_{GS} = 20V)$ $R_{DS(ON)} < 19 \text{ m} \Omega (V_{GS} = 10V)$ $R_{DS(ON)} < 44.5 \text{ m}\Omega \text{ (V}_{GS} = 4.5 \text{V)}$ | Absolute Maximum Ratings, T _A =25°C unless otherwise noted | | | | | | | | |---|-----------------------|-------------------|------------|-------|--|--|--| | Parameter | | Symbol | Maximum | Units | | | | | Drain-Source Voltage | | V_{DS} | 30 | V | | | | | Gate-Source Voltage | | V_{GS} | ±25 | V | | | | | Continuous Drain | T _C =25°C | | 18 | | | | | | Current ^G | T _C =100°C | I_{D} | 12 | Α | | | | | Pulsed Drain Current ^C | | I _{DM} | 40 | | | | | | Avalanche Current ^C | | I _{AR} | 18 | Α | | | | | Repetitive avalanche energy L=0.1mH ^C | | E _{AR} | 16 | mJ | | | | | | T _C =25°C | D | 60 | W | | | | | Power Dissipation ^B | T _C =100°C | -P _D | 30 | VV | | | | | | T _A =25°C | D | 2.5 | W | | | | | Power Dissipation ^A | T _A =70°C | P _{DSM} | 1.6 | VV | | | | | Junction and Storage Temperature Range | | T_J , T_{STG} | -55 to 175 | °C | | | | | Thermal Characteristics | | | | | | | | | |---------------------------------------|--------------|--------------------|---------|-----|-------|--|--|--| | Parameter | | Symbol | Тур Мах | | Units | | | | | Maximum Junction-to-Ambient A | t ≤ 10s | $R_{ heta JA}$ | 16.7 | 25 | °C/W | | | | | Maximum Junction-to-Ambient A | Steady-State | IN _θ JA | 40 | 50 | °C/W | | | | | Maximum Junction-to-Case ^B | Steady-State | $R_{\theta JC}$ | 1.9 | 2.5 | °C/W | | | | ## Electrical Characteristics (T_J=25°C unless otherwise noted) | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |---------------------|---------------------------------------|--|-----------------------|-----|------|------|-------| | STATIC F | PARAMETERS | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | I _D =250μA, V _{GS} =0V | | 30 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} =24V, V _{GS} =0V | | | | 1 | | | | | | T _J =55°C | | | 5 | μА | | I_{GSS} | Gate-Body leakage current | V_{DS} =0V, V_{GS} =±25V | | | | 100 | nA | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS}=V_{GS}$, $I_{D}=250\mu A$ | | 1 | 2.4 | 3 | V | | $I_{D(ON)}$ | On state drain current | V _{GS} =10V, V _{DS} =5V | | 40 | | | Α | | R _{DS(ON)} | Static Drain-Source On-Resistance | V_{GS} =20V, I_D =18A | | | 12 | 15.5 | mΩ | | | | | T _J =125°C | | 17.5 | 21.5 | | | | | V_{GS} =10V, I_{D} =18A | | | 15.5 | 19 | | | | | V_{GS} =4.5V, I_{D} =6A | | 36 | 44.5 | mΩ | | | g FS | Forward Transconductance | V _{DS} =5V, I _D =18A | | | 24 | | S | | V_{SD} | Diode Forward Voltage | I _S =18A, V _{GS} =0V | | | 0.8 | 1 | V | | Is | Maximum Body-Diode Continuous Current | | | | | 18 | Α | | DYNAMIC | PARAMETERS | | | | | | | | C _{iss} | Input Capacitance | V _{GS} =0V, V _{DS} =15V, f=1MHz | | | 769 | | pF | | C _{oss} | Output Capacitance | | | | 185 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | | 131 | | pF | | R_g | Gate resistance | V _{GS} =0V, V _{DS} =0V, f=1MHz | | | 0.7 | | Ω | | SWITCHI | NG PARAMETERS | | | | | | | | $Q_{g(10V)}$ | Total Gate Charge | V _{GS} =10V, V _{DS} =10V, I _D =18A | | | 15.9 | | nC | | Q_{gs} | Gate Source Charge | | | | 2.44 | | nC | | Q_{gd} | Gate Drain Charge | | | | 4.92 | | nC | | t _{D(on)} | Turn-On DelayTime | | | | 6.2 | | ns | | t _r | Turn-On Rise Time | V_{GS} =10V, V_{DS} =15V, I_{D} =18A, R_{L} =0.82 Ω , R_{GEN} =3 Ω | | | 10.9 | | ns | | $t_{D(off)}$ | Turn-Off DelayTime | | | | 16 | | ns | | t _f | Turn-Off Fall Time | | | | 4.8 | | ns | | t _{rr} | Body Diode Reverse Recovery Time | I _F =18A, dI/dt=100A/μs | | | 18 | | ns | | Q _{rr} | Body Diode Reverse Recovery Charge | I _F =18A, dI/dt=100A/μs | | | 8.1 | | nC | A: The value of R $_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The Power dissipation P $_{DSM}$ is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any a given application depends on the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB allows it. B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T $_{\text{J(MAX)}}$ =175 $^{\circ}$ C. D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu s$ pulses, duty cycle 0.5% max. F. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by bond-wires.