

Features

- Optimized for fast transient response
- Low Shutdown Current ~0.1uA (Typ.)
- Output Current ~300mA
- High Power Supply Rejection Ratio ~70db@1KHz
- 1.8~5.5V Operation
- ±2% Initial Voltage Accuracy
- Low Temperature Drift Coefficient ~100ppm
- Line Regulation ~0.06%/V(Typ.)
- Low ESR Capacitor ~1uF ceramic capacitor
- uDFN4-1x1 \ SOT-23-5 \ SOT-23 \
 SOT-353(SC-75) \ SOT-89-5 \ TDFN6-2x2
 package
- Green Product (RoHS, Lead-Free, Halogen-Free Compliant)

Applications

- Portable communication equipment
- Notebook Computer
- Battery Powered Systems

General Description

The GS7132 is a CMOS linear regulator optimized for fast transient response. It guarantees delivery of 300mA output current. The device is available in fixed output voltage from 1.0V~4.8V and as an adjustable device with a 1.0V reference voltage.

Based on its low quiescent current consumption and its less than 1uA shutdown mode, the GS7132 is ideal for battery-powered applications. The line transient response and load transient response of the GS7132 are excellent, thus the device is suitable for the power supply for handheld communication equipment. The regulator is stable with small ceramic capacitive loads (1µF typical).

Typical Application

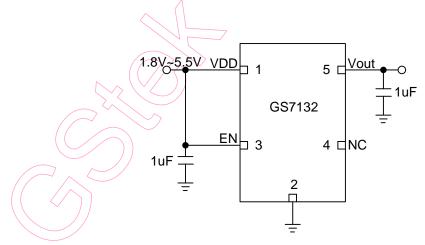


Figure 1(a) Fix mode of GS7132

This document is GStek's confidential information. Anyone having confidential obligation to GStek shall keep this document confidential. Any unauthorized disclosure or use beyond authorized purpose will be considered as violation of confidentiality and criminal and civil liability will be asserted.

Rev.:1.72 1 Jan-17

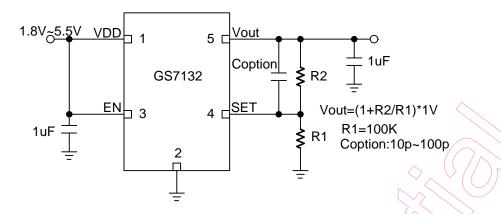


Figure 1(b) Adjustable mode of GS7132

Function Block Diagram

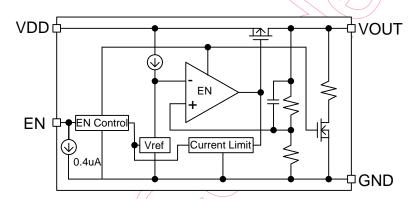


Figure 2(a) Functional diagram of Fix mode

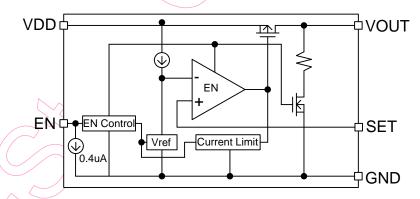


Figure 2(b) Functional diagram of Adjustable mode

Figure 2 Function Block Diagram

Rev.:1.72 2 Jan-17

GStek

Pin Configuration

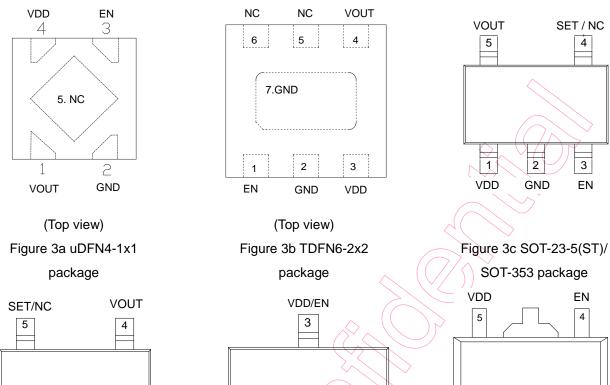


Figure 3d SOT-23-5(S5) package

2

GND

3

VDD

1

ΕN

2

VOUT

1

GND

Figure 3f SOT-89-5(S1) package

2

GND

VOUT

3

NC

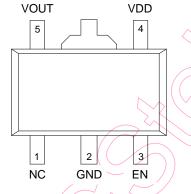
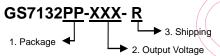


Figure 3g SOT-89-5(S8) package


The dissipation pad for the uDFN4-1X1 and TDFN6-2x2 packages should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the GND pin.

Pin Descriptions

			No						
uDFN4 -1x1	SOT-23-5 (ST)/ SOT-353	SOT-23-5 (S5)	MSOT-23	SOT-89-5 (S1)	SOT-89-5 (S8)	TDFN6 -2x2	Name	I/O type	Description
2	2	2	1	2	2	2,7	GND	1/0	Ground pin
4	1	3	3	5	4	3	VDD		Input Voltage Pin
1	5	4	2	1	5	4	VOUT	0	Output Voltage Pin
3	3	1	3	4	3	1	EN		Enable Pin
	4	5					SET		Not connected/ Connected to the center tap of an external resistor divider network to set the output voltage as V _{OUT} =(1+R2/R1)*1V
5	4	5		3 (1	5,6	NC		No internal Connection.

Ordering Information

No	ltem	Contents		
		UD: uDFN4-1x1	C5: SOT-353 (SC-75)	
		ST: SOT-23-5(ST)	D2:TDFN6-2x2	
1	Package	S5: SOT-23-5(S5)	S1: SOT-89-5	
		SR: MSOT-23	S8: SOT-89-5	
		ADJ: ADJ, 105:1.05V, 1P3: 1.3V, 1P5: 1.5V	/, 1P8: 1.8V, 185:1.85V, 002: 2.0V, 2P3:	
2	Output Voltage	2.3V, 2P5: 2.5V, 2P6: 2.6V, 2P7: 2.7V, 2P8	: 2.8V, 2P9: 2.9V, 003: 3.0V, 3P1: 3.1V,3P3:	
	. 7	3.3V,3P5: 3.5V		
3	Shipping	R: Tape & Reel		

Example: GS7132 MSOT-23 2.5V Tape & Reel ordering information is "GS7132SR-2P5-R"

Absolute Maximum Rating (Note 1)

Parameter	Symbol	Limits	Units
VDD to GND	V_{DD}	-0.3 < V _{DD} < 5.5	V
VEN to GND	V _{EN}	-0.3 < V _{EN} < 5.5	V
Output Voltage	V _{OUT}	$-0.3 < V_{OUT} < V_{DD} + 0.3$	V
Output Current	I _{OUT}	300	→ mA
Package Power Dissipation at T _A ≤25°C	P _{D_uDFN4-1x1}	400	mW
Package Power Dissipation at T _A ≤25°C	P _{D_SOT-23-5}	420	mW
Package Power Dissipation at $T_A \leq 25^{\circ}C$	P _{D_SOT-353}	300	mW
Package Power Dissipation at T _A ≤25°C	P _{D_MSOT-23}	380	mW
Package Power Dissipation at T _A ≤25°C	P _{D_SOT-89-5}	500	mW
Package Power Dissipation at T _A =25°C	P _{D_TDFN6-2x2}	1087	mW
Junction Temperature	TJ	-45 ~ 150	°C
Storage Temperature	T _{STG}	- 65 ~ 150	°C
Lead Temperature (Soldering) 10S	TLEAD	260	°C
ESD (Human Body Mode) (Note 2)	V _{ESD_HBM}	2K	V
ESD (Machine Mode) (Note 2)	V _{ESD_MM}	200	V

Thermal Information (Note 3)

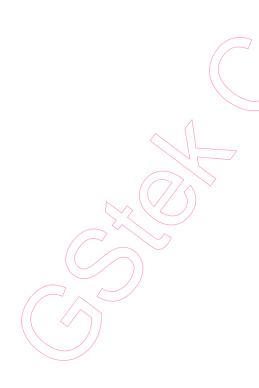
The first of the state of the state of			
Parameter	Symbol	Limits	Units
Thermal Resistance Junction to Ambient	θ _{JA_uDFN4-1x1}	250	°C/W
Thermal Resistance Junction to Ambient	$\theta_{JA_SOT-23-5}$	238	°C/W
Thermal Resistance Junction to Ambient	$\theta_{\text{JA_SOT-353}}$	333	°C/W
Thermal Resistance Junction to Ambient	$\theta_{\text{JA_MSOT-23}}$	263	°C/W
Thermal Resistance Junction to Ambient	$\theta_{ extsf{JA_SOT-89-5}}$	200	°C/W
Thermal Resistance Junction to Ambient	$\theta_{\text{JA_TDFN6-2x2}}$	92	°C/W

Rev.:1.72 5 Jan-17

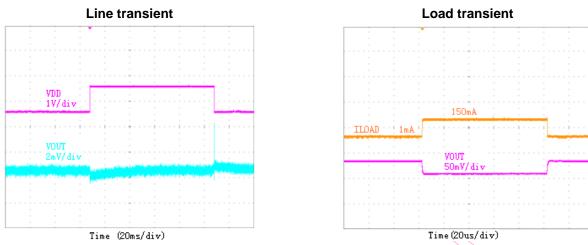
Recommend Operating Condition (Note 4)

Parameter	Symbol	Limits	Units
VDD to GND	V_{DD}	1.8 to 5.5	V
Junction Temperature	TJ	- 40 ~ 125	°C
Ambient Temperature	T _A	-40 ~ 85	°C

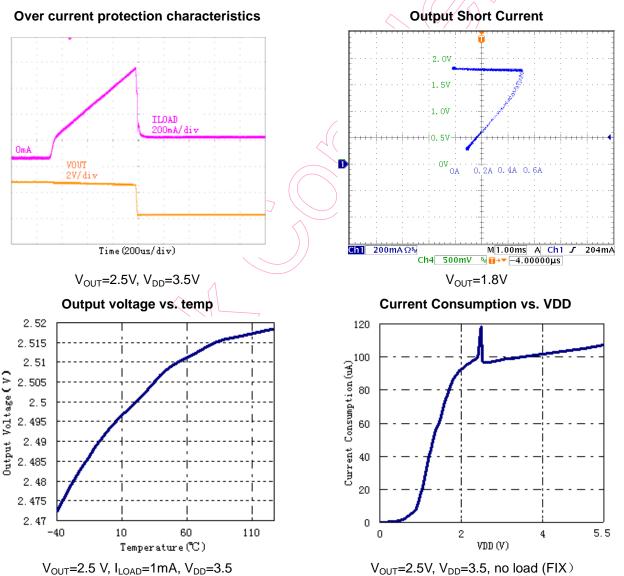
Electrical Characteristics


 $(V_{DD} = V_{OUT} + 1V, T_A = T_J = 25$ °C, $C_{VDD} = C_{VOUT} = 1$ uF, $I_{OUT} = 1$ mA, unless otherwise specified)

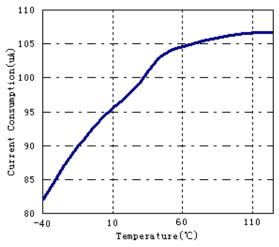
Parameter	Symbol	Cond	litions		Min	Тур	Max	Units
Supply Voltage	V_{DD}				1.8		5.5	V
Supply Current		V_{DD} =3.5V, V_{OU}	JT	FIX		93	140	uA
Supply Current	I_{VDD}	=2.5V ,Unload	1	ADJ		85	130	uA
Standby Current	I _{STBY}	V _{EN} =0	_ (>	0.1	1.0	uA
EN Input Current	I _{EN}	V _{EN} = 5V				0.4		uA
Output Current	I _{OUT}		7//		300			mA
Output Voltage	V_{OUT}	I _{OUT} =1mA, V _{OI}	_{UT} =1.0V	/~ 4.8V	-2		+2	%
			V _{OUT} =	=1.2V		940	1200	
			V _{OUT} =	=1.8V		580 750		
Dropout Voltage (Note 5)	V_{DROP}	I _{OUT} =300mA	V _{OUT} =	=2.5V		400	510	mV
			V _{OUT} =	=2.8V		380	500	
		V _{OUT} =3.		=3.3V		330	450	
Line Regulation	AV _{LNR}	$V_{DD} = V_{OUT} + 1$	√ to 5.5\	/,		0.06	0.12	%/V
		I _{OUT} =10mA	,					
Load Regulation	\(\sqrt{V}_{LDR} \)	$V_{DD} = V_{OUT} + 1V$ $I_{OUT} = 1 \text{ mA to } 1$				0.005	0.018	%/mA
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V _{DD} =MAX{V _{OU}	_{JT} +1.0V,	3V},				
Ripple Rejection Rate	PSRR	Ripple 0.2Vp-				70		dB
		f=1KHz						
		\/ 0.5\/\\	0.51	FIX	450	505	650	Λ
Limit Current I_{LIM} V_{DD} =3.5V, V_{OUT} =		_{JT} =2.5 V	ADJ	500	625	750	mA	
Short Current	I _{SHORT}	V_{OUT} =0V, V_{DD} =3.5V		90	150	200	mA	
EN Input Voltage High V _{ENH}			1.2			V		
EN Input Voltage Low	V _{ENL}		_				0.3	V


CL Auto-Discharge	Б	\\		400	0
Resistance	R _{DISCHG}	V_{DD} =4.0V, V_{EN} =0V		103	Ω
Temperature Drift	$\triangle V_{OUT} / \triangle T_A$	I_{OUT} =1mA, T_A = -40°C to +85°C		100	ppm/°C
Thermal Shutdown	Tauau			155	°C
temperature	I SHDN			155	O
Thermal Shutdown	, т		^	30	°C
Hysteresis	$ riangle T_{SHDN}$		\Diamond	20	C

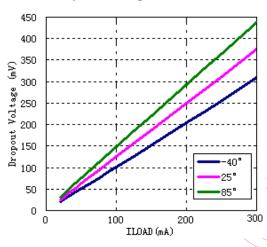
- Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution recommended.
- **Note 3.** θ_{JA} is measured in the natural convection at $T_A=25^{\circ}$ C on a high effective thermal conductivity test board (4 Layers, 2S2P) of JEDEC 51-7 thermal measurement standard.
- **Note 4.** The device is not guaranteed to function outside its operating conditions.
- **Note 5.** The dropout voltage is defined as V_{DD}- V_{OUT}, which is measured when V_{OUT} is V_{OUT} -100mV



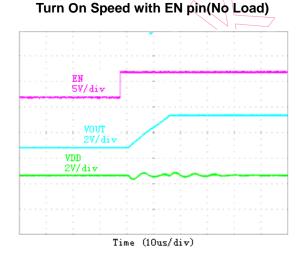
Typical Characteristics



 $V_{OUT} = 2.5 \text{V}, I_{LOAD} = 10 \text{mA}, V_{DD} = 4.5 \text{V} \sim 3.5 \text{V} \sim 4.5 \text{V}, tr = tf = 10 \text{us} \quad V_{OUT} = 2.5 \text{V}, V_{DD} = 3.5, I_{LOAD} = 1 \text{mA} \sim 150 \text{mA} \sim 1 \text{mA}, tr = tf = 0.5 \text{us} = 1.5 \text{mA} \sim 1.5 \text{m$

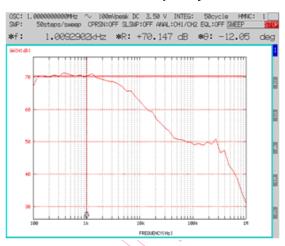

GStek

Current Consumption vs. temperature

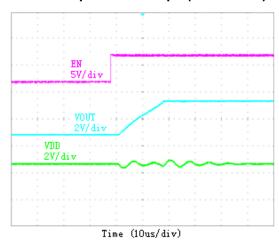


 V_{OUT} =2.5V, V_{DD} =3.5,no load(FIX)

Dropout voltage vs. ILOAD

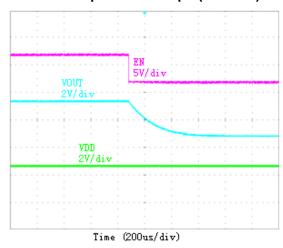


V_{OUT}=2.5V

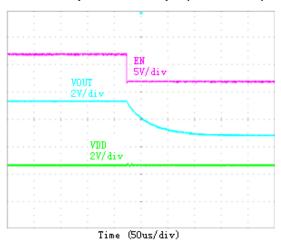

 V_{OUT} =2.5V, V_{DD} =3.5,no load

PSRR vs. frequency

 V_{OUT} =2.5 V, V_{DD} =3.5, I_{LQAD} =1mA, Vpp=0.2V


Turn On Speed with EN pin(50mA Load)

 V_{OUT} =2.5V, V_{DD} =3.5, I_{LOAD} =50mA



Turn Off Speed with EN pin(No Load)

 V_{OUT} =2.5V, V_{DD} =3.5,no load

Turn Off Speed with EN pin(50mA Load)

 $V_{OUT}=2.5V$, $V_{DD}=3.5$, $I_{LOAD}=50$ mA

Application Information

Enable

The GS7132 has a dedicated enable pin(EN). When the EN pin is in the logic low (VEN<0.3V), the regulator will be turned off, reducing the supply current to less than 1uA.

When the EN pin is in the logic high (VEN>1.2V), the regulator will be turned on. Left open, the EN pin is pulled down by a internal resistor to shut down the regulator.

Current Limit

The GS7132 contains a foldback over current protection function. It allows the output current to reach the maximum value of 0.5A. Then further decreases in the load resistance reduce both the load current and the load voltage. The main advantage of foldback limiting is less power dissipation in the pass transistor under shorted-load conditions.

Output Capacitor

The GS7132 is specifically designed to employ ceramic output capacitors as low as 1uF (X7R). The ceramic capacitors offer significant cost and space savings, along with high frequency noise filtering. Place the capacitors physically as close as possible to the device with wide and direct PCB traces.

Ceramic capacitors have different temperature characteristics and bias characteristics which depend on their dimensions and manufacturers. If the setting voltage is 2.5V or more and the capacitor's dimensions for V_{OUT} is too small, the capacitance value might be extremely low. As a result, the capacitance might be much less than expected value. In such cases, the operation might be unstable at low temperature (-25°C or less). In that case, use a larger capacity, or a large

dimensions' capacitor.

Input Capacitor

Good bypassing is recommended from input to ground to help improve AC performance. A 1uF (X7R) input capacitor or greater located as close as possible to the IC is recommended. Place the capacitors physically as close as possible to the device with wide and direct PCB traces.

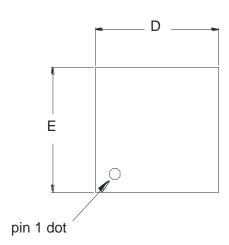
Power Dissipation and Layout Considerations

Excessive power dissipation may cause thermal overload, and hence the increase of the IC junction temperature beyond a safe operating level. For continuous operation, it is highly recommended to keep the junction temperature below the maximum operation junction temperature 125°C for maximum reliability.

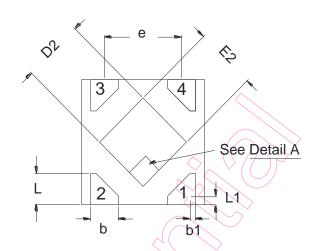
The relationship between θ_{JA} and $T_{J(MAX)}$ can be calculated as:

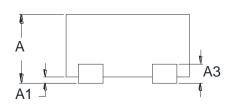
$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

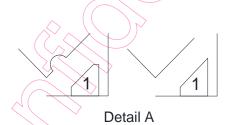
Where $T_{J(MAX)}$ is the maximum operation junction temperature 125°C, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.


The power dissipation definition in device is:

$$P_D = (V_{DD} - V_{OUT}) \times I_{OUT} + V_{DD} \times I_{Q}$$


As the above equations indicate, it is desirable to work ICs whose θ_{JA} values are small such that $T_{J(MAX)}$ does not increase strongly with P_D . To avoid thermally overloading the GS7132, refrain from exceeding the absolute maximum junction temperature rating of 150°C under continuous operating condition. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly.


Package Dimensions, uDFN4-1x1


Top View

Bottom View

Side View

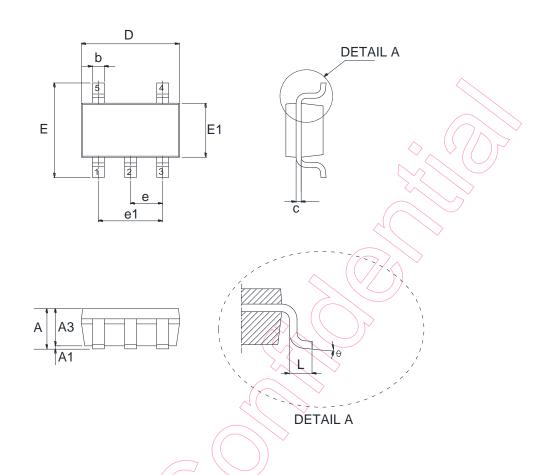
Pin #1 ID Options

Note: The configuration of the Pin#1 identifier is optional, but must be located within the zone indicated.

Dimensions in				
Millimeters				
Min	Max			
0.45	0.60			
0.00	0.05			
0.10	0.152			
0.15	0.30			
0.02	0.12			
0.90	1.10			
0.40	0.60			
0.90	1.10			
0.40	0.60			
0.65	REF.			
0.20	0.30			
0.02	0.12			
	Millim Min 0.45 0.00 0.10 0.15 0.02 0.90 0.40 0.90 0.40 0.65 0.20			

<u>Note</u>

1.Min.: Minimum dimension specified.2.Max.: Maximum dimension specified.


3.REF.: Reference. Normal/Regular dimension specified for reference.

Green Solution Technology Co.,LTD.

Rev.:1.72 12 Jan-17

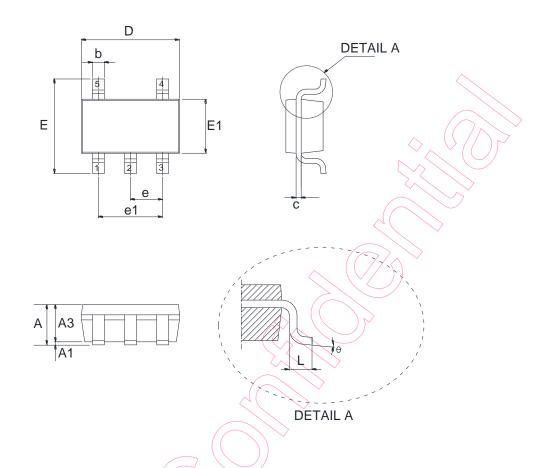
Package Dimensions, SOT-23-5

Symbol	Dimensions in Millimeters			
	Min.	Max.		
Α	0.90	1.45		
A1	0.00	0.15		
A3	0.90	1.30		
7 b	0.30	0.50		
C	0.08	0.25		
e	0.95	REF.		
) e1	1.90	REF.		
D	2.90	REF.		
E	2.80 REF.			
E1	1.60	REF.		
L	0.30	0.60		
θ	o°	8°		

Note:

1.Min.: Minimum dimension specified.

2.Max.: Maximum dimension specified.


3.REF.: Reference. Normal/Regular dimension specified for reference.

Green Solution Technology Co.,LTD.

Rev.:1.72 13 Jan-17

Package Dimensions, SOT-353(SC-75)

Symbol	Dimensions in Millimeters			
	Min.	Max.		
Α	0.85	1.10		
_/ A1	0.00	0.10		
A3	0.80	1.00		
b	0.15	0.35		
C	0.08	0.15		
e	0.65 REF.			
e1	1.30	REF.		
// D	2.00	2.20		
E	2.15	2.45		
E1	1.15	1.35		
Ĺ	0.26	0.46		
θ	o°	8°		

Note:

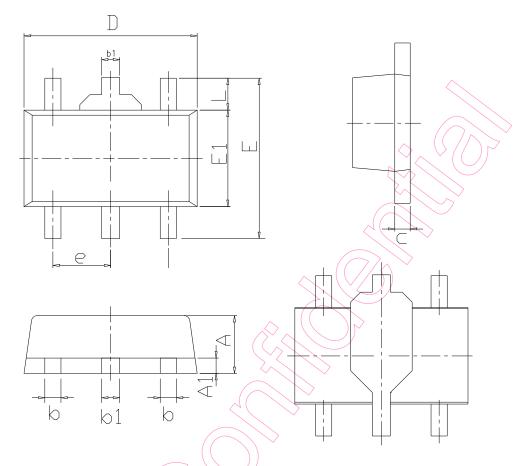
1.Min.: Minimum dimension specified.2.Max.: Maximum dimension specified.

3.REF.: Reference. Normal/Regular dimension specified for reference.

Green Solution Technology Co.,LTD.

Package Dimensions, MSOT-23

Symbol	Dimensions in Millimeters			
	Min.	Max.		
Α	0.90	1.15		
A1	0.00	0.10		
A2	0.90	1.05		
_/ b	0.30	0.50		
С	0.08	0.15		
e	0.95	REF.		
e1	1.90	REF.		
D	2.90	REF.		
() E	2.40	REF.		
// E1	1.30	REF.		
L	0.30	0.50		
θ	0°	8°		



Min.: Minimum dimension specified.
 Max.: Maximum dimension specified.

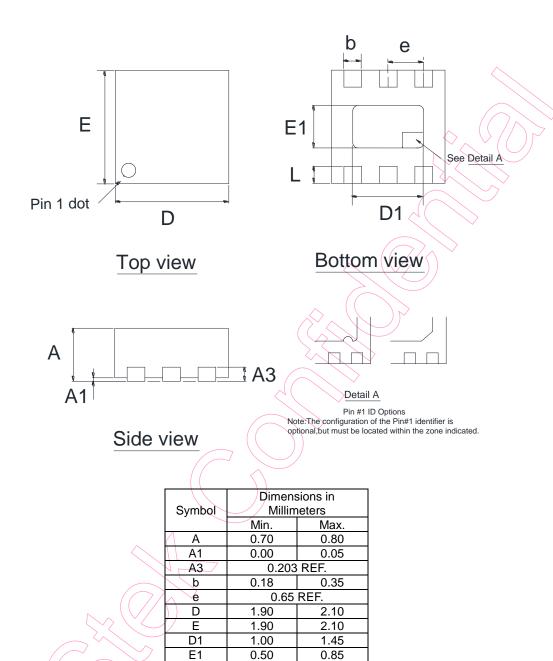
3. REF.: Reference. Normal/Regular dimension specified for reference.

Package Dimensions, SOT-89-5

Symbol	Dimensions in Millimeters			
	Min.	Max.		
A	1.40	1.60		
A1	0.30	0.50		
b	0.36	0.56		
b1	0.41	0.53		
) E	0.35	0.44		
D	4.40	4.60		
<i>))</i> E	ı	4.25		
E1	2.30	2.60		
е	1.50	REF.		
Ĺ	0.80	1.10		

Note

1.Min.: Minimum dimension specified.


2.Max.: Maximum dimension specified.

3.REF.: Reference. Normal/Regular dimension specified for reference.

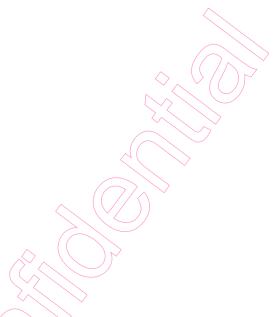
Green Solution Technology Co.,LTD.

Package Dimensions, TDFN6-2x2

Note:

1. Min.: Minimum dimension specified.

2. Max.: Maximum dimension specified.


3. REF.: Reference. Normal/Regular dimension specified for reference.

Green Solution Technology Co.,LTD.

0.25

0.45

DISCLAIMERS

Please read the notice stated in this preamble carefully before Admission e accessing any contents of the document attached. Admission of GStek's statement therein is presumed once the document is released to the receiver.

Notice:

Firstly, GREEN SOLUTION CO., LTD. (GStek) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its information herein without notice. And the aforesaid information does not form any part or parts of any quotation or contract between GStek and the information receiver.

Further, no responsibility is assumed for the usage of the aforesaid information. GStek makes no representation that the interconnect of its circuits as described herein will not infringe on exiting or future patent rights and other intellectual property rights, nor do the descriptions contained herein express or imply that any licenses under any GStek patent right, copyright, mask work right, or other GStek intellectual property right relating to any combination, machine, or process in which GStek products or services are used.

Besides, the product in this document is not designed for use in life support appliances, devices, or systems where malfunction of this product can reasonably be expected to result in personal injury. GStek customers' using or selling this product for use in such applications shall do so at their own risk and agree to fully indemnify GStek for any damage resulting from such improper use or sale.

At last, the information furnished in this document is the property of GStek and shall be treated as highly confidentiality; any kind of distribution, disclosure, copying, transformation or use of whole or parts of this document without duly authorization from GStek by prior written consent is strictly prohibited. The receiver shall fully compensate GStek without any reservation for any losses thereof due to its violation of GStek's confidential request. The receiver is deemed to agree on GStek's confidential request therein suppose that said receiver receives this document without making any expressly opposition. In the condition that aforesaid opposition is made, the receiver shall return this document to GStek immediately without any delay.