NX2114/2114A

## 300kHz \& 600kHz SYNCHRONOUS PWM CONTROLLER

PRELIMINARY DATA SHEET

The NX2114 controller IC is a synchronous Buck controller IC designed for step down DC to DC converter applications. Synchronous control operation replaces the traditional catch diode with an Nch MOSFET resulting in improved converter efficiency. Although the NX2114 controller is optimized to convert single 5 V bus voltages to supplies as low as 0.8 V output voltage, however using a few external components it can also be used for other input supplies such as 12 V input (See NX2113 data sheet for more optimized solution). The NX2114 operates at 300 kHz while 2114 A is set at 600 kHz operation which together with less than 50 nS of dead band provides an efficient and cost effective solution. Other features of the device are:
Internal digital soft start; Vcc undervoltage lock out; Output undervoltage protection with digital filter and shutdown capability via the enable pin.

| - | Synchronous Controller in 8 Pin Package |
| :--- | :--- |
| - | Bus voltage operation from 2 V to 25 V |
| - | Single 5 V Supply Operation |
| - | Short protection with feedback UVLO |
| - | Internal 300 kHz for 2114 and 600 kHz for 2114 A |
| - | Internal Digital Soft Start Function |
| - | Shut Down via pulling comp pin low |
| - | Pb-free and RoHS compliant |

## APPLICATIONS

- Graphic Card on board converters
- Memory Vddq Supply in mother board applications
- On board DC to DC such as

5 V to $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ or 1.8 V

- Hard Disk Drive

Set Top Box
TYPICAL APPLICATION


Figure1 - Typical application of 2114
ORDERING INFORMATION

| Device | Temperature | Package | Frequency | Pb-Free |
| :--- | :---: | :---: | :---: | :---: |
| NX2114CSTR | 0 to $70^{\circ} \mathrm{C}$ | SOIC-8L | 300 kHz | Yes |
| NX2114ACSTR | 0 to $70^{\circ} \mathrm{C}$ | SOIC-8L | 600 kHz | Yes |

## ABSOLUTE MAXIMUM RATINGS(NOTE1)

| Vcc to GND \& BST to SW voltage ...................... 6.5 VBST to GND Voltage .............................. 35 VStorage Temperature Range ..................... $65^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$Operating Junction Temperature Range .......... $-40^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$ |
| :---: |
|  |  |
|  |  |
|  |  |

NOTE1: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

## PACKAGE INFORMATION



## ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over $\mathrm{Vcc}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$. Typical values refer to $\mathrm{T}_{\mathrm{A}}$ $=25^{\circ} \mathrm{C}$. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

| PARAMETER | SYM | Test Condition | Min | TYP | MAX | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Voltage <br> Ref Voltage | $V_{\text {REF }}$ | $4.5 \mathrm{~V}<\mathrm{Vcc}<5.5 \mathrm{~V}$ |  | 0.8 |  | V |
| Ref Voltage line regulation |  |  |  | 0.4 |  | \% |
| Supply Voltage(Vcc) $V_{c c}$ Voltage Range | $\mathrm{V}_{\mathrm{cc}}$ |  | 4.5 | 5 | 5.5 | V |
| $\mathrm{V}_{\text {CC }}$ Supply Current (Static) | $\mathrm{I}_{\mathrm{CC}}$ (Static) | Outputs not switching |  | 2.1 |  | mA |
| $\mathrm{V}_{\mathrm{CC}}$ Supply Current (Dynamic) | $I_{C C}$ (Dynamic) | $\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF} \quad \mathrm{F}_{\mathrm{S}}=300 \mathrm{kHz}$ |  | 5 |  | mA |
| Supply Voltage( $\mathrm{V}_{\mathrm{BST}}$ ) $\mathrm{V}_{\text {BST }}$ Supply Current (Static) | $\mathrm{I}_{\text {BST }}$ (Static) | Outputs not switching |  | 0.15 |  | mA |
| $\mathrm{V}_{\text {BST }}$ Supply Current (Dynamic) | $I_{\text {BST }}$ (Dynamic) | $\mathrm{C}_{\text {LOAD }}=3300 \mathrm{pF} \quad \mathrm{F}_{\mathrm{S}}=300 \mathrm{kHz}$ |  | 5 |  | mA |
| Under Voltage Lockout $\mathrm{V}_{\mathrm{CC}}$-Threshold | Vcc_UVLO | $V_{\text {CC }}$ Rising |  | 4.1 |  | V |
| $\mathrm{V}_{\mathrm{CC}}$-Hysteresis | $\mathrm{V}_{\text {cc_ }}$ Hyst | $\mathrm{V}_{\mathrm{CC}}$ Falling |  | 0.22 |  | V |


| PARAMETER | SYM | Test Condition | Min | TYP | MAX | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SS |  |  |  |  |  |  |
| Soft Start time | Tss | Fsw=300Khz, 2114 |  | 3.4 |  | mS |
| Oscillator (Rt) |  |  |  |  |  |  |
| Frequency | $\mathrm{F}_{\text {s }}$ | 2114 |  | 300 |  | kHz |
|  |  | 2114A |  | 600 |  | kHz |
| Ramp-Amplitude Voltage | $\mathrm{V}_{\text {RAMP }}$ |  |  | 2.1 |  | V |
| Max Duty Cycle |  |  |  | 93 |  | \% |
| Min Duty Cycle |  |  |  |  | 0 | \% |
| Error Amplifiers |  |  |  |  |  |  |
| Transconductance |  |  |  | 2100 |  | umho |
| Input Bias Current | Ib |  |  | 10 |  | nA |
| Comp SD Threshold |  |  |  | 0.3 |  | V |
| FB Under Voltage Protection |  |  |  |  |  |  |
| FB Under voltage threshold |  |  |  | 0.4 |  | V |
| High Side Driver( $\mathrm{C}_{\mathrm{L}}=3300 \mathrm{pF}$ ) <br> Output Impedance, Sourcing Current | $\mathrm{R}_{\text {source }}(\mathrm{Hdrv}$ ) | $1=200 \mathrm{~mA}$ |  | 1.1 |  | ohm |
| Output Impedance, Sinking Current | $\mathrm{R}_{\text {sink }}($ Hdrv) | $\mathrm{I}=200 \mathrm{~mA}$ |  | 0.8 |  | ohm |
| Rise Time | THdrv(Rise) | $\mathrm{V}_{\mathrm{BST}}-\mathrm{V}_{\text {SW }}=4.5 \mathrm{~V}$ |  | 50 |  | ns |
| Fall Time | THdrv(Fall) | $\mathrm{V}_{\mathrm{BST}}-\mathrm{V}_{\text {SW }}=4.5 \mathrm{~V}$ |  | 50 |  | ns |
| Deadband Time | Tdead(L to H) | Ldrv going Low to Hdrv going High, 10\%-10\% |  | 30 |  | ns |
| Low Side Driver ( $\mathrm{C}_{\mathrm{L}}=3300 \mathrm{pF}$ ) |  |  |  |  |  |  |
| Output Impedance, Sourcing | $\mathrm{R}_{\text {source }}$ (Ldrv) | $1=200 \mathrm{~mA}$ |  | 1.1 |  | ohm |
| Output Impedance, Sinking | $\mathrm{R}_{\text {sink }}(\mathrm{Ldrv}$ ) | $\mathrm{I}=200 \mathrm{~mA}$ |  | 0.5 |  | ohm |
| Rise Time | TLdrv(Rise) | 10\% to 90\% |  | 50 |  | ns |
| Fall Time | TLdrv(Fall) | 90\% to 10\% |  | 50 |  | ns |
| Deadband Time | $\begin{gathered} \text { Tdead(H to } \\ \mathrm{L}) \end{gathered}$ | SW going Low to Ldrv going High, $10 \%$ to $10 \%$ |  | 30 |  | ns |

## PIN DESCRIPTIONS

| PIN \# | PIN SYMBOL | PIN DESCRIPTION |
| :---: | :--- | :--- |
| 1 | BST | This pin supplies voltage to the high side driver. A high frequency <br> ceramic capacitor of 0.1 to 1 uF must be connected from this pin to SW pin. |
| 2 | HDRV | High side MOSFET gate driver. |
| 3 | GND | Ground pin. |
| 4 | LDRV | Low side MOSFET gate driver. |
| 5 | Vcc | Voltage supply for the internal circuit as well as the low side MOSFET gate <br> driver. A 1uF high frequency ceramic capacitor must be connected from this pin <br> to GND pin. |
| 7 | COMP | This pin is the error amplifier inverting input. This pin is also connected to the <br> output UVLO comparator. When this pin falls below 0.4V, both HDRV and LDRV <br> outputs are latched off. |
| 8 | This pin is the output of the error amplifier and together with FB pin is used to <br> compensate the voltage control feedback loop. This pin is also used as a shut <br> down pin. When this pin is pulled below 0.3V, both drivers are turned off and <br> internal soft start is reset. |  |
| SW | This pin is connected to the source of the high side MOSFET and provides <br> return path for the high side driver. |  |

## BLOCK DIAGRAM



Figure 1 - Simplified block diagram of the NX2114

Demoboard design and waveforms


Figure 2 - demoboard design on NX2114
Bill of Material

| Name | Component description | Vendor | Vendor P/N | Number |
| :---: | :---: | :---: | :---: | :---: |
| R1 | 10.2k 1\% chip resistor |  |  | 1 |
| R2 | 10.2k 1\% chip resistor |  |  | 1 |
| R3 | 1.5 k 1\% chip resistor |  |  | 1 |
| R4 | 22.1k 1\% chip resistor |  |  | 1 |
| R5 | 10 chip resistor |  |  | 1 |
| C1 | 47pF ceramic |  |  | 1 |
| C2 | 1.5 nF ceramic |  |  | 1 |
| C3 | 2.2nF ceramic |  |  | 1 |
| C4, C8 | 47uF,16V, 70 mohm , SMD | Sanyo | 16TQC47M | 1 |
| C5, C6 | 1 uF ceramic |  |  | 1 |
| C7 | 0.1 uF ceramic |  |  | 1 |
| $\mathrm{C}_{\text {IN }}$ | 220uF,6.3V,12mohm,SMD | Sanyo | 6TPD220M | 1 |
| $\mathrm{C}_{0}$ | 220uF,4V,15mohm,SMD | Sanyo | 4TPE220MF | 2 |
| D1 | Diode |  | D1N5819 | 1 |
| M1, M2 | MOSFET | Fairchild | FDS6294 | 1 |
| L1 | 1.5uH,6.8A | Coilcraft | DO3316P-152 | 1 |
| L2 | 1uH,6.4A | Coilcraft | DO3316P-102 | 1 |

Note: To make sure short circuit protection of device functions correctly, C8 and R5 are necessary for filtering noise in single power supply design.


Figure 3: Output efficiency


Figure 5: Start up time


Figure 4: Voltage ripple @1.6 V output voltage, 7A output current


Figure 6: Output voltage transient response for load curent 0A-6A


Figure 8: Startup operation waveform

Figure 7: Output voltage droop during transient(0A-6A)

## APPLICATION INFORMATION

Symbol Used In Application Information:
Vin - Input voltage
Vout - Output voltage
lout - Output current
$\Delta V_{\text {RIPPLE }}$ - Output voltage ripple
Fs - Working frequency
$\Delta$ IRIPPLE - Inductor current ripple

## Design Example

The following is typical application for NX2114, the schematic is figure 2.

$$
\begin{aligned}
& \text { VII }=5 \mathrm{~V} \\
& \text { Vout }=1.6 \mathrm{~V} \\
& \text { lout }=6 \mathrm{~A} \\
& \Delta \mathrm{~V}_{\text {RIPPLE }<=20 \mathrm{mV}} \\
& \Delta \mathrm{~V}_{\text {DROOP }<=60 \mathrm{mV}} @ 6 \mathrm{~A} \text { step }
\end{aligned}
$$

## Output Inductor Selection

The selection of inductor value is based on inductor ripple current, power rating, working frequency and efficiency. Larger inductor value normally means smaller ripple current. However if the inductance is chosen too large, it brings slow response and lower efficiency. Usually the ripple current ranges from $20 \%$ to $40 \%$ of the output current. This is a design freedom which can be decided by design engineer according to various application requirements. The inductor value can be calculated by using the following equations:

$$
\begin{align*}
& \mathrm{L}_{\text {OUT }}=\frac{V_{\text {IN }}-V_{\text {OUT }}}{\Delta I_{\text {IIPLE }}} \times \frac{V_{\text {OUT }}}{V_{\text {IN }}} \times \frac{1}{F_{\text {S }}}  \tag{1}\\
& I_{\text {RIPPLE }}=k \times I_{\text {OUTPUT }}
\end{align*}
$$

where k is between 0.2 to 0.4 .
Select $\mathrm{k}=0.4$, then

$$
\begin{aligned}
& \mathrm{L}_{\text {out }}=\frac{5 \mathrm{~V}-1.6 \mathrm{~V}}{0.4 \times 6 \mathrm{~A}} \times \frac{1.6 \mathrm{~V}}{5 \mathrm{~V}} \times \frac{1}{300 \mathrm{kHz}} \\
& \mathrm{~L}_{\text {out }}=1.51 \mathrm{uH}
\end{aligned}
$$

Choose inductor from COILCRAFT DO3316P-152 with $\mathrm{L}=1.5 \mathrm{uH}$ is a good choice.

Current Ripple is recalculated as

$$
\begin{align*}
\Delta \mathrm{I}_{\text {RIPPLE }} & =\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{\mathrm{L}_{\text {OUT }}} \times \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \times \frac{1}{\mathrm{~F}_{\text {S }}} \\
& =\frac{5 \mathrm{~V}-1.6 \mathrm{~V}}{1.5 \mathrm{uH}} \times \frac{1.6 \mathrm{v}}{5 \mathrm{v}} \times \frac{1}{300 \mathrm{kHz}}=2.4 \mathrm{~A} \tag{2}
\end{align*}
$$

## Output Capacitor Selection

Output capacitor is basically decided by the amount of the output voltage ripple allowed during steady state(DC) load condition as well as specification for the load transient. The optimum design may require a couple of iterations to satisfy both condition.

## Based on DC Load Condition

The amount of voltage ripple during the DC load condition is determined by equation(3).

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {RIPPLE }}=E S R \times \Delta \mathrm{I}_{\text {RIPPLE }}+\frac{\Delta \mathrm{I}_{\text {RIPPLE }}}{8 \times \mathrm{F}_{\mathrm{S}} \times \mathrm{C}_{\text {oUT }}} \tag{3}
\end{equation*}
$$

Where ESR is the output capacitors' equivalent series resistance, $\mathrm{C}_{\text {out }}$ is the value of output capacitors.

Typically when large value capacitors are selected such as Aluminum Electrolytic,POSCAP and OSCON types are used, the amount of the output voltage ripple is dominated by the first term in equation(3) and the second term can be neglected.

For this example, POSCAP are chosen as output capacitors, the ESR and inductor current typically determines the output voltage ripple.

$$
\begin{equation*}
\mathrm{ESR}_{\text {desire }}=\frac{\Delta \mathrm{V}_{\text {RIPPLE }}}{\Delta I_{\text {RIPPLE }}}=\frac{20 \mathrm{mV}}{2.3 \mathrm{~A}}=8.6 \mathrm{~m} \Omega \tag{4}
\end{equation*}
$$

If low ESR is required, for most applications, multiple capacitors in parallel are better than a big capacitor. For example, for 20 mV output ripple, POSCAP 4TPE220MF with $15 \mathrm{~m} \Omega$ are chosen.

$$
\begin{equation*}
N=\frac{E S R_{E} \times \Delta I_{\text {RIPPLE }}}{\Delta V_{\text {RIPPLE }}} \tag{5}
\end{equation*}
$$

Number of Capacitor is calculated as
$N=\frac{15 \mathrm{~m} \Omega \times 2.3 \mathrm{~A}}{20 \mathrm{mV}}$
$\mathrm{N}=1.8$
The number of capacitor has to be round up to a integer. Choose $\mathrm{N}=2$.

If ceramic capacitors are chosen as output capacitors, both terms in equation (3) need to be evaluated to determine the overall ripple. Usually when this type of capacitors are selected, the amount of capacitance per single unit is not sufficient to meet the transient specification, which results in parallel configuration of multiple capacitors.

For example, one 100uF, X5R ceramic capacitor with $2 \mathrm{~m} \Omega$ ESR is used. The amount of output ripple is

$$
\begin{aligned}
\Delta \mathrm{V}_{\text {RIPPLE }} & =2 \mathrm{~m} \Omega \times 2.3 \mathrm{~A}+\frac{2.3 \mathrm{~A}}{8 \times 300 \mathrm{kHz} \times 100 \mathrm{uF}} \\
& =4.6 \mathrm{mV}+9.6 \mathrm{mV}=13.2 \mathrm{mV}
\end{aligned}
$$

Although this meets DC ripple spec, however it needs to be studied for transient requirement.

## Based On Transient Requirement

Typically, the output voltage droop during transient is specified as:

$$
\Delta \mathrm{V}_{\text {DROOP }}<\Delta \mathrm{V}_{\text {TRAN }} @ \text { step load } \Delta \mathrm{I}_{\text {STEP }}
$$

During the transient, the voltage droop during the transient is composed of two sections. One Section is dependent on the ESR of capacitor, the other section is a function of the inductor, output capacitance as well as input, output voltage. For example, for the overshoot, when load from high load to light load with a $\Delta I_{\text {STEP }}$ transient load, if assuming the bandwidth of system is high enough, the overshoot can be estimated as the following equation.

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {overshoot }}=\mathrm{ESR} \times \Delta \mathrm{I}_{\text {step }}+\frac{\mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \mathrm{C}_{\text {OUT }}} \times \tau^{2} \tag{6}
\end{equation*}
$$

where $\tau$ is the a function of capacitor, etc.

$$
\tau=\left\{\begin{array}{l}
0 \quad \text { if } \quad \mathrm{L} \leq \mathrm{L}_{\text {crit }}  \tag{7}\\
\frac{\mathrm{L} \times \Delta \mathrm{I}_{\text {step }}}{\mathrm{V}_{\text {out }}}-\mathrm{ESR} \times \mathrm{C}_{\text {out }} \quad \text { if } \quad \mathrm{L} \geq \mathrm{L}_{\text {crit }}
\end{array}\right.
$$

where

$$
\begin{equation*}
\mathrm{L}_{\text {crit }}=\frac{\mathrm{ESR} \times \mathrm{C}_{\text {oUT }} \times \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\text {step }}}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \times \mathrm{V}_{\mathrm{OUT}}}{\Delta \mathrm{I}_{\text {step }}} \tag{8}
\end{equation*}
$$

where $E S R_{E}$ and $C_{E}$ represents $E S R$ and capacitance of each capacitor if multiple capacitors are used in parallel.

The above equation shows that if the selected output inductor is smaller than the critical inductance, the
voltage droop or overshoot is only dependent on the ESR of output capacitor. For low frequency capacitor such as electrolytic capacitor, the product of ESR and capacitance is high and $\mathrm{L} \leq \mathrm{L}_{\text {crit }}$ is true. In that case, the transient spec is dependent on the ESR of capacitor.

In most cases, the output capacitors are multiple capacitors in parallel. The number of capacitors can be calculated by the following

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \Delta \mathrm{I}_{\text {step }}}{\Delta \mathrm{V}_{\text {tran }}}+\frac{\mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \mathrm{C}_{\mathrm{E}} \times \Delta \mathrm{V}_{\text {tran }}} \times \tau^{2} \tag{9}
\end{equation*}
$$

where

$$
\tau=\left\{\begin{array}{l}
0 \quad \text { if } \quad \mathrm{L} \leq \mathrm{L}_{\text {crit }}  \tag{10}\\
\frac{\mathrm{L} \times \Delta \mathrm{I}_{\text {step }}}{\mathrm{V}_{\text {OUT }}}-\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \quad \text { if } \quad \mathrm{L} \geq \mathrm{L}_{\text {crit }}
\end{array}\right.
$$

For example, assume voltage droop during transient is 100 mV for 6A load step.

If the POSCAP 2R5TPE220MC (220uF, $12 \mathrm{~m} \Omega$ ) is used, the critical inductance is given as

$$
\begin{aligned}
& \mathrm{L}_{\text {crit }}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \times \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{I}_{\text {step }}}= \\
& \frac{15 \mathrm{~m} \Omega \times 220 \mu \mathrm{~F} \times 1.6 \mathrm{~V}}{6 \mathrm{~A}}=0.88 \mu \mathrm{H}
\end{aligned}
$$

The selected inductor is 1.5 uH which is bigger than critical inductance. In that case, the output voltage transient not only dependent on the ESR, but also capacitance.
number of capacitors is

$$
\begin{aligned}
& \tau=\frac{\mathrm{L} \times \Delta \mathrm{I}_{\text {step }}}{\mathrm{V}_{\text {OUT }}}-\mathrm{ESR}_{\mathrm{E}} \times \mathrm{C}_{\mathrm{E}} \\
& =\frac{1.5 \mu \mathrm{H} \times 6 \mathrm{~A}}{1.6 \mathrm{~V}}-15 \mathrm{~m} \Omega \times 220 \mu \mathrm{~F}=2.3 \mathrm{us} \\
& \mathrm{~N}=\frac{\mathrm{ESR}_{\mathrm{E}} \times \Delta \mathrm{I}_{\text {step }}}{\Delta \mathrm{V}_{\text {tran }}}+\frac{\mathrm{V}_{\text {OUT }}}{2 \times \mathrm{L} \times \mathrm{C}_{\mathrm{E}} \times \Delta \mathrm{V}_{\text {tran }}} \times \tau^{2} \\
& =\frac{15 \mathrm{~m} \Omega \times 6 \mathrm{~A}}{60 \mathrm{mV}}+ \\
& \frac{1.6 \mathrm{~V}}{2 \times 1.5 \mu \mathrm{H} \times 220 \mu \mathrm{~F} \times 60 \mathrm{mV}} \times 2.3 \mathrm{us}^{2} \\
& =1.7
\end{aligned}
$$

The number of capacitors has to satisfied both ripple and transient requirement. Overall, we can choose $\mathrm{N}=2$.

It should be considered that the proposed equation is based on ideal case, in reality, the droop or overshoot is typically more than the calculation. The equation gives a good start. For more margin, more capacitors have to be chosen after the test. Typically, for high frequency capacitor such as high quality POSCAP especially ceramic capacitor, $20 \%$ to $100 \%$ (for ceramic) more capacitors have to be chosen since the ESR of capacitors is so low that the PCB parasitic can affect the results tremendously. More capacitors have to be selected to compensate these parasitic parameters.

## Compensator Design

Due to the double pole generated by LC filter of the power stage, the power system has $180^{\circ}$ phase shift , and therefore, is unstable by itself. In order to achieve accurate output voltage and fast transient response, compensator is employed to provide highest possible bandwidth and enough phase margin. Ideally, the Bode plot of the closed loop system has crossover frequency between $1 / 10$ and $1 / 5$ of the switching frequency, phase margin greater than $50^{\circ}$ and the gain crossing 0 dB with $20 \mathrm{~dB} /$ decade. Power stage output capacitors usually decide the compensator type. If electrolytic capacitors are chosen as output capacitors, type II compensator can be used to compensate the system, because the zero caused by output capacitor ESR is lower than crossover frequency. Otherwise type III compensator should be chosen.

## A. Type III compensator design

For low ESR output capacitors, typically such as Sanyo oscap and poscap, the frequency of ESR zero caused by output capacitors is higher than the crossover frequency. In this case, it is necessary to compensate the system with type III compensator. The following figures and equations show how to realize the type III compensator by transconductance amplifier.

$$
\begin{align*}
& \mathrm{F}_{\mathrm{Z} 1}=\frac{1}{2 \times \pi \times \mathrm{R}_{4} \times \mathrm{C}_{2}}  \tag{11}\\
& \mathrm{~F}_{\mathrm{Z} 2}=\frac{1}{2 \times \pi \times\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) \times \mathrm{C}_{3}}  \tag{12}\\
& \mathrm{~F}_{\mathrm{P} 1}=\frac{1}{2 \times \pi \times \mathrm{R}_{3} \times \mathrm{C}_{3}}  \tag{13}\\
& \mathrm{~F}_{\mathrm{P} 2}=\frac{1}{2 \times \pi \times \mathrm{R}_{4} \times \frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}} \tag{14}
\end{align*}
$$

where $\mathrm{F}_{\mathrm{z} 1}, \mathrm{~F}_{22}, \mathrm{~F}_{\mathrm{P} 1}$ and $\mathrm{F}_{\mathrm{P} 2}$ are poles and zeros in the compensator. Their locations are shown in figure 10.

The transfer function of type III compensator for transconductance amplifier is given by:

$$
\frac{V_{e}}{V_{\text {oUT }}}=\frac{1-g_{m} \times Z_{f}}{1+g_{m} \times Z_{\text {in }}+Z_{\text {in }} / R_{1}}
$$

For the voltage amplifier, the transfer function of compensator is

$$
\frac{V_{e}}{V_{\text {out }}}=\frac{-Z_{i}}{Z_{\text {in }}}
$$

To achieve the same effect as voltage amplifier, the compensator of transconductance amplifier must satisfy this condition: R4>>2/gm. R1||R2||R3>>1/gm is desirable.


Figure 9 - Type III compensator using transconductance amplifier
$\mathrm{F}_{\mathrm{o}}=30 \mathrm{kHz}$.

$$
\begin{aligned}
\mathrm{C}_{3} & =\frac{1}{2 \times \pi \times \mathrm{R}_{2}} \times\left(\frac{1}{\mathrm{~F}_{z 2}}-\frac{1}{\mathrm{~F}_{\mathrm{p} 1}}\right) \\
& =\frac{1}{2 \times \pi \times 10 \mathrm{k} \Omega} \times\left(\frac{1}{6.2 \mathrm{kHz}} \frac{1}{48 \mathrm{kHz}}\right) \\
& =2.2 \mathrm{nF} \\
\mathrm{R}_{4} & =\frac{\mathrm{V}_{\mathrm{osc}}}{\mathrm{~V}_{\mathrm{in}}} \times \frac{2 \times \pi \times \mathrm{F}_{\mathrm{o}} \times \mathrm{L}}{\mathrm{C}_{3}} \times \mathrm{C}_{\text {out }} \\
& =\frac{2 \mathrm{~V}}{5 \mathrm{~V}} \times \frac{2 \times \pi \times 30 \mathrm{kHz} \times 1.5 \mathrm{uH}}{2.2 \mathrm{nF}} \times 440 \mathrm{uF} \\
& =22.6 \mathrm{k} \Omega
\end{aligned}
$$

Choose $\mathrm{C}_{3}=2.2 \mathrm{nF}, \mathrm{R}_{4}=22.1 \mathrm{k} \Omega$.
5. Calculate $C_{2}$ with zero $F_{z 1}$ at $75 \%$ of the $L C$ double pole by equation (11).

$$
\begin{aligned}
\mathrm{C}_{2} & =\frac{1}{2 \times \pi \times \mathrm{F}_{\mathrm{Z} 1} \times \mathrm{R}_{4}} \\
& =\frac{1}{2 \times \pi \times 0.75 \times 6.2 \mathrm{kHz} \times 22.1 \mathrm{k} \Omega} \\
& =1.55 \mathrm{nF}
\end{aligned}
$$

Choose $\mathrm{C}_{2}=1.5 \mathrm{nF}$.
6. Calculate $C_{1}$ by equation (14) with pole $F_{p 2}$ at half the switching frequency.

$$
\begin{aligned}
\mathrm{C}_{1} & =\frac{1}{2 \times \pi \times \mathrm{R}_{4} \times \mathrm{F}_{\mathrm{P} 2}} \\
& =\frac{1}{2 \times \pi \times 22.1 \mathrm{k} \Omega \times 150 \mathrm{kHz}} \\
& =48 \mathrm{pF}
\end{aligned}
$$

Choose $\mathrm{C}_{1}=47 \mathrm{pF}$.
7. Calculate $\mathrm{R}_{3}$ by equation (13).

$$
\begin{aligned}
\mathrm{R}_{3} & =\frac{1}{2 \times \pi \times \mathrm{F}_{\mathrm{P} 1} \times \mathrm{C}_{3}} \\
& =\frac{1}{2 \times \pi \times 48 \mathrm{kHz} \times 2.2 \mathrm{nF}} \\
& =1.5 \mathrm{k} \Omega
\end{aligned}
$$

Choose $\mathrm{R}_{3}=1.5 \mathrm{k} \Omega$.

## B. Type II compensator design

If the electrolytic capacitors are chosen as power stage output capacitors, usually the Type II compensator can be used to compensate the system.

Type II compensator can be realized by simple RC circuit without feedback as shown in figure 12. R3 and C 1 introduce a zero to cancel the double pole effect. C2 introduces a pole to suppress the switching noise. The following equations show the compensator pole zero location and constant gain.

$$
\begin{align*}
& \text { Gain }=g_{m} \times \frac{R_{1}}{R_{1}+R_{2}} \times R_{3}  \tag{15}\\
& F_{z}=\frac{1}{2 \times \pi \times R_{3} \times C_{1}}  \tag{16}\\
& F_{p} \approx \frac{1}{2 \times \pi \times R_{3} \times C_{2}} \tag{17}
\end{align*}
$$



Figure 11- Bode plot of Type II compensator


Figure 12 - Type II compensator with transconductance amplifier

For this type of compensator, $\mathrm{F}_{\mathrm{O}}$ has to satisfy $\mathrm{F}_{\mathrm{LC}}<\mathrm{F}_{\mathrm{ESR}} \ll \mathrm{F}_{\mathrm{o}}<=1 / 10 \sim 1 / 5 \mathrm{~F}_{\mathrm{s}}$.

The following uses typical design in figure 19 as an example for type II compensator design, two 680uF with $41 \mathrm{~m} \Omega$ electrolytic capacitors are used.
1.Calculate the location of LC double pole $F_{L C}$ and ESR zero $F_{\text {ESR }}$.

$$
\begin{aligned}
\mathrm{F}_{\text {LC }} & =\frac{1}{2 \times \pi \times \sqrt{\mathrm{L}_{\text {out }} \times \mathrm{C}_{\text {out }}}} \\
& =\frac{1}{2 \times \pi \times \sqrt{1.5 \mathrm{uH} \times 1360 \mathrm{uF}}} \\
& =3.5 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{ESR}} & =\frac{1}{2 \times \pi \times \mathrm{ESR} \times \mathrm{C}_{\text {out }}} \\
& =\frac{1}{2 \times \pi \times 20.5 \mathrm{~m} \Omega \times 1360 \mathrm{uF}} \\
& =5.7 \mathrm{kHz}
\end{aligned}
$$

2.Set $R_{2}$ equal to $10.2 k \Omega$. Using equation 18 , the final selection of $R_{1}$ is $3.24 \mathrm{k} \Omega$.
3. Set crossover frequency at $1 / 10 \sim 1 / 5$ of the swithing frequency, here $\mathrm{Fo}=30 \mathrm{kHz}$.
4.Calculate $\mathrm{R}_{3}$ value by the following equation.
1.6 V , the result of $\mathrm{R}_{1}$ is $10 \mathrm{k} \Omega$.

$$
\begin{aligned}
R_{3}= & \frac{V_{\text {osc }}}{V_{\text {in }}} \times \frac{2 \times \pi \times F_{0} \times L}{R_{\text {ESR }}} \times \frac{1}{g_{m}} \times \frac{R_{1}+R_{2}}{R_{1}} \\
= & \frac{2 \mathrm{~V}}{12} \times \frac{2 \times \pi \times 30 \mathrm{kHz} \times 1.5 \mathrm{uH}}{20.5 \Omega} \times \frac{1}{2.1 \mathrm{~mA} / \mathrm{V}} \\
& \times \frac{10.2 \mathrm{k} \Omega+3.24 \mathrm{k} \Omega}{3.24 \mathrm{k} \Omega} \\
= & 4.51 \mathrm{k} \Omega
\end{aligned}
$$

Choose $\mathrm{R}_{3}=4.53 \mathrm{k} \Omega$.
5. Calculate $C_{1}$ by setting compensator zero $F_{z}$ at $75 \%$ of the LC double pole.

$$
\begin{aligned}
\mathrm{C}_{1} & =\frac{1}{2 \times \pi \times \mathrm{R}_{3} \times \mathrm{F}_{2}} \\
& =\frac{1}{2 \times \pi \times 4.51 \mathrm{k} \Omega \times 0.75 \times 3.5 \mathrm{kHz}} \\
& =13.3 \mathrm{nF}
\end{aligned}
$$

Choose $\mathrm{C}_{1}=12 \mathrm{nF}$.
6. Calculate $C_{2}$ by setting compensator pole $F_{p}$ at half the swithing frequency.

$$
\begin{aligned}
\mathrm{C}_{2} & =\frac{1}{\mathrm{p} \times \mathrm{R}_{3} \times \mathrm{F}_{\mathrm{s}}} \\
& =\frac{1}{\mathrm{p} \times 3.74 \mathrm{k} \Omega \times 300 \mathrm{kHz}} \\
& =235 \mathrm{pF}
\end{aligned}
$$

Choose $\mathrm{C}_{2}=220 \mathrm{pF}$.

## Output Voltage Calculation

Output voltage is set by reference voltage and external voltage divider. The reference voltage is fixed at 0.8 V . The divider consists of two ratioed resistors so that the output voltage applied at the Fb pin is 0.8 V when the output voltage is at the desired value. The following equation and picture show the relationship between $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {REF }}$ and voltage divider.

$$
\begin{equation*}
R_{1}=\frac{R_{2} \times V_{\text {REF }}}{V_{\text {OUT }}-V_{\text {REF }}} \tag{18}
\end{equation*}
$$

where $R_{2}$ is part of the compensator, and the value of $R_{1}$ value can be set by voltage divider.

Choose $\mathrm{R}_{2}=10 \mathrm{k} \Omega$, to set the output voltage at


## Voltage divider

Figure 13 - Voltage divider
In general, the minimum output load impedance including the resistor divider should be less than $5 \mathrm{k} \Omega$ to prevent overcharge the output voltage by leakage current (e.g. Error Amplifier feedback pin bias current). A minimum load for $5 \mathrm{k} \Omega$ less ( $<1 / 16 \mathrm{w}$ for most of application) is recommended to put at the output. For example, in this application,

Vout=1.6V
The power loss is $1 / 16 \mathrm{~W}$ less
$R_{\text {LOAD }}=1.6 \mathrm{~V} \times 1.6 \mathrm{~V} /(1 / 16 \mathrm{~W})=40 \Omega$
Select minimum load, $1 \mathrm{k} \Omega$ should be good enough.

## Input Capacitor Selection

Input capacitors are usually a mix of high frequency ceramic capacitors and bulk capacitors. Ceramic capacitors bypass the high frequency noise, and bulk capacitors supply current to the MOSFETs. Usually 1uF ceramic capacitor is chosen to decouple the high frequency noise. The bulk input capacitors are decided by voltage rating and RMS current rating. The RMS current in the input capacitors can be calculated as:

$$
\begin{align*}
& I_{\text {RMS }}=I_{\text {OUT }} \times \sqrt{D} \times \sqrt{1-\mathrm{D}} \\
& \mathrm{D}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathbb{N}}}  \tag{19}\\
& \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.6 \mathrm{~V}, \text { lout }=6 \mathrm{~A}, \text { using equation }
\end{align*}
$$

(19), the result of input RMS current is 2.80 A .

For higher efficiency, low ESR capacitors are recommended. One Sanyo TPD series POSCAP 6TPD220M 6 V 220 uF with $12 \mathrm{~m} \Omega$ is chosen as input bulk capacitor.

## Power MOSFETs Selection

The NX2114 requires two N-Channel power MOSFETs. The selection of MOSFETs is based on maximum drain source voltage, gate source voltage, maximum current rating, MOSFET on resistance and power dissipation. The main consideration is the power loss contribution of MOSFETs to the overall converter efficiency. In this design example, two Fairchild FDS6294 are used. They have the following parameters: V Ds $=30 \mathrm{~V}$, $\mathrm{ld}=13 \mathrm{~A}, \mathrm{R}_{\text {DSON }}=14.4 \mathrm{~m} \Omega, \mathrm{Q}$ GATE $=10 \mathrm{nC}$.

There are three factors causing the MOSFET power loss: conduction loss, switching loss and gate driver loss.

Gate driver loss is the loss generated by discharging the gate capacitor and is dissipated in driver circuits. It is proportional to frequency and is defined as:

$$
\begin{equation*}
P_{\text {gate }}=\left(Q_{\text {HGATE }} \times V_{\text {HGS }}+Q_{\text {LGATE }} \times V_{\text {LGS }}\right) \times F_{S} \tag{20}
\end{equation*}
$$

where Qigate is the high side MOSFETs gate charge, Qgate is the low side MOSFETs gate charge, $V_{\text {HGs }}$ is the high side gate source voltage, and VLGs is the low side gate source voltage.

According to equation (20), Pgate $=0.03 \mathrm{~W}$. This power dissipation should not exceed maximum power dissipation of the driver device.

Conduction loss is simply defined as:

$$
\begin{align*}
& \mathrm{P}_{\text {HCON }}=\mathrm{I}_{\text {OUT }}{ }^{2} \times \mathrm{D} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times K \\
& \mathrm{P}_{\text {LCON }}=\mathrm{I}_{\text {OUT }}{ }^{2} \times(1-\mathrm{D}) \times \mathrm{R}_{\text {DS(ON })} \times \mathrm{K} \\
& \mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {HCON }}+\mathrm{P}_{\text {LCON }} \tag{21}
\end{align*}
$$

where the Ros(on) will increases as MOSFET junction temperature increases, K is $\mathrm{Bss}(\mathrm{ON})$ temperature dependency. As a result, Ros(on) should be selected for the worst case, in which K equals to 1.43 at $125^{\circ} \mathrm{C}$ according to FDS6294 datasheet. Using equation (21), the result of Ptotal is 0.75 W . Conduction loss should not exceed package rating or overall system thermal budget.

Switching loss is mainly caused by crossover conduction at the switching transition. The total switching loss can be approximated.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{SW}}=\frac{1}{2} \times \mathrm{V}_{\mathrm{IN}} \times \mathrm{I}_{\text {OUT }} \times \mathrm{T}_{\mathrm{SW}} \times \mathrm{F}_{\mathrm{S}} \tag{22}
\end{equation*}
$$

where lout is output current, Tsw is swithing time, and Fs is switching frequency. Swithing loss Psw is frequency
dependent.

## Soft Start, Enable and shut Down

The NX2114 has a digital start up. It is based on digital counter with 1024 cycles. For NX2114 with 300kHz operation, the start up time is about 3.5 ms . For NX2114A with 600 kHz operation, the start up time is about half of NX2114, 1.75mS.

NX2114/NX2114A can be enabled or disabled by pulling COMP pin below 0.3 V . The function is illustrated in the following diagram. During the normal operation, the lowest COMP voltage is clamped to be about 700 mV , the COMP voltage is higher than 0.3 V . If external switch with $10 \Omega \mathrm{R}_{\text {dson }}$ or less to pull down COMP pin, when COMP is below 0.3 V , the digital soft start will be reset to zero. All the drivers will be off. The synchronous buck is shut off. When external switch is released, and COMP is above 0.3 V , a soft start will initiates and system starts from the beginning.


Figure 14 - Enable and Shut down NX2114 by pulling down COMP pin.

## Feedback Under Voltage Shut Down

NX2114 relies on the Feedback Under Voltage Lock Out (FB UVLO ) to provide short circuit protection. Basically, NX2114 has a comparator compare the feedback voltage with the FB UVLO threshold 0.4 V .

During the normal operation, if the output is short, the feedback voltage will be lower than 0.4 V and comparator will change the state. After certain internal delay, both high side and low side driver will be turned off. The output will be latched. The normal operation should be achieved by removing the short and recycle the VCC.


Figure 15-Operation waveforms during short condition.


Figure 16 - Operation waveform with start up at short.

During the start up, the output voltage is discharged to zero by the synchronous FET. FB voltage starts increase from zero when digital start block operates. Before half of the start up time, the Feedback Under Volt-
age Lock Out comparator is disabled. After half of start up time, the Feedback UVLO comparator is enabled. The FB UVLO threshold is set to be half of voltage at the positive input of error amplifier. With this set up, if the output is short before soft start, the Feedback UVLO comparator can catch it and turn off the driver. The short circuit operation waveform during normal operation and during the soft start are shown as follows.

During the normal operation, Feedback UVLO will take the role. But during the soft start, due to the input voltage dropping, UVLO Vcc will take the role, hiccup happens.

The Feedback UVLO can provide short circuit protection under certain conditions. However, since feedback does not have accurate information of current, this protection only provides certain level of over current protection. MOSFET should design such that it can survive with high pulse current for a short period of time.

## Layout Considerations

The layout is very important when designing high frequency switching converters. Layout will affect noise pickup and can cause a good design to perform with less than expected results.

Start to place the power components, make all the connection in the top layer with wide, copper filled areas. The inductor, output capacitor and the MOSFET should be close to each other as possible. This helps to reduce the EMI radiated by the power traces due to the high switching currents through them. Place input capacitor directly to the drain of the high-side MOSFET, to reduce the ESR replace the single input capacitor with two parallel units. The feedback part of the system should be kept away from the inductor and other noise sources, and be placed close to the IC. In multilayer PCB use one layer as power ground plane and have a control circuit ground (analog ground), to which all signals are referenced.

The goal is to localize the high current path to a separate loop that does not interfere with the more sensitive analog control function. These two grounds must be connected together on the PC board layout at a single point.

## TYPICAL APPLICATION

Single Supply 5V Input


Figure 17 - Application of NX2114 for 5V input and 2.5 V output with electrolytic capacitors


Figure 18 - Application of NX2114 A for 5 V input and 1.2 V output with ceramic output capacitors

## TYPICAL APPLICATIONS(CONT')

Dual power supply (+5V BIAS,+12V BUS)


Figure 19 -Application of NX2114 for 5V bias and 12V input bus

Single power supply (+11V to +24 V BUS)


Figure 20 -Application of NX2114 for high input bus application

