NEXSEM

SINGLE POWER SUPPLY SYNCHRONOUS PWM CONTROLLER

PRELIMINARY DATA SHEET

Pb Free Product

_FEATURES

DESCRIPTION

The NX2150 controller IC is a single power supply synchronous Buck controller IC designed for step down DC to DC converter applications. NX2150 is optimized to convert bus voltages from 5V to 24V to outputs as low as 0.8V voltage. An internal regulator converts bus voltage to 5V, which provides voltage supply to internal logic and driver circuit. The NX2150 has programmable frequency feature and operates at 300kHz when Rt pin is open. The NX2150 employs fixed loss-less current limiting by sensing the Rdson of synchronous MOSFET followed by hiccup feature.Feedback under voltage triggers Hiccup.

Other features of the device are: Over voltage protection, thermal shutdown, 5V gate drive, Adaptive deadband control, Internal digital soft start, Vcc undervoltage lock out and shutdown capability via the comp pin.

- Single voltage supply from 5V to 24V
- Programmable frequency
- Internal Digital Soft Start Function
- Prebias Startup
- Less than 50 nS adaptive deadband
- Current limit triggers hiccup by sensing Rdson of Synchronous MOSFET
- No negative spike at Vout during startup and shutdown
- Over Voltage triggers latch out
- Power Good indicator available
- Pb-free and RoHS compliant

- APPLICATIONS

LCD TV

- Graphic Card on board converters
- Memory Vddq Supply in mother board applications
- On board DC to DC such as 12V to 3.3V, 2.5V or 1.8V
- Hard Disk Drive
- Set Top Box

TYPICAL APPLICATION

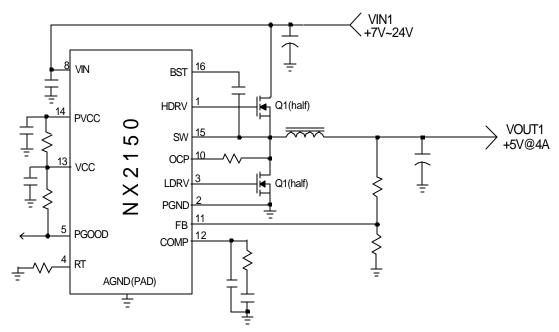
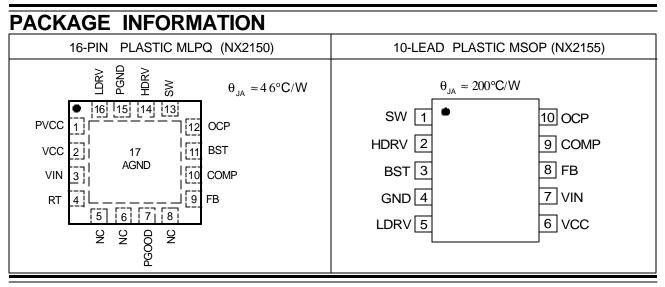


Figure1 - Typical application of 2150


ORDERING INFORMATION

Device	Temperature	Package	Frequency	Pb-Free
NX2150CMTR	0 to 70°C	MLPQ -16L	300kHz to 1MHz	Yes

VCC, PVCC to GND & BST to SW voltage	6.5V
BST to GND Voltage	. 35V
VIN to GND Voltage	. 30V
SW to GND	2V to 35V
All other pins	-0.3V to 6.5V
Storage Temperature Range	-65°C to 150°C
Operating Junction Temperature Range	-40°C to 125°C

NOTE1: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

ELECTRICAL SPECIFICATIONS

Unless otherwise specified, these specifications apply over Vcc = 5V, and $T_A = 0$ to 70°C. Typical values refer to $T_A = 25$ °C. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient temperature.

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
Reference Voltage						
Ref Voltage	V _{REF}	4.5V <vcc<5.5v< td=""><td></td><td>0.8</td><td></td><td>V</td></vcc<5.5v<>		0.8		V
Ref Voltage line regulation				0.4		%
Supply Voltage(Vcc)						
V _{CC} Voltage Range	V _{cc}		4.5	5	5.5	V
V _{CC} Supply Current (Static)	I _{CC} (Static)	Outputs not switching		3		mA
V _{CC} Supply Current	I _{CC}	C _{LOAD} =3300pF F _S =300kHz		5		mA
(Dynamic)	(Dynamic)					
Supply Voltage(V _{BST})						
V _{BST} Supply Current (Static)	I _{BST} (Static)	Outputs not switching		0.15		mA
V _{BST} Supply Current	I _{BST}	C _{LOAD} =3300pF F _S =300kHz		5		mA
(Dynamic)	(Dynamic)					
Under Voltage Lockout						
V _{cc} -Threshold	V _{cc} _UVLO	V _{CC} Rising		4.2		V
V _{CC} -Hysteresis	V _{CC} _Hyst	V _{CC} Falling		0.22		V

NEXSEM____

PARAMETER	SYM	Test Condition	Min	ТҮР	MAX	Units
Supply Voltage(Vin)						
V _{in} Voltage Range	Vin		4.7		25	V
Input Voltage Current		Vin=24V		24	40	uA
Vin UVLO						
V _{in} -Threshold	V _{in} _UVLO	V _{CC} Rising		4.5		V
V _{in} -Hysteresis	V _{in} _Hyst	V _{CC} Falling		0.5		V
SS	- <u></u> y = :	- 00 · 0				
Soft Start time	Tss	Fsw=300Khz		3.4		mS
Oscillator (Rt)						
Frequency	Fs	Rt=		300		kHz
Ramp-Amplitude Voltage	V _{RAMP}			1.6		V
Max Duty Cycle	RAMP			84		%
Min Duty Cycle				01	0	%
Error Amplifiers						,,,
Transconductance				2000		umho
Input Bias Current	lb			10		nA
Comp SD Threshold	15			0.3		V
FBUVLO				0.0		
Feedback UVLO threshold		percent of nominal	65	70	75	%
High Side Driver(C _L =2200pF)		percent of norminal	05	10	75	70
Output Impedance , Sourcing	R _{source} (Hdrv)	I=200mA		1.9		ohm
Output Impedance , Sourcing		I=200mA		1.7		ohm
	R _{sink} (Hdrv)	1=20011A		1.7		
Sourcing Current	I _{source} (Hdrv)			-		A
Sinking Current	I _{sink} (Hdrv)			1.2		A
Rise Time	THdrv(Rise)			14 17		ns
Fall Time Deadband Time	THdrv(Fall) Tdead(L to	Ldrv going Low to Hdrv		30		ns ns
Deadbaild Time	H)	going High, 10%-10%		30		115
Low Side Driver (C _L =2200pF)	,	gen.gg., .e.e.				
Output Impedance, Sourcing	R _{source} (Ldrv)	I=200mA		1.9		ohm
Current						
Output Impedance, Sinking	R _{sink} (Ldrv)	I=200mA		1		ohm
Current						
Sourcing Current	I _{source} (Ldrv)			1		A
Sinking Current	I _{sink} (Ldrv)			2		A
Rise Time	TLdrv(Rise)			13		ns
Fall Time Deadband Time	TLdrv(Fall) Tdead(H to	SW going Low to Ldrv		12 10		ns
Deadband Time	L)	going High, 10% to 10%		10		ns
OCP	,					
OCP current				32		uA
Power Good(Pgood)						
Threshold Voltage as % of Vref		FB ramping up		90		%
Hystoresis				F		0/
Hysteresis		1		5	1	%

NEXSEM_____

PARAMETER	SYM	Test Condition	Min	TYP	MAX	Units
Over Voltage						
Over Voltage Trip Point			115	120		%Vref
Hysteresis				8		%Vref
Over Voltage Delay				2		cycle
Over temperature						
Threshold				150		°C
Hysteresis				20		°C

NEXSEM____

PIN DESCRIPTIONS

PIN #	PIN SYMBOL	PIN DESCRIPTION
1	PVCC	An internal 5V regulator provides this supply voltage for the low side fet drivers. A high frequency 1uF ceramic cap must be connected from this pin to the PGND pin as close as possible
2	VCC	Supply voltage for the internal logic circuit. A 1uF high frequency ceramic capaci- tor must be connected from this pin to GND pin.
3	VIN	Voltage supply for the internal 5V regulator.
4	RT	Oscillator's frequency can be set by using an external resistor from this pin to GND. When RT pin is open, the frequency is 200kHz.
7	PGOOD	An open drain output that requires a pull up resistor to Vcc or a voltage lower than Vcc. When FB pin reaches 90% of the reference voltage PGOOD transitions from LO to HI state.
9	FB	This pin is the error amplifier inverting input. This pin is also connected to the output UVLO comparator. When this pin falls below 5.6V, both HDRV and LDRV outputs are in hiccup.
10	COMP	This pin is the output of the error amplifier and together with FB pin is used to compensate the voltage control feedback loop. This pin is also used as a shut down pin. When this pin is pulled below 0.3V, both drivers are turned off and internal soft start is reset.
11	BST	This pin supplies voltage to the high side driver. A high frequency ceramic capacitor of 0.1 to 1 uF must be connected from this pin to SW pin.
12	OCP	This pin is connected to the drain of the external low side MOSFET and is the input of the over current protection(OCP) comparator. An internal current source is flown to the external resistor which sets the OCP voltage across the Rdson of the low side MOSFET. Current limit point is this voltage divided by the Rdson.
13	SW	This pin is connected to the source of the high side MOSFET and provides return path for the high side driver.
14	HDRV	High side MOSFET gate driver.
15	PGND	Ground pin.
16	LDRV	Low side MOSFET gate driver.
5,6,8	NC	

NEXSEM_

BLOCK DIAGRAM

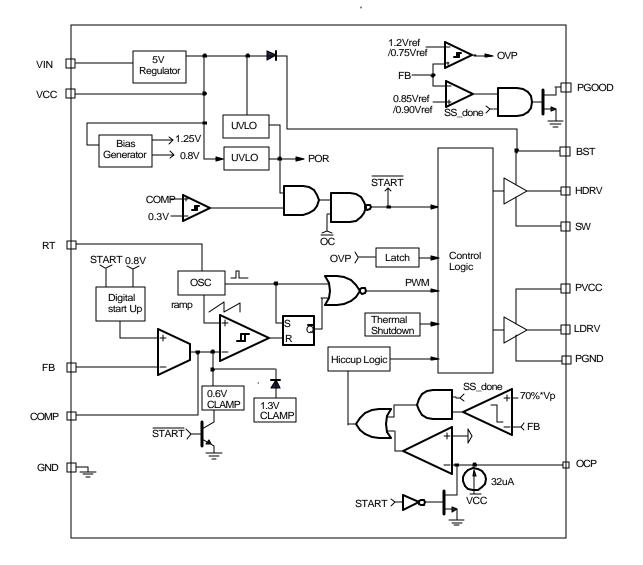


Figure 2 - Simplified block diagram of the NX2150