
The availability of a seemingly lim-
itless variety of monolithic
DAC chips makes it easy to

implement most digital-to-analog-con-
version applications with a single off-the-
shelf device. Sometimes, an unusual set
of requirements necessitates a multichip
approach, however. One example of such
a requirement is the need for nonvolatil-
ity of the DAC’s setting in power-up and
-down cycles. Another example is the
need for output resolution and stability
at less than 1 �V. The circuit in Figure 1
combines inexpensive DPPs (digitally
programmed potentiometers) from Cat-
alyst Semiconductor (www.catsemi.com)
with precision current references from
Burr-Brown (www.ti.com) to achieve
both nonvolatility and  less-than-1-�V
performance. Accurate simulation of the
signals from high-temperature platinum-
rhodium-based thermocouples requires
less-than-1-�V performance. These tem-
perature sensors have Seebeck coeffi-
cients of only 6 �V/�C. Therefore, only
voltage sources with 1-�V-level stability
and precision can simulate such sensors.

To achieve such low output drift would

normally require the use of active circuit
elements, such as chopper-stabilized am-
plifiers, with offset temperature coeffi-
cients not much higher than 1 nV/�C.
The circuit in Figure 1 takes a different
approach by using current division and
a passive and, therefore, inherently drift-
free output that needs no amplifiers. Each
half of the REF200 sources a 100-�A ref-
erence current. The twin currents each
connect to the wiper of DPPS, IC

1
and

IC
2
. There, they split into two currents

(for example, I
1

and I
2
) in a wiper-to-to-

tal ratio, K
1
, which the programmed set-

ting of the DPP determines. I
1
�K

1
�100

�A, and I
2
�(1�K

1
)�100 �A. I

1
passes

through the series combination of the
48.7� resistor and the 1� output resistor
and thereby generates the output voltage:
V�K

1
(50��100 �A)�0 to 5 mV as K

1

varies from 0 to 1. The operation is
straightforward and drift-free. Unfortu-
nately, the resolution with a single po-

tentiometer is inadequate for many pre-
cision applications.

IC
1
, a CAT5113, like other DPPs, offers

the versatility of an uncommitted resist-
ance element and nonvolatility of the set-
ting. Its resolution, however, is only 100
steps, which is slightly worse than 7 bits
and equivalent to 50 �V in this circuit.
You therefore incorporate a second DPP,
IC

2
, in the converter. IC

2
’s output current

acts into the 1� load for a 50-to-1 reso-
lution enhancement over IC

1
alone. IC

2

thus adds a 0- to 100-�V contribution to
V. Hence, the composite output is
V�K

1
/200�K

2
/10,000 with a 5-mV span

and 1-�V resolution. The circuit is an
ideal approach for such applications as
the simulation of thermocouple signals
in precision temperature-measurement
and -control systems.
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DPPs make nonvolatile microvolt DAC
Stephen Woodward, University of North Carolina, Chapel Hill, NC

Digitally programmed potentiometers combine to form a novel, microvolt-level DAC.
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Power sequencing poses a unique
problem in power manage-
ment. Because improper se-

quencing may cause damage to many
types of processors, power-up sequenc-
ing of these devices is critical. Devices
that may require power-up sequencing
control include FPGAs, ASICs, and DSP
chips. These devices can require tracking
I/O and core voltages. Requirements for
power-up sequencing may change ac-
cording to device type and manufactur-
er, so it’s important that you review se-
quencing requirements for each device.
This design use Xilinx’s (www.xilinx.
com) power-up requirements for the
Spartan-II and Spartan-IIE families. The
I/O voltage must reach full supply volt-
age in 2 to 50 msec. Also, the slew rate of
the supply voltage must not exceed 900
mV/msec but must exceed 50 mV/msec.
The circuit in Figure 1 addresses these is-
sues, allowing for consistent and reliable
power-up sequencing.

The power-up sequencing circuit uses
an RC (R

3
and C

3
) timing network to con-

trol the slew rate of the output during
turn-on. IC

2
compares the output of the

low-dropout regulator with the voltage at
the RC network. It then adjusts the out-
put of the regulator, via the feedback volt-
age, to match the RC charge voltage.
When the voltage between R

3
and C

3

reaches the low-drop-
out regulator’s regula-

tion voltage,
the output of

IC
2

pulls low, reverse-
biasing D

1
, thereby re-

moving the power-up
sequencing circuit from

the control loop. R
4 
and C

4
provide com-

pensation to maintain a smooth voltage
during the turn-on cycle. R

1
and R

2
pro-

vide the output regulation voltage. You
can calculate R

1
and R

2
from the follow-

ing expression: R
1
�R

2
(V

OUT
/1.240 �1).

Figure 2 shows slewing characteristics of
the output with various values of C

3
.

Circuit manages power-up sequencing
Martin Galinski, Micrel Semiconductor, San Jose, CA
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This circuit controls the power-up sequencing for Xilinx’s Spartan ICs.
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This circuit controls the I/O and core-voltage power-on and power-
off sequencing.

F igure  3

C3 controls the rise time of the output of Figure 1’s circuit.

F igure  2



104 edn | October 31, 2002 www.edn.com

ideasdesign

F igure  4

The I/O and core voltages have controlled rise times during the power-
on phase.

F igure  5

A Schottky diode keeps the I/O voltage from dropping 0.6V below the
core voltage.

Figure 3 is an I/O and core-voltage-se-
quencing circuit. Instead of using an RC
charge voltage to control the turn-on, IC

3

of the core regulator compares the out-
put of the I/O during turn-on and
matches the core voltage until it reaches
the regulation voltage. Figure 4 shows

the I/O and core voltages during the
power-on cycle. Equally important is the
power-down cycle. The I/O voltage must
never reach 0.6V below the core voltage.
This condition can forward-bias the sub-
strate diode, damaging the processor. D

2
,

a Schottky diode with a forward voltage

drop of 0.4V, keeps the I/O voltage from
dropping 0.6V below the core voltage
during the power-down cycle (Figure 5).

Is this the best Design Idea in this 
issue? Select at www.edn.com.

Low-ripple-voltage positive-to-
negative dc/dc converters find use in
many of today’s high- frequency and

noise-sensitive disk drives, bat-
tery-powered devices, portable
computers, and automotive applications.
Like a positive buck converter, a positive-
to-negative converter can have low out-
put-ripple voltage if you place the bulk
input capacitor between V

IN
and V

OUT

rather than between V
IN

and ground. A
common misconception is that positive-
to-negative converters in the first con-
figuration have noisy outputs. This con-
figuration actually solves noise problems
rather than introducing them. In either
configuration, the V

IN
and ground pins

of the IC connect to V
IN

and V
OUT

, re-
spectively (figures 1 and 2). Therefore,
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Lower dc/dc-converter ripple
by using optimum capacitor hookup
Keith Szolusha, Linear Technology Corp, Milpitas, CA

This ��5-to-��5V converter with the bulk input capacitor between VIN and VOUT has low output rip-
ple. The high-di/dt path, indicated here with blue lines, does not include the output capacitor.
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In the circuit in Figure 1, the output capacitor’s
peak-to-peak current ripple is equal to the induc-

tor’s peak-to-peak ripple with 1A output.

In the circuit in Figure 2, the output capacitor’s
peak-to-peak current ripple is five times as high as

the inductor’s peak-to-peak ripple and, therefore, five times as high
as the current ripple shown in Figure 3 with 1A output.

F igure  3
F igure  4

placing the input capacitor between V
IN

and V
OUT

is equivalent to placing it be-
tween the IC’s V

IN
and ground pins (Fig-

ure 1). The other, commonly accepted
method of placing the bulk input capac-
itor between V

IN
and ground (Fig-

ure 2) significantly increases the
output-voltage ripple (figures 3 and 4).
To make matters worse, this configura-
tion requires an additional high-fre-
quency bypass capacitor between the V

IN

and ground pins of the IC.
In simple positive-to-negative con-

verters, such as those in figures 1 and 2,
the output-voltage ripple is

�V
OUT(P-P)

�ESR
COUT

��I
COUT(P-P)

.
Low-ESR output capacitors, such as

ceramics, help to minimize the output-
voltage ripple in dc/dc converters. For a
given output-capacitor ESR, you can fur-
ther reduce the output-voltage ripple by
minimizing the current ripple that the
output capacitor is forced to absorb. In
Figure 2, the output capacitor is part of
the high-di/dt switching-current path,
making the output voltage ripple pro-
portionately larger. With the bulk input
capacitor placed as shown in Figure 1,
the peak-to-peak ripple current in the
output capacitor is equal to the peak-to-
peak ripple current in the inductor:
�I

COUT(P-P)
��I

L(P-P)
�(V

IN
� duty cy-

cle)/(f
SW

�L), where �I
COUT(P-P)

�output
ripple current, �I

L(P-P)
�inductor ripple

current, and f
SW

�switching frequency.
When the bulk input capacitor is

placed as shown in Figure 2, the peak-to-
peak ripple current in the output capac-
itor is much higher than the inductor’s
ripple current alone; it is almost equal to
the inductor’s ripple current plus the in-
put capacitor’s ripple current:
�I

CIN(P-P)
�I

L(P)
�I

OUT
�I

IN
��I

L(P-P)
/2, and

�I
COUT (P-P)

	 �I
L(P-P)

��I
CIN(P-P)

. With
much lower output-capacitor ripple cur-
rent, the output capacitor in the circuit
in Figure 1 can be much smaller than
that of the circuit in Figure 2. Also, it
needs to handle much less rms ripple
current (approximately equal to peak-to-
peak ripple current divided by the square
root of 12). Another advantage of re-

moving the output capacitor from the
high-di/dt switching loop (by judicious
placement of the input capacitor) is a
greatly simplified layout. You must place
the high-di/dt components in Figure 1 in
the smallest loop possible to minimize
trace inductance and the resulting volt-
age (noise) spikes. With one fewer com-
ponent to worry about in the layout, you
can more easily create a noise-free circuit
using the layout in Figure 1 than it is us-
ing the one in Figure 2.

Is this the best Design Idea in this 
issue? Select at www.edn.com.
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This ��5-to-��5V converter with the bulk capacitor between VIN and ground has much higher output
ripple than the circuit in Figure 1. The high-di/dt path, indicated here with blue lines, includes the
output capacitor, thus increasing output ripple.
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You often need more
than one regulated
output volt-

age in a system.
A frequently used and rea-
sonably simple way to cre-
ate this auxiliary output
voltage is to add a second
winding to the output in-
ductor, creating a coupled
inductor or a transformer,
followed by a diode to rec-
tify (peak-detect) this out-
put voltage. The biggest
drawback of this approach is that the
diode’s voltage drop varies with temper-
ature and load current and can have a 2-
to-1 variation, resulting in poor output-
voltage regulation. This problem be-
comes more critical as output voltages
decrease and may require the addition of
a linear regulator. The circuit shown in
Figure 1 is an alternative approach that
replaces this diode with Q

2
, a p-channel

FET. The circuit works as follows:
During the conduction time of FET Q

1
,

the voltage across the primary winding of
transformer T

1
clamps to the voltage,

V
OUT

�V
F1

, where V
F1

is the voltage drop
across FET Q

1
. Through transformer ac-

tion, the voltage on the secondary wind-
ing of inductor L

1
is equal to the turns ra-

tio between the windings times the

voltage across the primary winding. The
output capacitor on the auxiliary output,
V

02
, then charges to the peak of the sec-

ondary-winding voltage. FET Q
2
turns off

when Q
3
turns back on to prevent the out-

put capacitor from discharging. The sec-
ondary voltage floats; you can add it to the
main output voltage by tying one end of
the secondary winding to the main out-
put. You can also tie it to ground for an
output voltage lower than V

01
, if desired.

The equation that defines the auxiliary-
output voltage for the circuit in Figure 1
is:

The second half of this equation rep-

resents a voltage-error term
between FETs Q

1
and Q

2
. To

cancel out the error attribut-
able to the FET voltage drops,
you need to make the voltage
drop of FET Q

2
equal to

V
F2

�V
F1

�(N
S
/N

P
), where

N
S
/N

P
is the transformer’s

turns ratio. Because these
FET voltages are a function 
of the output currents and
the on-resistance of the FETs,
you can select the on-resist-
ance of FET Q

2
by using the

following equation:

In Figure 2, the main output voltage is
3.3V, yielding an inductor primary volt-
age when Q

1
is conducting equal to only

3.44V, because of the low voltage drop
across FET Q

1
. Thus, if you wanted a 5V

output, the secondary winding would
need to develop an additional 1.7V, ne-
cessitating a 2-to-1 step-down turns ra-
tio. The desired on-resistance of the FET
internal to IC

1
from the above equation

should be 0.16� to cancel the voltage
drop across Q

1 
at maximum loads and

while operating from a 5V input voltage.
This example uses a 0.20� FET with a
voltage drop equal to only 88 mV. This
choice allows for good voltage matching
between FETs Q

1
and the FET internal to

IC
1
, resulting in excellent error cancella-

tion, less power loss, and better overall
output-voltage regulation than diode
rectification provide. An added benefit of
this approach is that you can use it with
controllers that have integrated switch-
ing FETs, because you don’t need access
to Q

1
and Q

3
gate drives. Measured re-

sults, although varying both outputs’
loads over their full operational range,
showed less than a 
3% variation in the

This circuit is similar to the one in Figure 1, but uses an integrated buck-converter IC.
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Add an auxiliary voltage to a buck regulator
John Betten, Texas Instruments, Dallas, TX

This synchronous buck converter has an auxiliary-output winding.
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A“swamp cooler” is an
easy way to ob-
tain effective air

conditioning, especially in
hot and dry climates, if a
water source is readily avail-
able. Although most units
are very reliable, the storage-
reservoir control usually
uses a single level-detector
component. Failure of this
component can lead to seri-
ous water damage. The cir-
cuit of Figure 1 provides a
simple, inexpensive backup
alarm signal if the water level exceeds the
preset height. The circuit uses a single
Schmitt-trigger IC to detect the water
level, using the conductivity of the water
to drop the input level of IC

1A
. A 1- to 10-

M� resistor is suitable for R
1
. You might

have to experiment to determine a suit-
able value, depending on the conductiv-
ity of the water supply.

The highest practical vale of R
1

pro-
vides the widest range. The NAND gates
IC

1B
and IC

1D
implement gated oscillators

to create a pulsed tone
to drive the piezoelec-
tric-bell audible alarm.
Current consumption
in the off state is lower
than 10 �A, thus al-
lowing the use of a
simple battery to drive
the circuit. A button-
cell lithium watch bat-
tery is sufficient. The
small physical size and
wiring simplicity of
the circuit allow you to
simply glue the unit to

the side of the cooler. Use a short piece
of twin-lead, 300� transmission line for
the electrodes.
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Circuit checks “swamp-cooler” water level
Daniel Krones, Precision Design Services, Sky Forest, CA

Detect water level in a swamp-cooler reservoir with this simple circuit.

Is this the best Design Idea in this 
issue? Select at www.edn.com.




