design ideas

DPP adds versatility to VFC

Chuck Wojslaw, Catalyst Semiconductor, Sunnyvale, CA

The basic VFC (voltage-to-frequency converter) in Figure 1 comprises an integrator

Figure 1

This schematic depicts a basic voltage-to-frequency converter.
$\left(\mathrm{IC}_{1}\right)$ and a Schmitt-trigger circuit $\left(\mathrm{IC}_{2}\right)$. The integrator converts the dc input voltage, V_{IN}, to a linear voltage ramp, and the Schmitt trigger sets the limits of the integrator's output voltage. Feedback around both circuits provides the condition for oscillation. The DPP (digitally programmable potentiometer) in Figure 2 adds programmable limits to the Schmitt trigger and adds two powerful features to the VFC. First, the scale or conversion factor is programmable, and, second, for a fixed dc-input voltage, the converter is a programmable oscillator. The frequency, f_{0}, of the single-supply converter in Figure 2 is:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{o}}=\mathrm{f}_{\text {BASE }} \frac{(1-\mathrm{p})}{\mathrm{p}} \frac{\left(\mathrm{~V}_{\mathrm{IN}}-2.5 \mathrm{~V}\right)}{5 \mathrm{~V}} \\
& 0<\mathrm{p}<0.5, \text { and } 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<5 \mathrm{~V}
\end{aligned}
$$

where $f_{\text {BASE }}=1 / 2 \pi R_{1} C_{1}$, and p is the relative position of the wiper from one end (0) of the DPP to the other end (1). For the100-tap Catalyst (www.catsemi.com)
DPP adds versatility
to VFC... 99
Power circuit terminates
DDR DRAMs.100
Circuit protects bus
from 5V swings 102
Use a 555 timer as aswitch-mode power supply.104
VCO uses programmable logic. 106Controlling slew times tamesEMI in offline supplies.108

Publish your Design Idea in EDN. See the What's Up section at www.edn.com.

Using a digitally programmable potentiometer, you can vary the scale factor of this voltage-to-frequency converter.

5113 potentiometer, the range of the scale-factor term (1-p)/p is 1 to 99 with a resolution and accuracy of approximately 1%. For the values shown in Figure 2, the practical range of frequencies is 500 Hz to 25 kHz . Higher bandwidth, rail-to-rail CMOS versions of IC_{1} and IC_{2}, and a greater $\mathrm{R}_{1} / \mathrm{R}_{2}$ ratio can extend the accuracy and range of the circuit. The automated, accurate setting of the scale factor saves manufacturing test time and eliminates the need for expensive, accu-
rate resistors and capacitors. The scale factor relates to the ratiometric temperature coefficient of the DPP and hence is minimally temperature-dependent. You can use the circuit as a programmable oscillator when $V_{\text {IN }}$ is fixed and the potentiometer's wiper setting changes the limits of the Schmitt trigger.

Is this the best Design Idea in this issue? Select at www.edn.com.

Power circuit terminates DDR DRAMs

Ron Young, Maxim Integrated Products, Sunnyvale, CA

DDR (double-data-rate) SDRAMs find use in high-speed memory systems in workstations and servers. The memory ICs operate with 1.8 or 2.5 V supply voltages and require a reference voltage equal to half the supply voltage $\left(\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}} / 2\right)$. In addition, the logic outputs terminate with a resistor to the termination voltage, V_{TT}, which equals and tracks $\mathrm{V}_{\text {REF }} . \mathrm{V}_{\mathrm{TT}}$ must source or sink current while maintaining $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{REF}} \pm$ 0.04 V . The circuit of Figure 1 provides the termination voltage for both 1.8 and 2.5 V memory systems and delivers out-
put current as high as 6 A . IC 1 includes a step-down controller and two linear-regulator controllers and operates with input voltages of 4.5 to 28 V .
IC_{1} 's fixed-frequency, $200-\mathrm{kHz}$ PWM controller maintains the output voltage by sourcing and sinking current. Maximum sink current equals the maximum source current, though the sink current has no current limiting. When sinking current, the device returns some current to the input supply. To implement the tracking function, one of IC_{1} 's extra lin-ear-regulator controllers is configured as
an inverting amplifier. This amplifier compares $\mathrm{V}_{\mathrm{DD}} / 2\left(\right.$ created by R_{1} and $\left.\mathrm{R}_{2}\right)$ with $\mathrm{V}_{\text {ReF }}$ from IC_{1} and generates an error signal that connects via R_{3} to IC_{1} 's FB pin, thereby forcing $\mathrm{V}_{\text {OUT }}$ to track $\mathrm{V}_{\mathrm{DD}} / 2$. A $10-\mathrm{mA}$ load, R_{4}, is necessary to bias the inverting amplifier for accurate tracking. $\mathrm{V}_{\mathrm{OUT}}$ can track $\mathrm{V}_{\mathrm{DD}} / 2$ for V_{DD} in the range 1 to 4 V .

Is this the best Design Idea in this issue? Select at www.edn.com.

Figure 1

This circuit generates the termination voltage for DDR synchronous DRAMs.

Circuit protects bus from 5 V swings

Said Jackson, Equator Technologies Inc, Campbell, CA

The circuit in Figure 1 automatically detects voltage and protects a bus, such

Figure 1
 rately and-within one bus cycledetect a level swing larger than 3.3 V on any bus and, upon a fault situation, generate a reset signal and an alarm output to notify the user and the system of this fault. Some of the novel circuit features include a highly accurate synchronous-detection capability to avoid false alarms arising from large signal overshoots, high impedance and low capacitive loading of the bus, automatic system shutdown during fault conditions, and a single-cycle response time.
This circuit successfully operates in products using the high-performance 3.3V MAP-CA processor family from Equator Technologies (www.equator. com), but you can use it in other highspeed 3.3 V or even lower voltage systems. Equator's latest generation chips are 5 V tolerant, but you can adjust the circuit to protect other 1.8 and 2.5 V chips. The circuit uses IC_{3}, an ultrahigh-speed Maxim (www.maxim-ic.com) MAX999 comparator with $4.5-$ nsec propagation delay, T_{PD}, to constantly compare a signal line, PCI_AD10 in case of a PCI bus, to a reference level of 3.8 V . This reference voltage is an optimal compromise between 5 V signals clamped by 3.3 V protection diodes and the normal-operation 3.3 V signals. Once the voltage exceeds this reference level for an entire bus clock period, the system turns on an alarm buzzer connected to Q_{1}.

The circuit generates a signal that can reset the system, or it can generate a sys-tem-error signal. Because the alarm-register memory, $\mathrm{IC}_{2 \mathrm{~B}}$, serves as an asynchronous register, you can switch the alarm off only by removing power from the system or by asserting the reset signal. To avoid false triggering by signal overshoot and undershoot, a flip-flop-based register, $\mathrm{IC}_{2 \mathrm{~A}}$, samples the comparator output only during the rising edges of the bus clock. This method allows for a generous 33 -nsec period at 33 MHz for the bus signal to settle down before being sampled. Lowpass filtering by sensor resistors $\mathrm{R}_{2}, \mathrm{R}_{3}$ and the 3 - to 5 - pF parasitic capacitance on Pin 3 of IC_{3} limit the maximum clock speed of this circuit. The traces connecting to Pin 3 of $\mathrm{IC}_{3}, \mathrm{R}_{2}$, and R_{3} thus must be as short as possible and may limit the bus speed to approximately 40 to 50 MHz . Symmetrically lowering the resistance of R_{2} and R_{3} increases the maximum bus speed to a theoretical 7 -nsec cycle time (greater than 140 MHz) at the expense of a higher signal-loading current on the bus.
In the case of monitoring a PCI bus, Pin 3 of comparator IC_{3} monitors signal

PCI_AD10. Every PCI device asserts this signal at least once during PCI enumeration, but you can monitor other signals if necessary. This method guarantees recognition of a 5 V PCI device shortly after the BIOS starts enumerating the PCI bus during system boot. $\mathrm{IC}_{2 \mathrm{~A}}$ then latches the comparator's, IC_{3}, Q -output Pin 1 during the rising edge of the PCI clock. This action asserts flip-flop $\mathrm{IC}_{2 \mathrm{~B}}$, which in turn enables buzzer LS_{1} and generates an open-collector, low-active, system-error signal through IC_{C}. You could use this error signal to automatically remedy the fault condition by disabling the offending circuit on the bus. The sense and reference resistors R_{2}, R_{3}, R_{5}, and R_{6} should be metal-film 1% types. The 5 V reference voltage connected to R_{5} determines the accuracy of the trip voltage, and today's power regulators have sufficient accuracy so that you can use a 5 V system-power line as the reference voltage, obviating the need for a special 5 V -reference generator. Removing jumper JP_{1} disables the circuit.

Is this the best Design Idea in this

 issue? Select at www.edn.com.
Use a 555 timer as a switch-mode power supply

Aaron Lager, Masterwork Electronics, Rohnert Park, CA

MOST SWITCH-MODE power supplies rely on a PWM (pulse-widthmodulated) output that is controlled via voltage feedback. A 555-timer IC can inexpensively perform PWM. The circuit in Figure 1 shows how to turn a 555 PWM circuit into an switch-mode power supply with only one simple equation. The design uses two 555 s . IC_{1}, in astable mode, triggers IC_{2} in PWM mode. IC_{1} is set to oscillate at approximately 60 kHz at a high duty cycle. The output is low for only approximately $2.5 \mu \mathrm{sec}$ to trigger the PWM circuit and then goes high for the rest of the period. The PWM circuit has a maximum pulse width of approximately $85 \mu \mathrm{sec}$, and it becomes shorter, depending on the control voltage from the feedback circuit. You can reduce the chip count by using a 556 or another
continuous-trigger source. The input must be ($1.5 \mathrm{~V}_{\text {out }}+$ Margin), so for 5 V output you need 9 V minimum input. If you use CMOS chips and small timing capacitors C_{1} and C_{2}, you can keep the operating current low. Thus, you can use a simple zener-diode regulator for the 555 and increase the input voltage to more than 30 V . The input-voltage limit is a function of how much power the zener supply can handle while delivering 5 to 10 mA to the 555 s .
Q_{1} has low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and low V_{GS} and can handle more than $40 \mathrm{~V} . \mathrm{D}_{1}$ clamps any voltage spikes, such as those that occur when a large current flow ceases, causing a large magnetic field to be left in the inductor. You should select D_{1} according to the output voltage you need. For 5 V output, use a 5.6 V zener diode, for example.
$\mathrm{IC}_{3}, R_{1}, R_{2}$, and V_{1} form the feedback circuit to set the output voltage. The outputvoltage equation is $V_{\text {OUT }}=V_{1}\left(R_{1} / R_{2}+1\right)$. The TL431 is a popular part for setting a voltage reference and can easily create the 1.25 V shown for V_{1}. You can supply 5 V at 1.5 A with an input of 9 to 40 V . At voltages higher than 12 V , you can add a 10 V zener-diode supply for the chips. The zener supply only slightly reduces the efficiency. With 12 V input, $5 \mathrm{~V}, 1.5 \mathrm{~A}$ output efficiency is approximately 70%, and it drops to 65% with a 40 V input and a zener circuit. The zener diode's influence is more noticeable at lower current levels; at a $50-\mathrm{mA}$ load the efficiency drops to approximately 50%.

Is this the best Design Idea in this
issue? Select at www.edn.com.

Figure 1

VCO uses programmable logic

Susanne Nell, Breitenfurt, Austria

AVCO (voltage-controlled oscillator) is an analog circuit, so you cannot find it in the li-
braries for the design of digital programmable chips. When you need such a circuit for synchronization or clock multiplication, you need to find a circuit that works with the standard digital functions, such as AND and NAND. Several possibilities exist for building variablefrequency oscillators. For example, you can change the frequency using a varactor diode. Unfortunately, these diodes have a small change of frequency per volt. So, the standard Pierce oscillator with one inverter and capacitors is not useful for these applications. Another idea is to use a Schmitt-trigger inverter and to vary the charging resistor. This method can work, but the hysteresis of the IC usually has a wide tolerance, so the selected inverter chip has a large influence on the frequency.

Figure 2
For these reasons, this design modifies a two-NOR-gate RC oscillator (Figure 1) to function as a VCO. For almost all pureCMOS circuits, the switching point between high and low states is approximately $\mathrm{V}_{\mathrm{CC}} / 2$. This point does not depend on the device. Using this circuit, you can obtain a wide frequency-tuning range. The output is a square wave with a 50% duty cycle. At power-on, both capacitors C_{1} and C_{2} are uncharged, and $\mathrm{IC}_{1 \mathrm{~A}}$ has a low output. Thus, the output of $\mathrm{IC}_{1 \mathrm{~B}}$ is high, and C_{2} charges with the time constant $\mathrm{R}_{2} \mathrm{C}_{2}$. The additional charging current from $\mathrm{IC}_{\mathrm{ST}}$ and R_{4} also influences this charging time. When the voltage on C_{2} reaches $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{IC}_{1 \mathrm{~B}}$ switches to a low state. Now, the output of $\mathrm{IC}_{1 \mathrm{~A}}$ switches high, and C_{1} charges with time constant $R_{1} C_{1}$, influenced by $\mathrm{IC}_{S T}$ and R_{3}. The low signal at the output of $\mathrm{IC}_{1 \mathrm{~B}}$ forward-biases D_{2} and quickly discharges C_{2}.

This circuit produces a 50% duty cycle if $\mathrm{C}_{1}=\mathrm{C}_{2}, \mathrm{R}_{1}=\mathrm{R}_{2}$, and $\mathrm{R}_{3}=\mathrm{R}_{4}$. The values of R_{4} and R_{3} and the steering voltage, V_{ST}, determine the VCO's gain in kilohertz per volt. The circuit in Figure 2 yields the highest possible value for the

Figure 1

This unique VCO, implemented with discrete logic, has a wide tuning range.

This VCO uses an EPLD and has high gain, expressed in kilohertz per volt.

VCO's gain. The circuit uses an Altera (www.altera.com) EPLD (erasable pro-grammable-logic device), the EPM3032. Tristate buffers replace the diodes in Figure 1 , and the charging resistors connect directly to the steering voltage. This configuration produces the highest possible VCO gain: approximately $700 \mathrm{kHz} / \mathrm{V}$ for the component values shown. You can switch off the VCO by using a steering voltage lower then $\mathrm{V}_{\mathrm{CC}} / 2$. You can implement this circuit using almost all pro-
grammable-logic devices with CMOS inputs. You can also use steering voltages much higher then the supply voltage of the programmable chip, because the voltage on the input of the chip never goes higher then $\mathrm{V}_{\mathrm{CC}} / 2$. This fact makes the circuit suitable as a voltage-to-frequency converter with a high input-voltage range.

Is this the best Design Idea in this issue? Select at www.edn.com.

${ }^{\text {desegidideas }}$

Controlling slew times tames EMI in offline supplies

David Canny, Linear Technology Corp, Milpitas, CA

EMI From offline switching power supplies typically causes all sorts of problems for power-supply designers. You may need a large EMI filter to meet FCC emission requirements. Switchers for high efficiency produce high-frequency switching noise that can propagate through the rest of the system and cause problems. Board layout is critical, requiring considerable experimentation, even for experienced designers. The low-noise circuit in Figure 1 significantly reduces the complexity of these issues by continuous, closed-loop control of the voltage and current slew rates. High-frequency noise suppression is particularly important for medical devices because they don't require the ac-line-toearth ground capacitors (" Y " capacitors)
that typically suppress this noise. The absence of these capacitors allows medical devices to easily comply with the more stringent low-leakage-current healthcare specifications of UL544, UL2601, and CSA22.2.
Figure 1 shows a 30 W (12 V output at 2.5 A) offline power supply. IC_{1}, an LT1738 low-noise switching regulator in a flyback topology, drives Q_{1} and continuously controls the current slew using the resistor at the $\mathrm{R}_{\text {CSL }}$ pin. The IC controls the voltage slew using the resistor at the $\mathrm{R}_{\text {vSL }}$ pin and the capacitance at the CAP pin. IC_{2}, an LT1431 programmable reference, and the optocoupler close the isolated loop back to the LT1738. The circuit achieves current limit by sensing the current through a $68-\mathrm{m} \Omega$ resistor at the CS
pin. Q_{2}, Q_{3} and their associated circuitry provide undervoltage lockout with hysteresis. During start-up, the $\overline{\text { SHDN }}$ pin stays low until C_{5} charges to 12 V via R_{1}. The LT1738 then turns on and subsequently obtains most of its operating power from T_{1} 's auxiliary winding. The feedback goes directly to the LT1738's V_{C} pin rather than to the F_{B} pin because the optocoupler provides the feedback gain that the LT1738's internal feedback amplifier typically provides. C_{6} and L_{1} attenuate the low-frequency harmonics of the LT1738 switching frequency.
You can see the benefits of the circuit by measuring its ac-line-conducted EMI and then comparing these measured results with those for basically the same circuit with the LT1738 replaced with a

A 30W offline power supply passes FCC Class B emission requirements without line-to-earth-ground capacitors.

${ }^{\text {desexing }}$ ideas

generic switcher. The only circuit-parameter difference is that, unlike the LT1738, the generic switcher doesn't actively control the switching current and voltage slew rates. Figure 2 shows the ferequincy spectra for both circuits. You can see by the respective frequency spectra that the LT1738-based circuit generates emissions well within FCC Class B requirements, whereas the circuit with the generic part results in emissions that exceeds FCC Class B allowable emissions by a significant margin.

Another benefit of the circuit \square
Figure 2

(a)

(b)

In these $50-\mathrm{MHz}$-wide spectral plots, areas under horizontal lines indicate acceptable FCC Class B emission requirements. The spectral plot for the LT1738-based circuit (a)
in Figure 1 is that the output voltage noise comprises the fundamental ripple with practically no high-frequency components. You can attenuate this ripple voltage if desired to less than $300 \mu \mathrm{~V}$ using a $100-\mu \mathrm{H}, 100-\mu \mathrm{F}$ LC filter on the output. The generic switcher, on the otber hand, produces more output noise because the high-frequency noise passes to shows emissions well within FCC Class B requirements, unlike the plot for the generic switcher (b).
the output with little attenuation through the parasitic capacitance of the output fillter's inductor. The circuit in Figure 1 minimizes noise and EMI by controlling the voltage and current slew rates of the external n-channel MOSFET. This circuit is well-suited for offline power supplies
in medical devices because the absence of Y capacitors results in low leakage current to earth ground in compliance with health-care specifications.

Is this the best Design Idea in this issue? Select at www.edn.com.

