Frequency comparator has status output

Susanne Nell, Breitenfurt, Austria

The original application for the circuit in Figure1 was to check the number of revolutions of Figure 1 an engine with only one LED as an indicator. The measurement of the number of revolutions usually involves sensors with a frequency output proportional to the number of revolutions. The circuit compares the frequency output of such a sensor with a lower and upper limit and gives a visual result, using oneLED. If the frequency is below the lower limit, the LED remainsunlit. If thefrequency isbetween the limits, the LED blinks at a constant rate, and if the speed is higher than the upper limit, the LED stays permanently lit. Although a microcontroller can do this job, it is sometimes better to use an analog circuit-for example, if the frequency you want to check is too high for a simplecontroller. Thecircuit in Figure 1 uses one standard, inexpensive IC, and you need not write any software. It is also less costly than a comparable mi-crocontroller-based circuit.
Themain part is $\mathrm{IC}_{1}, \mathrm{a} 74 \mathrm{H}$ C 4046 PLL chip. With a 12 V supply, you can also use the CD4046 without an additional volt-
Frequency comparatorhas status output.58
Envelope follower combines fast response, low ripple 59
Positive regulator makesnegative dc/dc converter60
Multiplexer amplifiers form large,multiplane-multiplexer structures 62
Circuit provides watchdogfor microcontrollers.66
Circuit translates ${ }^{1} C$ voltages 66
Publish your Design Idea in EDN. See th What's Up section at www.edn.com.

This analog frequency comparator uses an LED to indicate upper and lower frequency limits.
ageregulator. Thechip contains an oscilIator, a phase comparator, and one amplifier for the input signal. Theinput signal connects to the input of the phase comparator with its integrated ac amplifier. The circuit compares this amplified signal with theVCO frequency. This frequency is adjustable, using $\mathrm{C}_{1}, \mathrm{R}_{1}$, and the voltage on Pin 9. If the frequency of the input signal is lower than that of the VCO, the output of the phase comparator (Pin 13) is low. In this case, Q_{2} is off, Q_{1} is on, and the LED is off, indicating "low frequency." Resistors $\mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4} determine the voltage on Pin 9 and the lower frequency limit switching point. If the frequency of theinput signal increases and reaches the value of theVCO'sfrequency, the phase comparator's output switches high.

This high-level outputturns Q_{2} on and Q_{1} off. With Q_{1} off, the voltage of the

VCO increases to a second higher value determined by R_{2} and R_{3}, and the VCO generates thefrequency for thehigh-limit switching point. If thefrequency of the input signal is between these two limits, the phase comparator generates a rectangular waveform. Thefeedback capacitor, C_{2} determines the frequency of this waveform. With a value of $2.2 \mu \mathrm{~F}$ for C_{2}, you can achieve a frequency of approximately 1 Hz . This frequency is the blinking rate for the LED. If the frequency of the input signal increases to a point higher than the upper VCO frequency value, the phase comparator output stays high, and theLED turnson permanently. With the values shown in Figure 1, the lower and upper frequency limits are 3.81 and 7.35 kHz , respectively.

Is this the best Design Idea in this issue? Select at www.edn.com.

Envelope follower combines fast response, low ripple

H arry Bissell, Royal Oak, M I

Envel ope follower s extract amplitude information from complex audio waveforms. The resulting dc voltage often drives nonlinear stages, such as voltage controlled amplifiers or filters. You must make a careful trade-off between the speed of response to a rapidly changing input signal and the amount of ripple in the dc output that you can tolerate. If the system is too slow, the output has low ripple but badly distorts the envelope shape. If it's too fast, ripple can modulatethe nonlinear stages, causing audible distortion products. Audio sources, such as a guitar, pose special problems. The instrument has an attack of a few milliseconds and a long decay time. Themusician may "mute" thestrings at any time, causing the normal exponential decay to terminate abruptly. The waveform is sometimes unsymFigure 2
zero crossings. The fundamental frequency range is typically from approximately 80 Hz to 1.5 kHz . Previouscircuits have used a full-wave bridge and a large averaging filter. A filter timeconstant sufficient to reduce ripple makes the circuit unable to follow rapid changes in amplitude. Peak-detecting circuits can follow the rapid attack and provide low ripple during the exponential decay but cannot
follow the rapid decay of a muted string. Thedesign in Figure1 featuresfast attack and low ripple with minimal filtering, and it can follow a rapid decrease in signal (mute).

The circuit uses three identical peakhold circuits in parallel that reset in a round-robin fashion. The circuit applies the input signal to all three stages simultaneously. As each stage resets in turn, the two remainingstagesstill hold the last peak voltage. Diodes select thehighest held voltage at the output of each peakhold stage. A small RC filter smoothes the step response as the peak-hold circuits reset, so a lower output voltageresults. To ensure that one of the detectors holds the highest peak value for the entire input period, the reset clock period is slightly longer than one-half the period of the lowest input frequency. Figure 2 illustrates typical circuit operation and metrical and may havemultiple $\begin{aligned} & \text { circuits with similar time constants. }\end{aligned}$

Waveforms of typical circuit operation show the improvement over full-wave average and peak-detecting

Figure 1

This envelope detector provides the seemingly contradictory features of fast response and low ripple.

designideas

shows the improvement over full-wave average and peak-detecting circuits with similar time constants. CM OS Schmitt inverter IC_{1} forms themaster reset clock, and C_{1} and R_{1} produce the desired period. CM OS counter IC 2 is a ring counter that provides the sequential reset pulses.

The peak-hold circuit is a classic configuration with the addition of the reset circuit. R_{2} and C_{2} differentiate the rising edge of the reset pulse; this edge drives the base of Q_{1}. Series resistor R_{3} prevents excessive op-amp current while Q_{1} is conducting. Thefilter network compris-
ing R_{4}, R_{5}, C_{3}, and D_{1} provides minimal filtering to reducethe step changes in the output duringunusually fast decay times.

Is this the best Design Idea in this issue? Select at www.edn.com.

Positive regulator makes negative dc/dc converter

Keith Szolusha, Linear Technology Corp, M ilpitas, CA

P
ow er -suppl y designers can choose from a plethora of available positive buck regulators that Figure 1 can also serve as negative boost $\mathrm{dc} / \mathrm{dc}$ converters. Some buck regulators have a negative-feedback reference voltage expressly for this purpose, but ICsthat have positive reference feedback voltages far outnumber these negative-feedback regulators. You can take advantage of this greater variety of devices by using a positive buck switch-mode regulator to create an excellent negative boost converter. All you need are a few small modifications to the typical buck-converter configuration. Figure la shows a -5 V input to -9-output, 1.4 A negative boost converter using the LT 1765EFE positive-buck-converter, switch-mode regulator. This IC accepts 3 to 25 V input, uses a 1.2 V feedback voltage, and has an internal 3 A power switch. The $1.25-\mathrm{MHz}$ switching frequency of the LT1765EFE helps reduce the size of the inductor and input and output capacitors. Figure 1b shows a typical positive buck-converter application for the LT 1765EFE: a 12 V -input to 3.3 V -output, $2.2 \mathrm{~A} \mathrm{dc} / \mathrm{dc}$ converter. Figure 2 shows an efficiency plot for the regulator in Figure 1a.

In Figure 1a, theground pin of theIC connects to the negative voltage $\mathrm{V}_{\text {оит }}$. This connection makes the negative-boost-converter configuration provide a positive voltage at the FB pin with respect to theground pin of theIC. In this topology, the maximum input voltage rating of theIC has to be greater than the magnitude of output voltage for the negative boost converter. TheIC must also havea

The LT1765EFE positive buck converter can make a negative boost converter (a) or a positive buck converter (b).
minimum input-voltage rating that is less than themagnitude of theinput voltage, to ensure that the circuit turns on upon power-up, because theoutput volt-
age can have an initial state of OV .
Note that the maximum output current for the negative boost converter in Figure la is much lower than the maxi-
mum output current of the positivebuck converter in Figure 1b, even though they use the same switch-

Figure 2 mode-regulator IC. The buck-converter IC in both circuits has an internal power switch with a switch current rating of 3A. You choose the inductor based on maximum output current, peak switch current, and desired ripple current. First calculate the duty cycle (DC) and then calculate either the ripple current, I_{pp}, based on the chosen inductor, L, or the inductor value based on the desired ripple current. It is generally good practice to choose the inductor value so that the peak-to-peak ripple current is approximately 40% of the input current. These calculations are approximate and ignore the effect of switch, inductor, and Schot-tky-diode power losses. You calculate as follows:
$D C=\left(V_{\text {OUT }}-V_{\text {IN }}\right) V_{\text {OUT }} ; I_{\text {IN }} \sim\left(\mathrm{V}_{\text {OUT }} \times I_{\text {OUT }}\right) /$ $\left(\mathrm{V}_{\text {IN }} \times \eta\right)$, where η is the overall efficienCy. $I_{\mathrm{PP}}=I_{\text {IN }} \times 40 \% ; \mathrm{I}_{\mathrm{PP}}=\left(\mathrm{DC} \times \mathrm{V}_{\mathrm{IN}}\right) /(\mathrm{f} \times \mathrm{L})$, wheref is the switching frequency; and $\mathrm{L}=\left(\mathrm{DC} \times \mathrm{V}_{\text {IN }}\right) /\left(f \times \mathrm{I}_{\mathrm{pp}}\right)$.

Maximum inductor current, $I_{\text {LMAX }}$, is equal to the peak switch current in this configuration. The IC has a maximum switch current, $I_{\text {SWMAX }}$, of $3 A$, so themaximum inductor current must remain below 3A. To keep switch current below the maximum, you might need more inductance to keep the ripple current low enough. ($I_{\text {Lmax }}=I_{\text {SWMAX }}=I_{I N}+I_{\text {Pp }} / 2$.) M aximum output current, I Ioutmax, is an approximation derived from the maxi-
gure 2 80%.

Efficiency of the negative boost converter in Figure 1a is as high as 85% and typically greater than
mum allowable input current given the ripple current: $I_{\text {OUTMAX }}=\left(I_{\text {SWMAX }}-I_{\text {PP }} / 2\right)$ $\times\left(\mathrm{V}_{\text {IN }} \times \eta\right) / \mathrm{V}_{\text {OUT }}$. As in a typical boost converter, the input capacitor in thenegative boost topology has low ripple current, and the output capacitor has high discontinuous ripple current. Thesize of the output capacitor is typically larger than that of the input capacitor to handle the greater rms ripple current:
$I_{\text {CINRMS }}=I_{\text {PP }} / \sqrt{12}$, and $I_{\text {COUTRMS }}=$ $\sqrt{(1-D C)} \times\left(1_{\text {IN }}{ }^{2}+1_{\mathrm{Pp}}{ }^{2} / 12\right)$.
Theoutput capacitor'sESR has adirect effect on theoutput-voltageripple of the $\mathrm{dc} / \mathrm{dc}$ converter. Choosing higher frequency switch-mode regulators reduces theneed for excessive rmsripple-current rating. Regardless, a low-ESR output capacitor, such as a ceramic, can minimize the output-voltage ripple of the negative boost converter: $\Delta \mathrm{V}_{\text {outpp }}=$
$1_{\text {SWMAX }} \times E S R_{\text {cout: }}$ Figures la and 1b show the high-di/dt switching paths of the negative boost and positive buck $\mathrm{dc} / \mathrm{dc}$ converters. You must keep this loop as small as possible by minimizing trace lengths to minimize trace inductance. The discontinuous currents in this path create high di/dt values. Any trace inductance in this loop results in voltage spikes that can render a circuit noisy or uncontrollable. For this reason, circuit layout can be just as important as component selection. Note that the layout of a negative boost regulator differs from that of a positive buck regulator, even though they use the sameIC.

Is this the best Design Idea in this issue? Select at www.edn.com.

Multiplexer amplifiers form large, multiplane-multiplexer structures

Bill Stutz, M axim Integrated Products, Sunnyvale, CA

The var iet y of video sour ces available to a home-video-switching system has grown from a few composite inputs to many multisignal sources. These sources include cable, HDTV, satellite dishes, VCR, DVD, video games in broadcast, and multi-PC or graphic

KVM (keyboard-video-mouse) applications. Each requires an $\mathrm{N} \times \mathrm{M}$-to-1 multiplexer, in which M is the number of sources and N is the number of channels that make up the signal. As an example, 16 RGB or Y, Pb, and Pr sources require a 3×16-to-1 multiplexer. Constructing
such a multiplexer is difficult, and programming the source selection requires that you combine the individual 16-to-1 multiplexer control with the three channels(Table1). You can configurea group of analog multiplexers as a large, multiplane video multiplexer that easily selects

designideas

multichannel video sources, such as YC , RGB, and Y Pb Pr. The cited 3×16-to- 1 multiplexer comprises six 8 -to-1 multiplexers (Figure 1) controlled by a 4-bit binary code for source selection. (MAX4315 ICs include a 2V/V fixedgain output buffer.)

The only external circuitry required is an SN 7404 hex inverter for inverting the shutdown signals and 75Ω source and load resistors for implementing unity gain when driving a back-terminated load. Substituting a MAX4312 eight-channel video multiplexer

Figure 1 with variable-gain output buffer allows variable gain and rejects input commonmode voltages. Thehigh bandwidth and slew rateof theseICsmakethem ideal for selecting standard video and high-definition broadcast video, as well as graphics sources with UXGA and higher resolutionsfor KVM applications. Thedesign requires no additional buffering, because the ICs can directly drive 150Ω back-terminated coaxial cableto within less than 0.75 V of the supply rails, using single or dual supplies. Their 40 -nsec switching speed and $10-\mathrm{mV}$ p-p glitch voltage allow, in addition to source selection, insertion of on-screen display, closed captioning, and teletext in broadcast and graphics video.

Is this the best Design Idea in this issue? Select at www.edn.com.

TABLE 1	SOURCE-SELECTION			
PROGRAM MING				
RGB	A0	A1	A2	A3
1	0	0	0	0
2	1	0	0	0
3	0	1	0	0
4	1	1	0	0
5	0	0	1	0
6	1	0	1	0
7	0	1	1	0
8	1	1	1	0
9	0	0	0	1
10	1	0	0	1
11	0	1	0	1
12	1	1	0	1
13	0	0	1	1
14	1	0	1	1
15	0	1	1	1
16	1	1	1	1

This multiplane multiplexer selects any one of 16 input signals, each of which comprises red (a), green (b), and blue (c) channels.

Circuit provides watchdog for microcontrollers

VM Holla, Bangalore, India

> he wat chdog circuit in Figure 1 uses a single NAND Schmitt-trigger IC. The circuit is more costeffective than dedi cated, commercially available watchdog ICs. The circuit generates an active-high reset signal upon power-up and remains in a low stateas long as the control input receives pulses. Whenever the pulsing at the control input stops, whether thecircuit isin a high or Figure 1 a low state, the circuit emits a reset signal. Upon power-up, both inputs of gate $\mathrm{IC}_{1 c}$ are low, forcing the Reset output to switch high and the Reset to go low. Thus, the outputs of both IC_{18} and IC_{10} are high. The high outputs charge the capacitors in the circuit, and, when

This watchdog-timer circuit is a cost-effective alternated watchdog ICs.
both inputs of IC_{10} reach a high level, the Reset output goes low, and Reset goes high. Aslong as the control input receives pulses, the outputs of $I C_{1 B}$ and $I C_{10}$ de liver pulses. The pulses hold the input of gate $\mathrm{IC}_{1 \mathrm{C}}$ high and the Reset output low.

When the control signal remains in a high state, C_{2} begins discharging. When the control signal switches low, the Reset output goes high. The same scenario prevails with C_{1} when thecontrol signal remains low. You can choosethevalues of R_{1}, C_{1}, R_{2}, and C_{2} as a function of the watchdog-time duration and thereset pulsewidth required. With the values shown, the circuit is appropriate for MCS51-family microcontrollers. The duration of the watchdog time is approximately 300 msec , and the reset pulse width is approximately 10 msec .

Is this the best Design Idea in this issue? Select at www.edn.com.

Circuit translates ${ }^{2}$ ² voltages

Peter Liu, Optron X, Allentown, PA

This Design Idea explores levelshifting an ${ }^{2}{ }^{2} \mathrm{C}$ bus from $5 \mathrm{~V} /$ ground (positive domain) to ground/-5V (negative domain). In multisupply systems, you sometimes face a situation in which digital information stored in logic circuits running from 5 V to ground needs conversion to analog signals referenced to a negative supply. Converting from digital to analog in the positive domain and Figure 1 then level-shifting to referencethenegative rail introduces errors and results in a large component count. A better approach is to level-shift the digital data lines and convert with negativereferenced A / D converters. $I^{2} C$ is abidirectional system employing a two-wire bus: one clock line and one data line. Pullup resistors and open-collector outputs establish dominant-low signaling. Figure 1 shows a typical setup, in which

In this typical $I^{2} C$ configuration, the microcontroller is the master, and all the peripheral devices are slaves.
the microcontroller is the master, and all theperipherals areslaves. Each devicehas
a unique $I^{2} \mathrm{C}$ address. The master always generates the clock, but, depending on

designideas

the desired direction of data flow, either the master or the slave could be the transmitter on the data line.

Figure 2

To understand the level-shifting procedure, consider thesimplecircuit in Figure 2. The circuit level-shifts the clock line unidirectionally. Q_{1} comes with a pnp, an npn, and four bias resistors, all in one small SOT-363 package. R_{1} provides thenecessary pullup function in the positivedomain, and R_{2} does the samein the negative domain. The operation of the circuit isstraightforward. When $\mathrm{V}_{\text {IN }}$ is set to $\mathrm{V}_{\text {DD }}, \mathrm{Q}_{1}$ remains off, so $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (logic high). When $\mathrm{V}_{\text {IN }}$ is set to $0 \mathrm{~V}, \mathrm{Q}_{1}$ is on, so $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {EE }}$ (logic low). This unidirectional circuit does not allow the master to detect when the slave holds the clock low. Therefore, if you desirel ${ }^{2} \mathrm{C}$ clock-extension (wait-stating), you would need a bidirectional level-shifting circuit.

The dataline needs a bidirectional circuit. Even when the master is transmitting, the master needs to detect when the negative-domain slave pulls the data line low on every ninth bit to acknowledge the transmitted byte. Also, when instructed, the slave may need to transmit data back to the master. In the slavetransmitter mode, the slave would have to detect when the master pulls the data line low on every ninth bit to acknowledgethetransmitted byte. Despite this added complexity, you can still accomplish the task with just five SOT-363-size packages and five discrete resistors(Figure3). To seethat thecircuit in Figure 3 is topologically the same as theone in Figure2, assumetransmission gates IC_{1} and IC_{2} are on and ignore the lower half of the circuit for the moment. With SDA_POS set to $V_{D D}, Q_{2}$ is off, R_{3} and R pull up to $O V$, resulting in SDA_NEG $=0 \mathrm{~V}$ (logic high). With SDA POS set to $0 V, Q_{2}$ is on, so SDA-NEG~VEE (logic low)

Now, trace the return path from slave to master. With SDA_NEG set to OV (logic high), Q_{3} is off, and R_{1} pulls SDA_POS up to V_{DD}. With SDA_NEG set to V_{EE} (logic low), Q_{3} is on, and $R_{1} \| R_{2}$ forms ${ }^{E E}$ voltage divider with R_{5} to yield SDA_POS~OV. You select R_{1}^{5}, R_{2}, and R_{5} to yield $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $\mathrm{V}_{\text {EE }}=-5.2 \mathrm{~V}$. If desired, you could use additional transistors

Figure 3

This transistor arrangement level-shifts the data or clock signals from positive to negative levels.

A bidirectional level shifter translates data and clock signals from positive levels to negative levels, and vice versa
to construct the return path so that it doesn't depend on resistors to set logic levels. Transmission gates IC, and IC, and Schottky diodes $\mathrm{D}_{1 \mathrm{~A}}$ and $\mathrm{D}_{1 \mathrm{~B}}$ break the positivefeedback path that would otherwise result when either master or slave pullsSDA to a logic low. Note that, without these components, Q_{2} and Q_{3} would form a latch. The circuit in Figure 3 easily meets ${ }^{2} \mathrm{C}$ timing requirementsata 50 -
kHz clock rate. For $100-\mathrm{kH}$ z operation, it is best to use an M UN 5311, which has 10$\mathrm{k} \Omega$ internal resistors instead of $22 \mathrm{k} \Omega$. You can use thesamebidirectional circuit in Figure 3 for the clock signal, to cover all the $I^{2} \mathrm{C}$ modes of operation

Is this the best Design Idea in this issue? Select at www.edn.com.

