design ideas

IR distance ranger covers 1 to 20 cm

Paul Florian, McKinney, TX

Commercially available IR distance rangers typically handle a 3 - to $30-\mathrm{in}$. detection

Figure 1
distance. Many times, it is necessary to determine smaller distances. The circuit in Figure 1 is useful for measuring small distances to reflective surfaces. Its measurement range is from less than 1 cm to approximately 20 cm for a flat, white surface. The output of the circuit is an ac-tive-high pulse at connector P_{1}. A 12msec pulse corresponds to the minimum measurable distance; the output frequency is approximately 25 Hz . If the circuit detects no reflection, then the output at connector P_{1} remains high. $\mathrm{IC}_{1 \mathrm{~A}}$ is a 0.1 mA current source. The source charges C_{1} and produces a linear voltage ramp. Every 40 msec , the output of IC_{2} switches low and discharges C_{1} through $\mathrm{D}_{1} \cdot \mathrm{IC}_{1 B}$ and Q_{1} buffer the voltage on $C_{1} \cdot Q_{1}$ ramps the current through the IR LED from 0 to $60 \mathrm{~mA} . \mathrm{IC}_{3}$ is a synchronous-detection photo IC. IC_{3} 's output switches low when the IC detects a reflection from D_{2}.

When the reflection distance is small, not much current through the IR LED is
$I R$ distance ranger covers1 to 20 cm ..65
Digital volume controlhas log taper66
Tricks improve onExcel LCD initialization.68
Unidirectional counters accumulate bidirectional pulses 72
Circuit forms UPS for USB devices 74
Circuit forms high-frequencypolarity clamp76
Publish your Design Idea in EDN. See theWhat's Up section at www.ednmag.com.

IC_{1} : TEXAS INSTRUMENTS TLV2252IP.
IC_{2} : NATIONAL SEMICONDUCTOR LM555CN.
IC_{3} : HAMMAMATSU S6846. D_{2} : LUMEX OED-EL-1L2.

This circuit detects distances considerably lower than commercial IR rangers.

necessary to trigger the photo IC, and the pulse-width output is short. When the reflection distance is greater, it takes more current through D_{2} to trigger IC_{3}, and the pulse-width output is greater. The maximum pulse width is always less than 40 msec . The duration of the output pulse also depends on the color of the reflecting surface and the alignment of D_{2} and $\mathrm{IC}_{3} . \mathrm{D}_{2}$ and IC_{3} are spaced 0.5 in . apart. A piece of heat-shrink tubing shields the sides of D_{2}. To align the circuit, leave some extra lead length when you mount
D_{2} and IC_{3}. Next, make small bends in the positions of these components while monitoring the output pulse width to achieve the minimum pulse width for a given distance to a reflective surface. With careful adjustment, a detection range of 20 cm is possible to a flat, white surface. The detection distances for nonwhite surfaces are lower.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Digital volume control has log taper

Doug Farrar, Los Altos, CA

DIGITAL POTENTIOMETERS provide a compact and convenient way to attenuate audio-amplifier signals. However, most such potentiometers suffer from at least one flaw: a nonlogarithmic step increment. To avoid this prob-
lem, a user must usually step the potentiometer in a nonlinear sequence to simulate a logarithmic taper. For this reason, the potentiometer needs many taps, and you need software help to complete the design. The circuit in Figure 1 is a low-
cost, digitally attenuated audio amplifier that does not use a digital potentiometer. The circuit attenuates the signal in logarithmic steps, by using an inexpensive 8 -to- 1 analog switch as its "potentiometer." The resistor string, R_{1} through

Figure 1

This circuit sets audio gain logarithmically in 3-dB steps.

Figure 2

Up/down pushbutton switches step the gain in the circuit of Figure 1.
R_{8}, sets the gain of power amplifier IC_{1}. Analog multiplexer IC_{2} selects one of the eight tap voltages and applies it to IC_{1} 's inverting feedback node. Because only one bias current flows through the nonlinear switches, the topology introduces no measurable distortion.

The amplifier changes gain in 3-dB steps, starting from a high of 6 dB , then decreasing to $3 \mathrm{~dB}, 0 \mathrm{~dB}, \ldots-12 \mathrm{~dB}$, and finally $-\infty \mathrm{dB}$ (in other words, "mute" or "off") as you step the volume bits V_{2} to V_{0} from 7 to 0 . If you don't want to turn off the amplifier at the minimum-volume setting, you could change resistor R_{9} to a finite value for whatever end-atten-
uation level you desire. The assumption in Figure 1 is that your system has a way to generate the 3-bit volume codes. For those applications that do not have these bits available, you can use the circuit in Figure 2 to generate them. Pushing switches S_{1} and S_{2} clocks up/down counter IC_{3} up and down, respectively. Transistors Q_{1} and Q_{2} decode the counter's zero state and disable the down clock when the count reaches zero. In this fashion, the circuit limits the counter to a value of 0 to 7 . Once you attain a maximum or minimum volume, further pushes on the up and down switches, respectively, have no effect on the volume setting un-
til you go in the opposite volume direction. Standby-current consumption of the logic is almost entirely a function of the resistors you use for Q_{1} to Q_{3}, because the logic chips use almost no power. You can set a nonzero power-up volume by using IC_{3} 's load (LD) pin when you first apply power. In Figure 2, the counter powers up at a " 4 " volume, rather than " 0 " (muted). 74 HCXX logic operates over 2 to 7 V , but the power amplifier, IC_{1}, uses 2.7 to 5.5 V . Therefore, IC_{1} sets the operating-voltage range.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Tricks improve on Excel LCD initialization

Aubrey Kagan, Weidmüller Ltd, Markham, ON, Canada

Aprevious Design Idea on using Excel for LCD initialization relies on the user for cutting and pasting from Excel into an editor (Reference 1). It appears that it would take a minimum of six keystrokes or mouse strokes from one character to a new character to perform this operation. This procedure does not allow for the addition of comments, which would be advantageous in the maintenance of the character set. Over a set of 64 characters, a user would take nearly 400 actions. The use of macros would allow for the

Figure 1

This Excel configuration simplifies LCD-matrix initialization.
reduction of these keystrokes or mouse strokes and would probably improve the previous idea.

In using such macros, rather than copy the numbers associated with characters into the text editor, as the previous Design Idea suggests, you append each sequence of numbers to a text file. When the character set is complete, you can open the text file, massage it with find-and-replace techniques, and then paste
it as a whole into a target file. An added benefit is that each sequence appears on a single line rather than having a line for every row of the display. You can maintain this original file for use in both highlevel and assembly programs if the need for repeating the process ever arises.
The macro in Listing 1 performs the following tasks:

- Prompts the user for a comment as-
sociated with this character.
- Creates a line consisting of a leader, data separated by a delimiter, a comment symbol, and the comment already entered.
- Takes the file name from the spreadsheet. If the file does not exist, the macro creates a file with the line appended to it. Each time the macro runs, it opens, adds to, and closes the file.
- Clears the entries in the LCD matrix and sets the top-left cell of the matrix as active, ready for the next character.

All the parameters represent data in the cells of the spreadsheet. The file name is in cell A1. (The macro appends the ".txt.") Cell B26 has the leader, B27 has the comment symbol, and B28 has the delimiter between the numbers in the file. You can use this data in assembler or C or some other language, so the listing generalizes. C would ignore the "/* db */," and you could universally replace it with "db" if you use an assembler. Similarly, you could globally modi-
fy the comment notation, ";//" (with a space before the semicolon), in the text file as well. The trailing comma of the line of data is needed in C as part of a constant array but in assembler would generate an error. If you're using an assembler, the global search would look for the sequence ";//" and replace it with a space and a semicolon. Because of the inconsistent way text editors deal with tabs, the listing avoids using the tab character. By modifying the cells, you can easily customize the format. You can implement other changes by modifying the macro, written in Visual Basic for Applications. The following is a sample line from a file:
$/ * \mathrm{db}^{*} / 4,12,4,4,4,4,14, ; / /$ this is a" 1 " on a 5×7 matrix.

A button on the spreadsheet allows you to run the macro with a single click (Figure 1), so you need not switch from the mouse to the keyboard to run the macro. You can also run the macros from Ctrlkey combinations. (In Excel, you should note that, to run a macro, you must have completed data entry into a cell.) The matrix's 10×16-cell format is also generalized. You can alter this format by entering the number of columns in B3 and the number of rows in B4 and clicking on the Shade Matrix button. This action activates a second macro that shades out the cells not in use. Clicking on the Update to File button triggers a pop-up window requesting a comment. You need not enter the comment symbol, because the macro
automatically enters it. The macro then appends the line to the file. The unused rows do not appear in the file. You can download the Excel file in Listing 1 from the Web version of this Design Idea at www.endmag.com.

Reference

1. Bitti, Alberto, "Excel offers painless LCD initialization" (EDN, Sept 20, 2001, pg 98).

Is this the best Design Idea in this issue? Select at www.ednmag.com.

LISTING 1-SAVE-CHARACTER EXCEL MACRO

```
Sub SaveCharacter()
'SaveCharacter Macro
'Macro recorded 11/16/01 by Aubrey Kagan
'Keyboard Shortcut: Ctrl+Shift+T
If file does not exist then create it.
    Dim sFname As String
    Dim SX As String
    Dim iPoint As Integer
    Dim sComment As String
    Dim iUtil As Integer
    Dim iFileExists As Boolean
    sFname - Range("Al"), Value
    sFname = sFname & ".txt*
    sX - Dir(sFname)
    If sX< >"" Then
        iFileExists - True
    Else
        iFileExists = False
        Open sFname For Output As #1
        "take the comment symbols an place the file name as the first
        'comment
        sX - Range("B27").Value & SFname
        Print #1, sX
        Close #1
        'Flle created and saved
    End If
    'now we print a range of values across the page
    'associated with the bytes for the pixels
    iPoint = 24
    iPoint =iPoint - (Range("B4").Value - 1)
    5X - iPoint
    'converting typ to string
    sX = "R"& & X
    sX-sX & 'C14'
    'pointing at the start of the data
    Application.Goto Reference:=sX
    'get character description
```

sComment $=$ InputBox("Enter you comment for this Character", "Comment
Creation")
Open sFrame For Append As il
Print \#1, Range ("B26"). Value;
For iUtil $=0$ To (Range("B4"). Value - 1) $\mathrm{sX}=$ ((Point + iUtil)
sX - "R" \& s X
$\mathrm{sX}=\mathrm{s} \mathrm{X}$ \& " C 14 "
'placing the cursor at the data address Application.Goto Reference:=sX
Print \#1, ActiveCell. Value; Print N1, Range("B28").Value; 'print value followed by the delimiter Next
s Comment $=$ Range $\left({ }^{(} \mathrm{B} 27^{*}\right)$. Value \& s Comment Print \#1, sComment
'ensure all files are closed
Close
"as a final step clear the page for the next character
Range("D9:M24").Select
Selection.ClearContents
'move to the top left hand of screen
'first deal with rows
iPoint $=24$
iPoint - iPoint - (Range("B4"). Value - 1)
$\mathrm{sX}={ }^{2}$ Point
'type conversion
$\mathrm{sX}-{ }^{*} \mathrm{R}^{*}$ \& sX \& " C "
'concantenate for rows and add C for columns
iPoint $=13$
iPoint $=$ iPoint $-($ Range("B3") . Value -1$)$
sX-sX \& iPoint
'should do the conversion as well
Application_Goto Reference:-sX
End Sub

Unidirectional counters accumulate bidirectional pulses

Stephen Woodward, University of North Carolina, Chapel Hill, NC

QUADRATURE-OUTPUT incremental optical shaft encoders are popular in high-performance, bidirectional rotation-sensing applications. Available with resolution options extending beyond 2000 pulses/revolution, incremental encoders provide a fast, inexpensive, and reliable way to digitally read out bidirectional mechanical motion. The encoders are fast, too; you can usually operate them at $10,000 \mathrm{rpm}$ and faster. However, the interface logic they need can sometimes be somewhat problematic. Such logic typically includes at least one long-bit-length (for example, 16-bit) bidirectional counter. Although several handy peripheral chips, such as the 8253,8254 , and 9511 , are available that implement flexible unidirectional counting, bidirectional-counter chips are relatively scarce. ASICs exist

Figure 2
These timing signals illustrate the operation of the circuit in Figure 1.
that can provide the needed function, and hard-wired or programmable logic is a viable approach. Unfortunately, none of these alternatives is ideal from a cost or
pc-board-area standpoint. The configuration in Figure 1 combines the indus-try-standard 82C54 unidirectional counter-timer peripheral chip with simple software to provide a convenient interface of quadrature encoders with the ISA I/O bus. The technique digitizes bidirectional motion without tears.

As Figure 2 illustrates, the trick is to use two unidirectional counters of the three that the 82C54 contains. You use one counter for each encoder-rotation direction. One of the encoder quadra-ture-output signals, A, drives the gate pins of both counters. This connection selectively enables counting once every encoder-output cycle. A couple of Schmitt-trigger inverter stages phasesplit the other encoder output, B, into two complementary signals. One phase drives the trigger input of the clockwise counter (82C54, Counter 1); the other phase drives the trigger input of the

counterclockwise counter (82C54, Counter 2). The result is that only the clockwise counter, Counter 1, is active during the active B transition during clockwise rotation, and only the counterclockwise counter, Counter 2, is active during counterclockwise rotation.

Listing 1, written in MBasic, suffices to
periodically latch, read, and sum the counter contents to produce a continuous 32-bit readout of encoder position. You can download Listing 1 from the Web version of this Design Idea at www.ednmag.com. The technique can easily accommodate pulse rates as high as 500 kHz . Passive RC filtering and

Schmitt-trigger signal conditioning provide robust rejection of noise pickup in the encoder cabling. The design is thus suited for typical industrial motion-sensing applications.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Build a UPS for USB devices

Mark Cherry and Jean-Claude Ailloud, Maxim Integrated Products, Sunnyvale, CA, and France

Portable systems often include circuitry that derives power from an external source, such as USB. When the system disconnects from the USB supply, a battery takes over and supplies current via a dc/dc converter. A diode-OR connection (Figure 1) offers the easiest way to ensure that the supply voltage doesn't sag during this switchover to the battery. The diode's forward voltage drop, however, can reduce battery life and efficiency. The single-cell, boost-converter circuit with external PFET (Figure 2) is an improvement over the diode-OR connection. The PFET, Q_{1}, coupled with IC_{1} 's internal gain block, forms a linear regulator. The

Figure 1

A diode-OR connection is effective but lossy.

USB power supply has a diode-OR connection to Q_{1} 's source. Setting the boost converter's output to 3.4 V allows the drain of Q_{1} to regulate to 3.3 V . This con-

A boost-converter circuit is an improvement over the simple diode-OR connection.

Figure 3

These waveforms (bottom trace, load voltage) show that the load current suffers no interruption during a switchover from USB to battery.

Circuit forms high-frequency polarity clamp

Shyam Tiwari, Sensors Technology Private Ltd, Gwallor, India

You NEED A NEGATIVE signal clamp to protect an ADC against negative-going signals while measuring the positive pulse shape of the signal by digitizing the waveform. In other words, you must clamp negative signals at 0 V . The circuit in Figure 1 can clamp either positive or negative pulses to ground. The circuit uses a fast MAX477EPA amplifier to drive the Q_{1} or Q_{2} to clamp signals of either positive or negative polarity. Q_{1} forces negative signals to a 0 V level; Q_{2} does the same for positive signals. You use an spdt switch to choose the transistor of interest. The circuit works over 1 kHz to 10 MHz . You can also make the clamp operate at frequencies as high as 100 MHz by replacing C_{1} with a $1-\mathrm{k} \Omega, 0.5 \mathrm{~W}$ resistor. However, the output would need another

Figure 1

This simple circuit clamps either positive or negative signals to ground.
MAX477EPA buffer amplifier to drive the 50Ω signal cable, because the circuit's output impedance increases to $1 \mathrm{k} \Omega$.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

