ideas

Edited by Bill Travis

# Supply delivers pin-programmable multiple references

V Manoharan, Kochi, India

N THE CIRCUIT OF Figure 1, the REF01, IC<sub>1</sub>, is a buried-zener-diodebased, precision 10V reference that features minimal noise and drift over temperature. The circuit provides not Figure 1 only the 10V output of the REF01, but also a 5V output that a REF02 reference would deliver. In addition, the circuit provides -5V, -10V, and an unbalanced dual reference, the sum of whose voltages is precisely 10V. In addition to the REF01, the circuit uses a highly precise, unity-gain inverting amplifier, IC<sub>2</sub>. Tables 1 and 2 define the output voltages as a function of the jumper connections and as a function of the optional use of a REF02 reference in place

of the REF01. In **Figure 1**, assume the use of a REF01 reference, and that Point 1

| Supply delivers pin-programmable<br>multiple references | 87 |
|---------------------------------------------------------|----|
| Design an efficient reset circuit                       | 88 |
| One-shot provides frequency<br>discrimination           | 90 |
| Circuit forms novel floating current source             | 92 |
| Circuit provides Class D<br>motor control               | 96 |



This pin-configurable voltage reference delivers a variety of positive and negative output voltages.

connects to Point 2. (Pin 4 of IC<sub>1</sub> connects to ground.) IC<sub>2</sub> inverts the 10V output of IC<sub>1</sub> to deliver -10V at V<sub>OUT2</sub>.

Now assume that Point 1 connects to Point 3. (Pin 4 of  $IC_1$ connects to the output **TABLE 1** 

connects to the output of IC<sub>2</sub>). If V<sub>OUT1</sub> is at X volts, V<sub>OUT2</sub> assumes a level of -X volts. The REF01 forces exactly 10V between its output and Pin 4. Therefore, X-(-X)=10, 2X=10, and X=5V. In this arrangement, 5V and -5V are simultaneously available at V<sub>OUT1</sub> and V<sub>OUT2</sub>, respectively. To  $V_{OUT2}$ , you must ratiomatch  $R_1$  and  $R_2$  and also match their temperature coefficients. Now assume  $R_2/R_1=A$  and Point 1 connects to Point 3. In this case, the gain of the inverting amplifier is A. Therefore,  $V_{OUT1}$  and  $V_{OUT2}$  deliver unbalanced outputs, the sum of which is 10V. You can easily derive that  $V_{OUT1}=10/(1+A)$ and  $V_{OUT2}=-10A/(1+A)$ .

obtain precisely -5V at

The flexibility of this circuit eliminates the need to design and inventory several voltage sources. Moreover, the circuit can serve as a dual reference. The circuit finds application in D/A converters needing external references, portable instruments, digital multimeters, and A/D converters. It

is advisable to use the ultralow-offsetvoltage OP07 or ultralow-noise OP27 for the inverting amplifier.□

| TABLE 1                   | AVAILABLE            | OUTPUT                   | VOLTAGES                 |
|---------------------------|----------------------|--------------------------|--------------------------|
| Device<br>IC <sub>1</sub> | Jumper<br>connection | V <sub>outi</sub><br>(V) | V <sub>OUT2</sub><br>(V) |
| REF01                     | 1 to 2               | 10                       | — 10                     |
| REF01                     | 1 to 3               | 5                        | -5                       |
| REF02                     | 1 to 2               | 5                        | -5                       |
| REF02                     | 1 to 3               | 2.5                      | -2.5                     |

| TABLE 2 | <b>UNBALA</b> | NCED OUTPUT       | VOLTAGES          |
|---------|---------------|-------------------|-------------------|
| Device  |               |                   |                   |
| IC,     | $R_2/R_1$     | V <sub>out1</sub> | V <sub>OUT2</sub> |
| REF01   | Α             | 10/(1+A)          | - 10A/(1+A)       |
| RFF02   | Α             | 5/(1+A)           | -5A/(1+A)         |



### **Design an efficient reset circuit**

Guillermo Bosque, Asesoría e Integracion de Tecnologías, Urduliz, Spain



 $V_{REF}$ 

proper operation of a microprocessor. One requirement of an efficient reset circuit is that it operates properly over the intended temperature range—for exam-



ble compared with that of R<sub>3</sub>. But the value of  $R_{OUT}$  affects  $V_L$ , because R<sub>OUT</sub> and R<sub>3</sub> are additive when the comparator is in the high-impedance (off) state. Choosing values for  $V_{\rm \scriptscriptstyle HYST}$  and  $V_{\rm \scriptscriptstyle L}$ and knowing V<sub>REF</sub>, you obtain the following approximations:  $R_1 = R_2$  $(V_{L}/V_{REF}-1)$ , and  $R_{3}=R_{1}(V_{REF}/V_{HYST})$ . Now, you add a timing circuit to the hysteretic comparator (Figure 3). When V<sub>OUT1</sub> assumes a low level, V<sub>OUT2</sub> switches to a low level and discharges C<sub>RST</sub>. When V<sub>OUT1</sub> switches high, comparator IC, switches to its high-impedance state, and C<sub>RST</sub> begins to charge through R<sub>RST</sub>. V<sub>OUT2</sub> follows an exponential curve and arrives at a value,  $V_{RSTEND}$ , which signals the end of the reset signal (Figure 4). You can modify the t<sub>RST</sub> by adjusting the values of C<sub>RST</sub> and R<sub>RST</sub>. Now, if you add an-



One additional comparator produces a positive signal at the processor's reset port.



The complete reset circuit can handle microprocessors and other circuitry.

other comparator,  $IC_3$  (**Figure 5**), you obtain the waveforms of **Figure 6**.

The final reset circuit appears in Figure 7. The circuit has four comparators, one voltage reference, seven resistors, and three capacitors. To determine the resistor values, you can use the following equations:  $R_1 = R_2(V_L/V_{REF}-1)$ , and  $R_3 = R_1 (V_{REF} / V_{HYST})$ . An appropriate comparator IC is the quad LM239 (-25)to  $+85^{\circ}$ C) or the LM139 (-55 to  $+125^{\circ}$ C). The voltage reference is the 1.2V ICL8069CMSQ (-55 to +125°C). C<sub>1</sub> and C<sub>2</sub> stabilize high-frequency fluctuations and have values of 100 nF and 10  $\mu$ F, respectively. R<sub>REF</sub> has a value of 50 k $\Omega$ , and  $R_4$  and  $R_5$  have values of 5 to 100 k $\Omega$ , depending on the circuit you wish to control. If you chose  $V_L = 4.75 V$ ,  $V_{HYST} = 0.1 V$ , and  $R_2 = 10 \text{ k}\Omega$ , you obtain  $R_1 = 29.6 \text{ k}\Omega$  and  $R_3=355 \text{ k}\Omega$ . For timing the reset, you use the capacitor-charging equation,  $V=V_{CC}(1-e^{-t/RRST/CRST})$ .

The final instant of reset occurs when  $V=V_{REF}=1.2V$ . Choose 5V for  $V_{CC}$ . The equation then becomes  $t=-R_{RST}$ .  $C_{RST}ln(1-V/V_{CC})$ . If you choose t=1 sec and  $C_{RST}=10 \ \mu$ F, then

$$R_{RST} = \frac{t}{C_{RST} \left(1 - \frac{V}{V_{CC}}\right)}$$

You obtain  $R_{RST}$ =36.4 k $\Omega$ . If  $C_{RST}$ =1  $\mu$ F, then  $R_{RST}$ =364 k $\Omega$ . It's preferable to have a low value for  $C_{RST}$  because of the low current in the comparator's output transistor. Solving for  $R_2$ , you obtain  $R_2$ =10 k $\Omega$ .

### **One-shot provides frequency discrimination**

Victor Aksenenka, CSRI Elektropribor, St Petersburg, Russia

Vou USE A FREQUENCY discriminator to compare one signal frequency with another one. A functional feature, retriggering, of a monostable, oneshot 74xx123 multivibrator can yield frequency discrimination. **Figure 1** shows a frequency discriminator that determines the relation of inputpulse frequency to a reference frequency. The external components, R<sub>1</sub> and C<sub>1</sub>, set the reference frequency. These values determine the 74xx123's reference frequen-



This simple circuit can reveal whether an input frequency is above or below a reference frequency.



cy as follows:  $f_R = 1/t_w$ , and  $t_w = kR_1C_1$ . The multiplication factor k depends on C<sub>1</sub>'s value and the power-supply voltage. The rising edge of the input pulse starts the one-shot, whose output switches high for the interval t<sub>w</sub>. The same pulse edge sets the 74xx174 flip-flop to the same state as the output of **Figure 2** the one-shot. If the interval between pulses is longer than  $t_w$ , the next pulse arrives after the one-shot returns to its initial state. The one-shot's output is low, and the rising edge of the input pulse sets the flip-flop low. The low flipflop output indicates that the input-pulse frequency,  $f_{IN}$ , is lower than  $f_{R}$ .

If the interval between input pulses is



#### Figure 3

The output of the exclusive-OR circuit in Figure 2 is high only when the input frequency is between defined limits.



Doubling the circuit in Figure 1 and using an exclusive-OR circuit results in a window discriminator.

shorter than  $t_w$ , the next pulse arrives before the one-shot completes its cycle and returns to its initial state. The one-shot's output is high, and the rising edge of the input pulse sets the flip-flop high. A high flip-flop output indicates that the inputpulse frequency,  $f_{IN}$ , is higher than  $f_R$ . Doubling the circuit in **Figure 1** implements frequency discrimination with a "window" characteristic (**Figure 2**). Two pairs of R and C values determine the lower and upper reference frequencies. An exclusive-OR circuit takes the outputs of the upper and lower flip-flops. The exclusive OR's output is high when  $f_{IN}$  is between  $f_{RL}$  and  $f_{RH}$ . When  $f_{IN}$  is outside the frequency band  $f_{RL}$  to  $f_{RH}$  the exclusive OR's output is low. **Figure 3** shows the frequency-discrimination characteristic. With R and C values as in **Figure 2**, and the use of a 74LS123 one-shot,  $f_{RL}$ =16 kHz, and  $f_{RH}$ =46 kHz. Other types of one-shots could produce different results.

### **Circuit forms novel floating current source**

S Casans, AE Navarro, and D Ramirez, University of Valencia, Burjassot, Spain

IGURE 1 SHOWS A POLAR-IZATION circuit applicable ISFET (ion-sensitive to field-effect-transistor) sensors. ISFETs are solid-state chemical sensors that measure the pH value of a solution in biomedical and environmental applications, for example. The circuit in Figure 1 is extremely simple; it sets fixed-bias conditions for ISFET sensors  $(V_{DS} = I_0 R_x;$  $I_{DS} = I_0$ ). When a sen-**Figure 1** sor needs characteri-

zation, you must modify the bias conditions, thus increasing



bias conditions, thus increasing | This circuit is a classic configuration for biasing ISFET sensors.

the cost and the complexity of the bias circuit. The low-cost auxiliary module in Figure 2 implements a novel, voltagecontrolled floating current source. The current range covers the interval 0 to 100 µA. You implement this module to control the ISFET sensor's bias voltage, but you can apply it to any sensor that needs bias of 100 μA or lower. The floating current source uses three operational amplifiers, all portions of a Texas Instruments (www.ti.com) TL084. The cur-





This novel floating current source represents an improved way to bias ISFET sensors.

rent sources (I<sub>0</sub>) and the current mirrors (E<sub>1</sub> and E<sub>2</sub>)use the Burr-Brown (www.ti.com) REF200. The REF200 has two 100- $\mu$ A floating current sources (I<sub>0</sub>) and one current mirror E<sub>i</sub> (i=1, 2). The V<sub>R1</sub> and V<sub>R2</sub> voltages compensate the deviations arising from the operational amplifiers' offset voltages and the resistor tolerances. The V<sub>C</sub> voltage controls the currents  $I_1$  and  $I_2$ ; therefore, in the circuit in **Figure 2**,  $V_C$  controls the sensor bias voltage  $V_{DS}$ .

Figures 3 and 4 show the measured absolute errors occurring in the bias current and voltage, respectively. The main advantages of this current source are that it floats and that you can connect it to any circuit without changing its operating mode, because the currents  $I_1$  and  $I_2$  are complementary. Therefore, if  $I_1$  diminishes, the  $I_2$  current increases in the same proportion, and this action does not affect the other currents in the circuit. In the ISFET-sensor case, changing  $I_2$  via  $V_C$ allows you to vary the bias voltage applied to the sensor without changing the bias current,  $I_{DS}$ .





## **Circuit provides Class D motor control**

John Guy, Maxim Integrated Products, Sunnyvale, CA

**C** LASS D AUDIO AMPLIFIERS provide a dual benefit for battery-powered portable devices. They enhance battery life, and they produce much less power dissipation than do their linear cousins. Those features make Class D amplifiers ideal candidates for controlling speed and direction in small electric mo-

tors. The standard application circuit for a Class D audio amplifier,  $IC_1$ , requires only slight modifications. In place of the usual audio-signal input is a variable dc voltage that potentiometer  $R_2$  generates. Resistor  $R_1$  biases the potentiometer to match the input range of  $IC_1$ . Full-counterclockwise rotation of the potentiometer corresponds to maximum-speed reverse rotation of the motor. Midscale on the potentiometer corresponds to motor off, and fullclockwise rotation of the potentiometer



A Class D audio amplifier, IC,, helps implement this simple motor-speed controller.

produces maximum-speed forward rotation in the motor. The characteristics of a given motor may allow you to eliminate the amplifier's output filter, which comprises  $L_1$ ,  $L_2$ ,  $C_1$ , and  $C_2$ . But, unless the control circuitry is near the motor, you should include the filter to reduce EMI.