design ideas

Supply delivers pin-programmable multiple references

V Manoharan, Kochi, India

I:n the circuit of Figure 1 , the REF01, IC_{1}, is a buried-zener-diodebased, precision 10 V reference that features minimal noise and drift over temperature. The circuit provides not only the 10 V

Figure 1

This pin-configurable voltage reference delivers a variety of positive and negative output voltages.

obtain precisely -5 V at $\mathrm{V}_{\text {OUT2 } 2}$, you must ratiomatch R_{1} and R_{2} and also match their temperature coefficients. Now assume $\mathrm{R}_{2} / \mathrm{R}_{1}=\mathrm{A}$ and Point 1 connects to Point 3. In this case, the gain of the inverting amplifier is A. Therefore, $\mathrm{V}_{\text {OuT1 }}$ and $\mathrm{V}_{\text {OUT2 }}$ deliver unbalanced outputs, the sum of which is 10 V . You can easily derive that $\mathrm{V}_{\text {OUT1 }}=10 /(1+\mathrm{A})$ and $\mathrm{V}_{\text {OUT2 }}=-10 \mathrm{~A} /(1+\mathrm{A})$.

The flexibility of this circuit eliminates the need to design and inventory several voltage sources. Moreover, the circuit can serve as a dual reference. The circuit finds application in D/A converters needing external references, portable instruments, digital multimeters, and A/D converters. It
of the REF01. In Figure 1, assume the use of a REF01 reference, and that Point 1
Supply delivers pin-programmablemultiple references.87
Design an efficient reset circuit. 88
One-shot provides frequency discrimination 90
Circuit forms novel floatingcurrent source92
Circuit provides Class Dmotor control..96
Publish your Design Idea in EDN. See the What's Up section at www.edn.com.
connects to Point 2. (Pin 4 of IC_{1} connects to ground.) IC_{2} inverts the 10 V output of IC_{1} to deliver -10 V at $\mathrm{V}_{\text {out2 }}$.

Now assume that Point 1 connects to
is advisable to use the ultralow-offsetvoltage OP07 or ultralow-noise OP27 for the inverting amplifier. \square

Point 3. (Pin 4 of IC_{1} connects to the output of IC_{2}). If $\mathrm{V}_{\text {out } 1}$ is at X volts, $\mathrm{V}_{\text {OUT2 }}$ assumes a level of - X volts. The REF01 forces exactly 10 V between its output and Pin 4. Therefore, $X-(-X)=10,2 X=10$, and $X=5 V$. In this arrangement, 5 V and -5 V are simultaneously available at $\mathrm{V}_{\text {OUT1 }}$ and $\mathrm{V}_{\text {out2 }}$, respectively. To

TABLE 1-AVAILABLE OUTPUT VOLTAGES

Device	Jumper connection	$\mathbf{V}_{\text {our1 }}$	$\mathbf{V}_{\text {our2 }}$
IC	(V)	(V)	
REF01	1 to 2	10	-10
REF01	1 to 3	5	-5
REF02	1 to 2	5	-5
REF02	1 to 3	2.5	-2.5

TABLE 2-UNBALANCED OUTPUT VOLTAGES

Device

Device			
IC	$\mathbf{R}_{2} / \mathbf{R}_{1}$	$\mathrm{V}_{\text {outi }}$	$\mathrm{V}_{\text {out2 }}$
REFO1	A	10/(1+A)	$-10 \mathrm{~A} /(1+\mathrm{A})$
REF02	A	5/(1+A)	$-5 A /(1+A)$

design ideas

Design an efficient reset circuit

Guillermo Bosque, Asesoría e Integracion de Tecnologías, Urduliz, Spain

WHEN YOU WORK with microprocessors, you must ensure that when the power-supply voltage fluctuates to the minimum permissible level, V_{L}, that the processor's ALU continues to operate normally. Also, when you switch on the power supply, the ALU must operate normally when the supply voltage equals or exceeds

IF $\mathrm{t}<\mathrm{t}_{\mathrm{A}}$, THEN RESET.
IF $\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}},>\mathrm{t}_{\text {MIN }}$, THEN THE RESET DISAPPEARS. t_{C} : RESET INSTANT APPEARS.

Figure 1

A proper reset signal plays an important role in microprocessor operation.

Figure 2

This comparator has built-in hysteresis to provide a reset signal when the supply voltage falls outside the limit band.
a certain high level, V_{H}. The minimum and high levels constitute

Figure 5
a hysteresis band ($\mathrm{V}_{\mathrm{HYST}}=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$), and fluctuations in supply voltage within this band should not perturb the logic operations of the processor (Figure 1). A properly designed reset circuit can ensure proper operation of a microprocessor. One requirement of an efficient reset circuit is that it operates properly over the intended temperature range-for exam-

This circuit introduces a time constant in the reset function.
ple, -40 to $+85^{\circ} \mathrm{C}$. Several reset circuits are available that meet the voltage conditions, but the temperature constraints render them unsatisfactory. This Design Idea proposes a small, inexpensive re-set-circuit structure.

The supervisor circuit includes a comparator with hysteresis (Figure 2). The circuit represents a noninverting comparator; the voltage to supervise is V_{CC}. The comparator takes a sample of V_{CC} via the $\mathrm{R}_{1}-\mathrm{R}_{2}$ voltage divider and compares it with the reference voltage, $\mathrm{V}_{\text {REF }}$. You obtain $\mathrm{V}_{\text {REF }}$ by using a battery voltage, V_{BA}, but V_{CC} would work as well. The pullup resistor, $\mathrm{R}_{\mathrm{out}}$, is necessary to obtain a positive voltage at the output, because the comparator's output has an open-collector or open-drain structure. The following approximate and exact equations are based on selection of V_{H} and V_{L}. (Remember that $\left.\mathrm{V}_{\mathrm{HYST}}=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}.\right)$

The reset signal ends after one time constant in the circuit of Figure 3.

APPROXIMATE EQUATIONS	EXACT EQUATIONS
$\mathrm{R}_{1}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{\mathrm{L}}}{\mathrm{V}_{\text {REF }}}-1\right)$.	$\frac{\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{2} \mathrm{R}_{3}}=\frac{1}{\mathrm{R}_{1}}\left(\frac{\mathrm{~V}_{\mathrm{H}}}{\mathrm{V}_{\mathrm{REF}}}-1\right)$.
$\mathrm{R}_{3}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{REF}}}{\mathrm{V}_{\mathrm{HYST}}}\right)$.	$\frac{\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{\mathrm{OUT}}\right)}{\mathrm{R}_{1}+\mathrm{R}_{3}+\mathrm{R}_{\mathrm{OUT}}}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{REF}}}-1\right)$.

In the approximate equations, you disregard $\mathrm{R}_{\text {out }}$, because its value is negligi-

design ideas

ble compared with that of R_{3}. But the value of $R_{\text {out }}$ affects V_{L}, because \qquad $\mathrm{R}_{\text {out }}$ and R_{3} are additive when the comparator is in the high-impedance (off) state. Choosing values for $\mathrm{V}_{\mathrm{HYST}}$ and V_{L} and knowing $\mathrm{V}_{\text {REF }}$, you obtain the following approximations: $\quad \mathrm{R}_{1}=\mathrm{R}_{2}$ $\left(\mathrm{V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{REF}}-1\right)$, and $\mathrm{R}_{3}=\mathrm{R}_{1}\left(\mathrm{~V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{HYST}}\right)$. Now, you add a timing circuit to the hysteretic comparator (Figure 3). When $\mathrm{V}_{\text {out } 1}$ assumes a low level, $\mathrm{V}_{\text {out2 }}$ switches to a low level and discharges $\mathrm{C}_{\mathrm{RST}}$. When $\mathrm{V}_{\text {out1 }}$ switches high, comparator IC_{2} switches to its high-impedance state, and $\mathrm{C}_{\mathrm{RST}}$ begins to charge through $\mathrm{R}_{\mathrm{RST}}$. $\mathrm{V}_{\text {OUT2 } 2}$ follows an exponential curve and arrives at a value, $\mathrm{V}_{\text {RSTEND }}$, which signals the end of the reset signal (Figure 4). You can modify the $t_{\text {RST }}$ by adjusting the values of $\mathrm{C}_{\mathrm{RST}}$ and $\mathrm{R}_{\mathrm{RST}}$. Now, if you add an-

Figure 6
One additional comparator produces a positive signal at the processor's reset port.

The complete reset circuit can handle microprocessors and other circuitry.
other comparator, IC_{3} (Figure 5), you obtain the waveforms of Figure 6.

The final reset circuit appears in Figure 7. The circuit has four comparators, one voltage reference, seven resistors, and three capacitors. To determine the resistor values, you can use the following equations: $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{~V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{REF}}-1\right)$, and $\mathrm{R}_{3}=\mathrm{R}_{1}\left(\mathrm{~V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{HYST}}\right)$. An appropriate comparator IC is the quad LM239 (-25 to $+85^{\circ} \mathrm{C}$) or the LM139 (-55 to $+125^{\circ} \mathrm{C}$). The voltage reference is the 1.2 V ICL8069CMSQ $\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. C_{1} and C_{2} stabilize high-frequency fluctuations and have values of 100 nF and 10 $\mu \mathrm{F}$, respectively. $\mathrm{R}_{\mathrm{REF}}$ has a value of $50 \mathrm{k} \Omega$, and R_{4} and R_{5} have values of 5 to $100 \mathrm{k} \Omega$, depending on the circuit you wish to control. If you chose $\mathrm{V}_{\mathrm{L}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{HYST}}=0.1 \mathrm{~V}$, and $\mathrm{R}_{2}=10 \mathrm{k} \Omega$, you obtain $\mathrm{R}_{1}=29.6 \mathrm{k} \Omega$
and $\mathrm{R}_{3}=355 \mathrm{k} \Omega$. For timing the reset, you use the capacitor-charging equation, $\mathrm{V}=\mathrm{V}_{\mathrm{CC}}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RRST} / \mathrm{CRST}}\right)$.

The final instant of reset occurs when $\mathrm{V}=\mathrm{V}_{\mathrm{REF}}=1.2 \mathrm{~V}$. Choose 5 V for V_{CC}. The equation then becomes $t=-R_{\text {RST- }}$ $\mathrm{C}_{\mathrm{RST}} \ln \left(1-\mathrm{V} / \mathrm{V}_{\mathrm{CC}}\right)$. If you choose $\mathrm{t}=1 \mathrm{sec}$ and $\mathrm{C}_{\mathrm{RST}}=10 \mu \mathrm{~F}$, then

$$
\mathrm{R}_{\mathrm{RST}}=\frac{\mathrm{t}}{\mathrm{C}_{\mathrm{RST}}\left(1-\frac{\mathrm{V}}{\mathrm{~V}_{\mathrm{CC}}}\right)}
$$

You obtain $R_{\text {RST }}=36.4 \mathrm{k} \Omega$. If $\mathrm{C}_{\mathrm{RST}}=1$ $\mu \mathrm{F}$, then $\mathrm{R}_{\mathrm{RST}}=364 \mathrm{k} \Omega$. It's preferable to have a low value for $\mathrm{C}_{\mathrm{RST}}$ because of the low current in the comparator's output transistor. Solving for R_{2}, you obtain $\mathrm{R}_{2}=10 \mathrm{k} \Omega$. \square

One-shot provides frequency discrimination

Victor Aksenenka, CSRI Elektropribor, St Petersburg, Russia

YOU USE A FREQUENCY discriminator to compare one signal frequency with another one. A functional feature, retriggering, of a monostable, oneshot 74xx123 multivibrator can yield frequency discrimination.

Figure 1
Figure 1 shows a frequency discriminator that determines the relation of inputpulse frequency to a reference frequency. The external components, R_{1} and C_{1}, set the reference frequency. These values determine the $74 \times x 123$'s reference frequen-

This simple circuit can reveal whether an input frequency is above or below a reference frequency.

design ideas

cy as follows: $\mathrm{f}_{\mathrm{R}}=1 / \mathrm{t}_{\mathrm{w}}$, and $\mathrm{t}_{\mathrm{w}}=\mathrm{kR}_{1} \mathrm{C}_{1}$. The multiplication factor k depends on C_{1} 's value and the power-supply voltage. The rising edge of the input pulse starts the one-shot, whose output switches high for the interval t_{w}. The same pulse edge sets the $74 \times x 174$ flip-flop to the same state as the output of the one-shot. If the interval

Figure 2 between pulses is longer than t_{w}, the next pulse arrives after the one-shot returns to its initial state. The one-shot's output is low, and the rising edge of the input pulse sets the flip-flop low. The low flipflop output indicates that the input-pulse frequency, $f_{I N}$, is lower than f_{R}.

If the interval between input pulses is

Figure 3
The output of the exclusive-OR circuit in Figure $\mathbf{2}$ is high only when the input frequency is between defined limits.

Doubling the circuit in Figure 1 and using an exclusive-OR circuit results in a window discriminator.
shorter than t_{w}, the next pulse arrives before the one-shot completes its cycle and returns to its initial state. The one-shot's output is high, and the rising edge of the input pulse sets the flip-flop high. A high flip-flop output indicates that the inputpulse frequency, $f_{I N}$, is higher than f_{R}. Doubling the circuit in Figure 1 implements frequency discrimination with a "window" characteristic (Figure 2). Two pairs of R and C values determine the lower and upper reference frequencies.

An exclusive-OR circuit takes the outputs of the upper and lower flip-flops. The exclusive OR's output is high when f_{IN} is between $f_{R L}$ and $f_{\text {RH }}$. When $f_{I N}$ is outside the frequency band $f_{R L}$ to $f_{R H}$ the exclusive OR's output is low. Figure 3 shows the fre-quency-discrimination characteristic. With R and C values as in Figure 2, and the use of a 74LS123 one-shot, $\mathrm{f}_{\mathrm{RL}}=16$ kHz , and $\mathrm{f}_{\mathrm{RH}}=46 \mathrm{kHz}$. Other types of one-shots could produce different results.

Circuit forms novel floating current source

S Casans, AE Navarro, and D Ramirez, University of Valencia, Burjassot, Spain

FIGURE 1 shows a polarIZATION circuit applicable to ISFET (ion-sensitive field-effect-transistor) sensors. ISFETs are solid-state chemical sensors that measure the pH value of a solution in biomedical and environmental applications, for example. The circuit in Figure 1 is extremely simple; it sets fixed-bias conditions for ISFET sensors $\left(\mathrm{V}_{\mathrm{Ds}}=\mathrm{I}_{0} \mathrm{R}_{\mathrm{x}}\right.$; $\mathrm{I}_{\mathrm{DS}}=\mathrm{I}_{0}$). When a sensor needs characterization, you must modify the bias conditions, thus increasing

Figure 1

This circuit is a classic configuration for biasing ISFET sensors.
the cost and the complexity of the bias circuit. The low-cost auxiliary module in Figure 2 implements a novel, voltagecontrolled floating current source. The current range covers the interval 0 to $100 \mu \mathrm{~A}$. You implement this module to control the ISFET sensor's bias voltage, but you can apply it to any sensor that needs bias of $100 \mu \mathrm{~A}$ or lower. The floating current source uses three operational amplifiers, all portions of a Texas Instruments (www.ti.com) TL084. The cur-

- designideas
 ${ }^{\text {design }_{i} \text { ideas }}$

Figure 2

Circuit provides Class D motor control

John Guy, Maxim Integrated Products, Sunnyvale, CA

Class D audio amplifiers provide a dual benefit for battery-powered portable devices. They enhance battery life, and they produce much less power dissipation than do their linear cousins. Those features make Class D amplifiers ideal candidates for controlling speed and direction in small electric motors. The standard application circuit for a Class D audio am-

Figure 1 plifier, IC_{1}, requires only slight modifications. In place of the usual audio-signal input is a variable dc voltage that potentiometer R_{2} generates. Resistor R_{1} biases the potentiometer to match the input range of IC ${ }_{1}$. Full-counterclockwise rotation of the potentiometer corresponds to maximum-speed reverse rotation of the motor. Midscale on the potentiometer corresponds to motor off, and fullclockwise rotation of the potentiometer

A Class D audio amplifier, IC, helps implement this simple motor-speed controller.
produces maximum-speed forward rotation in the motor. The characteristics of a given motor may allow you to eliminate the amplifier's output filter, which com-
prises L_{1}, L_{2}, C_{1}, and C_{2}. But, unless the control circuitry is near the motor, you should include the filter to reduce EMI. \square

