design ideas

Digital potentiometer programs and stabilizes voltage reference

Chuck Wojslaw, Catalyst Semiconductor, Sunnyvale, CA

THe potentiometer portion of a mixed-signal, digitally programmable potentiometer adds variability to an analog circuit, and its Figure 1 digital controls provide programmability. You can use a digital potentiometer in two ways in an analog circuit. You can use it as a two-terminal variable resistance, or rheostat, or as a three-terminal resistive divider. Although both ways bring variability to the analog circuit, the three-terminal implementation usually brings other important characteristics as well. For example, a programmable voltage reference has two implementations. The circuit in Figure 1 is a voltage reference whose output, $\mathrm{V}_{\text {out }}$, depends on the 1.25 V reference of the shunt regulator, $\mathrm{IC}_{1}, \mathrm{R}_{1}$, and the programmable resistance $\mathrm{R}_{2}=\mathrm{pR}_{\text {pot }}$. The value of p varies from 0 to 1 ; it represents the proportional setting of the wiper from one end, 0 , to the other, 1 . For this circuit, $\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\mathrm{pR}_{\mathrm{POT}} / \mathrm{R}_{1}\right)$. As p varies from 0 to $1, \mathrm{~V}_{\text {OuT }}$ varies from 1.25 V to
Digital potentiometer programs and stabilizes voltage reference \qquad
Add voice command to virtual instrumentation. \qquad
Switch debouncer uses only one gate...... 84
Power meter is $\pm 1 \%$ accurate. .86
Circuit controls brightness of multiple displays.88
Difference amplifier uses digital potentiometers 90Switching regulator formsconstant-current source92

Publish your Design Idea in EDN. See the What's Up section at www.ednmag.com.

Figure 2

In this circuit, the potentiometer's temperature coefficient adversely affects that of $\mathrm{V}_{\text {our }}$.

This circuit has low component count, low temperature coefficient, and enhanced programming accuracy.
some maximum value established by R_{d} and the potentiometer's end-to-end resistance, $\mathrm{R}_{\mathrm{POT}}$. The temperature coefficient of $\mathrm{V}_{\text {OUT }}$ is proportional to those of the LM4041CIZ regulator's 1.25 V reference, R_{1}, and $\mathrm{R}_{\mathrm{por}}$. The temperature coefficient of the reference voltage and a quality resistor are lower than 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. However, the temperature coefficient of $R_{\text {POT }}$ is not guaranteed and can run in the hundreds of parts per million per degrees Celsius. Thus, the temed values.
perature stability of $\mathrm{R}_{\mathrm{pot}}$ has adverse effects on the temperature coefficient of $\mathrm{V}_{\text {out }}$. The programmable voltage-reference circuit in Figure 2 uses the potentiometer as a three-terminal device. For this circuit,
$\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}\left\{1+\frac{\mathrm{pR}_{\mathrm{POT}}}{(1-\mathrm{p}) \mathrm{R}_{\mathrm{POT}}}\right\}$
$=1.25 \mathrm{~V}\left(\frac{1}{1-\mathrm{p}}\right)$.
This implementation shifts the temperature dependence of $\mathrm{V}_{\text {out }}$ on the potentiometer from the high temperature coefficient of $\mathrm{R}_{\mathrm{POT}}$ to the potentiometer's low ratiometric temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It also reduces component count and cost and increases programming accuracy. The 15% accuracy of $R_{\text {POT }}$ is the dominant factor in the accuracy of $\mathrm{V}_{\text {out }}$ in the circuit of Figure 1. In the circuit of Figure 2, the potentiometer's 1% linearity is the dominant factor in the accuracy of $\mathrm{V}_{\text {out }}$. For the values shown in Figure 2, the 100-tap CAT5113 digitally programmable potentiometer provides for a variable, temper-ature-stable $\mathrm{V}_{\text {Out }}$ of 1.25 to 5.5 V $(0 \leq \mathrm{p} \leq 0.77)$. The measured data correlates to better than 1% with the calculat-

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Add voice command to virtual instrumentation
Alexander Bell, Infosoft International Inc, Rego Park, NY
\qquad ebates still persist in the engineering community about the relative merits of analog and digital controls of in- \square Figure 1 strumentation. Meanwhile, a revolutionary new type of control-voice-command control-is gaining acceptance in many application areas (Reference 1). This Design Idea focuses on the practical implementation of the Voice Commander voice-command interface in a virtual-instrumentation project. The beauty of the method lies in the fact that a single Microsoft Excel file, vScope VC.xls, encapsulates the entire voicecommand system. The Excel file comprises two worksheets, vScope and vScopeData; two standard code modules; and a small portion of code in the This Workbook code module. You can download the relevant software from the Web version of this Design Idea at www.edn mag.com. Using the terminology and the concept of modern multitiered software architecture, the voice-command method embraces the user-interface and the business-logic layers.

The simulated-data layer is in the v ScopeData worksheet. Column A contains the samples' ordinal numbers ($\mathrm{i}=1$, 2, ...64), Column B contains simulated signal-amplitude samples $(\mathrm{V}=\sin (6.28 \times$ $2 \times \mathrm{i} / 64)+0.5 \cos (6.28 \times 10 \times \mathrm{i} / 64))$, and columns C and D contain calculated complex-FFT and signal-amplitude spectra, respectively. By adding the actual data source (signal samples captured by a data-acquisition board or database query for historical data analysis) and linking it to Column B, you can expand the technique to a "full-flavored" virtual instrument or analytical tool with voice-command interface.

The vScope worksheet contains the Chart Object (called "Chartl" in the downloadable macros), formatted to emulate the actual oscilloscope screen (Figure 1). A custom toolbar appears at the top of the display, which contains control buttons. The buttons are associated with macros that execute when you press the button or say the com-

LANGUAGE TOOLBAR IN MS EXCEL 2002 IS SHOWN IN A VOICE-COMMAND MODE. (THE USER ENTERED THE "SPLIT" CUSTOM COMMAND.) TEMPORARY CUSTOM TOOLBAR IS DYNAMICALLY CREATED ON THE FILE_OPEN EVENT.

This screen snapshot uses the time-domain mode with horizontal zoom and split-view on to see signal details at the beginning and end of the scale.

These signal-amplitude spectra correspond to a 64-point FFT with 32 spectral components.

! I! !
 design= ideas

mand, corresponding with button's caption. Note that the voice-command feature is available only in the latest Excel 2002 Office application. Table 1 shows the list of custom commands. The Chart Object dynamically links via macros to the simulated data in the vScopeData worksheet. The Business Logic portion of the routine is programmed in VBA (macros) and partially in Excel worksheet functions. It contains a 64 -point FFT, based on the Excel add-in functions. To use this feature, install Analysis Tool-VBA from the Tools-Add-Ins menu item. You can expand the business-logic and user-interface layers by including different digitalfiltering and windowing techniques and by adding multiple channels, for example.

Upon opening the Demo file, a temporary custom toolbar appears at the top of the display (Figure 1). In Excel 2002, activate the speech tools: Go to the Tools-Speech—Speech Recognition menu item and then choose the Voice

TABLE 1-VOICE-COMMAND DESCRIPTIONS

Voice command	Description
Go scope	CCstomize screen settings to maximize viewing area
Reset Excel	Reset standard Excel screen settings
Time Domain	Time-domain mode
Spectra	Show signal-amplitude spectra
Zoom H	Zoom horizontal axis
Unzoom	Unzoom horizontal axis
Split	Toggle split-screen mode on/off
Smooth	Toggle line smoothing on/off
Linear	Use linear scale (vertical axis)
Log	Use logarithmic scale (vertical axis)
Grid lines	Turn major/minor gridlines on/off (three-state logic)
End	Close file without saving and end the vScope session

signal at the same time. When you say, "spectra," the signal-amplitude spectra screen appears (Figure 2). You can use this technique with Excel 95, 97, and 2000, but you must use the custom toolbar instead of voice commands. Note that when you enable macros in Excel or other applications, some macros could perform potentially dangerous and harmful actions, and some may contain viruses. The

Command mode. In this mode, you can enter the command either by saying it or by clicking the button on the toolbar. For example, by clicking on or saying "go scope," you can maximize the view by temporarily removing some standard screen components. You can restore the components by clicking or by saying, "reset Excel." The Split command allows you to open two pseudowindows with independent horizontal scrolling. This feature lets you see the rising and falling edges of the long, or horizontally "zoomed,"
code for this Design Idea is on an as-is basis without warranty of any kind. The vScope VC.xls file is for demo purpose only, and commercial use of this file is prohibited.

Reference

1. Bell, Alexander, "Add voice commands to your CAD system," EDN, May 2, 2002, pg 77.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Switch debouncer uses only one gate

Steven Robertson, Anritsu Co, Morgan Hill, CA

The circuit in Figure 1 produces a single debounced pulse each time you press S_{1}. Moreover,

Figure 1

This switch-debouncer circuit consumes virtually no power.
ward $V_{S S}$. Once C_{1} charges sufficiently, IC_{1} goes to $\mathrm{V}_{\text {sS }}$ and stops drawing power. This action unloads $V_{D D}$ and causes $V_{\text {out }}$ to return to a high state. D_{1} to D_{3}, in conjunction with R_{3}, shifts the level of
$\mathrm{V}_{\text {OUT }}$ for improved compatibility with CMOS logic.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Power meter is $\pm 1 \%$ accurate

Ken Yang, Maxim Integrated Products, Sunnyvale, CA

POWER METERS provide
an early warning of thermal over-

Figure 2

load by monitoring power consumption in high-reliability systems. Power monitoring is especially suitable for motor controllers, industrial heating systems, and other systems in which the load voltage and current are both variable. The power meter/controller in Figure 1 uses the principle that power is the product of voltage and current. The typical accuracy of the circuit is better than $\pm 1 \%$. A current sensor, IC_{2}, measures output current, and a four-quadrant analog-voltage multiplier, IC_{1} and IC_{3}, generates the product of output voltage and current. An optional uni-ty-gain inverter, IC_{4}, inverts the inverted multiplier output. This power meter is most accurate for multiplier inputs (J_{1} and J_{2}) of 3 to 15 V . Select the currentsense resistor as follows: $\mathrm{R}_{\text {SENSE }}=1 / \mathrm{P}$, where $R_{\text {SENSE }}$ is in ohms, and P is the output power in watts. If power delivery to the load is 10 W , for example, you would choose $\mathrm{R}_{\text {SENSE }}=0.1 \Omega$.

The measured power is better than $\pm 1 \%$ accurate for power levels of 3 to $14 W$.

The circuit in Figure 1 has a unity-gain transfer function, in which the output voltage is proportional to load power. For instance, the output voltage is 10 V when the load power is 10 W . To change the transfer-function gain, change the sense resistor as follows: Gain $=10 \mathrm{R}_{\text {SENSE }}$. For the circuit in Figure 1, Figure 2 compares power-measurement error with load power. Note that accuracy is better than $\pm 1 \%$ for load power of 3 to 14 W . For proper operation, you must first calibrate the analog multiplier according to the following procedure. Remover jumpers J_{1} (X input) and J_{2} (Y input) before calibration.

- X-input offset adjustment: Connect a $1-\mathrm{kHz}, 5 \mathrm{~V}$ p-p sinusoidal signal to the Y input, and connect the X input to ground. Using an oscilloscope to monitor the output, adjust R_{X} for an ac null (zero amplitude) in the sinusoidal signal.
- Y-input offset adjustment: Connect a $1-\mathrm{kHz}, 5 \mathrm{~V}$ p-p sinusoidal signal to the X input, and connect the Y input to ground. Using an oscilloscope to monitor the output, adjust R_{Y} for an ac null (zero amplitude) in the sinusoidal signal.
- Output-offset adjustment: Connect both X and Y inputs to ground. Adjust $\mathrm{R}_{\text {OUT }}$ until the dc output voltage is 0 V .
- Scale factor (gain): Connect both X and Y inputs to 10 V dc. Adjust $\mathrm{R}_{\text {SCALE }}$ until the output voltage is 10 V d.
- Repeat the preceding steps as necessary.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Figure 1

This power meter, whose output voltage is proportional to load power, achieves $\pm 1 \%$ accuracy.

Circuit controls brightness of multiple displays

Stephan Goldstein, Analog Devices, Wilmington, MA

Irecently needed to control nine seven-segment displays for a microcontroller's serial port. The complication I faced was the need to provide a continuous brightness adjustment for all the digits-from completely dark to fully bright. I couldn't easily use the obvious solution of a string of 74 HC 595 serial-toparallel converters driving the segments through series resistors, because I would have needed a variable power supply for the displays-an inefficient and inelegant approach. I considered using software to control the duty cycle of the displays' drive signal, but as a long-time analogcircuits guy, I felt honor-bound to find a way that wouldn't require writing any more code. Besides, I'd used up all the I/O pins on my microcontroller, so a software solution would have entailed changing processors. Allegro Microsystems (www. allegromicro.com) offers several parts for driving common-anode displays. Each includes a serial-data interface and an onchip control loop that sets equal on-currents for all the segments, using a single resistor to ground. I selected the Allegro A6275E (Figure 1), which neatly match-
es up one chip per display digit. Now, I had to simultaneously vary nine resistors.

I cheated, of course. Instead of varying the resistors, I moved their apparent ground point with a simple analog control circuit comprising a dual op amp, a power MOSFET, and a few passive components. $\mathrm{IC}_{1 \mathrm{~A}}$ provides a buffered version of the A6275's nominal 1.23 V reference voltage to the top of the potentiometer, preventing the potentiometer's loading from affecting the segment currents of the "master" A6275. $\mathrm{IC}_{1 \mathrm{~B}}$ drives Q_{1} 's gate and forces Q_{1} 's drain voltage to be equal to the voltage at the potentiometer's wiper. This action varies the voltage across the 909Ω resistor between (almost) ground and the reference voltage and yields a smooth intensity control from maximum (20 mA for a 909Ω resistor) to zero. The slight variations in A6275 reference voltages and the tolerances of the 909Ω resistors add to the normal variations in intensity from digit to digit, but these variations were unnoticeable in my application.

One important point to note is the connection of $\mathrm{IC}_{1 \mathrm{~B}}$: The feedback from
Q_{1} 's drain goes to the IC's noninverting input. The MOSFET adds an inversion inside the main loop, so using the op amp's noninverting input as the feedback point results in overall negative feedback. C_{1} and R_{3} create the loop's dominant pole, and R_{2} isolates Q_{1} 's gate capacitance to ensure that $\mathrm{IC}_{1 \mathrm{~B}}$ doesn't oscillate. Allegro cautions against excessive capacitance at the A6275's reference pin, so I used R_{5} to isolate $\mathrm{IC}_{1 \mathrm{~A}}$'s input capacitance from this point. IC_{1} must have a rail-torail output, its input must operate down to the negative rail, and it must operate with a total supply span of $5 \mathrm{~V} . \mathrm{Q}_{1}$ needs to have low on-resistance with 5 V gate drive. Using the STP30NE06L from ST Microelectronics (www.stmicroelectron ics.com) was probably overkill at 0.045Ω, but the price was right at less than $\$ 1$. The remaining components are noncritical. You may want to experiment with different potentiometer tapers; in my case, an audio taper gave a pleasing "feel" to the brightness control.

Is this the best Design Idea in this
issue? Select at www.ednmag.com.

An analog control loop provides an adjustable "ground" node to control the current flowing through the resistors that set the segment currents.

Difference amplifier uses digital potentiometers

Reza Moghimi, Analog Devices, San Jose, CA

You sometimes need to measure a small signal in the presence of a large common-mode signal.

A low-cost difference amplifier uses digital potentiometers to set the gain. gain setting and trimming in a single step. Autozero amplifiers, such as the AD8628 and the AD855x family, are the best choices in these types of applications. They have high dc accuracy and add negligible errors to the out-

Figure 2

 put. The long-term stability of the autozero amplifiers eliminates the need for repeated calibration. With a minimum common-mode rejection ratio of 140 dB for the autozero amplifier, the resistor match is the limiting factor in most circuits. The transfer function of the circuit in Figure 1 is:$\mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{R}_{\mathrm{W} 1 B 2}}{\mathrm{R}_{\mathrm{W} 1 \mathrm{~A} 2}}\left[\frac{\left(1+\frac{\mathrm{R}_{\mathrm{W} 1 B 22}}{\mathrm{R}_{\mathrm{W} 1 \mathrm{~A} 2}}\right)}{\left(1+\frac{\mathrm{R}_{\mathrm{W} 2 \mathrm{~A} 1}}{\mathrm{R}_{\mathrm{W} 2 \mathrm{~B} 1}}\right)} \mathrm{V}_{2}-\mathrm{V}_{1}\right]$,
where $\mathrm{R}_{\mathrm{AnBn}}=$ nominal end-to-end resistance; $\mathrm{R}_{\mathrm{WnBn}}=$ terminal resistance, W to B : $\mathrm{R}_{\mathrm{WB}}=\mathrm{R}_{\mathrm{AB}} \times \mathrm{D} / 2^{\mathrm{N}} ; \mathrm{R}_{\mathrm{WnAAn}}=$ terminal resistance, W to $A: R_{W A}=R_{A B}-R_{W B}=R_{A B}$ $\left(1-\mathrm{D} / 2^{\mathrm{N}}\right) ; \mathrm{D}=$ decimal equivalent of the binary word; and $\mathrm{N}=$ number of bits.

A special situation arises when $\left(\mathrm{R}_{\mathrm{W} 1 \mathrm{~B} 2}\right) /\left(\mathrm{R}_{\mathrm{W} 1 \mathrm{~A} 2}\right)=\left(\mathrm{R}_{\mathrm{W} 2 \mathrm{~A} 1}\right) /\left(\mathrm{R}_{\mathrm{W} 2 \mathrm{~B} 1}\right)$. The transfer-function equation reduces to

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}} \frac{\mathrm{R}_{\mathrm{W} 1 \mathrm{~B} 2}}{\mathrm{R}_{\mathrm{W} 1 \mathrm{~A} 2}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{2}
\end{equation*}
$$

You can see that the output is the dif-
A plot for common-mode rejection ratio versus frequency for the circuit in Figure 1 yields a figure of 98 dB .
ference of the two inputs times a gain factor that you can set to any desired gain, including unity. Equation 2 holds true because the same chip integrates all the resistors; therefore, their values match tightly. The low-frequency commonmode rejection ratio is approximately 98 dB (Figure 2). Because of the tight matching, the circuit can achieve a tem-
perature coefficient of $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Although the circuit has lower performance than precision instrumentation amplifiers, it is adequate for many low-cost applications.

Is this the best Design Idea in this issue? Select at www.ednmag.com.

Switching regulator forms constant-current source

Stefan Strozecki, Institute of Telecommunications, Bydgoszcz, Poland

MANY APPLICATIONS REQUIRE Current sources rather than voltage sources. When you need a highcurrent source, using a linear regulator is inadvisable, because of the high power dissipation in the series resistor. To solve the wasted-power prob-

Figure 1 lem, you can use a switch-mode regulator. The circuit of Figure 1 uses IC_{1}, an LM2576 adjustable regulator. It needs only a few external elements and has an adjustable sensing input, which you use for controlling the output current. Resistor R_{SC} is a current sensor. $\mathrm{IC}_{2 \mathrm{~A}}$, one-half of a TL082 op amp, operates as a difference amplifier. When $R_{1}=R_{2}=R_{3}=R_{4}$, the output voltage is proportional to the current flowing in R_{SC}. Good commonmode rejection and a wide commonmode voltage range are important, because the amplifier works with large, changing common-mode signals.

The second half of the TL082 op amp, $\mathrm{IC}_{2 \mathrm{~B}}$, operates as a noninverting amplifi-

er. The required gain depends on the output current you need: $G=V_{\text {REF }} / V_{\text {SC }}$, where G is gain, $\mathrm{V}_{\mathrm{REF}}$ is the voltage on the sensing input of the LM2576, and $V_{S C}$ is the voltage across $R_{S C}$. Note that $\mathrm{V}_{\text {SC }}=\mathrm{I}_{\text {OUT }} \mathrm{R}_{\text {SC }}$, where $\mathrm{I}_{\text {OUT }}$ is the output current. For example, if $\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$ and $\mathrm{R}_{\mathrm{SC}}=0.12 \Omega$, then $\mathrm{V}_{\mathrm{SC}}=0.24 \mathrm{~V}$. Typically, for the LM2576, $\mathrm{V}_{\mathrm{REF}}=1.237 \mathrm{~V}$. So, you can obtain the gain of the noninverting amplifier from the gain equation: $\mathrm{G}=5.15 \mathrm{~V} / \mathrm{V}$. The overall gain of the noninverting amplifier is $G=1+\mathrm{R}_{7} / \mathrm{R}_{6}$. If
$R_{7}=100 \mathrm{k} \Omega$ and $G=5.15$, you can solve for $R_{6}(24.1 \mathrm{k} \Omega)$. When you need a precise output current, you can replace the fixed resistor, R_{6}, with a series connection of a fixed resistor and a potentiometer. Tests showed that the output current is practically constant with varying loads. For example, the 2 A output current changed less than 1% for an output-voltage range of 0.3 to 15 V .

Is this the best Design Idea in this issue? Select at www.ednmag.com.

