design ideas

Where is the wiper?

Chuck Wojslaw and Dave Gillooly, Catalyst Semiconductor, Sunnyvale, CA

YOU ENJoY SIGNIFICANT advantages when using DPPs (digitally programmable potentiome-

Figure 1
ters) with increment/decrement serial interfaces. Programming the serial interface is simple and fast, and you can adjust the potentiometer in real-time applications. The interface, however, provides no information about wiper position, and this information is important in some applications. If, for example, you use the potentiometer to control a parameter in a closed-loop, real-time application, the data reflecting the final wiper settings can be valuable in evaluating both the product performance and the circuit design. The circuit in Figure 1 keeps a digital record of the DPP's wiper position by using two presettable CD4029 up/down counters, IC_{2} and IC_{3}. The counters monitor the control signals $\overline{\mathrm{INC}}$ and $\mathrm{U} / \overline{\mathrm{D}}$ of the DPP, IC.

During power-up, the wiper assumes position (00) ${ }_{10}$, which it takes from previously programmed nonvolatile memory. Also during power-up, R_{1} and C_{1} differentiate the 5 V power supply; this
Where is the wiper? 107PLD code createsPWM generators.108
Square-wave modulator has variablefrequency and pulse width.110
Expanded-scale indicator revisited 112
Butterworth filter has adjustablegroup delay114Single transistor sequencesmultiple supplies116
Publish your Design Idea in EDN. See the What's Up section at www.edn.com.

Two up/down counters keep track of a digitally programmable potentiometer's wiper position.

differentiated signal serves to preset the binary counters to $(00000000)_{2}$. Thus, the DPP and the external $\mathrm{IC}_{2} / \mathrm{IC}_{3}$ counters are at the same point after power-up. The level-sensitive up/down signal establishes the direction of movement of the DPP's wiper and the direction of the count. The edge-sensitive $\overline{\mathrm{INC}}$ signal advances both the wiper and the counter. The $\overline{\text { INC }}$ pin of the DPP responds to neg-ative-edge triggering, and the clock input of the counter responds to positive-edge triggering. If the signal driving the $\overline{\mathrm{INC}}$ line is a pulse (a common occurrence), the two inputs are compatible.
The Q outputs of the counters (DB0 to DB7) indicate in binary notation the location of the wiper. You can use the same circuit, using two counters, for

DPPs having as many as 256 taps. The DPP does not "wrap around" when the wiper advances to its upper or lower limit. The counters, however, do wrap around. To identify the case in which the digital counter is not in synch with the DPP, you can use the MSBs of the counters as flags. DB7 can serve as a flag for the 32-tap CAT5114 and the 100-tap CAT5113. You can change the initial count during power-up to something other than zero by preprogramming the DPP and setting high and low levels on the JAM inputs of the digital counters to the desired value.

Is this the best Design Idea in this issue? Select at www.edn.com.

PLD code creates PWM generators

Clive Bolton, Bolton Engineering Inc, Melrose, MA

THE PLD (programmable-logicdevice) code in Listing 1 creates arbitrary-resolution, pulse-widthmodulated (PWM) generators. PWM generators are useful as low-bandwidth D/A converters in hardware of micro-processor-based systems. When you pass it through a simple RC lowpass filter, a PWM waveform becomes a voltage that's approximately equal to the PWM duty cycle times the supply voltage. In practical systems, the driving hardware is imperfect, so the minimum value is never zero, and the maximum value never equals the positive-voltage rail.

The software module in Listing 1 automatically generates the required hardware from two compile-time parameters: PWM_WIDTH and AVALUE. PWM_ WIDTH sets the number of possible steps in the PWM comparison. For example, 6 bits yields 2^{6}, or 64 , steps. AVALUE sets the value at which the PWM initializes upon power-up or reset (set to one-half scale in the example in Listing 1).

The module has two major sections: a holding register, which stores the PWM value, and a counter, which generates the PWM waveform. You can update the holding register independently of the PWM counter. The holding register's value automatically strobes into the PWM counter when the counter overflows. The module takes the CLOCK, ACLR, ENABLE, WRITE, and DATA[PWM_ WIDTH-1..0] inputs. CLOCK is the master system clock; all signals other than ACLR must be synchronous with the clock's rising edge. ACLR initializes the hardware to the power-up state and loads AVALUE into the holding register. When ENABLE $=0$, the PWM output becomes 0 (off); when ENABLE $=1$, the PWM generator produces the PWM waveform at the Q output. Asserting WRITE for one clock cycle strobes the data presented on DATA[PWM_ WIDTH-1..0] into the holding register. The PLD code uses Altera's (www. altera.com) AHDL high-level design language; you can directly compile the code

LISTING 1-AHDL CODE FOR PWM GENERATOR

into any of Altera's PLDs. Using an EP1K10TC100-3 PLD, a design with parameters set to the default values in Listing 1 operates as fast as 139 MHz . Although we wrote the code for Altera's
devices, you can readily translate the design structure and flow into VHDL or Verilog. You can download Listing 1 from the Web version of this Design Idea at www.edn.com.

Is this the best Design Idea in this issue? Select at www.edn.com.

Square-wave modulator has variable frequency and pulse width

Michael Fisch, Agere Systems, Longmont, CO

AFEW YEARS AGO, I worked at a diskdrive company. We had a plating facility that required square waves to drive the high-voltage plating operation. The challenge was that the square wave's pulse width had to be variable, along with the duty cycle. Also, the amplitude of the pulses had to be adjustable. The circuit in Figure 1 satisfies all these criteria. The circuit delivers a unipolar (adjustable from 0 to 12 V) pulse with adjustable fre-
quency and pulse width. The first half of a dual, retriggerable monostable multivibrator, $\mathrm{IC}_{1 \mathrm{~A}}$, generates the frequency of the pulse train. The $100-\mathrm{k} \Omega$ potentiometer, R_{1}, along with R_{2} and C_{1}, sets the adjustable frequency. $\mathrm{R}_{3}, \mathrm{R}_{4}$, and C_{2} set the adjustable pulse width in the second section of the multivibrator, $\mathrm{IC}_{1 \mathrm{~B}}$. The accoupled op amp, $\mathrm{IC}_{2 \mathrm{~A}}$, running openloop, delivers a $\pm 12 \mathrm{~V}$ pulse output. D_{1} and D_{2} clamp the negative-going excur-
sions of the pulse train to ground. The other half of the op amp, $\mathrm{IC}_{2 \mathrm{~B}}$, serves as a level shifter that allows amplitude control over the range 0 to 12 V . You can modulate the amplitude at low frequency by varying the amplitude-control voltage.

Is this the best Design Idea in this issue? Select at www.edn.com.

This variable-frequency circuit allows amplitude modulation of its pulse-train output.

Expanded-scale indicator revisited

Abel Raynus, Armatron International Inc, Melrose, MA

The visualization aid that a previous Design Idea describes allows only the expansion of the upper end of the scale (Reference 1). But Figure 1 what can you do if, according to your project requirements, you need to expand the middle region of the scale? Figure 1a illustrates the challenge. A voltmeter comprises a $100-\mu \mathrm{A}$ dc meter and a series resistor. The voltage under test, $\mathrm{V}_{\text {TEST }}$, ranges from 0 to 5 V . The voltage changes between 2 and 3 V (the "green zone") are of interest. But at the same time, you cannot ignore the voltages from 0 to 2 V and from 3 to 5 V , and you need to be able to observe these voltages. With a linear scale, the green zone consumes only 20% of the full-scale range. Your objective is to expand this zone to 80%, leaving 10% at the lower end and 10% at the upper end of the scale (Figure 1b). The circuit in Figure 2 solves the problem. The window comparator, IC_{1}, controls the variable impedance of the voltmeter. Analog switches S_{1} and S_{2} provide a contact-logic AND function and put resistor R_{2} in parallel with R_{1} only upon closure of both switches. This closure occurs when $\mathrm{V}_{\text {TEST }}$ is between the threshold voltages $\mathrm{V}_{\mathrm{T} 1}$ and $\mathrm{V}_{\mathrm{T} 2}$ (Figure 3). You can calculate the re-

In a, the $\mathbf{2}$ to $\mathbf{3 V}$ "green zone" occupies only $\mathbf{2 0 \%}$ of the scale; in \mathbf{b}, this zone expands to $\mathbf{8 0} \%$.
sistor values as follows:

$$
\begin{gathered}
\mathrm{R}_{1}=\frac{2 \mathrm{~V}}{10 \mu \mathrm{~A}}=200 \mathrm{k} \Omega ; \\
\mathrm{R}_{1} \| \mathrm{R}_{2}=\frac{3-2 \mathrm{~V}}{90-10 \mu \mathrm{~A}}=12.5 \mathrm{k} \Omega ; \\
\mathrm{R}_{2}=\frac{\mathrm{R}_{1} \bullet \mathrm{R}_{1} \| \mathrm{R}_{2}}{\mathrm{R}_{1}-\mathrm{R}_{1} \| \mathrm{R}_{2}}=\frac{200 \bullet 12.5}{200-12.5}=13.3 \mathrm{k} \Omega .
\end{gathered}
$$

You can calculate resistors $\mathrm{R}_{3}, \mathrm{R}_{4}$, and R_{5} from the equations for the threshold voltages:

$$
\mathrm{V}_{\mathrm{Tl}}=\frac{\mathrm{R}_{5}}{\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}} \mathrm{~V}_{\mathrm{CC}}
$$

$$
\mathrm{V}_{\mathrm{T} 2}=\frac{\mathrm{R}_{4}+\mathrm{R}_{5}}{\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}} \mathrm{~V}_{\mathrm{CC}}
$$

In this case, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 2}=3 \mathrm{~V}$; hence, $R_{3}=R_{5}=200 \mathrm{k} \Omega$, and $R_{4}=100 \mathrm{k} \Omega$.

Reference

1. Raynus, Abel, "Indicator features expanded scale"" EDN, Feb 21, 2002, pg 86.

Is this the best Design Idea in this issue? Select at www.edn.com.

A window comparator and two analog switches collaborate to expand the green zone in Figure 1.

Within the thresholds of the window comparator, $\mathbf{R}_{\mathbf{2}}$ connects in parallel with R_{1} to expand the scale of the voltmeter.

Butterworth filter has adjustable group delay

William Stutz, Maxim Integrated Products, Sunnyvale, CA

The Sallen-Key realization of a $5.25-\mathrm{MHz}$, three-pole Butterworth filter has a gain of $2 \mathrm{~V} / \mathrm{V}$ and can drive 75Ω back-terminated coax with an overall gain of 1 (Figure 1). Used to reconstruct component-video ($\mathrm{Y}, \mathrm{Pb}, \mathrm{Pr}$) and RGB signals, this filter has an insertion loss greater than 20 db at 13.5 MHz and greater than 40 db at 27 MHz (Figure 2). Like the antialiasing filter before an ADC, this filter removes the higher frequency replicas of a signal following a DAC. To preserve quality in the video waveform, you should minimize group-delay variations in the filter and any group-delay differential between filters. That requirement mandates a means for adjusting the filter's group delay without affecting its bandwidth. In Figure 1, Figure 1

NOTES:

1. R ${ }_{3}$ IS THE 75Ω LOAD. REMOVE R ${ }_{3}$ IF YOU USE AN EXTERNAL LOAD.
2. ALL RESISTORS ARE 1%.
3. ALL CAPACITORS ARE 2%.
4. R_{2} IS FOR GROUP-DELAY ADJUSTMENT.
 the addition of R_{2} in series with C_{1} and R_{1} creates a lag-lead network.

Keeping the sum of R_{1} and R_{2} constant and equal to the original R_{1} value preserves bandwidth by preserving the dominant-pole frequency. Increasing the R_{1} value, on the other hand, introduces a "lead" term that lowers group delay by reducing the rate of change in phase. For $R_{2}=0 \Omega$ and $R_{1}=332 \Omega$ in the circuit shown, the average group-delay variation over the filter bandwidth is about 25 nsec . Raising R_{2} to 31.6Ω and lowering R_{1} to 301Ω decreases the variation to approximately 15 nsec , and setting $\mathrm{R}_{2}=59 \Omega$ with $\mathrm{R}_{1}=274 \Omega$

This three-pole Butterworth video-reconstruction filter has adjustable group delay.

Figure 2

The typical filter response for the circuit of Figure 1 is $R_{1}+R_{2}=332 \Omega$.
decreases it to approximately 7 nsec . The last case has a less-than $0.5-\mathrm{dB}$ effect on band-edge selectivity but does not change the filter's 3-dB bandwidth (Figure 3).

Figure 3

Is this the best Design Idea in this issue? Select at www.edn.com.

Selected values of R_{1} and R_{2} allow control of group-delay variation over the filter's passband. dB

${ }^{\text {desegen ideas }}$

Single transistor sequences multiple supplies

David Chen, Linear Technology Corp, Milpitas, CA

Many DSP chips, microprocessors, FPGAs, and ASICs require multiple power supplies that must deliver different voltages in a specific startup sequence. Out-of-sequence voltages can cause excessive input current, logic errors, or even device failure. To sequence different supplies, a common approach is to regulate a low-

Figure 1 er voltage from a higher voltage using a linear regulator. Another approach is to use a series of Schottky diodes. Although simple in concept, these approaches can be expensive and difficult to implement in applications that require more than two power supplies. Figure 1 shows a simple, low-cost approach that requires
only one pnp transistor to provide the necessary logic. Figure 2 shows a dual power supply that uses the described circuitry to sequence the outputs.

When $\mathrm{V}_{\text {OUT1 }}$ is low, $\mathrm{V}_{\text {OSENSE2 }}$, the voltage

You can obtain multiple-output sequencing by adding ORing diodes.
Figure 2

A simple one-transistor circuit synchronizes two outputs.

This dual-output supply uses the simple circuit in Figure 1 .

${ }^{\text {deses }}$ ideas

feedback for $\mathrm{V}_{\text {out2 }}$, goes high, and the second supply, $\mathrm{V}_{\text {OUT2 } 2}$, shuts off (Figure 3). When $\mathrm{V}_{\text {out } 1}$ approaches its nominal lev$\mathrm{el}, \mathrm{Q}_{1}$ turns off. Q_{1} then relinquishes control of $\mathrm{V}_{\text {OSENSE2 }}$, and $\mathrm{V}_{\text {OUT2 }}$ resumes its normal start-up process. The process is similar for power-down sequencing. When $\mathrm{V}_{\text {out } 1}$ is high, $\mathrm{V}_{\text {out } 2}$ operates nor-
mally. When $\mathrm{V}_{\text {out } 1}$ goes from high to low, $\mathrm{V}_{\text {OSENSE2 }}$ goes high and shuts off $\mathrm{V}_{\text {out2 }}$. More specifically, R_{3} and R_{4} set the clamping voltage for the V $\mathrm{V}_{\text {OSENSE2 }}$ pin when $\mathrm{V}_{\text {OUT1 }}$ is low, and R_{1} and R_{2} determine the $\mathrm{V}_{\text {out1 }}$ voltage level at which Q_{1} turns off. In cases of multiple supplies, you need only add ORing diodes at the collector of
Q_{1} (Figure 3). The design uses an LTC1628 dual-output controller. You can see the sequenced-output waveforms in Figures $4 \mathbf{a}$ (at turn-on) and $\mathbf{4 b}$ (at turnoff).

Is this the best Design Idea in this

 issue? Select at www.edn.com.

These supply-voltage waveforms occur at turn-on (a) and turn-off (b).

