Dual comparator thermally protects lithium-ion battery

Mike Hess, Maxim Integrated Products, Sunnyvale, CA

Most manufacturers recommend that you don't change lithium-ion batteries at temperatures lower than $0^{\circ} \mathrm{C}$ or higher than $50^{\circ} \mathrm{C}$. You can monitor both thresholds by adding a thermistor and dual (window) comparator to a lithium-ion battery charger (Figure 1). Set the low-temperature trip point at $2.5^{\circ} \mathrm{C}$ and the high-temperature trip point at $47.5^{\circ} \mathrm{C}$. A precision voltage reference is unnecessary, because the comparator's resistor network is ratiometric, so variations on the supply voltage, $\mathrm{V}_{\text {BUS }}$, do not affect the trip thresholds. By driving the charger's enable input, EN, the comparators' open-drain outputs ensure that charging is inhibited when the battery temperature is out of range. As an alternative, you can substitute a dual comparator with push-pull CMOS outputs,
such as the MAX9032, if you also add a tiny, SOT-323 dual diode (the dashed lines in Figure 1). The dual comparator and the MAX9032 are available in SOT23 packages, and both offer built-in hysteresis of 2 or 4 mV , respectively.
IC_{2} is a single-cell lithium-ion battery charger that can derive its power directly from a USB port or from an external supply as high as 6.5 V . The 0.5% accuracy of its battery-regulation voltage allows maximum usage of the battery's capacity. The charger's internal FET delivers as much as 500 mA of charging current, and you can configure its SELV input for charging a 4.1 or 4.2 V battery. The SELI input sets the charge current to either 100 or 500 mA , and an open-drain output, CHG , indicates the charge status. For near-dead batteries, a preconditioning capability soft-starts the
cell before charging. Other safety features include continuous monitoring of voltage and current and initial checking for fault conditions before charging. \square
Dual comparator thermallyprotects lithium-ion battery...91
Lowpass filter discriminatesstep input from noise..92
Voltage-to-current converter
makes a flexible current reference. 96
Circuit forms single-pulsevoltage multiplier .98
Feedback circuit eliminatesCCD-driver delay mismatch.100
Publish your Design Idea in EDN. See theWhat's Up section at www.edn.com.

Figure 1

Lowpass filter discriminates step input from noise

Eric Desrochers, Aircuity Inc, Newton, MA

NUMEROUS APPLICATIONS exist in industry, particularly with control systems, in which it is desirable to remove all but the lowest frequency components from a signal to effectively yield a dc voltage. This voltage may, for example, serve as a setpoint to a PID controller in a process-control or an HVAC application, in which the cable that is carrying the analog signal is exposed to a wide spectrum of noise, including low-frequency noise components from various sources. These sources could include variable-speed drives, ballasts, transients from switching gear, and motors. In many cases, noise reduction using a conventional lowpass filter can create adverse effects in the response time of the system, even if you use a multipole filter. As an alternative, the circuit of Figure 1 is ideally suited to provide extensive noise reduction for applications such as these without impairing a system's ability to track rapid changes in signal level. The concept involves a lowpass filter with a slewing mechanism that has significant performance advantages over other non-linear-lowpass-circuit topologies, given its ability to discriminate step changes in signals from noise.

The basic operation of the circuit is to momentarily increase the corner frequency of the lowpass filter formed by R_{6} and C_{3}, using an analog switch, IC_{1}, upon detection of a step change in signal, allowing $\mathrm{V}_{\text {OUT }}$ to track $\mathrm{V}_{\text {IN }}$ with little delay. IC_{1} has an on-resistance of about 100Ω, so when it closes across R_{6}, the corner frequency of the circuit changes from 0.016 Hz to approximately 160 Hz , which is ample bandwidth for the target applications for this circuit. $\mathrm{IC}_{2 B}$, along with R_{4}, R_{5}, and C_{2}, operates as an error amplifier with a corner frequency of $\mathrm{f}_{\text {CERR }}=1 / 2 \pi \mathrm{R}_{5} \mathrm{C}_{2}=1.59 \mathrm{~Hz}$. The amplifier generates an error signal, $\mathrm{V}_{\mathrm{ERR}}$, that $\mathrm{IC}_{2 \mathrm{~A}}$ measures in reference to $\mathrm{V}_{\mathrm{OUT}} . \mathrm{IC}_{2 \mathrm{~A}}$ acts as a floating window comparator that places the lowpass filter into slew mode when $V_{\text {ERR }}$ exceeds the predetermined threshold that zener diode D_{3} establishes. For values of $V_{\text {ERR }}$ that are greater than $\mathrm{V}_{\text {OUT }}$, diode D_{2} conducts, causing the noninverting input of $\mathrm{IC}_{2 \mathrm{~A}}$ to track this signal. $\mathrm{IC}_{2 \mathrm{~A}}$ compares the signal to a threshold voltage of approximately $\mathrm{V}_{\text {OUT }}+5.2 \mathrm{~V}$ at its inverting input. When a negative-step change ($\mathrm{V}_{\mathrm{IN}}<$ $\mathrm{V}_{\text {out }}$) to the input, $\mathrm{V}_{\text {IN }}$, is of sufficient amplitude such that $V_{\text {ERR }}$ becomes ap-
proximately 5.7 V (accounting for the barrier potential of D_{2}), $\mathrm{IC}_{2 \mathrm{~A}}$'s output switches high. This action activates IC ${ }_{1}$, causing a short circuit across R_{6}, thus allowing $\mathrm{V}_{\text {OUT }}$ to track V_{IN}.

For values of $\mathrm{V}_{\text {ERR }}$ below $\mathrm{V}_{\text {OUT }}$, the action is similar, except that the inverting input of $\mathrm{IC}_{2 \mathrm{~A}}$ tracks $\mathrm{V}_{\text {ERR }}$ through D_{3} and D_{4}, and the comparator's output toggles high at the point at which $\mathrm{V}_{\mathrm{ERR}}$ is approximately 5.2 V below $\mathrm{V}_{\text {out }}$. Although the asymmetry in the window comparator's performance is not of great significance, you could realize improved symmetry by replacing D_{2} with a Schottky diode, which has a lower barrier potential. The comparator's trip points, along with the dc gain of the error-amplifier stage $\left(\mathrm{IC}_{2 \mathrm{~B}}\right)$ determined by the ratio $\mathrm{R}_{5} / \mathrm{R}_{4}$-establish the upper and lower deadband of Figure 1. With the values shown in Figure 1 the circuit triggers to slew in response to neg-ative-step changes in $\mathrm{V}_{\text {IN }}$ as small as 0.260 V and positive-step changes that are as small as 0.285 V . You can realize better sensitivity by reducing the zener voltage of D_{3} or by increasing the ratio R_{5} / R_{4} and ensuring that the error-amplifier stage provides adequate roll-off. The roll-off must ensure that noise levels that may ex-
(continued on pg 96)

Figure 1
This unique lowpass-filter design provides good noise reduction and retains the ability to track rapid changes in signal level.
desief ideas
ist in a given application cannot trigger the circuit into slew mode.

Another important parameter to consider when choosing component values for the error- amplifier stage is the step
response of that circuit, because it directly impacts the overall settling time of the lowpass filter when it encounters step changes in signal. To be con-

This ac-coupled view illustrates more than 65 dB of attenuation at 30 Hz .

The circuit in Figure 1 has good step response, even with a nasty $\mathbf{6 4 0}-\mathrm{mV} \mathrm{p}-\mathrm{p}, \mathbf{3 0 - H z}$ noise term superimposed on the input. servative, choose values for R_{5} and C_{2} such that three times the RC time constant they form is well within the settling time desired for the lowpass filter. For example, with $R_{5}=10 \mathrm{M} \Omega$ and $\mathrm{C}_{2}=0.01 \mu \mathrm{~F}, 3 \tau=0.3 \mathrm{sec}$. This case represents the approximate worst-case delay to the response to a step change in V_{IN} that is outside the deadband of the circuit. In practice, however, the delay is much smaller for step changes in $V_{\text {IN }}$ that are larger in magnitude, given the first-order nature of this circuit. Figure 2 il-
lustrates the response of the lowpass-filter design to a $600-\mathrm{mV}$ step change in $\mathrm{V}_{\text {IN }}$. The graphic also illustrates the circuit's significant filtering capabilities on a severe, $30-\mathrm{Hz}, 640-\mathrm{mV}$ p-p noise component superimposed on the signal. An accoupled view of the filter's performance at steady state illustrates more than 65 dB of attenuation at 30 Hz (Figure 3). \square

Voltage-to-current converter makes a flexible current reference

Art Kay, Texas Instruments, Tucson, AZ

THE VOLTAGE-TO-CURRENT Converter in Figure 1 can both source and sink current. The circuit is more flexible than some traditional current references that require different topologies for current sourcing and sinking. Also, you can easily adjust the value of the current reference by simply adjusting the circuit's input voltage. Performing a simple nodal analysis generates the following equation:

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{-\mathrm{R}_{2} \mathrm{~V}_{\mathrm{IN}}}{\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{~A}_{\mathrm{IC} 2}}
$$

You typically set R_{1} equal to R_{2}. The output current is a function of R_{3} and the gain of the instrumentation amplifier. Note that capacitor C_{1} stabilizes the circuit. In this example, $R_{3}=10 \mathrm{M} \Omega$, and the instrumentation amplifier's gain is unity. Varying the input, V_{IN}, by $\pm 10 \mathrm{~V}$ yields a currentoutput range of $\pm 1 \mu \mathrm{~A}$. Performing a more detailed nodal analysis on the circuit in Figure 1 yields the following equation:
IS THE GAIN FOR THE INA121P.

$$
\text { IN THIS EXAMPLE, } \mathrm{R}_{\mathrm{G}}=\infty, \text { SO GAIN A } \mathrm{I}_{\mathrm{IC} 2}=1 .
$$

Figure 1

This current reference delivers an output

 that's a linear function of the input voltage.$\mathrm{I}_{\mathrm{OUT}}=\left[\frac{-\mathrm{R}_{2} \mathrm{~V}_{\mathrm{IN}}}{\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{~A}_{\mathrm{IC} 2}}\right]+$
CURRENT TERM

$$
\left[\frac{\mathrm{R}_{2} \mathrm{~V}_{\mathrm{OS} 1}}{\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{~A}_{\mathrm{IC} 2}}+\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{OS} 2}}{\mathrm{R}_{1} \mathrm{R}_{3}}+\frac{\mathrm{R}_{1} \mathrm{~V}_{\mathrm{OS} 1}}{\mathrm{R}_{1} \mathrm{R}_{3} \mathrm{~A}_{\mathrm{IC} 2}}+\mathrm{I}_{\mathrm{B} 2}\right]
$$

ERROR TERM
where $V_{\mathrm{OS} 1}$ and $\mathrm{V}_{\mathrm{OS} 2}$ are the offset voltages
of IC_{1} and IC_{2}, respectively, $\mathrm{I}_{\mathrm{B} 2}$ is the in-put-bias current of IC_{2}, and $\mathrm{A}_{\mathrm{IC} 2}$ is the gain of IC_{2}.

This second equation is useful in understanding error sources and, consequently, can aid in selecting the components that are best suited to an application. For example, for a nanoampere current reference, you should consider the error that the instrumentation amplifier's bias current generates. The example in Figure 1 uses the INA121P FETinput instrumentation amplifier to minimize the input-bias current. A milliampere reference, on the other hand, would focus more on the input offset voltage of the instrumentation amplifier. In general, you can neglect the error that the offset voltage of the op amp generates if you use a precision, low-offset amplifier. However, resistor-mismatch and in-strumentation-amplifier gain errors are inevitable, regardless of the application. \square

Circuit forms single-pulse voltage multiplier

Richard Cappels, Mesa, AZ

|t is sometimes necessary for a microcontroller to generate a pulse whose voltage is higher than the pow-er-supply voltage of the microcontroller. The circuit in Figure 1 allows you to generate 14 V pulses from a 5 V power supply. An adaptation of the circuit provides a 5 to 12 V programming pulse for programming the fuse bits in Atmel (www.atmel.com) microcontrollers (Figure 2). The approach is economical, in that it combines the voltagemultiplier and pulse-amplifier functions. Moreover, the technique benefits from the absence of noise that would arise from a continuously running switching power supply. In Figure 1, when the microcontroller's output is low, C_{1} and C_{2} charge in parallel to nearly 5 V . When the microcontroller switches to 5 V , it effectively makes the capacitors appear in series with the 5 V pulse, resulting in a pulse approaching three times the power-supply voltage at the output. C_{1} charges through D_{1}, and R_{1} limits the charging current from the microcontroller's output to a few milliamperes. C_{2} charges through D_{2} and R_{3}.

During the output pulse, C_{1} must supply the base current for Q_{1} and Q_{2}, as well as the load current. Because the voltage drop across the diodes decreases as current through them diminishes, after a charging time of several time constants, the diode drop is only a couple of hundred millivolts. Therefore, pulses of nearly three times the power-supply voltage are possible. When the pulses are continuous or when they occur within a couple of time constants of power application, diode drops of approximately 1.5 V subtract from the output. Additional losses can arise from voltage drops across the resistance of the microcontroller and saturation losses in the transistors. You can reduce the saturation losses by reducing the values of R_{2} and R_{4}, but be aware that reducing these values increases the droop rate of the output pulse. For some applications, you could omit D_{1} and replace D_{2} with a resistor, but the result would be longer charging and faster discharging for the capacitors. These trade-offs are

This simple circuit provides single pulses of 14 V from a 5 V power supply.

This variation on the circuit of Figure 1 supplies fuse-programming pulses for Atmel ATV microcontrollers.
acceptable for some applications.
The circuit in Figure 2 provides a 5 to 12 V programming pulse for Atmel ATV microcontrollers for the couple of hundred milliseconds the ICs require. Because the output during the time the microcontroller's output is low needs to be 5 V , you omit the second transistor and take the output directly from the cathode of D_{2}. Because the output voltage needs to go to only $12 \mathrm{~V}, \mathrm{C}_{2}$ charges from a voltage divider. C_{2} charges to only 2 V , which then appears in series with the 10 V from
the series combination of C_{1} and the output of the microcontroller. You get no "free lunch" with this circuit. If the pulse initiation occurs before R_{3} and R_{4} sufficiently charge $C_{2}(60 \mathrm{k} \Omega \times 100 \mu \mathrm{~F}=6$ sec), the voltage is lower than intended. You can reduce the charge time of the circuit by reducing the values of the capacitors. C_{2} has the most effect because of the high-resistance charging path. However, reducing the capacitor values makes the output pulse droop more quickly. \square

Feedback circuit eliminates CCD-driver delay mismatch

Mike Wong, Intersil-Elantec, Milpitas, CA

|n A CCD (charge-coupled device), packets of charges shift across the array. The transistor array, also called a bucket-brigade shift register, receives drive from a dual-phase clock signal. Dual-phase clock signals comprise two synchronized clock signals that are 180° out of phase. High peak-output-current CCD drivers can buffer the logic-level clock signals and turn them into highvoltage and high-peak-current signals to drive the heavily capacitive gates of the many CCD transistors. Because of the speed mismatch of CCD-drivers' n - and p-channel FETs, the turn-on and -off delay times are poorly matched. Figure 1 shows the outputs of one such current CCD driver, Intersil's EL7212 (www. elantec.com), with a dual-phase input clock. The overlap in the output stems from the turn-on and -off delay mismatches of the EL7212.

In a low-resolution system with a lower clock frequency, the delay mismatch is an insignificant part of the clock period. As CCD scan rate increases, the mismatch becomes a large part of the clock period. You need a new approach to correct the CCDdriver delay mismatch. Figure 2 shows a circuit that uses amplifiers to sense the delay mismatch and correct it. Because $\overline{\mathrm{V}_{\text {OUT }}}$ and $\mathrm{V}_{\text {OUT }}$ are 180° out of phase, if their turn-on and -off times coincide perfectly, the voltage between R_{4}, R_{7}, and

Figure 1

In a CCD driver, a mismatch may occur in the turn-on and -off delay times.

Figure 2
C_{2} is $1 / 2 \mathrm{~V}_{\mathrm{CC}}$. Amplifiers $\mathrm{IC}_{2 \mathrm{~A}}$ and $\mathrm{IC}_{2 \mathrm{~B}}$ compare voltage on C_{2} with the $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ reference voltage and adjust the voltage between R_{3} and R_{6}. $I C_{2 A}$ provides the phase inversion, and $\mathrm{IC}_{2 \mathrm{~B}}$ is the high-dcgain error-correction amplifier. The output of the error amplifier drives R_{3} and R_{6}, which shift the voltage offset of the incoming clock signal. When the off-set-voltage level of the input clock signal shifts, the time at which the CCD driver is triggered also shifts. $\mathrm{IC}_{2 \mathrm{~A}}$ and $\mathrm{IC}_{2 \mathrm{~B}}$ guarantee that the proper offset voltage goes to the input clock signals so that the delay mismatch cancels. D_{1} and D_{2} rectify the input clock signals and create the supply voltage to the $\mathrm{IC}_{2 \mathrm{~A}}$ and $\mathrm{IC}_{2 \mathrm{~B}}$ amplifiers. When the input signals are removed, the power to
the amplifiers shuts off, and the errorcorrection loop deactivates to prevent output oscillation with no inputs.

Figure 3
After the circuit in Figure 2 does its job, the turn-on and -off wave- forms line up nicely.

