INTERFACE DATABOOK

NATIONAL SEMICONDUCTOR

37 Loverock Road

INTERFACE DATABOOK

> This is the interface databook from National Semiconductor Corporation. It contalns complete information on all of National's Interface products which are defined as special ic circuits such as Linear/Digital/Power functions-which are used in association with standard logic or microprocessor functions.
> Product selection guides and a complete product applications section are also included. For information on products that become avallable after this databook goes to print. please contact your local National office.

Transmission Line Drivers/Receivers

Bus Transceivers

Peripheral/Power Drivers

Level Translators/Buffers

Display Drivers

MOS Memory Interface Circuits

Magnetic Memory Interface Circuits

Microprocessor Support Circuits
Applicable TTL and CMOS Logic Circuits

Application Notes

Appendices/Physical Dimensions

Table of Contents

*: Product added to this Data Book since last Edition

Edge Index by Product Family 1
Introduction 1
Alpha-Numerical Index 6
Interface Cross-Reference Guide 12
Section 1-Transmission Line Drivers/Receivers
Transmission Line Drivers/Receivers Selection Guides 1-ii
DS1488 Quad Line Driver 1-1
DS 1489/DS1489A Quad Line Receiver $1-4$
DS1603/DS3603, DS3604, DS55107/DS75107, DS55108/DS75108; DS75207, DS75208 Dual Line Receivers 1-6
DS1650/DS3650, DS1652/DS3652 Quad Differential Line Receivers $1-13$

* DS1691/DS3691 (RS-422/RS-423) Line Drivers $1-19$
* DS1692/DS3692 TRI-STATE ${ }^{\circledR}$ Differential Line Drivers $1-19$
* DS26LS31/DS26LS31M Quad High Speed Differential Line Driver 1-25
* DS26LS32/DS26LS32M, DS26LS33/DS26LS33M Quad Differential Line Receivers $1-28$
* DS3486 Quad RS-422, RS-423 Line Receiver 1-31
* DS3487 Quad TRI-STATE ${ }^{\left({ }^{(1)}\right.}$ Line Driver $1-35$
* DS55113/DS75113 Dual TRI-STATE ${ }^{\circledR}$ Differential Line Driver $1-38$
* DS55114/DS75114 Dual Differential Line Drivers $1-43$
* DS55115/DS75115 Dual Differential Line Receiver 1.47
DS55121/DS75121 Dual Line Drivers $1-52$
DS55122/DS75 122 Triple Line Receivers $1-54$
DS75123 Dual Line Driver 1.57
DS75124 Triple Line Receiver $1-59$
DS75150 Dual Line Driver $1-62$
DS75154 Quad Line Receiver 1-65
DS8642 Quad Transceiver $1-69$
DS7820/DS8820 Dual Line Receiver $1-72$
DS7820A/DS8820A Dual Line Receiver 1-75
* DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver $1-79$
DS7830/DS8830 Dual Differential Line Driver $1-82$
DS7831/DS8831, DS7832/DS8832 Dual TRI-STATE ${ }^{\text {© }}$ Line Driver $1-85$
* DS78LS120/DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe) 1.90
* DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receiver $1-97$
Section 2-Bus Transceivers
8us Transceivers Selection Guides 2-ii
* DS26S10, DS26S1 1 Quad 8us Transceivers 2-1
DS7640/DS8640 Quad NOR Unified Bus Receiver 2-6
DS7641/DS8641 Quad Unified 8us Transceiver 2.8
DS7833/DS8833, DS7835/DS8835 Quad TRI-STATE ${ }^{\circledR}$ 8us Transceivers 2-10
DS7834/DS8834, DS7839/DS8839 Quad TRI-STATE ${ }^{\circledR}$ Bus Transceivers 2-14
DS7836/DS8836 Quad NOR Unified 8us Receiver 2-18
DS7837/DS8837 Hex Unified Bus Receiver 2.20
DS7838/DS8838 Quad Unified Bus Transceiver 2-22
* DS8T26A, DS8T26AM, DS8T28, DS8T28M 4-Bit Bidirectional Bus Transceivers 2-24
Table of Contents (Continued)
Section 3-Peripheral/Power Drivers
Peripheral/Power Drivers Selection Guide 3-ii
DS1611/DS3611, DS1612/DS3612, DS1613/DS3613, DS1614/DS3614 Dual Peripheral Drivers. 3-1
DS1631/DS3631, DS1632/DS3632, DS1633/DS3633, DS1634/DS3634 CMOS Dual Peripheral Drivers 3-7
* DS3654 Printer Solenoid Driver 3-12
DS1686/DS3686 Dual Positive Voltage Relay Driver 3-16
DS1687/DS3687 Negative Voltage Relay Driver 3-18
DS55450/DS75450 Series Dual Peripheral Drivers 3.20
DS55460/DS75460 Series Dual Peripheral Drivers 3.31
Section 4-Level Translators/Buffers
Level Translators/Buffers Selection Guide 4-ii
DS1630/DS3630 Hex CMOS Compatible Buffer 4-1
DS7800/DS8800 Dual Voltage Level Translator 4-4
DS7810/DS8810 Quad 2-Input TTL-MOS Interface Gate 4-7
DS7811/DS8811 Quad 2-Input TTL-MOS Interface Gate 4-7
DS7812/DS8812 Hex TTL-MOS Inverter 4-7
DS78L12/DS88L12 Hex TTL-MOS Inverter/Interface Gate 4-10
DS7819/DS8819 Quad 2-Input TTL-MOS AND Gate 4-12
Section 5-Display Drivers
Display Drivers Selection Guides 5-ii
* DS8646 Low Voltage 6-Digit LED Driver 5-1
* DS8647, DS8648, DS8979 Low Voltage 9-Segment LED Drivers 5-3
DS8654 8-Output Display Driver (LED, VF, Thermal Printer) 5-5
DS8656 Diode Matrix 5-5
DS8658 Low Voltage 4-Digit LED Driver 5.9
DS8659 Low Voltage 7-Segment LED Driver 5-11
* DS7664/DS8664 14-Digit Decoder/Driver With Low Battery Indicator 5-13
* DS8665 14-Digit Decoder/Driver (Hi-Drive) 5-16
* DS8666 14-Digit Decoder/Driver (P.O.S.) 5-19
* DS8669 2-Digit BCD to 7-Segment Decoder/Driver 5-22
DS8692, DS8693, DS8694 Printing Calculator Interface Set 5-25
DS7856/DS8856, DS8857, DS7858/DS8858 BCD-to-7-Segment LED Drivers 5-32
DS8859, DS8869 Open Collector Hex Latch LED Drivers 5-36
DS8861 MOS-to-LED 5-Segment Driver 5-39
DS8863 MOS-to-LED 8-Digit Driver 5-39
DS8963 MOS-to-LED 8-Digit Driver 5-39
DS8867 8-Segment Constant Current Driver 5-42
DS8868 12-Digit Decoder/Driver 5-44
DS8870 Hex LED Digit Driver 5-46
DS8871, DS8872, DS8873, DS8920, DS8977 Saturating LED Cathode Drivers 5-48
DS8874 9-Digit Shift Input LED Dffiver 5-50
DS8877 6-Digit LED Driver 5-52
DS7880/DS8880 High Voltage 7-Segment Decoder/Driver
(for Driving Panaplex 11^{TM} and Sperry/Beckman Displays) 5-54
DS8881 Vacuum Fluorescent Display Driver 5-57
DS8884A High Voltage Cathode Decoder/Driver (for Driving
Panaplex $\mathrm{II}^{\mathrm{TM}}$ and Sperry/Beckman Displays) 5-61
DS8885 MOS to High Voltage Cathode Buffer 5-63

Table of Contents
 (Continued)

Section 5-Display Drivers (Continued)
DS8887 8-Digit High Voltage Anode Driver (Active-High Inputs) 5-65
DS7889/DS8889 8-Segment High Voltage Cathode Driver (Active-High Inputs) 5-65
DS7897/DS8897 8-Digit High Voltage Anode Driver (Active-Low Inputs) 5-65
DS7891/DS8891 High Voltage Anode Drivers (Active-Low Inputs) 5-69
DS8892 Programmable Hex LED Digit Driver 5-71
DS7895/DS8895 Quad LED Segment Driver 5-73
DS8968 12-Digit Decoder/Driver (Modification) 5-76
DS8973, DS8974, DS8975, DS8976, DS8978 9-Digit LED Drivers 5-78
DS8980, DS8981 High Voltage 7-Segment Latches/Decoders/Drivers 5-81
DS75491 MOS-to-LED Quad Segment Driver 5-85
DS75492 MOS-to-LED Hex Digit Driver 5-85
DS55493/DS75493 Quad LED Segment Driver 5-88
DS55494/DS75494 Hex Digit Driver 5-90
Section 6-MOS Memory Interface Circuits
MOS Memory Interface Circuits Selection Guides 6-ii
Memory Support Circuits 6 -iv
DS0025/DS0025C Two Phase MOS Clock Driver. 6-1
DS0026, DS0056 5 MHz Two Phase MOS Clock Drivers 6-4
DS3605, DS3606, DS3607, DS3608 Hex TRI-STATE ${ }^{\text {© }}$
MOS Sense Amplifiers (MOS to TTL Converters) 6-11
DS3625, DS7802/DS8802, DS7806/DS8806 Dual High Speed TRI-STATE ${ }^{\oplus}$ MOS to TTL Level Converters 6-16

* DS1628/DS3628 Octal TRI-STATE ${ }^{\circledR}$ MOS Drivers 6-20
DS1640/DS3640, DS1670/DS3670 Quad MOS TRI-SHARE ${ }^{\text {TM }}$ Port Drivers 6-23
DS1642/DS3642, DS1672/DS3672 Dual Bootstrapped TTL to MOS Clock Drivers 6-26
DS3643, DS3673 Decoded Quad MOS Clock Drivers 6-29
DS1644/DS3644, DS1674/DS3674 Quad TTL to MOS Clock Drivers 6-32
DS1645/DS3645, DS1675/DS3675 Hex TRI-STATE ${ }^{\oplus}$ TTL to MOS Latches/Drivers 6-35
DS1646/DS3646, DS1676/DS3676 6-Bit TRI-STATE ${ }^{\circledR}$
TTL-to-MOS Refresh Counter/Driver 6-40
DS1647/DS3647, DS1677/DS3677, DS16147/DS36147, DS16177/DS36177
Quad TRI-STATE ${ }^{\circledR}$ MOS Memory I/O Registers 6-45
DS1648/DS3648, DS1678/DS3678 TRI-STATE ${ }^{\circledR}$ TTL to MOS Multiplexers/Drivers. 6-51
DS1649/DS3649, DS1679/DS3679 Hex TRI-STATE ${ }^{\circledR}$ TTL to MOS Drivers 6-56
DS1651/DS3651, DS1653/DS3653 Quad High Speed MOS Sense Amplifiers 6-59
DS1671/DS3671 Bootstrapped Two Phase MOS Clock Driver. 6-65
DS16149/DS36149, DS16179/DS36179 Hex MOS Drivers 6-69
* DS3245 Quad MOS Clock Driver 6-73
* DS75322 Dual TTL-MOS Driver 6-76
* DS3622 Dual Fail-Safe TTL-MOS Driver 6-76
DS75361 Dual TTL-to-MOS Driver 6-79
DS75362 Dual TTL-to-MOS Driver 6-84
DS75364 Dual MOS Clock Driver 6-89
DS75365 Quad TTL-to-MOS Driver. $6-93$
Section 7-Magnetic Memory Interface Circuits
Magnetic Memory Interface Circuits Selection Guide 7-ii
DS5520/DS7520 Series Dual Core Memory Sense Amplifiers 7-1
DS75324 Memory Driver with Decode Inputs 7-20
DS55325/DS75325 Memory Drivers $7-26$

Table of Contents

Section 8-Microprocessor Support Circuits
Microprocessor Support Circuits Selection Guide 8 Ii

* DP4201 Clock Genera:or 81
* DP8212/DP8212M 8-Bit Input/Output Port 85
* DP8216/DP8216M, DP8226, DP8226M 4-Bit Brdırectional Bus Transceıvers 812
* DP8224 Clock Genera:or and Driver 817
* DP8228/DP8228M, DP8238/DP8238M System Controiler and Bus Driver 8.23
* DP8300 PACE Bidirectional Transceiver Element (PACE BTE '8) 828
* DP8302, DP8305 PACE System Timing Element (PACE STE) 8.35
* DP7304B/DP8304B 8-Bit TRI-STATE Bidrectional Transceiver $8 \cdot 40$
* DP8350 Series Programmable CRT Controllers 845
Section 9-Applicable TTL and CMOS Logic Circuits ${ }^{\dagger}$
* DM54LS373/DM74LS373, DM54LS374 DM74LS374 Octal D Type Transparent Latches and Edge-Triggered Flip-Flops 91
* DM54S240/DM74S240, DM54S241/DM74S241, DM54S940'DM74S940, DM54S941/DM74S941 Octal TRI-STATE Buffers Line Drwers Line Receivers 95
* MM54C373/MM74C373 TRI-STATE Octal D Type Latch 9-12
* MM54C374/MM74C374 TRI-STATE Octal D-Type Flip-Flop 912
* MM54C901/MM74C901 Hex Inverting TTL Buffer 918
* MM54C902/MM74C902 Hex Non Inverting TTL Buffer 918
* MM54C903/MM74C903 Hex Inverting PMOS Buffer 918
* MM54C904/MM74C904 Hex Non-Inverting PMOS Buffer 918
* MM54C906/MM74C906 Hex Open Drain N Channel Butfers 922
* MM54C907/MM74C907 Hex Open Draın P-Channel Buffers 922
* MM74C908, MM74C918 Dual CMOS 30-Volt Driver 925
* MM54C922/MM74C922 16 Key Encoder 930
* MM54C923/MM74C92320 Key Encoder 930
* MM78C29/MM88C29 Quad Single Ended Line Driver 9.35
MM78C30/MM88C30 Dual Differential Line Driver 935
†For additional mformation on CMOS products, set Natand Stemiconductor's 1978 CMOS Databook
Section 10-Application Notes
Summary of Electrical Characteristics of Some Well Known Digital Interface Standards 10-1
AN-22 Integrated Circuits for Digital Data Transmission 10-16
AN-84 Driving 7 Segment Gas Discharge Display Tubes with National Semiconductor Circuits 1032
AN. 108 Transmission Line Characteristics 1036
AN-198 Simplify CRT Terminal Design with the DP8350 1042
AN-199 A Low Component Count Video Data Terminal Using the DP8350 CRT Controller and the INS8080 CPU 1052
Section 11-Appendices/Physical Dimensions
Understanding Rel Flows 111
MIL-STD-883/MIL M-38510 112
The $A+$ Program from Vational $11-3$
The B+ Program from National 115
883/RETS Program 117
Thermal Ratings for IC's 1117
Industry Package Cross-Reterence Guide 11-18
Definition of Terms 1120
Ordering Information $11-21$
Physical Dimensions 11-22

Alpha-Numerical Index

*: Product added to this Data Book since last Edition

* DP4201 Clock Generator . 8-1
* DP7304B 8-Bit TRI-STATE Bidirectional Transceiver . 8-40
* DP8212 8-Bit Input/Output Port . 8-5
* DP8212M 8-Bit Input/Output Port. 8 8-5
- DP8216 4-Bit Bidirectional Bus Transceiver . 8-12
* DP8216M 4-Bit Bidirectional Bus Transceiver. 8-12
* DP8224 Clock Generator and Driver . 8-17
* DP8226 4-Bit Bidirectional Bus Transceiver . 8-12
* DPB226M 4-Bit Bidirectional Bus Transceiver. 8-12
* DPB228 System Controller and Bus Driver . 8-23
* DP8228M System Controller and Bus Driver. 8-23
* DP8238 System Controller and Bus Driver . 8-23
* DPB238M System Controller and Bus Driver. 8-23
* DP8300 PACE Bidirectional Transceiver Element (PACE BTE/8). 8-28
* DPB302 PACE System Timing Element (PACE STE) . 8-35
* DP8304B 8-Bit TRI-STATE Bidirectional Transceiver . 8-40
* DPB305 PACE System Timing Element (PACE STE) . 8-35
* DPB350 Series Programmable CRT Controller . 8-45

DS0025 Two Phase MOS Clock Driver . 6-1
DS0025C Two Phase MOS Clock Driver . 6-1
DS0026 5 MHz Two Phase MOS Clock Driver. 6-4
DS0056 5 MHz Two Phase MOS Clock Driver. 6 . 4
DS1488 Ouad Line Driver. .
DS1489 Ouad Line Receiver . 1-4
DS1489A Quad Line Receiver. 1-4
DS1603 Dual Line Receiver . 1 . 6
DS1611 Dual Peripheral Driver . 3-1
DS1612 Dual Peripheral Driver . 3-1
DS1613 Dual Peripheral Driver . 3-1
DS1614 Dual Peripheral Driver . 3-1

* DS1628 Octal TRI-STATE ${ }^{(4)}$ MOS Driver . 6-20

DS1630 Hex CMOS Compatible Buffer. 4-1
DS1631 CMOS Dual Peripheral Driver . 3-7
DS1632 CMOS Dual Peripheral Driver . 3-7
DS1633 CMOS Dual Peripheral Driver . 3-7
DS1634 CMOS Dual Peripheral Driver . 3-7
DS 1640 Ouad MOS TRI-SHARE ${ }^{\text {TM }}$ Port Driver . 6-23
DS1642 Dual Bootstrapped TTL-to-MOS Clock Driver. 6-26
DS 1644 Quad TTL-to-MOS Clock Driver . 6-32
DS1645 Hex TRI-STATE ${ }^{(1)}$ TTL-to-MOS Latch/Driver . 6-35
DS1646 6-Bit TRI-STATE TTL-to-MOS Refresh Counter/Driver . 6-40
DS1647 Ouad TRISTATE Memory I/O Register . 6-45
DS1648 TRI-STATE TTL-to-MOS Multiplexer/Driver . 6-51
DS1649 Hex TRI-STATE TTL-to-MOS Driver . 6-56
DS 1650 Ouad Differential Line Receiver . 1 13
DS1651 Ouad High Speed MOS Sense Amplifier. 6-59
DS1652 Ouad Differential Line Receiver . 1 13
DS1653 Ouad High Speed MOS Sense Amplifier. 6-59
DS 1670 Ouad MOS TRI-SHARE ${ }^{\text {TM Port Driver }}$ 6-23
DS1671 Bootstrapped Two Phase MOS Clock Driver . 6-65
DS1672 Dual Bootstrapped TTL-to-MOS Clock Driver. 6-26
DS 1674 Ouad TTL-to-MOS Clock Drivers. 6-32
DS1675 Hex TRI-STATE TTL-to-MOS Latch/Driver . 6-35
DS1676 6-Bit TRI-STATE" TTL-to-MOS Refresh Counter/Driver . 6-40
DS1677 Quad TRISTATE ${ }^{\text {© }}$ MOS Memory I/O Register. 6-45

Alpha-Numerical Index (Continued)

DS1678 TRI-STATE ${ }^{\text {(1) }}$ TTL-to-MOS Multiplexer/Driver 6-51
DS1679 Hex TRI-STATE ${ }^{\circledR}$ TTL-to-MOS Driver 6-56
DS1686 Dual Positive Voltage Relay Driver 3-16
DS1687 Negative Voltage Relay Driver 3-18

* DS1691 (RS-422/RS-423) Line Driver 1.19
* DS1692 TRI-STATE * Differential Line Driver 1.19
DS16147 Ouad TRI-STATE MOS Memory ${ }^{\text {I }} / \mathrm{O}$ Register 6.45
DS16149 Hex MOS Driver 6-69
DS16177 Ouad TRI-STATE MOS Memory I/O Register. 6.45
DS 16179 Hex MOS Driver 6.69
* DS26LS31 Quad High Speed Differential Line Driver 1.25
* DS26LS31M Ouad High Speed Differential Line Driver 1.25
* DS26LS32 Ouad Differential Line Receiver 1.28
* DS26LS32M Ouad Differential Line Receiver 1.28
* DS26LS33 Quad Differential Line Receiver $1-28$
* DS26LS33M Ouad Differential Line Receiver 1-28
* DS26S10 Ouad 8us Transceiver 21
* DS26S 11 Ouad Bus Transceiver 2.1
* DS3245 Ouad MOS Clock Driver 6-73
* DS3486 Ouad RS-422, RS-423 Line Receiver 1-31
* DS3487 Ouad TRI-STATE ${ }^{\circledR}$ Line Driver 1-35
DS3603 Dual Line Receiver 1.6
DS3604 Dual Line Receiver $1-6$
DS3605 Hex TRI-STATE MOS Sense Amplifier (MOS to-TTL Converter) 6-11
DS3606 Hex TRI STATE MOS Sense Amplifier (MOS to-TTL Converter) 6-11
DS3607 Hex TRISTATE ${ }^{\text {r }}$ MOS Sense Amplifier (MOS-to-TTL Converter) 6-11
DS3608 Hex TRISTATE MOS Sense Amplifier (MOS-to-TTL Converter) 6-11
DS3611 Dual Peripheral Driver 3-1
DS3612 Dual Peripheral Driver 3-1
DS3613 Dual Peripheral Driver 3-1
DS3614 Dual Peripheral Driver 3-1
* DS3622 Dual Fail-Safe TTL-MOS Driver 6-76
DS3625 Dual High Speed TRI-STATE ${ }^{\text { }}$ MOS-to-TTL Level Converters 6-16
* DS3628 Octal TRI-STATE MOS Driver 6-20
DS3630 Hex CMOS Compatible 8uffer 4. 1
DS3631 CMOS Dual Peripheral Driver 3.7
DS3632 CMOS Dual Peripheral Driver 3-7
DS3633 CMOS Dual Peripheral Driver 3-7
DS3634 CMOS Dual Peripheral Driver 3-7
DS3640 Ouad MOS TRI-SHARE ${ }^{\text {TM }}$ Port Driver $6 \cdot 23$
DS3642 Dual Bootstrapped TTL-to-MOS Clock Driver 6.26
DS3643 Decoded Ouad MOS Clock Driver 6-29
DS3644 Ouad TTL-to-MOS Clock Driver 6-32
DS3645 Hex TRI-STATE TTL-to-MOS Latch/Driver 6.35
DS3646 6-8it TRISTATE" TTL-to-MOS Refresh Counter/Driver 6.40
DS3647 Ouad TRI-STATE "MOS Memory I/O Register 6.45
DS3648 TRI-STATE " TTL-to-MOS Multiplexer/Driver 6-51
DS3649 Hex TRI-STATE‘ TTL-to-MOS Driver 6-56
DS3650 Ouad Differential Line Reciever 1-13
DS3651 Ouad High Speed MOS Sense Amplifier 6-59
DS3652 Ouad Differential Line Receiver 1-13
DS3653 Ouad High Speed MOS Sense Amplifier 6-59
* DS3654 Printer Solenoid Driver 3-12
DS3670 Ouad MOS TRI-SHARE ${ }^{\text {TM }}$ Port Driver 6.23
DS3671 Bootstrapped Two Phase MOS Clock Driver 6.65

Alpha-Numerical Index (Contrued)

DS3672 Dual Bootstrapped TTL-to-MOS Clock Driver 6-26
DS3673 Decoded Quad MOS Clock Driver 6.29
DS3674 Ouad TTL to MOS Clock Driver 6.32
DS3675 Hex TRISTATE TTL to MOS Latch Drivel 6.35
DS36766 Bit TRISTATE TTL-to-MOS Refresh Counter Driver 6-40
DS3677 Quad TRI STATE MOS Memory I O Reuster 6.45
DS3678 TRI STATE TTL to MOS Multiplexer Driver 6.51
DS3679 Hex TRI-STATE TTL to MOS Driver 6. 56
DS3686 Dual Positive Voltage Reldy Driver 3-16
DS3687 Negative Voltage Relay Driver 318

* DS3691 (RS 422 RS 423) Line Driver 119
- DS3692 TRI-STATE Differential Line Driver 119
DS36147 Quad TRI STATE MOS Memory I O Register 6 -45
DS36149 Hex MOS Diveit 669
DS36177 Ouad TRI STATE MOS Memory I O Reqistet 645
DS36179 Hex MOS Driver 6-69
DS5520 Dual Core Memory Sense Amplifier 7-1
DS5522 Dual Core Memory Sense Amplifier $7-1$
DS5524 Dual Core Memory Sense Amplifier 71
DS5528 Dual Core Memory Sense Amplifier 7.1
DS5534 Dual Core Memory Sense Amplifier 7.1
DS5538 Dual Core Memory Sense Amplifier 7.1
DS7520 Dual Core Memery Sense Amplifier 71
DS7522 Dual Core Memory Sense: Amphfier 71
DS7524 Dual Core Memory Sense Amplifer $7-1$
DS7528 Dual Core Memory Sense Amplifier. 71
DS7534 Dual Core Memory Sense Amplifier. $7-1$
DS7640 Ouad NOR Unified Bus Recelver. 26
DS7641 Quad Unified Bus Transceiver 2.8
- DS7664 14-Digit Decoder Driver with Low Battery Indicator $5 \cdot 13$
- DS78C20 Dual CMOS Compatible Differential Line Receiver 1.79
* DS78C120 Dual CMOS Compatible Differential Lme Receiver 1.97
DS78L12 Hex TTL MOS Inverter Interface Gate 4-10
* DS78LS120 Dual Differential Line Receiver (Norse Filtering and Fail-Safe) 190
DS7800 Dual Voltage Level Transtator 4.4
DS7802 Dual High Speed TRI STATE MOS to TTL Level Converter 6-16
DS7806 Dual High Speed TRI STATE MOS to TTL Level Converter 6.16
DS7810 Ouad 2 -Input TTL-MOS Interface Gate 4.7
DS7811 Quad 2-Input TTL-MOS Interface Gate $4-7$
DS7812 Hex TTL-MOS Inverter 4.7
DS7819 Quad 2 Input TTL-MOS AND Gate. $4-12$
DS7820 Dual Line Receiver $1-72$
DS7820A Dual Lime Receiver 1.75
DS7830 Dual Differential Line Driver 1.82
DS7831 Dud TRI-STATE Line Driver 1.85
DS7832 Dual TRISTATE Line Driver 1.85
DS 7833 Ouad TRI STATE Bus Transceiver 2.10
DS 7834 Quad TRI-STATE Bus Transceiver 2.14
DS7835 Quad TRI-STATE Bus Transceiver 2-10
DS7836 Quad NOR Unified Bus Receiver 2-18
DS7837 Hex Unıfied Bus Receiver 2.20
DS7838 Quad Unified Bus Transceiver 2.22
DS7839 Ourad TRI-STATE Bus Transceiver 2.14
DS7856 BCD to 7 Segment LED Driver $5 \cdot 32$
DS7858 BCD-to-7 Segment LED Driver 5-32

Alpha-Numerical Index (continuen)

DS7880 High Voltage 7-Segment Decoder. Driver (for Driving Panaplex $11^{\text {TM }}$ and Sperry/Beckman Displays) 5.54
DS7889 8-Segment High Voltage Cathode Driver (Active-High Inputs). 5-65
DS 7891 High Voltage Anode Driver (Actıve-Low Inputs) 5.69
DS7895 Quad LED Segment Driver 5-73
DS7897 8-Digit High Voltage Anode Driver (Active Low Inputs) 5-65

- DS8T26A 4-Bit Bidirectional Bus Transceiver 2.24
- DS8T26AM 4-Bit Bidirectional Bus Transceiver 2.24
- DS8T28 4-Bit Bidirectional Bus Transceiver 2.24
* DS8T28M 4-Bit Bidirectional Bus Transceiver 2.24
DS8640 Quad NQR Unified Bus Receiver 26
DS8641 Quad Unified Bus Transceiver 2.8
DS8642 Quad Transceiver 1.69
DS8646 Low Voltage 6-Digit LED Driver 5-1
* DS8647 Low Voltage 9-Segment LED Driver 5.3
* DS8648 Low Voltage 9-Segment LED Driver $5 \cdot 3$
DS8654 8-Qutput Display Driver (LED, VF, Thermal Printer) 5.5
DS8656 Diode Matrix 5.5
DS8658 Low Voltage 4-Digit LED Driver 5-9
DS8659 Low Voltage 7 Segment LED Driver 5-11
* DS8664 14-Diqit Decoder/Driver with Low Battery Indicator 5-13
* DS8665 14 Digit Decoder.Driver (Hı Drive) 5-16
* DS8666 14 Digit Decoder/Driver (P.Q.S.) 5-19
* DS8669 2•Digit BCD-to-7-Segment Decoder Driver 5.22
DS8692 Printing Calculator Interface Set 5.25
DS8693 Printing Calculator Interface Set 5-25
DS8694 Printing Calculator Interface Set 5-25
- DS88C20 Dual CMOS Compatible Differential Line Receiver 1-79
* DS88C 120 Dual CMOS Compatible Differentıal Line Receiver 1.97
DS88L 12 Hex TTL-MQS Inverter/Interface Gate 4-10
* DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe) 1.90
DS8800 Dual Voltage Level Translator 4.4
DS8802 Dual High Speed TRI-STATE MQS-to-TTL Level Converter 6-16
DS8806 Dual High Speed TRI-STATE MQS-to-TTL Level Converter 6-16
DS8810 Quad 2-Input TTL-MOS Interface Gate 4.7
DS8811 Quad 2-Input TTL-MQS Interface Gate 4. 7
DS8812 Hex TTL.MOS Inverter 4.7
DS8819 Quad 2.Inpu1 TTL•MQS AND Gate 4-12
DS8820 Dual Line Receiver 1-72
DS8820A Dual Line Receiver 1.75
DS8830 Dual Differential Line Driver 1.82
DS8831 Dual TRISTATE Line Driver 1.85
DS8832 Dual TRI STATE ${ }^{\text { }}$ Line Driver 1.85
DS8833 Quad TRISTATE "Bus Transceiver 2.10
DS8834 Quad TRI-STATE *Bus Transceiver $2 \cdot 14$
DS8835 Quad TRI-STATE Bus Transceiver $2 \cdot 10$
DS8836 Quad NOR Unified Bus Receiver 2-18
DS8837 Hex Unified Bus Receiver 2.20
DS8838 Quad Unified Bus Transceiver 2.22
DS8839 Quad TRI-STATE * Bus Transceiver 2-14
DS8856 BCD-to-7 Segment LED Driver 5.32
DS8857 BCD-to-7-Segment LED Driver 5-32
DS8858 BCD-to-7-Segment LED Driver 5-32
DS8859 Open Collector Hex Latch LED Driver 5-36
DS8861 MOS-to-LED 5-Segment Driver 5-39

Alpha-Numerical Index (continued)

DS8863 MOS-to-LED 8-Digit Driver 5-39
DS8867 8-Segment Constant Current Driver 5-42
DS8868 12-Digit Decoder/Driver 5-44
DS8869 Open Collector Hex Latch LED Driver $5 \cdot 36$
DS8870 Hex LED Digit Driver 5.46
DS8871 Saturating LED Cathode Driver 5.48
DS8872 Saturating LED Cathode Driver 5-48
DS8873 Saturating LED Cathode Driver 5-48
DS8874 9-Digit Shift Input LED Driver 5-50
DS8877 6-Digit LED Driver 5-52
DS8880 High Voltage 7-Segment Decoder/Driver (for Driving Panaplex $I^{\text {TM }}$ and Sperry/Beckman Displays) 5-54

* DS8881 Vacuum Fluorescent Display Driver 5-57
DS8884A High Voltage Cathode Decoder/Driver (for Driving Panaplex II ${ }^{\text {TM }}$ and Sperry/Beckman Displays) 5-61
DS8885 MOS-to-High Voltage Cathode Buffer 5-63
DS8887 8-Digit High Voltage Anode Driver (Active-High Inputs) $5-65$
DS8889 8-Segment High Voltage Cathode Driver (Active-High Inputs). 5-65
DS8891 High Voltage Anode Driver (Active-Low Inputs) 5-69
DS8892 Programmable Hex LED Digit Driver. 5-71
DS8895 Quad LED Segment Driver 5-73
DS8897 8-Digit High Voltage Anode Driver (Active-Low Inputs) 5-65
* DS8920 Saturating LED Cathode Driver 5-48
* DS8968 12-Digit Decoder/Driver (Modification). 5-76
DS8963 MOS-to-LED 8-Digit Driver 5-39
DS8973 9-Digit LED Driver 5-78
DS8974 9-Digit LED Driver 5-78
DS8975 9-Digit LED Driver 5-78
DS8976 9-Digit LED Driver 5-78
DS8977 Saturating LED Cathode Driver. $5-48$
DS8978 9-Digit LED Driver 5-78
* DS8979 Low Voltage 9-Segment LED Driver 5-3
* DS8980 High Voltage 7-Segment Latch/Decoder/Driver 5-81
* DS8981 High Voltage 7-Segment Latch/Decoder/Driver 5-81
DS55107 Dual Line Receiver 1-6
DS55108 Dual Line Receiver 1-6
* DS55113 Dual TRI-STATE ${ }^{*}$ Differential Line Driver $1-38$
* DS55114 Dual Differential Line Driver. 1-43
* DS55115 Dual Differential Line Receiver 1-47
DS55121 Dual Line Driver 1-52
DS55122 Triple Line Receiver 1-54
DS55325 Memory Driver 7-26
DS55450 Dual Peripheral Driver 3-20
DS55451 Dual Peripheral Driver 3-20
DS55452 Dual Peripheral Driver 3-20
DS55453 Dual Peripheral Driver 3.20
DS55454 Dual Peripheral Driver 3-20
DS55460 Dual Peripheral Driver 3-31
DS55461 Dual Peripheral Driver 3-31
DS55462 Dual Peripheral Driver 3-31
DS55463 Dual Peripheral Driver 3-31
DS55464 Dual Peripheral Driver 3-31
DS55493 Quad LED Segment Driver 5-88
DS55494 Hex Digit Driver 5-90
DS75107 Dual Line Receiver 1-6

Alpha-Numerical Index (Continued)

DS75108 Dual Line Receiver 1.6

* DS75113 Dual TRI-STATE ${ }^{\bullet}$ Differential Line Driver $1-38$
- DS75114 Dual Differential Line Driver $1-43$
* DS75115 Dual Differential Line Receiver $1-47$
DS75121 Dual Line Driver 1-52
DS75122 Triple Line Receiver 1-54
DS75123 Dual Line Driver $1-57$
DS75124 Triple Line Receiver 1-59
DS75150 Dual Line Driver 1-62
DS75154 Ouad Line Receiver 1-65
DS75207 Dual Line Receiver 1-6
DS75208 Dual Line Receiver $1-6$
* DS75322 Dual TTL-MOS Driver 6-76
DS75324 Memory Driver with Decode Inputs $7-20$
DS75325 Memory Driver 7-26
DS75361 Dual TTL to-MOS Driver 6.79
DS75362 Dual TTL-to-MOS Driver 6.84
DS75364 Dual MOS Clock Driver 6.89
DS75365 Ouad TTL-to-MOS Driver 6.93
DS75450 Dual Peripheral Driver 3-20
DS75451 Dual Peripheral Driver $3-20$
DS75452 Dual Peripheral Driver $3-20$
DS75453 Dual Peripheral Driver $3-20$
DS75454 Dual Peripheral Driver 3-20
DS75460 Dual Peripheral Driver 3-31
DS75461 Dual Peripheral Driver 3-31
DS75462 Dual Peripheral Driver 3-31
DS75463 Dual Peripheral Driver 3.31
DS75464 Dual Peripheral Driver 3.31
DS75491 MOS-to-LED Ouad Segment Driver 5.85
DS75492 MOS-to-LED Hex Digit Driver 5.85
DS75493 Ouad LED Segment Driver 5.88
DS75494 Hex Digit Driver 5.90

National Semiconductor

DEVICE NUMBER	$\begin{gathered} \text { NATIONAL } \\ \text { EXACT } \\ \text { REPLACEMENT } \end{gathered}$	DEVICE NUMBER	$\begin{gathered} \text { NATIONAL } \\ \text { EXACT } \\ \text { REPLACEMENT } \end{gathered}$
AMD		SIGNETICS	
AM26S 10	DS 26510	8737	DS8837
AM26S11	DS26S 11	8T38	DS8838
AM26LS30	DS3691	8T51	DS8856
AM26LS31	DS26LS31	8T100	DS 75114
AM26LS32	DS26LS32	8T101	DS75115
AM26LS33	DS26LS33	8 T 380	DS8836
FAIRCHILD		TEXAS INSTRUMENTS	
9614	DS75114	SN7520	DS 7520
9615	DS 75115	SN7522	DS 7522
9640	DS26S 10	SN7524	DS 7524
		SN7528	DS 7528
		SN7534	DS 7534
INTEL		SN7538	DS 7538
		SN75107	DS75107
3245	DS3245	SN75108	DS 75108
8212	DP8212	SN75113	DS 75113
8216	DP8216	SN75114	DS75114
8224	DP8224	SN75115	DS75115
8226	DP8226	SN75121	DS75121
8228	DP8228	SN75122	DS75122
8238	DP8238	SN75123	DS 75123
		SN75124	DS75124
		SN75150	DS 75150
MOTOROLA		SN75154	DS 75154
		SN75180	DS8800
MC1488	DS 1488	SN75182	DS8820
MC1489	DS 1489	SN75183	DS8830
MC3430	DS3650	SN75188	DS1488
MC3432	DS3651	SN75189	DS 1489
MC3437	DS8837	SN75207	DS 75207
MC3438	DS8838	SN75208	DS75208
MC3440	DS3440	SNT5322	DS75322
MC3441	DS3441	SN75324	DS 75324
MC3442	DS3442	SN75325	DS75325
MC3443	DS3443	SN75361	DS75361
MC3446	DS3446	SN75362	DS75362
MC3450	DS3652	SN75364	DS 75364
MC3452	DS3653	SN75365	DS 75365
MC3460	DS3674	SN75369	DS75369
MC3486	DS3486	SN75450	DS 75450
MC3487	DS3487	SN75451	DS 75451
MMH0026C	DS0026C	SN75452	DS 75452
MMH0056C	DS0056C	SN75454	DS 75454
		SN75460	DS 75460
		SN75461	DS 75461
SIGNETICS		SN75462	DS75462
		SN75463	DS75463
8 T 13	DS 75121	SN75464	DS 75464
8 T 14	DS 75122	SN75480	DS8880
8T23	DS75123	SN75484	DS8980
8 T 24	DS75124	SN75491	DS 75491
8 T 25	DS3625	SN75492	DS75492
8T26A	DS8T26A	SN75493	DS75493
8T28	DS8T28	SN75494	DS75494
8T34	DS8834		

Section 1 Transmission Line Drivers/Receivers

TEMPERATURE RANGE
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DS1603
DS1650
DS1652
DS1691
DS1692
DS26LS31M
DS26LS32M
DS26LS33M
-
-
DS55107/207
DS55108/208
DS55113
DS55114
DS55115
DS55121
DS55122
-

DS55150
-
-
DS7820
DS7820A
DS78C20
DS7830
DS7831
DS7832
DS78LS120
DS78C120
MM78C29
MM78C30
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ DS1488

DS1489
DS1489A
DS3603/04
DS3650
DS3652
DS3691
DS3692
DS26LS31
DS26LS32
DS26LS33
DS3486
DS3487
DS75107/207
DS75108/208
DS75113
DS75114
DS75115
DS75121
DS75122
DS75123
DS75124
DS75150
DS75154
DS8642
DS8820
DS8820A
DS88C20
DS8830
DS8831
DS8832
DS88LS120
DS88C120
MM88C29
MM88C30

DESCRIPTION
Quad Line DriverQuad Line Receiver
PAGENUMBER
Quad Line Receiver1.4
Dual TRI-STATE ${ }^{(® 1)}$ Line Receiver 1.6
Quad Differential Line Receiver 1-13
Quad Differential Line Receiver 1-13
RS422-RS423 Line Drivers $1-19$
TRI-STATE ${ }^{\circledR}$ Differential Line Driver 1-19
Quad Differential Line Driver $1-25$
Quad Differential Line Receiver $1-28$
Quad Differential Line Receiver $1-28$
Quad RS422-RS423 Line Receiver 1.31
Quad TRI-STATE ${ }^{\circledR}$ Line Driver 1.35
Dual Line Receiver 1-6
Dual Line Receiver 1-6
Dual TRI-STATE ${ }^{10}$ Differential Line Driver 1.38
Dual Differential Line Driver 1-43
Dual Differential Line Receiver 1.47
Dual Line Dirver $1-52$
Triple Line Receiver 1.54
Dual Line Driver 1-57
Triple Line Receiver 1-59
Dual Line Driver 1-62
Dual Line Receiver 1-65
Quad Transceiver 1-69
Dual Line Receiver 1-72
Dual Line Receiver 1-75
Dual CMOS Compatible Differential Line Receiver 1.79
Dual Differential Line Driver $1-82$
Dual TRI-STATE ${ }^{\circledR}$ Line Driver 1-85
Dual TRI-STATE ${ }^{\circledR}$ Line Driver 1-85
Dual Differential Line Receiver $1-90$
Dual CMOS Compatible Line Receiver 1.97
Quad Single-Ended Line Driver 9-35
Dual Differential Line Driver 9.35
Selection Guide

Propagation Delay (ns)	Threshold Sensitivity (V)	Input Range (V)	Hysteresis (mV)	Response Control	$\begin{gathered} \text { Strobed or } \\ \text { TRI-STATE } \end{gathered}$	Power Supplies (V)	Standard	Circuits/ Package	Device Number		Comments
									Commercial $0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	Military $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	
30	3	± 25	250	CEXT		5	RS. 232	4	DS1489		
30	3	± 25	1150	CEXT		5	RS-232	4	DS1489A		Preferential in applications to DS1489
22	3	± 25	800	CExt		5 or 15	RS-232	4	DS75154		
50	± 0.2	± 25	50	CEXT	Strobed	5	RS-423	2	DS88LS120	DS78LS120	Fail-safe
50	± 0.2	± 25	50	CEXT	Strobed	5 to 15	RS-423	2	DS88C120	DS78C120	Fail-safe
17	± 0.2	± 7	30		TRI-STATE	5	RS-423	4	DS26LS32	DS26LS32M	
17	± 0.3	± 15	30		TRI-STATE	5	RS-423	4	DS26LS33	DS26LS33M	
25	± 0.1	± 15	100		TRI-STATE	5	RS-423	4	DS3486		
20	0.8 to 2	7	600		Strobed	5	$3601 / 0$	3	DS75122	DS55122	50Ω coax. receiver
20	0.8 to 2	7	400		Strobed	5	360 1/0	3	DS75124	DS55124	50Ω coax. receiver (1BM)
17	1.4 to 3.1	5			OpenCollector	5		4	DS8642		50Ω coax. transceiver

BALANCED (DIFFERENTIAL) TRANSMISSION LINE DRIVERS AND RECEIVERS

									Devic	Number	
Delay (ns)	$\left\|\begin{array}{l} \text { VOL (V) } \\ \operatorname{loL}(\mathrm{mA}) \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{OH}(\mathrm{~V}) \\ & \mathrm{IOH}(\mathrm{~mA}) \end{aligned}\right.$	Application	TRI-STATE ${ }^{(®)}$	Open-Collector	Supplies (V)	Standard	Package	Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Comments
10	0.5/40	1.8/-40				5		2	DS8830	DS7830	
100	0.4/11	2.9/-57				5 or 15		2	MM88С30	MM78C30	CMOS comparator
100	0.4/11	2.9/-57				5 or 15		2	MM88C29	MM78C29	Non-inverting MM88C30
10	0.5/40	1.8/-40	Yes	TRI-STATE		5		2	DS8831	DS7831	
10	0.5/40	1.8/-40	Yes	TRI-STATE		5		2	DS8832	DS7832	DS8831 without VCC clamp diode
13	0.4/40	2/-40	Yes	TRI-STATE	Optional	5		2	DS75113	DS55113	
15	0.4/40	2/-40			Optional	5		2	DS75114	DS55114	
200	-2/20	2/-20	Yes	TRI-STATE		5 or ± 5	RS-422	2	DS3691	DS1691	
200	$-2 / 20$	2/-20	Yes	TRI-STATE		5 or ± 5		2	DS3692	DS1692	$\pm 10 \mathrm{~V}$ TRI-STATE common-mode range
12	0.5/40	2.5/-20	Yes	TRI-STATE		5	RS-422	4	DS26LS31	DS26LS31M	
15	0.5/48	2/-50	Yes	TRI-STATE		5	RS-422	4	DS3487		

Balanced data transmission is applicable for long lines in the presence of high common-mode noise. Balanced circuits don't generate much noise and are also not susceptible to commonmode noise, and therefore work well in long lines when cabled with other signals.
Line length is a function of data rate (baud) and the combination of IR drop and skin effect. Refer to AN-108 and AN-22. The recommended safe operating area (line length vs baud rate) is shown for 24 AWG wire.
BALANCED DRIVERS
BALANCED RECEIVERS

	Threshold Sensitivity (mV)	Common-Mode Range (V)	$\begin{aligned} & \text { Hysteresis } \\ & (m V) \end{aligned}$	Response Control		Power		Circuits/ Package	Device Number		Comments
Propagation Delay (ns)					$\begin{gathered} \text { Strobed or } \\ \text { TRI-STATE }^{\oplus} \end{gathered}$	Supplies (V)	Standard		$\begin{gathered} \text { Commercial } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
40	± 1000	± 15		Yes	Strobed	5		2	DS8820	DS7820	
30	± 1000	± 15		Yes	Strobed	5		2	DS8820A	DS7820A	
60	± 200	± 10	50	Yes	Strobed	5 to 15	RS-422	2	DS88C20	DS78C20	CMOS compatible
60	+200 +200	± 10	50	Yes	Strobed	5 to 15	RS-422	2	DS88C120	DS78C120	Fail-safe, CMOS compatible
50	+200	± 10	50	Yes	Strobed	5	RS-422	2	DS88LS120	DS78LS120	Fail-safe
20	± 500	± 15		Yes	Strobed	5		2	DS75115	DS55115	
17	± 200	± 10	80		TRI-STATE	5	RS-422	4	DS26LS32		
17	± 300	± 15	40		TRI-STATE	5	RS 422	4	DS26LS33		
25	± 200	± 10	80		TRI-STATE	5	RS-422	4	DS3486		
10	± 25	± 3			TRI-STATE	± 5		4	DS3650	DS1650	
10	± 25	+3			Strobed	+5		4	DS3652	DS1652	
	+25	± 3			Strobed	± 5		2	DS75107	DS55107	
17					Strobed	± 5		2	DS75207	DS55207	
17	± 10	-				± 5		2	DS75108	DS55108	
17	± 25	± 3			Strobed	± 5					
17	± 10	± 3			Strobed	± 5		2	DS75208	DS55208	
17	± 25	± 3			TRI-STATE	± 5		2	DS3603	DS1603	
17	± 10	± 3			TRI.STATE	± 5		2	DS3604	DS1604	

 $(\pm 15 \mathrm{~V})$, which may not be available in some digital systerns.

National Semiconductor

Transmission Line

 Drivers/Receivers
DS1488 quad line driver

general description

The DS1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS 232C and CCITT Recommendation V. 24.

features

- Current limited output $\pm 10 \mathrm{~mA}$ typ
- Power-off source impedance 300Ω min
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are DTL/TTL compatible
schematic and connection diagrams

Dual-In-Line Package

TOP V:EW
Order Number DS1488.J or DS1488N See NS Package J14A or N14A

typical applications

RS232C Data Transmission

*Opromel for nows fittornea
absolute maximum ratings (Note 1)
Supply Voltage
V^{+}
V^{-}

> +15 V
> -15 V
> $-15 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 7.0 \mathrm{~V}$
> $\pm 15 \mathrm{~V}$
> $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
> $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> $300^{\circ} \mathrm{C}$
electrical characteristics
(Notes 2, 3 and 4)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
I_{1}	Logical " 0 ' Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			-1.0	-1.3	mA
I_{H}	Logical "1" Input Current	$\mathrm{V}_{\text {iN }}=+5.0 \mathrm{~V}$			0.005	10.0	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$	6.0	7.0		V
			$\mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V}$	9.0	10.5		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & R_{L}=3.0 \mathrm{k} \Omega, \\ & V_{I N}=1.9 \mathrm{~V} \end{aligned}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-6.8	-6.0	V
			$\mathrm{V}^{+}=13.2 \mathrm{~V}, \mathrm{~V}^{-}=-13.2 \mathrm{~V}$		-10.5	-9.0	V
${ }^{1} \mathrm{os}^{+}$	High Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$		-6.0	-10.0	-12.0	mA
${ }^{\text {os }}$	Low Level Output Short-Circuit Current	$V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.9 \mathrm{~V}$		6.0	10.0	12.0	mA
$\mathrm{R}_{\text {OUT }}$	Output Resistance	$\mathrm{V}^{+}=\mathrm{V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$		300			Ω
${ }^{\text {' }} \mathrm{cc}^{+}$	Positive Supply Current (Output Open)	$V_{\text {IN }}=1.9 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		15.0	20.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		19.0	25.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		25.0	34.0	mA
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}=-9.0 \mathrm{~V}$		4.5	6.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		5.5	7.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=\cdots 1 \mathrm{JV}$		8.0	12.0	mA
ICC^{-}	Negative Supply Current (Output Open)	$\mathrm{V}_{\text {IN }}=1.9 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-13.0	-17.0	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		-18.0	-23.0	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-25.0	-34.0	mA
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-0.001	-0.015	mA
			$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$		-0.001	-0.015	mA
			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-0.01	-2.5	mA
$P_{\text {d }}$	Power Dissipation	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$			252	333	mW
		$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}$	12 V		444	576	mW

switching characteristics $\left(V_{C C}=9 \mathrm{~V}, \mathrm{~V}_{E E}=-9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pd1 }}$	Propagation Delay to a Logical " $1 " \prime$	$R_{L}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		230	350	ns
$\mathrm{t}_{\text {pdo }}$	Propagation Delay to a Logical " $0^{\prime \prime}$	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70	175	ns
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		75	100	ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range for the DS 1488 .
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the DS1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$
C=I_{S C}(\Delta T / \Delta V)
$$

where C is the required capacitor, isc is the short circuit current value, and $\triangle V / \Delta T$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30 V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

typical applications (con't)

DTL/TTL-to-MOS Translator

DTL/TTL-to-HTL Translator

DTL/TTL-to•RTL Translator
ac load circuit

* C_{L}. inc udes probe and pig capacitance
switching time waveforms

typical performance characteristics

Output Voltage and Current-Limiting Characteristics

这
National Semiconductor

Transmission Line Drivers/Receivers

DS1489/DS1489A quad line receiver

general description

The DS1489/DS1489A are quad line receivers. designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C. The DS1489/DS1489A meet and exceed the specifications of MC1489/ MC1489A and are pin-for-pin replacements. The DS1489/DS1489A are available in 14-lead ceramic dual-in-line package.

features

- Four totally separate receivers per package
- Programmable threshold
- 8uilt-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand $\pm 30 \mathrm{~V}$
schematic and connection diagrams

ac test circuit and voltage waveforms

typical applications

*Optional for morse filtermy

absolute maximum ratings (Note 1)

The following apply for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Power Supply Voltage
Input Voltage Range
Output Load Current
Power Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range

10 V $\pm 30 \mathrm{~V}$ 20 mA 1W
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
electrical characteristics (Notes 2, 3 and 4)
DS1489/DS1489A : The following apply for $V_{C C}=5.0 \mathrm{~V} \pm 1 \%, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ unless otherwise specified.

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
	Input High Threshold Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }} \leq 0.45 \mathrm{~V}, \\ & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$		DS1489	1.0		1.5	V
				DS1489A	1.75		2.25	v
$\mathrm{V}_{\text {TL }}$	Input Low Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }} \geq 2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-0.5 \mathrm{~mA}$			0.75		1.25	\checkmark
I IN	Input Current	$V_{\text {IN }}=+25 \mathrm{~V}$			+3.6	+5.6	+8.3	mA
		$V_{\text {IN }}=-25 \mathrm{~V}$			-3.6	-5.6	-8.3	mA
		$V_{\text {IN }}=+3 \mathrm{~V}$			+0.43	+0.53		mA
		$V_{\text {IN }}=-3 \mathrm{~V}$			-0.43	-0.53		mA
V_{OH}	Output High Voltage	$\mathrm{I}_{\text {OUT }}=-0.5 \mathrm{~mA}$	$V_{\text {IN }}=0.75 \mathrm{~V}$		2.6	3.8	5.0	V
			Input = Open		2.6	3.8	5.0	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$				0.33	0.45	\checkmark
$I_{\text {sc }}$	Output Short Circuit Current	$\mathrm{v}_{\text {IN }}=0.75 \mathrm{~V}$				3.0		mA
I_{Cc}	Supply Current	$v_{I N}=5.0 \mathrm{~V}$				14	26	mA
P_{d}	Power Dissipation	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$				70	130	mW

switching characteristics $\left(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{pd} 1}$	Input to Output "High" Propagation Delay	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k}$, (Figure 1) (ac Test Circuit)		28	85	ns
$t_{\text {pdo }}$	Input to Output "Low" Propagation Delay	$\mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 1) (ac Test Circuit)		20	50	ns
t_{r}	Output Rise Time	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k}$, (Figure 1) (ac Test Circuit)		110	175	ns
$\mathrm{t}_{\text {f }}$	Output Fall Time	$\mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 1) (ac Test Circuit)		9	20	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Aange" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2. Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range for the DS1489 and DS1489A.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: These specifications apply for response control pin = open.

Transmission Line Drivers/Receivers

DS1603/DS3603, DS3604, DS55107/DS75107, DS55108/DS75108, DS75207, DS75208 dual line receivers

general description

The nine products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers or MOS sensing, any of the products may effectively be used as voltage comparators, level trans lators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the DS55109/DS75109 and DS55110/DS75110 companion drivers, or may be used in other balanced or unbalanced party-line data tran smission systems. The improved input sensitivity and delay specifications of the DS75207, DS75208 and DS3604 make them ideal for sensing tigh performance MOS memories as well as high sensitivity line receivers and voltage comparators. TRI-STATE ${ }^{(®)}$ products enhance bused organizations.

features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- $\pm 10 \mathrm{mV}$ or $\pm \mathbf{2 5} \mathrm{mV}$ input sensitivity
- $\pm 3 \mathrm{~V}$ input common-mode range
- High input impedance with normal V_{CC}, or $V_{c c}=0 \mathrm{~V}$
- - Strobes for channel selection
- TRI-STATE outputs for high speed buses
- Dual circuits
- Sensitivity gntd. over full common-mode range
- Logic input clamp diodes-meets both "A" and " B " version specifications
- $\pm 5 \mathrm{~V}$ standard supply voltages

connection diagrams

Order Number DS55107J, DS75107J, DS55108J, DS75108J, DS75207J or DS75208.J
See NS Package d14A
Order Number DS75107IN, DS75108N, DS75207N or DSㄱ5208N See NS Package IN14A
Order Number DS55107WI or DS55108W See NS Package W14A
product selection guide

TEMPERATURE \rightarrow PACKAGE \rightarrow	$55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ CAVITY DIP	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ CAVITY OR MOLOED DIP	
INPUT SENSITIVITY \rightarrow OUTPIJTLOGIC.	: 25 mV	$\pm 25 \mathrm{mV}$	$\pm 10 \mathrm{mV}$
tTL Actue Pull up TTL Oper Collector TTL TRI STATE	$\begin{aligned} & \text { DS55107 } \\ & \text { DS55108 } \\ & \text { DS1603 } \end{aligned}$	O575107 OS75108 DS3603	D575207 DS75208 DS3604

absolute maximum ratings (Notes 1,2 and 3)

Supply Voltage, $V_{\mathrm{CC}^{+}}{ }^{+}$	7 V
Supply Voltage, $V_{\mathrm{CC}}{ }^{-}$	7 V
Differential Input Voltage	$=6 \mathrm{~V}$
Common Mode Input Voltage	$: 5 \mathrm{~V}$

Strobe Input Voltage
Storage Temperature Range
Power Dissipation
Lead Temperature (Soldering, 10 sec)

55 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 600 mW $300^{\circ} \mathrm{C}$
operating conditions

	$\begin{gathered} \text { DS55107, } \\ \text { DS55108, } \\ \text { DS1603 } \end{gathered}$			$\begin{gathered} \text { DS75107, DS75207 } \\ \text { DS75108, DS75208 } \\ \text { DS3603, DS3604 } \end{gathered}$		
	MIN	NOM	MAX	MIN	NOM	MAX
Supplv Vollagp $V_{\text {CC }}{ }^{+}$	$45 V$	5V	55 V	475 V	5 V	525 V
Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{-}$	45 V	5 V	. 55 V	475 V	5 V	525 V
Operating Temperature Range	55 C	to	$+125 \mathrm{C}$	0 C	to	$+70^{\circ} \mathrm{C}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating remperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the OS 1603 , DS55107 and DS 55108 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3603, DS3604, DS75107, DS75108. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}$,
Note 3: All currents trito device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical applications

Line Receiver Used in a Party Line or Data-Bus System

Line Recerver Used in MOS Memory System

DS16/3603, DS3604, DS55/75107,
DS55/75108, DS75207, DS75208

schematic diagrams

DS55 107/DS75 107, DS75207
DS55108/DS75108, DS75208

Note $1.1 / 20$ the dual cifeuit is shown
Note 2 "Indu:ates connections common to second half of duat circuit
Note 3 Comqonents shown with dash lines are applicatile 10 the DS55107. OS75107 and DS75207 only

DS1603/DS3603, DS3604

DS55107/DS75107, DS55108/DS75108

electrical characteristics $\left(T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$I_{\text {IH }}$	High Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{\text {cC+ }}=\text { Max, } V_{\text {cc- }}=\text { Max, } \\ & V_{I D}=0.5 \mathrm{~V}, V_{\text {IC }}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			30	75	$\mu \mathrm{A}$
1 L	Low Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x, \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
I_{IH}	High Level Input Current	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max} \end{aligned}$	$\mathrm{V}_{(\mathrm{H}(\mathrm{s})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	Into G1 or G2		$\mathrm{V}_{1 \mathrm{H}(\mathrm{s})}=$ Max $\mathrm{V}_{\text {cc }+}$			1	mA
IIL	Low Level Input Current Into G1 or G2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=\mathrm{Max}_{1} \\ & V_{\text {(L(S) }}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
I_{IH}	High Level Input Current Into S	$\mathrm{V}_{\text {cc+ }}{ }^{\text {a }}$ Max,	$\mathrm{V}_{1 \mathrm{H}(\mathrm{S})}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$V_{c c-}=$ Max	$\mathrm{V}_{\text {(HIS }}=\mathrm{Max} \mathrm{V}_{\text {CC }+}$			2	mA
$I_{\text {IL }}$	Low Level Input Current Into S	$\begin{aligned} & V_{c \mathrm{CC}+}=\operatorname{Max}, V_{\mathrm{Cc}-}=\operatorname{Max} \\ & V_{\mathrm{IL}(\mathrm{~s})}=0.4 \mathrm{~V} \end{aligned}$				-3.2	mA
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{C C+}=M i n, V_{C C-}=M i n, \\ & I_{\text {LOAD }}=-400 \mu A, V_{I D}=25 \mathrm{mV}, \\ & V_{I C}=-3 V \text { to } 3 V,(\text { Note } 3) \end{aligned}$		2.4			V
$V_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{\text {CC }}=M i n, V_{C C-}=M i n, \\ & I_{\text {SINK }}=16 \mathrm{~mA}, V_{I D}=-25 \mathrm{mV}, \\ & V_{I C}=-3 V \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
$\mathrm{IOH}^{\text {O }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}_{+}}=\operatorname{Min}, \mathrm{V}_{\mathrm{cc}_{-}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{OH}}=\mathrm{Max} \mathrm{~V}_{\mathrm{CC}_{+}} \text {, (Note 4) } \end{aligned}$				250	$\mu \mathrm{A}$
Ios	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}_{+}}=\text {Max, }, V_{\mathrm{CC}_{-}}=\text {Max, } \\ & \text { (Notes } 2 \text { and } 3 \text {) } \end{aligned}$		-18		-70	mA
ICCH_{+}	High Logic Level Supply Current From V_{Cc}	$\begin{aligned} & V_{C C_{+}}=\text {Max, } V_{C C^{-}}=M a x, \\ & V_{I D}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			18	30	mA
${ }^{\text {cch- }}$	High Logic Level Supply Current From V_{cc}	$\begin{aligned} & V_{\mathrm{CC}^{+}}=M a x, V_{\mathrm{CC}^{-}}=M a x . \\ & V_{I D}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or S	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

switching characteristics $\left(V_{C C+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH(}}$)	Propagation Delay Time, Low to	$R_{L}=390 \Omega, C_{L}=50 \mathrm{pF} .$ (Note 1)	(Note 3)		17	25	ns
	High Level, From Differential Inputs A and B to Output		(Note 4)		19	25	ns
$\mathrm{t}_{\text {PHLI }}$	Propagation Delay Time, High to	$R_{L}=390 \Omega, C_{L}=50 \mathrm{pF} .$ (Note 1)	(Note 3)		17	25	ns
	Low Level, From Differential Inputs A and B to Output		(Note 4)		19	25	ns
trin(s)	Propagation Delay Time, Low to	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	(Note 3)		10	15	ns
	High Level, From Strobe Input G or S to Output		(Note 4)		13	20	ns
$\mathrm{t}_{\text {PHL(S) }}$	Propagation Delay Time, High to	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	(Note 3)		8	15	ns
	or S to Output		(Note 4)		13	20	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Note 2: Only one output at a time should be shorted.
Note 3: DS55107/DS75107 only.
Note 4: DS55108/DS75108 only.

DS75207, DS75208
electrical characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
I_{IH}	High Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{1 \mathrm{D}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			30	75	$\mu \mathrm{A}$
116	Low Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x \\ & V_{4 D}=-2 V, V_{1 C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
I_{H}	High Level Input Current	$\begin{aligned} & V_{\text {CC }+}=\text { Max } \\ & V_{\text {Cc- }}=M a x \end{aligned}$	$\mathrm{V}_{\mathrm{IH}(\mathrm{s})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	Into G1 or G2		$\mathrm{V}_{\text {IH (} \mathrm{S})}=\mathrm{Max} \mathrm{V}_{\text {CC }+}$			1	mA
$I_{\text {IL }}$	Low Level Input Current Into G1 or G2	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
$I_{\text {IH }}$	High Level Input Current Into S	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}+}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max} \end{aligned}$	$\mathrm{V}_{1 \mathrm{H}(\mathrm{s})}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
			$\mathrm{V}_{1 \mathrm{H}(\mathrm{s})}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			2	mA
112	Low Level Input Current Into S	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(\mathrm{~S})}=0.4 \mathrm{~V} \end{aligned}$				-3.2	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Min}, V_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{LOAD}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{ID}}=10 \mathrm{mV}, \\ & \mathrm{~V}_{\text {IC }}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V},(\text { Note } 3) \end{aligned}$		2.4			V
$V_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C^{+}}=M \mathrm{Min}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & I_{\mathrm{SINK}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ID}}=-10 \mathrm{mV}, \\ & V_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
I_{OH}	High Level Output Currert	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & V_{\mathrm{OH}}=\mathrm{Max} V_{\mathrm{CC}+},(\text { Note } 4) \end{aligned}$				250	$\mu \mathrm{A}$
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}+}=\operatorname{Max}, \mathrm{V}_{\mathrm{cc}}=\operatorname{Max}$ (Notes 2, 3 and 4)		-18		-70	mA
$\mathrm{ICCH}+$	High Logic Level Supply Current From V_{Cc}	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{10}=10 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			18	30	mA
${ }^{1} \mathrm{CCH}-$	High Logic Level Supply Current From V_{Cc}	$\begin{aligned} & V_{\mathrm{CC}_{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{ID}}=10 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or S	$\begin{aligned} & V_{C C^{+}}=M \mathrm{Min}, \mathrm{~V}_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

switching characteristics $\left(\mathrm{V}_{\mathrm{cC}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLH }(0)}$	Propagation Delay Time, Low-toHigh Level, From Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (Note 1)			35	ns
$\mathrm{t}_{\text {PHL }}$ ($)$	Propagation Delay Time, High-toLow Level, From Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (Note 1)			20	ns
$\mathrm{t}_{\text {PLH(S) }}$	Propagation Delay Time, Low-toHigh Level, From Strobe Input G or S to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17	ns
$\mathrm{t}_{\text {PHL(S) }}$	Propagation Delay Time, High-toLow Level, From Strobe Input G or S to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Note 2: Only one output at a time should be shorted.
Note 3: DS75207 only.
Note 4: DS75208 only.

DS1603/DS3603

electrical characteristics ($T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$I_{1 H}$	High Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{C C^{+}}=M a x, V_{C C^{-}}=M a x, \\ & V_{\text {ID }}=0.5 \mathrm{~V}, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			30	75	$\mu \mathrm{A}$
$I_{1 L}$	Low Level Input Current Into A1, B1, A2 or B2	$\begin{aligned} & V_{C C^{+}}=M a x, V_{C C^{-}}=M a x, \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
$t_{1 H}$	High Level Input Current	$\begin{aligned} & V_{\mathrm{Cc}+}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{Cc}-}=\mathrm{Max} \end{aligned}$	$\mathrm{V}_{(\mathrm{H}(\mathrm{S})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	Into G1, G2 or D		$\mathrm{V}_{\text {IH(S) }}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			1	mA
	Low Level Input Current Into D	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Max}, V_{\mathrm{CC}-}=\text { Max } \\ & V_{\mathrm{IL}(\mathrm{D})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
$I_{\text {IL }}$	Low Level Input Current Into G1 or G2	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Max}, \\ & V_{\mathrm{CC}-}=\mathrm{Max}, \\ & V_{(\mathrm{L}(\mathrm{G})}=0.4 \mathrm{~V} \end{aligned}$	$V_{1 H(D)}=2 \mathrm{~V}$			-40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IL}(\mathrm{D})}=0.8 \mathrm{~V}$			-1.6	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C+}=M i n, V_{C C-}=M i n, \\ & I_{\text {LOAD }}=-2 \mathrm{~mA}, V_{I D}=25 \mathrm{mV} \\ & V_{\text {iLID }}=0.8 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		2.4			V
$\mathrm{VOL}_{\mathrm{OL}}$	Low Level Output Voltage	$\begin{aligned} & V_{\text {CC }+}=M \mathrm{M}, V_{\mathrm{CC}}=M \mathrm{Min}, \\ & \mathrm{I}_{\mathrm{SINK}}=16 \mathrm{~mA}, V_{I D}=-25 \mathrm{mV} \\ & V_{I L(D)}=0 . B \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
100	Output Disable Current	$\begin{aligned} & V_{C C+}=M a x, \\ & V_{C C-}=M a x \\ & V_{H(D)}=2 V \end{aligned}$	$V_{\text {OUT }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{\text {CC+ }}=\operatorname{Max}, V_{\text {IL(D) }}=0 . B V, \\ & V_{\text {CC- }}=\operatorname{Max},(\text { Note } 2) \end{aligned}$		-18		-70	mA
ICCH^{+}	High Logic Level Supply Current From $\mathrm{V}_{\mathrm{CC}+}$	$\begin{aligned} & V_{\mathrm{CC}+}=\text { Max, } \\ & V_{10}=25 \mathrm{mV} . \end{aligned}$	$\begin{aligned} & C=M a x, \\ & A=25^{\circ} \mathrm{C} \end{aligned}$		2 B	40	mA
$\mathrm{I}_{\mathrm{CCH}-}$	High Logic Level Supply Current From $\mathrm{V}_{\mathrm{CC}}-$	$\begin{aligned} & V_{\mathrm{Cc}+}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{ID}}=25 \mathrm{mV} . \end{aligned}$	$\begin{aligned} & C=\text { Max, } \\ & A=25^{\circ} \mathrm{C} \end{aligned}$		-B. 4	-15	mA
V_{1}	Input Clamp Voltage on G or D	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Min}, \mathrm{~V} \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & C^{-}=\operatorname{Min}, \\ & A=25^{\circ} \mathrm{C} \end{aligned}$		-1	-1.5	V

switching characteristics $\left(\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLH(}}$ ()	Propagation Delay Time, Low-toHigh Level, From Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Note 1)		17	25	ns
$\mathrm{t}_{\text {PhL (D) }}$	Propagation Delay Time, High toLow Level, From Differential Inputs A and B to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Note 1)		17	25	ns
$\mathrm{t}_{\text {PLH(S) }}$	Propagation Delay Time, Low-toHigh Level, From Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	15	ns
$\mathrm{t}_{\text {PHL(S) }}$	Propagation Delay Time, High-toLow Level, From Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		B	15	ns
$\mathrm{t}_{1} \mathrm{H}$	Disable Low-to High to Output High to Off	$R_{L}=390 \Omega, C_{L}=5 \mathrm{pF}$			20	ns
t_{OH}	Disable Low- to High to Output Low to Off	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			30	ns
$\mathrm{t}_{\mathrm{H} 1}$	Disable High-to-Low to Output Off to High	$R_{L}=1 \mathrm{k}$ to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
${ }^{\text {H }}$ O	Disable High-to-Low to Output Off to Low	$R_{L}=390 \Omega, C_{L}=50 \mathrm{pF}$			25	ns

[^0]DS3604
electrical characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
I_{H}	High Level Input Current Into A1, 81, A2 or 82?	$\begin{aligned} & V_{C C+}=\operatorname{Max}, V_{C C-}=M a x \\ & V_{I D}=0.5 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			30	75	$\mu \mathrm{A}$
IIL	Low Level Input Current Into A1, 81, A2 or B?	$\begin{aligned} & V_{C C H}=\text { Max, } V_{C C-}=\text { Max } \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$				-10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	High Level Input Current	$\begin{aligned} & V_{\mathrm{CC}+}=\text { Max, } \\ & V_{\mathrm{CC}-}=\text { Max } \end{aligned}$	$\mathrm{V}_{(\mathrm{H}(\mathrm{S})}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	Into G1, G2 or D		$\mathrm{V}_{(\mathrm{H}(\mathrm{S})}=\mathrm{Max} \mathrm{V}_{\mathrm{CC}+}$			1	mA
1 IL	Low Level Input Current Into D	$\begin{aligned} & V_{\mathrm{CC}+}=\text { Max, } V_{\mathrm{CC}-}=\text { Max } \\ & V_{(\mathrm{L}(\mathrm{D})}=0.4 \mathrm{~V} \end{aligned}$				-1.6	mA
$I_{1 L}$	Low Level Input Current Into G1 or G2	$\begin{aligned} & V_{C C+}=\mathrm{Max}, \\ & V_{\mathrm{CC}-}=\mathrm{Max}, \\ & V_{(\mathrm{L}(\mathrm{G})}=0.4 \mathrm{~V} \end{aligned}$	$V_{1 M(D)}=2 \mathrm{~V}$			-40	$\mu \mathrm{A}$
			$V_{\text {IL(}}$ ($)=0.8 \mathrm{~V}$			-1.6	mA
VOH	High Level Output Voltage	$\begin{aligned} & V_{C C+}=M i n, V_{C C}=M i n \\ & I_{\text {LOAD }}=-2 \mathrm{~mA}, V_{I D}=10 \mathrm{mV} \\ & V_{\mathrm{LL}(O)}=0.8 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		2.4			V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}+}=\mathrm{Min}, V_{\mathrm{CC}-}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{SINK}}=16 \mathrm{~mA}, V_{I D}=-10 \mathrm{mV}, \\ & V_{I L(D)}=0.8 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$				0.4	V
100	Output Disable Current	$\begin{aligned} & V_{C C+}=\text { Max, } \\ & V_{C C^{-}}=M a x, \\ & V_{I H(D)}=2 V \end{aligned}$	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C_{+}}=\text {Max, } V_{\text {LL(D })}=0.8 \mathrm{~V}, \\ & V_{C C-}=\text { Max, }(\text { Note } 2) \end{aligned}$		-18		-70	mA
ICCH^{+}	High Logic Level Supply Current From $\mathrm{V}_{\mathrm{Cc}+}$	$\begin{aligned} & V_{C C+}=M a x, V_{C C-}=M a x \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			28	40	mA
${ }^{\mathrm{CCH}}-$	High Logic Level Supply Current From $V_{\text {CC }}$	$\begin{aligned} & V_{C C+}=\text { Max, } V_{C C-}=\text { Max } \\ & V_{I D}=10 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-8.4	-15	mA
V_{1}	Input Clamp Voltage on G or D	$\begin{aligned} & V_{\mathrm{CC}_{+}}=\mathrm{Min}, V_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			-1	-1.5	V

switching characteristics $\left(\mathrm{V}_{\mathrm{cc}+}+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLM }}(\mathrm{O})$	Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$, (Note 1)			35	ns
$\mathrm{t}_{\text {PHL(}}(\mathrm{O})$	Propagation Delay Time, High toLow Level, From Differential Inputs A and 8 to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (Note 1)			20	ns
$\mathrm{tPLM}_{\text {P }} \mathrm{S}$)	Propagation Delay Time, Low-toHigh Level, From Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17	ns
$\left.\mathrm{t}_{\text {PML(}} \mathrm{s}\right)$	Propagation Delay Tıme, High-toLow Level, From Strobe Input G to Output	$\mathrm{R}_{\mathrm{L}}=47032 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17	ns
$\mathrm{t}_{1+\mathrm{H}}$	Disable Low-to High to Output High to Off	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			20	ns
t_{OH}	Disable Low-to High to Output Low to Off	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			30	ns
t_{H}	Disable High to-Low to Output Off to High	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			25	ns
$\mathbf{t H O}^{\text {O}}$	Disable High to Low to Output Off to Low	$\mathrm{R}_{\mathbf{L}}=47082, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			25	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
Note 2: Only one output at a time should be shorted.

National Semiconductor
 DS1650/DS3650, DS1652/DS3652 Quad Differential Line Receivers

General Description
The DS1650/DS3650 and DS1652/DS3652 are TTL compatible quad high speed circuits intended primarily for line receiver applications. Switching speeds have been enhanced over conventional line receivers by the use of Schottky technology, and TRI-STATE strobing is incorporated offering a high impedance output state for bussed organizations.

The DS1650/DS3650 has active pull-up outputs and offers a TRI-STATE strobe, while the DS1652/DS3652 offers open collector outputs providing implied "AND" operation

The DS1652/DS3652 can be used for address decoding as illustrated below. All outputs of the DS1652/DS3652 are tied together through a common resistor to 5 V . In
this configuration the DS1652/DS3652 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address decoding.

Features

- High speed
- TTL compatible
- Input sensitivity
$\pm 25 \mathrm{mV}$
- TRI-STATE outputs for high speed busses
- Standard supply voltages
$\pm 5 \mathrm{~V}$
- Pin and function compatible with MC3450 and MC3452

Truth Table

INPUT	STROBE	OUTPUT	
		DS1650/ DS3650	DS 1652/ DS3652
$V_{\text {ID }} \geq 25 \mathrm{mV}$	L	H	Open
	H	Open	Open
$-\mathbf{2 5 m V} \leq \mathrm{V}_{\text {ID }} \leq 25 \mathrm{mV}$	L	X	\times
	H	Open	Open
$V_{\text {ID }} \leq-25 \mathrm{mV}$	L	L	L
	H	Open	Open

[^1]
Connection Diagram

Order Number DS1650J, DS1652J,
DS3650J, DS3652J,
DS3650N or DS3652N
See NS Package J16A or N16A

Typical Applications

Implied "AND" Gating

Wired "OR" Data Selecting Using TRI-STATE Logic

Absolute Maximum Ratings (Note i)
Operating Conditions

Power Supply Voltages	
$\quad V_{\text {CC }}$	$+7.0 V_{D C}$
$V_{\text {EE }}$	$-7.0 \mathrm{~V}_{\mathrm{DC}}$
Differential-Mode Input Signal Voltage	
\quad Range, $V_{\text {IDR }}$	$\pm 6.0 \mathrm{~V}_{\mathrm{DC}}$
Common Mode Input Voltage Range, $V_{\text {ICR }}$	$\pm 5.0 \mathrm{~V}_{\mathrm{DC}}$
Strobe Input Voltage, $V_{I(S)}$	$5.5 \mathrm{~V}_{\mathrm{DC}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

	MIN	MAX	UNITS
Supply Voltage, V_{CC}			
DS1650, DS1652	4.5	5.5	$V_{\text {DC }}$
DS3650, DS3652	4.75	5.25	$V_{D C}$
Supply Voltage, VEE			
DS1650, DS1652	-4.5	-5.5	$V_{\text {DC }}$
DS3650, DS3652	-4.75	-5.25	$V_{\text {DC }}$
Operating Temperature, T_{A}			
DS1650, DS1652	-55	+125	${ }^{\circ} \mathrm{C}$
DS3650, DS3652	0	+70	${ }^{\circ} \mathrm{C}$
Output Load Current, IOL		16	mA
Differential-Mode Input			
Voltage Range, VIDR	-5.0	+5.0	$V_{D C}$
Common-Mode Input			
Voltage Range, VICR	-3.0	+3.0	$V_{D C}$
Input Voltage Range (Any			
Input to GND), VIR	-5.0	+3.0	V_{DC}

$\left(V_{C C}=5.0 \vee_{D C}, V_{E E}=-5.0 \vee_{D C}, M i n \leq T_{A} \leq M a x\right.$, unless otherwise noted) (Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VIS Input Sensitivity, (Note 5) (Common-Mode Voltage Fiange $=$ $\left.-3 V \leq V_{1 N} \leq 3 V\right)$	$\begin{aligned} & \text { Min } \leq V_{C C} \leq \operatorname{Max} \\ & \text { Min } \geq V_{E E} \geq \text { Max } \end{aligned}$				± 25.0	$m V$
IIH(I) High Level Input Current to Receiver Input	(Figure 5)				75	$\mu \mathrm{A}$
IIL(I) Low Level Input Current to Receiver Input	(Figure 6)				-10	$\mu \mathrm{A}$
High Level Input Current to Strobe Input	(Figure 3)	$V_{I H(S)}=2.4 \mathrm{~V}$ DS1650, DS1652			100	$\mu \mathrm{A}$
		$\begin{aligned} & V_{1 H}(S)=2.4 \mathrm{~V} \\ & D S 3650, D S 3652 \end{aligned}$			40	$\mu \mathrm{A}$
		$\mathrm{V}_{(H(S)}=\mathrm{V}_{\mathrm{CC}}$			1	mA
IIL(S) Low Level Input Current to Strobe Input		$V_{1 H}(S)=0.4 V$			-1.6	$m A$
V_{OH} High Level Output Voltage	(Figure 1)	DS1650, DS3650	2.4			$V_{\text {DC }}$
ICEX High Level Output Leakage Current		DS1652, DS3652			250	$\mu \mathrm{A}$
Low Level Output Voltage	(Figure 1)	DS3650, DS3652			0.45	
		DS1650, DS 1652			0.50	DC
Ios Short-Circuit Output Current (Note 4)	(Figure 4)	DS1650/DS3650	-18		-70	mA
Output Disable Leakage Current	(Figure 7)	DS1650			100	$\mu \mathrm{A}$
		DS3650			40	$\mu \mathrm{A}$
ICCH High Logic Level Supply Current from VCC	(Figure 2)			45	60	mA
IEEH High Logic Level Supply Current from VEE	(Figure 2)			-17	-30	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3650, DS3652 and the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS1650, DS1652. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: A parameter which is of primary concern when designing with line receivers is, what is the minimum differential input voltage required as the receiver input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, bias currents, network source resistances, and voltage gain. As a design convenience, the DS 1650 , DS1652 and the DS 3650 , DS3652 are specified to a parameter called input sensitivity (VIS). This parameter takes into consideration input offset currents and bias currents and guarantees a minimum input differential voltage to cause a given output logic state with respect to a maxinum source impedance of $200 \Omega 2$ at each input.

Switching Characteristics $V_{C C}=5 V_{D C}, V_{E E}=-5 V_{D C}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
tPHL(D)	High-to-Low Logic Level Propagation	(Figure 8)	DS1650/DS3650		21	25	ns
	Delay Time (Differential Inputs)		DS1652/DS3652		20	25	ns
tPLH(D)	Low-to-High Logic Level Propagation		DS1650/DS3650		20	25	ns
	Delay Time (Differential Inputs)		DS1652/DS3652		22	25	ns
tPOH(S)	TRI-STATE to High Logic Level Propagation Delay Time (Strobe)	(Figure 9)	DS1650/DS3650		16	21	ns
tPHO(S)	High Logic Level to TRI-STATE Propagation Delay Time (Strobe)		DS1650/DS3650		7	18	ns
tPOL(S)	TRI-STATE to Low Logic Level Propagation Delay Time (Strobe)		DS1650/DS3650		19	27	ns
tPLO(S)	Low Logic Level to TRI-STATE Propagation Delay Time (Strobe)		DS1650/DS3650		14	29	ns
tPHL(S)	High-to-Low Logic Level Propagation Delay Time (Strobe)	(Figure 10)	DS1652/DS3652		16	25	ns
tPLH(S)	Low-to-High Logic Level Propagation Delay Time (Strobe)		DS1652/DS3652		13	25	ns

Electrical Characteristic Test Circuits

	V1		V2		V3		V4		11
	$\begin{aligned} & \hline \text { DS } 1650 \\ & \text { DS3650 } \end{aligned}$	$\begin{aligned} & \hline \text { DS } 1652 / \\ & \text { DS3652 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { DS1650/ } \\ & \text { DS3650 } \end{aligned}$	$\begin{aligned} & \hline \text { DS } 1652 / / \\ & \text { DS } 3652 \end{aligned}$	$\begin{aligned} & \text { DS1650/ } \\ & \text { DS1650 } \\ & \hline \end{aligned}$	DS1652/ DS 1652	$\begin{aligned} & \hline \text { DS } 1650 / \\ & \text { DS } 1650 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { DS 1652/ } \\ & \text { DS } 1652 \\ & \hline \end{aligned}$	
VOH	$\begin{aligned} & +2.975 \mathrm{~V} \\ & -3.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +3.0 \mathrm{~V} \\ & -2.975 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +3.0 \mathrm{~V} \\ & \text { GND } \end{aligned}$		$\begin{aligned} & \hline \text { GND } \\ & -3.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +0.4 \mathrm{~mA} \\ & +0.4 \mathrm{~mA} \end{aligned}$
${ }^{1}$ CEX		$\begin{aligned} & +2.975 \mathrm{~V} \\ & -3.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +3.0 \mathrm{~V} \\ & -2975 \mathrm{~V} \end{aligned}$		$\begin{aligned} & +3.0 \mathrm{~V} \\ & \text { GND } \end{aligned}$		$\begin{aligned} & \text { GND } \\ & -3.0 \mathrm{~V} \end{aligned}$	
VOL	$\begin{aligned} & +3.0 \mathrm{~V} \\ & -2.975 \mathrm{~V} \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \\ & -2.975 \mathrm{~V} \end{aligned}$	$\begin{aligned} & +2.975 \mathrm{~V} \\ & -3.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & +2975 \mathrm{~V} \\ & -30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -3.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & +3.0 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & -16 \mathrm{~mA} \\ & -16 \mathrm{~mA} \end{aligned}$

Channel A shown under test. Other channels are tested similarly.
FIGURE 1. ICEX, $\mathrm{VOH}_{\mathrm{OH}}$ and $\mathrm{VOL}_{\mathrm{OL}}$

Electrical Characteristic Test Circuits (Continued)

FIGURE 3. $I_{\mathrm{IH}(\mathrm{S})}$ and $\mathrm{IIL}_{\mathrm{I}}(\mathrm{S})$

Note. Channel $A(-)$ shown under test, other channels are tested similarly. Devices are tested with $V 1$ from $3 V$ to $-3 V$.

FIGURE 5. IIH

Note. Output of Channel A shown under test, other outputs are tested similarly for $\mathrm{V} 1=0.4 \mathrm{~V}$ and 2.4 V .

FIGURE 7. IOFF

AC Test Circuits and Switching Time Waveforms

Note. Output of Channel B shown under test, other channels are tested similarly.
S1 at "A" for DS1652./DS3652
S1 at "B" for DS165C/DS3650
$C_{L}=15 \mathrm{pF}$ total for OS $1652 / \mathrm{DS} 3652$
$C_{L}=50 \mathrm{pF}$ total for DS1650/DS3650

N wavehorm characteristics
$\mathrm{t}_{\mathrm{TLH}}$ and t THL $\leq 10 \mathrm{~ns}$ measured 10% to 90%
PRR $=1 \mathrm{MHz}$
Duty Cycle $=500 \mathrm{~ns}$

FIGURE 8. Receiver Propagation Delay tPLH(D) and tPHL(D)

Note. Output of Channel B shown under test, other channels are tested similarly.

	$\mathbf{V 1}$	$\mathbf{V} 2$	$\mathbf{S 1}$	$\mathbf{S} 2$	$\mathbf{C}_{\mathbf{L}}$
tPLO(S)	100 mV	GND	Closed	Closed	15 pF
${ }^{\text {tPOL(S) }}$	100 mV	GND	Closed	Open	50 pF
tPHO(S)	GND	100 mV	Closed	Closed	15 pF
tPOH(S)	GND	100 mV	Open	Closed	50 pF

C_{L} includes ing and probe capacitance.
EIN waveform characteristics. tTLH and tTHL ≤ 10 ns measured
10% to 90%
PRR $=1 \mathrm{MHz}$
Duty Cycle $=50 \%$

tPOL(S)

tPOH(S)

FIGURE 9. Strobe Propagation Delay tPLO(S), tPOL(S), tPHO(S) and tPOH(S)

AC Test Circuits and Switching Time Waveforms (Continued)

Note. Output of Channel B shown under test, other channels are tested similarly

Note, EIN waveform characteristics:
${ }^{\mathrm{t}} \mathrm{TLH}^{2}$ and $\mathrm{t}_{\mathrm{THL}} \leq 10$ ns measured $\mathbf{1 0 \%}$ to 90% $\mathrm{PRR}=1 \mathrm{MHz}$ Duty Cycle $=500 \mathrm{~ns}$

FIGURE 10. Strobe Propagation Delay tPLH(S) and tphL(S)

Schematic Diagrams

DS1691/DS3691(RS-422/RS-423) Line Drivers DS1692/DS3692 TRI-STATE ${ }^{\circledR}$ Differential Line Drivers

General Description

The DS1691/DS3691 are low power Schottky TTL line drivers designed to meet the requirements of EIA standards RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. A mode control input provides a choice of operation either as 4 independent line drivers or 2 differential line drivers. A rise time control pin allows the use of an external capacitor to reduce rise time for suppression of near end crasstalk to other receivers in the cable.

The DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature $\pm 10 \mathrm{~V}$ output common-mode range in TRI-STATE and OV output unbalance when operated with $\pm 5 \mathrm{~V}$ supply.

Features

- Dual RS-422 line driver or quad RS-423 line driver in DS1691/DS3691
- Individually TRI-STATEable differential drivers in the DS1692/DS3692 meets MIL-STD-188-114
- Short circuit protection for both source and sink outputs
- Individual rise time control for each output
- 100Ω transmission line drive capability
- Low ICC and IEE power consumption

RS-422
$35 \mathrm{~mW} /$ driver typ
RS-423
$26 \mathrm{~mW} /$ driver typ

- Low current PNP inputs compatible with TTL, MOS and CMOS

Logic Diagram (1/2 Circuit Shown)

Connection Diagram

Order Number DS1691J, DS1691w, DS3691J, DS3691N, DS1692J, DS1692W, DS3692J or DS3692N See NS Package J16A, N16A or W16A

INPUTS			OUTPUTS	
MODE	A (D)	B (C)	A (D)	B (C)
0	0	0	0	1
0	0	1	TRI-STATE	TRI-STATE
0	1	0	1	0
0	1	1	TRI-STATE	TRISTATE
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Absolute Maximum Ratings
 (Note 1)

Operating Conditions

Supply Voltage	
$V_{\text {CC }}$	7 V
$V_{E E}$	-7 V
Power Dissipation	600 mW
Input Voltage	15 V
Output Voltage (Power OFF)	$=15 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics dS1691/DS3691
(Notes 2, 3, 4 and 5)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
RS-422 Connection, $\mathrm{V}_{\text {EE }}$ Connection to Ground, Mode Select $\leq 0.8 \mathrm{~V}$							
V_{0}	Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}$		3.6	6.0	V
\bar{V}_{0}	$V_{\text {A, B }}$		$V_{\text {IN }}=0.8 \mathrm{~V}$		-3.6	-6.0	V
V_{T}	Differential Output Voltage	$R_{L}=100 \Omega$	$V_{1 N}=2 \mathrm{~V}$	2	2.4		V
$\overline{V_{T}}$	$V_{\text {A, }}$		$V_{\text {IN }}=0.8 \mathrm{~V}$	-2	2.4		V
$v_{\text {OS }}, \overline{v_{\text {OS }}}$	Common-Mode Offset Voltage	$R_{L}=100 \Omega$			2.5	3	V
$\left\|V_{T} i-\left\|\overline{V_{\mathbf{T}}}\right\|\right.$	Difference in Differential Output Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$\left\|\mathrm{V}_{\mathrm{OS}}\right\|-\left\|\overline{\mathrm{V}_{\mathrm{OS}}}\right\|$	Difference in CommonMode Offset Voltage	$R_{L}=100 \Omega$			0.05	0.4	V
$\mathrm{V}_{\text {SS }}$	$\left\|\mathrm{V}_{\mathrm{T}}-\overline{\mathrm{V}_{\mathrm{T}}}\right\|$	$R_{L}=100 \Omega$		4.0	4.8		V
ISA	Output Short Circuit Current	$V_{\text {IN }}=2.4 \mathrm{~V}$	$V_{O A}=6 \mathrm{~V}$		80	150	mA
			$V_{O B}=0 \mathrm{~V}$		-80	-150	mA
${ }^{\text {I }}$ SB		$V_{\text {IN }}=0.4 \mathrm{~V}$	$V_{O A}=0 V$		80	-150	mA
			$\mathrm{V}_{\mathrm{OB}}=6 \mathrm{~V}$		80	150	mA
${ }^{1} \mathrm{CC}$	Supply Current				18	30	mA

RS-423 Connection, $\left|\mathrm{V}_{\mathrm{CC}}\right|=\left|\mathrm{V}_{\mathrm{EE}}\right|$, Mode Select $\geq 2 \mathrm{~V}$

V_{0}	Output Voltage	$\begin{aligned} & R_{L}=\infty \\ & V_{C C} \geq 4.75 \mathrm{~V} \end{aligned}$	$V_{\text {IN }}=2.4 \mathrm{~V}$	4.0	4.4	6.0	V
$\overline{V_{0}}$			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-4.0	-4.4	-6.0	V
V_{T}	Output Voltage	$\begin{aligned} & R_{L}=450 \Omega \\ & V_{C C} \geq 4.75 \mathrm{~V} \end{aligned}$	$V_{\text {IN }}=2.4 \mathrm{~V}$	3.6	4.1		V
V_{T}			$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$	-3.6	-4.1		V
$1 \mathrm{X}^{+}$	Output Leakage Power OFF	$V_{C C}=V_{E E}=0 V$	$\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$		2	100	$\mu \mathrm{A}$
IX^{-}			$\mathrm{V}_{0}=-6 \mathrm{~V}$		-2	-100	$\mu \mathrm{A}$
IS^{+}	Output Short Circuit Current	$V_{0}=0 \mathrm{~V}$	$V_{\text {IN }}=2.4 \mathrm{~V}$		-80	-150	mA
IS			$V_{\text {IN }}=0.4 \mathrm{~V}$		80	150	mA
ISLEW	Slew Control Current				± 140		$\mu \mathrm{A}$
ICC	Positive Supply Current	$V_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			18	30	mA
IEE	Negative Supply Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			-10	-22	mA

Note 1: "Absolute Maximum Ratings" are those values bevond which the safety of the device cannot be guaranteed They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unfess otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1691, DS1692 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3691, DS3692. All tvpicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}$ and $V_{E E}$ as listed in operating conditions. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Symbols and definitions correspond to EIA RS-422 and/or RS-423 where applicable.

Electrical Characteristics DS1692/DS3692 (Notes 2.3 and 4)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DS1692, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \%, \mathrm{DS} 3692, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}+5 \%, \mathrm{~V}_{\text {EE }}$ Connection to Ground, Mode Select $\leq 0.8 \mathrm{~V}$						
$\mathrm{V}_{0} \quad$ Differential Output Voltage	$R_{L}=\infty$	$V_{\text {IN }}=2 \mathrm{~V}$	2.5	3.6		V
$\overline{V_{0}} \quad V_{A, B}$		$V_{1 N}=0.8 \mathrm{~V}$	-2.5	-3.6		V
$V_{T} \quad$ Differential Output Voltage	$R_{L}=100 \Omega$	$V_{\text {IN }}=2 \mathrm{~V}$	2	2.6		V
$V_{T} \quad V_{A}, B$		$V_{\text {IN }}=0.8 \mathrm{~V}$	-2	-2.6		V
$V_{\text {OS }}, \overline{V_{O S}}$ Common-Mode Offset Voltage	$R_{L}=100 \Omega$			2.5	3	V
$\left\|V_{\mathbf{T}}\right\|-\left\lvert\, \overline{V_{T} \mid} \quad \begin{aligned} & \text { Difference in Differential } \\ & \text { Output Voltage }\end{aligned}\right.$	$R_{L}=100 \Omega 2$			0.05	0.4	V
$\left\lvert\, \begin{array}{ll}\left\|V_{\text {OS }}\right\|-\left\|\overrightarrow{V_{O S}}\right\| & \begin{array}{l}\text { Difference in Common } \\ \text { Mode Offset }\end{array} \\ \text { Voltage }\end{array}\right.$	$R_{L}=100 \Omega$			0.05	0.4	V
VSS $\quad i V_{T}-\bar{V}_{T i}$	$R_{L}=100 \Omega$		4.0	4.8		V
IXA Output Leakage Current	$V_{C C}=0$	$\mathrm{V}_{0}=15 \mathrm{~V}$		0.01	0.15	mA
IXB Power OFF		$\mathrm{V}_{0}=-15 \mathrm{~V}$		-0.01	-0.15	mA
TRI-State Output Current	$V_{0} \geq-10 \mathrm{~V}$			-0.002	-0.15	mA
	$V_{0} \leq 15 \mathrm{~V}$			0.002	0.15	mA
Output Short-Circuit Current	$V_{1 N}=2.4 \mathrm{~V}$	$V_{O A}=6 \mathrm{~V}$		80	150	mA
		$V_{O B}=O V$		-80	-150	mA
	$V_{\text {IN }}=0.4 V$	$V_{O A}=0 V$		-80	150	mA
		$V_{0 B}=6 \mathrm{~V}$		80	150	mA
ICC Supply Current				18	30	mA

DS 1692, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{DS} 3692, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}+5 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \pm 5 \%$, Mode Select $\leq 0.8 \mathrm{~V}$

V_{0}	Differential Output Voltage	$R_{L}=\infty$	$V_{1 N}=2.4 \mathrm{~V}$	7	8.5	12	V
V_{0}	VA,B		$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-7	8.5	- 12	V
V_{T}	Differential Output Voltage V_{A}, B	$R_{L}=200 \Omega$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$	6	7.3		V
\bar{V}_{T}			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-6	-7.3		V
$\left\|V_{T}\right\|-\mid \bar{V}_{\mathbf{T}_{1}}$	Output Unbalance	$V_{C C C}=\left\|V_{E E}\right\|, R_{L}=200 \Omega 2$			0.02	0.4	V
Iox	TRI-STATE Output Current		$\mathrm{V}_{0}=10 \mathrm{~V}$		0.002	0.15	mA
			$\mathrm{V}_{0}=-10 \mathrm{~V}$		-0.002	-0.15	mA
$\begin{aligned} & \mathrm{IS}^{+} \\ & \mathrm{IS}^{-} \end{aligned}$	Output Short Circuit Current	$V_{0}=0 \mathrm{~V}$	$V_{1 N}=24 \mathrm{~V}$		-80	150	mA
			$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		80	150	mA
ISLEW	Siew Control Current				± 140		$\mu \mathrm{A}$
ICC	Positive Supply Current	$V_{\text {IN }}=0.4 V, R_{L}=\infty$			18	30	mA
IEE	Negative Supply Current	$V_{I N}=04 V, R_{L}=\infty$			-10	-22	mA

Electrical Characteristics (Notes 2 and 3) $V_{E E} \leq O V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
IIH	High Level Input Current	$V_{\text {IN }}=2.4 \mathrm{~V}$		1	40	$\mu \mathrm{A}$
		$V_{\text {IN }} \leq 15 \mathrm{~V}$		10	100	$\mu \mathrm{A}$
	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$	-200	-30	-200	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$1 \mathrm{~N}=-12 \mathrm{~mA}$	-1.5		-1.5	\checkmark

Switching Characteristics DS $1691 / \mathrm{Ds} 3691 \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RS-422 Connection, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, Mode Select $=0.8 \mathrm{~V}$						
t_{r}	Output Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
t_{f}	Output Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
tPDH	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
tPDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns

RS-423 Connection, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, Mode Select $=2.4 \mathrm{~V}$

t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$, (Figure 2)	120	300	ns
${ }_{\text {t }}$	Fall Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$, (Figure 2)	120	300	ns
tr_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{c}}=50 \mathrm{pF}$. (Figure 3)	3.0		$\mu \mathrm{s}$
${ }_{\text {t }}$	Fall Time	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$, (Figure 3)	3.0		$\mu \mathrm{s}$
$\mathrm{trc}^{\text {c }}$	Rise Time Coefficient	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=50 \mathrm{pF}$, (Figure 3)	0.06		$\mu \mathrm{s} / \mathrm{pF}$
${ }_{\text {tPDH }}$	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$, (Figure 2)	180	300	ns
tPDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=450 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}, \mathrm{C}_{\mathrm{C}}=0$, (Figure 2)	180	300	ns

Switching Characteristics Ds $1692 / \mathrm{DS} 3692 \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Mode Select $=0.8 \mathrm{~V}$						
tr_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~S}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
${ }_{\text {t }}$	Differential Output Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
tPDH	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
tPDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		120	200	ns
tPZL	TRI-STATE ${ }^{\circledR}$ Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		180	250	ns
tPZH	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		180	250	ns
tPLZ	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, C_{L}=500 \mathrm{pF}$, (Figure 4)		80	150	ns
tPHZ	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		80	150	ns
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$, Mode Select $=0.8 \mathrm{~V}$						
tr_{r}	Differential Output Rise Time	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		190	300	ns
${ }_{1 f}$	Differential Output Fall Time	$R_{L}=200 \Omega, C_{L}=500 \mathrm{pF}$. (Figure 1)		190	300	ns
tPDL	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		190	300	ns
tPDH	Output Propagation Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 1)		190	300	ns
tPZL	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		180	250	ns
tPZH	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		180	250	ns
tPLZ	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		80	150	ns
tPHz	TRI-STATE Delay	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$, (Figure 4)		80	150	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Differential Connection

FIGURE 2. RS-423 Connection

FIGURE 3. Rise Time Control for RS-423

FIGURE 4. TRI-STATE ${ }^{\circledR}$ Delays for DS1692/DS3692

Switching Waveforms

MOLSE - 0

Typical Rise Time Coritrol Characteristics

Rise Time vs External Capacitor

DS26LS31/DS26LS31M Quad High Speed Differential Line Driver

General Description

The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced tines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE ${ }^{(\beta)}$ outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

The DS26LS31 is constructed using advanced low power Schottky processing

Features

- Output skew - 2.0 ns typical
- Input to output delay - 12 ns
- Operation from single 5 V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when $V_{C C}=0$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA Standard RS-422
- Pin compatible with AM26LS31
- Available in military and commercial temperature range
- Advanced low power Schottky processing

Logic Diagram

Connection Diagram

Order Number DS26LS31CJ, DS26LS31CN,
DS26LS31MJ or DS26LS31MW
See NS Package J16A, N16A or W16A

Absolute Maximum Ratings (Note 1)
Operating Conditions

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	5 V
Output Voltage (Power OFF)	-0.25 V to 6 V

	MIN	MAX	UNITS
Supply Voltage, $V_{C C}$			
DS26LS31M	4.5	5.5	V
DS26LS31	4.75	5.25	V
Temperature, TA			
DS26LS31M	-55	+125	${ }^{\circ} \mathrm{C}$
DS26LS31	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3 and 4)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOH	Output High Voltage	${ }^{1} \mathrm{OH}=-20 \mathrm{~mA}$	2.5			V
VOL	Output Low Voltage	${ }^{1} \mathrm{OL}=20 \mathrm{~mA}$			0.5	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0			V
VIL	Input Low Voltage				0.8	V
IIL	Input Low Current	$V_{1 N}=0.4 V$			-0.36	mA
1 H	Input High Current	$V_{\text {IN }}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
11	Input Reverse Current	$V_{1 N}=7 \mathrm{~V}$			0.1	mA
10	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$V_{O}=0.5 \mathrm{~V}$			-20	$\mu \mathrm{A}$
$V_{\text {CL }}$	Input Clamp Voltage:	$\mathrm{IIN}=-18 \mathrm{~mA}$			-1.5	V
${ }^{\text {I SC }}$	Output Short-Circuit: Current		-30		-150	mA
I_{C}	Power Supply Current	All Outputs Disabled			80	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPLH	Input to Output	$C_{L}=30 \mathrm{pF}$	8	20	ns	
tPHL	Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		8	20	ns
Skew	Output to Output	$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$		2.0	6.0	ns
t LZ	Enable to Output	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{S} 2$ Open		15	35	ns
tHZ	Enable to Output	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{S} 1$ Open		12	30	ns
tZL	Enable to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, S2 Open		14	45	ns
tZH	Enable to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{S} 1$ Open		13	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS26LS31M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS26LS31. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground undess otherwise specified.
Note 4: Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

Note, S1 and S2 of load circuit are closed except where shown.
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delays

FIGURE 3. Enable and Disable Times

Typical Applications

Two-Wire Balanced System, RS-422

Single Wire with Common Ground Unbalanced System, RS-423

Transmission Line Drivers/Receivers

DS26LS32/DS26I_S32M, DS26LS33/DS26LS33M Quad Differential Line Receivers

General Description

The DS26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The DS26LS32 features an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$.

The DS26LS33 features an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.

The DS26LS32 and DS22LS33 provide an enable and disable function common to all four receivers. Both parts feature TRI-STATE ${ }^{\left({ }^{(1)}\right.}$ outputs with 8 mA sink capability.

The DS26LS32 and DS26LS33 are constructed using advanced low power Schottky processing.

Features

- Input voltage range of 15 V (differential or commonmode) on DS26LS33, 7 V (differential or commonmode) on DS26LS32
- $\pm 0.2 \mathrm{~V}$ sensitivity over the input voltage range on DS26LS32, $\pm 0.5 \mathrm{~V}$ sensitivity on DS26LS33
- DS26LS32 meets all the requirements of RS-422 and RS-423
- 6 k minimum input impedance
- 140 mV input hysteresis, DS26LS32; 280 mV input hysteresis, DS26LS33
- Operation from single 5 V supply
- 16-pin hermetic and molded DIP package
- TRI-STATE drive, with choice of complementary output enables for receiving directly onto a data bus
- Propagation delay 17 ns (typ)
- Available in military and commercial temperature range
- Advanced low power Schottky processing
- Pin replacement for Advanced Micro Devices AM26LS32 and AM26LS33

Logic Diagram

Connection Diagram

Order Number DS26LS32CJ, DS26LS32CN, DS26LS32MJ, DS26LS32MW, DS26LS33CJ, DS26LS33CN,

Absolute Maximum Ratings

Supply Voltage
Common-Mode Range $7 V$

Differential Input Voltage
Enable Voltage
Output Sink Current
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Operating Conditions

	MiN	N MAX	UNITS
Supply Voltage (V_{CC})			
$\begin{aligned} & \text { DS26LS32M, DS26LS33M } \\ & \text { (MIL) } \end{aligned}$	$5: 10$		V
$\begin{aligned} & \text { DS26LS32C, DS26LS33C } \\ & \text { (COML) } \end{aligned}$	$5: 5$		V
Temperature (TA)			
$\begin{aligned} & \text { DS26LS32M, DS26LS33M } \\ & \text { (MIL) } \end{aligned}$	-55	+125	${ }^{3} \mathrm{C}$
DS26LS32C, DS26LS33C (COML	0	$+70$	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over the operating temperature range unless otherwise specified

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential Input Voltage	$V_{\text {OUT }}=V_{\text {OL }}$ or $V_{O H}$	DS26LS32, -7V $\leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$		-0.2	± 0.07	0.2	V
			DS26LS33, $-15 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+15 \mathrm{~V}$		-0.5	± 0.14	0.5	V
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}^{\text {CM }} \leq+15 \mathrm{~V}$ (One Input $\mathrm{AC} \mathrm{Ground)}$			6.0	8.5		$k \Omega$
	Input Current (Under Test)	$V_{\text {IN }}=15 \mathrm{~V}$, Other Input $-15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+15 \mathrm{~V}$					2.3	mA
		$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$, Other Input $-15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+15 \mathrm{~V}$					-2.8	mA
VOH	Output High Voitage	$\begin{aligned} & V C C=\operatorname{Min}, \Delta V / \mathrm{N}=1 \mathrm{~V}, \\ & V \overline{\mathrm{ENABLE}}=0.8 \mathrm{~V}, 1 \mathrm{OH}=-440 \mu \mathrm{~A} \end{aligned}$		Commercial	2.7	4.2		V
				Military	2.5	4.2		\checkmark
VOL	Output Low Voitage	$\begin{aligned} & V_{C C}=M_{1 n}, \Delta V_{I N}=-.1 \mathrm{~V}, \\ & V_{\overline{E N A B L E}}=0.8 \mathrm{~V} \end{aligned}$		$\mathrm{IOL}^{\text {a }}$ 4 mA			0.4	V
				$1 \mathrm{OL}=8 \mathrm{~mA}$			0.45	\checkmark
VIL	Enable Low Voltage						0.8	V
$\mathrm{V}_{\text {IH }}$	Enable High Voltage				2.0			V
V_{1}	Enable Clamp Voltage	$V_{\mathrm{CC}}=\mathrm{Min}, I_{\mathrm{IN}}=-18 \mathrm{~mA}$					-1.5	V
10	OFF-State (High Impedance) Output Current	$V_{C C}=$ Max		$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
IIL	Enable Low Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-0.36	mA
1/H	Enable High Current	$V_{1 N}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$V_{O}=0 V, V_{C C}=\operatorname{Max}, \Delta V_{1 N}=1 V$			-15		-85	mA
ICC	Power Supply Current.	$V_{C C}=M a x, A l l V_{I N}=\text { Gnd, }$ Outputs Disabled		DS26LS32		52	70	mA
				DS26LS33		57	80	mA
11	Input High Current	$V_{1 N}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
VHYST	Input Hysteresis	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5 \mathrm{~V}, \\ & V_{C M}=0 \mathrm{~V} \end{aligned}$		DS26LS32		± 140		mV
				DS26LS33		± 280		mV
tPLH	Input to Output	$\mathrm{TA}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, See Test Conditıons				17	25	ns
tPHL	Input to Output					17	25	ns
tLZ	Enable to Output	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$. See Test Conditions				20	30	ns
thZ	Enable to Output					15	22	ns
${ }^{\mathrm{t}} \mathrm{ZL}$	Enable to Output					15	22	ns
t 2 H	Enable to Output					15	22	ns

Nate 1: All typical values are $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

AC Test Circuit and Switching Time Waveforms

Note 2: S1 and S2 of Load Circuit are closed except where shown.
Note 3: Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; Z_{o}=50 \Omega ; \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns} ; \mathrm{tf}_{\mathrm{f}} \leq 6.0 \mathrm{~ns}$.

Typical Applications

Two-Wire Balanced System, RS-422

Single Wire with Common Ground Unbalanced System, RS-423

General Description

National's quad RS-422, RS-423 receiver features four independent receiver chains which comply with EIA Standards for the electrical characteristics of balanced/ unbalanced voltage digital interface circuits. Receiver outputs are 74LS compatible, TRI-STATE ${ }^{(\sqrt{3})}$ structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms.

Features

- Four independent receiver chains
- TRI-STATE outputs
- High impedance output control inputs (PIA compatible)
- Internal hysteresis - 140 mV (typ)
- Fast propagation times - 18 ns (typ)
- TTL compatible
- Single 5 V supply voltage
- Pin compatible and interchangeable with MC3486

Block Diagram

Order Number DS3486. or DS3486N
See NS Package 116A or N16A

Absolute Maximum Ratings (Note 1)

Operating Conditions

Power Supply Voltage, $V_{C C}$
8 V
Input Common-Mode Voltage, VICM $\pm 15 \mathrm{~V}$
Input Differential Voltage, $V_{\mid D}$
TRI-STATE Control Input Voltage, V_{1}
Outout Sink Current, I_{0}
$+15 \mathrm{~V}$
8 V
50 mA
Storage Temperature, TSTG $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Power Supply Voltage, $V_{C C}$	4.75	5.25	V
Operating Temperature, T_{A}	0	70	${ }^{\circ} \mathrm{C}$
Input Common-Made Voltege Range, $V_{I C R}$	-7.0	7.0	V
Input Differential Voltage Range, VIDR	6.0	6.0	V

Electrical Characteristics

(Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V}$ and $V_{I C}=0 \mathrm{~V}$. See Note 2.)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Input Voltage - High Logic State (TRISTATE Control)		2.0			V
$V_{\text {IL }}$	Input Voltage - Low Logic State (TRI-STATE Control)				0.8	V
$V_{\text {THi }}(\mathrm{D})$	Differential Input Threshold Voltage	$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{I C} \leq 7 \mathrm{~V}, \mathrm{~V}_{\text {IH }} \text { TRI-STATE }=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}} \geq 2.7 \mathrm{~V} \end{aligned}$		0.070	0.2	V
		${ }^{1} \mathrm{O}=8 \mathrm{~mA}, V_{O L} \geq 0.5 \mathrm{~V}$		0.070	-0.2	V
IIB(D)	Input Bias Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 5.25 V , Other Inputs at 0 V				
		$\mathrm{V}_{1}=-10 \mathrm{~V}$			-3.25	mA
		$v_{1}=-3 \mathrm{~V}$			-1.50	mA
		$\mathrm{V}_{1}=3 \mathrm{~V}$			1.50	mA
		$V_{1}=10 \mathrm{~V}$			3.25	mA
	Input Balance	$-7 V \leq V_{I C} \leq 7 V, V_{I H(3 C)}=2 V \text {, }$ (Note 4)				
		$\mathrm{I}_{\mathrm{O}}=0.4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{D}}=0.4 \mathrm{~V}$	2.7			V
		$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-0.4 \mathrm{~V}$			0.5	V
102	Output TRISTATE Leakage Current	$\mathrm{V}_{(1)}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}(\mathrm{D})=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
los	Output Short Circuit Current	$\begin{aligned} & V_{I(D)}=3 \mathrm{~V}, \mathrm{~V}_{1 H} \text { TRI STATE }=2 \mathrm{~V}, \\ & V_{O} \approx 0,(\text { Note } 3) \end{aligned}$	-15		-100	mA
$I_{I L}$	Input Current - Low Logic State (TRI-STATE Control)	$V_{\text {IL }}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	Input Current - High Logic State (TRI.STATE Control)	$\mathrm{V}_{\text {IH }}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IL }}=5.25 \mathrm{~V}$			100	$\mu \mathrm{A}$
$V_{\text {IC }}$	Input Clamp Diode Voltage (TRI-STATE Control)	$1 / \mathrm{N}=-10 \mathrm{~mA}$			-1.5	V
ICC	Power Supply Current	All Inputs $V_{\text {IL }}=0 \mathrm{~V}$			85	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safetv of the device cannot be guaranteed They are not meant to imply that the devices should be operated at these imits. The table of "Electrical Characteristics" provides conditions for actual device operation
Note 2: All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.
Note 3: Only one output at a time should be shorted.
Note 4: Refer to EIA RS $422 / 3$ for exact conditions

Switching Characteristics (Unless otherwise noted, $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.,

PARAMETER		MIN	TYP	MAX	UNITS
Propagation Delay Time - Differential Inputs to Output					
tPHL(D)	Outpu1 High to Low		19	35	ns
tPLH(D)	Outpu1 Low to High		19	30	ns
	Propagation Delay Time - TRISTATE Control to Output				
tPLZ	Outpu Low to TRI-STATE		23	35	ns
tPHZ	Output High to TRI-STATE		25	35	ns
tPZH	Output TRI-STATE to High		18	30	ns
tPZL	Output TRI-STATE to Low		20	30	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Propagation Delay Differential Input to Output

AC Test Circuits and Switching Time Waveforms (Continued)

tPZH

tPZL

FIGURE 2. Propagation Delay TRI-STATE Control Input to Output

National Semiconductor
 DS3487 Quad TRI-STATE ${ }^{\oplus}$ Line Driver

General Description

National's quad RS-422 driver features four independent driver chains which comply with EIA Standards for the electrical characteristics of balanced voltage digital interface circuits. The outputs are TRI-STATE ${ }^{\circledR}$ structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down.

Features

- Four independent driver chains
- TRI-STATE outputs
- PNP high impedance inputs (PIA compatible)
- Power up/down protection
- Fast propagation times (typ 15 ns)
- TTL compatible
- Single 5 V supply voltage
- Output rise and fall times less than 20 ns
- Pin compatible with MC3487

Block Diagram

Connection Diagram

Truth Table

INPUT	CONTROL INPUT	NON-INVERTER OUTPUT	INVERTER OUTPUT
H	H	H	L
L	H	L	H
X	L	Z	Z

[^2]
Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage	8 V
Input Voltage	5.5 V
Storage Temperature	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Supply Voltage ($V_{C C}$)
Temperature (T_{A})

MIN	MAX	UNITS
4.75	5.25	V
0	+70	C

Electrical Characteristics (Notes 2,3,4 and 5)

Switching Characteristics $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL	Input to Output				20	ns
${ }^{\text {tPLH }}$	Input to Output				20	ns
tPDHL	Differential Fall Time				20	ns
tPDLH	Differential Rise Time				20	ns
tPHZ	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
tPLZ	Enable to Output	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
tPZH	Enable to Output	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, S1 Open			30	ns
tPZ L	Enable to Output	$R_{L}=20052, C_{L}=50 \mathrm{pF}, \mathrm{S} 2$ Open			30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3487. All typicals are given for $V \mathrm{CC}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.
Note 5: Symbols and definitions correspond to EIA RS-422, where applicable.

AC Test Circuits and Switching Time Waveforms

Input pulse: $f=1 \mathrm{MHz}, 50 \% ; \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}$.

FIGURE 1. Propagation Delays

FIGURE 2. TRI.STATE Enable and Disable Delays

FIGURE 3. Differential Rise and Fall Times

Transmission Line Drivers/Receivers

DS55113/DS75113 Dual TRI-STATE ${ }^{\circledR}$ Differential Line Driver

General Description

The DS55113/DS75113 dual differential line drivers with TRI-STATE outputs are designed to provide all the features of the DS55114/DS75114 line drivers with the added feature of driver output controls. There are individual controls for each output pair, as well as a common control for both output pairs. When an output control is low, the associated output is in a highimpedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.

The output stages are similar to TTL totem-pole outputs, but with the sink outputs, $Y S$ and $Z S$, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins.

Features

- Each circuit offers choice of open-collector or active pull-up (totem-pole) outputs
- Single 5 V supply
- Differential line operation
- Dual channels
- TTL/DTL compatibility
- High-impedance output state for party-line applications
- Short-circuit protection
- High current outputs
- Single-ended or differential AND/NAND outputs
- Common and individual output controls
- Clamp diodes at inputs
- Easily adaptable to DS55114/DS75114 applications

Connection Diagram

Positive logic: $\begin{aligned} Y & =A B \\ Z & =\overline{A B}\end{aligned}$
Output is OFF when C or CC is low

Order Number DS55113J, DS75113J, or DS75113N
See NS Package J16A or N16A

Truth Table

INPUTS				OUTPUTS	
OUTPUT CONTROL	DATA		AND	NAND	
C	CC	A	B *	Y	Z
L	\times	X	X	Z	Z
X	L	X	\times	Z	Z
H	H	L	X	L	H
H	H	X	L	L	H
H	H	H	H	H	L

$H=$ high level
L = low level
$X=$ irrelevant
$Z=$ high impedance (OFF)
${ }^{*} B$ input and 4 th line of truth table applicable only to driver number 1

Absolute Maximum Ratings (Note 1)		Operating Conditions			
			MIN	MAX	UNITS
Supply Voltage (V_{CC}) (Note 1)	7 V	Supply Voltage (V_{CC})			
Input Voltage	5.5 V	DS55113	4.5	5.5	V
OFF-State Voltage Applied to		DS75113	4.75	5.25	V
Open-Collector Outputs	12 V	High Level Output Current (${ }_{\mathrm{OH}}$)		-40	$m A$
Continuous Total Dissipation at (or Below)		Low Level Output Current ($\mathrm{OLL}_{\text {L }}$)		40	$m A$
$25^{\circ} \mathrm{C}$ Free-Air Temperature (Note 2)	1W				
Operating Free-Air Temperature Range		Operating Free-Air Temperature (T_{A})			
DS55113	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DS55113	-55	125	${ }^{\circ} \mathrm{C}$
DS75113	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DS75113	0	70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS75113		70	C
Lead Temperature ($1 / 16$ ' from case for					
60 seconds) : J Package	$300^{\circ} \mathrm{C}$				
Lead Temperature ($1 / 16^{\prime \prime}$ from case for					
10 seconds): N Package	$260^{\circ} \mathrm{C}$				

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			CDNDITIDNS (Note 3)			DS55113			DS75113			UNITS			
			MIN	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 4) } \end{array}$	MAX							
$V_{\text {IH }}$	High Level Input Voltage								2			2			V
$V_{\text {IL }}$	Low Level Input Voltage							08			0.8	\checkmark			
VIK	Input Clamp Voltage		$V_{C C}=M \ln , I_{1}=-12 \mathrm{~mA}$				-09	$\cdot 1.5$		-0.9	--1.5	V			
VOH	High Level Output Voltage		$\begin{aligned} & V_{C C}=M_{1 n}, V_{I H}=2 V \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$		$1 \mathrm{OH}=-10 \mathrm{~mA}$	2.4	3.4		2.4	3.4		V			
			$1 \mathrm{OH}=-40 \mathrm{~mA}$	2	3.0		2	3.0							
V_{OL}	Low Level Output Voltage				$V_{C C}=\mathrm{Min}, \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=08 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$				0.23	0.4		0.23	0.4	V	
VOK	Output Clamp Voltage		$V_{C C}=$ Max, $10=-40 \mathrm{~mA}$				-1.1	-1.5		-1.1	-1.5	v			
${ }^{1} \mathrm{O}$ (off)	OFF.State Open Collector Output Current		$V_{C C}=\mathrm{Max}$	$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\prime} \mathrm{C}$		1	10				$\mu \mathrm{A}$			
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$				200								
			$\mathrm{VOH}^{\text {O }}=5.25 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\text {c }} \mathrm{C}$					1	10					
			$\mathrm{T}_{\mathrm{A}}=70^{\mathrm{C}} \mathrm{C}$						20						
I_{O}	OFF State (High Impedance. State) Output Current			$V_{C C}=M a x,$ Output Controls $\text { at } 0.8 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{O}}=0$ to V_{CC}				± 10			± 10	$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$		$\mathrm{V}_{\mathrm{O}}=0$			-150			-20				
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$				± 80			± 20					
			$V_{O}=24 \mathrm{~V}$				± 80			± 20					
			$\mathrm{VO}_{\mathrm{O}}=\mathrm{VCC}$				80			20					
11	Input Current at Maximum Input Voltage	A, 8, C		$V_{C C}=\operatorname{Max}, V_{1}=5.5 \mathrm{~V}$					1			1	mA		
		CC							2			2			
IIH	High Level Input Current	A, B, C		$V_{C C}=\operatorname{Max}, V_{1}=24 \mathrm{~V}$					40			40	$\mu \mathrm{A}$		
		CC						80			80				
IIL	Low Level Ingut Current	A, B, C	$V_{C C}=\operatorname{Max}, V_{1}=0.4 V$					-1.6			-1.6	mA			
		CC						-3.2			-3.2				
Ios	Short-Circuit Output Current (Note 5)		$V_{C C}=$ Max, $V_{O}=0$			-40	-90	-120	-40	-90	-120	mA			
${ }^{\mathrm{I}} \mathrm{Cc}$	Supply Current (Both Drivers)		All Inputs at $0 V$, No Load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$V_{C C}=$ Max		47	65		47	65	mA			
			$V_{\text {cc }}=7 \mathrm{~V}$		65	85		65	85						

Note 1: All voltage values are with respect to network ground terminal.
Note 2: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curves in the Thermal information section. In the J package, DS55113 chips are alloy-mounted, DS75113 chips are glass-mounted.
Note 3: All parameters with the exception of OFF-state open-coliector output current are measured with the active pull-up connected to the sink output.
Note 4: All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$, with the exception of I_{CC} at 7 V .
Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	DS55113			DS75113			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
tPLH	Propagation Delay Time, Low to High-Level Output		(Figure 1)		13	20		13	30	ns
tPHL	Propagation Delay Time, High-to-Low-Level Outout			12	20		12	30	ns	
tPZH	Output Enable Time to High Level	$\mathrm{R}_{\mathrm{L}}-180 \mathrm{2}$, (Figure 2)		7	15		7	20	ns	
$t p Z L$	Output Enable Time to Low Level	R_{L} 250s2, (Figure 3)		14	30		14	40	ns	
tPHZ	Output Disable Time from High Level	$\mathrm{R}_{\mathrm{L}}=180 \leq 2$, (Figure 2)		10	20		10	30	ns	
tPLZ	Output Disable Time from Low Level	$\mathrm{R}_{\mathrm{L}}=250 \mathrm{~s}$, (Figure 3)		17	35		17	35	ns	

Schematic Diagram (One side shown only)

AC Test Circuits and Switching Time Waveforms

FIGURE 1. tPLH and TPHL

Note 1: The pulse generator has the following characteristics: $Z_{O U T}=5052, P R R=500 \mathrm{kHz}, t_{w}=100 \mathrm{~ns}$.
Note 2. C_{L} includes probe and Jig capacitance.

Typical Performance Characteristics*

${ }^{*}$ Data for temperatures below 0 C and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to DS55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

Typical Performance Characteristics* (Continued)

Output Voltage vs Output Control Voltage

V_{1} - INPUT VDLTAGE (OUTPUT CONTROL) (V)

Output Voltage vs Free-Air Temperature

$\mathrm{I}_{\mathrm{A}}-$ FREE AIR TEMPERATURE (C)

Output Voltage vs Output
Control Voltage

V_{1} - INPUT VOLTAGE (OUTPUT CONTROL) (V)

High Level Output
Voltage vs Output
Current

Supply Current (Both
Drivers) vs Free-Air
Temperature

Output Voltage vs Output Control Voltage

v_{1} - INPUT VDLTAGE (DUTPUT CONTROLI (V)

> Low Level Output
> Voltage vs Output Current

Supply Current (Both

Propagation Delay Times
from Data Inputs vs Free-Air
Temperature

TA-fREE AIR tEMPERATUREIC;

Output Enable and Disable Times vs Free-Air Temperature

TA - free alr temperature (' \mathbf{C})
*Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to DS55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

National Semiconductor

Transmission Line Drivers/Receivers

DS55114/DS75114 Dual Differential Line Drivers

General Description

The DS55114/DS75114 dual differential line drivers are designed to provide differential output signals with high current capability for driving balanced lines, such as twisted pair at normal line impedances, without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL compatible output levels, these devices may also be used as TTL expanders or phase splitters.

Features

- Each circuit offers choice of open-collector or active pull-up (totem-pole) outputs
- Single 5 V supply
- Differential line operation
- Dual channels
- TTL/DTL compatibility
- Design to be interchangeable with Fairchild 9614 line drivers
- Short-circuit protection of outputs
- High current outputs
- Clamp diodes at inputs and outputs to terminate line transients
- Single-ended or differential AND/NAND outputs
- Triple inputs

Truth Table

INPUTS		OUTPUTS		
A	B	C	Y	Z
H	H	H	H	L
All	Other Input Combinations	L	H	

[^3]Connection Diagram

Positive logic:

$$
Y=A B C
$$

$Z=\overline{A B C}$
Order Number DS55114J, DS75114J, or DS75114N
See NS Package J16A or N16A

Schematic Diagram (Each Driver)

[^4]
Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage (V_{CC})

$7 V$
Input Voltage
5.5 V

OFF-State Voltage Applied to Open-Collector Outputs 12 V Continuous Total Dissipation at (or Below) 25 C Free-Aır Temperature (Note 2)
Operating Free-Aır Temperature Range DS55114
DS75114
$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 60 seconds): J Package
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds): N Package

Supply Voltage (V_{CC})

DS55114
DS75114
High Level Output Current (' OH)
Low Level Output Current (IOL)
Operating Free-Aır Tempera
ture (T_{A})

DS55114	-55	125	${ }^{\circ} \mathrm{C}$
DS75114	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		CONDITIONS (Note 3)			DS55114			DS75114			UNITS			
		MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 4) } \\ \hline \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 4) } \end{array}$	MAX							
$V_{\text {IH }}$	High Level Input Voltage							2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage						08			08				
VIK	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CL}}=\mathrm{Min}, 1 \mathrm{l}=-12 \mathrm{~mA}$				-0.9	-1.5		0.9	-1.5	V			
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$V_{C O}=M_{I N}, V_{I H}=2 \mathrm{~V}$,		$1 \mathrm{OH}=-10 \mathrm{~mA}$	2.4	3.4		2.4	3.4		V			
		$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}$		$1 \mathrm{OH}=-40 \mathrm{~mA}$	2	3.0		2	3.0					
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V, V_{I L}=0.8 V \\ & \\ & \hline O L=40 \mathrm{~mA} \end{aligned}$				0.2	0.4		0.2	0.45	V			
VOK	Output Clamp Voltage	$V_{C C}=5 \mathrm{~V}, 10=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}-25 \mathrm{C}$				61	65		6.1	6.5	V			
		$V_{C C}=$ Max, $I_{O}=-40 \mathrm{~mA}$ TA $=25^{\prime \prime} \mathrm{C}$				1.1	-1.5		-1.1	15				
IO(off)	OFF-State Open-Collector Output Curren:	$V_{\text {CLS }}=$ Max		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	100				$\mu \mathrm{A}$			
			$\mathrm{VOH}=12 \mathrm{~V}$	$T_{A}=125^{\circ} \mathrm{C}$			200							
			$\mathrm{VOH}=5.25 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1	100				
				$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$						200				
11	Input Current at Maximum Input Voltage	$V_{C C}=\operatorname{Max}, V_{1}=5.5 \mathrm{~V}$					1			1	mA			
1 H	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.4 V$					40			40	$\mu \mathrm{A}$			
IIL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 V$				1.1	-1.6		-11	-1.6	mA			
Ios	Short-Circuit Output Current (Note 5)	$V_{C C}=\operatorname{Max}, V_{O}=0$			-40	90	- 120	40	-90	-120	mA			
${ }^{\text {I C }}$	Supply Current (Both	Inputs Grounded, No Load$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		37	50		37	50	mA			
				$V_{C C}=7 V$		47	65		47	70				

Note 1: All voltage values are with respect to network ground terminal.
Note 2: For operation above $25^{\circ} \mathrm{C}$ free-ar temperature, refer to Dissipation Derating Curves in the Thermal Information section. In the J package, DS55114 chips are alloy-mounted; DS751 14 chips are glass-mounted.
Note 3: All parameters, with the exception of OFF-state open-collector output current, are measured with the active pull-up connected to the sink output.
Note 4: All typical values are at $T_{A}=25 \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$, with the exception of I_{CC} at 7 V
Note 5: Only one output should be shoried at a time, and duration of the short-circuit should not exceed orie second.

Switching Characteristics $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	DS55114			DS75114			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
tPLH	Propagation De!ay Time. Low to-High-Level Output		$C_{L}=30 \mathrm{pF}$, (Figure) ${ }^{\text {/ }}$		15	20		15	30	ns
tPHL	Propagation Delay Time, High to Low-Level Output			11	20		11	30	ns	

AC Test Circuit and Switching Time Waveforms

Typical Performance Characteristics*

[^5]
Typical Performance Characteristics* (Continued)

*Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to D 555114 circuits only. These parameters were measured with the active pull-up connected to the sink output

DS55115/DS75115 Dual Differential Line Receiver

General Description

The DS55115/DS75115 is a dual differential line receiver designed to sense differential signals from data transmission lines. Designed for operation over military and commercial temperature ranges, the DS55115/DS75115 can typically receive $\pm 500 \mathrm{mV}$ differential data with $\pm 15 \mathrm{~V}$ common-mode noise. Outputs are open-collector and give TTL compatible signals which are a function of the polarity of the differential input signal. Active output pull-ups are also available, offering the option of an active TTL pull-up through an external connection.

Response time may be controlled with the use of an external capacitor. Each channel may be independently
controlled and optional input termination resistors are also available.

Features

- Single 5V supply
- High common-mode voltage range
- Each channel individually strobed
- Independent response time control
- Uncommitted collector or active pull-up option
- TTL compatible output
- Optional 130Ω termination resistors
- Direct replacement for 9615

Connection Diagram

Pin 8 of the W package is in electrical contact with the metal base.

Order Number DS55115J, DS75115J,
DS75115N or DS55115W
See NS Package J16A, N16A or W16A

Function Table

STROBE	DIFF. INPUT	OUTPUT
L	X	H
H	L	H
H	H	L

$H=V_{I} \geq V_{I H}$ min or $V_{I D}$ more posi-
tive than $V_{T H}$ max
$L=V_{1} \leq V_{\text {IL }} \max$ or $V_{\text {ID }}$ more nega-
tive than $V_{T L}$ max
$X=$ irrelevant

Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage, VCC (Note 1) 7V
Input Voltage at A, B and $\mathrm{R}_{\boldsymbol{T}}$ Inputs $\pm 25 \mathrm{~V}$
Input Voltage at Strobe Input 5.5 V
Off-State Voltage Applied to Open-Collector Outputs 14 V
Continuous Total Dissipation at [or below $70^{\circ} \mathrm{C}$
free-air temperature (Note 2)]
600 mW
Operating Free-Air Temperature Range
DS55115
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS75115
Storage Temperature Range
Lead Temperature (1/16 inch from case
for 10 seconds)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

MIN

MAX
UNITS
Supply Voltage, (V_{CC})
DS55115
4.5 5.5
hevel Output Current, (। OH)
Low Level Output Current, (${ }_{\mathrm{OL}}$)
Operating Temperature, (T_{A})

DS55115	-55	125	${ }^{\circ} \mathrm{C}$
DS75115	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2, 3 and 5)

PARAMETER		CONDITIONS		DS55115			DS75115			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX					
$V_{\text {TH }}$	Differential Input High- Threshold Voltage			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{IOL}=15 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{C}}=0$			200	500		200	500	mV
$\mathrm{VrL}_{\text {r }}$	Differential Input Low. Threshold Voltage	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}, \mathrm{IOH}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {IC }}=0$			-200	-500		-200	-500	mV		
VICR	Common-Mode Input Voltage Range	$V_{\text {ID }}= \pm 1 \mathrm{~V}$		15 to -15	24 to -19		15 to -15	$\begin{gathered} 24 \\ \text { to } \\ -19 \end{gathered}$		V		
$V_{\text {IH }}(S T R O B E) ~$	High-Level Strobe Input Voltage			2.4			2.4			V		
VIL(STROBE)	Low-Level Strobe Input Voltage					0.4			0.4	V		
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I D}=-0.5 \mathrm{~V} \\ & I_{O H}=-5 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$	2.2			2.4			V		
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.4	3.4		2.4	3.4				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$	2.4			2.4					
VOL	Low Level Output Voltage	$V_{C C}=M \mathrm{In}, \mathrm{V}_{\text {ID }}=0.5 \mathrm{~V}, \mathrm{IOL}=15 \mathrm{~mA}$			0.22	0.4		0.22	0.45	V		
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 V$ Other Input at 5.5 V	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$			-0.9			-0.9	mA		
			$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$		-0.5	-0.7		-0.5	-0.7			
			$\mathrm{T}_{\mathrm{A}}=$ Max			-0.7			-0.7			
${ }^{\text {ISH}}$	High Level Strobe Current	$\begin{aligned} & V_{C C}=\mathrm{Min}, V_{I D}=-0.5 \mathrm{~V} \\ & V_{\text {STROBE }}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	2		0.5	5	$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathbf{A}}=\mathrm{Max}$			5			10			
ISL	Low Level Strobe Current	$\begin{aligned} & V_{C C}=\text { Max, } V_{I D}=0.5 \mathrm{~V} . \\ & V_{S T R O B E}=0.4 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-1.15	-2.4		--1.15	-2.4	mA		
$\mathrm{I}_{4} \mathrm{I}_{12}$	Response Time Control Current (Pin 4 or Pin 12)	$\begin{aligned} & V_{C C}=\text { Max. } V_{I D}=0.5 V \\ & V_{R C}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.2	-3.4		-1.2	-3.4		mA		
IO(OFF)	Off. State Open Collector Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O H}=12 \mathrm{~V}, \\ & V_{I D}=-4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100				$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$			200						
		$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}, \\ & V_{\mathrm{ID}}=-4.75 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						100			
			$\mathrm{T}_{A}=\operatorname{Max}$						200			
$\mathrm{Rr}_{\text {r }}$	Line Terminating Resistance	$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	77	130	167	74	130	179	Ω		
Ios	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max, } V_{O}=0 V \\ & V_{I D}=-0.5 V,(\text { Note } 4) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-15	-40	-80	-14	-40	-100	mA		
ICC	Supply Current (Both Receivers)	$\begin{aligned} & V_{C C}=M a x, V_{I D}=0.5 V \\ & V_{I C}=O V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		32	50		32	50	mA		

Note 1: "Absolute Maximum Ratings' are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the 0 S 55115 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75115. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V}$ and $V_{C M}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4. Only one output at a time should be shorted.
Note 5: Unless otherwise noted, $\mathrm{V}_{\text {STROBE }}=2.4 \mathrm{~V}$. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CONOITIONS	DS55115			DS75115			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
tPLH	Propagation Delay Time, Low. to-High Level Output		$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$, (Figure \%)		18	50		18	75	ns
tPHL	Propagation Delay Time, Highto Low Level Output	$\mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 1)		20	50		20	75	ns	

Schematic Diagram

Typical Application

${ }^{*} Z_{O}$ is internal to the DS55115/DS75115
A capacitor may be connected in series with Z_{O} to reduce power dissipation.

Typical Performance Characteristics (Note 3)

High Level Output Voltage vs Output Current

Output Voltage vs Oifferential Input Voltage

Supply Current (Both Receivers) vs Supply Voltage

Low Level Output Voltage vs Output Current

Output Voltage vs Strobe Input Voltage

Supply Current (Both Receivers) vs Temperature

Output Voltage vs Common-Mode Input Voltage

Output Voltage vs
Oifferential Input Voltage

Output Voltage vs Strobe Input Voltage

Propagation Delay Times vs Temperature

Frequency Response Control

Note. C_{R} (response control) $>0.01 \mu \mathrm{~F}$ may
cause slowing of rise and fall times of the output

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega, P R R=500 \mathrm{kHz} / \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$
Note 2: C_{L} includes probe and test fixture capacitance.

FIGURE 1. Propagation Delay Times

Transmission Line Drivers/Receivers

DS55121/DS75121 dual line drivers

general description

The DS55121/DS75121 are monolithic dual line drivers designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines having impedances from 50 to 500 ohms. 8oth are compatible with standard TTL logic and supply voltage levels.

The DS55121/DS75121 will drive terminated low impedance lines due to the low-impedance emitterfollower outputs. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

features

- Designed for digital data transmission over 50 to 500 ohms coaxial cable, strip line, or twisted pair transmission lines
- TTL compatible
- Open emitter-follower output structure for party-line operation
- Short-circuit protection
- AND-OR logic configuration
- High speed (max propagation delay time 20 ns)
- Plug-in replacement for the SN55121/SN75121 and the 8 T 13

connection diagram

typical performance characteristics

truth table

INPUTS						OUTPUT
A	B	C	D	E	F	Y
H	H	H	H	X	X	H
X	X	X	X	H	H	H
All Other Input Combunations	L					

$H=$ high level, $L=$ low level, $X=$ irrelevant
ac test circuit and switching time waveforms

Note 2: C_{1} includes probe and ius capreitance.

absolute maximum ratings (Note 1)

operating conditions

			MIN	MAX
Supply Voltage, $V_{C C}$	6.0 V	Supply Voltage, $V_{C C}$	4.75	5.25
Input Voltage	6.0 V	Temperature, T_{A}	V	
Output Voltage	6.0 V	DS55121	-55	+125
Output Current	-75 mA	DS75121	0	+75
Power Dissipation	600 mW		${ }^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$			

electrical characteristics $V_{c c}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted) (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2.0			V
V_{12}	Low Level Input Voltage				0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	\checkmark
1	Input Current at Max Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-75 \mathrm{~mA}($ Note 4)	2.4			\checkmark
$\mathrm{IOH}^{\text {O}}$	High Level Output Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{tH}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note } 4) \end{aligned}$	-100		-250	mA
I_{OL}	Low Level Output Current	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ (Note 4)			-800	$\mu \mathrm{A}$
Iotoff)	Off State Output Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}$			500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	High Level Input Current	$V_{1}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{1 /}$	Low Level Input Current	$V_{1}=0.4 \mathrm{~V}$	-0.1		-1.6	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	mA
ICCH	Supply Current, Outputs High	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$, All Inputs at 2.0 V , Outputs Open			28	mA
${ }^{1} \mathrm{CCL}$	Supply Current, Outputs Low	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$, All Inputs at 0.8 V . Outputs Open			60	mA

switching characteristics $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathbf{t P L H}$	Propagation Delay Time, Low-to-High Level Output	$\mathbf{R}_{L}=37 \Omega$, (See ac Test Circuit and Switching Time Waveforms)	$C_{L}=15 \mathrm{pF}$		11	20	ns
			$C_{L}=1000 \mathrm{pF}$		22	50	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High-to-Low Level Output	$\mathbf{R}_{\mathrm{L}}=37 \Omega$, (See ac Test Circuit and Switching Time Waveforms)	$C_{L}=15 \mathrm{pF}$		8.0	20	ns
			$C_{L}=1000 \mathrm{pF}$		20	50	ns

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS55121 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75121. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, al! voltages referenced to ground unless othenwise noted. All values shown as max or min on absolute value basis.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

2
National Semiconductor

Transmission Line Drivers/Receivers

DS55122/DS75122 triple line receivers

general description

The DS55122/DS75122 are triple line receivers designed for digital data transmission with line impedances from 50Ω to 500Ω. Each receiver has one input with built-in hysteresis which provides a large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS55122/DS75122 are compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed ... typical propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0 V supply operation
- Fanout to 10 series $54 / 74$ standard loads
- Plug-in replacement for the SN55122/SN75122 and the 8T14

connection diagram

truth table

INPUTS				OUTPUT
A	B $^{\text {I }}$	R	S	Y
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$H=$ high level, $L=$ low level, $X=$ urelevant
${ }^{\dagger} B$ input and last two lines of the truth table are applicable to receivers 1 and 2 only
ac test circuit and switching time waveforms

Note 1 The pulse generator has the fallowing characteristics
$Z_{\text {OUT }}=50 \mathrm{~s}, \mathrm{t}_{\mathrm{w}}=200 \mathrm{~ns}$, duiy cycle $=\mathbf{5 0} \%, \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}$.
Note $2 \mathrm{C}_{\mathrm{L}}$ meludes probe and Jg capacitance

			MiN	MAX	UNITS
Supply Voltage, $\mathrm{V}_{\text {CC }}$	6.0 V	Supply Voltage, VCC	4.75	5.25	V
Input Voltage		Operating Temperature, $\mathrm{T}_{\text {A }}$			
R Input	6.0 V	DS55122	-55	+125	${ }^{\circ} \mathrm{C}$
A, B, or S Input	5.5 V	DS75122	0	+75	${ }^{\circ} \mathrm{C}$
Output Voltage	6.0 V			-500	$\mu \mathrm{A}$
Output Current	$\pm 100 \mathrm{~mA}$	High Level Output Current,		-500	$\mu \mathrm{A}$
Power Dissipation	600 mW	${ }^{1} \mathrm{OH}$			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Low Level Output Current,		16	mA
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	${ }^{1} \mathrm{OL}$			

electrical characteristics $V_{C C}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted) (Notes 2 and 3)

	PARAMETER		CONDITIONS	MiN	TYP	MAX	UNITS
$V_{\text {IM }}$	High Level Input Vottage	A, B, R, or S		20			\checkmark
$V_{\text {IL }}$	Low Level Input Voltage	A, B, R, or S				0.8	\checkmark
$\mathrm{V}_{\mathrm{T}_{+}-} \mathrm{V}_{\mathrm{T}-}$	Hysteres's	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}$ ((Note 6)		0.3	0.6		\checkmark
V_{1}	Input Clamp Voltage	$V_{C C}=50 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}, \mathrm{~A}, \mathrm{~B}$, or S				-1.5	\checkmark
I_{1}	Input Current at Max Input Voltage	$V_{C C}=525 \mathrm{~V}, V_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				1.0	mA
VOM	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\mathrm{V}_{1+}=2 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 . \mathrm{BV},($ Note 4)	26			\checkmark
			$\begin{aligned} & V_{1(A)}=0 \mathrm{~V}, V_{1(B)}=0 \mathrm{~V}, \\ & V_{1(R)}=1.45 \mathrm{~V}, V_{1(S)}=20 \mathrm{~V},(\text { Note } 7) \end{aligned}$	2.6			V
V_{OL}	Low Level Output Voltage	$\mathrm{t}_{\mathrm{OL}}=16 \mathrm{~mA}$	$V_{1 H}=2.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=0 \mathrm{BV},($ Note 4)			0.4	V
			$\begin{aligned} & V_{1(A)}=0 \mathrm{~V}, V_{1(B)}=0 \mathrm{~V}, \\ & V_{1(A)}=1.45 \mathrm{~V}, V_{1(S)}=20 \mathrm{~V},(\text { Note } B) \end{aligned}$			0.4	V
I_{1+}	High Level Input Current	$V_{1}=45 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S				40	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=38 \mathrm{~V}, \mathrm{R}$				170	$\mu \mathrm{A}$
11.	Low Level Input Current	$V_{1}=04 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S		-0.1		-1.6	mA
I_{os}	Short Circuit Output Current	$\mathrm{V}_{C C}=50 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, (Note 5)		-50		-100	mA
I_{Cc}	Supply Current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$				72	mA

switching characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{talh}^{\text {Pren }}$	Propagation Delay Time, Low-to-High Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns
$t_{\text {PHL }}$	Propagation Delay Time, High to-Low Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DS55122 and $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75122, unless otherwise specified. Typicals are for $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: Not more than one output should be shorted at a time.
Note 6: Hysteresis is the difference between the positive going input threshold voitage, V_{T+}, and the negative going input threshold voltage, V_{T} -
Note 7: Receiver input was at a high level immediately before being reduced to 1.45 V .
Note 8: Receiver input was at a low level immediately before being raised to 1.45 V .

typical performance characteristics

typical applications

Single-Ended Party Line Circuits

The high gain and buili in hysteress of the OS55122/DS75122
line recewers enable them to be used as Schmut ungery in
squaring up puises

Pulse Squaring

Transmission Line Drivers/Receivers

DS75123 dual line driver

general description

The DS75123 is a monolithic dual line driver designed specifically to meet the I/O interface specifications for IBM System 360. It is compatible with standard TTL logic and supply voltage levels.

The low-impedance emitter-follower outputs of the DS75123 enable driving terminated low impedance lines. In addition the outputs are uncommited allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

features

- Meet IBM System 360 I/O interface specifications for digital data transmission over 50Ω to 500Ω coaxial cable, strip line, or terminated pair transmission lines
- TTL compatible with single 5.0 V supply
- 3.11 V output at $\mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA}$
- Open emitter-follower output structure for party-line operation
- Short circuit protection
- AND-OR logic configuration
- Plug-in replacement for the SN75123 and the 8T23

connection diagram

Order Number DS75123J or DS75123N
See NS Package J16A or N16A

typical performance characteristics

V_{0} - OUTPUT VOLTAGE (V)
truth table

\left.| INPUTS | | | | | OUTPur |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F |$\right]$

$H=$ high level, $L=$ low level, $X=$ irrelevent
ac test circuit and switching time waveforms

Note 1. THE PULSE GENERATORS HAVE THE FDLLOWING CHARACTERISTICS: $\mathbf{Z}_{\text {OUT }}=50 \Omega$
$t_{w}=200 \mathrm{~m}$. DUTY CYCLE $=50 \%$
Note 2: C incluoes probe an o Jig Cap acitance
absolute maximum ratings (Note 1)
operating conditions

			MIN	MAX	UNITS
Supply Voltage, VCC	7.0 V	Supply Voltage, VCC	4.75	5.25	\checkmark
Input Voltage	5.5 V	High Level Output Current,		-100	mA
Output Voltage	7.0 V	${ }^{1} \mathrm{OH}$			
Power Oissipation	600 mW	Temperature, T_{A}	0	+75	${ }^{\circ} \mathrm{C}$
Operating Free-Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage			2.0			V
$V_{\text {IL }}$	Low Level Input Voltage					0.8	\checkmark
V_{1}	Input Clamp Voltage	$V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	\checkmark
1	Input Current at Max Input Voltage	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
VOH	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA},(\text { Note } 4) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.11			V
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	2.9			\checkmark
I_{OH}	High Level Output Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{I H}=4.5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \\ & V_{O H}=2.0 \mathrm{~V},(\text { Note } 4) \end{aligned}$		-100		-250	mA
V_{OL}	Low Level Output Voltage	$V_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {OL }}=-240 \mu \mathrm{~A},($ Note 4)				0.15	V
Iotoff)	Off State Output Current	$V_{C C}=0 . V_{0}=3.0 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{t}_{\text {IH }}$	High Level Input Current	$V_{1}=4.5 \mathrm{~V}$				40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$V_{1}=0.4 \mathrm{~V}$		-0.1		-1.6	mA
$\mathrm{I}_{\text {OS }}$	Short Circuit Output Current	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$				-30	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current, Outputs High	$V_{C C}=5.25 \mathrm{~V}$. All Inputs at 2.0 V . Outputs Open				28	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current, Outputs Low	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$. All Inputs at 0.8 V . Outputs Open				60	mA

switching characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Oelay Time, Low. to-High Level Output	$R_{L}=50 \Omega$, (See ac Test Circuit and Switching Time Waveforms	$C_{L}=15 \mathrm{pF}$		12	20	ns
			$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		20	35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Oelay Time, High-to-Low Level Output	$R_{L}=50 \Omega$, (See ac Test Circuit and Switching Time Waveforms	$C_{L}=15 \mathrm{pF}$		12	20	ns
			$C_{L}=100 \mathrm{pF}$		15	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75123, unless otherwise specified. Typicals are for $V_{C C}=5.0 \vee, T_{A}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current lirnits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

Transmission Line Drivers/Receivers

DS75124 triple line receiver

general description

The DS75124 is designed to mect the input/ output interface specifications for IBM System 360. It has built-in hysteresis on one input on each of the three receivers to provide large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS75124 is compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed . . typ propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0 V supply operation
- Plug-in replacement for the SN75124 and the 8T24

connection diagram and truth table

Dual-In Line Package

INPUTS				OUTPUT
A	B^{\dagger}	R	S	Y
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
${ }^{\dagger} B$ input and last two lines of the truth table are applicable to receivers 1 and 2 only

Order Number DS75124J or DS75124N
See NS Package J16A or N16A

typical application

absolute maximum ratings (Note 1)

operating conditions

Supply Voltage, VCC	7.0 V	Supply Voltage, VCC
Input Voltage		High Level Output Current,
R Input with $V_{\text {CC }}$ Applied	7.0 V	${ }^{1} \mathrm{OH}$
R Input with $V_{C C}$ not Applied	6.0 V	Low Level Output Current,
A, 8, or S Input	5.5 V	'OL
Output Voltage	7.0 V	Operating Temperature, T_{A}
Output Current	$\pm 100 \mathrm{~mA}$	
Power Dissipation	600 mW	
Operating Temperature Range	$0^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	

MIN	MAX	UNITS
4.75	5.25	V
	-800	$H A$
	16	mA
0	+75	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{1 H}$	High Level Input Voltage	A, B, or S	2.0			V
		R	1.7			V
$V_{\text {IL }}$	Low Level Input Voltage	A, 8, or S			0.8	V
		R			0.7	V
$V_{1+}-V_{r_{-}}$	Hysteresis	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R},($ Note 6)	0.2	0.4		V
V_{1}	Input Clamp Voltage	$V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}, \mathrm{~A}, \mathrm{~B}$, or S			-1.5	V
1	Input Current at Maximum Input Voltage	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$. A, B, or S			1	mA
		R $\quad V_{1}=7.0 \mathrm{~V}$			5.0	mA
		R $\quad V_{1}=6.0 \mathrm{~V}, V_{C C}=0$			5.0	mA
V_{OH}	High Level Output Voltage	$V_{I H}=V_{I H M I N}, V_{I L}=V_{I L M A X}, I_{O H}=-800 \mu A,$ (Note 4)	2.6			V
V_{OL}	Low Level Output Voltage	$V_{I H}=V_{\text {INMIN }}, V_{I L}=V_{\text {IL, MAX }}, I_{\text {OL }}=16 \mathrm{~mA},($ Note 4)			0.4	V
$\mathrm{I}_{\mathbf{H}}$	High Level Input Current	$V_{1}=4.5 \mathrm{~V}, \mathrm{~A}, \mathrm{~B}$, or S			40	$\mu \mathrm{A}$
		$V_{1}=3.11 \mathrm{~V} . \mathrm{R}$			170	$\mu \mathrm{A}$
$I_{1 L}$	Low Level Input Current	$V_{1}=0.4 \mathrm{~V}, \mathrm{~A}, 8$, or S	-0.1		-1.6	mA
los	Short Circuit Output Current	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, (Note 5)	-50		-100	mA
I_{Cc}	Supply Current	$V_{C C}=5.25 \mathrm{~V}$			72	mA

switching characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns
$\mathbf{t r H L}^{\text {chen }}$	Propagation Delay Time, High-to-L.ow Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns

Nate 1: "Absolute Maximum Ratings" are those values beyond which the safety of the devica cannot be guaranteed. Except for "Opereting Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Nota 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted, All values shown as max or min on absolute value basis. Note 3: Min/max limits apply across the guaranteed operating temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for DS75124, unless otherwise specified. Typicals are for $\mathrm{V}_{\mathrm{CC}}=5,0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Nota 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output,

Note 5; Not more than one output should be shorted at a time.
Note 6: Hysteresis is the difference between the positive going input threshold voltage, V_{T+}, and the negative going input threshold voltaga, V_{T-}.
ac test circuit and switching time waveforms

Note I THE PULSE GENERATOR HAS THE FOLL OWING CHARACTERISTICS: $Z_{\text {OUT }}=50 \because, t_{w}=200$ ns, DUTY CYCLE = 50\%
Note 2. Cl incluoes probe and jig capacitance.

typical performance characteristics

Transmission Line Drivers/Receivers

DS75150 dual line driver general description

The DS75150 is a dual monolithic line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in datatransmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from -12 V and +12 V power supplies.

features

- Withstands sustained output short-circuit to any low impedance voltage between -25 V and +25 V
- 2μ s max transition time through the -3 V to +3 V transition region under full 2500 pF load
- Inputs compatible with most TTL and DTL families
- Common strobe input
- Inverting output
- Slew rate can be controlled with an external capacitor at the output
- Standard supply voltages

schematic and connection diagrams

absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage $+\mathrm{V}_{\mathrm{CC}}$	15 V	Supply Voltage $1+\mathrm{V}_{\mathrm{CC}}$)	10.8	13.2	\checkmark
Supply Voltage $-\mathrm{V}_{\mathrm{CC}}$	-15V	Supply Voltage $\left(-V_{\text {cCl }}{ }^{\prime}\right.$	-10.8	-13.2	v
Input Voltage	15 V	Input Voltage (V_{1})	0	+5.5	V
Applied Output Voltage	$\pm 25 \mathrm{~V}$	Input Volage (V)			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Output Voltage (VO)		± 15	\checkmark
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	Operating Ambient Temperature Range (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

dc electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage	(Figure 1)	2			V
$V_{\text {IL }}$	Low-Level Input Voltage	(Figure 2)			0.8	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega,(\text { Figure } 2 \text {) } \end{aligned}$	5	8		V
$V_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-10.8 \mathrm{~V}, \mathrm{~V}_{I \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \text {, (Figure } 1 \text {) } \end{aligned}$		-8	-5	V
$I_{1 H}$	High-Level Input Current	$+V_{C C}=13.2 \mathrm{~V},-V_{c C}=-13.2 \mathrm{~V}$, Data Input $\mathrm{V}_{1}=2.4 \mathrm{~V}$, (Figure 3)		1	10	$\mu \mathrm{A}$
		$+V_{c c}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}$, Strobe Input $\mathrm{V}_{1}=2.4 \mathrm{~V}$, (Figure 3)		2	20	$\mu \mathrm{A}$
$1 / 1$	Low-Level Input Current	$+\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}$, Data Input $\mathrm{V}_{1}=0.4 \mathrm{~V}$, (Figure 3)		-1	-1.6	mA
		$+V_{c c}=13.2 \mathrm{~V},-V_{C C}=-13.2 \mathrm{~V}$, Strobe Input $\mathrm{V}_{1}=0.4 \mathrm{~V}$, (Figure 3)		-2	-3.2	mA
Ios	Short-Circuit Output Current	$+\mathrm{V}_{\mathrm{cc}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{cc}}=-13.2 \mathrm{~V},$ (Figure 4), Note 4		2	5	mA
				-3	-6	mA
				15	30	mA
				-15	-30	mA
${ }^{+} \mathrm{CCH}$	Supply Current From $+\mathrm{V}_{\mathrm{cc}}$, High-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Figure 5) } \end{aligned}$		10	22	mA
$-^{-1} \mathrm{CCH}$	Supply Current From - V_{cc}, High-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{3}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Figure 5) } \end{aligned}$		-1	-10	mA
$+_{\text {ccl }}$	Supply Current From $+V_{c c}$, Low-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{1}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Figure 5) } \end{aligned}$		8	17	mA
${ }^{-1} \mathrm{CCL}$	Supply Current From - V_{CC}, Low-Level Output	$\begin{aligned} & +\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-13.2 \mathrm{~V}, \mathrm{~V}_{1}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Figure } 5 \text {) } \end{aligned}$		-9	-20	mA

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75150 All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $+V_{C C}=12 \mathrm{~V},-V_{C C}=-12 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5 V is the maxilnum, the typical value is a more-negative voltage.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{\text {tiLH }}$	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \text {, }$ (Figure 6)	0.2	1.4	2	$\mu \mathrm{s}$
${ }_{\text {triL }}$	Transition Time, High-to-Low Level Output	$C_{L}=2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega,$ (Figure 6)	0.2	1.5	2	$\mu \mathrm{s}$
${ }^{\text {tith }}$	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		40		ns
${ }_{\text {t }}^{\text {THL }}$	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		20		ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		60		ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$, (Figure 6)		45		ns

dc test circuits

FIGURE 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$

Each input is tested separately.
FIGURE 2. $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$

Note. When testong $I_{\text {IH, }}$, the other input is it $3 \mathrm{~V}_{\text {, when }}$, testing
$I_{\text {IL }}$, the ocher input is $\mathbf{0 p e n}$, IIL, the other input is open. Figure 3. IIH. IIL

FIGURE 4. IOS

ac test circuit and switching time waveforms

FIGURE 5. $\mathbf{I C C H}^{\prime}, \mathbf{I}_{\mathbf{C C H}-,} \mathbf{I} \mathbf{C C L}+$ I $\mathbf{C C L}-$
typical performance characteristics

Note 1: The pulte ponerater hes the follownip charscternitic: duty cycie $\leq 50 x, Z_{\text {Ouy }} \approx 50 \Omega$. Note 2. C_{L} inciudes probe ind ing capecitance.

Transmission Line Drivers/Receivers

DS75154 quad line receiver

general description

The DS75154 is a quad monolithic line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are in relatively short, single-line, point-to-point data transmission systems and for level translators. Operation is normally from a single 5 V supply; however, a built-in option allows operation from a 12 V supply without the use of additional components. The output is compatible with most TTL and DTL circuits when either supply voltage is used.

In normal operation, the threshold-control terminals are connected to the $\mathrm{V}_{\mathrm{CC} 1}$ terminal, pin 15 , even if power is being supplied via the alternate $\mathrm{V}_{\mathrm{Cc} 2}$ terminal, pin 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threstold-control terminals are open. This reduces the hysteresis loop by causing
the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

features

- Input resistance, $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ over full RS-232C voltage range
- Input threshold adjustable to meet 'fail-safe" requirements without using external components
- Inverting output compatible with DTL or TTL
- Built-in hysteresis for increased noise immunity
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage -5 V or 12 V

schematic and connection diagrams

Order Number DS75154J or DS75154N See NS Package J16A or N16A

Note. When using $V_{C C 1}$ (pin 15), $V_{C C 2}$ (pin 16) may be left open or shorted to $V_{C C 1}$.
When using $V_{C C 2}, V_{C C 1}$ must be left open or connected to the threshold control pans.
absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Normal Supply Voltage (Pin 15), (V) $\mathrm{V}_{\text {CC } 1}$)	7 V	Supply Voltage (Pin 15), (VCC1)	4.5	5.5	V
Alternate Supply Voltage (Pin 16), (V) CC 2)	14 V		10.8	13.2	V
Input Voltage	$\pm 25 \mathrm{~V}$	$\left(\mathrm{V}_{\mathrm{CC} 2}\right)$	10.8	13.2	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	Input Voltage		± 15	\checkmark
		Temperature, (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

operating conditions

electrical characteristics (Notes 2,3 and 4)

	PARAMETER	CONDITIONS		MIN	typ	MAX	UNITS
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage	(Figure 1)		3			V
$V_{\text {IL }}$	Low-Level Input Voltage	(Figure 1)				-3	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage	(Figure 1)	Normal Operation	0.8	2.2	3	V
			Fail-Safe Operation	0.8	2.2	3	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Threshold Voltage	(Figure 1)	Normal Operation	-3	-1.1	0	V
			Fail-Safe Operation	0.8	1.4	3	V
$\mathrm{V}_{\mathrm{T}^{+}-\mathrm{V}_{\mathrm{T}_{-}}}$	Hysteresis	(Figure 1)	Normal Operation	0.8	3.3	6	V
			Fail-Safe Operation	0	0.8	2.2	V
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$, (Figure 11$)$		2.4	3.5		V
V_{OL}	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$, (Figure 1)			0.23	0.4	V
r_{1}	Input Resistance	(Figure 2)	$\Delta V_{1}=-25 \mathrm{~V}$ to -14 V	3	5	7	$\mathrm{k} \Omega$
			$\Delta V_{1}=-14 \mathrm{~V}$ to -3 V	3	5	7	$\mathrm{k} \Omega$
			$\Delta V_{1}=-3 V$ to +3 V	3	6		$k \Omega$
			$\Delta \mathrm{V}_{1}=3 \mathrm{~V}$ to 14 V	3	5	7	$k \Omega$
			$\Delta V_{1}=14 \mathrm{~V}$ to 25 V	3	5	7	$k \Omega$
$V_{\text {I(OPEN }}$)	Open-Circuit Input Voltage	$\mathrm{I}_{1}=0$, (Figure 3)		0	0.2	2	V
$\mathrm{l}_{\text {os }}$	Short-Circuit Output Current (Note 5)	$\mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=-5 \mathrm{~V}$, (Figure 4)		-10	-20	-40	mA
ICCl	Supply Current From VCC	$V_{C C 1}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)			20	35	mA
$\mathrm{I}_{\mathrm{CC2}}$	Supply Current From $\mathrm{V}_{\mathrm{CC} 2}$	$\mathrm{V}_{C C 2}=13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)			23	40	mA

switching characteristics $\left(\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		22		ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		20		ns
$\mathrm{t}_{\mathrm{TLH}}$	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$ (Figure 6)		9		ns
$\mathrm{t}_{\mathrm{THL}}$	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=390 \Omega$, (Figure 6)		6	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75154. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C 1}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The algebraic convention where the most-positive (least-negative) limit is designated ms maximum is used in this data sheet for logic and threshold levels only, e.g., when $-3 V$ is the maximum, the minimum limit is a more-negative voltage.
Note 5: Only one output at a time should be shorted.

dc test circuits and truth tables

TEST	MEASURE	A	T	Y	$\begin{gathered} \text { Vcct } \\ \text { (PIN 15) } \end{gathered}$	VCC2 (PIN 16)
Open Circuit Input (fall-safe)	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Open Open	Open Open	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}} \\ & \mathrm{IOH}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { Open } \end{aligned}$	$\begin{aligned} & \text { Open } \\ & 10.8 \mathrm{~V} \end{aligned}$
$\begin{aligned} & V_{T+} \text { min, } \\ & V_{T} \text { (fail-safe) } \end{aligned}$	$\mathrm{VOH}_{\mathrm{OH}}$ V_{OH}	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 08 \mathrm{~V} \end{aligned}$	Open Open	COHI_{OH}	$5.5 \mathrm{~V}$	Open
					Open	13.2 V
$V_{T}+$ min (Normal)	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Note 1 Note 1	Pin 15 Pin 15	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & 55 \mathrm{~V} \text { and } T \\ & T \end{aligned}$	$\begin{aligned} & \text { Open } \\ & 13.2 \mathrm{~V} \end{aligned}$
$\begin{aligned} & V_{I L} \text { max, } \\ & V_{T-} \min (\text { Normal }) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$-3 \mathrm{~V}$	Pin 15	IOH	5.5 V and T	Open
		$-3 \mathrm{~V}$	Pin 15	loH	T	13.2 V
$V_{I H}$ min. V_{T}, max, $V_{T} \max$ (fall-safe)	$V_{\text {OL }}$ V_{OL}	$\begin{aligned} & 3 V \\ & 3 V \end{aligned}$	Open Open	IOL Iol	$45 V$	Open
					Open	10.8 V
$V_{1 H} \min . V_{T_{+}} \max$ (Normal	$\begin{aligned} & V_{O L} \\ & V_{O L} \end{aligned}$	$\begin{aligned} & 3 V \\ & 3 V \end{aligned}$	Pin 15 Pin 15	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & 45 V \text { and } T \\ & T \end{aligned}$	$\begin{aligned} & \text { Open } \\ & 108 \mathrm{~V} \end{aligned}$
$V_{T-} \max$ (Normal)	$\begin{aligned} & v_{O L} \\ & v_{O L} \end{aligned}$	Note 2 Note 2	Pin 15	$\mathrm{I}_{\text {OL }}$	55 V and T	Open
			Pin 15	IOL	T	13.2 V

Note 1: Momentarily apply -5 V , then 0.8 V .
Note 2: Momentarily apply 5 V , then ground.
figure 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{T}+}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$

T	$\begin{gathered} \mathrm{V}_{\mathrm{CC1}} \\ (\mathrm{Pm} 15) \end{gathered}$	$\begin{array}{r} v_{c c 2} \\ \left(P_{\text {in }} 16\right) \end{array}$
Open	5 V	Open
Open	Gnd	Open
Open	Open	Open
PIT 15	T and 5 V	Open
Gnd	Gnd	Open
Open	Open	12 V
Open	Open	Gnd
Pıח 15	T	12 V
PIn 15	T	Gnd
PIn 15	T	Open

FIGURE 2. r_{1}

T	$V_{c c 1}$ $($ Pin 15 $)$	$V_{c c 2}$ $($ Pin 16 $)$
Open	5.5 V	Open
Pin 15	5.5 V	Open
Open	Open	13.2 V
Pin 15	T	13.2 V

FIGURE 3. VI(OPEN)
dc test circuits (con't)

Each output is testad sepsietaly.

FIGURE 4. Ios

All four line recaivers ora tertod simultaneously.
Figure 5. icc
ac test circuit and switching time waveforms

INPUT

Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega, \mathrm{t}_{\mathbf{w}}=\mathbf{2 0 0} \mathrm{ns}$, duty cycle $\leq \mathbf{2 0} \%$ Note 2: C_{L} includes prote and ing cepacitance

FIGURE 6.
typical performance characteristics

DS8642 quad transceiver

general description

The DS8642 is a quad transceiver designed for bus organized data transmission systems terminated by 50Ω impedance. The bus can be terminated at one or both ends. It has four bus drivers with a common strobe gate and four bus receivers. Bus driver outputs can be "OR-tied" with up to 19 other drivers and with up to 20 bus receiver loads. The bus loading is $2 k$ when $V_{c c}=0 V$.

features

- 100 mA Drive Capability
- Four separate driver/receiver pairs
- Open collector driver output allows wire-OR connection
- 50Ω line termination
- Completely TTL compatible on driver and disable inputs, and receiver outputs

connection diagram

Dual-In-Line Package

Drder Number DS8642J
or DS8642N
See NS Package J16A or N16A
absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage, $V_{\text {CC }}$	4.75	5.25	V
Input Voltage	5.5 V	Temperature, TA	0	+70	${ }^{\circ} \mathrm{C}$
Output Voltage	5.5 V	Temperature, TA	0	+70	C
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Power Dissipation	600 mW				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

DISABLE/DRIVER INPUT

$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage	$V_{c c}=M i n$		2			v
$V_{1 L}$	Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}$				0.8	v
$I_{\text {IL }}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$			-0.9	-1.6	mA
I_{IH}	Logical " 1 " Input Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$V_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
$V_{C D}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-0.8	-1.5	v

RECEIVER INPUT/BUS OUTPUT

$V_{\text {IHB }}$	Logical "1" Input Voltage	$V_{C C}=M a x$	3.1			\checkmark
$V_{\text {ILB }}$	Logical " 0 " Input Voltage	$V_{c c}=$ Min			1.4	\checkmark
$\mathrm{V}_{\text {CDB }}$	Input Clamp Diode	$\mathrm{I}_{\mathrm{N}}=-50 \mathrm{~mA}$		-1.0	-1.5	\checkmark
$\mathrm{I}_{1+\mathrm{B}}$	Logical " 1 " Input Current	$V_{\text {CC }}=M a x, V_{\text {INB }}=V_{\text {cc }}$		180	450	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LLE }}$	Logical " 0 " Input Current	$V_{C C}=M a x, V_{\text {IN }}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OLB }}$	Logical "0" Output Voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$		0.4	0.8	\checkmark
$\mathrm{IOL}^{\text {O }}$	Logical "0" Output Current	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	100			mA
$\mathrm{IOHB}^{\text {O }}$	Power "'OFF' 8us Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {INB }}=5.25 \mathrm{~V}$		1.7	2.65	mA

RECEIVER OUTPUT

V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, $\mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA}$	2.4	3.2		\checkmark
$\mathrm{IOH}^{\text {OH}}$	Logical "1" Output Current	$V_{C C}=M i n, V_{\text {OUT }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current	$\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, $($ Note 4)	-10	-28	-55	mA
V_{OL}	Logical " 0 " Output Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$		0.3	0.45	\checkmark

I Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Max}$		49	64	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8642. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pdo }}$	Propagation Delay to a Logical "0'" From Data Input to Receiver Output	(Figure 1)		34	50	ns
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logical "1" From Data Input to Receiver Output	(Figure 1)		25	50	ns
$\mathrm{t}_{\text {pdo }}$	Propagation Delay to a Logical "0" From Strobe Input to Receiver Output	(Figure 1)		38	55	ns
$\mathrm{t}_{\text {pd1 }}$	Propagation Delay to a Logical "1" From Strobe Input to Receiver Output	(Figure 1)			25	55

typical performance characteristics

Receiver ON Impedance

Receiver OFF Impedance

ac test circuit and switching time waveforms

C National Semiconductor

DS7820/DS8820 dual line receiver

general description

The DS7820, specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and the DS8820, specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits.

features

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$

Transmission Line Drivers/Receivers

- Each channel can be strobed independently
- High input resistance
- Fanout of two with either DTL or TTL integrated circuits

The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820 and the DS8820 are specified, worst case, over their full operating temperature range, for ± 10-percent supply voltage variations and over the entire input voltage range.

schematic and connection diagrams

Order Number DS7820J or DS8820J Order Number DS8820N Order Number DS7820W or DS8820W See NS Package J14A, N14A or W14A

typical application

absolute maximum ratings
(Note 1)
operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
DS7820	4.5	5.5	V
DS8820	4.75	5.25	V
Temperature $\left(T_{\mathrm{A}}\right)$			
DS7820	-55	+125	${ }^{\circ} \mathrm{C}$
DS8820	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$V_{T H}$	Input Threshold Voltage	$V_{C M}=0$	-0.5	0	0.5	V
		$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$	-1.0	0	1.0	V
V_{OH}	High Output Level	$\mathrm{I}_{\text {OUT }} \leq 0.2 \mathrm{~mA}$	2.5		5.5	V
$\mathrm{V}_{\text {OL }}$	Low Output Level	$\mathrm{I}_{\text {SINK }} \leq 3.5 \mathrm{~mA}$	0		0.4	V
$\mathrm{R}_{1}{ }^{-}$	Inverting Input Resistance		3.6	5.0		$k \Omega$
$\mathrm{R}_{1}{ }^{+}$	Non-Inverting Input Resistance		1.8	2.5		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {T }}$	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	170	250	Ω
t_{r}	Response Time	$\mathrm{C}_{\text {DELAY }}=0$		40		ns
		$C_{\text {DELAY }}=100 \mathrm{pF}$		150		ns
${ }^{\text {ST }}$	Strobe Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}$		1.0	1.4	mA
		$\mathrm{V}_{\text {STROBE }}=5.5 \mathrm{~V}$			-5.0	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Power Supply Current	$V_{\text {IN }}=15 \mathrm{~V}$		3.2	6.0	mA
		$\mathrm{V}_{1 \mathbb{N}}=0$		5.8	10.2	mA
		$V_{\text {iN }}=-15 \mathrm{~V}$		8.3	15.0	mA
IN^{+}	Non-Inverting Input Current	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		5.0	7.0	mA
		$V_{\text {IN }}=0$	-1.6	-1.0		mA
		$V_{\text {IN }}=-15 \mathrm{~V}$	-9.8	-7.0		mA
IN^{-}	Inverting Input Current	$V_{1 N}=15 \mathrm{~V}$		3.0	4.2	mA
		$V_{\text {IN }}=0$		0	-0.5	mA
		$V_{\text {IN }}=-15 \mathrm{~V}$	-4.2	-3.0		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Dperating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: These specifications apply for $4.5 \mathrm{~V} \leq V_{C} \leq 5.5 \mathrm{~V},-15 \mathrm{~V} \leq V_{C M} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{DS7820}$ or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$ for the DS8820 unless otherwise specified; typical values given are for $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{\mathrm{CM}}=0$ unless stated differently,
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

typical performance characteristics (Note 3)

Supply Voltage Sensitivity

Common Mode Rejection

Transfer Function

Output Voltage Levels

Termination Resistance

Positive Supply Current

Internal Power Dissipation

National Semiconductor

Transmission Line Drivers/Receivers

DS7820A/DS8820A dual line receiver

general description

The DS7820A and the DS8820A aie improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differ ential input designed to reject large common mode signals while responding to small differential sig. nals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Strobe low forces output to " 1 " state
- High input resistance
- Fanout of ten with either DTL or TTL inte grated circuits
- Outputs can be wire OR'ed
- Series 54/74 compatible

The response time can be controlled with an ex ternal capacitor to reject input norse spikes. The output state is a logic " 1 " for both inputs open. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820A and the DS8820A are specified, worst case, over their full operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ respectively), over the entire input voltage range, for $\pm 10 \%$ supply voltage variations.

schematic and connection diagrams

Order Number OS7820AJ or DS8820AJ
Order Number DS8820AN
Order Number DS7820AW or OS8820AW See NS Package J14A, N14A or W14A

typical applications

Single Ended (EIA-RS232C) Receiver with Hysteresis
Differential Line Driver and Receiver

*Optional to contiol response time

absolute maximum ratings (Note 1)
operating conditions

			MIN	MAX	UNITS
Supply Voltage	8.0 V	Supply Voltage (V_{CC})			
Common-Mode Voltage	$\pm 20 \mathrm{~V}$	DS7820A	4.5	5.5	V
Differential Input Voltage	$\pm 20 \mathrm{~V}$	DS8820A	4.75	5.25	V
Strobe Voltage	8.0 V			5.25	V
Output Sink Current	50 mA	Temperature (T_{A})			
Power Dissipation	600 mW	DS7820A	-55	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	DS8820A	0	+70	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {TH }}$	Differential Threshold Voltage	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=+16 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {OUT }} \leq 0.4 \mathrm{~V} \end{aligned}$	$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$			0.06	0.5	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			0.06	1.0	V
			$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$			-0.08	-0.5	V
			${ }^{-15 V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			-0.08	-1.0	V
$\mathrm{R}_{1}{ }^{-}$	Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			3.6	5		$k \Omega$
$\mathrm{R}^{+}{ }^{+}$	Non-Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			1.8	2.5		$k \Omega$
$\mathrm{R}_{\text {T }}$	Line Termination Resistance	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$			120	170	250	Ω
I^{-}	Inverting Input Current	$V_{C M}=15 \mathrm{~V}$				3.0	4.2	mA
		$V_{C M}=0 \mathrm{~V}$				0	-0.5	mA
		$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$				-3.0	-4.2	mA
$1{ }^{+}$	Non-Inverting Input Current	$V_{C M}=15 \mathrm{~V}$				5.0	7.0	mA
		$V_{C M}=0 \mathrm{~V}$				-1.0	-1.6	mA
		$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$				-7.0	-9.8	mA
${ }^{\text {cc }}$	Power Supply Current	$\mathrm{I}_{\text {OUT }}=$ Logical ${ }^{\prime} 0$	$\mathrm{V}_{\text {DHFF }}=-1 \mathrm{~V}$	$V_{C M}=15 \mathrm{~V}$		3.9	6.0	mA
				$V_{C M}=-15 \mathrm{~V}$		9.2	14.0	mA
			$\mathrm{V}_{\text {DIFF }}=-0.5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$			6.5	10.2	mA
V_{OH}	Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$			25	4.0	5.5	V
V_{OL}	Logical " 0 " Output Voltage	$\mathrm{I}_{\text {OUT }}=+16 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$			0	0.22	0.4	V
$\mathrm{V}_{\text {SH }}$	Logical " 1 " Strobe Input Voltage	$\mathrm{I}_{\text {OUT }}=+16 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			2.1			V
$V_{\text {SL }}$	Logical ' 0 ' Strobe Input Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$					0.9	V
$\mathrm{I}_{\text {SH }}$	Logical "1" Strobe Input Current	$V_{\text {STROBE }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$				0.01	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SL }}$	Logical " 0 " Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$				-1.0	-1.4	mA
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V}$			-2.8	-4.5	-6.7	mA

switching characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pdo }}$	Fropagation Delay, Differential Input to " 0 " Output			30	45	ns
$t_{\text {pd } 1}$	Propagation Delay, Differential Input to "1" Output			27	40	ns
$t_{\text {pdo }}$	Propagation Delay, Strobe Input to " 0 " Output			16	25	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay, Strobe Input to "1" Output			18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2 :These specifications apply for $4.5 \mathrm{~V} \leq V_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the DS7820A or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$ for the DS8820A unless otherwise spedified. Typical values given are for $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless stated differently.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.
typical performance characteristics (Note3)

National Semiconductor

DS78C20/DS88C20
 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.

A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a 180Ω terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and the DS 88 C 20 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.

Features

- Meets requirements of EIA Standards RS-232.C RS-422 and RS-423, and Federal Standards 1020 and 1030
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $1 / 2 V_{\text {CC }}$ strobe threshold for CMOS compatibility
- $5 k$ input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V
- DS7830/DS8830 or MM78C30/MM88C30 recom. mended driver

Connection Diagram

Typical Applications

RS-422/RS-423 Application

Note 1: (Optional internal termination resistor).
a) Capacitor in series with internal line termination resistor, terminates the line and saves termination power. Exact value depends on line length.
b) Pin 1 connected to pin 2; terminates the fine.
c) Pin 2 open; no internal tine termination.
d) Transmission line may be terminated elsewhere or not at all.

Note 2: Optional to control response time.
Note 3: $V_{C C} 4.5 \mathrm{~V}$ to 15 V for the DS78C20. For further information on tine drivers and line receivers, refer to application notes AN-22, AN-83 and AN-108.

RS-232-C Application with Hysteresis

For signals which require fail-safe or have slow rise and fall times, use R1 and D1 as shown above. Otherwise, the positive input (pin 3 or 11) may be connected to ground.

V_{CC}	$\mathrm{R} 1 \pm 5 \%$
5 V	$4.3 \mathrm{k} \Omega$
10 V	$15 \mathrm{k} \Omega$
15 V	$24 \mathrm{k} \Omega$

Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage	18 V
Common-Mode Voltage	$\pm 25 \mathrm{~V}$
Differential Input Voltage	$\pm 25 \mathrm{~V}$
Strobe Voltage	18 V
Output Sink Current	50 mA
Power Dissipation	600 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
 (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential Threshold Voltage	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A} \\ & V_{\text {OUT }} \geq \mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V} \end{aligned}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		0.06	0.2	\checkmark
			$-15 \mathrm{~V} \leq \mathrm{VCM} \leq 15 \mathrm{~V}$		0.06	0.3	V
		IOUT $=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		-0.08	-0.2	\checkmark
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		-0.08	-0.3	\checkmark
$\mathrm{R}_{\text {IN }}$	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$			5		$k \Omega$
R_{T}	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	Ω
IIND	Data Input Current (Unterminated)	$V_{C M}=10 \mathrm{~V}$			2	3.1	mA
		$V_{C M}=0 \mathrm{~V}$			0	-0.5	mA
		$\mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}$			-2	-3.1	mA
$V_{\text {THB }}$	Input 8alance	$\begin{aligned} & I_{\text {OUT }}=200 \mu \mathrm{~A}, V_{\text {OUT }} \geq \\ & V_{\text {CC }}-1.2 \mathrm{~V}, R_{\mathrm{S}}=500 \mathrm{~S} 2,(\text { Note } 5) \end{aligned}$	$-7 V \leq V_{C M} \leq 7 V$		0.1	0.4	V
		$\begin{aligned} & \text { IOUT }=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}, \\ & \left.\mathrm{R}_{\mathrm{S}}=500 \Omega \text {, (Note } 5\right) \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}^{\prime} \mathrm{CM} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
VOH	Logical "1" Output Voltage	IOUT $=-200 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$		$V_{\text {CC }}{ }^{-1.2}$	VCC 0.75		V
$\mathrm{VOL}^{\text {L }}$	Logical "0' Output Voltage	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$			0.25	0.5	V
${ }^{1} \mathrm{CC}$	Power Supply Current	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq-15 \mathrm{~V}, \\ & V_{\text {DIFF }}=-0.5 \mathrm{~V} \text { (Both Receivers) } \end{aligned}$	$V_{C C}=5.5 \mathrm{~V}$		8	15	mA
			$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		15	30	mA
IIN(1)	Logical "1" Strobe Input Current	$V_{\text {STROBE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			15	100	$\mu \mathrm{A}$
If ${ }^{\text {(0) }}$	Logical "0" Strobe Input Current	$V_{\text {STR }}$ OBE $=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			-0.5	-100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Strobe Input Voltage	${ }^{1} \mathrm{OUT}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}} \leq 0.5 \mathrm{~V}$	$V_{C C}=5 \mathrm{~V}$	3.5	2.5		V
			$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$	8.0	5.0		V
			$V_{C C}=15 \mathrm{~V}$	12.5	7.5		V
$V_{\text {IL }}$	Logical " 0 ' Strobe input Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=-200 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V} \end{aligned}$	$V_{C C}=5 \mathrm{~V}$		2.5	1.5	V
			$V_{C C}=10 \mathrm{~V}$		5.0	2.0	V
			$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}$		7.5	2.5	V
los	Output Short-Circuit Current	$V_{\text {OUT }}=0 \mathrm{~V}, V_{C C}=15 \mathrm{~V}, V_{\text {STROEE }}=0 \mathrm{~V},($ Note 4)		-5	-20	-40	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t^{\text {tpdO(D) Differential Input to '0' Output }}$	$C_{L}=50 \mathrm{pF}$		60	100	ns
tpd1 (D) Differential Input to "1" Output	$C_{L}=50 \mathrm{pF}$		100	150	ns
$t^{\text {pdo }}$ (S) Strobe Input to " 0 " Output	$C_{L}=50 \mathrm{pF}$		30	70	ns
tpd 1(S) Strobe Input to "1" Output	$C_{L}=50 \mathrm{pF}$		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 C 20 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88C20. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS-422 for exact conditions.

AC Test Circuit and Switching Time Waveforms

* Includes probe and jig capacitance

DS7830/DS8830 dual differential line driver

general description

The DS7830/DS8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function.

TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω. The differential feature of the output eliminates troublesome ground-loop errors
normally associated with single-wire transmissions.

features

- Single 5 volt power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing
- High speed
- Short circuit protection

schematic* and connection diagrams

Dual-In-Line and Flat Package

TOP VIEW
Order Number DS7830J or DS8830」
Order Number DS8830N
Order Number DS7830W or DS8830W
See NS Package J14A, N14A or W14A

- 2 PERPACKAGE.

typical application

Digital Data Transmission

absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
$V_{\text {cc }}$	7.0 V	Supply Voltage (V_{CC})			
Input Voltage	5.5 V	DS7830	4.5	5.5	V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	OS8830	4.75	5.25	\checkmark
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	Temperature (T_{A})			
Output Short Circuit Duration ($125^{\circ} \mathrm{C}$)	1 second	DS7830	-55	+125	${ }^{\circ} \mathrm{C}$
		DS8830	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS V
$\mathrm{V}_{\text {IH }}$	Logical " 1 " Input Voltage			2.0			
$V_{\text {IL }}$	Logical " 0 " Input Voltage					0.8	V
VOH	Logical "1" Output Voltage	$V_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{I}_{\text {OUT }}=-0.8 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\text {OUT }}=-40 \mathrm{~mA}$	1.8	3.3		V
$V_{\text {OL }}$	Logical "0" Output Voltage	$V_{\text {IN }}=2.0 \mathrm{~V}$	$\mathrm{I}_{\text {OUT }}=32 \mathrm{~mA}$		0.2	0.4	V
			$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}$		0.22	0.5	V
I_{1+}	Logical " 7 " Input Current	$V_{\text {IN }}=2.4 \mathrm{~V}$				120	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				2	mA
I_{11}	Logical " 0 " Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$				4.8	mA
$I_{\text {sc }}$	Output Short Circuit Current	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$, (Note 4)		40	100	120	mA
Icc	Supply Current	$V_{t \mathrm{~N}}=5.0 \mathrm{~V}$, (Each Driver)			11	18	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\begin{aligned} & \mathrm{t}_{\mathrm{pd} 1} \\ & \mathrm{t}_{\mathrm{pdo}} \end{aligned}$	Propagation Delay AND Gate	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & C_{L}=15 \mathrm{pF},(\text { Figure } 1) \end{aligned}$		8	12	ns
				11	18	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pd1}} \\ & \mathrm{t}_{\mathrm{pdo}} \end{aligned}$	Propagation Delay NAND Gate	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & C_{L}=15 \mathrm{pF}, \text { (Figure } 1 \text {) } \end{aligned}$		8	12	ns
				5	8	ns
t_{1}	Differential Delay	Load, 100Ω and 5000 pF , (Figure 2)		12	16	ns
t_{2}	Differential Delay	Load, 100Ω and 5000 pF , (Figure 2)		12	16	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7830 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8830. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Figure 1.

figure 2.

typical performance characteristics

ac test circuit

switching time waveforms

National Semiconductor

DS7831/DS8831, DS7832/DS8832 dual TRI-STATE ${ }^{\text {® }}$ line driver

general description

Through simple logic control, the DS7831/ DS8831, DS7832/DS8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DS7832/ DS8832 does not have the V_{cc} clamp diodes found on the DS7831/DS8831.

The DS7831 and DS7832 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The DS8831 and DS8832 are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

features

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance-high drive capability
- 40 mA sink and source currents
- Gating control to allow either single ended or differential operation
- High impedance output state which allows many outputs to be connected to a common bus line.

mode of operation

To operate as a quad single-ended line driver apply logical " 0 " s to the Output Disable pins (to keep the outputs in the normal low impedance mode) and apply logical " 0 "'s to both Differential/ Single-ended Mode Control inputs. Ail four channels will then operate independently and no signal inversion will occur between inputs and outputs.

To operate as a dual differential line driver apply logical " 0 "s to the Output Disable pins and apply at least one logical " 1 " to the Differential/Singleended Mode Control inputs. The inputs to the A channels should be connected together and the inputs to the B channels should be connected together.

In this mode the signals applied to the resulting inputs will pass non-inverted on the A_{2} and B_{2} outputs and inverted on the A_{1} and B_{1} outputs.

When operating in a bus-organized system with outputs tied directly to outputs of other (continued)

connection and logic diagram

> Order Number DS7831J, DS8831J, DS7832J, DS8832J, DS8831N, DS8832N, DS7831W, or DS7832W
> See NS Package J16A, N16A or W16A
truth table (Shown for A Channels Only)

"A" OUTPUT	DISABLE	DIFFERENTIAL/ SINGLE.ENDED MOOE CONTROL		INPUT A1	OUTPUT AI	INPUT A2	OUTPUT A2
0	0	0	0	Logical " 1 " or Lugical " 0 "	Same as Input A1	Logical ' 1 or Logical ${ }^{\circ} 0^{\prime}$	Same as Input A2
0	0	x 1	1 \times	Logucal '1" or Logical " 0 "	Opposite of Input A1	Logical "1 or Logical " 0	Same as Input A2
$\begin{gathered} 1 \\ x \end{gathered}$	x	x	\times	x	High impedance state	\times	High impedance state

absolute maximum ratings (Note 1)

Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 sec .)
Time that 2 bus-connected devices may be in opposite low impedance states simultaneously
operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS7831, DS7832	4.5	5.5	V
DS8831, DS8832	4.75	5.25	V
Temperature (TA)			
DS7831, DS7832	-55	+125	${ }^{\circ} \mathrm{C}$
DS8831, DS8832	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS	
$V_{\text {IH }}$	Logical " 1 " Input Voltage	$V_{c c}=\mathrm{Min}$				2.0			V	
$V_{\text {IL }}$	Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$						0.8	V	
V_{OH}	Logical "1" Output Voltage	DS7831، DS7832		$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$	$\mathrm{I}_{0}=-40 \mathrm{~mA}$	1.8	2.3		V	
				$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA}$	2.4	2.7		V		
		DS8831, DS8832			$\mathrm{I}_{0}=-40 \mathrm{~mA}$	1.8	2.5		V	
				$\mathrm{I}_{0}=-5.2 \mathrm{~mA}$	2.4	2.9		V		
$\mathrm{V}_{\text {OL }}$	Logical ' 0 ' Output Voltage	DS7831, DS7832			$V_{c c}=M 1 n$	$\mathrm{t}_{0}=40 \mathrm{~mA}$		0.29	0.50	V
				$\mathrm{t}_{\mathrm{O}}=32 \mathrm{~mA}$				0.40	V	
		DS8831, DS8832				$\mathrm{I}_{0}=40 \mathrm{~mA}$		0.29	0.50	\checkmark
				$\mathrm{I}_{0}=32 \mathrm{~mA}$				0.40	\checkmark	
I_{IH}	Logical " 1" Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$	DS7831, DS7832, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$					1	mA	
			DS8831, DS8832, $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$					40	$\mu \mathrm{A}$	
${ }_{1}$ IL	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {iN }}=0.4 \mathrm{~V}$					-1.0	-1.6	mA	
100	Output Disable Current	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$ or 0.4 V				-40		40	$\mu \mathrm{A}$	
I_{sc}	Output Short Circuit Current	$\mathrm{V}_{C C}=$ Max, (Note 4)				-40	-100	-120	mA	
Icc	Supply Current	$V_{\text {CC }}=$ Max in TRISTATE					65	90	mA	
$\mathrm{V}_{\text {CLI }}$	Input Diode Clamp Voltage	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .1_{1 / \mathrm{N}}=-12 \mathrm{~mA}$						-1.5	V	
VClo	Output Diode Clamp Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Iou	= $=12 \mathrm{~mA}$	DS7831/DS8831 DS7832/DS8832			-1.5	\checkmark	
			Iou	$\mathrm{r}=12 \mathrm{~mA}$	DS7831/DS8831			$\mathrm{V}_{C C}+1.5$	V	

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{p d o}$ Propagation Delay to a Logical '" 0 " from Inputs A1, A2, 81, 82 Differentral Single-ended Mode Control to Outputs			13	25	ns
$t_{p d 1} \quad$ Propagation Delay to a Logical " 1 " from Inputs A1, A2, B1, B2 Differential Single-ended Mode Control to Outputs			13	25	ns
$\mathrm{t}_{1 \mathrm{H}} \quad$ Delay from Disable Inputs to High Impedance State (from Logical "1" Level)			6	12	ns
$\mathrm{t}_{\mathrm{OH}} \quad$ Delay from Disable Inputs to High Impedance State (from Logical ' 0 "' Level)			14	22	ns
$t_{\mathrm{H} 1} \quad$ Propagation Delay from Disable Inputs to Logical "1" Level (from High Impedance State)			14	22	ns
$t_{\text {Ho }}$ Propagation Delay from Disable Inputs to Logical " 0 " Level (from High Impedance State)			18	27	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7831 and DS 7832 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 8831 and DS 8832 . All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shovwn as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted, All values shown as max or min on absolute value basis.
Note 4: Applies for $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ only. Only one output should be shorted at a time,

mode of operation (cont.)

DS7831/DS8831's, DS7832/DS8832's (Figure 1), all devices except one must be placed in the "high impedance" state. This is accomplished by ensuring that a togical " 1 " is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/ DM7442, BCD-to-decimal decoders, to decode as many as 100 DS7831/DS8831's, DS7832/ DS8832's (Figure 2).
The unique device whose Disable inputs receive two logical " O " levels assumes the normal low
impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical " 0 " to logical " 1 " state. The other outputs-in the high impedance state-take only a small amount of leakage current from the low impedance outputs. Since the logical " 1 " output current from the selected device is 100 times that of a conventional Series $54 / 74$ device (40 mA vs. $400 \mu \mathrm{~A}$), the output is easily able to supply that leakage current for several hundred other DS7831/DS8831's, DS7832/DS8832's and still have available drive for the bus line (Figure 3).

Figure 1

Figure 2

Figure 3

typical performance characteristics

Total Supply Current vs Frequency

Iout vs VOUT High Impedance Output State

Oelay from Disable to Low Impedance State

Logical "1" Output Voltage vs Source Current

Propagation Oelay in Oifferen. tial Mode

Propagation Oelay from Input to Output (Channel 2)

Propagation Oelay vs Load Capacitance

Logical "0" Output Voltage vs Sink Current

switching time waveforms

Amplitude $=30 \mathrm{~V}$
Frequency $=10 \mathrm{MHz} .50 \%$ duty cycie
$t_{r}-t_{1} \leq 10$ as $(10 \%$ ta 90%)

th 1

	Swrich S:	Switch \$2	c_{L}
car	closed	closed	50 pF
T00	closed	closed	50 pF
$\mathrm{tom}^{\text {chen }}$	closed	cosect	- 5 pF
${ }_{1} .4$	chased	closed	- 5 pF
$\mathrm{t}_{\mathrm{H}} \mathrm{o}$	closed	open	50 pF
(H,	open	closed	50 pF

*Jig capacitance.

DS78LS120/DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe)

General Description

The DS78LS120 and DS88LS120 are high performance, dual differential, TTL compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.

The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and a $\pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.

Circuit features include hysteresis and response control for applications where controlled rise and fall times and/ or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes an optional 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78LS120 is specified over a $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the DS88LS120 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.

Features

- Meets EIA Standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $5 k$ input impedance
- Optional 180Ω termination resistor
- 50 mV input hysteresis
- 200 mV input threshold
- Separate fail-safe mode

Connection Diagram

Dual-In-Line Package

Order Number DS78LS120J, DS88LS120J,
DS88LS120N or DS78LS120W
See NS Package J16A, N16A or W16A

Absolute Maximum Ratings (Note 1)

Operating Conditions

			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage (V_{CC})	4.5	5.5	\checkmark
Input Voltage	$\pm 25 \mathrm{~V}$	Temperature (T_{A})			
Strobe Voltage	7 V	DS78LS120	-55	+125	C
Output Sink Current	50 mA	DS88LS120	0	+70	${ }^{\circ} \mathrm{C}$
Power Dissipation	600 mW	mmon-Mode Voltage (V_{CM})	-15	+15	v
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Differential Input Voltage ($\mathrm{V}_{\text {DI }}$		≤ 6	\checkmark

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VTH	Differential Threshold Voltage	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$,	$-7 V \leq V_{C M} \leq 7 V$		0.06	0.2	V
		$V_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		0.06	0.3	V
		$\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, V_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.08	-0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 15 \mathrm{~V}$		-0.08	-0.3	V
$V_{\text {THO }}$	Differential Threshold Voltage	$I_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$		0.47	0.7	\checkmark
$V_{\text {FS }}$	Fail Safe Offset	$I_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5$	$-7 V \leq V_{C M} \leq 7 V$	-0.2	-0.42		\checkmark
RiN	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}, \mathrm{OV} \leq \mathrm{V}_{\mathrm{CC}} \leq 7 \mathrm{~V}$		4	5		$k \Omega$
$\mathrm{R}_{\mathbf{T}}$	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	Ω
R_{O}	Offset Control Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	56	70	$k \Omega$
IIND	Data Input Current (Unterminated)	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}$	$0 \mathrm{~V} \leq \mathrm{VCC} \leq 7 \mathrm{~V}$		2	3.1	mA
		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			0	-0.5	mA
		$V_{C M}=-10 \mathrm{~V}$			-2	-3.1	mA
$V_{\text {THB }}$	Input Balance	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OUT}} \geq 2.5 \mathrm{~V}, \\ & \mathrm{R}_{S}=500 \mathrm{~S},(\text { Note } 5) \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		01	0.4	V
		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, \text { VOUT } \leq 0.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega,(\text { Note } 5) \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
VOH	Logical "1" Output Voltage	$I_{\text {OUT }}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=45 \mathrm{~V}$		2.5	3		V
VOL	Logical " 0 ' Output Voltage	$\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			0.35	0.5	\checkmark
ICC	Power Supply Current	$\begin{aligned} & V_{C C}=55 \mathrm{~V} \\ & V_{\text {DIFF }}=-0.5 \mathrm{~V}, \text { (Both Receivers) } \end{aligned}$	$V_{C M}=15 \mathrm{~V}$		9	12	mA
			$V_{C M}=-15 \mathrm{~V}$		10	16	mA
IIN(1)	Logical "1" Strobe Input Current	$\mathrm{V}_{\text {STROBE }}=55 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			1	100	$\mu \mathrm{A}$
IIN(0)	Logical "0" Strobe Input Current	$V_{\text {STROBE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			-290	-400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Strobe Input Voltage	$\mathrm{V}_{\mathrm{OL}} \leq 0.5, \mathrm{I} \mathrm{OUT}=4 \mathrm{~mA}$		2.0	1.12		V
$V_{\text {IL }}$	Logical "0" Strobe Input Voltage	$V_{O H} \geq 2.5 \mathrm{~V}, 1 \mathrm{OUT}=-400 \mu \mathrm{~A}$			1.12	0.8	V
Ios	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V}$, (Note 4)		-30	-100	-170	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {t pdO(D) }}$ (Differential Input to "0" Output	Response Pin Open, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		38	60	ns
ipa1(D) Differential Input to "1" Output			38	60	ns
tpdo(S) Strobe Input to "0" Output			16	25	ns
tpa1(S) Strobe Input to "1" Output			12	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS78LS120 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DS88LS120. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS422 for exact conditions.

Schematic Diagram

AC Test Circuit and Switching Time Waveforms

Differential and Strobe Input Signal

$$
t_{r}=t_{f} \leq 10 \mathrm{~ns}
$$

$$
1
$$

$$
\mathrm{PRR}=1 \mathrm{MHz}
$$

Note. Optimum switching response is obtained by minımizing stray capacitance on Response Control pin (no external connection).

Application Hints

Balanced Data Transmission

Unbalanced Data Transmission

The DS78LS120/DS88LS 120 may be used as a level translator to interface between $\pm 12 \mathrm{~V}$ MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to $1 / 2$ the voltage of the input signal, and the other input to the driving gate.

LINE DRIVERS

Line drivers which will interface with the DS78LS120/ DS88LS120 are listed below.

Balanced Drivers

DS26LS31
MM87C30, MM88C30
DS7830, DS8830
DS7831, DS8831
DS7832, DS8832
DS1691, DS3691
DS1692, DS3692
DS3487
Unbalanced Drivers
DS1488
DS75150
Quad RS422 Line Driver
Dual CMOS
Dual TTL
Dual TRI-STATE ${ }^{\left({ }^{\circledR}\right)}$ TTL
Dual TRI-STATE TTL
Quad RS423/Dual RS422 TTL
Quad RS423/Dual TRI-STATE RS422 TTL
Quad TRI-STATE RS422

Quad RS232
Dual RS232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS232/RS423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78LS120/ DS88LS 120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a line receiver due to the input signal slowly varying about the threshold level for extended periods of time.

High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78LS120/DS88LS120, a high impedance response control pin in the input amplifier is available to filter the input signal without affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in Figures 1 and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

FIGURE 2

Application Hints (Continued)

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/cross-talk. A 180Ω termination resistor is provided in the DS78LS120/DS88LS120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.

The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns), and the termination resistor value is 180Ω, the capacitor value should be 1852 pF . For additional application details, refer to application notes AN-22 and AN-108 in the National Semiconductor Interface Data Book.

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or short. To facilitate the detection of input opens or shorts, the DS78LS120/DS88LS120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.

Given that the receiver input threshold is $\pm 200 \mathrm{mV}$, an input signal greater than $\pm 200 \mathrm{mV}$ insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, the
input thresholds are offset from 200 mV to 700 mV , referred to the non-inverting input, or -200 mV to -700 mV , referred to the inverting input. Therefore, if the input is open or short, the input will be greater than the input threshold and the receiver will remain in a specified logic state.

The input circuit of the receiver consists of a 5 k resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with common-mode input voltages greater than $\pm 15 \mathrm{~V}$. The offset control input is actually another input to the attenuator, but its resistor value is 56 k . The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5 V the input amplifier will see VIN(INVERTING) +0.45 V or VIN(INVERTING) +0.9 V when the control input is connected to 10 V . The offset control input will not significantly affect the differential performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver.

It is recommended that the receiver be terminated (500Ω or less) to insure it will detect an open circuit in the presence of noise.

The offset control can be used to insure fail-safe operation for unbalanced interface (RS423) or for balanced interface (RS422) operation.

For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to 5 V offsets the receiver threshold 0.45 V . The output is forced to a logic zero state if the input is open or short.

Application Hints
(Continued)

For balanced operation with inputs short or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector. Another method of fail-safe detection consists of filtering the output of the NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.

In a communications system, only the control signals are required to detect input fault conditions. Advantages of a balanced data transmission system over an unbalanced transmission system are:

1. High noise immunity
2. High data ratio

3 Long line lengths

Truth Table (For Balanced Fail-Safe)

INPUT	STROBE	A-OUT	B-OUT	C-OUT	D-OUT
$\mathbf{0}$	$\mathbf{1}$	0	1	0	0
1	1	1	$\mathbf{0}$	1	0
\mathbf{X}	1	0	0	X	1
$\mathbf{0}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	0
\mathbf{X}	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C120 and DS88C120 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.

Features

- Full compatibility with EIA Standards RS232-C, RS422 and RS423. Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $1 / 2 V_{\mathrm{CC}}$ strobe threshold for CMOS compatibility
- 5 k input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V
- Separate fail-safe mode

Functional Description

The line receiver will discriminate a $\pm 200 \mathrm{mV}$ input signal over a common-mode range of $\pm 10 \mathrm{~V}$ and a $\pm 300 \mathrm{mV}$ signal over a range of $\pm 15 \mathrm{~V}$.

Circuit features include hysteresis and response control for applications where controlled rise and fall times and/ or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes a 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78C120 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the DS88C120 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagram

Absolute Maximum Ratings (Note 1)

Operating Conditions

			MIN	MAX	UNITS
Supply Voltage	18 V	Supply Voltage (V_{CC})	4.5	15	V
Input Voltage	$\pm 25 \mathrm{~V}$	Temperature (T_{A})			
Strobe Voltage	18 V	DS78C120	-55	+125	${ }^{\circ} \mathrm{C}$
Output Sink Current	50 mA	DS88C120	0	+70	${ }^{\circ}$
Power Dissipation	600 mW	Common-Mode Voltage (V_{C}	-15	+15	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Differential	-15	+15	V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	Differential Input Voltage (V) ${ }^{\text {DIFF }}$)		≤ 6	V

Electrical Characteristics
 (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential Threshold Voltage	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A}, \\ & \text { VOUT }^{2} \geq V_{C C}-1.2 \mathrm{~V} \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.06	0.2	\checkmark
			$-15 \mathrm{~V} \leq \mathrm{VCM} \leq 15 \mathrm{~V}$		0.06	0.3	V
		IOUT $=1.6 \mathrm{~mA}, \mathrm{VOUT} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.08	-0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V} \mathrm{CM} \leq 15 \mathrm{~V}$		-0.08	-0.3	V
$V_{\text {THO }}$	Differential Threshold Voltage Offset	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A}, \\ & V_{\text {OUT }} \geq V_{C C}-1.2 V \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		0.47	0.7	\checkmark
VFS	Fail-Safe Offset	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$	0.2	0.42		\checkmark
RIN	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}, \quad 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq$	15 V	4	5		k Ω
RT	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	Ω
Ro	Offset Control Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			56		$\mathrm{k} \Omega$
IIND	Data Input Current (Unterminated)	$\mathrm{OV} \leq \mathrm{VCC} \leq 15 \mathrm{~V}$	$V_{C M}=10 \mathrm{~V}$		2	3.1	mA
			$V_{C M}=0 V$		0	-0.5	mA
			$V_{C M}=-10 \mathrm{~V}$		-2	-31	mA
$V_{\text {THB }}$	Input Balance	IOUT $=200 \mu \mathrm{~A}, V_{\text {OUT }} \geq$$V_{C C}-1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=500 \Omega \text {, (Note } 5 \text {) }-7 V \leq V_{C M} \leq 7 \mathrm{~V}$			0.1	0.4	V
		$\begin{aligned} & \mathrm{IOUT}_{\mathrm{OU}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega,(\text { Note } 5) \end{aligned}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
VOH	Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\text {D }} / \mathrm{FF}=1 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.2}$	$\mathrm{V}_{\mathrm{CC}} 075$		V
VOL	Logical '0' Output Voltage	$\begin{aligned} & I_{\text {OUT }}=1.6 \mathrm{~mA}, V_{\text {DIFF }}=-1 \mathrm{~V} \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq-15 \mathrm{~V}, \\ & \text { V DIFF }=-0.5 \mathrm{~V} \text { (Both Receivers) } \end{aligned}$			025	0.5	V
ICC	Power Supply Current		$V_{C C}=5.5 \mathrm{~V}$		8	15	mA
			$V_{C C}=15 \mathrm{~V}$		15	30	mA
IIN(1)	Logical "1" Strobe Input Current	$V_{\text {STROBE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			15	100	$\mu \mathrm{A}$
IIN(0)	Logical "0" Strobe Input Current	$V_{\text {STROBE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			-05	-100	$\mu \mathrm{A}$
$V_{I H}$	Logical "1" Strobe Input Voltage	$V_{O L} \leq 0.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}$	$V_{C C}=5 \mathrm{~V}$	3.5	2.5		V
			$V_{C C}=10 \mathrm{~V}$	8.0	50		V
			$V_{C C}=15 \mathrm{~V}$	125	75		V
$V_{\text {IL }}$.	Logical "0" Strobe Input Voltage	$\begin{aligned} & V_{\mathrm{OH}}=V_{C C}-1.2 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{OUT}}=-200 \mu \mathrm{~A} \end{aligned}$	$V_{C C}=5 \mathrm{~V}$		25	15	V
			$V_{C C}=10 \mathrm{~V}$		5.0	2.0	V
			$V_{C C}=15 \mathrm{~V}$		75	2.5	V
los	Output Short-Circuit Current	$V_{\text {OUT }}=0 V, V_{C C}=15 \mathrm{~V}, V_{\text {STROBE }}=0 \mathrm{~V},($ Note 4)		-5	-20	-40	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	Max	UNITS
$t_{\text {pdO(D) Differential }}$ Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		60	100	ns
tpdi(D) Differential Input to "1" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns
$t_{\text {pdo(S) }}$ Strobe Input to " 0 " Output	$C_{L}=50 \mathrm{pF}$		30	70	ns
$\mathrm{t}_{\text {pd } 1(S)}$ Strobe Input to "1" Output	$C_{L}=50 \mathrm{pF}$		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS78C120 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88C120. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.
All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS422 for exact conditions.

Schematic Diagram (1/2 Circuit Shown)

AC Test Circuit and Switching Time Waveforms
Differential and Strobe Input Signal

Note. Optimum switching response is obtained by minimizing stray capacitance on Response Control pin (no external connection).

Application Hints

Balanced Data Transmission

Unbalanced Data Transmission

The DS78C120/DS88C120 may be used as a level translator to interface between $\pm 12 \mathrm{~V}$ MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to $1 / 2$ the voltage of the input signal, and the other input to the driving gate.

LINE DRIVERS

Line drivers which will interface with the DS78C120/ DS88C120 are listed below.

Balanced Drivers

DS26LS31
MM87C30, MM88C30
DS7830, DS8830
DS7831, DS8831
DS7832, DS8832
DS1691, DS3691
DS1692, DS3692
DS3587, DS3487

Unbalanced Drivers

DS1488
DS75150

Quad RS422 Line Driver
Dual CMOS
Dual TTL
Dual TRI-STATE ${ }^{(®)}$ TTL
Dual TRI-STATE TTL
Quad RS423/Dual RS422 TTL Quad RS423/Dual TRI-STATE RS422 TTL
Quad TRI-STATE RS422

Quad RS232
Dual RS232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS232/RS423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78C120/ DS88C120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a line receiver due to the input signal slowly varying about the threshold level for extended periods of time.

High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78C120/DS88C120, a high impedance response control pin in the input amplifier is availabie to filter the input signal without affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in Figures 1 and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

FIGURE 1. Noise Pulse Width vs Response Control Capacitor

FIGURE 2

Application Hints (Continued)

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/cross-talk. A 180Ω termination resistor is provided in the DS78C120/DS88C120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.

The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns) the capacitor value should be 1852 pF . For additional application details, refer to application notes AN-22 and A.N-108 in the National Semiconductor Interface Data Book.

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or short. To facilitate the detection of input opens or shorts, the DS78C120/DS88C120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.

Given that the receiver input threshold is $\pm \mathbf{2 0 0} \mathbf{~ m V}$, an input signal greater than $\pm 200 \mathrm{mV}$ insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $V_{C C}=5 \mathrm{~V}$, the
input thresholds are offset from 200 mV to 700 mV , referred to the non-inverting input, or -200 mV to -700 mV , referred to the inverting input. Therefore, if the input is open or short, the input will be greater than the input threshold and the receiver will remain in a specified logic state.

The input circuit of the receiver consists of a $5 k$ resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with common-mode input voltages greater than $\pm 15 \mathrm{~V}$. The offset control input is actually another input to the attenuator, but its resistor value is 56 k . The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5 V the input amplifier will see $V_{I N}$ (INVERTING) +0.45 V or $V_{I N}(I N$. VERTING) +0.9 V when the control input is connected to 10 V . The offset control input will not significantly affect the differential performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver.

It is recommended that the receiver be terminated (500Ω or less) to insure it will detect an open circuit in the presence of noise.

The offset control can be used to insure fail-safe operation for unbalanced interface (RS423) or for balanced interface (RS422) operation.

For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to 5 V offsets the receiver threshold 0.45 V . The output is forced to a logic zero state if the input is open or short.

Unbalanced RS423 and RS232 Fail-Safe

Application Hints

(Continued)
Balanced RS422 Fail-Safe

For balanced operation with inputs short or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector Another method of fail-safe detection consists of filtering the output of the NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.

In a communications system, only the control signals are required to detect input fault conditions. Advantages of a balanced data transmission system over an unbal. anced transmission system are:

1. High noise immunity
2. High data ratio

3 Long line lengths

Truth Table (For Balanced Fail-Safe)

INPUT	STROBE	A-OUT	B-OUT	C-OUT	D-OUT
0	1	0	1	0	0
1	1	1	0	1	0
X	1	0	0	\times	1
0	0	1	1	0	0
1	0	1	1	0	0
x	0	1	1	0	0

Section 2

Bus Transceivers

TEMPERATURE RANGE

$-\mathbf{5} 5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
DS26S10M	DS26S10C
DS26S11M	DS26S11C
DS7640	DS8640
DS7641	DS8641
DS7833	DS8833
DS7834	DS8834
DS7835	DS8835
DS7836	DS8836
DS7837	DS8837
DS7838	DS8838
DS7839	DS8839
DS8T26M	DS8T26
DS8T28M	DS8T28
DM54S240	DM74S240
DM54S241	DM74S241

DESCRIPTION
Quad Bus Transceiver 2-1
Quad 8us Transceiver 2-1
Quad NQR Unified 8us Receiver $\quad 2-6$
Quad Unified Bus Transceiver $\quad 2.8$
Quad TRI-STATE ${ }^{\circledR}$ 8us Transceiver $\quad 2-10$
Quad TRI-STATE ${ }^{(®)}$ Bus Transceiver \quad 2-14
Quad TRISTATE ${ }^{(8)}$ Bus Transceiver $\quad 2.10$
Quad NQR Unified 8us Transceiver $\quad 2.18$
Hex Unified Bus Receiver 2-20
Quad Unified Bus Transceiver $\quad \mathbf{2 . 2 2}$
Quad TRI-STATE ${ }^{(\sqrt{3})}$ Bus Transceiver 2.14
4-8it Bidirectional Bus Transceiver 2.24
4-Bit 8idirectional 8us Transceiver 2.24
Qctal TRI-STATE ${ }^{(8)}$ Line Driver/Receiver 9.5
Octal TRI-STATE ${ }^{\circledR}$ Line Driver/Receiver $\quad 9.5$

PAGE NUMBER

1
1
Selection Guide
BUS CIRCUITS
Data bus circuits are not transmission line circuits in the normal interpretation where the transmission line is electrically long ($1 / 4$ wave length) with respect to the baud rate. Like unbalanced transmission lines, the data transmission is susceptible to common-mode noise, such as ground IR noise and induced reactive noise from crosstalk. A bus is a communications method where many elements of a system time share the same signal (address or data) bus. A bus shouldn't extend out of its subsystem's electronic enclosure without special care. Line length in excess of 10 feet are not recommended without slew rate control. Cables should be in the form of twisted pair or flat cable where a signal wire is alternated with a ground wire.
OPEN-COLLECTOR BUS CIRCUITS

Bus Driver		Bus Receiver				Driver Receiver/ Transceiver	Circuits/ Package	Device Number		Comments
Propagation Delay (ns)	VIL (V)/ IOL (mA)	Propagation Delay (ns)	$\mathrm{V}_{\text {IL }}$ (V)/ IIL $(\mu \mathrm{A})$	$\begin{aligned} & V_{I H}(V) / \\ & I_{I H}(\mu A) \end{aligned}$	Hysteresis (V)			$\begin{aligned} & \text { Commercial } \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Military } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
		23	1.2/-50	1.8/50		Receiver	4	DS8640	DS7640	Ouad NOR receiver
		20	1.05/-50	2.65/50	1	Receiver	4	DS8836	DS7836	Quad NOR receiver
		20	1.05/-50	2.65/50	1	Receiver	6	DS8837	DS7837	
30	0.7/50	30	1.2/-100	1.8/100		Transceiver	4	DS8641	DS7641	
20	0.7/50	17	1.05/-100	2.65/100	1	Transceiver	4	DS8838	DS7838	
20	0.8/100	20	1.3/-40	3.1/450		Transceiver	4	DS8642	DS7642	50Ω coax. driver
10	0.8/100	10	1.75/-100	2.25/100		Transceiver	4	DS26S10C	DS26S10M	
10	0.8/100	10	1.75/-100	2.25/100		Transceiver	4	DS26S11C	DS26S11M	Input to bus is non-inverting
8	0.5/50	7	0.8/-500	2/100		Transceiver	4	DS36147	DS16147	Quad bidirectional I/O register
8	0.5/50	7	0.8/-500	2/100		Transceiver	4	DS36177	DS16177	Quad bidirectional I/O register
20	0.7/300					Driver	2	DS75450	DS55450	AND separate output transistors
18	0.7/300					Driver	2	DS75451	DS55451	AND
26	0.7/300					Driver	2	DS75452	DS55452	NAND
18	0.7/300					Driver		DS75453	DS55453	OR
27	0.7/300					Driver	2	DS75454	DS55454	NOR

TRI-STATE ${ }^{\circledR}$ BUS CIRCUITS

Bus Driver			Bus Receiver				Driver/ Receiver/ Transceiver	Circuits/ Package	Device Number		Comments
Propagation Delay Typ (ns)	$\begin{aligned} & \mathrm{VOL}_{\mathrm{OL}}(\mathrm{~V}) / \\ & \mathrm{I}_{\mathrm{OL}}(\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & V_{\mathrm{OH}}(\mathrm{~V}) / \\ & \mathrm{I}_{\mathrm{OH}}(\mathrm{~mA}) \end{aligned}$	Propagation Delay Typ (ns)	$\begin{aligned} & V_{\text {IL }}(\mathrm{V}) / \\ & \mathrm{IIL}^{(\mu \mathrm{A})} \end{aligned}$	$\mathrm{V}_{\text {IH }}(\mathrm{V}) /$ I! $\mathrm{H}(\mu \mathrm{A})$	Hysteresis (mV)			Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Military $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$	
14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Transceiver	4	DS8833	DS7833	Non-inverting TRI-STATE receiver
14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Transceiver	4	DS8835	DS7835	Inverting TRI-STATE receiver
14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Transceiver	4	DS8834	DS7834	Inverting
14	0.5/50	2.4/-10	20	0.8/-40	2/80	400	Transceiver	4	DS8839	DS7839	Non-inverting
14	0.5/48	2.4/-10	14	0.85/-200	2/20		Transceiver	4	DS8T26A	DS8T26AM	Inverting
17	0.5/48	2.4/-10	17	0.85/-200	2/20		Transceiver	4	DS8T28	DS8T28M	Non-inverting
20	0.6/55	3.6/-1	15	0.95/-250	2/10		Transceiver	4	DP8216	DP8216M	8080 MPU non-inverting
20	0.6/50	3.6/-1	15	0.95/-250	2/10		Transceiver	4	DP8226	DP8226M	8080 MPU inverting
4.5	0.55/64	2.4/-3	4.5	0.8/-400	2/50	400	Transceiver	4 or 8	DM74S240	DM54S240	Non-inverting
6	0.55/64	2.4/-3	6	0.8/-400	2/50	400	Transceiver	4 or 8	DM74S241	DM54S241	Inverting
5	0.55/64	2.4/3	4.5	0.8/-400	2/50	400	Transceiver	8	DM74S940	DM54S940	Non-inverting
6	0.55/64	2.4/-3	6	0.8/-400	2/50	400	Transceiver	8	DM74S941	DM54S941	Inverting
8	0.5/50	2.4/-5	7	0.8/-500	2/100		Transceiver	4	DS3647	DS1647	Quad bidirectional I/O register
8	0.5/50	2.4/-5	7	0.8/-500	2/100		Transceiver	4	DS3677	DS1677	Quad bidirectional 1/O register
17	0.5/50	3.6/-5	20	0.8/-250	2/80		Transceiver	8	DP8304B	DP73048	8 idirectional non-inverting
20	0.45/15	3.6/-1					Driver	8	DP8212	DP8212M	8080 MPU data latch and service request f / f
30	0.45/10	2.4/-1	20	0.8/-250	2/20		Transceiver	8	DP8228	DP8228M	8080 MPU system bus controller and bus driver
30	0.45/10	2.4/-1	20	0.8/-250	2/20		Transceiver	8	DP8238	DP8238M	8080 MPU system bus controller and bus driver
40	0.5/50	3.6/-1	20	0.8/-250	2/80		Transceiver	8	DP8300		PACE MPU bidirectional PMOS interface

Note. Unless otherwise specified, bus circuits listed above are TTL compatible and use 5 V supplies.

Bus Transceivers

DS26S10, DS26S11 Quad Bus Transceivers

General Description

The DS26S 10 and DS26S11 are quad Bus Transceivers consisting of 4 high speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8 V and 4 high speed bus receivers. Each driver output is connected internally to the high speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving 10 Schottky TTL unit loads.

An active low enable gate controls the 4 drivers so that outputs of different device drivers can be connected together for party-line operation.

The bus output high-drive capability in the low state allows party-line operation with a line impedance as low as 100Ω. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2 V .

The DS26S10 and DS26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has 2 ground pins to improve ground current handling and allow close decoupling between $V_{C C}$ and ground at the package. Both GND 1 and GND 2 should be tied to the ground bus external to the device package.

Features

- Input to bus is inverting on DS26S10
- Input to bus is non-inverting on DS26S11
- Quad high speed open-collector bus transceivers
- Driver outputs can sink 100 mA at 0.8 V maximum
- Advanced Schottky processing
- PNP inputs to reduce input loading

Logic and Connection Diagrams

DS26S10

Dual-In-Line Package

DS26S11

Dual-In-Line Package

Order Number DS26S11J, DS26S1 1MJ,
DS26S11N or DS26S11MW
Ses NS Package J16A, N16A or W16A

Absolute Maximum Rattings

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +7 V
DC Voltage Applied to Outputs for	-0.5 V to +V CC Max
\quad High Output State	
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Bus	200 mA
Output Current, Into Outputs (Except Bus)	30 mA
DC Input Current	-30 mA to +5 mA

-30 mA to +5 mA

Operating Conditions

Min

MAX
UNITS
Supply Voltage (V_{CC}) DS26S10XC, DS26S11×C DS26S10XM, DS26S11×M
4.75
5.25
v
Temperature (T_{A})
DS26S10XC, DS26S11×C DS26S10XM, DS26S11×M
(Unless otherwise noted)
Electrical Characteristics

	PARAMETER	CONDITIONS (Note 1)		MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 2) } \\ \hline \end{array}$	MAX	UNITS
VOH	Output High Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M i n, I_{O H}=-1 m A, \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	Military	2.5	3.4		V
			Commercial	2.7	3.4		V
VOL	Output Low Voltage (Receiver Outputs)	$\begin{aligned} & V_{C C}=M i n, I_{O L}=20 \mathrm{~mA}, \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$				0.5	V
VIH	Input High Level (Except Bus)	Guaranteed input Logical High for All Inputs		2.0			V
VIL	Input Low Level (Except Bus)	Guaranteed Input Logical Low for All lnputs				0.3	V
V_{1}	Input Clamp Voltage (Except Bus)	$V_{C C}=M i n, I_{\text {l }}=-1 B \mathrm{~mA}$				-1.2	V
IIL	Input Low Current (Except Bus)	$V_{C C}=$ Max, $V_{\text {IN }}=0.4 V$	Enable			-0.36	mA
			Data			-0.54	mA
I_{1}	Input High Current (Except Bus)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	Enable			20	$\mu \mathrm{A}$
			Data			30	$\mu \mathrm{A}$
${ }_{1}$	Input High Current (Except Bus)	$V_{C C}=M_{\text {ax }}, V_{1 N}=5.5 \mathrm{~V}$				100	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current (Except Bus)	$V_{C C}=$ Max, (Note 3)	Military	-20		-55	mA
			Commercial	-18		-60	mA
${ }^{\text {I CCL }}$	Power Supply Current (All Bus Outputs Low)	$\mathrm{V}_{\mathrm{CC}}=$ Max, Enable $=$ Gnd	DS26S10		45	70	mA
			DS26S11			B0	mA

Bus Input/Output Characteristics

PARAMETER	CONDITIONS (Note 1)			MiN	$\begin{array}{\|c\|} \text { TYP } \\ \text { (Note 2) } \end{array}$	MAX	UNITS
$V_{\text {OL }}$ Output Low Voltage	$V_{C C}=M i n$	Military	$1 \mathrm{OL}=40 \mathrm{~mA}$		0.33	0.5	V
			$1 \mathrm{OL}=70 \mathrm{~mA}$		0.42	0.7	
			$1 \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
		Commercial	$\mathrm{I}^{\mathrm{OL}}=40 \mathrm{~mA}$		0.33	0.5	
			$\mathrm{I}_{\mathrm{OL}}=70 \mathrm{~mA}$		0.42	0.7	
			${ }^{1} \mathrm{OL}=100 \mathrm{~mA}$		0.51	0.8	
Bus Leakage Current	$V_{C C}=$ Max		$\mathrm{V}_{\mathrm{O}}=0 . \mathrm{BV}$			-50	$\mu \mathrm{A}$
		Military	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			200	
		Commercial	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$			100	
IOFF Bus Leakage Current (Power OFF)	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$					100	$\mu \mathrm{A}$
Receiver Input High Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V}, \\ & V_{C C}=\text { Max } \end{aligned}$		Military	2.4	2.0		V
			Commercial	2.25	2.0		V
Receiver Input Low Threshold	$\begin{aligned} & \text { Bus Enable }=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Min } \end{aligned}$		Military		2.0	1.6	V
			Commercial		2.0	1.75	V

Note 1. For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type.
Note 2: Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
Note 3: Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
tPLH	Data Input to Bus	$\mathrm{R}_{\mathrm{B}}=50 \Omega, \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}$ (Note 1)	DS26S10		10	15	ns
tPHL	Data Input to Bus				10	15	ns
tPLH	Data Input to Bus		DS26S 11		12	19	ns
tPHL	Data Input to Bus				12	19	ns
tPLH	Enable Input to Bus		DS26S 10		14	1B	ns
tPHL	Enable Input to Bus				13	18	ns
tPLH	Enable Input to Bus		DS26S11		15	20	ns
tPHL	Enable Input to Bus				14	20	ns
tPLH	Bus to Receiver Out	$\begin{aligned} & R_{B}=50 \Omega, R_{L}=2 B 0 \Omega, C_{B}=50 \mathrm{pF}(\text { Note } 1), \\ & C_{L}=15 \mathrm{pF} \end{aligned}$			10	15	ns
tPHL	Bus to Receiver Out				10	15	ns
tr_{r}	Bus	$\mathrm{R}_{\mathrm{B}}=50 \Omega, \mathrm{C}_{\mathrm{B}}=50 \mathrm{pF}$ (Note 1)		4.0	10		ns
t_{f}	Bus			2.0	4.0		ns

Note 1: Includes probe and jig capacitance

Truth Tables

DS26S10

INPUTS		OUTPUTS	
\bar{E}	I	\bar{B}	Z
L	L	H	L
L	H	L	H
H	X	Y	\bar{Y}

DS26S11

INPUTS		OUTPUTS	
$\overline{\mathbf{E}}$	$\overline{\mathbf{I}}$	$\overline{\mathbf{B}}$	\mathbf{Z}
\mathbf{L}	\mathbf{L}	L	H
\mathbf{L}	\mathbf{H}	H	\mathbf{L}
\mathbf{H}	X	Y	\bar{Y}

$H=H i g h$ voltage level
$L=$ Low voltage level
$X=$ Don't care
$Y=$ Voltage level of bus (assumes control by another bus transceiver)

Typical Application

100 PARTY-LINE OPERATION

AC Test Circuit and Switching Time Waveforms

Note 1: Includes probe and jig capacitance

Typical Performance Characteristics

Typical Bus Output Low Voltage vs Ambient Temperature

Receiver Threshold Variation vs Ambient Temperature

Schematic Diagram

DS7640/DS8640 quad NOR unified bus receiver

general description

The DS7640 and DS8640 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input threshold providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. This receiver has been specifically configured to replace the SP380 gate pin-for-pin.

features

- Plug-in replacement for SP380 gate
- Low input current with normal $V_{c c}$ or $V_{c c}=0 \mathrm{~V}$ ($30 \mu \mathrm{~A}$ typ)
- High noise immunity (1.1V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL/TTL compatible output
- Matched, optimized noise immunity for " 1 " and " 0 " levels
- High speed (19 ns typ)

connection diagram

TOP VIEW
Order Number DS7640J, DS8640J
DS8640N or DS7640W
See NS Package J14A, N14A or W14A

typical application

120Ω Unified Data Bus

absolute maximum ratings (Note 1)

Supply Voltage
Input Voltage
Power Dissipation
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$			
DS7640	4.5	5.5	V
DS8640	$\mathbf{4 . 7 5}$	5.25	V
Temperature $\left(T_{A}\right)$			
DS7640	-55	+125	${ }^{\circ} \mathrm{C}$
DS8640	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

The following apply for $\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{C C} \leq \mathrm{V}_{\text {MAX }}, T_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$, unless otherwise specified (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS	
$V_{\text {IH }}$	High Level Input Threshold	$V_{\text {OUT }}=V_{O L}$	DS7640	1.80	1.50		V	
			DS8640	1.70	1.50		V	
$V_{\text {IL }}$	Low Level Input Threshold	$V_{\text {OUT }}=\mathrm{V}_{\text {OH }}$	DS7640		1.50	1.20	V	
			DS8640		1.50	1.30	V	
$\mathrm{I}_{1 \mathbf{H}}$ Maximum Input Current		$V_{\text {IN }}=4 \mathrm{~V}$	$V_{C C}=V_{\text {MAX }}$		30	80	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$		1.0	50	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 2}$	Maximum Input Current		$V_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {MAX }}$			1.0	50	$\mu \mathrm{A}$
V_{OH}	Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=V_{I L}$		2.4			V	
$V_{\text {OL }}$	Output Voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, V_{\text {IN }}=V_{\text {IH }}$			0.25	0.4	V	
los	Output Short Circuit Current	$V_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OS }}=0 \mathrm{~V}, \mathrm{~V}_{C C}=V_{\text {MAX }}$, (Note 4)		-18		-55	mA	
I_{cc}	Power Supply Current	$V_{\text {IN }}=4 \mathrm{~V}$, (Per Package)			25	40	mA	

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	ARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }^{t}{ }_{p d}$	Propagation Delays	(Notes 5 and 6)	Input to Logic "1" Output	10	23	35	ns
			Input to Logic "0" Output	10	15	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7640 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8640. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. Al values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $V_{I N}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3 V pulse.
Note 6: Apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DS7641/DS8641 quad unified bus transceiver

general description

The DS7641 and DS8641 are quad high speed drivers/ receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $V_{c c}=0 V$. The receivers incorporate tight thresholds for better bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously.

features

- 4 separate driver/receiver pairs per package
- Guaranteed minimum bus noise immunity of 0.6 V , 1.1V typ
- Temperature insensitive receiver thresholds track bus logic levels
- $30 \mu \mathrm{~A}$ typical bus terminal current with normal V_{CC} or with $V_{C C}=O V$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

connection diagram

TOP VIEW
Order Number DS7641J, DS8641J, DS8641N or DS7641W
See NS Packege J16A, N16A or W16A

typical application

absolute maximum ratings (Note 1)

operating conditions

	MIN	MAX	UNITS
Supply Voltage, $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
DS7641	4.5	5.5	V
DS8641	4.75	5.25	V
Temperature Range, (TA)			
DS7641	-55	+125	${ }^{\circ} \mathrm{C}$
DS8641	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

$7 V$
5.5 V

600 mW
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Supply Voltage	7 V
Input and Output Voltage	5.5 V
Power Dissipation	600 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

The following apply for $V_{M I N} \leq V_{C C} \leq V_{M A X}, T_{M I N} \leq T_{A} \leq T_{M A X}$ unless otherwise specified (Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER ANO DISA8LE INPUTS						
$\mathrm{V}_{1 \mathrm{H}} \quad$ Logical '1" Input Voltage			2.0			\checkmark
$V_{\text {IL }}$ Logical " 0 " Input Voltage					0.8	\checkmark
I_{1} Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
$\mathbf{I}_{\text {IH }}$ Logical "1" Input Current	$V_{\text {IN }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{1 L} \quad$ Logical "0" Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$				-1.6	mA
$V_{\text {CL }}$ Input Diode Clamp Voltage	$\begin{aligned} & I_{D I S}=-12 \mathrm{~mA}, \quad \mathrm{I}_{I N}=-12 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$-12 \mathrm{~mA} \text {, }$		-1	-1.5	\checkmark
DRIVER OUTPUT/RECEIVER INPUT						
V OLB Low Level Bus Voltage	$\mathrm{V}_{\text {DIS }}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2 \mathrm{~V}, \mathrm{I}_{\text {BUS }}=50 \mathrm{~mA}$			0.4	0.7	\checkmark
lime $^{\text {a }}$ Maximum Bus Current	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{V}_{\text {MAX }}$			30	100	$\mu \mathrm{A}$
IILE Maximum 8us Current	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{~V}_{C C}=0 \mathrm{~V}$			2	100	$\mu \mathrm{A}$
High Level Receiver Threshold	$V_{\text {INO }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=16 \mathrm{~mA}$	DS7641	1.80	1.50		V
		DS8641	1.70	1.50		V
Low Level Receiver Threshold	$\mathrm{V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	DS7641		1.50	1.20	V
		D\$8641		1.50	1.30	V

RECEIVER OUTPUT

V_{OH}	Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Logical "0' Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	0.4	\checkmark
los	Output Short Circuit Current	$\begin{aligned} & V_{\text {DIS }}=0.8 \mathrm{~V}, V_{\text {IN }}=0.8 \mathrm{~V}, V_{\text {BUS }}=0.5 \mathrm{~V}, V_{\text {OS }}=0 \mathrm{~V}, \\ & V_{C C}=V_{\text {MAX }},(\text { Note 4) } \end{aligned}$	-18		-55	mA
Icc	Supply Current	$\mathrm{V}_{\text {DIS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$, (Per Package)		50	70	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathbf{t}_{\mathbf{p d}} \quad$ Propagation Delays (Note 7) Disable to Bus " 1 " Disable to 8us " 0 " Driver Input to Bus "1" Driver Input to Bus " 0 "	(Note 5)		$\begin{aligned} & 19 \\ & 15 \\ & 17 \\ & 9 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Bus to Logical "1" Receiver Output 8us to Logical " 0 " Receiver Output	(Note 6)		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7641 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8641. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground. $C_{\text {LOAD }}=15$ pF total. Measured from $V_{I N}=1.5 \mathrm{~V}$ to $V_{8} \mathrm{US}=1.5 \mathrm{~V}$.
$V_{\text {IN }}=0 V$ to $3 V$ pulse.
Note 6: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.
Note 7: The following apply for $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

general description

This family of TRI-STATE bus transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated dc or ac, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{C C}=0 V$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DS7833/ DS8833 and DS7835/DS8835 employ TRI-STATE outputs on the receiver also.

The DS7833/DS8833 are non-inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

The DS7835/DS8835 are inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

features

- Receiver hysteresis 400 mV typ
- Receiver noise immunity 1.4 V typ
- Bus terminal current for $\quad 80 \mu \mathrm{~A}$ max normal $V_{c c}$ or $V_{c c}=0 V$
- Receivers

Sink
Source

16 mA at 0.4 V max
$2.0 \mathrm{~mA}(\mathrm{Mil})$ at 2.4 V min $5.2 \mathrm{~mA}(\mathrm{Com})$ at 2.4 V min

- Drivers

Sink
Source

- Drivers have TRI-STATE outputs
- DS7833/DS8833, DS7835/DS8835 receivers have TRI-STATE outputs
- Capable of driving 100Ω dc--terminated buses
- Compatible with Series $54 / 74$

connection diagrams

Dual-In-Line Package

Drder Number DS7833J, DS8833J, DS8833N or DS7833W
See NS Package J16A, N16A or W16A

Dual-In-Line Package

Drder Number DS7835J, DS8835J, DS8835N or DS7835W
See NS Package J16A, N16A or W16A
absolute maximum ratings (Note 1) operating conditions

			MIN	MAX	UNITS
Supply Voltage	70 V	Supply Voltage (VCC)			
Input Voltage	5.5 V	DS7833, DS7835	4.5	55	V
Output Voltage	5.5 V	DS8833, DS8835	4.75	525	V
Storage Temperature -65	$150{ }^{\circ} \mathrm{C}$	Temprature (T_{A})			
Lead Temperature (Soldering. 10 seconds)	300 C	DS7833, DS7835	-55	+125	C
		DS8833, DS8835	0	+70	C

electrical characteristics (Notes 2 and 3)

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\prime} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7833, DS7835 and acioss the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8833, DS8835. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All curcents into device pins shown as positive, out of device pins as neqative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis
Note 4: Only one output at a time should be shorted.
switching characteristics $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {pao }}$	Propagation Delay to a	(Figure 1)	DS7833/DS8833		14	30	ns
	Logic "0" From Input to Bus		DS7835/DS8835		10	20	ns
$t_{\text {pd }}$	Propagation Delay to a	(Figure 1)	DS7833/DS8833		14	30	ns
	Logic "1" From Input to Bus		DS7835/DS8835		11	30	ns
$\mathrm{t}_{\text {pao }}$	Propagation Delay to a	(Figure 2)	DS7833/DS8833		24	45	ns
	Logic " 0 " From Bus to Output		DS7B35/DS8835		16	35	ns
$t_{p d}$	Propagation Delay to a	(Figure 2)	DS7833/DS8833		12	30	ns
	Logic "1" From Bus to Output.		DS7835/DS8835		18	30	ns
tPHZ	Delay From Disable	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$. (Figures 1 and 2)	Driver		8.0	20	ns
	input to High impedance State (From Logic " 1 " Level)		Recerver ,		6.0	15	ns
tplz	Delay From Disable Input to	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$, (Figures 1 and 2)	Driver		20	35	ns
	High Impedance State (From Logic "0" Level)		Receiver		13	25	ns
tPZH	Delay From Disable Input to	$C_{\mathrm{L}}=50 \mathrm{pF},($ Figures 1 and 2)	Driver		24	40	ns
	Logic "1" Level (From High Impedance State)		Receiver		16	35	ns
tpzL	Delay From Disable Input to		Driver		19	35	ns
	Logic '00' Level (From High		Receiver DS7B33/DS8833		15	30	ns
	Impedance State)		Recerver DS7835/DS8835		33	50	ns
$f_{\text {MAX }}$	Maximum Clock Frequency						

ac test circuits

FIGURE 1. Driver Output Load

FIGURE 2. Receiver Output Load

switching time waveforms

switching time waveforms (con't)

DS7834/DS8834, DS7839/DS8839 quad TRI-STATE ${ }^{\circledR}$ bus transceivers

general description

This family of TRI-STATE bus transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated dc or ac, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low, allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{C C}=0 V$. The receiver incorporates hysteresis to provide greater noise immunity. Both devices utilize a high current TRISTATE output driver. The DS7834/DS8834 and DS7839/ DS8839 employ TTL outputs on the receiver.

The DS7839/DS8839 are non-invertirg quad transceivers with two common inverter driver disable controls.

The DS7834/DS8834 are inverting quad transceivers with two common inverter driver disable controls.

features

- Receiver hysteresis

400 mV typ

- Receiver noise immunity
1.4 V typ
- Bus terminal current for
$80 \mu \mathrm{~A}$ max normal V_{CC} or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- Receivers

Sink
Source
16 mA at 0.4 V max 2.0 mA (Mil) at 2.4 V min 5.2 mA (Com) at 2.4 V min

- Drivers

Sink
Source
50 mA at 0.5 V max
32 mA at 0.4 V max 10.4 mA (Com) at 2.4 V min 5.2 mA (Mil) at 2.4 V min

- Drivers have TRI-STATE outputs
- Receivers have TRI-STATE outputs
- Capable of driving $100 \Omega 2 \mathrm{dc}$-terminated buses
- Compatible with Series 54/74

connection diagrams

Dual-In-Line Package

Order Number DS7834.J, DS8834.
DS8843N or DS7334W
See NS Package J16A, N16A or W16A

Dual-In-Line Package

Drder Number DS7839J, DS8839J, DS8839N or DS7839W
See NS Package J16A, N16A or W16A

absolute maximum ratings (Note 1)	
Supply Voltage	7.0 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Storage Temperature	
Lead Temperature (Soldering, 10 Seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS7834, DS7839	4.5	5.5	V
DS8834, DS8839	4.75	5.25	V
Temperature (TA)			
DS7834, DS7839	-55	+125	${ }^{\circ} \mathrm{C}$
DS8834, DS8839	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DISA8LE/DRIVER INPUT					
$V_{1 H} \quad$ High Level Input Voltage	$V_{C C}=$ Min	2.0			\checkmark
$\mathrm{V}_{\mathrm{IL}} \quad$ Low Level Input Voltage	$V_{C C}=\operatorname{Min}$			0.8	\checkmark
High Level Input Current				40	$\mu \mathrm{A}$
	$V_{C C}=$ Max $\quad V^{\prime} V_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
$\mathrm{I}_{1 \mathrm{~L}} \quad$ Low Level Input Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{iN}}=0.4 \mathrm{~V}$		-1.0	-1.6	mA
$I_{\text {IND }}$ Driver Disabled Input Low Current	Driver Disable Input $=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CL}} \quad$ Input Clamp Diode	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{iN}}=-12 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		-0.8	-1.5	V

RECEIVER INPUT/8US OUTPUT

High Level Threshold Voltage	$V_{C C}=\operatorname{Max}$		DS7834, DS7839	1.4	1.75	2.1	v
			DS8834, DS8839	1.5	1.75	20	\checkmark
Low Level Threshold Voltage	$V_{c c}=M_{1 n}$		DS7834, DS7839	0.8	1.35	1.6	\checkmark
			DS8834, DS8839	0.8	1.35	1.5	V
$\mathrm{J}_{8 \mathrm{H}}$ 8us Current, Output Disabled or High	$V_{\text {Eus }}=4.0 \mathrm{~V}$	$\begin{aligned} & V_{C C}=\text { Max, } \\ & \text { Disable input }=2.0 \mathrm{~V} \end{aligned}$			25	80	$\mu \mathrm{A}$
		$V_{\mathrm{cc}}=0 \mathrm{~V}$			5.0	80	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {Bus }}=0.4 \mathrm{~V}$, Disable Input $=2.0 \mathrm{~V}$					-40	$\mu \mathrm{A}$
Logic "1" Output Voltage	$V_{c c}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{OUT}}=-5.2 \mathrm{~mA}$	DS7834, DS7839	2.4	2.75		\checkmark
		$\mathrm{I}_{\text {OUT }}=-10.4 \mathrm{~mA}$	DS7834, DS8839	2.4	2.75		V
Logic "0, Output Voltage	$V_{c c}=$ Min	$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$			0.28	0.5	v
		$\mathrm{I}_{\text {Out }}=32 \mathrm{~mA}$				0.4	V
Ios Output Short Circuit Current	$V_{\text {cC }}=$ Max, (Note 4)			-40	-62	-120	mA
RECEIVER OUTPUT							
Logic "1" Output Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$	$\mathrm{l}_{\text {OUT }}=-2.0 \mathrm{~mA}$	DS7834, DS7839	2.4	3.0		V
		$\mathrm{l}_{\text {OUT }}=-5.2 \mathrm{~mA}$	DS8834. DS8839	2.4	2.9		V
Vol Logic "0" Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$				0.22	0.4	\checkmark
Output Short Circuit Current	$V_{C C}=$ Max, (Note 4)		DS7834. DS7839	-28	-40	-70	mA
			DS8834, DS8839	-30		-70	$m \mathrm{~A}$
Icc Supply Current	$V_{C c}=\operatorname{Max}$				75	95	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safetv of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation,
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 7834 , DS 7839 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8834, DS8839. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.
All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
switching characteristics $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {pdo }}$	Propagation Delay to a Logic " 0 " from Input to 8us	(Figure 1)	DS7839/DS8839		14	30	ns
			DS7834/DS8834		10	- 20	ns
$\mathbf{t}_{\text {pd }}$	Propagation Delay to a Logic "1" from Input to Bus	(Figure 1)	DS7839/DS8839		14	30	ns
			DS7834/DS8834		11	30	ns
$t_{\text {pad }}$	Propagation Delay to a Logic " 0 " from Bus to Output	(Figure 2)	DS7839/DS8839		24	45	ns
			DS7834/DS8834		16	35	ns
$t_{\text {pd } 1}$	Propagation Delay to a Logic " 1 " from Bus to Output	(Figure 2)	DS7839/DS8839		12	30	ns
			DS7834/DS8834		18	30	ns
tPhZ	Delay from Disable Input to High Impedance State (from Logic "1" Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \rho \mathrm{~F}$, (Figures 1 and 2)	Driver Only		8	20	ns
tPLZ	Delay from Disable Input to High Impedance State (from Logic " 0 " Level)	$\mathrm{C}_{\mathrm{L}}=5.0 \rho \mathrm{~F}$, (Figures 1 and 2)	Driver Only		20	35	ns
${ }^{\text {tPZH }}$	Delay from Disable Input to Logic "1" Level (from High Impedance State)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 1 and 2)	Driver Only		24	40	ns
	Delay from Disable Input to Logic " 0 " Level (from High Impedance State)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 1 and 2)	Driver Only		19	35	ns

ac test circuits

FIGURE 1. Driver Output Load

FIGURE 2. Receiver Output Load

switching time waveforms

switching time waveforms (con't)

$t_{\mathrm{H}} 1$

truth table

DISABLE INPUT	DRIVER INPUT (N_{X})	RECEIVERINPUT/ BUS OUTPUT ($\mathrm{BUS}_{\mathrm{x}}$)	RECEIVER OUTPUT (OUTX)	MODE OF OPERATION
DS7834/DS8834				
1	x		$\overline{B \cup S}$	Receive bus signal
0	1	0	1	Drive bus
0	0	1	0	Drive bus
DS7839/DS8839				
1	x		BUS	Receive bus signal
0	1	1	1	Drive bus
0	0	0	0	Drive bus

$x=$ Don't care

行
 National Semiconductor

DS7836/DS8836 quad NOR unified bus receiver

general description

The DS7836/DS8836 are quad 2-input receivers designed for use in bus organized clata transmission systems interconnected by terminated $120 \Omega 2 \mathrm{im}$ pedance lines. The external termination is intend ed to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/ receiver pairs to utilize a common bus. This re. ceivel has been specifically configured to replace the SP380 gate pin-for pin to provide the distinct advantages of the DS7837 receiver with built-in hysteresis in existing systems. Performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

features

- Low input current with normal V_{Cc} or $V_{C C}=O V(15 \mu A$ typ $)$
- Built in input hysteresis (1V typ)
- High noise immunity (2 V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL.TTL compatible output
- Matched, optimized norse immunity for " 1 " and " 0 " levels
- High speed (18 ns typ)

typical application

connection diagram

absolute maximum ratings

			MIN	MAX	UNITS
Supply Voltage	7.0 V	Supply Voltage (V_{CC})			
Current Voltage	5.5 V	DS7836	4.5	5.5	V
Power Dissipation	600 mW	DS8836	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$	Temperature ($\mathrm{TA}_{\text {A }}$)			
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS7836	-55	+125	${ }^{\circ} \mathrm{C}$
		DS8836	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

The following apply for $\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{C C} \leq \mathrm{V}_{\text {MAX }}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$, unless otherwise specified (Notes 2 and 3)

switching characteristics

$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {pod }}$	Propagation Delays	(Notes 4 and 5)	Input to Logical "1" Output		20	30	ns
			Input to Logical "0" Output		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7836 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8836. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Fan out of 10 load, $C_{L O A D}=15 \mathrm{pF}$ total, measured from $V_{I N}=1.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$ to 3 V pulse.
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $V_{I N}=2.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$ to 3 V pulse.

DS7837/DS8837 hex unified bus receiver

general description

The DS7837/DS8837 are high speed receivers designed for use in bus organized data transmisston systems interconnected by terminated $120 \Omega 2 \mathrm{~mm}$ pedance lines. The external termination is intend ed to be $180 \Omega 2$ resistor from the bus to the +5 V logic supply together with a 39082 iesistor from the bus to ground. The receiver design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driverírecerver pars to utilize a common bus. Disable inputs provide time discriminatıon. Disable inputs and receiver outputs are DTL/TTL compatible Performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

features

- Low receiver input current for normal $V_{C C}$ or $V_{c c}=0 V(15 \mu A$ typ $)$
- Six separate receivers per package
- Built-in receiver input hysteresis (1V typ)
- High receiver noise immunity (2 V typ)
- Temperature insensitive receiver input thres. holds track bus logic levels
- DTL/TTL compatible disable and output
- Molded or cavity dual-in-line or flat package
- High speed

typical application

connection diagram

Dual-In-Line Package

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$			
DS7837	4.5	5.5	V
DS8837	4.75	5.25	V
Temperature $\left(T_{A}\right)$			
DS7837	-55	+125	${ }^{\circ} \mathrm{C}$
DS8837	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

The following apply for $V_{\text {MIN }} \leq V_{C C} \leq V_{M A X}, T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$, unless otherwise specified (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	High Level Receiver Threshold	$V_{\text {cc }}=\operatorname{Max}$	DS7837	1.65	2.25	2.65	V
			DS8837	1.80	2.25	2.50	V
$V_{T L}$	Low Level Receiver Threshold	$V_{c c}=M 1 \square$	DS7837	0.97	1.30	1.63	V
			DS8837	1.05	1.30	1.55	V
$\mathrm{I}_{1 / \mathrm{H}}$	Maximum Receiver Input Current	$V_{1 N}=4 V$	$V_{C C}=V_{\text {MAX }}$		15.0	50.0	$\mu \mathrm{A}$
			$V_{\text {cc }}=0 \mathrm{~V}$		1.0	50.0	$\mu \mathrm{A}$
I_{1}	Logical "0" Receiver Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}, V_{C C}=V_{\text {MAX }}$			1.0	50.0	$\mu \mathrm{A}$
$V_{1 H}$	Logical "1" Input Voltage		Disable	2.0			\checkmark
$V_{\text {IL }}$	Logical "0' Input Voltage		Disable			0.8	\checkmark
$\mathrm{I}_{1 / \mathrm{H}}$	Logical "1" Input Current	Disâble Input	$V_{\text {IND }}=2.4 \mathrm{~V}$			80.0	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IND }}=5.5 \mathrm{~V}$			2.0	mA
$I_{\text {IL }}$	Logical "00 Input Current	$V_{\text {IN }}=4 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0.4 \mathrm{~V}$, Disable Input				-3.2	mA
Vor	Logical "1" Output Voltage	$V_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {OM }}=-400 \mu \mathrm{~A}$		2.4			V
Vol	Logical "0" Output Voltage	$V_{I N}=4 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.25	0.4	V
los	Output Short Circuit Current	$V_{I N}=0.5 \mathrm{~V}, V_{I N D}=0 \mathrm{~V}, V_{O S}=0 \mathrm{~V}, V_{C C}=V_{M A X} .$ (Note 4)		-18.0		-55.0	$m A$
Icc	Power Supply Current	$V_{\text {IN }}=4 \mathrm{~V}, \mathrm{~V}_{\text {IND }}=0 \mathrm{~V}$, (Per Package)			45.0	60.0	mA
$V_{C L}$	Input Clamp Diode	$V_{\text {IN }}=-12 \mathrm{~mA}, V_{\text {IND }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-1.0	-1.5	\checkmark

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {pd }}$	Propagation Delays	$V_{\text {IND }}=0 V$ Receiver	Input to Logical "1" Output, (Note 5)		20	30	ns
			Input to Logical "0" Output, (Note 6)		18	30	ns
		Input $=0 \mathrm{~V}$. Disable, (Note 7)	Input to Logical "1" Output		9	15	ns
			Input to Logical "0" Output		4	10	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safery of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7837 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8837. All typicals values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positve, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Fan-out of 10 toad, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{1 \mathrm{~N}}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.
Note 6: Fan-out of 10 load, $C_{L O A D}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3 V pulse.
Note 7: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=1.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3 V pulse.

National
 Semiconductor

DS7838/DS8838 quad unified bus transceiver

general description

The DS7838/DS8838 are quad high speed drivers/ receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus cari be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu \mathrm{~s} / \mathrm{V}$.

features

- 4 totally separate driver/receiver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minimum bus noise immunity of $1.3 \mathrm{~V}, 2 \mathrm{~V}$ typ.
- Temperature-insensitive receiver thresholds track bus logic levels
- $20 \mu \mathrm{~A}$ typical bus terminal current with normal $V_{c c}$ or with $V_{c c}=0 V$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

typical application

connection diagram
Dual-In-Line Package

absolute maximum ratings (Note 1)

Supply Voltage	7 V	Operating Temperature Range	
Input and Output Voltage	5.5 V	DS7838	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation	600 mW	DS8838	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		Lead Temperature, (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$

electrical characteristics

DS7838/DS8838: The following apply for $V_{\text {MIN }} \leq V_{C C} \leq V_{\text {MAX }}, T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise specified (Notes 2 and 3)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER AND DISABLE INPUTS						
$V_{\text {IH }}$	Logical " 1 " Input Voltage		2.0			\checkmark
$V_{\text {IL }}$	Logical " $0^{\prime \prime}$ Input Voltage				0.8	\checkmark
11	Logical "1" Input Current	$V_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathbf{H}}$	Logical "1" Input Current	$V_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Logical "0" Input Current	$V_{1 N}=0.4 \mathrm{~V}$			-1.6	mA
$V_{C L}$	Input Diode Clamp Voltage	$\begin{aligned} & I_{\text {OIS }}=-12 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, I_{\text {BUS }}=-12 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-1.5	\checkmark

DRIVER OUTPUT/RECEIVER INPUT

$V_{\text {OLB }}$	Low Level Bus Voltage	$V_{\text {DIS }}=0.8 \mathrm{~V}, V_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\text {BUS }}=50 \mathrm{~mA}$			0.4	0.7	V
$\mathrm{I}_{\text {HB }}$	Maximum Bus Current	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, V_{C C}=V_{\text {MAX }}$			20	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ILe }}$	Maximum 8us Current	$V_{1 N}=0.8 \mathrm{~V}, V_{\text {Bus }}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			2	100	$\mu \mathrm{A}$
$\mathrm{V}_{1 H}$	High Level Receiver Thresthold	$\begin{aligned} & V_{\text {IND }} 0.8 \mathrm{~V}, V_{O L}=16 \mathrm{~mA} \\ & V_{C C}=\text { Max } \end{aligned}$	DS7838	1.85	2.25	2.65	\checkmark
			DS8838	1.80	2.25	2.50	\checkmark
$V_{\text {IL }}$	Low Level Receiver Threshold	$\begin{aligned} & V_{\text {IND }}=0.8 \mathrm{~V}, V_{O H}=-400 \mu \mathrm{~A} \\ & V_{C C}=M I n \end{aligned}$	DS7838	0.97	1.30	1.63	\checkmark
			DS8838	1.05	1.30	1.55	\checkmark

RECEIVER OUTPUT

$\mathrm{VOH}^{\text {OH}}$	Logical "1" Output Voltage	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=0.5 \mathrm{~V}, \mathrm{I}_{\text {OM }}=-400 \mu \mathrm{~A}$	2.4			\checkmark
$V_{\text {OL }}$	Logical "0' Output Voltage	$V_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS }}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.25	0.4	V
los	Output Short Circuit Current	$\begin{aligned} & V_{\text {OIS }}=0.8 \mathrm{~V}, V_{I N}=0.8 \mathrm{~V}, V_{\mathrm{BUS}}=0.5 \mathrm{~V}, \\ & V_{\text {OS }}=0 \mathrm{~V}, V_{\mathrm{CC}}=V_{\mathrm{MAX}},(\text { Note } 4) \end{aligned}$	-18		-55	mA
Icc	Supply Current	$V_{\text {DIS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V},($ Per Package)		50	70	mA
$t_{\text {pd }}$	Propagation Delays (Note 8) Disable to Bus "1"	(Note 5)		19	30	ns
	Disable to Bus " 0 "	(Note 5)		15	23	ns
	Driver Input to Bus "1"	(Note 5)		17	25	ns
	Driver Input to Bus " 0 "	(Note 5)		9	15	ns
	Bus to Logical "1" Reciever Output	(Note 6)		20	30	ns
	Bus to Logical "0' Receiver Output	(Note 7)		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Charackeristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7838 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8838. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $V_{I N}=1.5 \mathrm{~V}$ to $V_{B U S}=1.5 \mathrm{~V}, V_{I N}=$ 0 V to 3.0 V pulse.
Note 6: Fan-out of 10 load, $C_{L O A D}=15 \mathrm{pF}$ total. Measured from $V_{I N}=1.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V}, V_{i N}=0 \mathrm{~V}$ to 3.0 V pulse.
Note 7: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $V_{I N}=2.3 \mathrm{~V}$ to $V_{O U T}=1.5 \mathrm{~V} V_{I N}=0 \mathrm{~V}$ to 3.0 V pulse.
Note 8: These apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

National Bus Transceivers Semiconductor

DS8T26A, DS8T26AM, DS8T28, DS8T28M 4-Bit Bidirectional Bus Transceivers

General Description

The DS8T26A, DS8T28 consists of 4 pairs of TRISTATE ${ }^{\circledR}$ logic elements configured as quad bus drivers/ receivers along with separate buffered receiver enable and driver enable lines. This single IC quad transceiver design distinguishes the DS8T26A, DS8T28 from conventional multi-IC implementations. In addition, the DS8T26A, DS8T28's ultra high speed while driving heavy bus capacitance (300 pF) makes these devices particularly suitable for memory systems and bidirectional data buses.

Both the driver and receiver gates have TRI-STATE outputs and low current PNP inputs. PNP inputs reduce input loading to $200 \mu \mathrm{~A}$ maximum.

Features

- Inverting outputs in the DS8T26A
- Non-inverting outputs in the DS8T28
- TRI-STATE outputs
- Low current PNP inputs
- Fast switching times (20 ns)
- Advanced Schottky processing
- Driver glitch free power up/down
- Non-overlapping TRI-STATE

Logic and Connection Diagrams

Order Number DS8T26AJ, DS8T26AMJ, DS8T28J, DS8T28MJ, DS8T26AN or DS8T28N See NS Package J16A or N16A

Absolute Maximum Ratings (Note 1)

All Output and Supply Voltages
All Input Voltages
Output Currents
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
-0.5 V to +7 V
-1 V to +5.5 V
$\pm 150 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Recommended Operating Conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS8T26A, DS8T28	4.75	5.25	V
DS8T26AM, DS8T28M	4.5	5.5	V
Temperature (TA)			
DS8T26A, DS8T28	0	70	${ }^{\circ} \mathrm{C}$
DS8T26AM, DS8T28M	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2,3 and 4)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
IIL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
I! 1	Low Level Input Current (Disabled)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-25	$\mu \mathrm{A}$
1 H	High Level Input Current ($\mathrm{D}(\mathrm{N}, \mathrm{DE}$)	$V_{\text {IN }}=V_{\text {CC }} \mathrm{Max}^{\text {a }}$			25	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage, (Pins 3, 6, 10, 13)	IOUT $=48 \mathrm{~mA}$			0.5	V
V_{OH}	High Level Output Voltage, (Pins 3, 6, 10, 13)	${ }^{\text {O }}$ OUT $=-10 \mathrm{~mA}$	2.4			v
Ios	Short-Circuit Output Current, (Pins 3, 6, 10, 13)	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{VCC}_{\mathrm{CC}}=$ $V_{C C}$ Max	-50		-150	mA

RECEIVER

IIL	Low Level Input Current	$V_{\text {IN }}=0.4 \mathrm{~V}$		-200	$\mu \mathrm{A}$
IIH	High Level Input Current (RE_{E})	$V_{\text {IN }}=V_{\text {CC }}$ Max		25	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	1 OUT $=20 \mathrm{~mA}$		0.5	V
VOH	High Level Output Voltage, (Pins 2, 5, 11, 14)	$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$	3.5		V
		$\mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA}$	2.4		\checkmark
${ }^{\text {IOS }}$	Short-Circuit Output Current, (Pins 2, 5, 11, 14)	$\begin{aligned} & V_{\text {OUT }}=0 V, V_{C C}= \\ & V_{C C} \operatorname{Max} \end{aligned}$	-30	-75	mA
BOTH DRIVER AND RECEIVER					
$V_{\text {TL }}$	Low Level Input Threshold Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I N}=0.8 V \\ & I_{O L}=-400 \mu \mathrm{~A} \end{aligned}$	0.85		V
$V_{\text {TH }}$	High Level Input Threshold Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max}, V_{\mathbb{I N}}=0.8 \mathrm{~V}, \\ & I_{\mathrm{OH}}=16 \mathrm{~mA} \end{aligned}$		2	\checkmark
I_{O}	Low Level Output OFF Leakage Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-100	$\mu \mathrm{A}$
Ioz	High Level Output OFF Leakage Current	$V_{\text {OUT }}=2.4 \mathrm{~V}$		100	$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$1 \mathrm{~N}=-12 \mathrm{~mA}$		-1.0	V
ICC	Power Supply Current DS8T26A	$V_{C C}=V_{C C}$ Max		87	mA
	DST28	$V_{\text {CC }}=V_{\text {CC }}$ Max		110	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS8T26AM, DS8T28M and
across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8T26A, DS8T28. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pans are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Characteristics

PARAMETER	CONDITIONS	$\begin{aligned} & \text { DS8T26A } \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \text { DS8T28 } \\ & \text { MAX } \end{aligned}$	UNITS
Propagation Delay				
ton DOUT to R ${ }_{\text {OUT, (Figure 1) }}$	$C_{L}=30 \mathrm{pF}$	14	17	ns
tofF DOUT to ROUT, (Figure 1)		14	17	ns
ION DIN to DOUT, (Figure 2)	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$	14	17	ns
tofF DIN to DOUT, (Figure 2)		14	17	ns
Data Enable to Data Output				
tPZL High Z to O, (Figure 3)	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$	25	28	ns
tPLZ O to High Z, (Figure 3)		20	23	ns
Receiver Enable to Receiver Output				
tPZL High Z to O, (Figure 4)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	23	ns
tPLZ O to High Z, (Figure 4)		15	18	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Propagation Delay (DOUT to ROUT)

FIGURE 2. Propagation Delay ($\mathrm{DIN}_{\text {IN }}$ to $\mathrm{D}_{\text {OUT }}$)

Input pulse:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
Freq $=10 \mathrm{MHz}(50 \%$ duty cycle)
Amplitude $=2.6 \mathrm{~V}$

Input puise:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
Freq $=10 \mathrm{MHz}$ (50% duty cycle)
Amplitude $=2.6 \mathrm{~V}$

AC Test Circuits and Switching Time Waveforms (Continued)

Input pulse:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$ Freq $=5 \mathrm{MHz}$ (50% duty cycle) Amplitude $=2.6 \mathrm{~V}$

FIGURE 3. Propagation Delay (Data Enable to Data Output)

Input pulse:
$t_{r}=t_{f}=5 \mathrm{~ns}(10 \%$ to $90 \%)$
Freq $=5 \mathrm{MHz}(50 \%$ duty cycle $)$
Amplitude $=2.6 \mathrm{~V}$

FIGURE 4. Propagation Delay (Receive/Enable to Receiver Output)

Section 3

Peripheral/Power Drivers

TEMPERATURE RANGE

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
DS1611	DS3611
DS1612	DS3612
DS1613	DS3613
DS1614	DS3614
DS1631	DS3631
DS1632	DS3632
DS1633	DS3633
DS1634	DS3634
	DS3654
DS1686	DS3686
DS1687	DS3687
DS55450	DS75450
DS55451	DS75451
DS55452	DS75452
DS55453	DS75453
DS55454	DS75454
DS55460	DS75460
DS55461	DS75461
DS55462	DS75462
DS55463	DS75463
DS55464	DS75464
-	MM74C908
-	MM74C918

PAGE
NUMBER
Dual AND Peripheral Driver 3-1
Dual NAND Peripheral Driver $3-1$
Dual OR Peripheral Driver 3-1
Dual NOR Peripheral Driver 3-1
Dual AND CMOS Peripheral Driver 3-7
Dual NAND CMOS Peripheral Driver 3-7
Dual OR CMOS Peripheral Driver 3-7
Dual NOR CMOS Peripheral Driver 3-7
Serial Input, 10-Bit Driver 3-12
Dual Positive Relay Driver 3-16
Dual Negative Relay Driver 3-18
Dual AND Peripheral Driver 3-20
Dual AND Peripheral Driver 3-20
Dual NAND Peripheral Driver 3.20
Dual OR Peripheral Driver $3-20$
Dual NOR Peripheral Driver 3-20
Dual AND Peripheral Driver 3-31
Dual AND Peripheral Driver 3-31
Dual NAND Peripheral Driver 3.31
Dual OR Peripheral Driver 3-31
Dual NOR Peripheral Driver 3-31
Dual CMOS 30V Driver 9-25
Dual CMOS 30V Driver 9-25
Selection Guide
PERIPHERAL/POWER DRIVERS

Output High Voltage (V)	Latch-Up Voltage (Note 3) (V)	Output Low Voltage (V)	Output Low Current (mA)	Propagation Delay Typ (ns)	ON Power Supply Current (mA)	Drivers/ Package	Input Compatibility (Logic)	Logic Function (Driver ON)	Device Number and Temperature Range	
									$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
30	20	0.7	300	31	55	2	TTL	AND	DS75450	DS55450
30	20	0.7	300	31	55	2	TTL	AND	DS75451	DS55451
30	20	0.7	300	31	55	2	TTL	NAND	DS75452	DS55452
30	20	0.7	300	31	55	2	TTL	OR	DS75453	DS55453
30	20	0.7	300	31	55	2	TTL	NOR	DS75454	DS55454
35	30	0.7	300	33	55	2	TTL	AND	DS75460	DS55460
35	30	0.7	300	33	55	2	TTL	AND	DS75461	DS55461
35	30	0.7	300	33	55	2	TTL	NAND	DS75462	DS55462
35	30	0.7	300	33	55	2	TTL	OR	DS75463	DS55463
35	30	0.7	300	33	55	2	TTL	NOR	DS75464	DS55464
56	40	1.4	300	150	8	2	CMOS	AND	DS3631	DS1631
56	40	1.4	300	150	8	2	CMOS	NAND	DS3632	DS1632
56	40	1.4	300	150	8	2	CMOS	OR	DS3633	DS1633
56	40	1.4	300	150	8	2	CMOS	NOR	DS3634	DS1634
80	50	0.7	300	125	75	2	TTL/CMOS	AND	DS3611	DS1611
80	50	0.7	300	125	75	2	TTL/CMOS	NAND	DS3612	DS1612
80	50	0.7	300	125	75	2	TTL/CMOS	OR	DS3613	DS1613
80	50	0.7	300	125	75	2	TTL/CMOS	NOR	DS3614	DS1614
(Note 1)	56	1.3	300	1000	28	2	TTL/CMOS	NAND	DS3686	DS1686
(Note 1)	-56	-1.3	300	1000	28	2	TTL/CMOS	NAND	DS3687	DS1687
13.5	15	$v_{\mathrm{CC}}{ }^{-1.8}$	300	150	0.015	2	CMOS	AND	$\begin{aligned} & \text { MM74C908, } \\ & \text { MM74C918 } \end{aligned}$	
(Note 1)	45	1.6	250	1000	70	10	(Note 2)	(Note 2)	DS3654	

[^6]DS1611/DS3611, DS1612/DS3612, DS1613/DS3613,
DS1614/DS3614 dual peripheral drivers

general description

The DS1611 series of dual peripheral drivers was designed for those applications where a higher breakdown voltage is required than that provided by the DS75451 series. The pin outs for the circuits are identical to those of the DS75451 through DS75454. The DS1611 series parts feature high voltage outputs (80 V breakdown in the "OFF" state) as well as high current (300 mA in the "ON" state). Typical applications include power drivers, relay drivers, lamp drivers, MOS drivers, and memory drivers.

features

- 300 mA output current capability per driver
- High voltage outputs (80 V)
- TTL I LS compatible
- Input clamping diodes
- Chorce of logic function
connection diagrams (Dual-In-Line and Metal Can Packages)

See NS Package HOBC
absolute maximum ratings (Note 1)

operating conditions

Supply Voltage, VCC	7.0 V
Input Voltage	5.5 V
Output Voltage (Note 5)	80 V
Continuous Output Current	300 mA
Continuous Total Power Dissipation (Note 4)	800 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS761X	4.5	5.5	V
DS361X	4.75	5.25	V
Temperature (TA)			
DS161X	-55	+125	${ }^{\circ} \mathrm{C}$
DS361X	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

DS1611/DS3611, DS1612/DS3612, DS 1613/DS3613, DS1614/DS3614 (Notes 2 and 3)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	High Level Input Voltage	(Figure 1)			2			V
$V_{\text {IL }}$	Low Level Input Voltage	(Figure 2)					0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA},($ Figure 3)				-1.2	-1.5	V
V_{OL}	Low Level Output Voltage	$V_{c c}=$ Min, (Figure 1)	DS 1611, $V_{L}=0.8 V$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.5	\checkmark
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.8	V
			DS1612, $V_{1 H}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.5	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.8	V
			DS1613, $\mathrm{V}_{14}=0.8 \mathrm{~V}$	$\mathrm{I}_{\text {OL }}=100 \mathrm{~mA}$		0.2	0.5	V
				$\mathrm{t}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.8	V
			DS1614. $V_{1 /}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.5	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.8	V
			DS3611, $\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}$	$\mathrm{t}_{\text {OL }}=100 \mathrm{~mA}$		0.2	0.4	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.7	V
			DS3612, $\mathrm{V}_{1 H}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.4	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.7	V
			DS3613, $V_{\text {IL }}=0.8 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.4	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.7	V
			DS3614, $\mathrm{V}_{14}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.2	0.4	V
				$\mathrm{I}_{\text {OL }}=300 \mathrm{~mA}$		0.45	0.7	V
V_{OH}	Dutput 8reakdown Voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}$, (Figure 1)	$\begin{aligned} & V_{I H}=2 V, \\ & I_{O H}=300 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DS1611, } \\ & \text { DS1613 } \end{aligned}$	80			V
			$\begin{aligned} & V_{H}=2 V \\ & V_{O H}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DS3611, } \\ & \text { DS3613 } \end{aligned}$	80			V
			$\begin{aligned} & V_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=300 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { DS1612, } \\ & \text { DS1614 } \end{aligned}$	80			V
			$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { DS3612. } \\ & \text { DS3614 } \end{aligned}$	80			V
1	Input Current at Maximum Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$, (Figure 2)					1	mA
$I_{1 H}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.4 \mathrm{~V}$, (Figure 2)					40	$\mu \mathrm{A}$
1 LL	Low Level Input Current	$V_{c c}=$ Max, $V_{1}=0.4 \mathrm{~V}$, (Figure 3)				-1	-1.6	mA
${ }^{1} \mathrm{CCH}$	Supply Eurrent	$V_{c c}=$ Max, Outputs High, (Figures 4 and 5)	$V_{1}=5 \mathrm{~V}$	$\begin{aligned} & \text { DS1611/ } \\ & \text { DS3611 } \\ & \hline \end{aligned}$			11	mA
				$\begin{aligned} & \hline \text { DS1613/ } \\ & \text { DS3613 } \end{aligned}$			14	mA
			$v_{1}=0 \mathrm{~V}$	$\begin{aligned} & \hline \text { DS1612/ } \\ & \text { DS3612 } \end{aligned}$			14	mA
				$\begin{aligned} & \hline \text { DS1614/ } \\ & \text { DS3614 } \\ & \hline \end{aligned}$			17	mA
${ }^{\text {ccel }}$	Supply Current	$V_{C C}=$ Max, Dutputs Low, (Figures 4 and 5)	$\mathrm{V}_{1}=0 \mathrm{~V}$	$\begin{aligned} & \hline \text { DS1611/ } \\ & \text { DS3611 } \\ & \hline \end{aligned}$			69	mA
				$\begin{aligned} & \hline \text { DS1613/ } \\ & \text { DS3613 } \end{aligned}$			73	mA
			$V_{1}=5 \mathrm{~V}$	$\begin{aligned} & \hline \text { DS1612/ } \\ & \text { DS3612 } \end{aligned}$			71	mA
				$\begin{aligned} & \text { DS1614/ } \\ & \text { DS3614 } \end{aligned}$			79	mA

switching characteristics $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
DS1611／DS3611，DS1612／DS3612，DS1613／DS3613，DS1614／DS3614

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PD }}$	Propagation Delay Time， Low－To－High Leve！Output	$I_{0} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega,$ （Figure 6）	$\begin{aligned} & \text { DS1611/ } \\ & \text { DS3611 } \end{aligned}$		130		ns
			$\begin{aligned} & \text { DS1612/ } \\ & \text { DS3612 } \\ & \hline \end{aligned}$		110		ns
			$\begin{aligned} & \text { DS1613/ } \\ & \text { DS3613 } \end{aligned}$		125		ns
			$\begin{aligned} & \hline \text { DS1614/ } \\ & \text { DS3614 } \end{aligned}$		220		ns
$t_{\text {PDO }}$	Propagation Delay Time， High－To－Low Level Output	$\begin{aligned} & \mathrm{t}_{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \rho \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { (Figure 6) } \end{aligned}$	$\begin{aligned} & \text { DS1611/ } \\ & \text { DS3611 } \end{aligned}$		125		ns
			$\begin{aligned} & \hline \text { DS1612/ } \\ & \text { DS3612 } \\ & \hline \end{aligned}$		110		ns
			$\begin{aligned} & \hline \text { DS1613/ } \\ & \text { DS3613 } \end{aligned}$		125		ns
			$\begin{aligned} & \hline \text { DS1614/ } \\ & \text { DS3614 } \end{aligned}$		150		ns

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Temperature Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2：Unless otherwise specified min／max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS3611，DS3612，DS3613，DS3614， and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1611，DS1612，DS1613 and DS1614．All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$ ．
Note 3：All currents into device pins shown as positive，out of device pins as negative，all voltages referenced to ground unless otherwise noted．All values shown as max or min on absolute value basis．
Note 4：Maximum junction temperature is $150^{\circ} \mathrm{C}$ ．For operating at elevated temperatures，the package must be derated based on a thermal resis－ tance，$\theta \downharpoonleft \mathrm{A}$ ，of $110^{\circ} \mathrm{C} / \mathrm{W}$ ．
Note 5：Maximum voltage to be applied to either output in the＂OFF＂state．
Note 6：Delay is measured with a 50Ω load to $10 \mathrm{~V}, 15 \mathrm{pF}$ load capacitance，measured from 1.5 V input to 50% point on output．
schematic diagrams (each driver)

DS3611 Dual AND Peripheral Driver

DS3612 Dual NAND Peripheral Driver

DS3613 Dual OR Peripheral Driver

schematic diagrams (con't)

DS3614 Dual NOR Peripheral Driver

test circuits

CIRCUIT	INPUT UNDER TEST	OTHER INPUT	DUTPUT	
DS3611	$V_{I H}$	$V_{I H}$	APPLY	MEASURE
DS3612	$V_{I L}$	$V_{C C}$	$I_{O H}$	$V_{O H}$
	$V_{I H}$	$V_{I H}$	$V_{O L}$	$V_{O L}$
DS3613	$V_{I L}$	$V_{C C}$	$I_{O H}$	$V_{O L}$
	$V_{I H}$	$G N D$	$V_{O H}$	
DS3614	$V_{I L}$	$V_{I L}$	$I_{O L}$	$V_{O H}$
	$V_{I H}$	$G N D$	$V_{O L}$	$V_{O L}$
	$V_{I L}$	$V_{I L}$	$I_{O H}$	$V_{O L}$

NOTE: Each input is tested separately.
FIGURE 1. $V_{I H}, V_{I L}, V_{O H}, V_{O L}$

FIGURE 2. $I_{1}, I_{1 H}$

Both pron ere erwe simulumeouly.

Note 1: Eech input is wastod mperraty.
Nown 2: When ustimp DS3613 mad DS3614 input not under tast is grounded. For all other tircuity it is at 4.5 V .

FIGURE 3. $V_{1}, I_{\text {IL }}$

Both give we wrod rimuthmoundy.
test circuit and switching time waveforms

Now 1: Tha peiee penerstor hes the following cheractoristic: PRR $=1.0 \mathrm{MH}, Z_{\text {OUT }} \approx 500$.

FIGURE 6. Switching Times of Complete Drivers

Peripheral/Power Drivers

DS1631/DS3631, DS1632/DS3632, DS1633/DS3633, DS1634/DS3634 CMOS dual peripheral drivers

general description

The DS1631 series of dual peripheral drivers was designed to be a universal set of interface components for CMOS circuits.

Each circuit has CMOS compatible inputs with thresholds that track as a function of V_{cc} (approximately $1 / 2 \mathrm{~V}_{\mathrm{Cc}}$) The inputs are PNPs providing the high impedance necessary for interfacing with CMOS.

Outputs have high voltage capability, minimum breakdown voltage is 56 V at $250 \mu \mathrm{~A}$.

The outputs are Darlington connected transistors. This allows high current operation (300 mA max) at low internal $V_{C C}$ current levels since base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply.

Typical $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$ power is 28 mW with both outputs $\mathrm{ON} . \mathrm{V}_{\mathrm{CC}}$ operating range is 4.5 V to 15 V .

The circuit also features output transistor protection if the V_{CC} supply is lost by forcing the output into the
high impedance OFF state with the same breakdown levels as when $V_{C C}$ was applied.

Pin-outs are the same as the respective logic functions found in the following popular series of circuits: DS75451, DS75461, DS3611. This feature allows direct conversion of present systems to the MM74C CMOS family and DS1631 series circuits with great power savings.

The DS 1631 series is also TTL/LS compatıble at $V_{11}=$ 5 V

features

- CMOS compatible inputs
- TTL/DTL compatible inputs
- High impedance imputs

PNP's

- High output voltage breakdown

56 V min

- High output current capability

300 mA max

- Same pin-outs and logic functions as DS75451, DS75461 and DS3611 series circuits
- Low $V_{C c}$ power dissipation (28 mW both outputs "ON" at 5 V)
connection diagrams (Dual-In-Line and Metal Can Package)

Order Number DS1631J-8, DS3631J-8 or DS3631N-8

Order Number DS1632J.B, DS3632J-8 or DS3632N-8

Order Number DS1633J-B, DS3633J-8 or DS3633N-8

See NS Package J08A or N08A

TOP VIEW
[Pin 4 is elec fireslly connected to the case! Order Number DS 1632 H or DS3632H

TOP VIEW
(Pin 4 is electrically connected to the case)
Order Number DS1633H or DS3633H

Order Number DS1634, J-8, DS3634 J-8 or DS3634N-8

TOP VIEW
(Pin 4 is electrically sonnested to the case) Order Number DS 1631 H or DS3631H

IOP VIEW
(Pin 4 is electrically connected to the case)
Order Number
DS1634H or DS3634H

See NS Package H08C
absolute maximum ratings (Note 1)

Supply Voltage	16 V
Voltage at Inputs	-0.3 V to V CC +0.3 V
Output Voltage	56 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)
operating conditions

	MIN	MAX	UNITS
Supply Voltage, VCC DS1631/DS1632/ DS1633/DS1634	4.5	15	V
$\begin{aligned} & \text { DS3631/DS3632/ } \\ & \text { DS3633/DS3634 } \end{aligned}$	4.75	15	v
$\begin{gathered} \text { Temperature, } T_{A} \\ \text { DS1631/DS1632/ } \\ \text { DS1633/DS1634 } \end{gathered}$	-55	$+125$	${ }^{\circ} \mathrm{C}$
DS3631/DS3632/ DS3633/DS3634	0	+70	${ }^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ALL CIRCUITS						
Logical "1" Input Voltage	(Figure 1)	$V_{C C}=5 \mathrm{~V}$	3.5	2.5		V
		$V_{C C}=10 \mathrm{~V}$	8.0	5		V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	12.5	7.5		V
Logical "0" Input Voltage	(Figure 1)	$V_{C C}=5 \mathrm{~V}$		2.5	1.5	V
		$V_{C C}=10 \mathrm{~V}$		5.5	2.0	V
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		7.5	2.5	V
IIH Logical "1" Input Current	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$, (Figure 2)			0.1	10	$\mu \mathrm{A}$
Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$, (Figure 3)	$V_{C C}=5 \mathrm{~V}$		-50	-120	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		-200	-360	$\mu \mathrm{A}$
VOH Output Breakdown Voltage	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{IOH}=250 \mu \mathrm{~A},($ Figure 1$)$		56	65		V
Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min, }(\text { Figure } 1), \\ & \mathrm{DS} 1631, \mathrm{DS} 1632, \\ & \text { DS1633, } \mathrm{DS} 1634 \end{aligned}$	$\mathrm{I}^{\mathrm{OL}}=100 \mathrm{~mA}$		0.85	1.1	V
		${ }^{1} \mathrm{OL}=300 \mathrm{~mA}$		1.1	1.4	V
	$\begin{aligned} & \text { VCC }=\text { Mın, (Figure } 1 \text {). } \\ & \text { DS3631, DS3632, } \\ & \text { DS3633, DS3634 } \end{aligned}$	${ }^{1} \mathrm{OL}=100 \mathrm{~mA}$		0.85	1.0	V
		${ }^{1} \mathrm{OL}=300 \mathrm{~mA}$		1.1	1.3	V

DS 1631/DS3631						
${ }^{1} \mathrm{CC}(0)$ Supply Currents	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V},($ Figure 4)	$V_{C C}=5 \mathrm{~V}$	Output Low Both Drivers	7	11	mA
		$V_{C C}=15 \mathrm{~V}$		14	20	mA
' $\mathrm{CC}(1)$	(Figure 4)	$V_{C C}=5 \mathrm{~V}, V_{1 N}=5 \mathrm{~V}$	Output High Both Drivers	2	3	$m \mathrm{~A}$
		$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		7.5	10	mA
tPD1 Propagation to "1"	$V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V} .$ (Figure 5)			200		ns
tPDO Propagation to "0"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, V_{\mathrm{L}}=10 \mathrm{~V},$ (Figure 5)			150		ns

DS1632/DS3632

${ }^{1} \mathrm{CC}(0)$	Supply Currents	(Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output Low	8	12	$m \mathrm{~A}$
			$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		18	23	mA
ICC(1)		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, (Figure 4)	$V_{C C}=5 \mathrm{~V}$	Output High	2.5	3.5	mA
			$V_{C C}=15 \mathrm{~V}$		9	14	mA
${ }^{\text {tPD }} 1$	Propagation to "1"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, V_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)			150		ns
tPD0	Propagation to "0"	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$ (Figure 5)			150		ns

DS 1633/DS3633

${ }^{1} \mathrm{CC}(0)$	Supply Currents	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, (Figure 4)	$V_{C C}=5 V$	Output Low	7.5	12	mA
			$V_{C C}=15 \mathrm{~V}$		16	23	mA
ICC(1)		(Figure 4)	$V_{C C}=5 V, V_{\text {IN }}=5 V$	Output High	2	4	mA
			$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		7.2	15	mA
tPD1	Propagation to "1"	$V_{C C}=5 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{oF}, R_{\mathrm{L}}=50 \Omega, V_{L}=10 \mathrm{~V}$ (Figure 5)			200		ns
tPDO	Propagation to '0'	$V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, V_{\mathrm{L}}=10 \mathrm{~V}$ (Figure 5)			150		ns

electrical characteristics (con't)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
DS 1634/OS3634							
Supply Currents	(Figure 4)	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output Low		7.5	12	mA
		$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$			18	23	mA
${ }^{1} \mathrm{CC}(1)$	$V_{\text {IN }}=O V,($ Figure 4)	$V_{C C}=5 V$	Output High		3	5	mA
		$V_{C C}=15 \mathrm{~V}$			11	18	mA
tPD1 Propagation to "1"	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}, \\ & \text { (Figure } 5 \text {) } \end{aligned}$				150		ns
tPD0 Propagation to " 0 "	$V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, R_{\mathrm{L}}=50 \Omega, V_{\mathrm{L}}=10 \mathrm{~V},$ (Figure 5)				150		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS $1631, \operatorname{DS} 1632, \operatorname{DS} 1633$ and DS1634 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3631, DS3632, DS3633 and DS3634. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

test circuits

CIRCUIT	INPUT UNDER TEST	OTHER INPUT	OUTPUT	
			APPLY	MEASURE
DS3631	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	${ }^{1} \mathrm{OH}$	V_{OH}
	$V_{\text {IL }}$	$V_{\text {CC }}$	IOL	VOL
DS3632	$V_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	IOL	V_{OL}
	$V_{\text {IL }}$	$V_{\text {CC }}$	${ }^{1} \mathrm{OH}$	VOH
DS3633	$\mathrm{V}_{\text {IH }}$	GND	${ }^{\mathrm{I}} \mathrm{OH}$	VOH
	$V_{\text {IL }}$	VIL	${ }^{\text {IOL }}$	VOL
DS3634	$V_{\text {IH }}$	GND	IOL	VOL
	$V_{\text {IL }}$	$V_{\text {IL }}$	IOH	VOH

Note: Each mput is tested separately
FIGURE 1. $V_{I H}, V_{I L}, V_{O H}, V_{O L}$

Each input is tested stparatuly.
FIGURE 2. IIH
DS1631/DS3631, DS1632/DS3632,
DS1633/DS3633, DS1634/DS3634
test circuits (con't) and switching time waveforms

Note A Each tefput is tested separately
Note B When testing DS1633 and DS1E34 input not under test is grounded. for all other circuits it is at $V_{c c}$.

FIGURE 3. IIL
Figure 4. Icc

Note 1: Tha pulse generatol has the foHowing characteristics: $P R R=500 \mathrm{kHz}, Z_{\text {Out }}=505$. Note 2: C_{L} micludes probe and ing capacitance.

FIGURE 5. Switching Times.

Peripheral/Power Drivers

DS3654 Printer Solenoid Driver

General Description

The DS3654 is a serial-to-parallel 10-bit shift register with a clock and data input, a data output from the tenth bit, and 10 open-collector clamped relay driver outputs suitable for driving printer solenoids.

Timing for the circuit is shown in Figure 1. Data input is sampled on the positive clock edge. Data output changes on the negative clock edge, and is always active. Enable
transfers data from the shift register to the open-collector outputs. Internal circuitry inhibits output enable for power supply voltage less than 6 V .

Each output sinks 250 mA and is internally clamped to ground at 50 V to dissipate energy stored in inductive loads.

Connection Diagram

Order Number DS3654J or DS3654N
See NS Packeige J16A or N16A

Pin Descriptions

Pin No.	Function
1	Output Enable
2	Output 6
3	Output 7
4	Output 8
5	Output 9
6	Output 10
7	Data Output
8	Ground
9	Clock Input
10	Data Input
11	Output 1
12	Output 2
13	Output 3
14	Output 4
15	Output 5
16	VcC

Logic Diagram

Absolute Maximum Ratings (Note 1)
Supply Voltage, VCC
Input Voltage
Output Supply, Vp-p
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Output Current (Single Output)
Ground Current
Average Power Dissipation, $\mathrm{TA}_{\mathrm{A}}=70^{\circ} \mathrm{C}$
Peak Power Dissipation $\mathrm{t}<10 \mathrm{~ms}$, Duty Cycle < 5\%

Operating Conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	7.5	9.5	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$
Output Supply $(V p-p)$		40	V

Electrical Characteristics (Notes 2,3 and 4) $V_{p-p}=30 \mathrm{~V}$ unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage		2.6			V
Logical "0' Input Voltage				0.8	V
Logical "1" Output Voltage Clamp	$I_{\text {CLAMP }}=0.3 A, V_{E N}=0 V$	45	50	65	V
Logical "1" Output Current	$V_{\mathrm{OH}}=40 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0$			1.0	$m A$
Logical " 0 " Output Voltage	$\mathrm{I}_{\mathrm{OL}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=2.6 \mathrm{~V}$			1.6	V
Logical " 1 "' Input Current					
Clock	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CL}}=2.6 \mathrm{~V}$	0.2	0.33		mA
Enable	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EN}}=2.6 \mathrm{~V}$	02	0.33		mA
Data	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=2.6 \mathrm{~V}$	0.3	0.57		mA
Clock	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \mathrm{V}_{C L}=2.6 \mathrm{~V}$		0.33	0.5	mA
Enable	$T_{A}=0{ }^{\circ} \mathrm{C}, V_{E N}=26 \mathrm{~V}$		0.33	0.5	mA
Data	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=2.6 \mathrm{~V}$		0.57	0.75	$m A$
Logical '0" Input Current					
Clock	$\mathrm{T}_{\mathrm{A}}=70^{-} \mathrm{C}, \mathrm{V}_{\mathrm{CL}}=1 \mathrm{~V}$		125		$\mu \mathrm{A}$
Enable	$\mathrm{T}_{\mathrm{A}}=70 \mathrm{C}, \mathrm{V}_{\mathrm{EN}}=1 \mathrm{~V}$		125		μA
Data	$\mathrm{T}_{A}=70^{\circ} \mathrm{C}, V_{D}=1 \mathrm{~V}$		220		$\mu \mathrm{A}$
Input Pull-Down Resistance					
Clock	$T_{A}=25^{\circ} \mathrm{C}, V_{C L}<V_{C C}$		8		$k \Omega$
Enable	$T_{A}=25^{\circ} \mathrm{C}, V_{E N}<V_{C C}$		8		$k \Omega$
Data	$T_{A}=25^{\circ} \mathrm{C}, V_{D}<V_{C C}$		4.5		$k \Omega$
Supply Current (lCC)					
Outputs Disabled	$\begin{aligned} & T_{A} \geq 25^{\circ} \mathrm{C}, V_{\mathrm{EN}}=0, V_{D O}=0 . \\ & V_{C C}=9.5 V \end{aligned}$		27	40	mA
Outputs Enabled	$\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}, V_{\mathrm{EN}}=2.6, \mathrm{I}_{\mathrm{OL}}=250 \mathrm{~mA}$ Eacn Pit		55	70	mA
Data Output Low (VDOL)	$V_{0}=0.1 O_{L}=0$		0.01	0.5	V
Data Output High ($\mathrm{V}_{\mathrm{DOH}}$)	$V_{D}=2.6 .1{ }^{\text {OH }}=-0.75 \mathrm{~mA}$	2.6	3.4		V
Data Output Pull-Down Resistance	$V_{D}=0, V_{D O}=1 \mathrm{~V}$		14		$k \Omega$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Uniess otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 75 V to 9.5 V power suppiy range All typical values given are for $\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents in to device pins are positive, all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{TA}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Clk, Data and Enable Inputs	(Figure 1)				
tFC				2.0	μs
trc	${ }^{\text {L }}$ BIT $\geq 10 \mu \mathrm{~s}$			2.0	$\mu \mathrm{s}$
${ }^{\text {t CLK }}$		2			$\mu \mathrm{s}$
tclk		3.5			$\mu \mathrm{s}$
thold				1.0	$\mu \mathrm{s}$
tset-up				1.0	μs
tre, trdin				1.0	$\mu \mathrm{s}$
tFE, tFDIN				5.0	$\mu \mathrm{s}$
Output 1-10	$V_{p-p}=20 \mathrm{~V}$				
tro	$R_{L}=100 \Omega, C_{L}<100 \mathrm{pF}$		1.2		$\mu \mathrm{s}$
${ }^{\text {tFO }}$	$R_{L}=100 \Omega, C_{L}<100 \mathrm{pF}$		1.2		μs
tPDEH			3.5		$\mu \mathrm{s}$
tPDEL			3.0		$\mu \mathrm{s}$
Data Output					
tPDH, TPDL	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$		0.8	2.5	$\mu \mathrm{s}$
${ }^{\text {t } R D}$			0.4		$\mu \mathrm{s}$
${ }^{\text {tFD }}$			0.4		$\mu \mathrm{s}$
Clock to Enable Delay					
${ }^{\text {t }} \mathrm{CE}$		$2 \mathrm{t}_{\text {BIT }}$			μs
Enable to Clock Delay		${ }^{\text {tBIT }}$			μs

Switching Time Waveforms

FIGURE 1. Shift Timing

Definition of Terms

Vp-p: Output power supply voltage. The return for open-collector relay driver outputs.
tBIT: Period of the incoming clock.
$V_{\text {CLK }}$: The voltage at the clock input.
$t_{C L K}$: The portion of $t_{\text {BIT }}$ when $V_{C L K} \geq 2.6 \mathrm{~V}$.
tcLK: The portion of tBIT when VCLK $\leq 0.8 \mathrm{~V}$
tSET-UP: The time prior to the end of TCLK required to insure valid data at the shift register input for subsequent clock transitions.
thOLD: The time following the start of tCLK required to transfer data within the shift register.

Peripheral/Power Drivers

DS1686/DS3686 dual positive voltage relay driver

general description

The DS1686/DS3686 is a high voltage/current positive voltage relay driver having many features not avalable in present relay drivers.

PNP inputs provide both TTL/LS compatibility and high input impedance for low input loading.

Output leakage is specified over temperature at an out put voltage of 54 V . Minimum output breakdowir (ac latch breakdown) is specified over temperature ot 5 mA . This clearly defines the actual breakdown of the device since the circuit has incorpolated in it an interinal reference which does not allow output beakdown latching found in existing relay divers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an extelital elampang (inductive transient voltage protection! diode Whell the output is turned "OFF" by input logic conditions the resulting inductive voltage tiansient seen at the output is detected by an internal zener reference. The reference then momentanly activates the output tiansistor long enough so that the relay energy is discharged. This feature eliminates the need of externalcircuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which allow high current operation at low internal $V_{C C}$
current levels-base drive for the output transistor is olstaned from the load in proportion to the required loading conditions. Typical VCC power with both outputs "ON" is 90 mW .

The circuit also features output transistor protection if the V_{CC} supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when V_{CC} was applied.

features

- TTLILS CMOS compatible inputs
- High imperdance inputs (PNP's)
- High output voftage breakdown 165 V typ)
- High outpur curient capabi:ly (300 mA max)
- Inteinal protection circuit thimates need for output protection diode
- Output breakdown protect on if V_{CC} supply is lost
- Low $V_{C C}$ power dissipation (90 mW (typ) both outputs "ON")
- Voltage and current levels compotible for use in telephone relay applications

connection diagrams

Pin 4 is in electrical contact w th the case
Drder Number DS 1686 H or DS 3686 H See NS Package H08C
schematic diagram

Drder Number DS1686J-8,
DS3686J-8 or DS3686N-8 See NS Package JO8A or NOBA truth table
Positive logic: $\overline{\mathrm{AB}}=\boldsymbol{X}$

\mathbf{A}	\mathbf{B}	OUTPUT \mathbf{X}
0	0	1
1	0	1
0	1	1
1	1	0

Logic " 0 " output "ON"
Logic " 1 " output "OFF"

absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage, VCC			
Input Voltage	15 V	DS1686	4.5	5.5	V
Output Voltage	56 V	DS3686	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Temperature, TA			
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS1686	-55	+125	${ }^{\circ} \mathrm{C}$
		DS3686	0	+70	C

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage				2.0			\checkmark
Ith	Logical "1" Input Current	$V_{C C}=$ Max, $V_{\text {IN }}=5.5 \mathrm{~V}$				0.01	40	$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical "0" Input Voltage						0.8	V
IIL	Logical "0" Input Current	$V_{C C}=$ Max, $V_{\text {IN }}=0.4 \mathrm{~V}$				-150	-250	$\mu \mathrm{A}$
$V_{C D}$	Input Clamp Voltage	$V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\text {CLAMP }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.0	-1.5	\checkmark
VOH	Output Breakdown	$V_{C C}=$ Max, $V_{\text {IN }}=O V, 1$ OUT $=5 \mathrm{~mA}$			56	65		V
${ }^{\mathrm{I} O H}$	Output Leakage	$V_{C C}=$ Max, $V_{\text {IN }}=0 \mathrm{~V}, V_{\text {OUT }}=54 \mathrm{~V}$				0.5	250	$\mu \mathrm{A}$
V_{OL}	Output ON Voltage	$\begin{aligned} & V_{C C}=M_{1 n}, \\ & V_{I N}=2 V \end{aligned}$	DS1686	${ }^{1} \mathrm{OL}=100 \mathrm{~mA}$		0.85	1.1	V
				$\mathrm{I}^{\mathrm{OL}}=300 \mathrm{~mA}$		1.0	1.3	V
			DS3686	$\mathrm{I}^{\mathrm{OL}}=100 \mathrm{~mA}$		0.85	1.0	V
				$\mathrm{IOL}=300 \mathrm{~mA}$		1.0	1.2	V
ICC(1)	Supply Current (Both Drivers)	$V_{C C}=$ Max, $V_{\text {IN }}=0 \mathrm{~V}$, Outputs Open				2	4	mA
${ }^{1} \mathrm{CC}(0)$	Supply Current (Both Drivers)	$V_{\text {CC }}=\operatorname{Max} V_{\text {IN }}=3 \mathrm{~V}$, Outputs Open				18	28	mA
tPD0	Propagation Delay to a Logical " 0 " (Output Turn ON)	$\begin{aligned} & C_{L}=15 \mathrm{pF}, V_{\mathrm{L}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \end{aligned}$				50		ns
tPD 1	Propagation Delay to a Logical " 1 " (Output Turn OFF)	$\begin{aligned} & C_{L}=15 \mathrm{pF}, V_{L}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \end{aligned}$				1		$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1686 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3686. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T} A=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR $=100 \mathrm{kHz}, 50 \%$ duty cycle, $Z_{\text {OUT }} \cong 50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance

Peripheral/Power Drivers

DS1687/DS3687 dual negative voltage relay driver

general description

The DS1687/DS3687 is a high voltage/current negative voltage relay driver having many features not available in present relay drivers.

PNP inputs provide both TTL/DTL compatibility and high input impedance for low input loading.

Output leakage is specified over temperature at an out. put voltage of -54 V . Minimum output breakdown (ac/ latch breakdown) is specified over temperature at -5 mA . This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection com. ponents and insures output transistor protection.

The outputs are Darlington connected transistors, which
allow high current operation at low internal $V_{C C}$ current levels-hase drive for the output transistor 15 obtained from the load in proportion to the required loading conditions. Typical $V_{C C}$ power with both outputs "ON" is 90 mW .

The circuit also features output transistor protection if the $V_{\text {CC }}$ supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when $V_{C C}$ was applied.

features

- TTL/LS/CMOS compatible inputs
- High impedance inputs (PNP's)
- High output voltage breakdown (65 V typ)
- High output current capability (300 mA max)
- Internal protection circuit eliminates need for output protection diode
- Output breakdown protection if $V_{C C}$ supply is lost
- Low VCC power dissıpation $(90 \mathrm{~mW}$ (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications

connection diagrams

Drder Number DS1687J-8, DS3687J-8 or DS3687N-8 See NS Package J08A or N08A

truth table

Positive logic: $\overline{\mathrm{AB}}=\mathrm{X}$		
\mathbf{A}	B	OUTPUT X
0	0	1
1	0	1
0	1	1
1	1	0

Logic " 0 " output "ON"
Logic " 1 " output "OFF"
absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage, $\mathrm{V}_{\text {CC }}$			
Input Voltage	15 V	DS1687	4.5	5.5	V
Output Voltage	56 V	DS3687	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to +150 C	Temperature, T_{A}			
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS1687	-55	+125	${ }^{\circ} \mathrm{C}$
		DS3687	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS V
VIH Logical '1" Input Voltage				2.0			
IIH Logical "1" Inout Current	$V_{C C}=$ Max, $V_{\text {IN }}=5.5 \mathrm{~V}$				1.0		$\mu \mathrm{A}$
$V_{\text {IL }}$ Logical "0" Input Voltage						0.8	V
IIL Logical '0' Input Current	$V_{C C}=M_{a x}, V_{\text {IN }}=0.4 V$				-150	-250	$\mu \mathrm{A}$
VCD Input Clamp Voltage	$V_{C C}=5 \mathrm{~V}, \mathrm{ICLAMP}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.0	-1.5	v
VOH Output Breakdown	$V_{C C}=$ Max, $V_{\text {IN }}=0 \mathrm{~V}, \mathrm{IOUT}=-5 \mathrm{~mA}$			-56	-65		\checkmark
IOH Output Leakage	$V_{C C}=M_{\text {ax }}, V_{\text {IN }}=0 V, V_{O U T}=-54 \mathrm{~V}$				-0.5	-250	$\mu \mathrm{A}$
Output ON Voltage	$\begin{aligned} & V_{C C}=M \mathrm{Min}, \\ & V_{I N}=2 V \end{aligned}$	DS1687	$\mathrm{I}_{\mathrm{OL}}=-100 \mathrm{~mA}$		-0.9	-1.1	\checkmark
			$\mathrm{I}_{\mathrm{OL}}=-300 \mathrm{~mA}$		-1.0	-1.3	V
		DS3687	IOL $=-100 \mathrm{~mA}$		-0.9	-1.0	V
			${ }^{1} \mathrm{OL}=-300 \mathrm{~mA}$		-1.0	-1.2	V
ICC(1) Supply Current (Both Drivers)	$V_{C C}=M_{a x}, V_{\text {IN }}=0 V$, Outputs Open				2	4	mA
ICC(0) Supply Current (Both Drivers)	$V_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, Outputs Open				18	28	mA
tPD(ON) Propagation Delay to a Logical "0" (Output Turn ON)	$\begin{aligned} & C_{L}=15 \mathrm{pF}, V_{\mathrm{L}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \end{aligned}$				50		ns
tPD(OFF) Propagation Delay to a Logical " 1 " (Output Turn OFF)	$\begin{aligned} & C_{L}=15 \mathrm{pF}, V_{\mathrm{L}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \end{aligned}$				1.0		$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1687 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3687. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics PRR $=1 \mathrm{MHz}, 50 \%$ duty cycle, $Z_{\text {OUT }} \cong 50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Note 2: C_{L} inciudes probe and jig capacitance.

N National Semiconductor

Peripheral/Power Drivers

DS55450/DS75450 series dual peripheral drivers

general description

The DS55450/DS75450 series of dual peripheral drivers are a family of versatile devices designed for use in systems that use TTL or LS logic. Typical application include high speed logic buffers, power drivers, relay drivers, lamp drivers, MOS driveIs, bus drivers and memory drivers.

The DS55450/DS75450 series are unique general purpose devices each featuring two standard Series 54/74 TTL gates and two uncommitted, high current, high voltage NPN transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The DS55451/DS75451, DS55452/DS75452, DS55453/ DS75453 and DS55454/DS75454 are dual peripheral

AND, NAND, OR and NOR divers, respectively, (positive logic) with the output of the logic gates internally connected to the bases of the NPN output transistors.

features

- 300 mA output current capability
- High voltage outputs
- No output latch-up at 20 V
- High speed switching
- Choice of logic function
- TTL or LS compatible diode-clamped inputs
- Standard supply voltages
- Replaces TI "A" and "B" series
connection diagrams (Dual-In-Line and Metal Can Packages)

Order Number
DS55450J, DS75450J, or DS75450N

Order Number DS55451J-8, DS75451J-8 or DS75451N-8

Pin 4 is th eloctract consect putb ine base Order Number DS55451H or DS75451H

Order Number DS55452J-8, DS75452J-8 or DS75452N-8

Order Number DS55453J-8, DS75453J-8 or DS75453N. 8 OBA or NOBA

Order Number DS55454J-8, DS75454J-8 or DS75454N-8 See NS Pack age H08C

Supply Voltage, (V_{CC}) (Note 2)	7.0 V
Input Voltage	5.5 V
Inter-emitter Voltage (Note 3)	5.5 V
$\mathrm{V}_{\text {CC }}$-to-Substrate Voltage DS55450/DS75450	35 V
Collector-to-Substrate Voltage DS55450/OS75450	35 V
Collector-Base Voltage DS55450/DS75450	35 V
Collector-Emitter Voltage (Note 4) DS55450/DS75450	30 V
Emitter-Base Voltage DS55450/DS75450	5.0 V
Output Voltage (Note 5) DS55451/DS75451, DS55452/DS75452. DS55453/DS75453, DS55454/DS 75454	30 V
Collector Current (Note 6) DS55450/DS75450	300 mA
Output Current (Note 6) DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454	300 mA
Continuous Total Dissipation	800 mW $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

operating conditions (Note 7)

	MIN	MAX	UNITS
Supply Voltage, (VCC)			
DS5545X	4.5	5.5	V
OS7545X	4.75	5.25	V
Temperature, (TA)			
DS5545X	-55	+125	${ }^{\circ} \mathrm{C}$
DS7545X	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics DS55450/DS75450 (Notes 8 and 9)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

TTL GATES

V_{1+1}	High Level Input Voltage	(Figure 1)			2			V
$\mathrm{V}_{\text {LL }}$	Low Level Input Voltage	(Figure 2)					0.8	\checkmark
V_{1}	Input Clamp Voltage						-1.5	\checkmark
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{1 \mathrm{~L}}=08 \mathrm{~V}, \mathrm{I}_{\mathrm{OM}}=-400 \mu \mathrm{~A}$, (Figure 2)			2.4	3.3		V
V_{OL}	Low Level Output Voltage	$V_{C C}=M i n, V_{I H}=2 V, I_{O L}=16 \mathrm{~mA}$ (Figure 1)		DS55450		0.22	0.5	\checkmark
				DS75450		0.22	0.4	V
I_{1}	Input Current at Maximum nnput Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$, (Figure 4)		input A			1	mA
				Input G			2	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$. (Figure 4)		Input A			40	$\mu \mathrm{A}$
				Input G			B0	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{c c}=$ Max, $V_{1}=0.4 \mathrm{~V}$. (Figure 3)		Input A			-1.6	mA
				Input G			-3.2	mA
Ios	Short Circuit Output Current	$V_{c c}=$ Max, (Figure 5), (Note 10)			-1B		-55	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current	$V_{c c}=$ Max, $V_{1}=0 \mathrm{~V}$. Outputs High, (Figure 6)				2	4	mA
$\mathrm{I}_{\mathrm{CcL}}$	Supply Current	$V_{c c}=$ Max, $V_{1}=5 \mathrm{~V}$, Outputs Low, (Figure 6)				6	11	mA
OUTPUT TRANSISTORS								
$V_{\text {(ba) }}$	Collector-Base Breakdown Voltage	$I_{C}=100 \mu \mathrm{~A}, I_{E}=0$			35			V
$\mathrm{V}_{\text {(BR) }}$ CER	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$			30			V
$V_{\text {(bR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$			5			V
$h_{\text {FE }}$	Static Forward Current Transfer Ratio	$V_{C E}=3 \mathrm{~V}$, (Note 11)	DS55450, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	25			V
				$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	30			V
			DS55450, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	10			V
				$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	15			V
			DS75450, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	25			V
				$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	30			V
			DS75450, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	20			V
				$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	25			v
$V_{\text {be }}$	Base.Emitter Voltage	(Note 11)	OS55450	$\mathrm{I}_{\mathrm{s}}=10 \mathrm{~mA}, \mathrm{i}_{\mathrm{c}}=100 \mathrm{~mA}$		0.85	1.2	V
				$\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$		1.05	1.4	V
			DS75450	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		0.85	1	V
				$I_{B}=30 \mathrm{~mA}, I_{C}=300 \mathrm{~mA}$		1.05	1.2	V
$V_{\text {CE }}$ (SAT)	Collector-Emitter Saturation Voltage	(Note 11)	DS55450	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		0.25	0.5	V
				$I_{B}=30 \mathrm{~mA}, I_{C}=300 \mathrm{~mA}$		0.5	0.8	V
			DS75450	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		0.25	0.4	V
				$\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$		0.5	0.7	V

electrical characteristics (con't)

DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 (Notes 8 and 9)

	PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS
$V_{1 H}$	High-Level Input Voltage	(Fiqure 7)				2			\checkmark
$V_{\text {IL }}$	Low-Level Input Voltage							0.8	\checkmark
v_{1}	Input Clamp Voltage	$V_{C C}=$ Min, $I_{1}--12 \mathrm{~mA}$						-1.5	V
V_{01}	Low-Level Output Voltage	$\begin{aligned} & V_{C C}=\text { Min, } \\ & \text { (Figure 7) } \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$	$\mathrm{IOL}^{\text {a }}=100 \mathrm{~mA}$	DS55451, DS55453		0.25	0.5	\checkmark
					DS75451, DS75453		0.25	0.4	V
				$\mathrm{I}_{\text {O1. }}=300 \mathrm{~mA}$	DS55451, DS55453		0.5	0.8	V
					DS75451, DS75453		0.5	0.7	\checkmark
			$V_{1 H}=2 V$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	DS55452, DS55454		0.25	0.5	\checkmark
					DS75452, DS75454		0.25	0.4	V
				$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$	DS55452, DS55454		0.5	0.8	\checkmark
					DS75452, DS75454		0.5	0.7	\checkmark
${ }^{\mathrm{I} \mathrm{OH}}$	High-Level Output Current	$V_{c c}=M i n,$ (Figure 7)	$\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}$	$V_{1 H} 2 \mathrm{~V}$	DS55451, DS55453			300	$\mu \mathrm{A}$
					DS75451, DS75453			100	$\mu \mathrm{A}$
				$V_{I L}=0.8 \mathrm{~V}$	DS55452, DS55454			300	$\mu \mathrm{A}$
					DS75452, DS75454			100	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$. (Figure 9)						1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=24 \mathrm{~V}$, (Figure 9)						40	$\mu \mathrm{A}$
$I_{1 L}$	Low-Level Input Current	$V_{c c}=$ Max, $V_{1}=0.4 \mathrm{~V}$, (Figure 8)					-1	-1.6	mA
ICCH	Supply Current, Outputs High	$\begin{aligned} & v_{\mathrm{CC}}=\text { Max, } \\ & \text { (Figure } 10 \text {) } \end{aligned}$	$V_{1}=5 \mathrm{~V}$		DS55451/DS75451		7	11	mA
			$V_{1}=0 \mathrm{~V}$		DS55452/DS75452		11	14	mA
			$V_{1}=5 \mathrm{~V}$		DS55453'DS75453		8	11	mA
			$V_{1}=0 \mathrm{~V}$		DS55454/DS75454		13	17	mA
${ }^{\text {c CcL }}$	Supply Current, Outputs Low	$V_{c c}=M a x,$ (Figure 10)	$V_{1}=0 \mathrm{~V}$		DS55451/DS75451		52	65	mA
			$V_{1}=5 \mathrm{~V}$		DS55452/DS75452		56	71	mA
			$V_{1}=0 \mathrm{~V}$		DS55453/DS75453		54	68	mA
			$V_{1}=5 \mathrm{~V}$		DS55454/DS75454		61	79	mA

switching characteristics

DS55450/DS $75450\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PLH }}$	Propayation Delay Tıme, Low To High Level Output	$C_{L}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=400 \mathrm{~s} 2, \mathrm{TTL}$ Gates, (Figure 12)		12	22	ns
			$R_{L}=5082, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		20	30	nis
$\mathrm{t}_{\mathrm{PH} L}$	Propagation Delay Time, High-To Low Level Output	$C_{L}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=40052$, TTL Gates, (Figure 12)		8	15	ns
			$R_{L}=50 S 2, l_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		20	30	ns
${ }^{\text {t }}$ LH	Transition Time, Low. To.High Level Output	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega 2, \mathrm{I}_{\mathrm{C}} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)			7	12	ns
${ }^{\text {t }}$ thL	Transition Time, High- To-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{~S} 2, \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)			9	15	ns
V_{OH}	High Level Output Voltage After Switching	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}} \approx 300 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$, (Figure 15)		$V_{\text {S }}-6.5$			mv
t_{0}	Delay Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE} \text { (OFF)}}=1 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5052, \text { (Figure 13), (Note 12) } \end{aligned}$			8	15	ns
t_{R}	Rise Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}, \mathrm{~V}_{\text {BE(OFF })}=-1 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=50 \Omega 2, \text { fFigure } 13 /,(\text { Note } 12) \end{aligned}$			12	20	ns
t_{s}	Storage Time	$\begin{aligned} & I_{C}=200 \mathrm{~mA}, I_{B(t)}=20 \mathrm{~mA}, I_{\mathrm{B}}=-40 \mathrm{~mA}, V_{\mathrm{BE}(\mathrm{OFF})}=-1 \mathrm{~V}, \\ & C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega,(\text { (IGure 13), (Note 12) } \end{aligned}$			7	15	ns
${ }^{\text {t }}$ F	Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BEIOFF}}=-1 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega .(\text { Figure } 13) \text {, (Note 12) } \end{aligned}$			6	15	ns

switching characteristics (con't)
DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Piopagation Delay Time, Low To High Level Output		DS55451 DS75451		18	25	ns
		C, $15 \mathrm{pF}, \mathrm{F} .50 \Omega$.	DS55452 DS75452		26	35	ns
		$\mathrm{I}_{0} \approx 200$ пiA (Figure 14)	DS55453 DS75453		18	25	ns
			DS55454 DS75454		27	35	ns
$\mathrm{t}_{\text {PHL }}$	Propaqation Delay Time, High-To Low Level Output	$\begin{aligned} & C_{1}-15 \mathrm{pF} \quad R_{1}-50 \Omega 2 \\ & t_{0}=200 \mathrm{~mA} \quad \text { (Figure } 14 \text {) } \end{aligned}$	DS55451 DS75451		18	25	ns
			DS55452 DS75452		24	35	ns
			DS55453 DS75453		16	25	ns
			OS55454 D575454		24	35	ns
$\mathrm{t}_{\text {TLH }}$	Transition Time. Low. To High Level Output	$C_{L}-15 \mathrm{FF} \mathrm{R}_{-} 5082, \mathrm{l}$, 200 mA (Figure 14)			5	8	ns
${ }^{\text {t }}$ THL	Tiansition Time, High Ta Low Level Output	$C_{L}=15 \mathrm{pF} \cdot \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{I}_{\bigcirc}=200 \mathrm{~mA}$ (Figure 14)			7	12	ns
VOH	High Level Ourput Voltage After Switching	$\mathrm{V}_{\mathrm{s}}=20 \mathrm{~V}$ in $=300 \mathrm{~mA}$. (Figure 15)		$V_{s}-6.5$			$m V$

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operatıng Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operstion
Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
Note 3: The voltage between two emitters of a mutiple emitter transistor.
Note 4: Value applies when the base-emitter resistance ($R_{B E}$) is equal to or less than 500Ω
Note 5: The maximum voltage which should be applied to any output when it is in the "OFF" state
Note 6: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the coritinuous dissipation rating.
Note 7: For the DS55450/DS75450 only, the substrate (pin 8) must always be at the most-negative device voltage for proper operation.
Note 8: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS55450 series and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 75450 series All typicals are given for $V_{C C}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max of min on absolute value basis.
Note 10: Only one output at a time should be shorted.
Note 11: These parameters must be measured using pulse techniques. tw $=300 \mu \mathrm{~s}$, duty $\mathrm{cycle}<2 \%$.
Note 12: Applies to output transistors only.

schematic diagrams

schematic diagrams (con't)

flesistor values shown ase nominal
truth tables $(\mathrm{H}=$ high level, $\mathrm{L}=$ low level)

DS55451/DS75451			
A B Y L L L (ON State) L H L (ON State) H L L. (ON State) H H H (OFF State)			

DS55452/DS75452			
A	B	Y	
L	L	H (OFF State)	
L	H	H (OFF State)	
H	L	H (OFF State)	
H	H	L (ON State)	

DS55453/DS75453			
A	B	Y	
L	L	I. (ON State)	
L	H	H (OFF State)	
H	L	H (OFF State)	
H	H	H (OFF State)	

DS55454/DS75454			
A	B	Y	
L	L	H (OFF State)	
L	H	L (ON State)	
H	L	L (ON State)	
H	H	L (ON State)	

dc test circuits

Both inputs ane tested smultaneousty
Figure 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$

FIGURE 4. $\mathrm{I}, \mathrm{I} / \mathrm{H}$

Evch mput is tested separately
FIGURE 2. $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$

Each gate is tosterd seperitaly
FIGURE 5. IOS

Figure 3. $V_{1}, I_{\text {IL }}$

Both gates ere tested smulureounty
FIGURE 6. ${ }^{\mathbf{I}} \mathbf{C C H}, \mathrm{ICCL}$

dc test circuits (con't)

CIRCUIT	INPUT UNDER TEST	OTHER INPUT	OUTPUT	
			APPLY	MEASURE
DS54451	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c c} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	${ }^{\mathrm{l}} \mathrm{OH}$ $V_{O L}$
DS54452	$\begin{aligned} & v_{1 H} \\ & v_{I L} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c c} \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & V_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OH}} \end{aligned}$
DS54453	$\begin{aligned} & v_{I M} \\ & v_{I L} \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & V_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{v}_{\mathrm{OL}} \end{aligned}$
DS54454	$\begin{aligned} & V_{\text {IH }} \\ & V_{\text {IL }} \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & V_{\mathrm{IL}} \end{aligned}$	Iol V_{OH}	$\begin{aligned} & V_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OH}} \end{aligned}$

FIGURE 7. $V_{I H}, V_{I L}, I_{\mathrm{OH}}, V_{\mathrm{OL}}$

Figure 8. $V_{1,} I_{\text {IL }}$

Each inpui is rested separately

FIGURE 10. ${ }^{1} \mathrm{CCH},{ }^{1} \mathrm{CCL}$ for AND, NAND Circuits

Both gates are tested smmiteneousty
FIGURE 11. $\mathbf{I C C H}^{\prime}$ ICCL for OR, NOR Circuits
ac test circuits and switching time waveforms

FIGURE 12. Propagation Delay Times, Each Gate (DS55450/DS75450 Dnly)

FIGURE 13. Switching Times, Each Transistor (DS55450/DS75450 Dnly)
ac test circuits and switching time waveforms (con't)

FIGURE 14. Switching Times of Complete Drivers

FIGURE 15. Latch-Up Test af Complete Drivers

typical performance characteristics

FIGURE 16. DS55450/DS75450 TTL Gate High-Level Output Voltage vs High-Level Output Current

FIGURE 17. DS55450/DS75450 Transistor Static Forward Current Transfer Ratio vs Collector Current
typical performance characteristics (con't)

FIGURE 18. DS55450/DS75450 Transistor Base-Emitter Voltage vs Collector Current

FIGURE 19. Transistor Collector-Emitter Saturation Voltage vs Collector Current

typical applications

FIGURE 20. Gated Comparator

FIGURE 21. 500 mA Sink

FIGURE 22. Floating Switch

FIGURE 23. Square-Wave Generator
typical applications (con't)

FIGURE 24. Core Memory Driver

FIGURE 25. Dual TTL-to-MOS Driver

FIGURE 26. Dual MOS-to-TTL Driver

typical applications（con＇t）

figure 27．Balanced Line Driver

FIGURE 28．Dual Lamp or Relay Driver

FIGURE 29．Complementary Driver

FIGURE 30．TTL or DTL Positive Logic－Level Detector

Figure 31．MOS Negative Logic－Level Detector
typical applications (con't)

FIGURE 32. Logic Signal Comparator

FIGURE 33. In-Phase Detector

FIGURE 34. Multifunction Logic-Signal Comparator

FIGURE 35. Alarm Detector

2
 National Semiconductor

DS55460/DS75460 series dual peripheral drivers

general description

The DS55460/DS75460 series of dual peripheral drivers are functionally interchangeable with DS55450/ DS75450 series peripheral drivers, but are designed for use in systems that require higher breakdown voltages than DS55450/DS75450 series can provide at the expense of slightly slower switching speeds. Typical applications include power drivers, logic buffers, lamp drivers, relay drivers, MOS drivers, line drivers and memory drivers.

The DS55460 and DS75460 are unique general-purpose devices each featuring two standard $54 / 74$ series TTL gates and two uncommitted, high current, high voltage, NPN transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The DS55461/DS75461, DS55462/DS75462, DS55463/ DS75463 and DS55464/DS75464 are dual peripherat AND, NAND, OR and NOR drivers, respectively. (positive logic! with the output of the logic gates internally connected to the bases of the NPN output transistors.

features

- 300 mA output current capability
- High voltage outputs
- No output latch-up at 30 V
- Medium speed switching
- Circuit flexibility for varied applications and choice of logic function
- TTL or LS compatible diode-clamped inputs
- Standard supply voltages
connection diagrams (Dual-In-Line and Metal Can Packages)

S55460J, DS75460J, or DS75460N See NS Package J14A or N14A

Drder Number DS55461J.8, DS75461J-8 or DS75461N-8

Drder Number DS55462J.8. DS75462J. 8 or DS75462N-8

Drder Number DS55463J.8, DS75463J. 8 or DS75463N. 8 J08A or N08A
j08A or N08A

Drder Number DS55464J. 8 , DS75464J. 8 or DS75464N-8
 Order Number DS55464H or DS75464H
vec
T02 Wह\%

DS55463H or DS75463H

DS55464H or DS75464H
sə!ıəS 09ヤGLSQ/09ヤGSSa
absolute maximum ratings (Note 1)

Supply Voltage (Note 2)
Input Voltage
7V
5.5 V

Vcc-to-Substrate Voltage
DS55460/DS75460 5.5 V 40V
Collector-to-Substrate Voltage DS55460/DS75460 40 V
Collector-Base Voltage DS55460/DS75460 40 V
Collector-Emitter Voltage DS55460/DS75460 (Note 4) 40 V DS55460/DS75460 (Note 5) 25 V
Emitter-Base Voltage DS55460/DS75460 5 V
Output Voltage (Note 6) DS55461/DS75461, DS55462/DS75462, 35 V DS55463/CS75463, DS55464/DS75464
Collector Current (Note 7) DS55460/DS75460

300 mA
Output Current (Note 7) DS55461/DS75461, DS55462/DS75462, $\quad 300 \mathrm{~mA}$ DS55463/DS75463, DS55464/DS75464
Continuous Total Dissipation
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds) 800 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

operating conditions (Note 7)

	MIN	MAX	UNITS
Supply Voltage ($V_{C C}$)			
DS5546X	4.5	5.5	V
DS7546X	4.75	5.25	V
Temperature (TA)			
DS5546X	-55	+125	${ }^{\circ} \mathrm{C}$
DS7546X	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

DS55460/DS75460 (Notes 8 and 9)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
TTL GATES							
$\mathrm{V}_{1 \mathrm{H}} \quad$ High Level Input Voltage	(Figure 1)			2			V
$V_{\text {IL }} \quad$ Low Level Input Voltage	(Figure 2)					0.8	V
$V_{1} \quad$ Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{I}_{1}=-12 \mathrm{~mA},($ Figure 3)				-1.2	-1.5	V
$\mathrm{VOH}_{\mathrm{OH}} \quad$ High Level Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$, (Figure 2)			2.4	3.3		V
Low Level Dutput Voitage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}= \\ & 2 V, I_{O L}=16 \mathrm{~mA}, \end{aligned}$ (Figure 1)	DS55460			0.25	0.5	V
		DS75460			0.25	0.4	V
Incut Current at Maximum Infut Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Max, } \mathrm{V}_{1}= \\ & 5.5 \mathrm{~V} \text {, Figure 4) } \end{aligned}$	Input A				1	mA
		Input G				2	$m \mathrm{~A}$
High Level Input Current	$\begin{aligned} & V_{\mathrm{cc}}=\text { Max, } \mathrm{V}_{1}= \\ & 2.4 \mathrm{~V} \text {, (Figure 4) } \end{aligned}$	Input A				40	$\mu \mathrm{A}$
		Input G				80	$\mu \mathrm{A}$
Low Level Input Current	$V_{c c}=\operatorname{Max}, V_{1}=$ 0.4 V , (Figure 3)	Input A				-1.6	$m A$
		Input G				-3.2	$m A$
Ios Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, (Note 10), (Figure 5)			-18	-35	-55	$m A$
$\mathrm{I}_{\mathrm{CCH}} \quad$ Supply Current	$\mathrm{V}_{\mathrm{cc}}=$ Max, $\mathrm{V}_{1}=0 \mathrm{~V}$. Outputs High, (Figure 6)				2.8	4	mA
$\mathrm{I}_{\text {CCL }} \quad$ Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5 \mathrm{~V}$, Outputs Low, (Figure 6)				7	11	mA
OUTPUT TRANSISTORS							
$\begin{array}{ll}\mathrm{V}_{\text {(bR)cso }} & \begin{array}{l}\text { Collector-Base Breakdown } \\ \text { Voltage }\end{array}\end{array}$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$			40			V
$\begin{array}{ll} V_{\text {(BR)CER }} & \text { Collector-Emitter Breakdown } \\ V_{\text {(BR)CEO }} & \text { Voltage } \\ \hline \end{array}$	$I_{C}=100 \mu \mathrm{~A}, R_{\text {BE }}=500 \Omega$			40			V
	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \quad(\text { Note } 12)$			25			V
$V_{\text {(BR)EBo }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{C}=0$			5			V
Static Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=3 V \\ & \text { (Note 12) } \end{aligned}$	DS55460, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	25			
			$\mathrm{I}_{C}=300 \mathrm{~mA}$	30			
		DS55460, $\mathrm{T}_{\text {A }}=-55^{\circ} \mathrm{C}$	$I_{C}=100 \mathrm{~mA}$	10			
			$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	15			
		DS75460, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	25			
			$\mathrm{I}_{\mathrm{c}}=300 \mathrm{~mA}$	30			
		DS75460, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	20			
			$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$	25			

electrical characteristics (con't)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Base-Emitter Voltage	(Note 12)	DS55460	$\begin{aligned} & I_{B}=10 \mathrm{~mA}, \\ & I_{C}=100 \mathrm{~mA} \end{aligned}$		0.85	1.2	V
			$\begin{aligned} & I_{B}=30 \mathrm{~mA} \\ & I_{C}=300 \mathrm{~mA} \end{aligned}$		1	1.4	V
		DS75460	$\begin{aligned} & I_{B}=10 \mathrm{~mA}, \\ & I_{C}=100 \mathrm{~mA} \end{aligned}$		0.85	1	V
			$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA} \end{aligned}$		1	1.2	V
Collector-Emitter Saturation Voltage	(Note 12)	DS55460	$\begin{aligned} I_{B} & =10 \mathrm{~mA}, \\ I_{C} & =100 \mathrm{~mA} \end{aligned}$		0.25	0.5	V
			$\begin{aligned} & I_{B}=30 \mathrm{~mA} \\ & I_{C}=300 \mathrm{~mA} \end{aligned}$		0.45	0.8	V
		DS75460	$\begin{aligned} & I_{B}=10 \mathrm{~mA} \\ & I_{C}=100 \mathrm{~mA} \end{aligned}$		0.25	0.4	V
			$\begin{aligned} & I_{B}=30 \mathrm{~mA}, \\ & I_{C}=300 \mathrm{~mA} \end{aligned}$		0.45	0.7	V

switching characteristics

DS55460/DS75460 $\quad V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low To. High Level Output	$C_{L}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=40052, \mathrm{TTL}$ Gates Onlv. (Figure 12,		22		ns
			$R_{L}=50 \Omega, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		45	65	ns
$\mathrm{t}_{\mathrm{P}+\mathrm{HL}}$	Propagation Delay Time, High To. Low Level Output	$C_{L}=15 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$, TTL Gates Only, (Figure 12)		8		ns
			$R_{L}=50 \Omega, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)		35	50	ns
$\mathrm{t}_{\text {TLH }}$	Transition Time, Low. To High Level Output	$C_{L}=15 \rho F, R_{L}=5052, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)			10	20	กs
${ }_{\text {t }}^{\text {THL }}$	Transition Time, High To-Low Level Output	$C_{L}=15 \mathrm{pF}, R_{L}=50 \Omega, I_{C} \approx 200 \mathrm{~mA}$, Gates and Transistors Combined, (Figure 14)			10	20	ns
V_{OH}	High Level Output Voltage After Switching	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{C}_{\mathrm{C}} \approx 300 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=500 \Omega$, (Figure 15)		$V_{s}-10$			$m \mathrm{~V}$
t_{d}	Delay Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{OFF})}=-1 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \text { (Note 13). } \\ & \text { (Figure 13) } \end{aligned}$			10		ns
t_{r}	Rise Time	$I_{C}=200 \mathrm{~mA}, I_{\mathrm{B}(1)}=20 \mathrm{~mA}, I_{\mathrm{B}(2)}=-40 \mathrm{~mA} \text {, }$ $V_{\mathrm{BE}(\mathrm{OFF})}=-1 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$. (Note 13), (Figure 13)			16		ns
t_{s}	Storage Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{B} \in(0 \mathrm{FF})}=-1 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \text { (Note 13), } \\ & \text { (Figure 13) } \end{aligned}$			23		ns
t_{f}	Fall Time	$\begin{aligned} & I_{\mathrm{C}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{OFF})}=-1 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \text { (Note 13), } \\ & \text { (Figure 13) } \end{aligned}$			14		ns

electrical characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 (Notes 8 and 9)

switching characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		CONOITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low-To. High Level Output	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { (Figure 14) } \end{aligned}$	$\begin{aligned} & \text { DS55461; } \\ & \text { DS75461, } \\ & \text { DS55463 } \\ & \text { DS75463 } \\ & \hline \end{aligned}$		45	55	ns
			DS55462 DS75462, DS55464 DS75464		50	65	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-To-Low Level Output	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \approx 200 \mathrm{~mA} . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} . \mathrm{R}_{\mathrm{L}}=50 \Omega . \\ & \text { (Figure 14) } \end{aligned}$	$\begin{aligned} & \text { DS55461/ } \\ & \text { DS75461, } \\ & \text { DS55463/ } \\ & \text { DS75463 } \\ & \hline \end{aligned}$		30	40	ns
			$\begin{aligned} & \hline \text { DS55462 } \\ & \text { DS75462, } \\ & \text { DS55464 } \\ & \text { DS75464 } \end{aligned}$		40	50	ns
${ }^{\text {t TLH }}$	Transition Time. Low-TC High Leve! Output	$\begin{aligned} & \mathrm{t}_{0} \approx 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} . \mathrm{R}_{\mathrm{L}}=50 \Omega 2 . \\ & \text { (Figure } 14 \text {) } \end{aligned}$	DS55461. D575461		8	20	ns
			$\begin{aligned} & \hline \text { DS55462, } \\ & \text { DS75462 } \end{aligned}$		12	25	ns
			$\begin{aligned} & \text { DS55463, } \\ & \text { DS75463 } \end{aligned}$		8	25	ns
			$\begin{aligned} & \hline \text { DS55464/ } \\ & \text { DS75464 } \end{aligned}$		12	20	ns
${ }^{\text {the }}$ th	Transition Time, High ToLow Level Output	$I_{0} \approx 200 \mathrm{~mA}, C_{L}=15 \mathrm{pF}, R_{L}=50 \Omega,$ (Figure 14)	$\begin{aligned} & \text { DS5546 } \\ & \text { DS75461 } \end{aligned}$		10	20	пs
			$\begin{aligned} & \text { DS55462 } \\ & \text { DS75462, } \\ & \text { DS55464 } \\ & \text { DS75464 } \end{aligned}$		15	20	ns
			$\begin{aligned} & \hline \text { DS55463/ } \\ & \text { DS75463 } \end{aligned}$		10	25	ns
V_{OH}	High Level Output Voltage After Switching	$\mathrm{V}_{S}=30 \mathrm{~V}, \mathrm{I}_{0} \approx 300 \mathrm{~mA}$, (Figure 15)		$v_{s}-10$			mV

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
Note 3: This is the voltage between two emitters of a multiple-emitter transistor.
Note 4: This value applies when the baseemitter resistance $\left(R_{B E}\right)$ is equal to or less than 500Ω.
Note 5: This value applies between 0 and 10 mA collector current when the base-emitter diode is open circuited,
Note 6: This is the maximum voltage which should be applied to any output when it is in the "OFF" state.
Note 7: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
Note 8: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 55460 series and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75460 series. All typicals are given for $V_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 10: Only one output at a time should be shorted.
Note 11: For the DS55460/0S75460 only, the substrate $\{$ (pin 8) must always be at the most negative device valtage for proper operation.
Note 12: These parameters must be measured using pulse techniques. $\mathrm{t} W=300 \mu$ s, duty $<2 \%$.
Note 13: Applies to output transistors only.
schematic diagrams

DS55460/DS754460

DS55463/DS75463

DS55461/DS75461

DS55462/DS75462

DS55464/DS75464

truth tables $(H=$ high level, $L=$ low level)

DS55461/DS75461
DS55462/DS75462

A	B	Y
L	L	H (OFF State)
L	H	H (OFF State)
H	L	H (OFF State)
H	H	L (ON State)

DS55463/DS75463

A	B	Y
L	L	L (ON State)
L	H	H (OFF State)
H	L	H (OFF State)
H	H	H (OFF State)

DS55464/DS75464

A	B	Y
L	L	H (OFF State)
L	H	L (ON State)
H	L	L (ON State)
H	H	L (ON State)

Both mputs ate tested sumuluntoousiy

FIGURE I. $V_{I H}, V_{O L}$

Exch inputas tanted separatily.

FIGURE 4. $I_{1}, I_{I H}$

Each ingut is tested separateiy
FIGURE 2. $V_{I L}, V_{O H}$

Eych gate is tasted separataly.
FIGURE 5. IOS

FIGURE 3. $V_{1}, I_{\text {IL }}$

Both gatus are tested simultaneously
FIGURE 6. ICCH. ICCL

CIRCUIT	inPUT UNDER TEST	OTHER INPUT	OUTPUT	
			APPLY	measure
DS55461	$\begin{aligned} & V_{i H} \\ & v_{1 L} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c c} \end{aligned}$	$\begin{aligned} & V_{\mathrm{OH}} \\ & \text { Iot } \end{aligned}$	$\begin{aligned} & \mathrm{IOH}^{\prime} \\ & \mathrm{VOL}_{\mathrm{O}} \end{aligned}$
DS55462	$\begin{aligned} & v_{1 H} \\ & v_{11} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c c} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \mathrm{VOL}_{\mathrm{OL}} \\ & \mathrm{IOH}^{2} \end{aligned}$
0555463	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & v_{1 L} \end{aligned}$	$\begin{aligned} & V_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$
0555464	$\begin{aligned} & v_{1 H} \\ & v_{12} \end{aligned}$	$\begin{aligned} & \text { Gnd } \\ & v_{1 L} \end{aligned}$	$\begin{aligned} & \mathrm{loL} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & V_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OH}} \end{aligned}$

Eech input is tested separataly
FIGURE 7. $V_{I H}, V_{I L}, I_{O H}, V_{O L}$

Each inpu: is tested separatily

FIGURE 9. II, IIH

FIGURE 10. ICCH, ICCL for AND, NAND Circuits

Both gates ere tested simultaneousty
FIGURE 11. ICCH. ICCL for OR, NOR Circuits

switching characteristics

FIGURE 12. Propagation Delay Times, Each Gate (DS55460 and DS75460 Only)

Note 1. The pulse generetoi thes the following eharacterstics: duty cycle $\leq 1 \%, Z_{\text {Out }} \approx 50: 2$.
Note $2 \mathrm{C}_{\mathrm{L}}$ includes probe end رligenpsetunce
FIGURE 13. Switching Times, Each Transistor (DS55460 and DS75460 Only)

Note 1. The pulse ganarator has the following characta inese: PAR $=1 \mathrm{MHz} Z_{\text {OUT }} \approx 50 \Omega$.
Nota 2 Whan testing DS55460 or DS75460, consect output Y to tranystar base and ground the substrate terminal Note 3. C_{L} includes probe and jrg enpecituace.

FIGURE 14. Switching Times of Complete Drivers

FIGURE 15. Latch-Up Test of Complete Drivers

Section 4
 Level
 Translators/Buffers

TEMPERATURE RANGE

$-\mathbf{5} 5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
DS1630	DS3630
DS7800	DS8800
DS7810	DS8810
DS7811	DS8811
DS7812	DS8812
DS78L12	DS88L12
DS7819	DS8819
MM54C901	MM74C901
MM54C902	MM74C902
MM54C903	MM74C903
MM54C904	MM74C904
MM54C906	MM74C906
MM54C907	MM74C907

INPUT	OUTPUT	OUTPUT CHARACTERISTICS	LOGIC FUNCTION	DEVICE NUMBER	
				$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CMOS	CMOS	50 ns Prop. Delay at 500 pF	Hex 8uffer	DS3630	DS1630
TTL	PMOS	Open-Collector -30 V to 30 V	Dual 2-Input Gate	DS8800	DS7800
TTL	MOS	Open-Collector 0.4 V to 14 V	Quad 2-Input Gate	DS8810	DS7810
TTL	MOS	Open-Collector 0.4 V to 14 V	Quad 2-Input Gate	DS8811	DS7811
TTL	MOS	Open-Collector 0.4 V to 14 V	Hex Inverter	DS8812	DS7812
TTL	MOS	Active Pull-Up 0.4 V to 14 V	Hex Inverter	DS88L12	
TTL	MOS	Open-Collector 0.4 V to 14 V	Quad 2-Input Gate	DS8819	DS7819
CMOS	TTL	Active Pull-Up 0.4V @ 2.6 mA	Hex Inverter	MM74C901	MM54C901
CMOS	TTL	Active Pull-Up 0.4V@ 3.2 mA	Hex Buffer	MM74C902	MM54C902
CMOS	PMOS	Active Pull-Up 0V to 15 V	Hex Inverter	MM74C903	MM54C903
CMOS	PMOS	Active Pull-Up 0V to 15 V	Hex 8uffer	MM74C904	MM54C904
CMOS	NMOS	Open Drain OV to 15V	Hex 8uffer	MM74C906	MM54C906
CMOS	PMOS	Open Drain V_{CC} to $\mathrm{V}_{\mathrm{CC}}-15 \mathrm{~V}$	Hex Buffer	MM74C907	MM54C907

DS1630/DS3630 hex CMOS compatible buffer

 features

 features}
general description

The DS1630/DS3630 is a high current buffer intended for use with CMOS circuits interfacing with peripherals requiring high drive currents. The DS1630/DS3630 features low quiescent power consumption (typically $50 \mu \mathrm{~W}$) as well as high-speed driving of capacitive loads such as large MOS memories. The design of the DS1630/ DS3630 is such that $V_{\text {cc }}$ current spikes commonly found in standard CMOS circuits cannot occur, thereby, reducing the total transient and average power when operating at high frequencies.

- High-speed capacitive driver
- Wide supply voltage range
- Input/output may interface to TTL
- Input/output CMOS compatibility
- No internal transient $V_{\text {CC }}$ current spikes
- $50 \mu \mathrm{~W}$ typical standby power
- Fan out of 10 standard TTL loads

equivalent schematic and connection diagrams

typical applications

CMOS To CMOS Interface

CMOS to TTL interface

Dual-In-Line Package

Order Number DS 1630, DS3630J or DS3630N

CMOS To Transmission Line Interface

LED Driver

absolute maximum ratings (Note 1)

operating conditions

			MIN	MAX	UNITS
Supply Voltage	16 V	Supply Voltage (V_{CC})	3	15	V
Input Voltage	16 V	Temperature (T_{A})			
Output Voltage	16 V				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS3630	-55 0	+125 +70	${ }^{\circ} \mathrm{C}$

electrical characteristics
(Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IINH Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	DS1630		90	200	$\mu \mathrm{A}$
		DS3630		90	200	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		0.5	3.2	mA
		DS3630		0.5	1.5	mA
${ }^{\text {INL }}$ Logical " 0 " Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		-0.15	-1	mA
		DS3630		$\mathrm{V}_{\mathrm{cc}}{ }^{-150}$	-800	$\mu \mathrm{A}$
V_{OH} Logical "1"Output Voltage	$V_{\text {IN }}=V_{\text {CC }}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	DS1630	$\mathrm{V}_{\mathrm{CC}}{ }^{-1}$	$\mathrm{v}_{c c}-0.75$		V
		DS3630	$\mathrm{V}_{C C}-0.9$	$\mathrm{v}_{C C}-0.75$		V
	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}-0.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630	$\mathrm{V}_{c c}-2.5$	$\mathrm{V}_{\mathrm{cc}}-2.0$		V
		DS3630	$\mathrm{V}_{c c}-2.5$	$\mathrm{V}_{\mathrm{cc}}{ }^{-2.0}$		V
$V_{\text {OL }}$ Logical "0" Output Voltage	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=400 \mu \mathrm{~A}$	DS1630		0.75	1	V
		DS3630		0.75	0.9	V
	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		0.95	1.3	V
		DS3630		0.95	1.3	V
	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		1.2	1.6	V
		DS3630		1.2	1.5	V

switching characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logical " 0 "	$C_{L}=50 \mathrm{pF}$		30	45	ns
	$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		40	60	ns
	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		50	75	ns
Propagation Delay to a Logical "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	25	ns
	$C_{L}=250 \mathrm{pF}$		35	50	ns
	$C_{L}=500 \mathrm{pF}$		50	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditoons for actual device operation.
Note 2: Unless otherwise specified min/rnax limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1630 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3630. All typicals are given for $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all valtages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical performance characteristics

INPUT

Pulse Generstor cheracterstics: $P R R=1.0 \mathrm{MHz}, \mathrm{PW}=500 \mathrm{~ms}, \mathrm{~L}_{4}=\mathrm{t}_{4}<10 \mathrm{~ms}$, $\mathrm{V}_{\mathrm{IN}}=0$ to V_{cc}

DS7800/DS8800 dual voltage level translator

general description

The DS7800/DS8800 are dual voltage translators designed for interfacing between conventional TTL or DTL voltage levels and those levels associated with high impedance junction or MOS FET-type devices. The design allows the user a wide latitude in his selection of power supply voltages, thus providing custom control of the output swing. The translator is especially useful in analog switching; and since low power dissipation occurs in the "off" state, minimum system power is required.

features

- 31 volt (max) output swing
- 1 mW power dissipation in normal state
- Standard 5 V power supply
- Temperature range:

DS7800	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS8800	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- Compatible with all MOS devices
schematic and connection diagrams

Metal Can Package

Order Number DS7800H or DS8800H
See NS Package H1OC

typical applications

4-Channel Analog Switch

Bipolar to MOS Interfacing

absolute maximum ratings (Note 1)
$V_{C C}$ Supply Voltage

7.0 V	Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$
-30 V	DS7800
30 V	DS8800
40 V	Temperature $\left(T_{\mathrm{A}}\right)$
5.5 V	DS7800
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS8800
$300^{\circ} \mathrm{C}$	

V2 Supply Voltage
V3 Supply Voltage
V3-V2 Voltage Differential
Input Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
-
$300^{\circ} \mathrm{C}$
operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS7800	4.5	5.5	V
DS8800	4.75	5.25	V
Temperature (TA)			
DS7800	-55	+125	${ }^{\circ} \mathrm{C}$
DS8800	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP (NOTE 6)	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage	$V_{C c}=M i n$		2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage	$V_{\text {cc }}=$ Min				0.8	V
I_{H}	Logical "1" Input Current	$V_{C C}=$ Max	$V_{\text {IN }}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
	Logical		$V_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
$1 / 1$	Logical "0" Input Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=0.4 \mathrm{~V}$			-0.2	-0.4	mA
$\mathrm{IOL}^{\text {l }}$	Output Sink Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{\mathbb{N}}=2 V . \\ & V 3 \text { Open } \end{aligned}$	DS7800	1.6			mA
	Output Sink Current		DS8800	2.3			mA
IOH	Output Leakage Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ (Notes 4 and 7)				10	$\mu \mathrm{A}$
R_{o}	Output Collector Resistor	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11.5	16.0	20.0	$k \Omega$
$V_{\text {OL }}$	Logical "0" Output Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ (Note 7)				$\mathrm{V}_{2}+2.0$	V
1 cc (max)	Power Supply Current Output "ON"	$V_{C C}=$ Max, $V_{\text {IN }}=4.5 \mathrm{~V}$ (Note 5)			0.85	1.6	mA
'ccimin ${ }^{\text {c }}$	Power Supply Current Output 'OFF"	$V_{C C}=\text { Max, } V_{I N}=O V(\text { Note } 5)$			0.22	0.41	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{\text {pdo }}$	Transition Time to Logical " 0 " Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}=15 \mathrm{pF}$ (Note 8)	25	70	125	ns
$\mathrm{t}_{\text {pal }}$	Transition Time to Logical "1" Output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}=15 \mathrm{pF}$ (Note 9)	25	62	125	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating
Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7800 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8800.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Current measured is drawn from V_{3} supply.
Note 5: Current measured is drawn from $V_{C C}$ supply.
Note 6: All typical values are measured at $T_{A}=25^{\circ} \mathrm{C}$ with $V_{C C}=5.0 \mathrm{~V}, V_{2}=-22 \mathrm{~V}, V_{3}=+8 \mathrm{~V}$
Note 7: Specification applies for all allowable values of V_{2} and V_{3}.
Note 8: Measured from 1.5 V on input to 50% level on output.
Note 9: Measured from 1.5 V on input to logic " 0 " voltage, plus 1 V .

theory of operation

The two input diodes perform the AND function on TTL or DTL input voltage levels. When at least one input voltage is a logical " 0 ", current from $V_{c c}$ (nominally 5.0 V) passes through R_{1} and out the input(s) which is at the low voltage. Other than small leakage currents, this current drawn from V_{CC} through the $20 \mathrm{k} \Omega 2$ resistor is the only source of power dissipation in the logical " 1 " output state.

When both inputs are at logical " 1 " levels, current passes through R_{1} and diverts to transistor Q_{1}, turning it on and thus pulling current through R_{2}. Current is then supplied to the PNP transistor, Q_{2}. The voltage losses caused by current through $\mathrm{O}_{1}, \mathrm{D}_{3}$, and Q_{2} necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the inputs must be raised to a voltage level which is one diode potential lower than node P. Since these levels are exactly the same as those experienced with conventional TTL and DTL, the interfacing with these types of circuits is achieved.

Transistor O_{2} provides "constant current switching' to the output due to the common base connection of O_{2}. When at least one input is at the logical ' 0 " level, no current is delivered to O_{2}; so that its collector supplies essentially zero current to the output stage. But when both inputs are raised to a logical " 1 " level current is supplied to O_{2}.

Since this current is relatively constant, the collector of Q_{2} acts as a constant current source for the output stage. Logic inversion is performed since logical " 1 " input voltages cause current to be supplied to Q_{2} and to Q_{3}. And when Q_{3} turns on the output voltage drops to the logical " 0 " level.

The reason for the PNP current source, Q_{2}, is so that the output stage can be driven from a high impedance. This allows voltage V_{2} to be adjusted in accordance with the application. Negative voltages to -25 V can be applied to V_{2}. Since the output will neither source nor sink: large amounts of current, the output voltage range is almost exclusively dependent upon the values selected for V_{2} and V_{3}.

Maximum leakage current through the output transistor O_{3} is specified at $10 \mu \mathrm{~A}$, under worst-case voltage between V_{2} and V_{3}. This will result in a logical " 1 " output voltage which is 0.2 V below V_{3}. Likewise the clamping action of diodes $\mathrm{D}_{4}, \mathrm{D}_{5}$, and D_{6}, prevents the logical " 0 " output voltage from falling lower than 2 V above V_{2}, thus establishing the output voltage swing at typically 2 volts less than the voltage separation between V_{2} and V_{3}.

selecting power supply voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V_{2} is shown on the X axis. It must be betweerı -25 V and -8 V . The allowable range for power supply V_{3} is governed by supply V_{2}. With a value chosen for V_{2}, V_{3} may be selected as any value alorig a vertical line passing through the V_{2} value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

switching time waveforms

National

DS7810/DS8810 quad 2 -input TTL-MOS interface gate DS7811/DS8811 quad 2-input TTL-MOS interface gate DS7812/DS8812 hex TTL-MOS inverter general description

These Series $54 / 74$ compatible gates are high output voltage versions of the DM5401/DM7401 (SN5401/SN7401), DM5403/DM7403 (SN5403/SN7403), and DM5405/DM7405 (SN5405/SN7405). Their open-collector outputs may be "pulled-up" to +14 volts in the logical " 1 " state thus providing guaranteed interface between TTL and MOS logic levels.

In addition the devices may be used in applications where it is desirable to drive low current relays or lamps that require up to 14 volts.

schematic and connection diagrams

DS7810/DS8810, DS7811/DS8811
Dual-In-Line Package
 or DS8810N
See NS Pack age J14A or N14A

Order Number DS7812J, DS8812J.
DS7812W or DS8812N
See NS Package J14A, N14A or W14A
absolute maximum ratings (Note 1)

VCC	7 V
Input Voltage	5.5 V
Output Voltage	14 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage ($\mathrm{VCC}_{\text {C }}$)			
DS78XX	4.5	5.5	V
DS88XX	4.75	5.25	V
Temperature (TA)			
DS78XX	-55	+125	${ }^{\circ} \mathrm{C}$
DS88XX	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {CLAM }}$	Input Diode Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage	$V_{\text {cc }}=M i n$		2.0			V
$V_{\text {IL }}$	Logical " 0 " Input Voltage	$V_{\text {cc }}=\mathrm{Min}$				0.8	V
$\mathrm{IOH}_{\mathrm{OH}}$	Logical "1' Output Current	$\begin{aligned} & V_{C C}=\text { Min, } \\ & V_{O U T}=10 \mathrm{~V} \end{aligned}$	$V_{\text {IN }}=0.8 \mathrm{~V}$			250	$\mu \mathrm{A}$
			$V_{\text {IN }}=0.0 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {OL }}$	Logical "0" Output Current	$V_{C C}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$		16			mA
V_{OH}	Logical "1" Output 8reakdown Voltage	$V_{C C}=$ Min, $V_{\text {IN }}=O \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$		14			V
$\mathrm{V}_{\text {OL }}$	Logical " 0 " Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$				0.4	V
I_{IH}	Logical "q" Input Current	$V_{C C}=\operatorname{Max}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
			$V_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IL }}$	Logical " 0 " Input Current	$V_{C C}=M a x, V_{\text {IN }}=0.4 \mathrm{~V}$				-1.6	mA
$I_{\text {CC(MAX }}$	Logical "0" Supply Current (Each Gate)	$V_{C C}=\operatorname{Max}, V_{\text {IN }}=5.0 \mathrm{~V}$			3.0	5.1	mA
$\mathrm{I}_{\text {CC(MIN) }}$	Logical "1" Supply Current (Each Gate)	$V_{C C}=M a x, V_{\text {IN }}=0 \mathrm{~V}$			1.0	1.8	mA

switching characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pdo }}$	Propagation Delay Time to a L.ogical " 0 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & C_{\text {OUT }}=15 p F, R_{L}=1 \mathrm{k} \end{aligned}$	4	12	18	ns
$t_{\text {pd1 }}$	Propagation Delay Time to a Logical "1"	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	18	29	45	ns

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7810, DS7811 and DS7812 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS7810, DS7811 and DS7812.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted All values shown as max or min on absolute value basis.

typical applications

ac test circuit and switching time waveforms

DS78L12/DS88L12 hex TTL-MOS inverter/interface gate general description

The DS78L12/DS88L12 is a low power TTL to MOS hex inverter element. The outputs mav be "pulled up" to +14 V in the logical " 1 " state, thus providing guaranteed interface between TTL and MOS logic levels. The gate may also be operated
with $V_{c c}$ levels up to $+14 V$ without resistive puli-ups at the outputs and still providing a guar anteed logical " 1 " level of $V_{C C}-2.2 \mathrm{~V}$ with an output current of $-200 \mu \mathrm{~A}$.
schematic and connection diagrams

typical applications

TTL Interface to MOS ROM Without Resistive! Pull-Up

Mosionemas mom

ac test circuits

Figure 1

Figure 2

Dual-In-Line Package

Order Number DS78L 12J, DS88L12J
Order Number DS88L12N
Order Number DS78L12W
See NS Package J14A, N14A or W14A

TTL Interface to MOS ROM With Resistive Pull-Up

switching time waveforms

absolute maximum ratings (Note 1)

operating conditions

			MIN	MAX	UNITS
Supply Voltage	15 V	Supply Voltage ($\mathrm{VCC}^{\text {l }}$			
Input Voltage	55 V	DS78L12	4.5	5.5	V
Output Voltage	15 V	DS88L12	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Temperature (T_{A})			
Lead Temperature (Soldering. 10 sec)	$300^{\circ} \mathrm{C}$	DS78L12	-55 0	125 70	C

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TVP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage	$V_{C C}=14.0 \mathrm{~V}$		2.0	1.3		V
		$V_{c c}=M 1 n$		2.0	1.3		V
$V_{1 L}$	Logical "0" Input Voltage	$V_{C C}=140 \mathrm{~V}$			1.3	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			1.3	0.7	V
V_{OH}	Logical "1" Output Voltage	$V_{1 N}=0.7 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}$	11.8	12.0		V
			$V_{C C}=$ Min, $\mathrm{I}_{\text {OUT }}=200 \mu \mathrm{~A}$	14.5	15.0		V
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Min, I OUT $=-5.0 \mu \mathrm{~A}$ (Note 6)					V
$\mathrm{V}_{\text {OL }}$	Logical " 0 " Output Voltage	$V_{\text {IN }}=2.0 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=12 \mathrm{~mA}$		0.5	1.0	\checkmark
			$V_{C c}=\mathrm{Min}, \quad \mathrm{I}_{\text {OUT }}=3.6 \mathrm{~mA}$		0.2	0.4	\checkmark
$\mathrm{I}_{\mathbf{H}}$	Logical "1" Input Current	$V_{\text {IN }}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=14.0 \mathrm{~V}$		<1	20	$\mu \mathrm{A}$
			$V_{\text {cc }}=\mathrm{Max}$		<1	10	$\mu \mathrm{A}$
		$V_{\text {IN }}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=14.0 \mathrm{~V}$		<1	100	$\mu \mathrm{A}$
			$V_{C C}-$ Max		<1	100	$\mu \mathrm{A}$
$I_{\text {IL }}$	Logical "0" Input Current	$V_{\text {IN }}=04 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		-320	-500	$\mu \mathrm{A}$
			$V_{C C}=$ Max		-100	-180	$\mu \mathrm{A}$
$I_{s c}$	Output Short Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 V \\ & \text { (Note 4) } \end{aligned}$	$V_{C C}=14.0 \mathrm{~V}$	-10	-25	-50	mA
			$V_{\text {cc }}=$ Max	-3	-8	-15	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current - Logical "1" (Each Inverter)	$V_{\text {IN }}=0 \mathrm{~V}$	$V_{C C}=140 \mathrm{~V}$		0.32	0.50	mA
			$V_{C c}=$ Max		0.11	0.16	m A
$I_{\text {cce }}$	Supply Current - Logical " 0 " (Each Inverter)	$V_{\text {IN }}=5.25 \mathrm{~V}$	$V_{C C}=14.0 \mathrm{~V}$		1.0	1.5	mA
			$V_{\text {Cc }}=$ Max		0.3	0.5	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS78L12 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88L12
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: tpd1 for $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ is dependent upon the resistance and capacitance used.
Note 6: $V_{O L}=V_{C C}-1.1 V$ for the OS88L12 and $V_{C C}-1.4 V$ for the DS78L 12.

Level Translators/Buffers

DS7819/DS8819 quad 2-input TTL-MOS AND gate

general description

The DS7819/DS8819 is the high output voltage version of the SN5409. Its open-collector outputs may be "pulled-up" to 14 V in the logical " 1 "
state thus providing guaranteed interface between TTL and MOS logic levels.
schematic and connection diagrams

Dual-In-Line Package

Order Number DS7819J or DS8819J
Order Number DS8819N
Order Number OS7819W
See NS Package J14A, N14A or W14A

absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	7.0 V	Supply Voltage (V_{CC})			
Input Voltage	5.5 V	DS7819	4.5	5.5	V
Output Voltage	5.5 V	DS8819	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$	Temperature (T_{A})			
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	DS7819	-55	+125	${ }^{\circ} \mathrm{C}$
		DS8819	0	70	C

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		2.0			\checkmark
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$				0.8	\checkmark
IOH	Logical "1" Output Current	$V_{\text {cc }}=\mathrm{Min}$	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}$			40.0	$\mu \mathrm{A}$
			$V_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=14 \mathrm{~V}$			1.0	mA
V_{OL}	Logical ' 0 " Output Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=16 \mathrm{~mA}$				0.4	V
$l_{\text {IH }}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$\mathrm{V}_{\text {iN }}=2.4 \mathrm{~V}$			40.0	$\mu \mathrm{A}$
			$V_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
IIL	Logical " 0 " Input Current	$V_{C C}=\operatorname{Max}, V_{\text {IN }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{I}_{\mathrm{CCH}}$	Logical "1" Supply Current	$V_{\text {CC }}=$ Max, $V_{1 N}=5 \mathrm{~V}$			11.0	21.0	mA
$\mathrm{I}_{\mathrm{CCL}}$	Logical "0" Supply Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=0 \mathrm{~V}$			20.0	33.0	mA
	Input Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$				-1.5	V

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pdo }}$	Propagation Delay to a Logical ' 0 "	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		16.0	24.0	ns
$t_{\text {pdi }}$	Propagation Delay to a Logical "1"	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		16.0	32.0	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated et these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7819 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8819.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Section 5
Display Drivers

TEMPERATURE RANGE

$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
-	DS8646
-	DS8647
-	DS8648
-	DS8654
-	DS8656
-	DS8658
-	DS8659
DS7664	DS8664
-	DS8665
-	DS8666
-	DS8669
-	DS8692
-	DS8693
-	DS8694
DS7856	DS8856
-	DS8857
DS7858	DS8858
-	DS8859
-	DS8861
-	DS8863
-	DS8867
-	DS8868
-	DS8869
-	DS8870
-	DS8871
\cdots	DS8872
-	DS8873
-	DS8874
-	DS8877
DS7880	DS8880
-	DS8881
-	DS8884A
-	DS8885
-	DS8887
DS7889	DS8889
DS7891	DS8891
-	DS8892
DS7895	DS8895
DS7897	DS8897
-	DS8920
-	DS8963
-	DS8968
-	DS8973
-	DS8974
-	DS8975
-	DS8976
-	DS8977
-	DS8979
-	DS8980
-	DS8981
-	DS75491
-	DS75492
DS55493	DS75493
DS55494	DS75494

DESCRIPTION

Low Voltage, 6.Digit LED Driver
PAGE NUMBER

Low Voltage, 9 .Segment LED Driver (InV) $5 \cdot 3$
Low Voltage, 9. Segment LED Driver $\quad 5.3$
8. Output Display Driver $\quad 5.5$

Print Head Diode Array $\quad 5.5$
Low Voltage, 4.Digit LED Driver 5-9
Low Voltage, 7-Segment LED Driver 5.11
14. Digit Decoder/Driver 5.13
14. Digit Decoder/Driver (High Drive) 5.16
14. Digit Decoder/Driver (POS SYstems) 5.19

Duai Digit, 8CD-to-7-Segment LED Decoder/Driver 5-22
8 Output, 350 mA . Transistor Array $\quad 5.25$
Printing Calculator Solenoid Driver $\quad 5.25$
Printing Calculator Solenoid Driver with Clock $\quad 5.25$
8CD-to.7.Segment LED Driver, Common Anode 5-32
BCD to-7.Segment LED Driver, Common Cathode 5-32
BCD-to 7.Segment LED Driver, Common Cathode $\quad 5.32$
Serial Input Hex Latch LED Driver (High Level) 5-36
MOS, LED 5.Segment Driver $\quad 5.39$
MOS, LED 8 Digit Driver $\quad 5-39$
8Segment LED Constant Current Driver $\quad 5.42$
12. Digit LED Decoder/Driver 5.44

Serial Input, Hex Latch LED Driver (Low Levei) 5.36
Hex LED Digit Driver 5.46
8.Digit LED Driver $\quad 5.48$
9.Digit LED Driver 5.48

9-Digit LED Driver, Low Battery Indicator $5-48$
9-Digit, Shift Input, LED Driver 5.50
6-Digit LED Driver 5.52
Beckman/Panaplex 7.Segment Decoder/Driver 5.54
16-Digit Vacuum Fluorescent Grid Driver 5.57
Beckman/Panaplex 7.Segment Decoder/Driver 5.61
MOS to High Voltage Cathode 8uffer $\quad 5.63$
8-Digıt High Voltage Anode Driver 5-65
8-Segment Hıgh Voltage Cathode Driver 5.65
6.Digit High Voltage Anode Driver 5-69

Hex LED Programmable Current LED Driver 5.71
Ouad LED Segment Driver $\quad 5.73$
8-Digit High Voltage Anode Driver (Low Level) 5.65
DS8872 in 20. Pin Package 5.48
$18 \vee$ DS8863 5.39
12-Digit LED Driver $\quad 5.76$
9-Digit LED Driver, $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \quad 5.78$
9-Digit LED Driver, $75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \quad 5.78$
9. Digit LED Driver with Low Battery Indicator 5.78
9. Digit LED Driver, $95 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \quad 5.78$
7. Digit Version of DS8873 5-48

DS8648 in 20.Pin Package 5-3
8eckman Decoder/Driver/Latch (High Level) 5.81
Beckman Decoder/Driver/Latch (Low Level) 5.81
$\begin{array}{ll}\text { Ouad Segment Driver } & 5.85\end{array}$
$\begin{array}{ll}\text { Hex Digit Driver } & 5.85\end{array}$
$\begin{array}{ll}\text { Programmable Ouad Segment Driver } & 5.88\end{array}$
$\begin{array}{ll}\text { Saturating Hex Digit Driver } & 5.90\end{array}$
Selection Guide

GAS DISCHARGE DISPLAY DRIVERS

Device Type	Drivers/ Package	Comments	Device Number	
			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Cathode drivers	7	8 CD to 7 -segment	DS8880	DS7880
	7	8 CD to 7 -segment with comma and DP	DS8884A	
	7	MOS to high voltage cathode buffer	DS8885	DS7885
	7 + DP	8CD to 7-segment with latch	DS8980	
	7 + DP	DS8980 except active low enable	DS8981	
	8	Active high inputs	DS8889	DS7889
Anode drivers	6	Active low inputs	DS8891	DS7891
	8	Active high inputs	DS8887	
	8	Active low inputs	DS8897	

VACUUM FLUORESCENT DISPLAY DRIVERS

Device Type	Drivers/ Package	Comments	Device Number	
			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ground driver (segments)	8	7 -segment plus DP	DS8654	
Anode driver	8		DS8654	
(digit)	16	4 line BCD input	DS8881	

PRINTER DRIVERS

Device Type	Drivers/ Pack:age	Description	Device Number	
			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Mechanical printer		Relay driver	DS3680	
		10 hammer serial input driver	DS3654	
		Seiko model 310 print head,	DS8692,	
		interface set	$\begin{aligned} & \text { DS8693, } \\ & \text { DS8694 } \end{aligned}$	
Thermal printer		8-digit driver	DS8654	
		Diode matrix	DS8656	
		9 9-segment driver	DS8978	

DS8646 low voltage 6-digit LED driver

general description

The DS8646 is a 6 -digit LED display driver designed specifically for electronic watches. Its inputs interface directly with CMOS watch circuits such as the MM5882, and its outputs sink typically 100 mA from a common cathode LED watch display.

The DS8646 is supplied in dice form.

features

- Direct interface with CMOS watch circuits
- Grouped inputs and outputs
- Low voltage operation
- Packaged devices available for evaluation

schematic diagram

connection diagram and chip pad layout

Note 1: All dimensions in millinches.
Note 2: Die size 33 mils $\times 51$ mils.
Note 3: Pads 4.0 mils square clear area.

absolute maximum ratings

Applied Voltage

$$
\begin{aligned}
& V_{\text {IN }}=1.5 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}
\end{aligned}
$$

electrical characteristics (Note 1)
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.9 \mathrm{~V} ;-5^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
\mathbf{I}_{IH}	Input "ON" Current	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=56 \mathrm{~mA}$	0.84	4.5		mA
$1 / 12$	Input "OFF' Current	$V_{\text {IN }}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.0 \mathrm{~V}$		-0.01	-20	$\mu \mathrm{A}$
V_{OL}	Output "ON" Voltage	$\mathrm{I}_{\mathrm{OL}}=56 \mathrm{~mA}, \mathrm{I}_{\text {IN }}=840 \mu \mathrm{~A}$			0.40	V
		$\mathrm{I}_{\mathrm{OL}}=84 \mathrm{~mA}, \mathrm{I}_{\mathrm{N}}=1.3 \mathrm{~mA}$			0.55	V
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current (6 Outputs Tied Together)	$\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		0.07	1.0	$\mu \mathrm{A}$
I_{OL}	Output Sink Current	$\mathrm{V}_{\text {OL }}=0.55 \mathrm{~V}, \mathrm{I}_{\text {IN }}=1.3 \mathrm{~mA}$	84	100		mA

Note 1: All references to $V_{C C}$ apply on a system basis since the DS8646 has no $V_{C C}$ connection.

general description

The DS8647 and DS8648 are 9 -segment LED display drivers specifically designed for electronic watches. Their inputs interface directly with CMOS watch circuits and their outputs provide a constant current drive for common cathode LED watch displays. External resistors are not required. The DS8647 is an inverting driver, and the DS8648 is a non-inverting driver. Both circuits are supplied in dice form. The DS8979 is the DS8648 in a 20-pin package.

features

- DS8647 is an inverting driver
- DS8648 and DS8979 are non-inverting drivers
- Direct interface with CMOS watch circuit
- Internally set constant current drive
- Grouped inputs and outputs
- Packaged devices available for evaluation
- Low voltage operation
schematic diagrams

connection diagram and chip pad layout

Dual-In-Line Package

TOP VIEW
Order Number DS8647N, DS8648N or DS8979N
See NS Package N22A

Note 1: All dimensions in millinches.
Note 2: Die size 56 mils $\times 87$ mils.
Note 3: Pad 4.1 mils square clear area.
absolute maximum ratings (Note 1)
Supply Voltage 5 V
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.4	2.9	V^{2}
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
DS8647						
$\mathrm{V}_{\text {PH }}$	Logical "1" Input Voltage		$\mathrm{VCC}^{-0.4 V}$			\checkmark
$V_{\text {IL }}$	Logical " 0 " Input Voltaçe				$v_{C C}{ }^{-1} 9$	\checkmark
$1 / \mathrm{L}$	Input Current	$V_{C C}=$ Max, $V_{\text {IN }}=V_{C C}-2 V$		-230	-300	$\mu \mathrm{A}$
$1 / \mathrm{H}$	Input 'OFF' Current	$V_{C C}=$ Max, $V_{\text {IN }}=V_{C C}$		0	200	$n \mathrm{~A}$
IOFF	Output Leakage	$V_{C C}=$ Max, $V_{\text {IN }}=V_{C C}, V_{\text {OUT }}=0 \mathrm{~V}$		-0.01	-10	$\mu \mathrm{A}$
IOUT	Output Current	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.15 \mathrm{~V}$	-7	-10	-14	mA
ICC(ON)	Supply Current (Only One Output "ON")	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V} . \mathrm{V}_{\text {OUT }}=2.15 \mathrm{~V}$		12.0	17	ma
${ }^{\text {I CCO }}$ (OFF)	Supply Current	$V_{\text {CC }}=M_{\text {ax }}, V_{\text {IN }}=V_{\text {CC }}, V_{\text {OUT }}=$ Open		0.03	1	$\mu \mathrm{A}$
IOUT	Output Current Match	$V_{C C}=2.7 \mathrm{~V}, V_{\text {IN }}=0.5 \mathrm{~V}, V_{\text {OUT }}=2.15 \mathrm{~V}$			'OUT5 ± 1	mA
DS8648, DS8979						
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltagle		1.9			V
$V_{\text {IL }}$	Logical ' 0 ', Input Voltacie				0.4	V
H H	Input Current	$V_{C C}=M_{\text {ax }}, V_{\text {IN }}=2 \mathrm{~V}$		40	150	$\mu \mathrm{A}$
HL	Input "OFF' Current	$V_{C C}=M_{a x}, V_{\text {IN }}=0 V$		0	-200	$n \mathrm{~A}$
IOFF	Output Leakage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		-0.01	-10	$\mu \mathrm{A}$
IOUT	Output Current	$V_{C C}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.15 \mathrm{~V}$	-7	-30	-14	mA
ICCION)	Supply Current (Only One Output "ON")	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.15 \mathrm{~V}$		12	17	mA
ICCIOFFI	Supply Current	$V_{C C}=M a x, V_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ Open		0.03	1	$\mu \mathrm{A}$
IOUT	Output Current Match	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.15 \mathrm{~V}$			IOUT5 ${ }^{ \pm 1}$	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8647, DS8648 and DS8979. All typicals are given for $V_{C C}=2.7 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

DS8654 8-output display driver (LED, VF, thermal printer) DS8656 diode matrix

general description

DS8654 is an 8-digit driver with emitter/follower outputs. It can source up to 50 mA at a low impedance, and operates with a constant internal drive current over a wide range of power supply-from 4.5 V to 33 V . The DS8654 can be used to drive electrical or mechanical, multiplexed or unmultiplexed display systems. It can be used as a segment driver for common cathode displays with external current limiting resistors or can drive incandescent or fluorescent displays directly, both digits (anodes) and segments (grids). It will be necessary to run the device at a lower duty cycle, to keep the maximum package dc power dissipation less than 600 mW while operating all 8 outputs at high supply voltage and large source current. The inputs are MOS compatible and eliminate the need for level shifting since inputs are referenced to the most negative supply of system.

system description

The DS8654 and DS8656 are specifically designed to operate a thermal printing head for calculator or other
uses. In this application the same segment in each digit is selected at the same time, reducing the overall time for a complete print cycle. The DS8654 is an 8-digit driver. With a 15 -digit print head, two of the DS8654 are required.

The DS8656 diode arrays are used to prevent "sneak" currents in the resistive print head. In a 15 -digit print head with one alphanumeric digit there are 119 resistor segments requiring 119 diodes. For ease of assembly, the DS8656 is configured in four groups of three common cathode diodes in each group. In the system, ten parts of DS8656 are required.

The whole system is designed to operate from a +19 V supply for the print head and an 8 -cell nickle-cadmium battery supplying 8 V to -11.6 V for the rest of the electronics. The 8 -segment drive transistors require $L V_{\text {CER }}$'s of 33 V min, B of >100 at $I_{C}=500 \mathrm{~mA}$, and $V_{S A T} \leq 1.0 \mathrm{~V}$ at 800 mA with 15 mA drive.

connection diagrams

Oual-In-Line Package

Order Number DS8654N
See NS Package N18A

Dual-In-Line Package

Drder Number DS8656N
See NS Package N16A

absolute maximum ratings DS8654 (Note 1)

operating conditions DS8654

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.5	33	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Supply Voltage	36 V
Input Voltage	36 V
Output Voltage	$\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power	600 mw
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

36 V
36 V
$V_{C C}-36 V$
600 mW
$300^{\circ} \mathrm{C}$
electrical characteristics; DS8654 (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$1_{1 H}$	Logical "1" Input Current	$V_{\text {cc }}=$ Max, $V_{\text {IN }}=6.5 \mathrm{~V}$		390	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		13	40	$\mu \mathrm{A}$
IOH	Logical "1" Output Current	$V_{\text {OUT }}=V_{\text {Cc }}-33 \mathrm{~V}$		0.01	-100	$\mu \mathrm{A}$
V_{OL}	Logical ' 0 ' Output Voltage	$\begin{aligned} & V_{C C}=M a x, I_{\mathbb{N}}=500 \mu \mathrm{~A}, \\ & I_{O H}=-50 \mathrm{~mA} \end{aligned}$		$\mathrm{V}_{\mathrm{Cc}^{-1}} 1.8$	$\mathrm{V}_{\mathrm{cc}}{ }^{-2.5}$	V
I CCioff)	Supply Current	$V_{C C}=M a x, V_{\text {IN }}=V_{\text {OUT }}=$ Gnd		0.01	1.0	mA
ICCion)	Supply Current (All Outputs "ON")	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{I N}=6.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		7.5	10	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified \min / \max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8654. All typicals are given for $V_{C C}=30 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless othenwise noted. All values shown as max or min on absolute value basis.
Nate 4: Only ore output at a time should be shorted.
electrical characteristics DS8656 ($T_{A}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX
V_{R}	Peak Inverse Voltage	$I_{R}=0.1 \mathrm{~mA}$	35	
V_{F}	Forward Voltage	$I_{F}=50 \mathrm{~mA}$		
t_{r}	Reverse Recov. Time	$I_{F}=50 \mathrm{~mA}$ to $I_{R}=0.1 \mathrm{~mA}$ at $V_{R}=30 \mathrm{~V}$		

schematic diagram

typical applications

Thermal Printer

LED Display-0 mA to 50 mA Peak Segment Current

typical applications (con't)

LED Display-50 mA to $\mathbf{1 0 0} \mathrm{mA}$ Peak Segment Current

DS8658 low voltage 4-digit LED driver

general description

The DS8658 is a 4 -digit LED display driver designed specifically for electronic watches. Its inputs interface directly with CMOS watch circuits such as the MM5829, and its outputs sink typically 100 mA from a common cathode LED watch display.

The DS8658 is supplied in dice form. Plastic DIP parts are available for device evaluation.

features

- Direct interface with CMOS watch circuits
- Grouped inputs and outputs
- Low voltage operation
- Packaged devices available for evaluation
connection diagram and chip pad layout

Dual-In-Line Package

Order Number DS8658N
See NS Package N14A

Note 1: All dimensions in millinches
Note 2: Oie stze 33 mils $\times 36$ muls
Note 3: Pads 4.0 mils squara clear arme.

absolute maximum ratings

Applied Voltage

$$
\begin{aligned}
& V_{\text {IN }}=1.5 \mathrm{~V} \\
& V_{\text {OUT }}=5 \mathrm{~V}
\end{aligned}
$$

electrical characteristics (Note 1)

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.9 \mathrm{~V} ;-5^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

	PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
$I_{1 H}$	Input 'ON' Current	$V_{\text {IN }}=1.1 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=56 \mathrm{~mA}$	0.84	6		mA
$I_{1 L}$	Input "OFF" Current	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		-0.01	-20	$\mu \mathrm{A}$
V_{OL}	Output "ON" Voltage	$\mathrm{I}_{\mathrm{OL}}=56 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}}=840 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=2.4 \mathrm{~V}$			0.40	V
		$\mathrm{I}_{\mathrm{OL}}=84 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}}=1.3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$			0.55	V
$I_{\text {CEX }}$	Output Leakage Current (4 Outputs Tied Together)	$V_{\text {IN }}=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$		0.07	1.0	$\mu \mathrm{A}$
I_{OL}	Output Sink Current	$V_{O L}=0.55 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=1.3 \mathrm{~mA}$	84	100		mA

Note 1: All references to $V_{C C}$ apply on a system basis since the $\mathrm{DS8658}$ has no V_{CC} connection.

DS8659 low voltage 7 -segment LED driver

general description

The DS8659 is a 7 -segment LED display driver specifically designed for electronic watches. Inputs interface directly with CMOS watch circuits such as the MM5829 and outputs provide a constant current drive for common cathode LED watch displays. The DS8659 provides 10 mA output current drive typically, thus no external resistors are needed.

The circuit is supplied in dice form. Plastic DIP parts are available for device evaluation.

features

- Direct interface with CMOS watch circuit
- Internally set constant current drive
- Grouped inputs and outputs
- Packaged devices available for evaluation
- Low voltage operation

schematic diagram

connection diagram and chip pad layout

Dual-In-Line Package

Order Number DS8659N
See NS Package N18A

Note 1: All dimensions in millinches.
Note 2: Die size 51 mils $\times 69$ mils.
Note 3: Pads 4.5 mils square clear typically.

absolute maximum ratings (Note 1)

Maximum Applied Voltage Minimum Applied Voltage
$V_{C C}=5 V$
$V_{C C}=-0.3 V$

electrical characteristics (Notes 2 and 3)

$2.4 V \leq V_{C C} \leq 2.9 \vee ;-5^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

	AR,AMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IIH	Input Current	$V_{I N}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=2.7 \mathrm{~V}$			-150	-300	$\mu \mathrm{A}$
IIL	Input OFF Current	$V_{\text {IN }}=V_{\text {CC }}-0.2 \mathrm{~V}$				-200	nA
ICEX	Output OFF Current	$V_{I N}=2.9 \mathrm{~V}, \mathrm{~V}_{\text {CC }}-3.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.3 \mathrm{~V}$			0.06	2	$\mu \mathrm{A}$
${ }^{1} \mathrm{OH}$	Output ON Current	$V_{\text {IN }}=0.5, V_{\text {CC }}=2.4, V_{\text {OUT }}=2.15$		-3.5			mA
		$V_{\text {IN }}=0.5, V_{\text {OUT }}=2.15$	$\mathrm{V}_{\text {CC }}=2.7$	-7	\cdots		mA
			$\mathrm{V}_{\mathrm{CC}}-2.4$	-4.5			mA
ICC	Supply Current	$V_{C C}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.15 \mathrm{~V}$, One Input-Output Parr ON at a Time			12	15	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristıcs" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-5^{\mathrm{C}} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8659. All typical values are for $\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min or absolute value basis Display Drivers

DS7664/DS8664 14-digit decoder/driver with low battery indicator

general description

The DS7664/DS8664 circuit is a 14 -digit decoder/driver with an 80 mA sink capability. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. The enable input permits interdigit blanking of the decoded outputs. An open-collector output oscillator is provided for system timing (two passive external components are required). A lowbattery indicator is provided at the " C " input with a nominal trip point of 3.25 V at $25^{\circ} \mathrm{C}$.

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation
- Low-battery indicator accuracy provides consistent low-battery indication

logic and connection diagrams

absolute maximum ratings (Note 1)

Supply Voltage	10 V
Input Voltage	$\pm 10 \mathrm{~V}$
Input Current	$\pm 1.5 \mathrm{~mA}$
Output Voltage	10 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS8664	2.9	9.5	V
DS7664	3.5	9.5	V
Temperature (TA)			
DSB664	0	+70	${ }^{\circ} \mathrm{C}$
DS7664	-55	+125	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage Decoder Inputs	$V_{C C}=$ Max, $V_{\text {ENABLE }}=4.9 \mathrm{~V}$	$1{ }_{1} \mathrm{~N}=260 \mu \mathrm{~A}$	0.50			V
			$1 \mathrm{IN}=1400 \mu \mathrm{~A}$			1.50	\checkmark
$V_{\text {IH }}$	Enable Input	$V_{C C}=$ Max, $I_{E N A B L E}=260 \mu \mathrm{~A}, \mathrm{~T}=25^{\circ} \mathrm{C}$		3.0	4.2	5.1	V
${ }^{1} \mathrm{H}$	Logical "1" Input Current Decoder Inputs	$V_{C C}=$ Max, $V_{\text {ENABLE }}=4.9 \mathrm{~V}$		260			$\mu \mathrm{A}$
${ }_{1} \mathrm{IH}$	Enable Input	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$		260			$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical " $0^{\prime \prime}$ Input Voltage	$\begin{aligned} & V_{C C}=M a x, V_{E N A B L E}=4.9 \mathrm{~V}, \\ & I_{I L}=25 \mu \mathrm{~A} \end{aligned}$	AIN, BIN, ${ }_{\text {IN }}$			0.30	V
			$\mathrm{CIN}^{\text {I }}$			0.50	V
IIL	Logical ' 0 " Input Current	$V_{C C}=$ Max, $V_{\text {ENABLE }}=4.9 V$				25	$\mu \mathrm{A}$
V_{OH}	C Input (Low Battery Output)	$\mathrm{V}_{\mathrm{CC}}=3.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$1 \mathrm{IN}=300 \mu \mathrm{~A}$	4.9	7.3		V
			$I_{\text {IN }}=400 \mu \mathrm{~A}$	6.5	10.0		V
VOL	C Input (Low- Battery Output)	$V_{C C}=3.4 \mathrm{~V}, I_{I N}=1300 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0	3.0	V
${ }^{1} \mathrm{OH}$	Logical "1" Output Current Except $P_{\text {in }}$ R	$\begin{aligned} & V_{C C}=M_{a x}, V_{O H}=10.0 \mathrm{~V}, V_{\text {ENABLE }}=4.9 \mathrm{~V} \\ & V_{\mathrm{RC}}=0.6 \mathrm{~V} \end{aligned}$				50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current Pin R Only	$V_{C C}=M_{\text {ax }}, V_{\text {RC }}=0.6 \mathrm{~V}$		-0.15	-0.28	-0.45	mA
V_{OL}	Logical " 0 " Output Voltage Digit Outputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=80 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ENABLE}}=4.9 \mathrm{~V}$			0.35	0.55	V
VOL(OSC)	Oscillator Output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{RC}}=1.5 \mathrm{~V}$			0.20	0.55	V
$\mathrm{VOL}^{\text {O }}$	Pin R	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=60 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{RC}}=1.5 \mathrm{~V}$			0.10	0.25	V
${ }^{1} \mathrm{CC}$	Supply Current-Enabled	$V_{C C}=$ Max, $V_{\text {ENABLE }}=4.9 \mathrm{~V}$			15.0	22.0	mA
${ }^{1} \mathrm{CC}$	Supply Current-Disabled	$V_{C C}=$ Max, $V_{\text {ENABLE }}=1.0 \mathrm{~V}$			6.0	12.0	mA
${ }^{\text {fosc }}$	Oscillator Frequency	$\mid \mathrm{R}_{\mathrm{T}}=35 \mathrm{k} \pm 2 \%, \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF} \pm 5 \%$,$\mathrm{R}_{\mathrm{T}}=33 \mathrm{k} \pm 2 \%, \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF} \pm 5 \%$,	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$ to 4.5 V	300	350	400	kHz
			$\mathrm{V}_{\mathrm{CC}}=7.9 \mathrm{~V}$ to Max	320	360	400	kHz
D.C.	Duty Cycle (tPWH/T)	$\mathrm{R}_{\mathrm{T}}=35 \mathrm{k} \pm 2 \%, \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF} \pm 5 \%$,	$V_{C C}=M$ Min to 4.5 V	0.46	0.56	0.66	
		$\mathrm{RT}_{\mathrm{T}}=33 \mathrm{k} \pm 2 \%, \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF} \pm 5 \%$,	$\mathrm{V}_{\mathrm{CC}}=7.9 \mathrm{~V}$ to Max	0.46	0.56	0.66	

switching characteristics $\mathrm{V}_{C C}=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pd } 1}$ or $\mathrm{t}_{\mathrm{pd}} \mathrm{O}$	Propagation Delay From A, B, C, D Inputs to Digit Out.puts	$\begin{aligned} & R_{\text {IN }}=B .2 k, V_{E N A B L E} J A C K=10 \mathrm{~V}, \\ & R_{L}=100 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$			500	ns
${ }^{\text {t }} \mathrm{pd} 0$	Propagation Delay to a Logical " 0 " From Enable Inpu1 to Digit Outputs	$\mathrm{R}_{\text {IN }}=8.2 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	30	B0	200	ns
${ }^{\text {p }}$ d 1	Propagation Delay to a Logical " 1 " From Enable Input to Digit Outputs	$\mathrm{R}_{\mid \mathrm{N}}=\mathrm{B} .2 \mathrm{k}, \mathrm{R}_{\mathrm{L}}{ }^{\circ}=100 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	100	250	500	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, miri/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7664 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8664; all typical values are given for $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuits and switching time waveforms

Note: Input voltage rise and fatl times are 120 ns from 10% to 90% points.

truth table

$A_{\mathbf{I N}}$	$\mathrm{B}_{\mathbf{I N}}$	$\mathrm{C}_{\mathbf{I N}}$	$\mathrm{D}_{\mathbf{I N}}$	DIG. OUT ON
0	0	0	0	NONE
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9
0	1	0	1	10
1	1	0	1	11
0	0	1	1	12
1	0	1	1	13
0	1	1	1	14
1	1	1	1	NONE

DS8665 14-digit decoder/driver (hi-drive)

general description

The DS8665 circuit is a 14 -digit decoder/driver with 13 mA nominal source current capable of driving external grounded-emitter transistor bases. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. An enable input is provided to allow for inter-digit blanking of the decoded outputs. An open-collector output oscillator is provided for systern timing (two passive external components are required).

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation
logic and connection diagrams

Supply Voltage	10 V		MIN	MAX	UNITS
Input Voltage	$\pm 10 \mathrm{~V}$	Supply Voltage $\left(V_{\mathrm{CC}}\right.$)	7.9	9.5	\checkmark
Input Current	$\pm 1.5 \mathrm{~mA}$	Temperature ($\mathrm{T}_{\text {A }}$)	0	+70	${ }^{\circ} \mathrm{C}$
Output Voltage	10 V	Temperature ${ }^{\text {A }}$			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V_{1+4}	Logical "1" Input Voltage	$V_{C C}=$ Max, $V_{\text {evable }}=6.7 \mathrm{~V}$	$\mathrm{I}_{\mathrm{IN}}=390 \mu \mathrm{~A}$	0.50			v
	Decoder inputs		$\mathrm{I}_{\text {IN }}=1400 \mu \mathrm{~A}$			150	V
V_{1-1}	Enable Input	$V_{C C}=$ Max, $I_{\text {EMABLE }}=140 \mu \mathrm{~A}$		5.0	63	7.0	V
$\mathrm{I}_{1+\mathrm{H}}$	Logical " 1 " Input Current Decoder inputs	$V_{C C}=$ Max. $V_{\text {ESABLE }}=6.7 \mathrm{~V}$		390			$\mu \mathrm{A}$
$\mathrm{I}_{\text {+ }}$	Enable Input	$V_{C C}=M_{d x}$		140			$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical "0' Input Voltage	$V_{C E}=$ Max, $V_{E V A S I E}=67 \mathrm{~V}, 1_{1 L}=25 \mu \mathrm{~A}$				0.30	\checkmark
$1 / 1$	Logical " 0 " Input Current	$V_{C C}=M_{a x,} V_{\text {EMAGLE }}=6.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
Iomiosel	Oscillator Output	$V_{C C}=$ Max. $V_{\text {人卜 }} 10.0 \mathrm{~V}, \mathrm{~V}_{\text {RC }}=0.6 \mathrm{~V}$				50	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {O }}$	Loqical "1" Output Current Digit Outputs	$V_{C C}=\operatorname{Max}, V_{\text {DH }}=100 \mathrm{~V}, \mathrm{~V}_{\text {ENABLE }}=6.7 \mathrm{~V}$		--70	-13.0	-200	mA
los	Output Short Circuit Current (Pin R Only)	$V_{C C}=$ Max, $V_{\text {R }}-06 \mathrm{~V}$		-015	-0.30	-0.45	mA
$V_{\text {OL }}$	Loqical " 0 " Output Voltage Digit Outputs	$V_{C C}=$ Max. $1_{O L}=40 \mu \mathrm{~A}, \mathrm{~V}_{\text {ENABLE }}=6.7 \mathrm{~V}$				040	V
$\mathrm{V}_{\text {OLIOSCI }}$	Oscillator Output	$V_{C C}=M / \mathrm{n}, I_{O_{-}}=6 \mathrm{~mA}, \mathrm{~V}_{R C}=1.5 \mathrm{~V}$			0.20	0.50	V
$V_{0!}$	$\mathrm{P}_{1}, 1 \mathrm{R}$	$V_{C C}=M \cdot \mathrm{r}, \mathrm{I}_{\mathrm{O}_{-}}=60 \mu \mathrm{~A}, \mathrm{~V}_{R C}=1.5 \mathrm{~V}$			010	020	V
I_{cc}	Supply Current--Erabled	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {EVABLE }}=6.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.00 \mathrm{~V}$			26.0	35.0	mA
I_{cc}	Supply Current--Dizabled	$V_{C c}=$ Max, $V_{\text {c VABLE }}=10 \mathrm{~V}$			50	7.0	mA
fosc	Oscilator Frequency	$\mathrm{R}_{T}=33 \mathrm{k} \pm 2^{\mathrm{c}_{0}, C_{T}}=100 \mathrm{pF} \pm 5 \%$	$\begin{aligned} & V_{C C}=M i n \\ & V_{C C}=M a x \end{aligned}$	320	360	400	kHz
D.C	Duty Cycle ($\mathrm{tawh}^{\text {r }}$)	$\mathrm{R}_{\mathrm{T}}=33 \mathrm{k} \pm 2 \%, \mathrm{C}_{\mathrm{r}}=100 \mathrm{pF}+5 \%$	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{C C}=M a x \end{aligned}$	046	056	0.66	

switching characteristics $V_{C C}=8.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	PARAMETER	COND:TIONS	MIN	TYP	MAX	UNITS
$\begin{aligned} & t_{p d}, \text { or } \\ & t_{p o 0} \end{aligned}$	Propagation Delay From A, B, C, D Inputs to Digir Outputs	$\begin{aligned} & R_{1 N}=82 k, V_{\text {ENABLE }} J A C K=10 \mathrm{~V} . \\ & C_{L}=50 \mathrm{pF} \end{aligned}$			500	ns
$t_{\text {pdo }}$	Propagation Delay to a Logical "0" From Enable inout to Digit Outputs	$\mathrm{R}_{\text {IN }}=8.2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		200	300	ns
$t_{\text {pdt }}$	Propagation Delay to a Logical "1 From Enable Input to Digit Outputs	$R_{\text {IN }}=82 \mathrm{k} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	50	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are no: meant to imply that the devices should be operated at these limits. The table of "Electrical Characterisiics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS 8665 ; all typicals are given for $V_{C C}=8.4 \vee$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuits and switching time waveforms

Note: Input rise and fall times are 120 ns between 10% and 90% points.

truth table

$A_{I N}$	$B_{I N}$	$C_{I N}$	$O_{I N}$	DIG. OUT ON
0	0	0	0	NONE
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9
0	1	0	1	10
1	1	0	1	11
0	0	1	1	12
1	0	1	1	13
0	1	1	1	14
1	1	1	1	NONE

Display Drivers

DS8666 14-digit decoder/driver (P.O.S.)

general description

The DS8666 circuit is a 14 -digit decoder/driver. Six outputs have an 80 mA sink capability, and eight of the outputs have a 13 mA nominal source drive capability to drive external grounded-emitter transistor bases. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. An enable input is provided to allow for inter-digit blanking of the decoded outputs. An open-collector output oscillator is provided for system timing (two passive external components are required).

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation

logic and connection diagrams

absolute maximum ratings (Note 1)
Supply 'Voltage 10 V
Input Voltage 10 V
Input Current
Output Voltage
Storage Temperiture Range
Lead Temperature (Soldering, 10 seconas)

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	7.9	9.5	V
Tomperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$	Logical "1" Input Voltioge	$V_{C C}=$ Max, $V_{\text {ENABLE }}=67 \mathrm{~V}$	$11 N=-390 \mu \mathrm{~A}$	0.50			V
	Decode inpur:		$I_{1 N}=1400 \mu \mathrm{~A}$			1.50	V
V1H	Enable Input	$V C C=M a x, I E N A B L E=140 \mu A$		E,U	6.3	7.0	V
IIH	Logicat "l" Input Current Decoder Inputs	$V_{C C}=$ Max, $V_{\text {ENABLE }}=67 \mathrm{~V}$		390			$\mu \mathrm{A}$
IH	Enable Input	$V_{C C}=$ Max		140			$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical '0' Input Voltoge	$V_{C C}=$ Max, $V_{\text {ENABLE }}=6.7 \mathrm{~V}, \mathrm{IIL}=25 \mu \mathrm{~A}$				0.30	V
1 IL	Logical '0' Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {ENABLE }}=6.7 \mathrm{~V}$				25	$\mu \mathrm{A}$
$1 \mathrm{OH}(\mathrm{OSC})$	Oscillator Output	$V_{C C}=\mathrm{Max}, V_{O H}=10.0 \mathrm{~V}, V_{\mathrm{RC}}=9.6 \mathrm{~V}$				50	$\mu \mathrm{A}$
${ }^{1} \mathrm{OH}$	Dipit 1 -8 Outpute	$V_{C C}=$ Max, $V_{O H}=1$ mov, $V_{\text {ENABLE }}-6.7 \mathrm{~V}$		$-\% 0$	13.0	-20.0	mA
I_{OH}	Logicai " 1 " Output Current D:qut 9-14 Outputs	$V_{C C}=$ Max, $V^{\text {OH }}=10.0 \mathrm{~V}, \mathrm{~V}_{\text {ENABLE }}=6.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
105	intput Short Circuit Cursent Pin A Cony	$V_{C C}-$ Max, $V_{\text {RS }}=06 \%$		rif.	030	-0.45	$m A$
$\mathrm{VOL}(\mathrm{OSC})$	Ove dus Outbut					0.50	V
voi	1 achea " 0 " Ontput Voltage ! rivit 18 Cutnuts	VCC. Min, Venfabie oiv	$\left[1=-40 p^{2}\right.$			0.40	V
	Digit 9-14 Outputs		$11) 1.80 \mathrm{~mA}$		0.35	0.50	V
	Pin R		$\begin{aligned} & 1 \cdot \mathrm{~V}, 4 \\ & V_{R C}=1.5 \mathrm{~V} \end{aligned}$		0.10	0.20	V
1 CC	Supply Curient Enabsert	$\begin{aligned} & \text { VCC: Max, VENABLE }=6.7 \mathrm{~V}, \mathrm{VOH}_{\mathrm{OH}}=1.00 \mathrm{~V} \text {, } \\ & \text { (Sourcing Output ' } \mathrm{ON} \text { ') } \end{aligned}$			26.0	350	mA
1 CC	Supply Current-Disabled	$V_{C C}=$ Max, $V_{\text {ENABLE }}=10 \mathrm{~V}$			5.0	7.0	mA
tosc	Osciliator Frequency	$\mathrm{R}_{\mathrm{T}}=33 \mathrm{k}+2 \%, \mathrm{CT}-100 \mathrm{pF}+5 \%$	$\left\{\begin{array}{l}\text { / } C C-\text { Min } \\ V_{C C}=\text { Max }\end{array}\right.$	320	360	400	kHz
D.C	Duty Cycle (tPWH/7)	$\mathrm{R}_{\mathrm{T}}=33 \mathrm{k}+2 \%, \mathrm{C}_{T}=100 \mathrm{pF}+5 \%$	$V_{C C}=$ Min $V_{C C}=$ Max	0.46	0.56	0.66	

switching characteristics $V_{C C}=8.4 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{t}$ podo or $t_{\text {pd }} 1$	Piopaqation Delay Fiom A. B. C, D Inputs to Digit Outputs	$\begin{aligned} & R_{I N}=8.2 \mathrm{k} . \text { VENABI E JACK }-10 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			500	ns
	Provedgation irom From Endhle Input :o light Outputs	$\mathrm{F}_{1 N}=82 k . C_{1}-50$			500	ns

Note ? "Absolute Maximum Ratmas" a" those values heyono wheh the zifery if the device ans"t be u. "anteed. Except for "Operating
 provides conditions for actual device opeiat on
 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pirs shown as positive out of dovice pins as negarive, atl voltages referenced tigrourd unless otherwise noted, All values shown as riax or min on absolute value basıs
ac test circuits and switching tirle waveforms

Note. Input ise and fail thos are 120 ns between 10° anda 903° puncs

truth table

AIN	$B_{I N}$	CIN	DIN	DIG OUT ON
0	0	0	0	NONE
1	0	1	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	4
0	1	0	1	10
1	1	0	1	11
0	1	1	1	12
1	0	1	1	13
0	1	1	1	14
1	1	1	1	NONE

DS8669 2-Digit BCD to 7-Segment Decoder/Driver

General Description

The DS8669 is a 2 -digit BCD to 7 -segment decoder/ driver for use with common anode LED displays. The DS8669 drives 27 -segment LED displays without multiplexing. Outputs are open-collector, and capable of sinking $25 \mathrm{~mA} /$ segment. Applications consist of TV and $C B$ channel displays.

Features

- Direct 7 -segment drive
- 25 mA /segment current sink capability
- Low power requirement-16 mA typ
- Very low input currents-2 $\mu \mathrm{A}$ typ
- Input clamp diodes to both $V_{C C}$ and ground
- No multiplexing oscillator noise

Logic and Connection Diagrams

Absolute Maximum Ratings (Note 1)	
Supply Voltage	7 V
Input Current	20 mA
Output Voitage	12 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.5	6.0	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $V_{C C}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 2)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Logical "1" Input Voltage		2.0		$\mathrm{V}_{\text {CC }}{ }^{+0.6}$	\checkmark
	Logical "0" Input Voltage		-0.3		0.8	\checkmark
	Logical "1" Output Leakage Current	$V_{\text {OUT }}=10 \mathrm{~V}$			50	$\mu \mathrm{A}$
	Logical "0" Output Voltage	$1 \mathrm{OL}=25 \mathrm{~mA}$		0.4	0.8	\checkmark
	Logical "1" Input Current	$V_{1 N}=V_{C C}$		2.0	10	$\mu \mathrm{A}$
	Logical ' 0 " Input Current	$V_{1 N}=0 V$		-0.1	-10	$\mu \mathrm{A}$
	Supply Current	All Outputs Low		16	25	mA
	Input Clamp Voltage	$\begin{aligned} & I_{I N}=10 \mathrm{~mA} \\ & I_{I N}=-10 \mathrm{~mA} \end{aligned}$			$V_{C C}+1.5 \mathrm{~V}$ -1.5	V V
	Propagation Delay to a Logical "0" From Any Input to Any Output				10	$\mu \mathrm{s}$
tpd 1	Propagation Delay to a Logical "1" From Any Input to Any Output				10	$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8669. All typicals are given for $\mathrm{V}_{\mathrm{C}}=5.25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Truth Table

AC Test Circuit

Switching Time Waveforms

DS8692, DS8693, DS8694 Printing Calculator Interface Set

General Description

Two DS8692 IC's and one each of the DS8633 and DS8694 provide the complete interface necessary between the MM5787 calculator chip arid the Seiko Model 310 printing head. The DS8692 is an array of eight common emitter output transistors each zavable of sinking 350 mA , with open collectu :duratiny outputs. The DS8693 contans the mitertice ealc for the color solenold ciriver, motol dnver a-u -i. wi.... character select solenoid drivers. The DE8i94 rotialms the interface logic for 8 -column solenoid drivers plus the clock oscillator and timing signal buffer. The color and character selec solewid latch mutpurs of herth det
constant cu"lent outputs supplying the base current for the D 50692 arrays. These outputs also feature active pull-down. The rootor dive larch output is an open Dollector capable of sinking 20 mA

Features

 calculators with minimum number of packages and minimum number of external components

- 350 ma sink capability

Connection Diagrams

Order Number DS8692N
See NS Package N22A

Dual-In Line Package

Order Number DS8693N See NS Package N22A

Dual In-Line Package
columblateh

Order Number DS8694N
Seu NS Package N:24A

Absolute Maximum Ratings Ds8692-Transistor Array (Note 1)

Collector to Base Voltage	25 V	Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)	650 mW
Collector to Emitter Voltage	25 V	Operating Junction Temperature	$150^{\circ} \mathrm{C} \mathrm{max}$
Collector to Emitter Voltage (Note 4)	15 V	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Emitter to Base Voltage	6 V	Storage Temperature Range	$-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$
Collector Current (Continuous)	0.4 A	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics DS8692 (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {CEO }}$	Collector to Emitter Breakdown Voltage	$\mathrm{I}^{\text {C }}=500 \mu \mathrm{~A}, 1 \mathrm{~B}=0$	15			V
$V_{\text {CES }}$	Collector to Emitter Breakclown Voltage	$\mathrm{I}^{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$	25			V
$V_{\text {cbo }}$	Collector to Base Breakdown Voltage	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{IE}=0$	25			V
${ }^{\text {cees }}$ (SAT)	Collector to Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I} \mathrm{C}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=7.0 \mathrm{~mA}, \\ & \text { (Note 7) } \end{aligned}$		0.6	1.0	V
$V_{\text {BEISAT }}$	Base to Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I} \mathrm{C}=350 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=7.0 \mathrm{~mA}, \\ & (\text { Note } 7) \end{aligned}$		0.8	1.05	V

Absolute Maximum Ratings ds8693(Note 1) Operating Conditions ds8693

			MIN	MAX	UNITS
Supply Voltage	12 V	Supply Voltage (V_{CC})	8.5	11.0	V
Input Voltage	12 V				
Output Voltage		Temperature ($\mathrm{TA}^{\text {a }}$)	0	+70	${ }^{\circ}$
All Pins Except Pin 13	12 V				
Pin 13	19 V				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

Electrical Characteristics DS8693 (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

COLUMN DRIVERS

IIN	Input Current	$V_{\text {IN }}=2.7 \mathrm{~V}$	50		$\mu \mathrm{A}$
		$V_{\text {IN }}=9.5 \mathrm{~V}$		250	$\mu \mathrm{A}$
V_{OL}	Output OFF Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I N}=2.7 \mathrm{~V}, V_{C L O C K}=3.5 \mathrm{~V} \\ & I_{\mathrm{OUT}}=1 \mathrm{~mA} \end{aligned}$		0.4	V
IOH	Output ON Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I N}=7.0 \mathrm{~V}, V_{\text {CLOCK }}=3.5 \mathrm{~V} \\ & V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	-7	-17	mA
Ios	Output Short Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I N}=2.7 \mathrm{~V}, V_{C L O C K}=3.5 V \\ & V_{O U T}=0 \mathrm{~V} \end{aligned}$		-1.2	mA

CLOCK INPUT

IIN	Input Current	$\mathrm{V}_{1 \mathrm{~N}}=3.5 \mathrm{~V}$		300	$\mu \mathrm{A}$
		$V_{\text {IN }}=1.6 \mathrm{~V}$	50		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Input High Voltage		3.5		V
$V_{\text {IL }}$	Logical " 0 " Input Low Voltage			1.6	V

MOTOR DRIVER

IIN(PRINT)	Input Current	$V_{1 N}=2.3 V$	50		$\mu \mathrm{A}$
		$V_{\text {IN }}=9.5 \mathrm{~V}$		250	$\mu \mathrm{A}$
IIL(STOP)	Input Low Current (Stop)	$V_{C C}=\operatorname{Min}, V_{I N(S T O P)}=0.4 V .$ (Stop Switch Closed)		-700	$\mu \mathrm{A}$
VIHISTOP)	Input High Voltage (Stop)	$V_{C C}=\operatorname{Max}, \operatorname{I} I N(S T O P)=-10 \mu \mathrm{~A},$ (Stop Switch Open)		2.5	V
VOL	Output Low Voltage	$V_{C C}=$ Min, $V_{\text {PRINT }}=7 \mathrm{~V}, \mathrm{IOUT}=15 \mathrm{~mA}$		0.5	V

Electrical Characteristics (Continued) DS8693

Electrical Characteristics DS8694 (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
COLUMN DRIVER						
IIN	Input Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
		$V_{\text {IN }}=9.5 \mathrm{~V}$			250	$\mu \mathrm{A}$
VOL	Output OFF Voltage	$\begin{aligned} & V_{C C}=M_{I n}, V_{I N}=2.7 \mathrm{~V}, V_{C L O C K}=3.5 \mathrm{~V}, \\ & I_{O U T}=1 \mathrm{~mA} \end{aligned}$			0.4	\checkmark
IOH	Output ON Current	$\begin{aligned} & V_{C C}=M_{I N}, V_{I N}=7.0 \mathrm{~V}, V_{C L O C K}=3.5 \mathrm{~V}, \\ & V_{O U T}=1.0 \mathrm{~V} \end{aligned}$	-7		-17	mA
Ios	Output Short-Circuit Current	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I N}=2.7 \mathrm{~V}, V_{C L O C K}=3.5 \mathrm{~V}, \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$			-1.2	mA

CLOCK INPUT

In	Input Current	$V_{\text {IN }}=35 \mathrm{~V}$		300	$\mu \mathrm{A}$
		$V_{1 N}=2.7 \mathrm{~V}$	50		$\mu \mathrm{A}$
If	Logical '1" Input High Voltage		3.5		\checkmark
1 IL	Logical '0" Input Low Vottage			1.6	V

TIMING BUFFER

In	Input Current	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}$			-50	$\mu \mathrm{A}$
		$V_{\text {IN }}=17 \mathrm{~V}$			880	$\mu \mathrm{A}$
VOL	Output Low Voltage	${ }^{\prime}$ OUT $=50 \mu \mathrm{~A}, V_{\text {IN }}=10 \mathrm{~V}$			0.5	\checkmark
V_{OH}	Output High Voltage	IOUT $=-50 \mu \mathrm{~A}, \mathrm{~V}, \mathrm{~N}=7 \mathrm{~V}$	$v_{C C}{ }^{-1.0}$			V
OSCILLATOR						
fosc	Frequency	$\begin{aligned} & V_{C C}=M a x, R=18 k, C=0.0015 \mu \mathrm{Fd}, \\ & \text { (Note 5) } \end{aligned}$	85	100	115	kHz
VOL	Output Low Voltage	$V_{\text {CC }}=$ Min, IOUT $=50 \mu \mathrm{~A}$			05	v
V_{OH}	Output High Voltage	IOUT $=-50 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}{ }^{-1.0}$			V
d	Duty Cycle	$\mathrm{V}_{\mathrm{CC}}=$ Max	40	50	60	\%
Vosc	Osc. VCC Turn ON Voltage		6.0	7.7	8.5	v
ICC(SB)	Stand-by Supoly Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {COLUMN }} / \mathrm{N} /$ $V_{\text {PRINT }}=0 \mathrm{~V},{ }^{\text {I CLOCK }}=300 \mu \mathrm{~A}$			55	mA

Switching Characteristics DS8694

$V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
COLUMN DRIVERS (OS8693, OS8694) (F/gure 3)						
PWCOLUMN	Column In Puise Width		1.1			$\mu \mathrm{s}$
PWCL.OCK	Clock Putse Width		10			$\mu \mathrm{s}$
t_{d}	Delay of Column In Pulse After Clock Transitions to Low State for Output to Latch		0.1			$\mu \mathrm{s}$
tPDO	Propaģation Delay to a Logical " 0 " From Clock to Column Out Output	Column In = OV			10.0	$\mu \mathrm{s}$
tPD 1	Propagation Delay to a Logical "1" From Clock to Column Output	Column In = 7 V			1300	$\mu \mathrm{s}$
tPOO	Propagation Delay to a Logical " 0 " From Column In to Column Out	Clock $=7 \mathrm{~V}$			10	$\mu \mathrm{s}$
tPO1	Propagation Delay to a Logical " 1 " From Column In to Column Out	Clock $=7 \mathrm{~V}$			1300	$\mu \mathrm{s}$

COLOR DRIVER (DS8693) (Figure 4)

tPD0	Propagation Delay to a Logical				
"0"From Color In to Color Out					
tPD1	Propagation Delay to a Logical				

MOTOR DRIVER (DS8693) (FIgure 6)

PWPRINT	Print Signal Pulse Width		1		$\mu \mathrm{s}$
PWSTOP	Stop Signal Pulse Width		1		$\mu \mathrm{s}$
PWCLOCK	Clock Pulse Width		1		$\mu \mathrm{s}$
tPD0	Propagation Delay to a Logical " 0 " From Print to Motor Drive Out			10	$\mu \mathrm{s}$
tPD1	Propagation Delay to a Logical "1" From Motor Stop (High-toLow Transition) to Motor Drive Out	Print $=0 \mathrm{~V}$, Clock $=7.0 \mathrm{~V}$		10	$\mu \mathrm{s}$

TIMING SIGNAL BUFFER (DS8694) (Figure 5)

PWTIMING	Tıming Signal Pulse Width		1	1000		ms
t_{r}	Rise Time	$\mathrm{CLOAO}^{\text {L }}=35 \mathrm{pF}$			500	ns
${ }^{\text {tf }}$	Fail Time	$C_{\text {LOAD }}=35 \mathrm{pF}$			500	ns
tPDo	Propagation Delay to a Logical " 0 " From Timing In to Timing Out				10	$\mu \mathrm{s}$
tPD 1	Propagation Delay to a Logical "1" From Timing In to Tirning Out				10	$\mu \mathrm{s}$
CLOCK OSCILLATOR (DS8694) (Figure 7)						
${ }^{\text {fosc }}$	Oscillator Frequency	(Note 5)	85	100	115	kHz
d	Duty Cycle		40	50	60	\%
${ }_{\text {tr }}$	Rise Time	$C_{\text {LOAD }}=70 \mathrm{pF}$			500	ns
tr_{r}	Fall Time	$\mathrm{CLOAO}=70 \mathrm{pF}$			500	ns

Note 1 "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\prime} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8692, DS8693, DS8694. All tvpicals are given for $V_{C C}=10 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute basis.
Note 4: Ratings refer to a high current point where collector-emitter voltage is lowest.
Note 5: Oscillator frequency is determined by external R between "Osc $R^{\prime \prime}$ and "Osc C " and external C from "Osc C" to.ground $2 k$ o R ' 20 K.
Note 6: Column outputs operate on approximately $1 / 16$ duty cycle in normal operation.
Note 7: Measured with one output on at a time.

System Connection Diagram

FIGURE 1

Switching Time Waveforms

FIGURE 3. DS8693, DS8694 Column Latch

FIGURE 4. DS8693 Color Driver

FIGURE 5. DS8694 Timing Signal Buffer

FIGURE 7. DS8694 Oscillator Diagram

Display Drivers

DS7856/DS8856, DS8857, DS7858/DS8858 BCD-to-7-segment LED drivers general description

This series of 7 -segment display drivers fulfills a wide variety of requirements for most active high (common cathode) Light Emitting Diodes (LEDs). Each device fully decodes a 4 -bit $B C D$ input into a number from 0 through 9 in the standard 7 . segment display format and BCD numbers above 9 into unique patterns that verify operation. All circuits operate off of a single 5.0 V supply.

The DS7856/DS8856 has active-high, passive pull. up outputs which provide a typical source current of 6.0 mA at an output voltage of 1.7 V . The applications are the same as for the DM5448/ DM7448 except that more design freedom is allowed with higher source current levels. This circuit was designed to drive the MAN-4 or equivalent type display directly without the use of external cuirent limit resistors, and replaces the MSD101

The DS8857 has active-high outputs and is designed to be used with common cathode LED's in the multiplex mode. It provides a typical source current of 50 mA at an output voltage of 2.3 V .

In addition, with the use of an external current limit resistor per segment, this circuit can be used in higher current non-multiplex L ED applications. It replaces the MSD 102.

The DS7858/DS8858 has active high outputs with source current adjustable with the use of external current limit resistors, one per segment. This feature aliows extreme flexibility in source current value selection for either multiplex or non-multiplex common cathode L.ED drive applications. It allows the system designer freedom to tailor the drive current for his particular applications.

features

- Lamp-test input
- Leading/trailing zero suppression (RBI and RBO)
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and LS compatinle
- Input clamping diodes

connection diagram

Order Number DS7856J, DS8856J, DS8857J, DS7858J, DS8858J See NS Package J16A

Order Number DS8856N or DS8858N
See NS Package N16A

Order Number DS7856W or DS7858W See NS Package W1GiA

output display

absolute maximum ratings (Note i)
operating conditions

	MIN	MAX	UNITS
Suppir Voltage (VCC)			
DS7856, DS7858	4.5	5.5	v
DS8856, DS8857	4.75	525	V
DS8858			
Temperature (T_{A})			
DS7856, DS7858	-55	+125	C
DS8856, DS8857	0	+70	C
DS8858			
Output Voltage			
All Circuits		55	V
Output Sink Current (per Segment)			
DS7856, DS8856		64	$m A$
Output Source Curient (per Segment)			
DS8857		60	mA
DS7858, DS8858		50	mA

electrical characteristics (Note 2) The following is applicable to all parts.

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage				2.0			V
$V_{\text {IL }}$	Logical "0' lizput Voltage						0.8	V
V_{OH}	Logical "1" Output Voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}, \mathrm{BI} /$ RBO Node			2.4	3.7		V
V_{OL}	Logical " 0 " Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{IN}}=8.0 \mathrm{~mA}, \mathrm{BI} / \mathrm{RBO}$ Node				0.3	0.4	\checkmark
1 H	Logical "1" Input Current	$V_{C C}=$ Max, Except BI/RBO Node		$V_{1 N}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
				$V_{\text {iN }}=5.5 \mathrm{~V}$			1.0	mA
1 IL	Logical "0" I put Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=04 \mathrm{~V}$	Except BI;RBO Node				-1.6	mA
			BI/RBO Node				-42	mA
I_{SC}	Output Short Circuit Curreat	$V_{C C}=$ Max, BI, RBO Node					-4.0	mA
$V_{C D}$	Input Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$					-1.5	V

output characteristics and supply current

DS7856/DS8856 (Note 2)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VOL	Logical " 0 " Output Vol:age Outputs a through q	$V_{C C}=\mathrm{M}$ In, $\mathrm{I}_{\text {OUT }}=6.4 \mathrm{~mA}$			0.25	0.4	V
101	Logical "1" Load Current Available. Outputs a through g	$V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=1.7 \mathrm{~V}$		4.7	-6.0	-7.5	mA
$I_{\text {SC }}$	Output Short Circuit Current Outputs a through g	$V_{C C}=$ Max, (Note 3)			12	-15	mA
${ }^{1} \mathrm{cc}$	Supply Current	$V_{\text {cc }}=\mathrm{Max}$	DS7856		90	120	mA
			DSB856		90	130	mA

output characteristics and supply current (con't)

DS8857, DS7858/DS8858 (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Iol	Logical "1" Load Current Available. Outputs a through g	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.3 \mathrm{~V}, \mathrm{DS8857}$		-40		-60	mA
V_{OH}	Logical "1" Output Voltage,	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$, I OUT $=-50 \mathrm{~mA}$, (Note 4)	DS7858	2.7	3.2		\checkmark
	Outputs a through g		DS8858	2.9	3.2		V
${ }^{\text {ccc }}$	Supply Current	$V_{c c}=$ Max				60	mA

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\prime} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for DS7856, and DS7858 and across the $0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$ range for DS8856, DS8857 and DS8858. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Care must be taken in not shorting the outputs to ground while they are in the " 1 " state because excessive current fiow would result from the Darlington upper stages.
Note 4: Special care must be tken in the use of the DS7858 ceramic (J) and the DS8858 plastic (N) DIP's with regard to not exceeding the maximum operating junction temperature of the devices. The maximum junction temperature of the DS7858J is $175^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $90^{\circ} \mathrm{C} /$ watt, junction to ambient. The maximum junction temperature for the DS8858N is $150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $120^{\circ} \mathrm{C} /$ watt junction to ambient.

truth table

INPUTS								OUTPUTS							
$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	LT	RBI	D	C	B	A	BI/RBO	a	b	c	d	e	f	g	NOTE
0	1	1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	1	x	0	0	0	1	1	0	1	1	0	0	0	0	1
2	1	x	0	0	1	0	1	1	1	0	1	1	0	1	
3	1	x	0	0	1	1	1	1	1	1	1	0	0	1	
4	1	x	0	1	0	0	1	0	1	1	0	0	1	1	
5	1	x	0	1	0	1	1	1	0	1	1	0	1	1	
6	1	x	0	1	1	0	1	0	0	1	1	1	1	1	
7	1	x	0	1	1	1	1	1	1	1	0	0	0	0	
8	1	x	1	0	0	0	1	1	1	1	1	1	1	1	
9	1	\times	1	0	0	1	1	1	1	1	0	0	1	1	
10	1	x	1	0	1	0	1	0	0	0	1	1	0	1	
11	1	x	1	0	1	1	1	0	0	1	1	0	0	1	
12	1	x	1	1	0	0	1	0	1	0	0	0	1	1	
13	1	x	1	1	0	1	1	1	0	0	1	0	1	1	
14	1	\times	1	1	1	0	1	0	0	0	1	1	1	1	
15	1	x	1	1	1	1	1	0	0	0	0	0	0	0	
B	\times	x	\times	\times	x	\times	0	0	0	0	0	0	0	0	2
RBI	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3
LT	0	\times	\times	\times	\times	\times	1	1	1	1	1	1	1	1	4

Note 1. $\mathrm{BI} / \mathrm{RBO}$ is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input (BI) must be open or held at a logical "1" when output functions $0-15$ are desired, and the rippleblanking input (ABI) must be open or at a logical " 1 " if blanking of a decimal 0 is not desired $X=$ input may be high or low.
Note 2: When a logical " 0 " is applied directly to the blanking input (forced condition) ail segment outputs go to a logical " 1 " regardless of the state of any other input condition.
Note 3: When the ripple-blanking input (RBI) and inputs A, B, C and D are at logical " 0 ," with the lamp test input at logical " 1 ," all segment outputs go to a logical " 1 " and the ripple-blanking output (RBO) goes to a logical " 0 " (response condition).
Note 4: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a logical " 1 ," and a logical " 0 " is applied to the lamp-test input, all segmerit outputs go to a logical " 0 ."

output stage schematics

DS7858/DS8858

DS8859, DS8869 open collector hex latch LED drivers

general description

The DS8859, DS8869 are TTL compatible open collector hex latch LEED drivers with programmable current sink outputs. The current sinks are nominally set at 20 mA but may be adjusted by external resistors for any value between $0-40 \mathrm{~mA}$. Each device contains six latches which may be set by input data terminals. An active low strobe common to all six latches enables the data input terminals. The DS8859 current sink outputs are switched on by entering a high level into the latches and the DS8869 current sink outputs are switched on by entering a low level into the latches.

The devices are available in either a molded or cavity package. In order not to damage the devices there is a limit placed on the power dissipation allowable for each package type. This information is shown in the graph included in this data sheet.

features

- Built-in latch
- Programmable output currert
- TTL compatible inputs
- 40 mA output sink

absolute maximum ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	55 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)
operating conditions

	MIN	MAX	UNITS
Supply Voltage, VCC	4.75	5.25	V
Temperature, TA $_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{1}	Logical " 1 " lnput Voltage	$V_{C c}-M 1 r$		20			\checkmark
I_{IH}	Logical "1" \|nput Cunsent	$V_{c c}=$ Max. $V_{15}-24 \mathrm{~V}$				40	$\mu \mathrm{A}$
$V_{1 L}$	Logical " 0 " Input Voltage	Vcc - Min				0.8	V
111	Logical "O" Input Curtens	$V_{\text {cc }} \quad$ Max, $V_{1 s} 04 \mathrm{~V}$			1.0	16	mA
V_{CO}	Input Ciamp Voitage	$\mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$			11	1.5	V
SOH	Logical "1" Ohtput Curront	$V_{C C}-M 1 n, V_{1}, \quad 08 \mathrm{~V}, V_{2 H}=55 \mathrm{~V}, V_{1 H}=20 \mathrm{~V}$				250	$\mu \mathrm{A}$
Vol	Logical "0" Output Voltage	$\begin{aligned} & V_{C U}=M I M, V_{1 L}=08 \because, 1,16 \mathrm{~mA}, \\ & V_{1 H}=2 V V_{I A L}, \forall \ldots \because, \end{aligned}$		0.4			V
${ }^{\text {cc }}$	Supply Curerit	$V_{\text {CC }}$ Max. Curnat 5 naices "OFF. (See Truth Table) ivere 4)				50	mA
Imank	Output Curien:	$\begin{aligned} & V_{c c} 5.0 \mathrm{~V} \mathrm{~V}_{3}, 20 \mathrm{~V} . \\ & \mathrm{T}_{4}=25 \mathrm{C}, \text { (Notr } 41 \end{aligned}$	$V_{\text {IADJ }}=V_{\text {CCSMIN }}$	40			mA
			$\mathrm{I}_{\text {ALJ }}=$ Opell	12	20	26	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {puo }}$ Propagation Deldy o a Logical " 0 "		Data th Output			36	ns
		St,obe to Output			50	ns
$\mathrm{t}_{\text {Had }}$ Fropagatioll Delay to a Logical "i"	$V_{C C}=50 \mathrm{~V} T_{-}=25 \mathrm{C}, \mathrm{C}_{\text {L }}, \mathrm{T}=15 \mathrm{pF}$.	Data to Output			150	ns
	$R_{1}=390 \mathrm{~S} 2$, Noter 5 i	Stione to Dutput			150	n

Note 1: "Absolute Maximum Falıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provider conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. Ali typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $T_{A}=25{ }^{\circ} \mathrm{C}$
Note 3: All currents into device fins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: See graphs for changes in iSINK versus changes in temperature and $V_{C C}$.
Note 5: COUT includes device output capacitance of approximately 8.5 pF and wiring capacitance
typical performance characteristics

${ }^{\text {I }}$ SINK adjustment circuit

IADJ may be programmed by a voltage source or by resistors.

FIGURE 1.

DS8861 MOS-to-LED 5 -segment driver
DS8863 MOS-to-LED 8 -digit driver DS8963 MOS-to-LED 8-digit driver

general description

The DS8861, DS8863 and DS8963 are designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays.

The DS8861 is a 5 -segment driver capable of sinking or sourcing up to 50 mA from each driver.

The DS8863 is an 8 -digit driver. Each driver is capable of sinking up to 500 mA .

The DS8963 is identical to the DS8863 except it is intended for operation at up to 18 V

features

- 50 mA source or sink capability per driver, DS8861
- 500 mA sink capability per driver, DS8863, DS8963
- MOS compatibility (low input current)
- Low standby power
- High gain Darlington circuits
schematic and connection diagrams

absolute maximum ratings

	DS8861	DS8863	DS8963
Input Voltage Range (Note 1)	-5 V to $\mathrm{V}_{S S}$	5 V to V_{Ss}	--5V to $\mathrm{V}_{\text {SS }}$
Collector (Output) Voltage (Note 2)	10 V	10 V	18 V
Cotlector (Output)-to-Input Voltage	10 V	10 V	18 V
Emitter-to-Ground Voltage ($\mathrm{V}_{1} \geq 5 \mathrm{~V}$)	10 V		
Emitter to-Input Voltage	5 V		
Voltage at $\mathrm{V}_{S S}$ Terminal $\mathrm{W}_{\text {th }}$ Respent to Any Other Device Termınal	10 V	10 V	18 V
Collector (Output) Current			
Each Collector (Output)	50 mA	500 mA	500 mA
All Collectors (Output)	200 mA	600 mA	600 mA
Continuous Total Dissipation	800 mW	800 mW	800 mW
Operating Temperature Range	$0 \mathrm{C} 10+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$ to $+150^{\prime \prime} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

electrical characteristics

DS8861 ($\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {CEON }}$	"ON" State Collector Emitter VolTage	Input $=8 \mathrm{~V}$ through $1 \mathrm{k} \Omega, V_{E}=5 \mathrm{~V}$, $t_{C}=50 \mathrm{~mA}$		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.9	1.2	V
							1.5	V
$\mathrm{I}_{\text {COFF }}$	"OFF' State Collector Current	$V_{C}=10 \mathrm{~V} . V_{E}=0$	$\mathrm{I}_{1 \mathrm{~N}}=40 \mu \mathrm{~A}$				100	$\mu \mathrm{A}$
			$V_{1 N}=0.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$				2.2	3.3	mA
I_{E}	Emitter Reverse Current	$V_{\text {IN }}=0, V_{E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$					100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SS }}$	Current Into $\mathrm{V}_{\text {SS }}$ Termınal						1	$m A$

DS8863/DS8963 ($V_{S S}=10 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{O L}$	Low Level Output Voltage	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	V
							1.6	\checkmark
I_{OH}	High Leivel Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V} *$	$\mathrm{I}_{\text {IN }}=40 \mu \mathrm{~A}$				250	$\mu \mathrm{A}$
			$V_{1 N}=05 \mathrm{~V}$				250	$\mu \mathrm{A}$
1	Input Current at Maxımum Input V oltage	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$					2	$m \mathrm{~A}$
$\mathrm{I}_{\text {SS }}$	Current Into $\mathrm{V}_{\text {SS }}$ Terminal						1	mA

* 18 V for the DS8963

switching characteristics

DS8861 $\left(\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS	IVIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-Hign Level Output (Collector)	$V_{I H}=4.5 \mathrm{~V}, V_{E}=0$		100		ns
${ }_{\text {tPHL }}$	Propagaton Delay Time, High-to-Low Level Output (Collector)	$\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		20		ns

DS8863/DS8963 ($\left.V_{S S}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$V_{I H}=8 \mathrm{~V}, R_{L}=21 \Omega 2$,		300	
$t_{P H L}$	Propagation Delay Time, High-to-Lowr Level Output	$C_{L}=15 \mathrm{pF}$	ns		

Note 1: The inpur: is the only device terminal which may be negative with respect to ground
Note 2: Voltage values are with respect to n etwork ground terminal unless otherwise noted

ac test circuits and waveforms

note 1 the pulse generator has the following characteristics $z_{0 .}=50$: $P R R=100 \mathrm{KHz} \mathrm{t}_{\mathrm{w}}-1.5$
NOTE $2 \mathrm{E}_{1}$ includes probe and Jig capacitance

National Semiconductor

DS8867 8-segment constant current driver

general description

The DS8867 is an 8 -segment driver designed to be driven from MOS circuits operating at $8 \mathrm{~V} \pm 10 \%$ minimum $V_{S S}$ supply and will supply 14 mA typically to an LED display. The output current is insensitive to $V_{C C}$ variations.

features

- Internal current control-no external resistors
- 100% efficient, no standby power
- Operates in three and four cell battery systems
- Inputs and outputs grouped for easy PC layout

schematic and connection diagrams

Dual-in-Line Package

Order Number DS8667N
See NS Package N18A

typical application

Typical 3 Cell Scientific Calculator Circuit

absolute maximum ratings (Note 1)

operating conditions

Supply Voltage	7 V		MIN	MAX	UNITS
Input Voltage	10 V	Supply Voltage, V_{CC}	3.3	6.0	
Output Voltage	10 V	${\text { Temperature, } \mathrm{T}_{\mathrm{A}}}^{\circ} \mathrm{C}$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 2)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Logical "1' Iriput Voltage	$V_{C C}=M_{1 n}, V_{O H}=2.3 \mathrm{~V}, \mathrm{I}_{1 \mathrm{H}}=500 \mu \mathrm{~A}$			4.9	5.4	\checkmark
$I_{\text {IL }}$	Logical ' 0 ' Iriput Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{OL}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=2.0 \mathrm{~V}$			0.1	10	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {r }}$	Logical ' 1' Output Current	$V_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{IH}}=500 \mu \mathrm{~A}$		-8	-14	-18	mA
$\mathrm{IOL}^{\text {OL }}$	Logical '0' Output Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{OL}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=1.3 \mathrm{~V}$			-0.5	-10	$\mu \mathrm{A}$
ICc off	Supply Current	$V_{C C}=\operatorname{Max}$	All $\mathrm{V}_{\mathrm{OL}}=1.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=1.3 \mathrm{~V},(\mathrm{Stand} \mathrm{by})$		4	50	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC} O N$			All $\mathrm{V}_{\text {OH }}=2.3 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=7.8 \mathrm{~V}$		112	150	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" "hey are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DS8868 12-digit decoder/driver

general description

The DS8868 is a 12 -digit decoder/driver designed to drive LED displays like the NSA5101 from the MM5758 calculator chip or equivalent which supplies a 4-line coded input (see truth table). It is designed to operate from a 3 cell battery (3.3 V to 4.5 V) and features a low battery indicator. The DS8868 can sink up to 80 mA min on each output. For applications requiring more output drive, use the DS8968.

features

- Direct interface with MM5758 calculator
- Low battery indicator
- 80 mA sink capability
- Low voltage operation

connection diagram

Dual-In-Line Package

Order Number DS8Ei68N See NS Package N18A

equivalent schematic

truth table

INPUTS				OUTPUTS*											
IN_{A}	IN_{B}	IN_{C}	$\mathbf{I N}_{\mathrm{D}}$	01	02	03	04	05	06	07	08	09	010	0111	012
L	L	L	H	L											
H	L	L	L		L										
H	H	L	L			L									
L	H	H	L				L								
H	L	H	H					L.							
1	H	L	H						L						
H	L	H	L							L					
H	H	L	H								L				
H	H	H	L									L			
H	H	H	H										L		
L	L	H	H											L	
L	H	H	H												1

[^7]
absolute maximum ratings (Note 1)

operating conditions

Supply Voltage
Input Current
Output Voltage
Storage Temperature Ra nge
Lead Temperature (Scldering, 10 seconds)

6 V 10 mA

9 V
-65 to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage, $V_{C C}$	3.3	4.5	V
Temperature, T_{A}	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {iH }}$	Logical "1" nput Current	$V_{\text {Cc }}=$ Min, Selected Output $V_{\text {OL }} \leq 0.4 V$		300	450	$\mu \mathrm{A}$
$V_{\text {ILV }}$	Low Voltage Indicator (Measured on Pin 15;	$V_{C C}=3.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {INC }}=1_{\text {IND }}=450 \mu \mathrm{~A}$	2.8			V
$I_{\text {IL }}$	Logical " $\mathrm{Cl}^{\prime \prime}$ ' input Current	$V_{\text {CC }}=$ Min, Selected Output $\mathrm{I}_{\text {OM }} \leq 50 \mu \mathrm{~A}$	100	300		$\mu \mathrm{A}$
I_{OH}	Logical "1" Output Current	$V_{C C}=$ Max, $V_{O H}=6.3 \mathrm{~V}$, All Outputs "OFF"			100	$\mu \mathrm{A}$
V_{OL}	Logical " 0 " Output Voltage	$V_{C C}=M i n, l_{O L}=80 \mathrm{~mA}$			0.5	V
I_{cc}	Supply Current "OFF"	$V_{C c}=$ Max, All Outputs 'OFF', $V_{\text {OH }}=5 \mathrm{~V}$			8.0	mA
I_{Cc}	Supply Current "ON"	$V_{c c}=$ Max, One Output Selected			13.5	mA

Note 1: "Absolute Max.imum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Conditions" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2. Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical application

Typical 3-Cell Scientific Calculator Circuit

DS8870 hex LED digit driver

general description

The DS8870 is an interface circuit designed to be used in conjunction with MOS integrated circuits and commoncathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digit-scan method of LED drive.

features

- Sink capability per driver- 350 mA
- MOS compatibility (low input current)
- Low standby power
- High-gain Darlington circuits

schematic and connection diagrams

DS8870 (Each Driver)

Dual-In-Line Package

Order Number DS8870J or DS8870N
See NS Package J14A or N14A

absolute maximum ratings (Note 1)

Input Voltage Range (Note 4)

Collector Output Voltage
Collector Output to Irput Voltage
Voltage at $\mathrm{V}_{\text {SS }}$ Terminal with Respect to
Any Other Device Terminal
Collector Output Current
Each Collector Output
All Collector Ou1puts
Continuous Total Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Scldering, 10 seconds)

5 V to V_{SS}
10 V 10 V

10 V
350 mA
600 mA
800 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
electrical characteristics $\left(V_{S S}=10 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \text { Input }=6.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \\ & \mathrm{I}_{\text {OUT }}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1.2	1.4	v
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \text { Input }=6.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \\ & \mathrm{I}_{\text {OUT }}=350 \mathrm{~mA} \end{aligned}$			1.6	V
$\mathrm{IOH}^{\text {OH}}$	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}, 1_{\text {IN }}=40 \mu \mathrm{~A}$			200	$\mu \mathrm{A}$
$\mathrm{IOH}^{\text {O }}$	High Level Output Current	$\mathrm{V}_{\text {OH }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$			200	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$V_{I N}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		2.2	3.3	mA
$\mathrm{I}_{\text {ss }}$	Current Inro $\mathrm{V}_{\text {SS }}$ Terminal				1	mA

switching characteristics $\left(V_{S S}=7.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & V_{I H}=7.5 \mathrm{~V}, R_{L}=39 \Omega \\ & C_{L}=15 \mathrm{pF} \end{aligned}$		300		ns
	Propagation Delay Time, High-to-Low Level Output	$\begin{aligned} & V_{I H}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \\ & C_{L}=15 \mathrm{pF} \end{aligned}$		30		as

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 3: All currents int device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or rnin on absolute value basis.
Note 4: The input is t ie only device terminal which may be negative with respect to ground,

DS8871, DS8872, DS8873, DS8920, DS8977 saturating LED cathode drivers

general description

The DS8871, DS8872, DS8873, DS8920 and DS8977 are bipolar integrated circuits designed to interface between MOS calculator circuits and common cathode LED displays operating in the multiplexed mode with a digit current of up to 40 mA . The DS8871 is an 8 -digit driver; the DS8920 and the DS8872 are 9-digit drivers; and the DS8873 is a 9 -digit driver with a built-in battery condition indicator that turns on the digit 9 decimal point when the battery voltage drops to 6.5 V (typical). The DS8977 is a 7 -digit version of the DS8873. In a typical calculator system operating on a 9 V battery, the low battery indicator comes on as a warning that
the battery should be replaced. But the calculator (MM5737 or equivalent) will still function properly for awhile. The DS8920 is identical to the DS8872 in a 20-pin package.

features

- Single saturating transistor output
- Low battery indicator
- MOS compatible inputs
- Inputs and outputs clustered for easy wiring
- Drivers consume no standby power

schematic diagram

connection diagrams (Dual-In-Line Packages, Top Views)

absolute maximum ratings (Note 1)

Supply Voltage
Supply Voltage (Note 4)
Input Voltage
Output Voltage
Storage Temperature Range
Lead Temperazure (Soldering, 10 seconds)

$$
V_{C C 1}=11 \mathrm{~V}
$$

$$
V_{C C 2}=11 \mathrm{~V}
$$

11 V

8 V

 $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$$300^{\circ} \mathrm{C}$
operating conditions

	MIN	MAX	UNITS
Supply Voltage, $V_{C C 1}$	4.0	9.5	V
Supply Voltage, $V_{C C 2}($ Note 4)	4.0	9.5	V
Temperature, T_{A}	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {IL }}$	Logical " 0 " Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		28	45	$\mu \mathrm{A}$
IIH	Logical "1" Input Current	$V_{\text {IN }}=4.5 \mathrm{~V}$		1.7	2.5	mA
V_{OL}	Logical '0" Output Voltage	$\mathrm{V}_{\mathrm{IN}}=3.2 \mathrm{~V}, \mathrm{IOL}=40 \mathrm{~mA}$		0.35	0.5	\checkmark
IOL	Logical '0' Output Current	$\mathrm{V}_{\text {IN }}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	40			mA
ICEX	Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=6 \mathrm{~V}, \mathrm{IIN}=25 \mu \mathrm{~A}$			40	$\mu \mathrm{A}$
IDP(ON)	Decimal Point Output Current	$\mathrm{V}_{\mathrm{CC} 2}=6.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DP}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{N} 9}=3.2 \mathrm{~V}$ (Note 4)	-5.0	-7.0		mA
IDP(OFF)	Decimal Point Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 9}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DP}}=1 \mathrm{~V}, \\ & \text { (Note } 4) \end{aligned}$		-1	-100	$\mu \mathrm{A}$
${ }^{\text {I CCO }}$	Supply Current, VCC1	$V_{C C 1}=6.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		1	100	$\mu \mathrm{A}$
${ }^{\text {I CC2 }}$	Supply Current, VCC2	$\mathrm{V}_{\mathrm{CC} 2}=11.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V},($ Note 4)		0.9	1.2	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for
"Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical
Characterislics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.
Note 3: Ali currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Applies to DS8873 only.

typical applications

FIGURE 1. 4-Cell System

FIGURE 2.9V System

DS8874 9-digit shift input LED digit driver

general description

The DS8874 is a 9 -digit LED driver which incorporates a shift register input decoding circuit and a low battery indicator. The outputs will sink 50 mA at less than 0.5 V drop when sequentially selected. The DS8874 outputs are collectors pulled up to $V_{C C}$ with internal 20 k resistors. When the V_{CC} supply falls below 6.5 V typical on the DS8874, pin 13 will supply segment current at digit 9 time to indicate a low battery condition. This pin is generally connected to the decimal point segment on the display so that when a low battery condition exists, the left-most decimal point lights up. The digit driver
is intended to be used with the MM5784N 5-function, 9 -digit accumulating memory calculator circuit, or any other circuit which supplies the 9 -digit information in a similar serial format.

features

- 50 mA digit sink
- Low battery indicator
- Minimum number of connections
- MOS compatible inputs

connection diagram

Dual-In-Line Package

Ordes Number DS8874J or DS8874N
See NS Package J14A or N14IA

equivalent schematic

typical application

Typical Application of the DS8874 Digit Driver with the MM5784 5-Function Calculator Circuit, NSA1298 9-Digit LED Display and a 9 V Battery

absolute maximum ratings	(Note 1)
Input Current	2 mA
Supply Voltage	10 V
Input Voltage	V CC
Output Voltage	10 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V IH	Logical "1" input Voltage	$V_{C C}=$ Max	3.0			\checkmark
1 H	Logical "1" input Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=6.5 \mathrm{~V}$	0.35	0.6	1.0	mA
VIL	Logical '0" Input Voitage	$V_{C C}=$ Max			0.8	V
IIL	Logical " 0 ' Input Current	$V_{C C}=M a x, V_{\text {IN }}=0.8 \mathrm{~V}$		0.05	0.1	mA
VCCL	Decimal Point ON	$\mathrm{V}_{\mathrm{DP}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DP}}=-4 \mathrm{~mA}$, Output $9=\mathrm{V}_{\mathrm{OL}}$			6.0	\checkmark
$\mathrm{V}_{\mathrm{CCH}}$	Decimal Point OF $=$	$V_{D P}=1 \mathrm{~V}, I_{D P}=-10 \mu \mathrm{~A}$, Output $9=V_{O L}$	7.0	6.5		V
$\mathrm{VOH}_{\mathrm{OH}}$	Logical "1" Output Voltage	$V_{C C}=$ Max, Output Not Selected	9.0			V
VOL	Logical '00' Output Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, Output Selected, $\mathrm{IO}^{\text {1 }}=50 \mathrm{~mA}$			0.5	V
IOL	Logical "0" Output Current	$V_{C C}=$ Min, Output Selected, $V_{O L}=0.5 \mathrm{~V}$	50			mA
ICC	Supply Current	$V_{C C}=$ Max, One Output Selected		6.2	9.0	mA

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are nct meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions fir actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis
timing diagram (Upper Level More Positive)

DS8877 6-digit LED driver

general description

The DS8877 is a 6 -digit LED driver designed as a pin for-pin replacement for the DS75492 in applications where digit current is in the 5 to 50 mA range. Since the outputs saturate to less than 0.6 V , the DS8877 will work on lower battery voltages than most digit drivers The DS8877 draws no standby power

features

- No standby power
- No supply connection
- Operates in $4.5 \mathrm{~V}, 6 \mathrm{~V}$ or 9 V systems
- Pin-for-pin replacement for DS75492 in low current applications

logic and connection diagrams

Dual-In-Line Package

Order Number DS8877N
See NS Package N14A

absolute maximum ratings (Note 1)

Supply Voltage
Input Voltage
Output Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

None Required
10 V
10 V
0 to $+70^{\circ} \mathrm{C}$ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage		5.0			\checkmark
$\mathrm{I}_{1 \mathrm{H}}$	Logical "1" Input Current	$\mathrm{V}_{1 H}=5.0 \mathrm{~V}$			1.2	mA
$V_{\text {IL }}$	Logical "C1' Input Voltage				0.35	V
I_{L}	Logical ' ${ }^{\prime \prime}$ ' ${ }^{\text {I }}$ Input Current	$V_{\text {IL }}=0.35 \mathrm{~V}$			20	$\mu \mathrm{A}$
$l_{\text {CEX }}$	Logical "1" Output Current	$V_{C}=8.0 \mathrm{~V}, \quad V_{\text {IN }}=0.35 \mathrm{~V}$			100	$\mu \mathrm{A}$
$V_{\text {OL }}$	Logical "Cl' Output Voltage	$\mathrm{I}_{\mathrm{OL}}=35 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$			0.5	\checkmark
$\mathrm{IOL}^{\text {L }}$	Logical "(1) Output Current	$V_{\text {OL }}=0.5 \mathrm{~V}, \quad V_{\text {IN }}=5.0 \mathrm{~V}$	35	50		mA

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voitages referenced to ground unless otherwise noted. Alf values shown as max or min on absolute value basis.

typical application

Calculator Configuration with MM5736 6-Digit Calculator

DS7880/DS8880 high voltage 7-segment decoder/driver (for driving Panaplex II $^{\top M}$ and Sperry/Beckman displays)

general description

The DS7880/DS8880 is custom designed to decode four lines of $B C D$ and drive a gas-filled seven-segment display tube.

Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with righ tube anode supply tolerance or fluctuation These current sinks have a voltage complance from 3 V to at least 80 V ; typically the output current varies 1% for output voltage changes of 3 to 50 V . Each bit line of the decoder switches a current sink on or off as prescribed by the mput code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 02 to 15 mA range for driving various tube types or multiplex operation. The outpu: current is ad justed by connecting an external program resistor
(R_{p}) from $V_{C C}$ to the Program input in accor dance with the programming curve. The circuit design provides a one-to-one correlation between program input current and bsegment output: current.

The Blanking Input provides unconditional blank ing of any output display, while the Ripple Blanking puns allow smple leading or tralling-zeio blanking.

features

- Current sink outputs
- Adjustable output current - 02 to 1.5 mA
- High output breakdown voltage 110 V typ
- Suitable for multiplex operation
- Blankıng and Ripple Blankıng provisions
- Low fan in and low power

logic and connection diagrams

Order Number DS7880J or DS8880J Order Number DS8880N
See NS Package J16A or N16A
absolute maximum ratings (Note 1)
$V_{C C}$
7 V
6 V
$V \mathrm{CC}$
80 V
600 mW
50 mA
65 C to 150 C
300 C

Input Voltage (Except BI)
Input Voltage (81)
Segment Output Voltage
Power Dissipation
Transient Segment Output Current (Note 4)
Storage Temperature Range
Lead Temperature (Soldering. 10 sec)

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS78B0	45	55	V
DS8B80	475	525	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS7880	-55	-125	C
DS8880	0	.70	C

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$	Logical "1" Input Voltage	$V_{c c}=M_{1 m}$		20			\checkmark
$V_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=M i n$				0.8	V
V_{OH}	Logical "1" Output Vol*age	$V_{\text {CC }}=$ MIn, $I_{\text {OLT }}=-200 \mu \mathrm{~A}, \mathrm{RBO}$		2.4	3.7		V
VOL_{2}	Logical "0' Output Volrage	$V_{\text {Cc }}=$ MIn, $I_{\text {cut }}=8 \mathrm{~mA}, \mathrm{RBO}$			0.13	0.4	V
I_{1+}	Logical "1" Input Current	$V_{C C}=$ Max, Except BI	$V_{\text {IN }}=2.4 \mathrm{~V}$		2	15	μA
			$V_{\text {IN }}=5.5 \mathrm{~V}$		4	400	μA
16	Logical "0' Input Current	$V_{C C}=$ Max, $V_{\text {IN }}=0.4 \mathrm{~V}$	Except 81		-300	-600	$\mu \mathrm{A}$
			81		-1.2	-2.0	mA
${ }^{\text {cc }}$	Power Supply Current	$V_{c c}=M a x, R_{p}=22 \mathrm{k}$, All Inputs $=0 \mathrm{~V}$			27	43	mA
V_{CD}	Input Diode Clamp Voltage	$V_{C C}=\mathrm{Max} T_{A}=25 \mathrm{C}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$			0.9	-15	V
$\therefore 0$	SEGMENT OUTPUTS "ON" Current Ratıo	$\begin{aligned} & \text { All Outputs }=50 \mathrm{~V} \text {. } \\ & \mathrm{I}_{\text {OuT }} \mathrm{b}=\text { Ref } \end{aligned}$	Outputs a, f, and g	0.84	0.93	1.02	
			Output c	1.12	1.25	1.38	
			Output d	0.90	100	1.10	
			Output e	099	110	1.21	
lbon	Output b "ON" Current	$V_{C c}=5 \mathrm{~V}, V_{C u T} b=50 \mathrm{~V} .$ All Other Outputs $\geq 5 \mathrm{~V}$. $T_{A}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{p}}=18.1 \mathrm{k}$	015	0.20	0.25	mA
			$\mathrm{R}_{\mathrm{F}}=703 \mathrm{k}$	0.45	050	0.55	mA
			$\mathrm{R}_{\mathrm{P}}=340 \mathrm{k}$	0.90	100	1.10	$m A$
			$\mathrm{R}_{\mathrm{p}}=220 \mathrm{k}$	1.35	1.50	1.65	mA
$V_{\text {SAT }}$	Output Saturation Voltage	$V_{\text {cc }}=M_{1}, R_{P}=1 \mathrm{k} \pm 5 \%, I_{\text {OUT }} \mathrm{b}=2 \mathrm{~mA}$, (Note 5)			0.8	2.5	V
${ }^{\text {CEEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=75 \mathrm{VBI}-0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k}$			0003	3	$\mu \mathrm{A}$
$V_{B R}$	Output 8reakdown Voltage	$I_{\text {OUT }}=250 \mu \mathrm{~A} . \mathrm{B} 1=0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k}$		80	110		V
t_{pd}	Propagation Delays BCD Input to Segmert Output	$V_{C C}=5 \mathrm{~V}, T_{A}=25 \mathrm{C}$			04	10	$\mu \mathrm{s}$
	81 to Secment Outpu:				0.4	10	$\mu \mathrm{s}$
	R8I to Segment Output				07	10	$\mu \mathrm{s}$
	RBI to R80				04	10	$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7880 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the [IS8880. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: In all applications transient segment output current must be limited to 50 mA . This may be accomplished in de applications by connectir 3 a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.
Note 5: For saturation mode the segment output currents are externally limited and ratioed.

typical performance characteristics

typical application

truth table

DECIMAL OR FUNCTION	RBI ${ }^{+}$	D	C	B	A	BI/RBO	a	b	c	d	e	\dagger	g	DISPLAY
0	1	0	0	0	$(1$	1	0	0	0	0	0	0	1	1
1	x	0	0	0	1	1	1	0	0	1	1	1	1	\%
2	x	0	0	1	0	1	0	0	1	0	0	1	0	I'
3	x	0	0	1	1	1	0	0	0	0	1	1	0	二1
4	x	0	1	0	0	1	1	0	0	1	1	0	0	-
5	x	0	1	0	1	1	0	1	0	0	1	0	0	II
6	x	0	1	1	0	1	0	1	0	0	0	0	0	İ
7	x	0	1	1	1	1	0	0	0	1	1	1	1	-1
8	x	1	0	0	0	1	0	0	0	0	0	0	0	$1-1$
9	x	1	0	0	1	1	0	0	0	0	1	0	0	-1
10	x	1	0	1	0	1	0	0	0	1	0	0	0	17
11	x	1	0	1	1	1	1	1	0	0	0	0	0	名
12	X	1	1	0	0	1	0	1	1	0	0	0	1	1
13	x	1	1	0	$!$	1	1	0	0	0	0	1	0	\square^{\prime}
14	x	1	1	1	0	1	0	1	1	0	0	0	0	E
15	X	1	1	1	1	1	0	1	1	1	0	0	0	$1=$
B1*	X	X	X	x	x	0 *	1	1	1	1	1	1	1	
RBI	0	0	0	0	0	0	1	1	1	1	1	1	1	

*BI/RBO used as input only

DS8881 vacuum fluorescent display driver

general description

The DS8881 vacuum fluorescent display driver will drive 16 -digit grids of a vacuum fluorescent display. The decode inputs select one of the sixteen outputs to be pulled high. The device contains an oscillator for supplying clock signals to the MOS circuit, the filament bias zener and $50 \mathrm{k} \Omega$ pull-down resistors for each grid. Outputs will source up to 7 mA . The DS8881 is designed for 9 V operation. It the enable input is puiled low, all outputs are disabled.

features

- Oscillator frequency accuracy and stability allows maximum system speed
- Interdıgit blanking with the enable input provides ghost-free display operation
- $50 \mathrm{k} \Omega$ pull-down resistors for each grid
- 7 V filament bias zener

connection diagram

Dual-In-Line Package

Order Number DS8881N
See NS Package N28A
truth table All outputs not shown high are off (low)

INPUTS					DIGIT OUTPUTS															
E_{N}	D	C	B	A	D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H	L	L	L	L	H															
H	L	L	L	H		H														
H	L	L	H	L			H													
H	L	L	H	H				H												
H	L	H	L	L					H											
H	L	H	L	H						H										
H	L	H	H	L							H									
H	L	H	H	H								H								
H	H	L	L	L									H							
H	H	L	L	H										H						
H	H	L	H	L											H					
H	H	L	H	H												H				
H	H	H	L	L													H			
H	H	H	L	H														H		
H	H	H	H	L															H	
H	H	H	H	H																H
L	X	\times	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

absolute maximum ratings (Note 1)

operating conditions

Supply $V_{\text {oltage }} \mid \mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{BB}}$)

Input Current
Output Current
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

38 V
10 mA
$-20 \mathrm{~mA}$
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage			
$V_{S S}$	5.0	9.5	V
$V_{B B}$	Gnd	-26	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage	$V_{S S}=$ Max	Enable	$I_{\text {IN }}=260 \mu \mathrm{~A}$				5.1	V
			A, B, C, D	IIN $=1400 \mu \mathrm{~A}$				1.5	V
${ }^{\prime} \mathrm{IH}$	Logical "1" Input Current	$V_{S S}=$ Max	Enable A, B, C, D					260	$\mu \mathrm{A}$
VIL	Logical "0' Input Voltage	$V_{\text {SS }}=\operatorname{Max}$	Enable					1.0	V
			A, B, C, D					0.3	\checkmark
IIL	Logical "0" Input Current	$V_{S S}=$ Max	Enable	$V_{\text {IN }}=O V$				-1.0	$\mu \mathrm{A}$
			A, B, C, D	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{MAX})$		25			$\mu \mathrm{A}$
V_{OH}	Logical "1" Output Voltage	Digit Output, $1 \mathrm{OH}=-7 \mathrm{~mA}$				$\mathrm{VSS}^{-2.5}$			V
IOH	Logical "1" Output Current	$V_{S S}=$ Max, Osc. Output, $V_{R C}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=10 \mathrm{~V}$						50	$\mu \mathrm{A}$
los	Outpu: Short-Circuit Current	$V_{S S}=M_{1 n}, P i n R, V_{R C}=0.6 \mathrm{~V}, V_{R}=0 \mathrm{~V}$				150		-450	$\mu \mathrm{A}$
ROUT	Outpu: Pull-Down Resistor	\checkmark SS $=$ Min, Digit Output				30	50	B5	$k \Omega$
VOL	Logical "0" Output Voltage	$V_{S S}=M_{\text {in }}$	Osc. Pın R	$V_{R C}=1.6 \mathrm{~V}$	${ }^{1} \mathrm{OL}=6 \mathrm{~mA}$			0.5	V
					${ }^{1} \mathrm{OL}=60 \mu \mathrm{~A}$			02	V
		\checkmark SS $=$ Max	Digit Output	$V_{\text {ENABLE }}=1 \mathrm{~V}$	${ }^{\prime} \mathrm{OL}=10 \mu \mathrm{~A}$			$\mathrm{VBB}^{+1.4}$	V
ISS	Supply Current	$V_{S S}=9.5 V$	${ }^{1} \mathrm{OH}=0$	$V_{\text {ENABLE }}=5.1 \mathrm{~V}$			9.0	-12.5	mA
				$V_{\text {ENABLE }}=1 \mathrm{~V}$			5.0	-9.0	mA
IBB	Supply Current	$\begin{aligned} & V_{S S}=9.5 V \\ & V_{B B}=-26 V \end{aligned}$	$\begin{aligned} & \text { IB }=0, \\ & \text { IIN }=300 \mu \mathrm{~A} . \\ & \text { (Note 4) } \end{aligned}$	$V_{\text {ENABLE }}=1 \mathrm{~V}$			-0B	-1.5	mA
				$V_{\text {ENABLE }}=5.1 \mathrm{~V}$			-3.0	-5.0	mA
V_{B}	Filament Bias Voltage	$B=10 \mathrm{~mA}$				VBB^{+64}	$\mathrm{V}_{\mathrm{BB}}+6.9$	$\mathrm{VBB}^{+7.4}$	V

switching characteristics; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {tpdo }}$	Propagation Delay to a Logical " C " From Enable Input to Digit Output	$\mathrm{R}_{\mathrm{L}}^{\prime}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}^{\prime}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{BB}}=-23 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=8 \mathrm{~V}$			1	$\mu \mathrm{s}$
$t_{\text {pdo }}$	Propagation Delay to a Logical "C" A, B, C, D to Digit Output				1	$\mu \mathrm{s}$
$t_{\text {pd1 }}$	Propagation Delay to a Logical " 1 " From Enable Input to Digit Output				300	ns
${ }_{\text {t }}^{\text {d }} 11$	Propagation Delay to a Logical " 1 " From A, B, C, D to Digit Output				500	ns
${ }^{\text {t F ALL }}$	Oscillator Output Transition Time From 1 to 0	$V_{S S}=9.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \mathrm{k}$ to $V_{S S}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$			50	ns
fosc	Oscillator Frequency	$\begin{aligned} & 7 \mathrm{~V}<\mathrm{V}_{\mathrm{SS}}<9.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=27 \mathrm{k} \Omega, \pm 2 \%, \mathrm{R}_{\mathrm{L}}=1.3 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF} \pm \mathbf{5} \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	320	360	400	kHz
dc	Oscillator Duty Cycle		46	56	66	\%

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/rax limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DSBBB1. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Approximately 50% of imput current on pins 4, 5, 6, 7 is shunted to $V_{B B}$. If minimum $I_{B B}$ is desired, then $i_{\text {iN }}$ should be minimized by using resistors in series with the inputs.
ac test circuit

switching time waveforms

input-output schematics

OSC

typical application

DS8884A high voltage cathode decoder/driver
(for driving Panaplex II $^{\text {TM }}$ and Sperry/Beckman displays)

general description

The DS8884A is designed to decode four lines of $B C D$ input and drive seven-segment digits of gasfilled readout displays.

All outputs consist of switchable and programable current sinks which provide constant current to the tube cathodes, even with high tube anode supply tolerance. Output currents may be varied over the 0.2 to 1.2 mA range for multiplex operation. The output current is adjusted by connecting an external program resistor (R_{P}) from V_{CC} to the program input in accordance with the programming curve. Unused outputs must be tied to V_{cc}.
features

- Usable with AC or DC input coupling
- Current sink outputs
- High output breakdown voltage
- Low input load current
- Intended for multiplex operation.
- Input pullups increase norse immunity
- Comma/d.pt. drive

logic and connection diagrams

operating conditions

$V_{C C}$	$7 V$		MIN	MAX
Input Voltage (Note 4)	$V_{C C}$	UNITS		
Segment Output Voltage	80 V	Suply Voltage $\left(V_{C C}\right)$	4.75	5.25
Power Dissipation	600 mW	Temperature $\left(T_{A}\right)$	0	+70
Transient Segment Output Current $($ Note 5$)$	50 mA		${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			

electrical characteristics $10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ - Unless otherwise noted) (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		2.0		V
$V_{\text {IL }}$	Logical "0" Input Voltage	$V_{c c}=4.75 \mathrm{~V}$			1.0	V
I_{IH}	Logical "1" Input Current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			15	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Logical "0" Input Current	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-250	$\mu \mathrm{A}$
I_{Cc}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.8 \mathrm{k}$, All Inputs $=5 \mathrm{~V}$			40	mA
V_{1+}	Positive Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{1 \mathrm{~N}}=1 \mathrm{~mA}$		5.0		V
V_{1-}	Negative Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-1.5	V
Δ	SEGMENT OUTPUTS "ON" Current Ratio	All Outputs $=50 \mathrm{~V}, \mathrm{I}_{\text {OUT }} \mathrm{b}=$ Ref., All Outputs		0.9	1.1	
$I_{\text {b ON }}$	Output b 'ON' Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\mathrm{P}}=18.1 \mathrm{k}$	0.15	0.25	mA
			$\mathrm{R}_{\mathrm{P}}=7.03 \mathrm{k}$	0.45	0.55	mA
			$\mathrm{R}_{\mathrm{P}}=3.40 \mathrm{k}$	0.90	1.10	mA
			$\mathrm{R}_{\mathrm{p}}=2.80 \mathrm{k}$	1.08	1.32	mA
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current	$V_{\text {OUT }}=75 \mathrm{~V}$			5	$\mu \mathrm{A}$
$V_{B R}$	Output Breakdown Voltage	$\mathrm{I}_{\text {OUT }}=250 \mu \mathrm{~A}$		80		V
t_{pd}	Propagation Delay of Any Input to Segment Output	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS8884A. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Note 3: All currints into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted, All values shown as rnax or min on absolute value basis.
Note 4: This limit can be higher for a current limiting voltage source.
Note 5: In all applications transient segmerit output current must be limited to 50 mA . This may be accomplished in dc applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

truth table

FUNCTION.	DPT	COMma	0	c	B	A	1	t.	e	d	,	1	1	display	
0	1	1	0	0	0	0	D	(1)	0	0	0	0	1	i	
1	1	1	0	0	0	1	1	(i)	0	1	1	1	1	i	
2	1	1	0	0	1	-	0	\checkmark	1	0	\bigcirc	1	0	『	
3	1	1	0	0	1	1	0	4	0	0	1	1	0	$\overline{7}$	
4	1	1	0	1	0	0	1	\square	0	,	1	0	0	4	
5	1	1	0	,	0	1	-		0	0	1	0	0	E	
E	1	1	0	,	,	0	0		0	0	0	0	0	E	
7	1	1	0	1	1	1	0	${ }^{4}$	0	1	1	1	1	7	
8	1	1	,	0	0	0	0	6	0	0	0	0	0	\square	
9	1	1	1	0	0	,	0	c	0	0	1	0	0	9	
10	1	1	1	0	1	0	1		0	0	0	1	,	-1	
11	1	1	1	\bigcirc	1	1	1	-	c	0	0	1	0	\%	10
12	1	1	,	1	0	0	0	1	,	1	1	0	0	O	1815
13	,	1	1	,	\bigcirc	-	0	,	1	0	0	0	0	-	
14	1	1	1	1	1	0	1	1	1	1	1	1	0	-	/ ${ }^{\text {a }}$
15	1	1	1	1	1	,	1	.	2	,	1	1	1		
- ${ }^{\text {d P }}$	0	,	\times	\times	\times	\times	\times	*	\times	x	\times	\times	\times	-	
'Comme	0	0	\times	\times	\times	\times	\times	\cdots	\times	\times	\times	\times	\times	1	- Comma

typical application

typical performance characteristics (see DS7880 data sheet)

DS8885 MOS to high voltage cathode buffer

general discription

The D)S8885 interfaces MOS calculator or counter-latch-decoder-driver circuits directly to 7 -segment, high-voltage, gas-filled displays. The six inputs A, B, D, E, F, G are decoded to drive the 7 segment of the tube.

Each output constitutes a switchable. adjustable current source which provides constant current to the tube segment, even with high tube anode supply tolerance or fluc:uation. These current sources have a voltage complance from 3 V to at least 80 V Each current source is ratioed to the boutput current as required for even illumination of all segments. Outpat currents, may be varied over the 02 to 15 mA range for driving various tube types or
multiplex operation The output curient is adjusted by connecting a piogram esistor $\left(R_{P}\right)$ fiom $V_{C C}$ to the program input

features

- Current source outputs
- Adjustable output currents 02 to 15 mA
- High output breakdown voltage 80 V mm
- Suitable for multiplex operation
- Low fan-in and low power
- Blanking via program input
- Also dives overrange, polarity, decimal point cathodes

connection diagram

typical applications

Dpen-Drain MOS Output

truth tables

A	B	D	E	F	G	DISPLAY
1	1	1	1	1	0	
0	1	0	0	0	0	
1	1	1	1	0	1	
1	1	1	0	0	1	
0	1	0	0	1	1	1
1	0	1	0	1	1	$=$
1	0	1	1	1	1	1
1	1	0	0	0	0	1
1	1	1	1	1	1	1
1	1	1	0	1	1	
0	0	1	1	1	1	
1	1	0	0	1	1	1
1	1	0	1	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	0	1
0	0	0	0	0	1	-
0	0	0	0	0	0	

INPUT ${ }^{*}$	DUTPUT
0	1 IOFF
1	0 ION:

- Positive Logis

Push-Pull MOS Output

absolute maximum ratings (Note 1)

VCC	7 V
Input Voltage	6 V
Segment Output Voltage	80 V
Power Dissipation	600 mW
Transient Segment Output Current (Note 4)	50 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Input Voltage

Segr Output Volage

Transient Segment Output Current (Note 4)
Lead Temperature (Soldering, 10 seconds)

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS			MiN	TYP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage	$V_{C C}=\operatorname{Min}$			2.0			V
$V_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=M_{1} \mathrm{n}$					0.8	V
$I_{1 H}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			2	15	$\mu \mathrm{A}$
			$V_{\text {IN }}=5.5 \mathrm{~V}$			4	400	$\mu \mathrm{A}$
$1 / 1$.	Logical "0" Input Current	$V_{C C}=\operatorname{Max}, V_{\text {IN }}=0.4 V$				-300	-600	$\mu \mathrm{A}$
I_{cc}	Power Supply Current	$V_{C C}=$ Max, All Inputs $=0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=2.2 \mathrm{k}$				22	31	mA
V_{1}	Input Diode Clamp Voltage	$V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-0.9	-1.5	V
SEGMENT OUTPUTS		All Outputs $=50 \mathrm{~V}$, Iout b=Ref.	Outputs a, f, and g					
\bigcirc	"ON" Current Ratio				0.84	0.93	1.02	
					1.12	1.25	1.38	
					0.90	1.00	1.10	
					0.99	1.10	1.21	
I_{b} ON	Output b "ON" Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\mathrm{R}_{\mathrm{P}}=18.1 \mathrm{k}$	0.15	0.20	0.25	mA
				$\mathrm{R}_{\mathrm{F}}=7.03 \mathrm{k}$	0.45	0.50	0.55	$m \mathrm{~A}$
				$\mathrm{R}_{\mathrm{P}}=3.40 \mathrm{k}$	0.90	1.00	1.10	mA
				$\mathrm{R}_{\mathrm{P}}=2.20 \mathrm{k}$	1.35	1.50	1.65	mA
$V_{\text {SAT }}$	Output Saturation Voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{\text {OUT }} \mathrm{b}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{P}}=1 \mathrm{k} \pm 5 \%$, (Note 5)				0.8	2.5	V
$\mathrm{I}_{\text {CEX }}$	Output. Leakage Current	$\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=1 \mathrm{k}$				0.003	3	$\mu \mathrm{A}$
$V_{\text {BR }}$	Output Breakdown Voltage	$\mathrm{I}_{\text {OUT }}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$			80	110		V
t_{pd}	Propagation Delay of Input to Segrnent Output	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				0.4	10	μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8885. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: In all applications transient segmert output current must be limited to 50 mA . This may be accomplished in dc applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode drive in multiplex applications.
Note 5: For saturation mode the segment output currents are externally limited and ratioed.

typical performance characteristics

National
Display Drivers Semiconductor

DS8887 8-digit high voltage anode driver (active-high inputs)
DS7889/DS8889 8 -segment high voltage cathode driver (active-high inputs)
DS7897/DS8897 8-digit high voltage anode driver (active-low inputs)

general description

The DS8887 and DS7897/DS8897 are designed to drive the individual anodes of a 7 -segment (cathodes) high-voltage gas discharge panel in a time multiplexed fashion.

When driven with appropriate input signals, the driver will switch voltage and impedance levels at the anode. This will allow or prevent ionization of gas around selected cathode in order to form a numeric display. This main application is to interface with MOS outputs (fully-decoded) and the anodes of a gas-discharge panel, since the devices carı source up to 16 mA at a low impedance and car tolerate more than 55 V in the "OFF" state.

DS7889/DS8889 is capable of driving 8 segments of a high-voltage display tube with a constant
output sink current, which can be adjusted by external program resistor, R_{p}. The program current is half that of output "ON" current. In the "OFF" state the outputs can tolerate more than 80 V . The ratio of "ON" output currents is within $\pm 10 \%$. Inputs have negative clamp diodes. Active high input logic. The main application of the device is to interface MOS circuits to high-voltage displays. Unused outputs should have corresponding inputs connected to $V_{E E}$

features

- Versatile circuits for a wide range of display applications
- High breakdown voltages
- Low power dissipation
connection diagrams (dual-in-line packages)

DS8887, DS7897/DS8897

Order Number DS7897J, DS8887 J, DS8887N, DS8897J or DS8897N See NS Package J18A or N18A

DS7889/DS8889

Order Number DS7889, DS8889, or DS8889N
See NS Package J18A or N18A

absolute maximum ratings (Note 1)

operating conditions

			MIN	MAX	UNITS
Supply Voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{81} \mathrm{AS}$) (Note 2)		Supply Voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {BIAS }}$)			
DS8887, DS7897/DS8897	-60V	DS8887, DS7897/DS3897	-40	-60	V
Package Power		Temperature (T_{A})			
DS7889/DS8889	600 mW	DS7889, DS7897	-55	+125	${ }^{\circ} \mathrm{C}$
Input Voltage		DS8897, DS8889, DS8897	0	+70	${ }^{\circ} \mathrm{C}$
DS8887, DS7897/DS8897	-20V	DS8807, DS888, DS8807	0		
DS7899/DS8889 (Note 3)	35 V				
Output Voltage					
DS8887, DS7897/DS8897	-65V				
DS7889/DS8889	85 V				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2,3 and 4)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
DS8887, DS8897								
$V_{1 H}$	Logical "1" Input Voltage	$V_{\text {OUT }}=-1.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-16 \mathrm{~mA}$, DS8887			-2.0			V
$V_{1 L}$	Logical " 0 " Input Voltage	$V_{\text {OUT }}=-60 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$, DS8887					-5.5	V
$\mathrm{I}_{\text {IH }}$	Logical "1" Input Current	$\mathrm{V}_{\text {OUT }}=-1.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-16 \mathrm{~mA}$, DS8897			-300			$\mu \mathrm{A}$
I_{IL}	Logical " 0 " Input Current	$\mathrm{V}_{\text {OUT }}=-60 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$, DS8897					-10	$\mu \mathrm{A}$
11	Input Current	DS8887	$\mathrm{V}_{\text {IN }}=-1.0 \mathrm{~V}$			335	550	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=-6.0 \mathrm{~V}$			-0.2	-25	$\mu \mathrm{A}$
			$V_{\text {IN }}=-12 \mathrm{~V}$		-0.10		-0.65	mA
		DS8897, $V_{\text {IN }}=-12 \mathrm{~V}$			-0.45		-1.5	mA
Vout off	Output "OFF" Voltage	$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}, \mathrm{I}_{\text {IN }}=0 \mu \mathrm{~A}$			$\checkmark 60$	-77		V
Iout dff	Output "OFF" Current	$\mathrm{V}_{\text {OUT }}=-55 \mathrm{~V}, \mathrm{I}_{\text {IN }}=0 \mu \mathrm{~A}$				-0.03	-5.0	$\mu \mathrm{A}$
Vout on	Output "ON" Voltage	$\mathrm{I}_{\text {OUT }}=-16 \mathrm{~mA}$	$V_{1 N}=-2.0 \mathrm{~V}, \mathrm{DS8887}$			-1.0	-1.4	V
			$\mathrm{I}_{1 \mathrm{~N}}=-300 \mu \mathrm{~A}$, DS8897				-1.4	V
$I_{\text {BIAS }}$	$V_{\text {BIAS }}$ Current	$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=-16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BIAS}}=-60 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=-1.0 \mathrm{~V}, \mathrm{DS8887}$, (Note 5)			-2.2	-4.0	mA
			$I_{\mathrm{IN}}=-300 \mu \mathrm{~A}, \text { DS8897, }$ (One Driver Only)				-100	$\mu \mathrm{A}$
DS7889/DS8889								
I_{1}	Input Current	$V_{\text {IN }}=6.0 \mathrm{~V}$			150	250	350	$\mu \mathrm{A}$
$1_{1 L}$	Logical "0" Input Current	$\mathrm{I}_{\text {OUT }}=5.0 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=75 \mathrm{~V}$					7.0	$\mu \mathrm{A}$
$I_{\text {IH }}$	Logical "1" Input Current	$\mathrm{I}_{\text {OUT }}=1.4 \mathrm{~mA}, \mathrm{I}_{\text {IP }}=850 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=50 \mathrm{~V}$			80			$\mu \mathrm{A}$
V_{1}	Input Clamp Voltage	$\mathrm{I}_{\text {IN }}=-1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-0.68	-0.85	V
V_{OH}	Output 8reakdown Voltage	$\mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}, \mathrm{I}_{\text {IN }}=0 \mu \mathrm{~A}$			80			V
$I_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=75 \mathrm{~V},-0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {IN }} \leq 7.0 \mu \mathrm{~A}$				0.02	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PROG }}$	Prog. Input Voltage	$\mathrm{I}_{\mathrm{IP}}=150 \mu \mathrm{~A}$			$\cdots .8$	2.3		V
		$\mathrm{I}_{\text {IP }}=850 \mu \mathrm{~A}$				4.0	4.5	V
$\mathrm{I}_{\text {OL }}$	Logical '0' Output Current	$\begin{aligned} & V_{\text {OUT }}=50 \mathrm{~V}, \\ & 80 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{IN}} \leq \mathrm{I}_{\mathrm{IP}} \end{aligned}$	$\mathrm{I}_{\mathrm{IP}}=150 \mu \mathrm{~A}$	DS7889	210	300	390	$\mu \mathrm{A}$
				DS8889	240	300	360	$\mu \mathrm{A}$
			$\mathrm{I}_{\text {IP }}=400 \mu \mathrm{~A}$	DS7889	660	800	940	$\mu \mathrm{A}$
				DS8889	680	800	920	$\mu \mathrm{A}$
			$\mathrm{I}_{\mathrm{IP}}=850 \mu \mathrm{~A}$	DS7889	1.45	1.7	1.95	$m A$
				DS8889	1.53	1.7	1.87	mA
$\triangle 10$	Output Current Ratio	I OUT b Ref $=1.7 \mathrm{~mA}, V_{\text {OUT }}=50 \mathrm{~V}$			0.9	1.0	1.1	

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAIMETER \& CONDITIONS \& MIN \& TYP \& MAX \& UNITS \\
\hline \multicolumn{6}{|l|}{DS8887} \\
\hline ton Propagation Delay from Input to Output "ON" \& (See ac Test Circuit and Switching Time Waveforms) \& \& \& 5.0 \& \(\mu s\) \\
\hline \begin{tabular}{ll}
\(t_{\text {RISE }}\) \& Propagation Delay from Input \\
\& to Output "ON"
\end{tabular} \& (See ac Test Cırcuit and Switchıng Time Waveforms) \& \& \& 1.0 \& \(\mu \mathrm{s}\) \\
\hline \multicolumn{6}{|l|}{DS7889/DS8889} \\
\hline \(\mathrm{t}_{\text {pdo }} \quad\) Propagation Delay to a Logical

" 0 " from input to Output \& $\mathrm{R}_{\mathrm{P}}=6.0 \mathrm{k}$ to $6.0 \mathrm{~V}, \mathrm{R}_{\text {OUT }}=1.0 \mathrm{k}$ to 6.0 V \& \& 37 \& 100 \& ns

\hline $\begin{array}{ll}t_{p d 1} \quad \text { Propagation Delay to a Logical } \\ & \text { " } 1 \text { " from input to Output }\end{array}$ \& Input Ramp Rate $\leq 15 \mathrm{~ns}$, Freq $=1.0 \mathrm{MHz}$ $\mathrm{dc}=50 \%$, Amplitude $=6.0 \mathrm{~V}$ \& \& 92 \& 200 \& ns

\hline
\end{tabular}

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All voltage shown for DS8887, DS7897/DS8897 W.RT. VCC $=0 \mathrm{~V}$. All currents into device pins shown as positive, out of device pins as negative. All values slrown as max or min on absolute basis.
Note 3: All voltages for DS7889/DS8889 with respect to $V_{E E}=0 V$
Note 4: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7889 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8887, DS8889 and DS8897. All typicals are given for $T_{A}=25^{\circ} \mathrm{C}$.
Note 5: Supply currents specified for any one input $=-1.0 \mathrm{~V}$. All other inputs $=-5.5 \mathrm{~V}$ and selected output having 16 mA load.

typical application

Note 1 All outputs of bath cathode and anode driver have loads as shown for outputa and digit I Note 2 Usir DSABA7 for active high inputs and DS8897 for active low inputs

typical performance characteristics

ac test circuit and switching time waveforms

National

general description

The DS7891/DS8891 is a 6 digit anode driver intended for use with seven segment, common anode, high voltage, gas discharge display panels operating in a multiplexed mode. The driver switches voltage and impedance levels at the display's anode allowing or preventing ionization of gas around selected cathodes, forming a numeric display. The devices acts as a buffer between MOS outputs (fully decoded) and the anodes of a gas-discharge panel,
and it can source up to 16 mA at a low impedance and can stand off more than 55 V in the off state.

features

- High breakdown voltage
- Low power dissipation
- Easy interface to clock and calculator circuits

schematic and connection diagrams

Dual-In-Line Package

typical application

Order Number DS7891J, DS8891J or DS8891N
See NS Package J14A or N14A

absolute maximum ratings (Note 1)
operating conditions

Supply Voltage ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {BIAS }}\right)$		Supply Voltage, $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {BIA }}$	$\begin{gathered} \text { MIN } \\ -45 \end{gathered}$	MAX	UNITS
	$-60 \mathrm{~V}$				
Input Voltage	-20V				V
Output Voltage	-65V	Temperature, T_{A}			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS8891	0	+70	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS7891	--55	+125	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {IN }}$	Input Current	$\mathrm{V}_{\mathrm{BIAS}}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=-12 \mathrm{~V}$	-0.6		-1.5	mA
$\mathrm{I}_{1+\mathrm{H}}$	Logical "9" Input Current	$\mathrm{V}_{\mathrm{BIAS}}=\mathrm{Min}, \mathrm{V}_{\mathrm{OL}}=-2.0 \mathrm{~V}$	-300			$\mu \mathrm{A}$
$I_{\text {IL }}$	Logical "0" Input Current	$\mathrm{V}_{\text {BIAS }}=\mathrm{Min}, \mathrm{V}_{\text {OUT }}=-60 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$			-10	$\mu \mathrm{A}$
IOH	Logical "1" Output Current	$V_{\text {BIAS }}=\mathrm{Max}, \mathrm{I}_{\text {IN }}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OH}}=-55 \mathrm{~V}$			-5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage	$\mathrm{I}_{\text {OL }}=-16 \mathrm{~mA}, \mathrm{I}_{\text {IH }}=-300 \mu \mathrm{~A}$			-2.0	V
$V_{\text {BD }}$	Output Breakdown Voltage	$V_{B \mid A S}=\mathrm{Max}, \mathrm{I}_{\text {IN }}=0 \mu \mathrm{~A}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$	-60			V
$\mathrm{I}_{\text {BIAS }}$	Supply Current (Substrate)	$V_{B \mid A S}=M a x, I_{I H}=-300 \mu \mathrm{~A}, I_{O L}=-16 \mathrm{~mA},$ (One Driver Only)			-100	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7891 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8891.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to $V_{C C}=O V$, unless otherwise noted. All values shown as max or min on absolute value basis.

DS8892 programmable hex LED digit driver

general description

The DS8892 is a hex LED digit driver similar to the DS75494, except that the DS8892 is programmable. The DS88992 will sink up to 200 mA per output, and the open collector outputs withstand a minimum of 8.8 V in the off state. The main application of the DS8892 is to interface between MOS circuits and common cathode LEED displays in systems where low battery drain is important. The DS8892, through the use of a single external resistor, allows the base drive to the output transistors to be programmed to the desired amount, thus saving battery current.

features

- Presettable current drain
- 200 mA sink capability
- MOS compatible inputs
- Low voltage operation

schematic and connection diagrams

one of six driver shown

TOP VIEW
*Pins 9 and 16 tied together mternally
Order Number DS8892N
See NS Package N16A

typical application

absolute maximum ratings (Note 1)

Supply Voltage, $\mathrm{V}_{\text {SS }}$ (Note 2)
Input Voltage
Output Voltage
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)
8.8 V 8.8 V 8.8 V
8.8 V
8.8 V
8.8 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (Notes 2 and 3) $V_{D D}=0 \mathrm{~V}$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$I_{\text {IL }}$	Logical " 0 " Input Current	$\mathrm{V}_{\text {SS }}=8.8 \mathrm{~V}, \mathrm{R} 1=300 \Omega, \mathrm{I}_{\mathrm{OUT}}=400 \mu \mathrm{~A}$		50			$\mu \mathrm{A}$
$\mathrm{I}_{\text {H }}$	Logical "1" Input Current	$\begin{aligned} & V_{\mathrm{SS}}=8.8 \mathrm{~V}, \mathrm{R}_{\mathrm{TN}}=45 \Omega, \mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=80 \mathrm{~mA} \end{aligned}$				2.7	mA
V_{R}	Logical "0' Phase-Splitter Voltage	$\begin{aligned} & V_{S S}=6.0 \mathrm{~V}, R_{I N}=45 \Omega, I_{R}=6 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=80 \mathrm{~mA} \end{aligned}$		0.9		1.4	V
$\mathrm{IOH}^{\text {O }}$	Logical "1" Output Current	$\begin{aligned} & V_{S S}=8.8 \mathrm{~V}, \quad \mathrm{I}_{1 \mathrm{~N}}=50 \mu \mathrm{~A}, \quad \mathrm{R} 1=300 \Omega, \\ & V_{\text {OUT }}=8.5 \mathrm{~V} \end{aligned}$				400	$\mu \mathrm{A}$
VoL	Logical "0" Output Voltage	$R_{\text {IN }}=140 \Omega$	$\begin{aligned} & V_{S S}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=2 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=25 \mathrm{~mA} \end{aligned}$			0.35	V
			$\begin{aligned} & V_{S S}=3.8 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=5.7 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=50 \mathrm{~mA} \end{aligned}$			0.35	V
			$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=7.7 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA} \end{aligned}$			0.40	V
			$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=12 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA} \end{aligned}$			0.50	V

switching characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX
$t_{P(O N)}$	Propagation Delay to a Logical " 0 "	UNITS		
$t_{P(O F F)}$	(See AC Test Circuit), $V_{S S}=6.0 \mathrm{~V}$		800	ns

Note 1: "Absolute Maximum Ratings" are these values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not mearit to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: V_{SS} is an external system supply, used as shown in the de test circuit ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$).
Note 3: All currents into device pins shown as positive, out of device pins as negative. All valtages referenced to ground undess otherwise noted. All values shown as maximum or minimum on absolute value basis.
ac test circuit

dc test circuit

switching time waveforms

Display Drivers

general description

The DS7895 $\overline{\text { DS8895 }}$ is a quad LED segment driver designed to interface between MOS IC's and LED displays. It provides a relatively constant output current -typically 17 mA -independent of the supply voltage. The DS8895 is similar to the DS75493 except on the DS8895 the output current is internally set-no external components are required for current limiting. Blanking can be achieved by taking the Chip Enable (CE) to a logic " 1 " 'evel.

features

- Internally set output current
- Low voltage operation
- MOS compatible inputs
- Low standby power
- Blanking capability

schematic and connection diagrams

Order Number DS7895J, DS8895J, or DS8895N
See NS Package J16A or N16A

absolute maximum ratings (Note 1)

Supply Voltage	10 V
Input Voltage	10 V
Output Voltage	$\mathrm{V}_{\mathrm{C}} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MiN	MAX	UNITS
Supply Voltage, VCC			
V_{CC}	3.2	8.8	V
$V_{S S}$	6.5	8.8	V
Temperature, $\mathrm{TA}_{\text {A }}$			
DS8895	0	+70	${ }^{\circ} \mathrm{C}$
DS7895	-55	+125	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS (See Figure 1)				MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=3.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=8.8 \mathrm{~V}, \mathrm{I}_{\text {IN }}=2.0 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=1.75 \mathrm{~V}$				6.5			V
$V_{\text {IHCE }}$	Chip Enable	$\mathrm{V}_{\mathrm{CC}}=3.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=8.8 \mathrm{~V}, \mathrm{I}_{\text {IN }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$				3.5			V
$I_{\text {IH }}$	Logical " 1 " Input Current	$\begin{aligned} & V_{\mathrm{CC}}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}}=8.8 \mathrm{~V}, \mathrm{R}=0.1 \mathrm{k}, \\ & V_{\text {OUT }}=1.75 \mathrm{~V} \end{aligned}$						2.0	mA
$V_{\text {IL }}$	Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}=8.8 \mathrm{~V}, \mathrm{~V}_{S S}=8.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=0.1 \mathrm{~mA}$						1.3	V
$V_{\text {ILCE }}$	Chip Enable	$\mathrm{V}_{\mathrm{CC}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.75 \mathrm{~V}, \mathrm{R}=0.1 \mathrm{k}$						1.0	V
IoUt MIN	Output Current	$\begin{aligned} & V_{C C}=3.2 \mathrm{~V}, V_{S S}=6.5 \mathrm{~V}, V_{O U T}=2.15 \mathrm{~V} \\ & R=1 \mathrm{k}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$				12.5	16.5		mA
Iout max	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.75 \mathrm{~V} \\ & \mathrm{R}=0.1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$					18.5	22	mA
Iout typ	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}=500 \mathrm{~S} . \end{aligned}$			DS7895	15.5	17	18.5	mA
					DS8895	14.5	17	19.5	mA
Iour	Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=7.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \text { Full Temperature Range } \end{aligned}$			DS7895	10.5		23.0	mA
					DS8895	13.5		20.5	mA
IoUt Off	Output Current	$\begin{aligned} & V_{\mathrm{CC}}=8.8 \mathrm{~V} \\ & V_{\text {OUT }}=0 \mathrm{~V} \\ & \text { (All Drivers "OFF') } \end{aligned}$		$\mathrm{V}_{\text {SS }}=8.8 \mathrm{~V}, \mathrm{R}=100 \mathrm{k}$				100	$\mu \mathrm{A}$
				$\begin{aligned} & V_{S S}=6.5 \mathrm{~V}, R=0.1 \mathrm{k}, \\ & R_{C E}=1 \mathrm{k} \end{aligned}$				200	$\mu \mathrm{A}$
I_{ss}	Supply Current	$V_{\text {IN }}=6.5 \mathrm{~V}$	$V_{C C}=1.0 \mathrm{~V}, V_{S S}=8.8 \mathrm{~V}$ (Outputs Open)					8	mA
$I_{\text {cc }}$	Supply Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.2 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=8.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.75 \mathrm{~V} \end{aligned}$		DS7895			5	mA
					DS8895			4	mA
$t_{\text {pd }}$ OfF	Propagation Delay to a Logical " 0 " from Input to Output	$\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, (See Figures 2 and 3)					170	300	ns
$t_{\text {dd ON }}$	Propagation Delay to a Logical "1" from Input to Output	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, (See Figures 2 and 3)					11	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range fo the DS7895 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS8895. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as maximum or minimum on absolute value basis.

truth table

CE	$V_{\text {IN }}$	IOUT
0	1	ON
0	0	OFF
1	X	OFF

$X=$ Don't care

ac test circuit and switching time waveforms

figure 2.
figure 3.

Display Drivers

DS8968 12-Digit Decoder/Driver(Modification)

General Description

The DS8968 is a 12 -digit decoder/driver designed to drive LED displays like the NSA5101 from the MM5758 calculator chip or equivalent which supplies a 4 -line coded input (see truth table). It is designed to operate from 4.5 V to 9.5 V .

The DS8968 can sink up to 200 mA min on each output.

Connection Diagram

Dual-In-Line Package

Order Number DS8968J or DS8968N
See NS Package J18A or N18A

Features

- Direct interface with MM5758 calculator
- Pin compatible with DS8868
- 200 mA sink capability
- Low voltage operation

Equivalent Schematic

Truth Table

INPUTS				OUTPUTS*											
IN_{A}	IN_{B}	INC_{C}	IND	01	02	03	O4	05	06	07	08	09	010	011	012
L	L	L	H	I.											
H	L	L	L		L										
H	H	L	L			L									
L	H	H	L				L								
H	L	H	H					L							
L	H	L	H						L						
H	L	H	L							1					
H	H	L	H								L				
H	H	H	L									L			
H	H	H	H										L		
L	L	H	H											L	
L	H	H	H												L

*A blank implies an H

Absolute Maximum Ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	10 V	Supply Voltage, $V_{C C}$	4.5	9.5	\checkmark
Input Current	10 mA	Temperature, ${ }^{\text {A A }}$	0	+70	${ }^{\circ} \mathrm{C}$
Output Voltage	9 V	Temperature, A	0	+70	C
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$				
Lead Temperature (S:Idering, 10 seconds)	$300^{\circ} \mathrm{C}$				

Electrical Characteristics

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$1 / \mathrm{H}$	Logical " 1 " רput Current	$V_{C C}=$ Min, Selected Output $\mathrm{V}_{\text {OL }} \leq 0.4 \mathrm{~V}$		300	450	$\mu \mathrm{A}$
I/L	Logical " 0 ' Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Min, Selected Output $1 \mathrm{OH} \leq 50 \mu \mathrm{~A}$	100	300		$\mu \mathrm{A}$
I^{OH}	Logical "1" Output Current	$V_{C C}=$ Max, $V_{O H}=7.0 \mathrm{~V}$, All Outputs 'OFF'"			100	$\mu \mathrm{A}$
VOL	Logical "0' Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{IOL}=200 \mathrm{~mA}$		0.6	0.9	V
${ }^{1} \mathrm{CC}$	Supply Curreint "ON"	$V_{C C}=$ Max, One Output Selected		17	35	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Conditions" they are not meant so imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual levice operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Typical Application

Typical 3-Cell Scientific Calculator Circuit
 Display Drivers

DS8973, DS8974, DS8975, DS8976, DS8978 9-digit LED drivers

general description

The DS8973, DS8974 and DS8976 are 9-digit drivers designed to operate from 3-cell (DS8973) or 4 -cell (DS8974) or 6-cell (DS8976) battery supplies. Each driver will sink 100 mA to less than 0.7 V when driven by only 0.1 mA . Each input is blocked by diodes so that the input can be driven below ground with virtually no current drain. This is especially important in calculator systems employing a dc-to-dc converter on the negative side of the battery. If the converter were on the positive side of the battery, the converter would have to handle all of the display current, as well as the MOS calculator chip current. But if it is on the negative side, it only has to handle the MOS current. The DS8973 and DS8974
are designed for the more efficient operating mode. The DS8975 is identical to the DS8973, DS8974 and DS8976 but does not specify the low battery indicator. DS8978 is identical to the DS8975 but is in a 20 -pin package without low battery pins.

features

- Nine complete digit drivers
- Built-in low battery indicator
- High current outputs- 100 mA
- Choice of 3 or 4 -cell operation
- Straight through pin out for easy board layout
equivalent circuit diagrams

connection diagram

absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage	10 V	Supply Voltage (V_{B})			
Input Voltage	10 V	DS8973	3.0	5.5	V
Output Voltage	10 V	DS8974	3.0	7.5	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS8976	3.0	9.5	V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	Supply Voltage ($\mathrm{VCC1}^{\text {S }}$)	3.0	9.5	\checkmark
		Temperature (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics

	PARANETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$	Logical "1" Input Voltage	$\mathrm{V}_{\text {CC }}=$ Max		3.9			V
1/H	Logical "1" Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1 H}=3.9 \mathrm{~V}$		0.1		0.3	mA
$\mathrm{V}_{\text {IL }}$	Logical "0" Input Voltage	$V_{C C}=$ Max				0.5	v
ILL	Logical ' 0 ' Input Current	$V_{C C}=$ Max, $V_{\text {IL }}=0.5 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {BH }}$	High Battery Threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{OT}}(\operatorname{Pin} 1)=1 \mathrm{~V}, \mathrm{I}_{\mathrm{OT}} \leq-50 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{1 H}(\operatorname{Pin} 2)=3.9 \mathrm{~V} \end{aligned}$	DS8973	3.6			\checkmark
			DS8974	4.8			v
			DS8976	7.3			V
V_{BL}	Low Battery Threshold	$\begin{aligned} & V_{O T}(\operatorname{Pin} 1)=2.1 \mathrm{~V}, \mathrm{IOT} \geq-6 \mathrm{~mA}, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{1 H}(\operatorname{Pin} 2)=3.9 \mathrm{~V} \end{aligned}$	DS8973			3.2	v
			DS8974			4.2	v
			DS8976			6.5	\checkmark
ICEX	Logical "1" Output Current	$V_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.5 \mathrm{~V}$				50	$\mu \mathrm{A}$
VOL	Logical "0" Output Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {IH }}=3.9 \mathrm{~V}$				0.7	v
ICC1	Supply Curent	$V_{C C}=$ Max, One Input 'ON'				6	mA
IB	Pin 21 (High Battery Supply)	$v_{C C}=\operatorname{Max}, v_{B}=\operatorname{Max}$				1.2	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operations.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All current; into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

FIGURE 1. 6V Programmable Statistical Calculator

FIGURE 2. Complete Calculator Schematic For 3-Cell System

Display Drivers

DS8980, DS8981 High Voltage 7-Segment Latches/Decoders/Drivers

General Description

The DS8980, DS8981 circuits are current-programmable segment-ratioed, 7 -segment gas discharge tube display decoder/drivers with input latches. The devices also contain a 25 mA high-voltage saturating switch output with an input latch. All outputs may be unconditionally blanked by use of the blanking input. The devices will operate with a $V_{C C}$ range of from 4.75 V to 15.00 V , and the current programming is independent of the V_{1}, voltage The inputs are TTL LS MOS compatible: The input fall-through latches are enabled by a high logic leve' at the ENB/ST8 input for the DS8980, and by a low logic level for the DS8981

Connection Diagram

Logic Diagram

			MIN	MAX	UNITS
Supply Voltage	18 V	Supply Voltage ($\mathrm{V}_{\text {CC }}$)	4.75	15.00	\checkmark
Input Voltage	V_{CC}	Temperature (${ }^{\text {A }}$)	0	+70	${ }^{\circ} \mathrm{C}$
Output Voltage	80 V				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Power Dissipation (Note 4)	650 mW				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage	$V_{\text {CC }}=$ Min	20			V
$I_{\text {IH }}$	Logical "1" Input Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=15.00 \mathrm{~V}$			1	$\mu \mathrm{A}$
VIL	Logical " 0 ' Input Voltage	$V_{\text {CC }}=$ Min			0.8	\checkmark
IIL	Logical " 0 " Input Current	$V_{C C}=$ Max, $V_{\text {IN }}=0.4 V$			50	$\mu \mathrm{A}$
IILDIS	Logical " 0 " Input Current, Inputs Disabled A, 8, C, D, DP Inputs	$\begin{aligned} & V_{C C}=M a x, V_{I N}=0.4 V \\ & E N 8 / S T B=0 V, D S 8980 \\ & E N 8 / S T B=3 V, D S 8981 \end{aligned}$			-1	$\mu \mathrm{A}$
$\checkmark C D$	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{IIN}=-12 \mathrm{~mA}$			-1.5	V
$8 V_{\text {CEX }}$	Output Breakdown Voltage	$V_{\mathrm{CC}}=\mathrm{Min}, 8 \mathrm{I}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=250 \mu \mathrm{~A} .$ (Note 5)	80			V
${ }^{1} \mathrm{OH}$	Logical "1" Output Current	$V_{C C}=$ Min, $V_{\text {OUT }}=75 \mathrm{~V}, \mathrm{BI}=0 \mathrm{~V}$			3	$\mu \mathrm{A}$
IRANGE(b)	Programming Current Range	$V_{C C}=$ Min- - Max, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.10		4.00	mA
IOB	Output b on Current Compliance	$\begin{aligned} & V_{C C}=\operatorname{Min}-\operatorname{Max}, V_{O U T}=50 \mathrm{~V}, \\ & R_{p}=7.03 \mathrm{k} \Omega \end{aligned}$	0.40		0.60	mA
IOB	Output b on Current Compliance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=50 \mathrm{~V}, \\ & R_{p}=18.1 \mathrm{k} \Omega \end{aligned}$	0.18		0.22	mA
${ }^{\prime} \mathrm{OB}$	Output b on Current Compliance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=50 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{p}}=7.03 \mathrm{k} \Omega \end{aligned}$	0.45		0.55	mA
${ }^{1} \mathrm{OB}$	Output b on Current Compliance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=50 \mathrm{~V}, \\ & R_{\mathrm{p}}=2.20 \mathrm{k} \Omega \end{aligned}$	1.30		1.70	mA
${ }^{1} \mathrm{O} 8$	Output b on Current Compliance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, V_{O U T}=50 \mathrm{~V}, \\ & R_{\mathbf{p}}=1.05 \mathrm{k} \Omega \end{aligned}$	2.70		3.30	$m A$
$k_{a}, k_{f}, \mathrm{k}_{\mathrm{g}}$	Outputs a, f and g on Current Ratio	$\begin{aligned} & V_{C C}=\text { Min }- \text { Max } \\ & \text { Output } \mathrm{b} \text { on Current }=\text { Reference } \end{aligned}$	0.84	0.93	1.02	
k_{c}	Output c on Current Ratio	$V_{C C}=\operatorname{Min}-M a x,$ Output b on Current $=$ Reference	1.12	1.25	1.38	
k_{d}	Output d on Current Ratio	$\begin{aligned} & V_{C C}=\text { Min-Max } \\ & \text { Output b on Current }=\text { Reference } \end{aligned}$	0.90	1.00	1.10	
$k_{\text {e }}$	Output e on Current Ratio	$\begin{aligned} & V_{\mathrm{CC}}=\text { Min }- \text { Max, } \\ & \text { Output } b \text { on Current }=\text { Reference } \end{aligned}$	0.99	1.10	1.21	
$V_{\text {SAT }}$	Output Saturation Voltage (Except DP Output)	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{\rho}=-2.0 \mathrm{~mA} \\ & I_{\text {OUT }}=k_{x} \cdot 4 \mathrm{~mA} \end{aligned}$			4.0	V
$V_{\text {SATDP }}$	Output Saturation Voltage (@DP Output)	$V_{C C}=M i n, \text { IOUT }=25 \mathrm{~mA}$			3.0	V
${ }^{1} \mathrm{CC}$	Supply Current	$\begin{aligned} & \mathrm{A}, 8, \mathrm{C}, \mathrm{BI} \text { Inputs }=0 \mathrm{~V}, \mathrm{D}, \mathrm{DP} \\ & \text { Inputs }=5 \mathrm{~V}, \text { Latches Enabled, } \\ & R_{\mathrm{p}}=1.06 \mathrm{k}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=\mathrm{Max} \end{aligned}$			$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPDo or tPO1 F'opagation Delay From Input A, B, C, D, DP or BI to Anv Output	$\mathrm{R}_{\mathrm{P}}=3.3 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$			10.0	$\mu \mathrm{s}$
tSET-UP(Min) Minimum Set Up Time From Input A, B, C, D or DP to ENB/STB Input				1.0	μs
$\mathrm{t}_{\mathrm{H}} \mathrm{OLD}(\mathrm{Min})$ Hold Time to Input A, B, C, D cr DP from ENB/STB Input				1.0	$\mu \mathrm{s}$
TW(Mın) Minimum Enable Pulse Width				1.0	$\mu \mathrm{s}$

Note 1: "Absolute Maximum Ratings" are those values bevond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\mathrm{DS8980}$, $\mathrm{DS8981}$. All typicals are given for $\mathrm{V}_{\mathrm{C}} \mathrm{C}=$ 5 V ard $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents, into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted All values shown as max or min on absolute value basis
Note 4: Power dissipated in the package must be held to 650 mW or less on a DC basis. Since most of the power dissipation is due to output currents, duty cycle limiting via the use of the blanking input can provide the necessary power dissipation limiting. In order to provide minimal therrial cycling effects to both die and package, a blanking frequency of more than 1 kHz is recommended.
Note 5: In all appl cations transient segment output current must be limited to 50 mA . This may be accomplished in DC applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

AC Test Circuit

Switching Time Waveforms
${ }^{t}$ RISE $={ }^{t}$ FALL $=50 \mathrm{~ns}$,
10% to 90% points
$\mathrm{t}_{\mathrm{PWW}}=\mathrm{t} \mathbf{P W L}=10 \mu \mathrm{~s}$

$\mathbf{t}_{\text {RISE }}=\mathbf{t}_{\text {FALL }}=\mathbf{5 0} \mathrm{ns}$, 10\% to 90% points

QUIPUTS (REF)

Truth Table

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	INPUT						DUTPUT								DISPLAY
	DP	D	C	B	A	BI	a	b	c	d	e	1	9	DP	
0	\times	0	0	0	0	1	0	0	0	0	0	0	1	x	17
1	x	0	0	0	1	1	1	0	0	1	1	1	1	\times	i
2	\times	0	0	1	0	1	0	0	1	0	0	1	0	x	\square
3	\times	0	0	1	1	1	0	0	0	0	1	1	0	x	\#
4	\times	0	1	0	0	1	1	0	0	1	1	0	0	x	1
5	x	0	1	0	1	1	0	1	0	0	1	0	0	x	名
6	X	0	1	1	0	1	0	1	0	0	0	0	0	x	E
7	x	0	1	1	1	1	0	0	0	1	1	1	1	x	7
8	x	1	0	0	0	1	0	0	0	0	0	0	0	x	I'I
9	x	1	0	0	1	1	0	0	0	0	1	0	0	x	9
10	x	1	0	1	0	1	1	1	1	1	1	1	1	x	
11	X	1	0	1	1	1	1	1	1	1	1	1	1	x	
12	X	1	1	0	0	1	1	1	1	1	1	1	1	X	
13	x	1	1	0	1	1	1	1	1	1	1	1	1	x	
14	x	1	1	1	0	1	1	1	1	1	1	1	1	x	
15	x	1	1	1	1	1	1	1	1	1	1	1	1	x	
BI	\times	x	x	x	x	0	1	1	1	1	1	1	1	1	
DP	1	\times	x	x	x	1	x	\times	x	x	x	\times	x	0	
DP	0	x	x	x	x	1	X	\times	X	X	X	X	x	1	

Display Drivers

DSi75491 MOS-to-LED quad segment driver D§75492 MOS-to-LED hex digit driver

general description

The DS75491 and DS75492 are interface circuits designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed systrm is minimized as a result of the segment-address-and-digit-scan method of LED drive.

features

- 50 mA source or sink capability per driver (DS75491)
- 250 mA sink capability per driver (DS75492)
- MOS compatability (low input current)
- Low standby power
- High-gain Darlington circuits

schematic and connection diagrams

DS75491 (each driver)

DS 75491 Dual-In-Line Package

DS75492 (each driver)

DS75492 Dual-In-Line Package

absolute maximum ratings (Note 1)

DS75491
Input Voltage Range (Note 4)
Collector Output Voltage (Note 5)
Collector Output to Input Voltage
Emitter to Ground Voltage ($V_{1} \geq 5 \mathrm{~V}$)
Emitter to Input Voltage
Voltage at $\mathrm{V}_{\text {ss }}$ Terminal With Respect to
Any Other Device Terminal
Collector Output Current
Each Collector Output
All Collector Outputs
Continuous Total Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

-5 V to V_{SS}	-5 V to V_{SS}
10 V	10 V
10 V	10 V
10 V	
5 V	
10 V	10 V

50 mA
200 mA 600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DS75492

10 V

250 mA
600 mA
600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

electrical characteristics

DS75491 ($\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted) (Notes 2 and 3)

PARAMETER		CONOITIONS			MIN	TYP	MAX	UNITS
$V_{\text {CE ON }}$	"ON" State Collector Emitter Voltage	Input $=8.5 \mathrm{~V}$ through $1 \mathrm{k} \Omega$,		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.9	1.2	V
		$\mathrm{V}_{\mathrm{E}}=5 \mathrm{~V} . \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$					1.5	V
IC Off	"OFF" State Collector Current	$\begin{aligned} & V_{C}=10 \mathrm{~V}, \\ & V_{E}=0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{1 \times}=40 \mu \mathrm{~A}$				100	$\mu \mathrm{A}$
			$V_{\text {IN }}=0.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Iriput Voltage	$\mathrm{V}_{1 \mathrm{~N}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$				2.2	3.3	mA
I_{E}	Emitter Reverse Current	$V_{\text {IN }}=0, V_{E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$					100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ss }}$	Current Into $\mathrm{V}_{\text {SS }}$ Terminal						1	mA

DS75492 ($\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted) (Notes 2 and 3)

PARAMETER		CONOITIONS			MIN	TYP	MAX	UNITS
$V_{\text {OL }}$	Low Level Output Voltage	Input $=6.5 \mathrm{~V}$ through $1 \mathrm{kS} . \quad \mathrm{T}_{A}=25^{\circ} \mathrm{C}$				0.9	1.2	V
		$\mathrm{I}_{\text {OUT }}=250 \mathrm{~mA}$					1.5	V
$\mathrm{IOH}^{\text {O}}$	High Level Output Current	$\mathrm{V}_{\mathrm{OH}}=10 \mathrm{~V}$	$\mathrm{I}_{1+\mathrm{N}}=40 \mu \mathrm{~A}$				200	$\mu \mathrm{A}$
			$V_{1 N}=0.5 \mathrm{~V}$				200	$\mu \mathrm{A}$
1	Input Current at Maximum Iriput Voltage	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$				2.2	3.3	mA
$\mathrm{I}_{\text {SS }}$	Current Into $\mathrm{V}_{\text {ss }}$ Terminal						1	mA

switching characteristics

DS75491 ($\left.\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

| PARAMETER | CONOITIONS | MIN | TYP | MAX | UNITS |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $t_{P L H}$ | Propagation Delay Time, Low-to-High Level Output (Collector) | $V_{I H}=4.5 \mathrm{~V}, \mathrm{~V}_{E}=0$, | | 100 | |
| t_{PH} | Propagation Delay Time, High-to-Low Level Output (Collector) | $\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | | ns | |

DS75492 ($\left.\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{V}_{1 H}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega$,		300		ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		30		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating
Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Nota 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS75491 and DS75492.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: The input is the only device terminal which may be negative with respect to ground.
Note 5: Voltage values are with respect to network ground terminal unless otherwise noted.

Note 1: The pulse generator has the following characteristics: $\mathbf{Z}_{\text {OUT }}=50 \Omega$,
PRR $=100 \mathrm{kHz}, \mathrm{t}_{\mathrm{w}}=1 \mu \mathrm{~s}$.
Note 2: C_{L} includes probe and jig capacitance.

Display Drivers

DS55493/DS75493 quad LED segment driver

general description

The DS55493/DS75493 is a quad LED segment driver. It is designed to interface between MOS IC's and LED's. An external resistor is required for each segment to drive the output current which is approximately equal to $0.7 \mathrm{~V} / \mathrm{R}_{\mathrm{L}}$ and is relatively constant, independent of supply variations. Blanking can be achieved by taking the chip enable (CE) to a logical " 1 " level.

features

- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Output current regulation
- Quad high gain circuits

schematic and connection diagrams

typical application

Dual-In-Line Package

truth table

CE	$V_{\text {IN }}$	IOUT
0	1	ON
0	0	OFF
1	X	OFF

$x=$ Don't care

electrical characteristics $\left(V_{S S} \geq V_{C C}\right) \quad T_{A}=25^{\circ} \mathrm{C}$ (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {IN }}$	Input Current	$V_{S S}=M a x, V_{\text {N }}=8.8 \mathrm{~V}, V_{C C}=$ Open, $V_{C E}=0 \mathrm{~V}$				3.2	mA
		$\mathrm{I}_{\text {OUT }}=\mathrm{R}_{\text {SET }} @ 0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=8.8 \mathrm{~V}$				3.6	mA
${ }_{\text {cee }}$	Chip Enatile Input Current	$\begin{aligned} & V_{C C}=\text { Max, } V_{S S}=\text { Max, } V_{C E}=8.8 \mathrm{~V}, \text { All Other Pins } \\ & \text { to Gnd } \end{aligned}$				2.1	mA
I Our	Output Current	Iout@ $2.15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{aligned} & V_{C C}=\operatorname{Min}, \quad V_{S S}=6.5 \mathrm{~V} \\ & I_{C E}=80 \mu \mathrm{~A}, V_{I N}=65 \mathrm{~V} \\ & \text { Through } 1.0 \mathrm{k} \Omega \end{aligned}$	-8	-13		mA
			$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=8.8 \mathrm{~V}$		-16	-20	$m \mathrm{~A}$
Iol	Output Leakage Current	$\mathrm{I}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{SET}} @ 0 \mathrm{~V},$ Measure Current to Gnd, $V_{S S}=8.8 \mathrm{~V}$	$\begin{aligned} & V_{C C}=\text { Min, } V_{C E}=0 \mathrm{~V} \\ & V_{1 N}=8.8 V \text { Through } \\ & 100 \mathrm{k} \Omega \end{aligned}$			-100	$\mu \mathrm{A}$
			$\begin{aligned} & V_{C E}=6.5 \mathrm{~V} \text { Through } \\ & 1.0 \mathrm{k} \Omega, V_{I N}=8.8 \mathrm{~V} \end{aligned}$			-200	$\mu \mathrm{A}$
I_{cc}	Supply Current, V_{Cc}	$V_{c c}=$ Max, $V_{S S}=$ Max, All Other Fins to Gnd				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SS }}$	Supply Current	$V_{c c}=0 V$, All Other Pins to Gnd				40	$\mu \mathrm{A}$
		$V_{c c}=M_{10}, V_{s s}=8.8 \mathrm{~V}$	lout @ $2.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=8.8 \mathrm{~V}$ Through $100 \mathrm{k} \Omega$, $R_{L}=50 \Omega$		0.5	1.5	mA
			$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=\text { Open, } \mathrm{R}_{\mathrm{SET}}=\text { Open, } \\ & V_{\mathrm{CE}}=\mathrm{OV} \end{aligned}$			1.4	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$, nominal power supplies unless otherwise noted

	PARAIMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {par }}$ (off)	Propagation Delay to a Logical " 0 " From Input to Output	(See AC Test Circuit)		170	300	ns
$\mathrm{t}_{\text {Paton) }}$	Propagation Delay to a Logical "1" From Input to Output	(See AC Test Circuit)		11	100	ns

Note 7 : "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75493 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS55493.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted All values shown as max or min on absolute value basis.

ac test circuit

switching time waveforms

Display Drivers

DS55494/DS75494 hex digit driver

general description

The DS55494/DS75494 is a hex digit driver designed to interface between most MOS devices and common cathodes configured LED's with a low output voltage at high operating currents. The enable input disables all the outputs when taken high.

features

- 150 mA sink capability
- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Low voltage saturating outputs
- Hex high gain circuits
schematic and connection diagrams

Dual-In-Line Package

Order Number DS55494J, DS75494.J
See NS Package J16A or N16A
truth table

ENABLE	$V_{\text {IN }}$	$V_{\text {OUT }}$
0	0	1
0	1	0
1	x	1

$X=$ don't care
absolute maximum ratings (Note 1)

Supply Voltage	10 V		MIN	MAX	UNITS
Input Voltage	10 V	Supply Voltage, VCC	3.2	8.8	V
Output Voltage	10 V	Supply Voltage, VCC	3.2		
Storeige Temperature Range -65	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Temperature, ${ }^{\text {A }}$ A			
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$		DS75494	0	+70	${ }^{\circ} \mathrm{C}$
		DS55494	-55	+125	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS					MIN	TYP	MAX	UNITS
I_{IH}	Logical "1" Ir put Current	$V_{C C}=M_{i n}, V_{\text {IN }}=8.8 \mathrm{~V}$		$V_{C E}=8.8 \mathrm{~V}$ through 100 k					2.0	mA
				$V_{\text {CE }}=8.8 \mathrm{~V}$					2.7	mA
$I_{\text {IL }}$	Logical " 0 " Iriput Current	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=-5.5 \mathrm{~V}$							-20	$\mu \mathrm{A}$
IOH	Logical "1" Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{QH}}=8.8 \mathrm{~V}$		$\mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}$ through $100 \mathrm{k}, \mathrm{V}_{\text {CE }}=0 \mathrm{~V}$					400	$\mu \mathrm{A}$
				$\mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=6.5 \mathrm{~V}$ through 1.0 k					400	$\mu \mathrm{A}$
$V_{\text {OL }}$	Logical "0" Output Voltage	$\begin{aligned} & V_{C C}=M \mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=150 \mathrm{~mA}, V_{I N}=6.5 \mathrm{~V} \text { through } 1.0 \mathrm{k}, \\ & V_{C E}=8.8 \mathrm{~V} \text { through } 100 \mathrm{k} \end{aligned}$				DS75494		0.25	0.35	\checkmark
						DS55494		0.25	0.4	\checkmark
$I_{\text {cc }}$	Supply Current	$V_{C C}=\operatorname{Max}$	One Driver "ON", $\mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}$			DS75494			8.0	ma
						DS55494			10.0	mA
			All Other Pins to GND		$V_{\text {CE }}=6.5$	hrough 1.0k			100	$\mu \mathrm{A}$
					$V_{\text {IN }}=8.8$	rough 100k			100	$\mu \mathrm{A}$
			All Other Pins to GND						40	$\mu \mathrm{A}$
${ }^{\text {toff }}$	Output "OFFF" Time	$C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{~V}_{C C}=4.0 \mathrm{~V}$, See ac Test Ctrcuits						0.04	1.2	$\mu \mathrm{s}$
${ }^{\text {ton }}$	Output "ON" Time	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{~V}_{\text {CC }}=4.0 \mathrm{~V}$. See ac Test Circuits						13	100	ns

Nott 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range' they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Nota 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 75494 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS55494.
Nota 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Section 6
 MOS Memory Interface Circuits

TEMPERATURE RANGE

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DS(0025	DS0025C
DS0026	DS0026C
DSO056	DS0056C
DS 1605, 06, 07, 38	DS3605, 06, 07, 08
- -	DS3625
DS1628	DS3628
DS 1640,70	DS3640, 70
DS 1642, 72	DS3642, 72
-	DS3643, 73
DS1644, 74	DS3644, 74
DS1645, 75	DS3645, 75
DS1646, 76	DS3646, 76
DS1647, 77, 147, 177	DS3647, 77, 147,177
DS1648, 78	DS3648, 78
DS1649, 79	DS3649, 79
DS1651, 53	DS3651,53
DS1671	DS3671
DS16149, 179	DS36149, 179
-	DS3245C
DS7802, 06	DS8802,06
-	DS75322
-	DS3622
-	DS75361
-	DS75362
-	DS75364
-	DS75365

DESCRIPTION

2-Phase PMOS Clock Driver 6-1
2-Phase PMOS Clock Driver 6-4
2-Phase PMOS Clock Driver 6.4
Hex MOS Sense Amps/MOS-to-TTL Converters 6-11
Pin-for-Pin Replacement for 8T25 6-16
Octal TRI-STATE ${ }^{\circledR}$ MOS Driver 6.20
Ouad MOS TRI-SHARE ${ }^{\text {TM }}$ Port Drivers 6-23
Dual Bootstrapped TTL-to-MOS Clock Driver 6.26
Decoded Ouad MOS Clock Drivers 6-29
Ouad TTL-to-MOS Clock Drivers 6.32
Hex TRI-STATE ${ }^{\text {© }}$ TTL-to-MOS Latch/Drivers 6.35
6-Bit TRI-STATE ${ }^{\circledR}$ TTL-to-MOS Refresh Counter/Driver 6.40
Quad TRI-STATE ${ }^{\ominus}$ I/O Registers 6-45
TRI-STATE ${ }^{\circledR}$ TTL-to-MOS Multiplexer/Driver 6-51
Hex TRI-STATE ${ }^{\circledR}$ TTL-to-MOS Driver 6-56
Ouad High Speed MOS Sense Amplifiers
Dual Bootstrapped 2-Phase PMOS Clock Driver 6-65
Hex MOS Drivers 6-69
Ouad MOS Clock Driver 6-73
MOS-to-TTL Level Converters 6-16
Dual TTL-to-MOS Driver (Fail-Safe) 6-76
Dual TTL-to-MOS Driver (Fail-Safe) 6-76
Dual TTL-to-MOS Driver 6.79
Dual TTL-to-MOS Driver 6-84
Dual TTL-to-MOS Driver 6.89
Quad TTL-to-MOS Driver 6-93PAGENUMBER

4k \& 16k N-CHANNEL MOS MEMORY INTERFACE CIRCUITS							
Page No.	Device Number and Name	5 V Clock Drivers	12V Clock Drivers	4k RAM Address Drivers	16k RAM Address Drivers	$\begin{aligned} & \text { Data } \\ & \text { I/O } \end{aligned}$	$\begin{aligned} & \text { Timing } \\ & \& \\ & \text { Control } \\ & \text { Drivers } \\ & \hline \end{aligned}$
$6-23$	DS3628 Octal TRI-STATE ${ }^{(8)}$ MOS Driver	-			-		-
6-26	DS3640, DS3670 Quad TRISHARE ${ }^{(3)}$ Port Driver						-
6.29	DS3642, DS3672 Dual 8ootstrapped MOS Clock Driver		-				
6-32	DS3643, DS3673 Ouad Decoded MOS Clock Driver		-				
6-35	DS3644, DS3674 (3235, MC3460) Quad MOS Clock Driver		-				
6.76	DS3245 Quad MOS Clock Driver		-				
6.38	DS3645, DS3675 Hex TRI-STATE MOS Driver Latch			-			
6.43	DS3646, DS3676 6-Bit TRI-STATE MOS Refresh Counter/Driver			-			
6.48	DS3647, DS3677, DS36147, DS36177 Quad TRI-STATE MOS Memory I/O Register					-	
6.54	DS3648, DS3678 TRI-STATE MOS Multiplexer/Driver	-		-	\bullet		\bullet
6-59	DS3649, DS3679 Hex TRI-STATE MOS Driver	-		-			\bullet
6-72	DS36149, DS36179 Hex MOS Driver	-		-			-
6-79	$\begin{aligned} & \text { DS75322, DS3622 } \\ & \text { Dual TTL-to-MOS Driver } \end{aligned}$		-				
6-82	DS75361 Dual TTL-to-MOS Driver		-				
6-87	DS75362 Dual TTL-to-MOS Driver		-				
6-92	$\begin{aligned} & \text { DS75364 } \\ & \text { Dual TTL-to-MOS Driver } \end{aligned}$		-				
6-96	DS75365 Quad TTL-to-MOS Driver		-				
8-40	DP83048 8-Bit 8idirectional Transceiver					-	
8-12	DP8216, DP8226 4-Bit Bidirectional Transceiver					-	
2-24	DS8T26, DS8T28 Ouad TRI-STATE 8us Driver					-	
8-5	DP8212 8-Bit Input/Output Port					-	

P.CHANNEL MOS INTERFACE CIRCUITS				
FUNCTION	CHARACTERISTICS	TEMPERATURE		PAGE NO.
		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Clock Driver	Dual, 30 V . Drive 1000 pF @ 1 MHz	DS0025C	DS0025	6 6-1
Clock Driver	Dual, 20 V . Drive $1000 \mathrm{pF} @ 5 \mathrm{MHz}$	DS0026C	DS0026	6.7
Clock Driver	Same as DSO026, May Use Pull-Up Resistor	DS0056C	DS0056	6.7
Clock Driver	Same as DSOO26, May Be Bootstrapped	DS3671	OS1671	6.68
Current Sense Amplifier	Hex, Non-Inverting, TRI-STATE® Output	DS3605		
Current Sense Amplifier	Hex, Inverting, TRI-STATE Output	DS3606		
Current Sense Amplifier	Hex, Non-Inverting, TRI-STATE Input and Output	DS3607		6.14
Current Sense Amplifier	Hex, Inverting, TRI-STATE Input and Output	DS3608		
Current Sense Amplifier	Dual Latching, TRI-STATE Output	DS8802	DS7802	6.19
Current Sense Amplifier	Dual Latching, TRI-STATE Output	DS8806	OS7806	6-19
Differential Sense Ainplifier	Quad TRI-STATE $\pm 7 \mathrm{~m} \vee$ Sensitivity	DS3651	DS1651	6-62
Differential Sense Amplifier	Quad Open-Collector $\pm 7 \mathrm{mV}$ Sensitivity	DS3653	DS1653	6-62

Note. Refer to Application Note 76 for additional information on clock drivers.

Memory Support Circuits

National offers a selection of memory support circuits to facilitate the interface of memory components in systems architecture. The memory support circuits were developed specifically to accommodate the addressing, clocking, data I/O, and control signals associated with memory systems application as shown in figure 1. Additional circuits are available to interface with data bus structured computers and microprocessors. For additional information contact National's interface Product Marketing Manager.

FEATURES OF THE TTL LEVEL MOS DRIVERS

Figure 2 compares the switching response of the DS3628 with a 74S TTL gate. Two features can be observed from the switching waveforms: 1) the DS3628 is as fast as the 74S TTL driving TTL loads, and 2) the output high level (V_{OH}) of the DS3628 is higher than that of the 74 S TTL.

In a memory system composed of MOS RAMs the load is capacitive and not resistive. Figure 3 compares the switching response of the DS3628 with a 74 S TTL gate driving capacitive loads of $50 \mathrm{pF}, 150 \mathrm{pF}$, and 300 pF . The switching waveforms show that the fall
time of the DS3628 is as fast as or faster than those of the 74 S TTL, but most obvious is the rise time of the DS3628 - much faster than that of the 74S TTL. In addition, the 745 has an objectionable glitch in its rise time. The output high ($\mathrm{VOH}_{\mathrm{OH}}$) tevel of the DS3628 is higher driving capacitance due to a bootstrap effect in the circuit.

The switching response of the circuits interfacing with a memory array is important since any delay subtracts from the overall memory access time. The switching response driving a capacitive load is more important; as an example, the address drivers might be expected to drive 420 pF in a memory containing 64 MOS RAMs with 5 pF input capacitance each plus 100 pF of board capacitance. The same is typical of clock signals, select signals, and read/write signals.

The input logic levels of MOS RAMs are generally higher than TTL gate levels (typically 400 mV higher). Therefore, the higher output high level (V_{OH}) of the DS3628 is preferable for noise immunity and switching overdrive.

The features of the DS3628 are typical of the other TTL level memory support circuits shown in the Selection Guide.

Figure 1. Memory System Block Diagram

DAMPING RINGING OF CLOCK SIGNALS

Ringing of clock signals in a system where the logic fan-out is less than 10 is not generally a big problem. but with hicher fan-out the increased capacitive load associated wi"h even a small amount of wiring inductance is a problem. When the capacitance is small the switching currents are small, but as the load increases the increased current through the inductance makes the effect of the inductance increase.

To reduce the associated ringing on the clock signals a resistor may be placed n series with the output of the clock driver to critically dampen the signal response. Many of the memory support circuits are available with this resistor in the output, such as the DS3649 which
has a 15Ω dampening resistor, or the DS3679 which is functionally the same without a dampening resistor.

FALL-THROUGH LATCH

In many memory applications a holding register is required either for address or data I/O. Most commer. cially available registers have an objectionable propagation delay since the circuit's response is the sum of many gate delays. The address and data I/O paths are critical to the memory system access time and a faster register is preferred. The memory support circuits provide a selection of faster latches. These circuits are the DS3645/75 and the DS3647/77/147/177 series. These registers are faster since the latch function is in parallel instead of series with the signal path.

Figure 2. Switching Response with TTL Load

Figure 3. Switching Response with Capacitive Load

National MOS Memory Interface Circuits Semiconductor

DS0025/DS0025C two phase MOS clock driver

general description

The DS0025/DS0025C is monolithic, fow cost, two phase MOS clock driver that is designed to be driven by TTL'DTL line drivers or buffers such as the DM932, DS8830 or DM7440. Two input coun-ling capacitors are used to perform the level shıf": from TTL/DTL to MOS logic levels. Optımum performance in turn-off delay and fall time are obtanned when the output pulse is logically controlled by the input. However, output pulse widths may be set by selection of the input capacitors eliminating the need for tight input pulse control.

features

- 8-lead TO-5 or 8-lead dual-in-line package
- High Output Voltage Swings-up to 30 V
- High Output Current Drive Capability up to 1.5A
- Rep Rate 1.0 MHz into $>1000 \mathrm{pF}$
- Driven by DM932, DS8830, DM7440 (SN7440)
- "Zero" Qutescent Power

connection diagrams

Order Number OSOO25H or DSOO25CH See NS Package HOBC

Order Number DS0025CN-8 See NS Package N08A

typical application

timing diagram

ac test circuit

01 is selected high speed NPN swatching transistor
Puise with:
A. ${ }^{1.14} 4$
B. 2013 ns
absolute maximum ratings (Note 1)
$\left(\mathrm{V}^{+}-\mathrm{V}\right)$ Voltage Differential
Input Current
Peak Output Current
Storage Temperature
Operating Temperature DS0025
DS0025C
Lead Temperature (Solderıng, 10 sec)

30 V
100 mA
1.5A
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (Notes 2 and 3) See test circuit.

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
tdon	Turr-On Delay Time	$\mathrm{C}_{\text {IN }}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			15	30	ns
$\mathrm{t}_{\text {RISE }}$	Rise Time	$\mathrm{C}_{\text {IN }}=0.001 \mu \mathrm{~F}, \mathrm{R}_{1 \mathrm{~N}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F}$			25	50	ns
$\mathrm{t}_{\text {dOFF }}$	Turri Off Delay Time	$C_{I N}=0.001 \mu \mathrm{~F}, \mathrm{R}_{I N}=0 \Omega, \mathrm{C}_{\mathrm{L}}=0.001 \mu \mathrm{~F},$ (Note 4)			30	60	ns
$t_{\text {falL }}$	Fall Time	$\begin{aligned} & C_{I N}=0.001 \mu \mathrm{~F}, \mathrm{R}_{1 N}=0 \Omega, \\ & C_{L}=0.001 \mu \mathrm{~F} \end{aligned}$	(Note 4)	60	90	120	ns
			(Note 5)	100	150	250	ns
PW	Pulse Width (50\% to 50\%)	$\begin{aligned} & C_{I N}=0.001 \mu \mathrm{~F}, \mathrm{R}_{I N}=0 \Omega, \\ & C_{L}=0.001 \mu \mathrm{~F}(\text { Note } 5) \end{aligned}$			500		ns
$\mathrm{V}_{0}+$	Positive Output Voltage Swing	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA}$		$\mathrm{V}^{+}-1.0$	$\mathrm{V}^{+}-0.7 \mathrm{~V}$		V
V_{O}	Negative Output Voltage Swin!	$I_{I N}=10 \mathrm{~mA}, I_{\mathrm{OUT}}=1 \mathrm{~mA}$			$\mathrm{V}^{-1}+0.7 \mathrm{~V}$	$\mathrm{V}^{-}+1.5 \mathrm{~V}$	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS0025 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS0025C
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Parameter values apply for clock pulse width determined by input pulse width.
Note 5: Parameter values for input pulse width greater than output clock pulse width.
typical performance

Transient Power vs Rep. Rate

Maximum Load Cispacitance

$$
C_{L}=\frac{\left(P_{\text {max }}\right)(1 k)-\left(V^{+}-V^{-}\right)^{2}(Q C)}{(t)(1 k)\left(V^{+}-V^{-}\right)^{2}} \cdot \frac{\left(I_{\mathrm{ok}}\right)(t,)}{V^{+}-V^{-}}
$$

DC Power (F'DC) vs Duty Cycle

Output PW Controlled by $\mathrm{C}_{\mathbf{I N}}$

Imax $=$ Peak tu rent delivered by diver
$I_{\text {MIN }}-\frac{V_{B C}}{R 1}=\frac{0.6}{16}$

applications information

Circuit Operation

Input current forced into the base of Q_{1} through the coupling capacitor $\mathrm{C}_{\mathbb{N}}$ causes Q_{1} to be driven into saturation, swinging the output to $V^{-}+V_{C E}($ sat $)+$ $V_{\text {Diode }}$

When the inpu: current has decayed, or has been switched, such that Q_{1} turns off, Q_{2} receives base drive through R_{2}, turning Q_{2} on. This supplies current to the load and the output swings positive to $V^{+}-V_{B E}$.
It may be noted that Q_{1} must switch off before Q_{2} oegins to supply current, hence high internal transients currents from V^{-}to V^{+}cannot occur.

FIGURE 1. DS0025 Schematic (One. Half Circuit)

Fan-Out Calculation

The drive capability of the DSOO25 is a function of system requirements, i.e. speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.

The following equations cover the necessary cal

example calculation

How many MM506 shift registers can be driven by a C 30025 CN driver at 1 MHz using a clock pulse width of 200 ns , rise time $30-50 \mathrm{~ns}$ and 16 V amplitude over the temperature range $0-70^{\circ} \mathrm{C}$?

Power Dissipation:

At $70^{\circ} \mathrm{C}$ the DSO025CN can dissipate 870 mW when soldered into printed circuit board.

Trarisient Peak Current Lamitation:

From equation (1), it can be seen that at 16 V and 30 ns , the maximum load that can be driven is limited to 2800 pF .

Average Internal Power:
Equation (3), gives an average power of 50 mW at 16 V and a 20% duty cycle.
culations to enable the fan-out to be calculated for any system condition.

Transient Current

The maximum peak output current of the DS0025 is given as 1.5A. Average transient current required from the driver can be calculated from:

$$
\begin{equation*}
1=\frac{C_{L}\left(V^{+}-V^{-}\right)}{t_{r}} \tag{1}
\end{equation*}
$$

Typical rise times into 1000 pF load is 25 ns For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{I}=0.8 \mathrm{~A}$.

Transient Output Power

The average transient power (P_{ac}) dissipated, is equal to the energy needed to charge and discharge the output capacitive load (C_{L}) multiplied by the frequency of operation (f).

$$
\begin{equation*}
P_{A C}=C_{L} \times\left(V^{+}-V^{-}\right)^{2} \times f \tag{2}
\end{equation*}
$$

For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, $P_{A C}=400 \mathrm{~mW}$.

Internal Power

" 0 " State \quad Negligible $(<3 \mathrm{~mW})$
" 1 " State

$$
\begin{equation*}
P_{\text {int }}=\frac{\left(V^{+}-V^{-}\right)^{2}}{R_{2}} \times \text { Duty Cycle } \tag{3}
\end{equation*}
$$

$=80 \mathrm{~mW}$ for $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{DC}=20 \%$

Package Power Dissipation

Total average power $=$ transient output power + internal power

For one half of the DSO025C, $870 \mathrm{~mW} \div 2$ can be dissipated.
$435 \mathrm{~mW}=50 \mathrm{~mW}+$ transient output power
$385 \mathrm{~mW}=$ transient output power

Using equation (2) at $16 \mathrm{~V}, 1 \mathrm{MHz}$ and 350 mW , each half of the DSOO25CN can drive a 1367 pF load. This is less than the load imposed by the transient current limitation of equation (1) and so a maximum load of 1367 pF would prevail.

From the data sheet for the MM506, the average clock pulse load is 80 pF . Therefore the number of devices driven is $1367 / 80$ or 17 registers.

MOS Memory Interface Circuits

DS0026, DS0056 5 MHz two phase MOS clock drivers general description

DS0026/DS0056 are low cost monolithic high speed two phase MOS clock drivers and interface circuits. Unique circuit design provides both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL./DTL outputs and converts them to MOS logic levels. They may be driven from standard $54 / 74$ series and $54 \mathrm{~S} / 74 \mathrm{~S}$ series gates and flip-flops or from drivers such as the DS8830 or DM7440. The DSOO26 and DS0056 are intended for applications in which the output pulse width is logically controlled; i.e., the output pulse width is equal to the input pulse width.

The DS0026/DSOO56 are designed to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon-gate shift registers, a single device can drive over 10 K bits at 5 MHz . Six devices provide input address and precharge drive for a 8 k by 16 -bit 1103 RAM memory system. Information on the correct usage of the DSOO26 in these as well as other systems is included in the application note AN.76A.

The DSOO26 and DSOO56 are identical except each driver in the DS0056 is provided with a $V_{B B}$ connection to supply a higher voltage to the output stage. This aids
in pulling up the output when it is in the high state. An external resistor tied between these extra pins and a supply higher than V^{+}will cause the output to pull up to $\left(\mathrm{V}^{+}-0.1 \mathrm{~V}\right)$ in the off state.

For DSOO56 applications, it is required that an external resistor be used to prevent damage to the device when the driver switches low. A typical $V_{B B}$ connection is shown on the next page.

These devices are available in 8-lead TO-5, one watt copper lead frame 8 -pin mini-DIP, and one and a half watt ceramic DIP, and TO-8 packages.

features

- Fast rise and fall times-20 ns with 1000 pF load
- High output swing-20V
- High output current drive- $\pm 1.5 \mathrm{amps}$
- TTL/DTL compatible inputs
- High rep rate -5 to 10 MHz depending on power dissipation
- Low power consumption in MOS " 0 " state- 2 mW
- Drives to 0.4 V of GND for RAM address drive
connection diagrams (Top Views)

absolute maximum ratings (Note 1)

$\mathrm{v}^{+}-\mathrm{v}^{-}$Differential Voltage
22 V
Input Current
Input Voltage ($\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}$)
Peak Output Current

Operating Temperature Range
DS0026, DS0056
DS0026C, DS0056C
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)
switching characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right)($ Notes 5 and 7$)$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{taN}^{\text {O }}$	Turn-on Delay	(Figure 1)		5	7.5	12	ns
		(Figure 2)			11		ns
toff	Turn-off Celay	(Figure 1)			12	15	ns
		(Figure 2)			13		ns
t_{r}	Rise Time	(Figure 1), (Note 5)	$C_{L}=500 \mathrm{pF}$		15	18	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		20	35	ns
		(Figure 2). (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		30	40	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		36	50	ns
t_{4}	Fall Time	(Figure 1). (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		12	16	ns
			$C_{L}=1000 \mathrm{pF}$		17	25	ns
		(Figure 2). (Note 5)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		28	35	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		31	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: These specifications apply for $V^{+}-V^{-}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DSO 026 , DSOO56 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DSO026C, DSOO56C.
Note 3: All curren ; into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: All typical values for the $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Rise and fall time are given for MOS logic levels; i.e., rise time is transition from logic " 0 " to logic " 1 " which is voltage fall.

Note 7: The high current transient (es high as 1.5 A) through the resistance of the external interconnecting V^{-}lead during the output transition from the high stete to the low stete can appear es negative feedback to the input. If the external interconnecting lead from the driving circuit to V^{-}is electrically long, or has significant de resistance, it can subtract from the switching response.
typical V_{BB} connection

typical performance characteristics

Input Current vs Input Voltage

Fall Time vs Load Capacitance

DC Power (PDC) vs Duty Cycle

schematic diagrams

1/2 DS0056
ac test circuits and switching time waveforms

FIGURE 1.

FIGURE 2.

typical applications

AC Coupled MOS Clock Driver

DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

application hints

CIRIVING THE: MM5262 WITH THE DISO056 CLOCK DRIVER

The clock signals for the MM5262 have three requirements which have the potential of generating problems for the user. These requirements, high speed, large valtage swing and large capacitive loads, combine to provide ample opportunity for inductive ringing on clock lines, couplin: clock signals to other clocks and/or inputs and outputs and generating noise on the power supplies. All of these problems have the potential of causing the memory system to malfunction. Recognizing the source and potential of these problems early in the design of a memory system is the most critical step. The object here is to point out the source of these problems and give a quantitative feel for their magnitude.
L.ine ringing comes from the fact that at a high enough fequency any line must be considered as a transmission I ne with distributed inductance and capacitance. To see how much ringing car be tolerated we must examine the clock voltege specification. Figure 6 shows the clock

FIGURE 6. Clock Waveform
sloecification, in diagram form, with idealized ringing sketched in. The ringing of the clock about the V_{SS} level is particularly critical. If the $\mathrm{V}_{\mathrm{SS}}-1 \mathrm{~V}_{\mathrm{OH}}$ is not maintained, at all times, the information stored in the memory could be altered. Referring to Figure 1, if the threshold voltage of a transistor were -1.3 V , the clock going to $V_{\text {ss }}$ - 1 would mean that all the devices, whose gates are tied to that clock, would be only 300 mV from turning on. The internal circuitry needs this noise margin and from the functional description of the RAM it is easy to see that turning a clock on at the wrong t me can have disastrous results.

Controlling the clock ringing is particulary difficult because of the relative magnitude of the allowable r nging, compered to the magnitude of the transition. In this case $i=$ is 1 V out of 20 V or only 5%. Ringing can be controlled by damping the clock driver and minimizing the line inductance.

Damping the clock driver by placing a resistance in series with its, output is effective, but there is a limit s nce it also slows down the rise and fall time of the clock signal. Because the typical clock driver can be much faster than the worst case driver, the damping resistor serve; the useful function of limiting the minimum rise and fall time. This is very important because the falster the rise and fall times, the worse the ringing problem becomes. The size of the damping resistor varies because it is dependent on the details of the actual application. It must be determined empirically. In practice a resistance of 10 ohms to 20 ohms is usually optimum.

Limiting the inductance of the clock lines can be accomplished by minimizing their length and by laying out the lines such that the return current is closely coupled to the clock lines. When minimizing the length of clock lines it is important to minimize the distance from the clock driver output to the furthest point being driven. Because of this, memory boards are usually designed with clock drivers in the center of the memory array, rather than on one side, reducing the maximum distance by a factor of 2 .

Using multilayer printed circuit boards with clock lines sandwiched between the V_{00} and $V_{S S}$ power plains minimizes the inductance of the clock lines. It also serves the function of preventing the clocks from coupling noise into input and output lines. Unfortunately multilayer printed circuit boards are more expensive than two sided boards. The user must make the decision as to the necessity of multilayer boards. Suffice it to say here, that reliable memory boards can be designed using two sided printed circuit boards.

The recommended clock driver for use with the MM4262/ MM5262 is the DS0056/DS0056C dual clock driver. This device is designed specifically for use with dynamic circuits using a substrate, V_{BB}, supply. Typically it will drive a 1000 pF load with 20 ns rise and fall times. Figure 7 shows a schematic of a single driver.

FIGURE 7. Schematic of $1 / 2$ DS0056
In the case of the MM5262, V^{+}is a +5 V and $V_{B B}$ is +8.5 V . $V_{B B}$ should be connected to the $V_{B B}$ pin shown in Figure 7 through a $1 \mathrm{k} \Omega$ resistor. This allows transistor Q4 to saturate, pulling the output to within a $V_{\text {CE (SAT) }}$ of the V^{+}supply. This is critical because as was shown before, the $V_{S S}-1.0 \mathrm{~V}$ clock level must not be exceeded at any time. Without the $V_{B B}$ pull up on the base of Q 4 the output at best will be 0.6 V below the V^{+}supply and can be 1 V below the V^{+}supply reducing the noise margin or this line to zero.

application hints (cont')

Because of the amount of current that the clock driver must supply to its capacitive load, the distribution of power to the clock driver must be considered. Figure 8 gives the idealized voltage and current waveforms for a clock driver driving a 1000 pF capacitor with 20 ns rise and fall time.

FIGURE 8. Clock Waveforms (Voltage and Current)

As can be seen the current is significant. This current flows in the V_{DD} and V_{SS} power lines. Any significant inductance in the lines will produce large voltage transients on the power supplies, A bypass capacitor, as close as possible to the clock driver, is helpful in minimizing this problem. This tyypass is most effective when connected between the $\mathrm{V}_{S S}$ and $\mathrm{V}_{D D}$ supplies. A bypass capacitor for each DSOO56 is recommended. The size of the bypass capacitor depends on the amount of capacitance being driven. Using a low inductance capacitor, such as a ceramic or silver mica, is most effective. Another helpful technique is to run the $V_{O D}$ and $V_{S S}$ lines, to the clock driver, adjacent to each other. This tends to reduce the lines inductance and therefore the magnitude of the voltage transients.

While discussing the clock driver, it should be pointed out that the DSOO56 is a relatively low input impedance device. It is possible to couple current noise into the input without seeing a significant voltage. Since this noise is difficult to detect with an oscilloscope it is often overlooked.

Lastly, the clock lines must be considered as noise generators. Figure 9 shows a clock coupled through a parasitic coupling capacitor, C_{C}, to eight data input lines being driven by a 7404. A parasitic lumped line
inductance, L, is also shown. Let us assume, for the sake of argument, that C_{C} is 1 pF and that the rise time of the clock is high enough to completely isolate the clock tranisent from the 7404 because of the inductance, L.

FIGURE 9. Clock Coupling

With a clock transition of 20 V the magnitude of the voltage generated across $C_{\llcorner }$is:
$V=20 \mathrm{~V} \times \frac{C_{C}}{C_{L}+C_{C}}=20 \mathrm{~V} \times\left(\frac{1}{56+1}\right)=0.35 \mathrm{~V}$
This has been a hypothetical example to emphasize that with 20 V low rise/fall time transitions, parasitic elements can not be neglected. In this example, 1 pF of parasitic capacitance could cause system malfunction, because a 7404 without a pull up resistor has typically only 0.3 V of noise margin in the " 1 " state at $25^{\circ} \mathrm{C}$. Of course it is stretching things to assume that the inductance, L, completely isolates the clock transient from the 7404. However, it does point out the need to minimize inductance in input/output as well as clock lines.

The output is current, so it is more meaningful to examine the current that is coupled through a 1 pF parasitic capacitance. The current would be:
$I=C_{C} \times \frac{\Delta V}{\Delta t}=\frac{1 \times 10^{-12} \times 20}{20 \times 10^{-9}}=1 \mathrm{~mA}$
This exceeds the total output current swing so it is obviously significant.

Clock coupling to inputs and outputs can be minimized by using multilayer printed circuit boards, as mentioned previously, physically isolating clock lines and/or running clock lines at right angles to input/output lines. All of these techniques tend to minimize parasitic coupling capacitance from the clocks to the signals in question.

In considering clock coupling it is also important to have a detailed knowledge of the functional characteristics of the device being used. As an example, for the MM5262, coupling noise from the $\phi 2$ clock to the address lines is of no particular consequence. On the other hand the address inputs will be sensitive to noise coupled from $\$ 1$ clock.

DS3605, DS3606, DS3607, DS 3608 hex TRI-STATE ${ }^{\circledR}$ MOS sense amplifiers (MOS to TTL converters)

general description

The DS3605 series are programmable hex MOS sense amplifiers featuring high speed direct MOS sense capability with high impedance states to allow use of a common bus line. The DS3605 and DS3606 have TRI-STATE outputs. The DS3607 and DS3608 have both TRI-STATE inputs and outputs. High impedance states are controlled by an enable input.

Input current threshold (the level at which the output changes state) is determined by the current at the programming pin. The current threshold is $100 \mu \mathrm{~A}$ with the programming pin grounded and $250 \mu \mathrm{~A}$ with the pin unconnected. The threshold can be set from $100 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$ by connecting a resistor from the pin to ground, and set above $300 \mu \mathrm{~A}$ by connecting a resistor from the pin to the positive supply.

Outputs are high current drivers capable of sinking 50 mA in the low state and sourcing 5 mA in the high state.

features

- Non-inverting inputs (DS3605, DS3607)
- Inverting inputs (DS3606, DS3608)
- No external components required (direct MOS sensing)
- Programmable input thresholds
- Current sensing- $100 \mu \mathrm{~A}$ minimum
- 50 mA drive capability
- TRI-STATE control
- Single 5 V supply
- 15 ns typical propagation delay (DS3605)

connection diagram

ordering information

ORDER NUMBERS	PACKAGE
DS36:5J, DS3606J, DS3607J, DS3608J	Cavity DIP (J)
DS3605N, DS3606N, DS3607N, DS3608N	Molded DIP (N)

See NS Package J16A or N16A

typical application

OS3608 shown as an interface between the PACE microprocessor and TTL data bus and $\mathrm{I} / 0$ bus.
absolute maximum ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Input Drive Current per Input	25 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage, $V_{C C}$ DS3605/DS3606,	4.75	5.25	V
DS3607/DS3608			
Temperature, TA DS3605/DS3606, DS3607/DS3608	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$ Logical "1" Input Voltage Disâble	$V_{C C}=$ Min		2			\checkmark
$I_{\text {IH }}$ Logical "1" Input Current Diséble	$V_{C C}=M_{a x}, V_{\text {IN }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$V_{\text {IL }}$ Logical "0" input Voltage Disable	$V_{c c}=$ Min				0.8	V
IIL Logical "0" Input Current Disêble	$V_{\text {IN }}=0.4 \mathrm{~V}$				-1.6	mA
$V_{\text {CD }}$ Input Clamp Voltage Disable	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$			-1	$-1.5 \mathrm{~V}$	V
Vor Logical "1" Output Voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$		2.4			\checkmark
Ios Output Short Circuit Current	$V_{\text {CC }}=$ Max, $V_{\text {Our }}=0 \mathrm{~V}$ (Note 4)		-20	-50	-90	mA
$V_{\text {OL }}$ Logical " 0 " Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$			0.3	0.4	\checkmark
$\mathrm{I}_{\text {OL }}$ Logical ' 0 ' Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {OL }}=0.4$		50			mA
Iout TRI-STATE Output Current	$V_{\text {cc }}=$ Max, $0.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.4 \mathrm{~V}$		-40		40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN }}$ TRI-STATE Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $0.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$		-40		40	$\mu \mathrm{A}$
$\left.\right\|_{\text {TH }}$ Input Threshold Current	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{P}}=0 \mu \mathrm{~A}$		100	250	400	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{P}}=1 \mathrm{~mA}$		1000	1250	1500	$\mu \mathrm{A}$
Imax Maximum Input Driver Per Input	$\mathrm{V}_{\mathrm{CC}}=$ Max		\cdots	15	8	mA
$\mathrm{I}_{\text {cc }}$ Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	DS3605	\checkmark	80	115	mA
		DS3606/DS3607		90	130	mA
		DS3608		80	115	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3605, DS3606, DS3607 and DS3608. All typicals are given for $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Dnly one output at a time should be shorted.
switching clharacteristics Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
$\mathrm{t}_{\text {PDC }}$ Propagation Celay	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{-}=80 \Omega \\ & I_{P}=750 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{S}}-2 \mathrm{~mA} \end{aligned}$	DS3605		15	22	ns	
		DS3606		26	39	ns	
		DS3607		24	35	ns	
		DS3608		20	30	ns	
$\mathrm{t}_{\text {PD, }}$ Propagation Delay	$\begin{aligned} & C_{L}-50 \rho F, R_{-}=80 \Omega \\ & I_{P}=750 \mu \mathrm{~A}, I_{I N}-2 \mathrm{~mA} \end{aligned}$	DS3605		15	22	ns	
		DS3606		19	29	ns	
		DS3607		19	29	ns	
		DS3608		14	21	ns	
$t_{\text {OH }}$ TRISTATE [relays (Input/Output)	$\begin{aligned} & C_{L}=5 \mathrm{pF}, R_{L}-80 \Omega, \\ & I_{P}=750 \mu \mathrm{~A}, I_{\\|}=2 \mathrm{~mA} \end{aligned}$	DS3605		18	32	ns	
		DS3606		18	32	ns	
		DS3607		20	35	ns	
		DS3608		20	35	ns	
$\mathrm{t}_{1 \mathrm{H}}$ TRI-STATE Eleiays (Input ${ }^{\text {Output }}$	$\begin{aligned} & C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=80 \Omega \Omega, \\ & \mathrm{I}_{\mathrm{F}}=750 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{N}}-2 \mathrm{~mA} \end{aligned}$	DS3605		8	14	ns	
		DS3606		8	14	ns	
		DS3607		10	18	ns	
		D53608		10	18	as	
$\mathrm{t}_{\text {HO }}$. TRI-STATE [relays (Inout/Output)	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{1}=8052 \\ & I_{P}=750 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{IN}}=2 \mathrm{~mA} \end{aligned}$	DS3605		22	40	ns	
		DS3606		20	35	ns	
		DS3607		45	80	ns	
		DS3608		45	80	ns	
$\mathrm{t}_{\mathbf{H 1} 1}$. TRI-STATE Jelays (Inpu\%/Output)	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=80 \Omega, \\ & I_{\mathrm{P}}=750 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{N}}=2 \mathrm{~mA} \end{aligned}$	DS3605		25	45	ns	
		DS3606		26	45	ns	
		DS3607		35	60	ns	
		DS3608		35	60	ns	

*Datar valid only aft.er this delay.

truth tables

DS3605 (Note 1)

$I_{\text {IN }}$	DIS	OUT
X	H	$H i \cdot Z$
$>I_{T}$	L	H
$<I_{T}$	L	L

DS3607 (Note 1)

$I_{i N}$	DIS	OUT
\times	H	H_{I-Z}
$>I_{T}$	L	L
$<I_{T}$	L	H

DS3606 (Note 2)

$\mathrm{I}_{\text {IN }}$	DIS	OUT
\times	H	$H_{I} \cdot Z$
$>I_{T}$	L	L
$<I_{T}$	L	H

DS3608 (Note 2)

$I_{\mathbf{N}}$	DIS	OUT
X	H	$H i-Z$
$>I_{T}$	L	H
$<I_{T}$	L	L

Note 1: Non-inverting inputs
Note 2: Inverting infuits

typical performance characteristics

Typical Input Threshold Current vs Program Resistor DS 3605 Series

Input Threshold vs Power Supply Variation

Typical Propagation Delay vs Input Capecitance DS3605

Input Threshold vs Temperature

Typical Propagation Delay vs Input Capacıtance DS3606

Typical Propagation Delay vs Input Capacitance DS3607

Typical Propagation Delay vs Input Capacitance DS3608

ac test circuit

switching time waveforms

equivalent circuit

Note 1. On the 053605 and 053606 , the disable is only connected to the output stage. On the OS3607 and DS $360 B$, it is connected ta bath the input and output.
Note 2: Diode D3 is used in the DS3607 and DS3608 anly. In the OS 3605 and DS3606, the emitter of 04 is cannected directly to ground.

National MOS Memory Interface Circuits Semiconductor

DS3625, DS7802/DS8802, DS7806/DS8806 dual high speed TRI-STATE ${ }^{\circledR}$ MOS to TTL level converters

general description

The DS3625, DS7802/DS8802, DS7806/DS8806 are high speed MOS to TTL level converters. These circuits act as an interface level converter between MOS and TTL logic devices. It consists of two 1 -input converters with common strobe input to inhibit " 0 " entry when strobe is high. It allows parallel entry when strobe is low and the internal latch is preset by the common preset input. TRISTATE output logic is implemented in this circuit to facilitate high speed time sharing of decoderdrivers, fast random-access (or sequential) memory arrays, etc.

features

- Very low output impedance - high drive ability
- High impedance output state which allows many outputs to be connected to a common bus line
- Average power dissipation 110 mW per converter
- DS3625 is pin-for-pin replacement for the Signetics 8T25

logic and connection diagrams

Dual-In-Line Package

Order Number DS7802J, DS8802J or DS8802N
See NS Package J16A or N16A

Dual-In-Line Package

Order Number DS7806J, DS8806J. DS8806N or DS7806W See NS Package 114A, N14A or W14A

Dual-In-Line Package

Order Numbei DS3625N See NS Pack age N08A

			MIN	MAX	UNITS
Supply Voltage	70 V	Supply Voltage (VCC)			
Input Voltage	55 V	DS7802, DS7806	4.5	55	V
Output Voltage	5.5 V	DS8802, DS8806, DS3625	475	525	\checkmark
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to 150 C	Temperature (TA) DS7802, DS7806	-55	+125	C
Leac`Temperature (Soldering	300 C	DS8802, DS8806, DS3625	0	+70	C

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Logical "1" Input Current	$V_{C C}=M_{1 n}$		DS7802, DS7806	500			$\mu \mathrm{A}$
			DS3625	400			$\mu \mathrm{A}$
$I_{\text {INA }}, I_{\text {INE }}$ Logical "0" mput Current	$V_{\text {cc }}=M i n$					200	$\mu \mathrm{A}$
$V_{\text {IH }} \quad$ Logica! "1" Input Viltage	Strobe, Preset, Disable, $\mathrm{V}_{\text {cc }}=$ Mın			2.0			\checkmark
$V_{\text {IL }} \quad$ Logical "0" Input Voltage	Strobe, Preset, Disable. $\mathrm{V}_{\text {cc }}=\mathrm{Min}$					0.8	\checkmark
Logical "1" Output Voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{\text {OUT }}=-1.5 \mathrm{~mA}$		DS7802, DS7806	2.4			V
			DS3625	2.8			V
V_{OL} Logical " 0 " Output Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$					04	V
TRISTATE Output Current	$V_{C C}=\operatorname{Max}$	DS7802,	$\mathrm{V}_{0}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
		DS7806	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		DS3625	$\mathrm{V}_{0}=3.9 \mathrm{~V}$			100	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=0 \mathrm{~V}$			-100	$\mu \mathrm{A}$
Logical "1" Input Current	$V_{c c}=\operatorname{Max}$	$V_{1 N}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1.0	mA
$I_{\text {IL }} \quad$ Logical "O" input Current	$V_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$					-15	mA
Icce \quad Supply Current	$\begin{aligned} & V_{C C}=M a x, ~^{V_{\|N\| D \mid S A B L E}}=2 V, V_{\text {INISTROBE }} \\ & \text { and } V_{(N\{P R E S E T)}=O V \end{aligned}$					40	mA
$V_{C D} \quad$ Input Clamp Voltage	$V_{C C}=$ Min, $1_{1 N}=-12 \mathrm{~mA}$					-1.6	\checkmark
Outpul Short Circuit Current	$V_{c c}=\operatorname{Max}, V_{o}=o v$ (Note 4)		DS7802, DS7806	-20		-70	mA
			DS8802. DS8806	-18		-70	mA
			DS3625	-20		-70	mA

switching characteristics

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {ds }}$	Propagation Delay to a Legical " 0 " From Strobe to Output	$V_{C C}=5.0 \mathrm{~V}$ (See Waveforms), $T_{A}=25^{\circ} \mathrm{C}$		17	25	ns
$t_{\text {dp }}$	Propagation Delay to a Logical " 1 " From Preset to Oulput (DS7802, DS7806)	$V_{C C}=5.0 \mathrm{~V}$ (See Waveforms), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		22	32	ns
$\mathrm{t}_{\text {H }}$	Delay From Disable Input to High Impedance State (From Logical " 1 " Level)	$V_{C C}=5.0 \vee$ (See ac Test Circuit). $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.0	11	ns
t_{OH}	Delay From Disable Input to High Impedance State (From Logical " 0 " Level)	$V_{C C}=5.0 \mathrm{~V}$ (See ac Test Circuit), $T_{A}=25^{\circ} \mathrm{C}$		17	25	ns
$\mathrm{t}_{\mathrm{H} 1}$	Delay From Jisable Input to Logical "1" Level (From High Impedance State)	$V_{C C}=50 \mathrm{~V}$ (See ac Test Circuit). $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		9.0	14	ns
$\mathrm{t}_{\text {Ho }}$	Delay From Disable Inpu' to Logical " 0 " Level (Frorr High Impeclance State)	$V_{C C}=5.0 \mathrm{~V}$ (See ac Test Circuit), $T_{A}=25^{\circ} \mathrm{C}$		13.5	16	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions, for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS7802, DS7806 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range: for the DS8802, DS8806. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pirs shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Noce 4: Only one cutput at a time should be shorted.
typical input circuit

ac test circuits

(a)

(b)
truth table

IN A OR B	ST	P	D	a_{A} OR O_{B}
0	1	1	0	1
1	1	1	0	1
0	0	1	0	0
1	0	1	0	1
X	\times	\times	1	Hi-Z

	SWITCH S	SWITCH S_{2}	C_{L}
t_{dp}	Closed	Closed	50 pF
t_{ds}	Closed	Closed	50 pF
t_{OH}	Closed	Closed	$\times 5 \mathrm{pF}$
$\mathrm{t}_{1 \mathrm{H}}$	Closed	Closed	$\times 5 \mathrm{pF}$
t_{HO}	Closed	Open	50 pF
t_{H1}	Open	Closed	50 pF

*Jig capacitance

(c)

(d)

Test Circuit 20
switching time waveforms
${ }^{\mathbf{t}} \mathrm{OH}$
${ }^{11} \mathrm{H}$

(a)

(b)
${ }^{\text {th }} \mathrm{H}$

(c)

DS1628/DS3628 Octal TRI-STATE ${ }^{\text {® }}$ MOS Drivers

General Description

The DS1628/DS3628 are octal Schottky memory drivers with TRISTATE ${ }^{\circledR}$ outputs designed to drive high capacitive loads associated with MOS memory systems. The drivers' output (VOH) is specified at 3.4 V to provide additional noise immunity required by MOS inputs. A PNP' input structure is employed to minımize input currents. The circuit employs Schottky-clamped transistors for high speed. A NOR glate of two inputs, DIS1 and DIS2, controls the TRI-STATE mode.

Features

- High speed capabilities
typ 5 us diving $50 \mathrm{pF} \& 8 \mathrm{n}$, driving 500 pF
- TRISTATE outputs
- High $\mathrm{V}_{\mathrm{OH}}(3.4 \mathrm{~V} \mathrm{~min})$
- High density
- eight drivers and two disable controls for TRI STATE in a 20 -pin package
- PNP inputs reduce DC loadiig on bu: lines
- Glitch-free power up/down

Schematic and Connection Diagrams

Truth Table

Disable Input		Input	Output
DIS 1	DIS 2		
H	H	X	Z
H	X	X	Z
X	H	X	Z
L	L	H	L
L	L	L	H

$H=$ high level
L = low level
$X=$ don't care
$Z=$ high impedance (off)

Typical Application

Absolute Maximum Ratings	S (Note 1)	Operating Conditions			
Supply Voltage	7.0 V		min	MAX	UNITS
Logical "1" Input Vol:age	7.0 V	Supply Voltage (V_{CC})	45	5.5	v
Logical "0' Input Vo age	${ }^{6} .65^{\circ} \mathrm{C}$ to +150 C	Temperature ($T_{\text {A }}$)			
Storage Temperature Flange	$65^{\circ} \mathrm{C}$ to +150 C	DS1628	55	+125	${ }^{\circ} \mathrm{C}$
Power Dissipation* Cavity Package	1160 mW	0S3628	0	+70	${ }^{\circ} \mathrm{C}$
Molded Package	1000 mW	-Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate moldedpackage at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$			
Temperature Iso	300 C				

Electrical Characteristics (Notes 2 and 3)

	PARAIVETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IN(1) }}$	Logical "1" Input Voltage				20			\checkmark
$V_{\text {IN }}(0)$	Logical "0" Input Voltage						0.8	\checkmark
lin 11)	Logical "1" input Current	$V_{C C}=55 \mathrm{~V} \quad V_{I N}=55 \mathrm{~V}$				0.1	40	$\mu \mathrm{A}$
IIN(O)	Logical "0" Input Current	$V_{C C}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=05 \mathrm{~V}$				-180	-400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$V_{C C}=45 \mathrm{~V} \quad \mathrm{I}_{1} \mathrm{~N}=-18 \mathrm{~mA}$				-0.7	-12	\checkmark
VOH	Logical "1" Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V} \quad 1 \mathrm{OH}=-10 \mu \mathrm{~A}$		DS1628	3.4	4.3		\checkmark
				DS3628	35	4.3		\checkmark
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V} \quad 1 O L \cdot 10 \mu \mathrm{~A}$		DS1628		0.25	0.4	v
				DS3628		025	0.35	v
V_{OH}	Logical "1" Output Voltage (With L.oad)	$V_{C C}=45 \mathrm{~V} \quad 1 \mathrm{OH}=-10 \mathrm{~mA}$		DS1628	2.5	39		v
				DS3628	2.7	39		v
$\mathrm{V}_{\text {OL }}$	Log:cal "0" Output Voltage (With 1 oad)	$V_{C C}=4.5 \mathrm{~V}$	IOL 20 mA	DS1628 DS3628		0.35	0.5	v
1 ID	Logicel "1" Drve Current	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{VOUT}^{\text {O }}$ O OV	(Note 6)		-150		mA
1 OD	Logıcıl "O" Drive Current	$V_{C C}=4.5 \mathrm{~V}$	VOUT $=45 \mathrm{~V}$	(Note 6)		150		mA
Hi.z	TRISSIATE Output Current	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4V DIS1 or DIS2 $=20 \mathrm{~V}$			-40	0.1	40	$\mu \mathrm{A}$
Icc	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	One DIS Input All other Inputs	$3.0 \mathrm{~V}$ X. Outputs at $\mathrm{H}_{1} \cdot \mathrm{Z}$		90	120	mA
			DIS1, DIS2-0 Qutputs on	, others $=3 \mathrm{~V}$		70	100	mA
			All Inputs = OV	Outputs off		25	50	mA

Switching Characteristics $\left(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\right)($ Note 6$)$

	Parameter	CONOITIONS		MIN	TYP	MAX	UNITS	
${ }^{\text {t }}$ + +	Starage Delà Negative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.0	5.0	ns	
			$C_{L}=500 \mathrm{pF}$		6.5	8.0	ns	
ts - + Storage Delan' Positive Edge		(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.2	5.0	ns	
		$C_{L}=500 \mathrm{pF}$		6.5	8.0	ns		
${ }_{\text {t }}$	Fall Time		(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.2	6.0	ns
		$C_{L}=500 \mathrm{pF}$			19	22	ns	
${ }^{1} \mathrm{R}$	Rise Time	(Figure 1)	$C_{L}=50 \mathrm{pF}$		5.2	7.0	ns	
			$C_{L}=500 \mathrm{pF}$		20	24	ns	
${ }^{\text {t }} \mathrm{L}$ L	Delay from Disable Input to Logical " 0 " Level (from tigh Impedance State)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$R_{L}=2 \mathrm{ks} 2 \text { to } \mathrm{VCC}$ (Figure 2)		19	25	ns	
${ }^{\text {t } 2 \mathrm{H}}$	Delay from Disable Input to Logical " 1 " Level (from High Impedance State)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$\begin{aligned} & R_{L}=2 k \Omega \text { to GND } \\ & \text { (Figure 2) } \end{aligned}$		13	20	ns	
${ }^{\text {t }}$ LZ	Delay from Disable Input to High Impedance State (from _ogical " 0 " Level)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to GND } \end{aligned}$	$\begin{aligned} & R_{L}=400 \Omega \text { to } V_{C C} \\ & \text { (Figure 3) } \end{aligned}$		18	25	ns	
${ }^{\text {thz }}$	Delay from Disable Input to High Impedance State (from Logical "1" Level)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { to } G N D \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \text { to } \mathrm{GND} \\ & \text { (Figure 3) } \end{aligned}$		8.5	15	ns	

AC Test Circuits and Switching Time Waveforms

FIGURE 1

FIGURE 2

FIGURE 3

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" thev are not meant to mply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the OS 1628 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3628. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages references to ground unless otherwise noted All values shown as max or min on absolute value basis.
Note 4: The pulse generator has the following characteristics: ZOUT $=50 \Omega$ and PRR $\leqslant 1 \mathrm{MHz}$. Rise and fall times between $\mathbf{1 0 \%}$ and 90% points $\leqslant 5 \mathrm{~ns}$.
Note 5: C_{L} includes probe and jig capacitance.
Note 6: When measuring output drive current and switching response for the DS1628 and DS3628 a 15Ω resistor should be placed in series with each output.

DS1640/DS3640, DS1670/DS3670 quad MOS TRI-SHARE ${ }^{\text {TM }}$ port drivers general description

The DS'1640/DS3640 and DS1670/DS3670 are quad MOS TRI-SHARE port drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOIS memory systems. PNP input transistors are employer to reduce input current, allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay.
The DS $1640 / \mathrm{DS} 3640$ has a 15Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1670/DS3670 has a direct, low impedance output source for use with or without an external resistor.

The DS'1640/DS1670 has two address inputs which decode 10 one-of-four-high outputs. Provisions are made
for address expansion. For example, two packages may be used to implement a three-input, eight-output decoder. Also included is a refresh control, read/write, and strobe input. These functions are required by the MM5270 4k TRI-SHARE MOS RAM.

features

- TRI-SHARE port driver for MM5270 RAM
- TTL/DTL compatible inputs
- PNP inputs minimize loading
- Capacitance-driving outputs
- Built-in damping resistor (DS1640/DS3640)
logic and connection diagrams

Order Number DS1640J, DS3640J, DS3640N, DS1670J, DS3670J or DS3670N
See NS Package J14A or N14A

schematic diagram

absolute maximum ratings (Note 1)

Supply Voltage, VCC	7 V
Logical "1"' Input Voltage	7 V
Logical " 0 "' Input Voltage	-1.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation"	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)	4.5	5.5	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DS1640, DS1670	-55	+125	${ }^{\circ} \mathrm{C}$
DS3640, DS3670	D	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.
electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITSv
VIN(1)	Logical "1" Input Voltage				2.0			
V IN(0)	L.ogical "O" Input Voltage						0.8	V
I/N(1)	Logical "1" Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$	Expansion			0.1	40	$\mu \mathrm{A}$
			Address Disable			0.2	80	$\mu \mathrm{A}$
			Address A, Address B			0.3	120	$\mu \mathrm{A}$
			Refresh, Expansion, Strobe Read/Mrite			0.4	160	$\mu \mathrm{A}$
$\operatorname{IIN}(0)$	Logical " 0 " Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I N}=0.5 V \end{aligned}$	Expansion			-50	-250	$\mu \mathrm{A}$
			Address Disable			-100	-500	$\mu \mathrm{A}$
			Address A, Address B			-150	-750	$\mu \mathrm{A}$
			Refresh, Expansion, Strobe Read/Write			-0.2	-1.0	mA
$V_{C L A M P}$	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}, 1_{1 \mathrm{~N}}=-18 \mathrm{~mA}$				-0.75	-1.2	V
VOH	Logical "1"Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS1640, DS1670	3.4	43		V
				DS3640, DS3670	3.5	4.3		V
VOL	Logical " 0 " Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS1640, DS1670		0.25	0.40	V
				DS3640, DS3670		0.25	0.35	V
VOH	Logical "1" Output Voltage (With Load)	$\mathrm{VCC}^{\prime}=4.5 \mathrm{~V}, \mathrm{lOH}^{\prime}=-1.0 \mathrm{~mA}$		DS1640	2.4	3.5		V
				DS1670	2.5	3.5		V
				DS3640	2.6	3.5		V
				DS3670	2.7	3.5		V
V_{OL}	Logical "0" Qutput Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		DS1640		0.6	1.1	V
				DS1670		0.4	0.5	V
				DS3640		0.6	1.0	V
				DS3670		0.4	0.5	V
1 ID	Logical "1" Drive Current	$V_{C C}=4.5 \mathrm{~V}, V_{O U T}=0 \mathrm{~V},($ Note 4$)$				-250		mA
IOD	Logical '0" Drive Current	$V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V},($ Note 4)				150		mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	$\begin{aligned} & \text { Expansion }=0 \mathrm{~V} \\ & \text { All Other Inputs }=3 \mathrm{~V} \end{aligned}$			60	85	mA
			All Inputs $=3 \mathrm{~V}$			45	75	mA

switching characteristics $\left(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 4)

	PARAMETER	CONDITIONS		MIN	TYp	MAX	UNITS
ts+-	Storage Delay Negative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	14	ns
	Address Inputs, Expan		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		15	20	ns
ts-+	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	14	ns
	Address Inputs, Expan		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		15	20	ns
'S+-	Storage Delay Vegative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7	11	ns
	Ref, $\overline{\text { Read / Write, Strobe, Expen }}$		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		11	15	ns
ts-+	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	12	ns
	Ref, $\overline{\text { Read/Write, Strobe, Expon }}$		$C_{L}=250 \mathrm{pF}$		12	16	ns
${ }^{1} \mathrm{~F}$	Fall Time	(Figure 1)	$C_{L}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		15	25	ns
t_{R}	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	11	ns
			$C_{L}=250 \mathrm{pF}$		25	35	ns

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1640 and DS1670 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3640 and DS3670. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When meassring output drive current and switching response for the DS 1670 and DS3670 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS 1640/DS3640, and need not be added.

truth table

$\begin{gathered} \text { ADD } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} A D D \\ B \end{gathered}$	$\begin{aligned} & \text { ADD } \\ & \text { OSBL } \end{aligned}$	EXPAN	$\overline{\text { EXPAN }}$	RFSH	$\overline{\mathbf{R N W}}$	STB	$\frac{\mathrm{D} U \mathrm{~T}}{\mathrm{~A}} \cdot \overline{\mathrm{~B}}$	$\frac{D U T}{\bar{A} \cdot B}$	$\begin{aligned} & D U T \\ & A \cdot \bar{B} \end{aligned}$	$\begin{aligned} & \text { DUT } \\ & A \cdot B \end{aligned}$
0	0	0	0	1	0	*	,	1	0	0	0
0	1	0	0	1	0	*	*	0	1	0	0
1	0	0	0	1	0	*	*	0	0	1	0
1	1	0	0	1	0	*	*	0	0	0	1
0	0	1	0	1	0	*	*	1	1	1	1
x	x	x	1	x	x	x	x	0	0	0	0
x	x	x	x	0	\times	x	x	0	0	0	0
x	x	x	x	x	1	x	\times	0	0	0	0
x	x	\times	x	x	x	1	1	0	0	0	0

$X=$ Don't Care; * $=$ read/write and strobe not both high at same time.

ac test circuit and switching time waveforms

*internal on DS1640 and DS3640
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and $\operatorname{PRR} \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 1

typical application

The DS3640/DS3670 driver is intended for use in driving the TRI-SHARE port of the MM52704k MOS

RAM. Its address inputs facilitate decoding, and its direct controls simplify the refresh cycle.

DS1642/DS3642, DS1672/DS3672 dual bootstrapped TTL to MOS clock drivers

general description

The DS1672 is a dual bipolar-to.MOS clock driver designed to provide high output current and voltage capabilities necessary for driving high capacitance (up to 500 pF) MOS memory systems. The circuit needs only one power supply, (12 V typical). This feature greatly reduces high stand-by power levels and at the same time simplifies system deisgn.

The circuit also features output bootstrapping, eliminating the need for an additional supply to provide a higher voltage to the output stage. The function is accomplished by connecting a small value capacitor (typically 200 pF) from the output to the bootstrap pin on each driver.

The circuit has Schottky-clamped transistor logic for minimum propagation delay. Typical stand-by power (output low) is 48 mW per driver. A fail-safe condition
is provided in the circuit, so if the input is opened the output assumes the logic " 0 " state.

The DS1642/DS3642 has a 10Ω resistor in series with each output to dampen transients caused by the fast switching output. The DS1672/DS3672 has a direct low impedance output for use with or without an external resistor.

features

- High output voltage capability
- TTL/LS compatible inputs
- High speed operation
- Bootstrapping eliminates extra supplies-reduces power
- Low stand-by power
$48 \mathrm{~mW} /$ driver
- Built-in 10Ω damping resistor (DS1642/DS3642)
schematic and connection diagrams

Metal Can Package

Order Number DS1642H, DS1672H, DS3642H or DS3672H See NS Package H08C

Dual-In-Line Package

Srder Number D\$1642J-8, DS1672J-8, DS3642J-8, DS3672J-8, DS3642N-8 or DS3672N-8

absolute rnaximum ratings (Note 1)	
Supply Voltage	15 V
Bootstrap-VCC Differential	15 V
Bootstrap Pin Voltage	30 V
Input Voltage	5.5 V
Input Current	10 mA
Output Voltage	-1.0 V to +15 V
Storage Temperatur: Range	$-65^{\circ} \mathrm{C}$
Power Dissipation*	1160 mW
Cavity Package	890 mW
Molded Package	525 mW
Metal Can	$300^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$. derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate metal can package at $200^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.

dc electrical characteristics (Notes 2 and 3)

DS1642, DS1672: $\quad V_{C C}=12 \mathrm{~V} \pm 10 \%,-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise noted.
DS3642, DS3672! $\quad V_{C C}=12 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TVP	MAX	UNITS
$\mathrm{I}_{1} \mathrm{~T}$ Logical "1" Input Current			200	0		$\mu \mathrm{A}$
VIL Logical "0" Input Voitage					0.8	V
Logical "1" Input Current (Note 5)	$V_{\text {IN }}=2.4 \mathrm{~V}$			0.9	1.5	mA
	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			4	5.5	mA
IIL. Logical "0' Input Current	$V_{\text {IN }}=0 \mathrm{~V}$			-240	-400	$\mu \mathrm{A}$
$V_{C D}$ Input Clamp Voltage	$\mathrm{I}_{1 \mathrm{~N}}=-5 \mathrm{~mA}$			-0.9	-1.5	V
VOH Logical "1" Output Voltage	$V_{B} \geq V_{C C}+2 \mathrm{~V}, 1$ OUT $=-400 \mu \mathrm{~A}$			$V_{\text {CC }}-0.5$	$\mathrm{VCC}^{-0.8}$	V
VOL Logical " 0 " Output Voltage	IOUT $=5 \mathrm{~mA}$, Bootstrap Pin (V_{B})) Open, (Note 6)		0.3	0.5	\checkmark
R8 8ootstrap Resistor				3.0		$k \Omega$
ICC(1) Supply Currant	$V_{\text {IN }}=0 \mathrm{~V}$, (Both Drivers "OFF')	Bootstrap Pin $\left(V_{B}\right)$ Open		0.5	2.0	mA
	Outputs Open	$V_{B}=V_{C C}+7 V$		-4.2	6.0	mA
$\mathrm{I}_{\mathrm{B}(1)}$ 8ootstrap Current	(Both Drivers), $\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$			4.2	6.0	mA
ICC(0) Supply Current	$V_{I N}=2.4 V$, Bootstrap Pin $\left(V_{B}\right)$ Open	(8oth Drivers "ON") Outputs Open		8.0	12	mA

switching c:haracteristics (Note 4) ($\left.\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Figures 1 and 2)

PARAME TER	CONDITIONS		MIN	TYP	MAX	UNITS
tSt- Storage Delay Negative Edge	$R_{D}=10 \Omega$	$C_{L}=50 \mathrm{pF}$		8	12	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		13	1B	ns
${ }^{\text {t }}$ - + Storage Delay Postive Edge	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		B	12	ns
		$C_{L}=500 \mathrm{pF}$		13	1B	ns
Fall Time	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		15	22	ns
Rise Time	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	ns
		$C_{L}=500 \mathrm{pF}$		15	22	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1642, DS 1672 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3642, DS3672. All typicals are given for $\mathrm{V}_{\mathrm{C}} \mathrm{C}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currer ts anto device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When measuring output drive current and switching response for the DS1672 and DS3672, a 10Ω resistor should be placed in series with each output. This resistor is internal to the DS1642/DS3642 and need not be added.
Note 5: The value of $I_{I H}$ and $I_{I L}$ given is intended to be a measure of input impedance and does not reflect the input threshold.
Note 6: $V_{O L}$ also epplies to the fail-safe condition when the input is open.

ac test circuit

* Internal on DS1642/DS3642

Note 1: The pulse generator has the following characteristics: PRR $=1 \mathrm{MHz}, 50 \%$ Duty Cycle, $Z_{O U T}=50 \Omega, t_{R}=t_{F} \leq 10 \mathrm{~ns}$. Note 2: C_{L} includes probe and jig capacitance.
Note 3: The high current transient (as high as 0.5 A) through the resistance of the external interconnecting ground lead during the output transition from the high state to the low state can appear as negative feedback to the input. If the external interconnecting load from the driving circuit to ground is electrically long, or has significant de resistance, it can subtract from the switching response.

FIGURE 1

switching time waveforms

Note 1: The pulse generator has the following characteristics:
PRR $=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}} \leq 10 \mathrm{~ns}, \mathrm{tf} \leq 10 \mathrm{~ns}, \mathrm{Z}_{\mathrm{OUT}}=50 \Omega$.
Note 2: C_{L} includes probe and jig capacitance.
FIGURE 2
node voltage waveforms

Note 1: The fall time has an exponential decay with the following time constant: $t_{B}=C_{B} R_{B}$. The typical value for R_{B} can be found in the table of electrical characteristics.

typical applications

DS3672 Operating with Extra Supply to Enhance Output Voltage Level

DS3672 in Non-Bootstrap Application with Single Supply-When Output High Level is Non-Critical.

DS3672 Bootstrap Mode of Application with Capacitively Coupled Input and Negative Supply

DS3643, DS3673 decoded quad MOS clock drivers general description

The DS3643 and DS3673 are quad bipolar-to-MOS decoder/clock drivers with TTL/DTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N-channel MOS memory systems.

The device features full decoding of input address lines from two inputs to one of four outputs. Also featured is the capability of expanding to three inputs to one of eight ou:puts with the use of the Expansion and Expansion inputs. Also included are clock and refresh inputs.

The circuit was designed for driving large capacitive loads at high speeds and uses Schottky-clamped transistors. PNF' transistors are used on all inputs, thereby minimizirg input loading.

The DS3643 has a 10Ω damping resistor in series with each output to dampen transients caused by the fast
switching output, while the DS3673 has a direct, low impedance output, for use with or without an external resistor.

features

- TTL/LS compatible inputs
- Operates from standard bipolar and MOS supplies
- PNP inputs minimize input loading
- Full logic decoding for either two inputs to one of four outputs or three inputs to one of eight outputs
- High voltage/current outputs
- input and output clamping diodes
- Control logic optimized for use with MOS memory systems
- Built-in damping resistors (DS3643)

logic and connection diagrams

Dual-In-Line Package

Order Number DS3643J, DS3673J,
DS3643N or DS3673N
See NS Package J14A or N14A

truth table

INPUTS						outpurs			
CLOCK	REFRESH	EXPANSION	EXPANSION	A_{2}	A_{1}	OUT 1	OUT 2	OUT 3	OUT 4
1	\times	x	\times	\times	\times	0	0	0	0
0	1	\times	\times	\times	\times	1	1	1	1
0	0	1	0	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0	0
0	0	1	0	1	0	0	0	1	0
0	0	1	0	1	1	0	0	0	1
0	0	1	1	x	\times	0	0	0	0
0	0	0	1	\times	\times	0	0	0	0
0	0	0	0	\times	\times	0	0	0	0

[^8]absolute maximum ratings (Note 1)
Supply Voltage

$V_{\text {CC1 }}$	7 V
$V_{\text {CC2 }}$	13 V
$V_{\text {CC3 }}$	16 V
nput Voltage	-1.0 V to 7 V
Output Voltage	-1.0 V to 16 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation* (PD)	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

7 V
13 V
16 V
-1.0 V to 7 V
-1.0 V to 16 V $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1160 mW $300^{\circ} \mathrm{C}$
operating conditions

	MIN	MAX	UNITS
Supply Voltage, ${ }_{C C C}$			
$V_{C C 1}$	4.75	5.25	V
$V_{C C 2}$	11.4	12.6	V
$V_{C C 3}$	$V_{C C 2}$	15.75	V
Temperature,T	0	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.

electrical characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C 1}=5 \mathrm{~V} \pm 5 \%, V_{C C 2}=12 \mathrm{~V} \pm 5 \%, V_{C C 3}=V_{C C 2}+(3 \mathrm{~V} \pm 5 \%)$ unless otherwise noted. (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage			2			v
$V_{\text {IL }}$	Logical "0" Input Voltage					0.8	v
$\mathrm{IH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	Refresh, Exp.		0.01	10	$\mu \mathrm{A}$
			A1, A2, Clock, Exp.		0.04	40	$\mu \mathrm{A}$
	Logical "0" \|nput Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	Refresh, Exp.		-40	-250	$\mu \mathrm{A}$
			A1, A2, Clock, $\overline{\text { Exp }}$.		-0.16	-1.0	mA
V_{CD}	Input Clamp Voltage	$11=-12 \mathrm{~mA}$			-0.8	-1.5	v
VOH	Logical "1" Output Voltage	$1 \mathrm{OH}=-1 \mathrm{~mA}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC} 2}-0.5$	$\mathrm{V}^{\mathrm{CCC} 2}{ }^{-0.2}$		\checkmark
VOL	Logical "0" Output Voltage	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}$			0.3	0.5	\checkmark
Voc	Output Clamp Voltage	$\mathrm{IOC}=5 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC2}}{ }^{+0.8}$	$\mathrm{VCC2}^{+1.5}$	\checkmark
${ }^{1} \mathrm{CCH}$	Supply Current Outputs High ${ }^{1} \mathrm{CC} 1$	Refresh $=5 \mathrm{~V}$, All Other inputs $=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}$		26	45	mA
	${ }^{1} \mathrm{CC}$?		$\mathrm{V}_{\mathrm{CC} 2}=12.6 \mathrm{~V}$		2	-4	mA
	${ }^{1} \mathrm{CC} 3$		$\mathrm{V}_{\mathrm{CC} 3}=15.75 \mathrm{~V}$		2	5	mA
${ }^{\mathrm{I} C C L}$	Supply Currents Outputs Low ${ }^{\prime} \mathrm{CC} 1$	All Inputs $=5 \mathrm{~V}$	$V_{\text {CC1 }}=5.25 \mathrm{~V}$		30	55	mA
	$\mathrm{ICC2}$		$V_{\text {CC2 }}=12.6 \mathrm{~V}$			3	mA
	${ }^{\text {ICC3 }}$		$\mathrm{V}_{\text {CC3 }}=15.75 \mathrm{~V}$		15	25	mA

switching characteristics $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 3}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 4)

PARAMETER	CONDITIONS		MIN	TYP	MaX	UNITS
tS+_ Storage Delay Negative-Edge from A1, A2, Clock, Exp. to Out 1	$\mathrm{R}_{\mathrm{D}}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		8	11	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		13	16.5	ns
tS-+ Storage Delay Positive-Edge from	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		9.5	12	ns
A1, A2, Clock, Exp. to Out 1		$C_{L}=400 \mathrm{pF}$		13	16.5	ns
${ }^{\text {ts }}+\infty-$ Storage Delay Negative Edge from Refresh, Exp. to Out 1	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		14.5	18	ns
		$C_{L}=400 \mathrm{pF}$		17.5	21	ns
Storage Delay Positve-Edge from Refresh, Exp. to Out 1	$R_{D}=10 \Omega$	$C_{L}=100 \mathrm{pF}$		15	18	ns
		$C_{L}=400 \mathrm{pF}$		18	21	ns
Output Rise Time	$R_{\text {D }}=10 \Omega$	$C_{L}=100 \mathrm{pF}$		9	16	ns
		$C_{L}=400 \mathrm{pF}$		15	22	ns
Output Fall Time	$R_{D}=10 \Omega$	$C_{L}=100 \mathrm{pF}$		11	18	ns
		$C_{L}=400 \mathrm{pF}$		20	27	ns

Note 1: "Absolute Maximuin Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant 10 imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3673. All typicals are given for $V_{C C 1}=5.0 \mathrm{~V}$, $V_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: For ac measurements, a 10Ω resistor must be placed in series with the output of the DS3673. This resistor is internal to the DS3643, however, and need not be added.

schematic diagram

ac test circuit and switching time waveforms

typical application

MOS Memory Interface Circuits

DS1644/DS3644, DS1674/DS3674 quad TTL to MOS clock drivers general description

The DS1644/DS3644 and DS1674/DS3674 are quad bipolar-to-MOS clock drivers with TTL/DTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N -channel MOS memory systems.

The device features two commori enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive loads at high speeds; and uses Schottkyclamped transistors. PNP transistors are used on all inputs thereby minimizing input loading.

The circuit may be connected to provide a 12 V clock output amplitude as required by 4 k RAMs or a 5 V clock output amplitude as required by 16 k RAMs.

The DS1644/DS3644 contains a 10Ω resistor in series with each output to dampen the transients caused by the fast-switching output, while the DS1674/DS3674
has a direct, low impedance output for use with or without an external damping resistor.

features

- TTL/LS compatible inputs
- 12 V clock or 5 V clock driver
- Operates from standard bipolar and MOS supplies
- PNP inputs minimize loading
- High voltage/current outputs
- Input and output clamping diodes
- Control logic optimized for use with MOS memory systems
- Pin and function compatible with MC3460 and 3235
- Built-in damping resistors (DS1644/DS3644)

schematic and connection diagrams

Order Number DS3644J, DS3674J, DS3644N or DS3674N
See NS Package J16A or N16A
absolute maximum ratings (Note 1)
Supply Voltage

$V_{\text {CC1 }}$	7 V
$V_{\text {CC2 }}$	13.5 V
$V_{\text {CC3 }}$	16 V
nput Voltage	1.0 V to +7 V
Output Voltage	1.0 V to +16 V
Storage Temperature Fiange	$-65^{\circ} \mathrm{C}$ to +150 C
Power Dissipation*	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics

operating conditions

Supply Voltage	MiN	MAX	UNITS
VCC1			
DS1644, DS1674	4.5	5.5	V
DS3644, DS3674	4.75	5.25	V
$V_{\text {CC2 }}$			
DS1644, DS1674	4.5	13.2	V
DS3644, DS3674	4.75	12.6	V
VCC3			
DS1644, DS1674	$V_{C C 2}$	16.5	V
DS3644, DS3674	$V_{C C 2}$	15.75	V
Temperature, TA			
DS1644, DS1674	55	+125	${ }^{\circ} \mathrm{C}$
DS3644, DS3674	0	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.

5 V operation, $\left(\mathrm{VCC} 1=\mathrm{V}_{\mathrm{CC} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V}\right) ; 12 \mathrm{~V}$ operation, $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}+(3 \mathrm{~V} \pm 10 \%)\right)$; DS1644, DS1674, $\pm 10 \%$ power supply tolerances; DS3644, DS3674, $\pm 5 \%$ power supply tolerances, unless otherwise noted. (Notes 2, 3 and 4)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Logical ' 1 ' ${ }^{\text {' }}$ Input Voltage			2			\checkmark
VIL	Logical " V^{\prime} ' Input Voltage					0.8	V
$\mathrm{IIH}^{\text {H }}$	Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	Select Inputs		0.01	10	$\mu \mathrm{A}$
			All Other Inputs		0.04	40	$\mu \mathrm{A}$
IIL	Logical "()" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	Select Inputs		-40	-250	$\mu \mathrm{A}$
			All Other Inputs		-0.16	-1.0	mA
$V_{\text {CD }}$	Input Clemp Voltage	$11=-12 \mathrm{~mA}$			-0.8	-1.5	\checkmark
V_{OH}	Logical "." Output Voitage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC} 2}-0.5$	$\mathrm{V}_{\mathrm{CC} 2}-0.2$		V
VOL	Logical "0" Output Voltage	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.3	0.5	V
Voc	Output Clamp Voltage	$1 \mathrm{OC}=5 \mathrm{~mA}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$			$V_{\mathrm{CC2}}+0.8$	$\mathrm{VCC2}^{+1.5}$	V
${ }^{1} \mathrm{CCH}$	Supply Current Output High $\mathrm{I}_{\mathrm{CC} 1}$	All Inputs $V_{I N}=0 \mathrm{~V}$ Outputs Open	$\mathrm{V}_{\text {CC1 }}=$ Max		18	27	mA
	${ }^{\text {CC2 }}$		12 V Operation		-2	-4	mA
	${ }^{1} \mathrm{CC} 3$				2	4	mA
	'CC2		5 V Operation		-8	-16	mA
	${ }^{\text {C CC3 }}$				8	16	mA
ICCL	Supply Currents Outputs Low $\mathrm{ICC} 1$	All Inputs $V_{\text {IN }}=5 \mathrm{~V}$ Outputs Open	$\mathrm{V}_{\text {CC1 }}=5.25 \mathrm{~V}$		25	40	mA
	$\mathrm{I}_{\mathrm{CC} 2}$		$V_{C C 2}=12.6 \mathrm{~V}$			3	mA
			$\mathrm{V}_{\mathrm{CC} 3}=15.75 \mathrm{~V}$		16	25	mA

switching characteristics $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted, (Note 4), (Figures 1, 2, 3 and 4)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{5}+$ Storage Delay Negative Edge	$R_{D}=10 \Omega 2$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		8	11	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		12	16	ns
Storage [Delay Positive Edge	$R_{D}=10 \Omega$	$C_{L}=100 \mathrm{pF}$		10	13	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		13	16	ns
Fall Time	$\mathrm{R}_{\mathrm{D}}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		9	16	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		17	24	ns
Rise Tim'e	$\mathrm{R}_{\mathrm{D}}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		8	12	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		13	19	ns
Propagation Delay to a Logical " 0 "	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		17	27	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		29	40	ns
Propagation Delay to a Logical "1"	$\mathrm{R}_{\mathrm{D}}=10 \Omega$	$C_{L}=100 \mathrm{pF}$		18	25	ns
		$\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$		26	35	ns

notes

Note 1: "Absolute Maxirnum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" thev are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1644 , DS 1674 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3644, DS3674. All typicals are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: For AC measurements, a 10Ω resistor must be placed in seriss with the output of the DS1674/DS3674. This resistor is internal to the DS1644/DS3644 and need not be added.

ac test circuits and switching time waveforms

FIGURE 2. 12V Operation

FIGURE 4. 5 V Operation

Note 1: The pulse generator has the following characteristics. $\mathrm{PPR}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}} \leq 10 \mathrm{as}, \mathrm{Z}_{\mathrm{OUT}}=50 \Omega 2$.
Note 2: C_{L} includes probe and jig capacitance.

truth table

INPUT					
OUTPUT					
	ENABLE $\mathbf{2}$	SELECT INPUT	CLOCK INPUT	REFRESH INPUT	
$\mathbf{1}$	x	x	x	x	0
\times	1	x	x	x	0
x	x	x	1	x	0
x	x	1	x	1	0
0	0	0	0	x	1
0	0	x	0	0	1

DS1645/DS3645, DS1675/DS 3675 hex TFII-STATE ${ }^{\circledR}$ TTL to MOS latches/drivers general description

The DS1645/DS3645 and DS1675/DS3675 are hex MOS latchies/drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are used to reduce input currents, allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TRI-STATE ${ }^{\circledR}$ outputs which allow bus operation.

The DS1645/DS3645 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1675/DS3675 has a direct, low impedance output for use with or without an external resistor.

The circuit employs a fall-through-latch which capture; the data in parallel with the output, thereby eliminating the delay normally encountered in other latch circuits The DS1645/DS3645 and DS1675/DS3675 may be used for input address lines or input/output data line; of a MOS memory system.

features

- TTL/AS compatīble inputs
- PNP inputs minimize loading
- Capacitance-driving outputs
- TRI-STATE outputs
- Built-in damping resistor (DS1645/DS3645)

logic and connection diagrams

truth table

INPUT ENABLE	OUTPUT DISABLE	DATA	OUTPUT	OPERATION
1	0	1	0	Data Feed-Through
1	0	0	1	Data Feed-Through
0	0	\times	Q	Latched to Data Present when Enable Went Low
X	1	X	$H i-Z$	High Impedance Output

[^9]
absolute maximum ratings (Note 1)

operating conditions

Supply Voltage, VCC	7 V
Logical "1" Input Voltage	7 V
Logical '0' Input Voltage	-1.5 V
Storage Temperature Range	$-65^{\prime} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation* (PD)	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5	5.5	V
Temperature $\left(T_{A}\right)$			
DS1645, DS1675	-55	+125	${ }^{\circ} \mathrm{C}$
DS3645, DS3675	0	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.
electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IN(1) }}$	Logical "1" Input Voltage				2.0			V
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage						0.8	V
IIN(1)	Logical "1" Input Current	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	Enable Inputs			0.1	40	$\mu \mathrm{A}$
			Data Inputs			0.2	80	$\mu \mathrm{A}$
IIN(0)	Logical " 0 " Input Current	$\begin{aligned} & V_{I N}=0.5 V \\ & V_{C C}=5.5 V \end{aligned}$	Enable Inputs			-50	-250	$\mu \mathrm{A}$
			Data Inputs			--100	-500	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-0.75	-1.2	V
VOH	Logical " 1 " Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS1645, DS1675	2.7	3.6		V
				DS3645, DS3675	2.8	3.6		V
V_{OL}	Logical " 0 " Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V}, 1 \mathrm{OL}=10 \mu \mathrm{~A}$		DS1645, DS1675		0.25	0.4	V
				DS3645, DS3675		0.25	0.35	V
VOH	Logical "1" Output Voltage (With Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$		DS1645	2.4	3.5		V
				DS1675	2.5	3.5		V
				DS3645	2.6	3.5		V
				DS3675	2.7	3.5		V
V_{OL}	Logical " 0 " Output Voltage (With Load)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		DS 1645		0.6	1.1	V
				DS 1675		0.4	0.5	V
				DS3645		0.6	1.0	V
				DS3675		0.4	0.5	V
IID	Logical "'1" Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},($ Note 4)				-250		mA
${ }^{1} \mathrm{OD}$	Logical '0' Drive Current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}$, (Note 4)				150		mA
${ }^{1} \mathrm{HZ}$	TRI-STATE Output Current	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4V, Output Disable $=2.0 \mathrm{~V}$			-40		40	$\mu \mathrm{A}$
ICC	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	Output Disable $=3 \mathrm{~V}$ All Other Inputs $=0 \mathrm{~V}$			60	100	mA
			Input Enable $=3 \mathrm{~V}$ All Other Inputs $=0 \mathrm{~V}$			40	80	mA

[^10]switching characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. (Note 4)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{1}$ S +	Storage Delay Negative Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		4.5	7	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		8	12	ns
'S-+	Storage Delay Positive Edge	(Figure 7)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		9	13	ns
${ }^{1} \mathrm{~F}$	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$C_{L}=500 \mathrm{pF}$		21	35	ns
${ }^{\text {t }}$ R	Rise Time	(Figure 1)	$C_{L}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{CL}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns
${ }^{\text {t SET-UP }}$	Set-Up Time on Data Input Before Input Enables Goes L.ow			10	0		ns
thold	Hold Time on Data Input After Irput Enable Goes Low			15	5		ns
tw	Minimum Width of Enable Pulse to Latch Data			20	5		ns
tZL	Delay fiom Disable Input to Logical "0" Level (from High Impedance State)	$C_{L}=50 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to V_{CC}, (Figure 2)		10	15	ns
${ }^{\text {t }} \mathrm{ZH}$	Delay trom Disable Input to Logical "1" Level Ifrom High Impedance State)	$C \mathrm{~L}=50 \mathrm{p}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to Ground, (Figure 2)		10	15	ns
${ }^{\text {t }}$ L	Delay irom Disable Input to High Impedance State (from Logical "0" Level)	$C_{L}=50 \mathrm{p}$	$R_{L}=400 \Omega$ to $V_{C C}$, (Figure 3)		16	25	ns
${ }_{\text {thz }}$	Delay from Disable Input to High limpedance State (from Logical "1" Level)	$C_{L}=50 \mathrm{p}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$ to Ground, (Figure 3)		16	25	ns

schematic diagram

ac test circuits and switching time waveforms

Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and $P R R \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

Figure 1

t2H

tzL

* Internal on DS1645 and DS3645

FIGURE 2
ac test circuits and switching time waveforms (Continued)

* When the Input Enable makes a positive transition the output will be indeterminate for a short duration.

The positive transition of the Input Enable normally occurs during a don't-care timing state at the output.

typicall applications

The DS3645 and DS3675 latch/driver has TRI-STATE outputs, which allows the outputs to be tied with those of another TRI-STATE driver, such as the DS3646 and

DS3676 refresh counter. The DS3645 and DS3675 can be disabled while the alternate driver controls the address lines into the memory system.

DS1646/DS3646, DS1676/DS3676 6-Bit TRI-STATE ${ }^{\oplus}$ TTL-to-MOS Refresh Counter/Driver

General Description

The DS1646/DS3646 and DS1676/DS3676 are 6-bit refresh counters with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents. The circuit has Schottky. clamped transistor logic for minimum propagation delay, and TRISTATE ${ }^{(9)}$ outputs allow it to be used on common data buses.

The DS1646/DS3646 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1676/DS3676 has a direct, low impedance output, for use with or without an external resistor.

The counter uses as its input the RAM clock signal, and with each clock input, it advances the count by one, generating a new refresh address. It also contains an initialize input to preset counter outputs to logic " 0 ".

Uncommitted pins in the package are used for a 2 -input NAND gate and an inverter gate, both of which have capacitive drive outputs.

Features

- 4k RAM dynamic refresh counter
- TRI-STATE outputs
- TTL/LS compatible inputs
- PNP inputs minimize loading
- Capacitance-driver outputs (500 pF)
- Built-in damping resistor (DS1646, DS3676)
- Extra gates provided
- Initialize input clears counters
- Positive edge clock

Order Number DS1646J, DS1676J, DS3646J, DS3676J, DS3646N, DS3676N, DS1646W or DS1676W

Logic Diagram

See NS Package J16A, N16A or W16A

Absolute Maximum Ratings (Note 1)	
Supply Voltage	7V
Logical "1" Input Voltage	7V
Logical " 0 ' Input Voltage	$-1.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation*	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (\$ildering, 10 seconds)	$300^{\circ} \mathrm{C}$
*Derate cavity package at $80^{\circ} \mathrm{CM}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.	

Operating Conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.5	5.5	V
Temperature $\left(T_{A}\right)$			
DS1646, DS1676	-55	+125	${ }^{\circ} \mathrm{C}$
DS3646, DS3676	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNIT'S
VIN(1)	Logif "1" Input Voltage			2.0			\checkmark
V IN(0)	Logic. "0' Input Voltage					0.8	\checkmark
IIN(1)	Logic: "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			0.1	40	$\mu \mathrm{A}$
InN(0)	Logic "0' Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$			-50	-250	μ^{\prime}
VCLAMP	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$			-0.75	-1.2	\checkmark
VOH	Logic: "1" Output Voltage ($\overline{\mathrm{D}}, \overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$)	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.5	3.5		\checkmark
V_{OL}	Logic " 0 " Output Voltage ($\mathrm{D}, \mathrm{A} \cdot \mathrm{B}$)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$			0.4	0.5	V
	Logic: "1" Output Voltage		DS1646, DS1676	2.7	3.6		\checkmark
VOH	(No L_oad), Outputs 1-6	$\mathrm{C}=4.5 \mathrm{~V}, \mathrm{OH}=-10 \mu \mathrm{~A}$	DS3646, DS3676	2.8	3.6		v
	Logic " 0 " Output Voltage	$V C O=45 \mathrm{~V}$ IOL $=10 \mu \mathrm{~A}$	DS1646, DS1676		0.25	0.4	\checkmark
VOL	(No I_oad), Outputs 1-6	$V_{C C}=4.5 \mathrm{~V}, \mathrm{OL}=10 \mu \mathrm{~A}$	DS3646, DS3676		0.25	0.35	\checkmark
			DS1646	2.4	3.5		V
	Logic: "1" Output Voltage		DS1676	2.5	3.5		\checkmark
Vor	(Witr Load), Outputs 1-6	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{OH}=-1 \mathrm{~mA}$	DS3646	2.6	3.5		V
			DS3676	2.7	3.5		\checkmark
			DS1646		0.6	1.1	V
	Logic '00 Output Voltage		DS1676		0.4	0.5	V
VOL	(Wit'ı Load), Outputs 1-6	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{OL}=20 \mathrm{~mA}$	DS3646		0.6	1.0	V
			DS3676		0.4	0.5	V
IID	Logic " 1 " Drive Current, Outputs 1-6	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, 1 \mathrm{~N}$	4)		-250		m ${ }^{\text {A }}$
100	Logic " 0 " Drive Current, Outputs 1-6	$V_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}$,	ote 4)		150		mA
Ios	Output Short-Circuit Current ($\overline{\mathrm{D}}, \overline{\mathrm{A} \cdot \overline{\mathrm{B}} \text {) }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, 1 \mathrm{~N}$	5)	-60		-170	$m A$
IHI-Z	TRI STATE Output Current, Outputs 1-6	$\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}$ to 2.4 V , Outpu	Enable $=0 \mathrm{~V}$	-40		40	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Power Supply				75	100	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteeed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristic;" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1646 and DS1676 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3646 and DS3676. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as riax or min on absolute value basis.
Note 4: When meas aring output drive current and switching response for the DS1676 and DS3676, a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1646/DS3646 and need not be added.
Note 5: Not more than one output should be shorted at a time.

Switching Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 4)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
ts 1	Storage Delay Clock Edge to	$\mathrm{R}_{\mathrm{D}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF},$ (Figures 1 and 2)	${ }^{\text {t }}$ + ${ }^{+-}$		17	22	ns
	Out 1		ts - +		38	54	
${ }^{\text {t }}$ S 2	Storage Delay Clock Edge to Out 2	$R_{D}=15 \Omega, C_{L}=500 \mathrm{pF},$ (Figures 1 and 2)	ts+--		27	40	ns
			tS-+		45	66	
${ }^{\text {t }} 3$	Storage Delay Clock Edge to Out 3	$\mathrm{R}_{\mathrm{D}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF},$ (Figures 1 and 2)	ts +--		39	58	ns
			tS-+		56	86	
${ }_{\text {t }}$ 4	Storage Delay Clock Edge to Out 4	$\mathrm{R}_{\mathrm{D}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF},$ (Figures 1 and 2)	ts+-		52	76	ns
			ts-+		70	100	
ts5	Storage Delay Clock Edge to Out 5	$R_{D}=15 \Omega, C_{L}=500 \mathrm{pF},$ (Figures 1 and 2)	ts+-		62	93	ns
			tS-+		80	120	
${ }^{\text {t }} 6$	Storage Delay Clock Edge to Out 6	$R_{D}=15 \Omega, C_{L}=500 \mathrm{pF} \text {. }$ (Figures 1 and 2)	tst-		75	110	ns
			ts-+		90	140	
tsi	Storage Delay Initialize Input to Outputs 1-6	$\mathrm{R}_{\mathrm{D}}=15 \Omega$, (Figures 2 and 3)	$C_{L}=50 \mathrm{pF}$		25	38	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		28	42	
${ }_{\text {tr }}$	Rise Time, Outputs 1-6	$\mathrm{R}_{\mathrm{D}}=15 \Omega$, (Figures 1 and 2)	$\mathrm{C}_{L}=50 \mathrm{pF}$		4	7	ns
			$C_{L}=500 \mathrm{pF}$		18	27	
${ }^{\text {tf }}$	Fall Time, Outputs 1-6	$\mathrm{R}_{\mathrm{D}}=15 \Omega$, (Figures 1 and 2)	$C_{L}=50 \mathrm{pF}$		5	8	ns
			$C_{L}=500 \mathrm{pF}$		25	38	
tzL	Delay from Enable Input to Logic " 0 " Level	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 6)			11	17	ns
${ }^{\text {t }} \mathrm{ZH}$	Delay from Enable input to Logic "1" Level	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 6)			25	38	ns
tLZ	Delay from Enable input to High Impedance State	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 7)			15	23	ns
thz	Delay from Enable Input to High Impedance State	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 7)			10	15	ns
tPHL	Propagation Delay Time High-to-Low Level Outputs $\overline{\mathrm{D}}$ and $\overline{\mathrm{A} \cdot \mathrm{B}}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (Figures 4 and 5)			9	12	ns
tPHL	Propagation Delay Time High-to-Low Level Outputs $\overline{\mathrm{D}}$ and $\overline{\mathrm{A} \cdot 8}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 4 and 5)			10		ns
tPLH	Propagation Delay Time Low. to-High Level Outputs $\overline{\mathrm{D}}$ and $\overline{\mathrm{A} \cdot 8}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, (Figures 4 and 5)			5	8	ns
tPLH	Propagation Delay Time Lowto High Level Outputs $\overline{\mathrm{D}}$ and $\overline{\mathrm{A} \cdot 8}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 4 and 5)			6		ns

Truth Table

INITIALIZE	OUTPUT ENABLE	CLK	OUT 1	OUT 2	OUT 3	OUT 4	OUT 5	OUT 6
1	1	X	0	0	0	0	0	0
x	0	x	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi} . \mathrm{Z}$
0	1	X*	Active	Active	Active	Active	Active	Active

${ }^{*}$ Counter is advanced one count on the positive edge of the CLK input

Typical Application

The DS1E46/DS3646 and DS1676/DS3676 have TRISTATE outputs which can be tied to the outputs of another TRI-STATE driver. The refresh counter can control the address lines into a memory array during a short refiesh cycle, and then return to the highimpedance state to allow the primary driver to control the address lines.

AC Test Circuits and Switching Time Waveforms

FIGURE 3

FIGURE 4

FIGURE 5

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 7(a)

${ }^{\text {t }} \mathrm{LZ}$

FIGURE 7(b)

FIGURE 7(c)
*Internal on DS1646 and DS3646
Note 1: The pulse generator has the following characteristics ZOUT $=50 \Omega$ and PRR $=1 \mathrm{MHz}$, Rise and Fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are 1N916 or 1 N3064.

DS1647/DS3647, DS1677/DS3677, DS16147/DS36147, DS16177/DS36177 quad TRI-STATE ${ }^{\circledR}$ MOS memory I/O registers

general description

The DS1647/DS3647 series are 4-bit 1/O buffer registers intended for use in MOS memory systems. The circuits employ a fall-through latch for data storage. This method of latchirg captures the data in parallel with the output, thus eliminating the delays encountered in other designs. The circuits use Schottky-clamped transistor logic for minimum propagation delay and employ PNP input transistors.so that input currents are low, allowing large fan-out to these circuits needed in a memory system.

Two pins per bit are provided, and data transfer is bidirectional so that the register can handle both input and output data. The direction of data flow is controlled through the input enables. The latch control, when taken low, will cause the register to hold the data present at that time and display it at the outputs. Data can be latched into the register independent of the output disables or EXPANSION input. Either or both of the outputs may be taken to the high-impedance state with the output disables. The EXPANSION pin disables both outputs to facilitate multiplexing with other $1 / O$ registers on the same data lines.

The " B " port outputs in the DS16147/DS36147 and DS1617\%/DS36177 are open collectors, and in the

DS1647/DS3647 and DS1677/DS3677 they are TRISTATE. The "B" port outputs are also designed for use in bus organized data transmission systems and can sirik 80 mA and source -5.2 mA . The " A " port outputs in all four types are TRI-STATE.

Data going from port " A " to port " B " is inverted in the DS1647/DS3647 and DS16147/DS36147 and is not inverted in the DS1677/DS3677 and DS16177/DS36177. Data going from port " B " to port " A " is inverted in all four types.

features

- PNP inputs minimize loading
- Fall-through latch design
- Propagation delay of only 15 ns
- TRI-STATE outputs
- EXPANSION control
- Bi-directional data flow
- TTL/LS compatible
- Transmission line driver output

logic and connection diagrams

absolute maximum ratings (Note 1)
Supply Voltage
Input Voltage
7 V
Storage Temperature Range
Power Dissipation (P_{D})
Ceramic Package
Molded Package
Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

* Derate ceramic package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$ dera package at $90^{\circ} \mathrm{C} / \mathrm{N}$ above $70^{\circ} \mathrm{C}$.

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC) Temperature (TA)	$\mathbf{4 . 5}$	5.5	V
DS1647, DS1677, DS15147,	-55	$+\mathbf{1 2 5}$	${ }^{\circ} \mathrm{C}$
DS16177			
DS3647, DS3677, DS36147, DS36177	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VIN(1)	Logic "1" loput Voltage			2.0			V
V (N(0)	Logic ' 0 " Input Voltage					0.8	V
IN (1)	Logic "1" Input Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$	Latch, Disable Inputs		0.1	40	$\mu \mathrm{A}$
			Expansion		0.2	80	$\mu \mathrm{A}$
			A Ports, B Ports		0.2	100	$\mu \mathrm{A}$
			Enable Inputs		0.4	200	$\mu \mathrm{A}$
$1 \mathrm{~N}(0)$	Logic "0" Input Current	$V_{C C}=5.5 \mathrm{~V}, V_{\text {IN }}=0.5 \mathrm{~V}$	Latch, Disable Inputs		-25	-250	$\mu \mathrm{A}$
			Expansion		-50	-500	$\mu \mathrm{A}$
			A Ports, 8 Ports		-50	-500	$\mu \mathrm{A}$
			Enable, Inputs		-0.1	-1.25	mA
VCLAMP	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$			-0.6	-1.2	V
VOL(A)	Logic " 0 " Output Voltage A Ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IOL}=20 \mathrm{~mA}$			0.4	0.5	V
$\mathrm{V}_{\mathrm{OL}}(\mathrm{B})$	Logic " 0 " Output Voltage B Ports	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA}$		0.3	0.4	V
			$\mathrm{I}^{\mathrm{OL}}=50 \mathrm{~mA}$		0.4	0.5	V
$\mathrm{VOH}_{(A)}$	Logic " 1 " Output Voltage A Ports	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	3.0	3.4		V
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.5	3.4		V
$\mathrm{VOH}(\mathrm{B})$	Logic "1" Ostput Voltage B Ports	$\mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA},($ Note 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.9	3.3		V
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.4	3.3		V
'OS(A)	Output Short-Circuit Current A Port	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},($ Note 5$)$		- 30	-50	-100	$m \mathrm{~A}$
'OS(B)	$\begin{aligned} & \text { Output Short-Circuit Currerit } \\ & \text { B Port } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V},($ Notes 4 and 5$)$		--30	-60	-100	mA
${ }^{1} \mathrm{CC}$	Power Supply Current	Exp $=3 \mathrm{~V}, \mathrm{~A}$ Ports $=0 \mathrm{~V}$. B Ports Open, All Other Pins = OV	DS1647, DS16147		100	110	mA
			DS3647, DS36147		100	140	mA
		Enable A , Latch $=3 \mathrm{~V}, \mathrm{~A}$ Ports $=$ 0V, 8 Ports Open, All Other $\text { Pins }=0 \mathrm{~V}$	DS1647, DS16147		70	80	$m A$
			DS3647, DS36147		70	105	mA
		$\begin{aligned} & E \times p=3 V, A \text { Ports }=0 V \\ & B \text { Ports Open, } A l l \text { Other Pins }=0 V \end{aligned}$	DS1677, DS16177		105	115	mA
			DS3677, DS36177		105	145	mA
		Enable A, Latch, A Ports $=3 \mathrm{~V}$, B Ports Open, All Other Pins $=0 \mathrm{~V}$	DS1677, DS16177		75	85	mA
			DS3677, DS36177		75	110	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1647 , DS 1677 , DS 16147 , DS16177 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3647, DS3677, DS36147, DS36177. All typicals are given for $V C C=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.
Note 4: Not applicable to DS16147/DS36147 or DS16177/DS36177.
Note 5: Only one output at a time should be shorted.

switching characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DATA TRANSFER B PORT TO A PORT, ALL DEVICES					
$\mathrm{t}_{\text {pdo }}$ Propagation Deldy to a Logic " 0 "	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$ (Figures 1 and 4)		7.5	15	ns
$\mathrm{t}_{\text {pdi } 1}$ Propayation Delav to a Logic "1"	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega \text {, }$ (Figures 1 and 4)		6.0	12	ns
A PORT CONTR					
tLZ Delay to High Imoedance from Logic " 0 "'	(Figures 1 and 5)		13	20	ns
	(Figures 1 and 6)		14	20	ns
tZL Delay to Logic " 0 " from High Impedance	(Figures 1 and 7)		10	15	ns
tZH Delay to Logic "'" from High	(Figures 1 and 8)		25	35	ns

DATA TRAN: FER A PORT TO B PORT, DS1647/DS3647

tpd0	Propagation Delay to a Logic " 0 "	$C_{L}=50 \rho F, R_{L}=100 \Omega,$ (Figures 2 and 4)	6.5	12	ns
${ }_{\text {tpd1 }}$	Propagation Delay to a Logic " 1 "	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega,$ (Figures 2 and 4)	8.0	15	ns
DATA TRANSFER A PORT TO B PORT, DS1677/DS3677					
$t_{\text {pdo }}$	Propagation Delay to a Logic " 0 "	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, }$ (Figures 2 and 4)	12.5	20	ns
${ }^{\text {pod }} 1$	Propegation Delay to a Logic "1"	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{L}=100 \Omega, \\ & \text { (Figures } 2 \text { and 4) } \end{aligned}$	8.5	15	ns

$\mathrm{t}_{\mathrm{pdO}}$	Propegation Delay to a Logic "0"	$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 3 and 4)	18	25	ns
$\mathrm{t}_{\mathrm{pd}} 1$	Propigation Delay to a Logic "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 3 and 4)	7.0	15	ns

DATA TRANSFER A PORT TO B PORT, DS 16177/DS36177

tpdo	Propagation Delay to a Logic " 0 "	$C_{L}=50 \mathrm{pF}$. (Figures 3 and 4)		13.5	21	ns
tpd1	Propagation Delay to a Logic " 1 "	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 3 and 4)		18	25	ns
B PORT CONTROL FROM OUTPUT DISABLE B INPUT, DS 1647/DS3647, DS1677/DS3677						
${ }_{\text {t }}^{\text {L }}$ Z	Delay to High Impedance from Logic. " 0 "	(Figures 2 and 5)		15	25	ns
thz	Delav to High Impedance from Logic: "1"	(Figures 2 and 6)		14	20	ns
tzL	Delav to Logic " 0 " from High Impedance	(Figures 2 and 7)		10	16	ns
${ }^{\text {t } 2 \mathrm{H}}$	Delay to Logıc " 1 " from High Impsdance	(Figures 2 and 8)		25	35	ns

B PORT CONTROL FROM OUTPUT DISABLE B INPUT, DS 16147/DS36147, DS 16177/DS36177

product description

OEVICE NUMBER	B POFT TO A PORT FUNCTION	A PORT TO B PORT FUNCTION	A PORT OUTPUTS	B PORT OUTPUTS
DS1647/DS3647	Inverting	Inverting	TRI-STATE	TRI-STATE
DS1677/OS3677	nverting	Non-Inverting	TRISTATE	TRI-STATE
DS16147/DS36147	Inverting	Inverting	TRI-STATE	Open-Collectcr
DS16177/DS36177	Inverting	Non-Inverting	TRI-STATE	Open Collector

truth table

INPUT ENABLES		$\overline{\text { LATCH }}$	OUTPUT DISABLES		EXPANSIDN	A PORTS A1-A4 ALL OEVICES	$\begin{gathered} \text { BPORTS } \\ \text { B1-B4 } \\ \text { OS1647, OS16147 } \\ \text { OS3647, OS } 36147 \end{gathered}$	```B PORTS B1-B4 DS7677, DS16177 DS3677, DS36177```	COMMENTS
A	B		A	B					
1	0	1	0	0	0	Hi-Z	$\overline{\text { A }}$	A	Data in on A, output to B
0	1	1	0	0	0	\bar{B}	$\mathrm{H}_{1}-2$	$\mathrm{H}_{1}-2$	Data in on B, output to A
1	0	0	0	0	0	Hi-Z	$\overline{\text { A }}$	A	Data stoced which is present when latch goes low
0	1	0	0	0	0	$\overline{8}$	$\mathrm{H} \cdot 2$	H.Z	Datô stoled which is present when latch goes low
1	0	x	0	1	0	H1-Z	$\mathrm{H}_{1} \mathrm{Z}$	Hi-Z	Both A and B in $\mathrm{H}_{1}-Z$ state, Data In on A, may be latched
0	1	x	1	0	0	$\mathrm{H}_{1} \cdot \mathrm{Z}$	Hı-Z	HıZ	Both A and B in $\mathrm{H}_{\mathrm{l}} \mathrm{Z}$ state, Data In on B, may be latched
X	x	X	x	X	1	$\mathrm{H}_{1}-\mathrm{Z}$	$\mathrm{H}_{1}-\mathrm{Z}$	H1-Z	Both A and B an $\mathrm{H}_{1} \mathrm{Z}$ state

ac test circuits

FIGURE 1. A Port Load, All Circuits

FIGURE 2. 8 Port Load, DS3647, OS3677

FIGURE 3. B Port Load, DS36147. DS36177

Note 1: C_{L} includes probe and jig capacitance.

operating waveforms

switching time waveforms

Input Characteristics: $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 5 \mathrm{~ns}(10 \%$ to 90% points $)$, duty cycle $=50 \%, \mathrm{Z}_{\mathrm{OUT}}=50 \Omega$
FIGURE 4

FIGURE 5

FIGURE 7

FIGURE 6

FIGURE 8

schematic diagram

typical applications

The diagram below shows how the DS3677 can be used as a register capable of multiplexing data lines.

DS1648/DS3648, DS1678/DS3678

TRI-STATE ${ }^{\circledR}$ TTL to MOS multiplexers/drivers

general description

The DS1648/DS3648 and DS1678/DS3678 are quad 2-input rnultiplexers with TRI-STATE outputs designed to drive the large capacitive loads (up to 500 pF) associated with MOS memory systems. A PNP input structure is employed to minimize input currents so that driver loading in large memory systems is reduced. The circuit employs Schottky-clamped transistors for high speed and TRI-STATE outputs for bus operation.

The DS1648/DS3648 has a 15Ω resistor in series with the outputs to dampen transients caused by the fastswitching output. The DS1678/DS3678 has a direct,
low impedance output for use with or without an external resistor.

features

- TRI-STATE outputs interface directly with system bus
- Schottky-clamped for better ac performance
- PNP inputs to minimize input loading
- LS and TTL compatible
- High-speed capacitive load drivers
- Built-in damping resistor (DS1648/DS3648 only)
logic and connection diagrams

Dual-In-Line Package

Order Number DS1648J, DS3648J, DS1678J, DS3678J, DS3648N or DS3678N See NS Package J16A or N16A

schematic diagram

absolute maximum ratings (Note 1)

Supply Voltage	7 V
Logical "1" Input Voltage	7 V
Logical " 0^{\prime} " Input Voltage	-1.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation"	
Cavity Package	1160 mW
\quad Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (V_{CC})	4.5	5.5	V
Temperature ($\mathrm{TA}_{\text {A }}$)			
DS1648, DS1678	-55	+125	${ }^{\circ} \mathrm{C}$
DS3648, DS3678	0	+70	${ }^{\circ} \mathrm{C}$
*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.			

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
VIN(1)	Logical " 1 " Input Voltage				2.0			V
$V_{\text {IN }}(0)$	Logical "0' Input Voltage						0.8	V
IIN(1)	Logical "1" Input Curren':	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				0.1	40	$\mu \mathrm{A}$
InN(0)	Logical " 0 " Input Current	$V_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$				-50	-250	$\mu \mathrm{A}$
VCLAMP	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				$\bigcirc 0.75$	-1.2	V
V_{OH}	Logical "1" Output Voltage (No Load)	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		DS1648/DS 1678	2.7	3.6		V
				DS3648/DS3678	2.8	3.6		\checkmark
VOL	Logical "0" Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS1648/DS1678		0.25	0.4	V
				DS3648/DS3678		0.25	0.35	\checkmark
V_{OH}	Logical "1" Output Voltage (With Load)	$V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		DS1648	2.4	3.5		\checkmark
				DS1678	2.5	3.5		V
				DS3648	2.6	3.5		V
				DS3678	2.7	3.5		\checkmark
VOL	Logical " 0 " Output Voltage (With Load)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$		DS1648		0.6	1.1	\checkmark
				DS1678		0.4	0.5	V
				DS3648		0.6	1.0	V
				DS3678		0.4	0.5	\checkmark
110	Logical "1" Drive Current	$V_{\text {CC }}=4.5 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V},($ Note 4$)$				-250		mA
IOD	Logical "0" Drive Current	$V_{C C}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V},($ Note 4$)$				150		mA
$\mathrm{I}_{\mathrm{Hi} \cdot \mathrm{Z}}$	TRI-STATE Output Current	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4 V , Output Control $=2.0 \mathrm{~V}$			-40		40	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{CC}$	Power Supply Current	$V_{C C}=5.5 V$	Output Control $=3 \mathrm{~V}$ All Other Inputs at OV			42	60	mA
			All Inputs at OV			20	32	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1648 and DS1678 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3648 and DS3678. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When measuring output drive current and switching response for the DS1678 and DS3678 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1648/DS3648 and need not be added.
switching characteristics $\left(V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}\right.$) (Note 4)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }^{\text {tS }}+-$	Storage Delay Negative Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		5	7	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		9	12	ns
${ }^{\text {tS-+ }}$	Storage Delay Positive Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		9	13	ns
${ }^{\text {t }}$ F	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns
${ }^{\text {t }}$ R	Rise Time	(Figure 7)	$C_{L}=50 \mathrm{pF}$		6	9	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	ns
${ }^{\text {Z ZL }}$	Delay from Output Control Input to Logical " 0 " Level (frorn High Impedance State)	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} .$ (Figure 2)			10	15	ns
${ }^{\text {I }} \mathrm{ZH}$	Delay from Output Control Input to Logical " 1 " Level (frorn High Impedance State)	$C_{L}=50 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega$ to Gnd, (Figure 2)			8	15	ns
${ }^{\text {t }}$ LZ	Delay from Output Control Input to High Impedance State (fron Logical " 0 " Leve!)	$C_{L}=50 \mathrm{pF}, R_{L}=400 \Omega \text { to } V_{C C} .$ (Figure 3)			15	25	ns
${ }^{\text {thz }}$	Delay from Output Control Input to High Impedance State (from Logical " 1 " Level)	$C_{L}=50 \mathrm{pF}, R_{L}=400 \Omega$ to G nd, (Figure 3)			10	25	ns
${ }^{\text {t }}$ + +	Propagation Delay to Logical " 0 " Transition When Select Selects A	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			12	15	ns
ts-t	Propagation Delay to Logıcal " 1 " Transition When Select Selects A	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			14	17	ns
tS+-	Propagation Delay to Logical " 0 " Transition When Select Selects B	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			16	20	ns
ts-+	Propagation Delay to Logical " 1 " Transition When Select Selects B	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)			14	20	ns

ac test circuits and switching time waveforms

Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and $P R R \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and iig capacitance.
FIGURE 1

*Internal on DS1648 and DS3648

FIGURE 2
ac test circuits and switching time waveforms (Continued)

*Internal on DS1648 and DS3648
figure 3

truth table

OUTPUT CONTROL	INPUTS			OUTPUTS
	SELECT	A	B	
H	X	X	X	$H i-Z$
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

$$
H=\text { High level }
$$

$$
\mathrm{L}=\text { Low level }
$$

$$
x=\text { Don't care }
$$

$$
\mathrm{Hi}-\mathrm{Z}=\text { TRI } \mathrm{ST} \text {-STATE mode }
$$

typical applications

Addressing 16k RAM

2:1 Multiplexing of RAM Outputs

DS1649/DS3649, DS1679/DS3679 hex TRI-STATE ${ }^{\circledR}$ TTL to MOS drivers general description

The DS1649/DS3649 and DS1679/DS3679 are Hex TRI-STATE MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TRI-STATE outputs for bus operation.

The DS1649/DS3649 has a 15Ω resistor in series with the outputs to dampen transients caused by the fastswitching output. The DS1679/DS3679 has a direct low
impedance output for use with or without an external resistor.

features

- High speed capabilities
- Typ 9 ns driving 50 pF
- Typ 30 ns driving 500 pF
- TRI-STATE outputs for data bussing
- Built-in 15Ω damping resistor (DS1649/DS3649)
- Same pin-out as DM8096 and DM74366

schematic diagram

truth table

DISABLE INPUT		INPUT	OUTPUT
DIS 1	DIS 2		
0	0	0	1
0	0	1	0
0	1	X	$\mathrm{Hi} \cdot \mathrm{Z}$
1	0	\times	$\mathrm{Hi} \cdot \mathrm{Z}$
1	1	\times	$\mathrm{H} \cdot \mathrm{Z}$

$X=$ Don't care
$H i-Z=$ TRI-STATE mode
*DS1649/DS3649 only

connection diagram

Order Number DS1649J, DS;3649J, DS1679J, DS3679J, DS3649N, IDS3679N, DS1649W, or DS1679W
See NS Package J16A, N16A or W16A

typical application

absolute maximum ratings (Note 1)

Supply Voltage	7.0 V
Logical "1" Inpur Voltage	7.0 V
Logical " $0^{\prime \prime}$ I Input Vottage	-1.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation*"	1160 mW
Cavity Package	1000 mW
Molded Packege	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.5	5.5	V
Temperature $\left(T_{A}\right)$			
DS1649, DS1679	-55	+125	${ }^{\circ} \mathrm{C}$
DS3649, DS3679	0	+70	${ }^{\circ} \mathrm{O}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.
electrical characteristics (Note 2 and 3)

PARAMETER		CONDITIDNS			MIN	TYP	MAX	UNITS
VIN(1)	Logical "1" Input Voltage				2.0			V
VIN(0)	Logical " 0 " Injut Voltage						0.8	V
IIN(1)	Logical "1" Input Current	$V_{C C}=5.5 \mathrm{~V}$	$V_{\text {IN }}=5.5 \mathrm{~V}$			0.1	40	$\mu \mathrm{A}$
IIN(0)	Logical "0" Input Current	$V_{C C}=5.5 \mathrm{~V}$	$V_{\text {IN }}=0.5 \mathrm{~V}$			-50	-250	$1 / \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}$	$1 / \mathrm{N}=-18 \mathrm{~mA}$			-0.75	-1.2	V
$\mathrm{VOH}^{\text {O }}$	Logıcal "1"Output Voltage (No Load)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-10 \mu \mathrm{~A}$	DS1649/DS1679	2.7	3.6		V
				DS3649/DS3679	2.8	3.6		V
$V_{\text {OL }}$	Logica " 0 " Output Voltage (No Load)	$V_{C C}=4.5 \mathrm{~V}$	$1 \mathrm{OL}=10 \mu \mathrm{~A}$	DS1649/DS1679		0.25	0.4	V
				DS3649/DS3679		0.25	0.35	V
VOH	Logical "1" Output Voltage (With load)	$V_{C C}=4.5 \mathrm{~V}$	${ }^{\circ} \mathrm{OH}=-1.0 \mathrm{~mA}$	DS1649	2.4	3.5		V
				DS1679	2.5	3.5		V
				DS3649	2.6	3.5		V
				DS3679	2.7	3.5		V
VOL	Logical "0" Output Voltage (With _oad)	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$	DS1649		0.6	1.1	V
				DS1679		0.4	0.5	V
				DS3649		0.6	1.0	V
				DS3679		0.4	0.5	V
1 D	Logical "1" Drive Current	$V C C=4.5 V$	$V_{\text {OUT }}=0 V$ (Note 4)			-250		rาA
IOD	Logical "0" Drive Current	$V_{C C}=4.5 \mathrm{~V}$	$\begin{aligned} & V_{\text {OUT }}=4.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$			150		rา A
$\mathrm{Hi}-\mathrm{Z}$	TRI-STATE Output Current	$\begin{aligned} & \text { VOUT }=0.4 \mathrm{~V} \text { to } 2.4 \mathrm{~V} \\ & \text { DIS1 or DIS2 }=2.0 \mathrm{~V} \end{aligned}$			-40		40	1 A
${ }^{1} \mathrm{CC}$	Power Supply Current	$\mathrm{VCC}^{\text {c }}=5.5 \mathrm{~V}$	One DIS Input $=3.0 \mathrm{~V}$ All Other Inputs $=X$			42	75	mA
			All Inputs $=0 \mathrm{~V}$			11	20	mA

switching characteristics $\left(V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}\right)$ (Note 4)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
${ }^{\text {t }}+{ }^{+}$	Storage Delay Negative Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		4.5	7	ns
			$C_{L}=500 \mathrm{pF}$		7.5	12	rs
ts-+	Storage Delay Position Edge	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	rs
			$C_{L}=500 \mathrm{pF}$		8	13	rs
${ }^{\text {i }}$ F	Fall Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		5	8	rs
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		22	35	rs
${ }^{\text {t }}$	Rise Time	(Figure 1)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6	9	rs
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		21	35	ris
tZL	Delay from Disable Input to Logical " 0 " Level (frcim High Impedance State)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to } \mathrm{Gnd} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 2) } \end{aligned}$		10	15	ris
tzH	Delay from Disable Input to Logical "1" Level (from High Impedance State)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to } \mathrm{G} \text { nd } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{G} \text { nd }$ (Figure 2)		8	15	
${ }_{\text {tLz }}$	Delay from Disable Input to High Impedance State (from Logical " 0 " Level)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to Gnd } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { (Figure 3) } \end{aligned}$		15	25	
${ }^{\text {thz }}$	Delay from Disable Input to High impedance State (from Logical " 1 " Level)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { to } \mathrm{Gnd} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=400 \Omega \text { to } \mathrm{Gnd}$ (Figure 3)		10	25	ns

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1649 and DS1679 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3649 and DS3679. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When measuring output drive current and switching response for the DS1679 and DS3679 a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1649/DS3649 and need not be added.

ac test circuits and switching time waveforms

FIGURE 1

FIGURE 2

FIGURE 3
*Internal on DS1649 and DS3649
Note 1: The pulse generator has the following characteristics: ZOUT $=50 \Omega$ and $P R R \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.

National

DS1651/DS3651, DS1653/DS3653

Quad High Speed MOS Sense Amplifiers

General Description

The DS1651/DS3651 and DS1653/DS3653 are TTL compatible high speed circuits intended for sensing in a broad range of MOS memory system applications. Switching speeds have been enhanced over conventional sense amiolifiers by application of Schottky technology, and TRISTATE ${ }^{\geqslant}$strobing is incorporated, offering a high impedance output state for bused organization.

The DS1651/DS3651 has active pull-up outputs, and the DS1653/DS3653 offers open collector outputs providing implied "AND" ope-ations.

Features

- High speed
- TTL compatible
- Input sensitivity - $\pm 7 \mathrm{mV}$
- TRI-STATE outputs for high speed buses
- Standard supply voltages $- \pm 5 \mathrm{~V}$
- Pin and function compatible with MC3430 a 1 d MC3432

Order Number DS1651J, DS1653J, DS3651J, DS3653J, DS3651N or DS3653N
See NS Package J16A or N16A

Truth Table

INPUT	STROBE	DUTPUT	
		DS3653	
$V_{I D} \geq 7 \mathrm{mV}$	L	H	Open
$T_{A}=0^{\circ} \mathrm{C}$ to $-70^{\circ} \mathrm{C}$	H	Open	Open
$-7 \mathrm{mV} \leq V_{I D} \leq+7 \mathrm{mV}$	L	\times	\times
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	H	Open	Open
$V_{I D} \leq-7 \mathrm{mV}$	L	L	L
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	H	Open	Open

$L=$ Low logic state
$\mathrm{H}=$ High logic state
Open = TRI-STATE
$\mathrm{X}=$ Indeterminate state

Typical Applications

A Typical MOS Memory Sensing Application for a $4 k$ word by 4-bit memory arrangement employing 1103 type memory devices

Note. Only 4 devices are required for a 4 k word by 16 -bit memory system.

Absolute Maximum Ratings

Operating Conditions

(Note 1)

			MIN	MAX	UNITS
Power Supply Voltages	Supply Voltage ($\mathrm{VCC}_{\text {c }}$)				
$V_{\text {cc }}$	$+7 \mathrm{VDC}$	DS1651, DS1653	4.5	5.5	$V_{D C}$
$V_{\text {EE }}$	$-7 V_{\text {DC }}$	DS3651, DS3653	4.75	5.25	$V D C$
Differential-Mode Input Signal Voltage	Supply Voltage (V_{EE})				
Range, VIDR	$\pm 6 V_{D C}$	DS1651, DS1653	-4.5	-5.5	$V_{D C}$
Common-Mode Input Voltage Range, $\mathrm{V}_{\text {ICFi }}$	$\pm 5 \vee$ DC	DS3651, DS3653	-4.75	-5.25	$V_{\text {DC }}$
Strobe Input Voltage, $\mathrm{V}_{1}(\mathrm{~S})$ Storage Temperature Range	$5.5 V_{\text {DC }}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature (T_{A})			
Lead Temperature (Soldering, 10 seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$	$\begin{aligned} & \text { DS1651, DS1653 } \\ & \text { DS3651, DS3653 } \end{aligned}$	-55 0	$\begin{aligned} & +125 \\ & +70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
		Output Load Current, (IOL'		16	mA
		Differential-Mode Input Voltage Range, VIDR	-5.0	+5.0	V_{DC}
		Common-Mode Input Voltage Range ($\mathrm{V}_{1 \mathrm{CR}}$)	-3.0	+3.0	$V_{D C}$
		Input Voltage Range (Any Input to GND), (V_{fR})	-5.0	+3.0	$V_{D C}$

Electrical Characteristics

$\vee_{C C}=5 V_{D C}, V_{E E}=-5 V_{D C}, M i n \leq T_{A} \leq$ Max, unless otherwise noted (Notes 2 and 3)

Switching Characteristics

$V_{C C}=5 V_{D C}, V_{E E}=-5 V_{D C}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
tPHL(D)	High-to-Low Logic Level Propagation Delay Time (Differential Inputs)	$5 \mathrm{mv}+\mathrm{V}_{\text {IS }}$, (Figure 3)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		23	45	ns
			$\begin{aligned} & \text { DS1653/ } \\ & \text { DS3653 } \end{aligned}$		22	50	ns
tPLH(D)	Low-to-High Logic Level Propagation Delay Time (Differential Inputs)	$5 \mathrm{mV}+\mathrm{V}_{1 \mathrm{~S}}$, (Figure 3)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		22	55	ns
			DS1653/ DS3653		24	65	ns
tPOH(S)	TRI STATE to High Logic Level Propagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		16	21	ns
tPHO(S)	Higl Logic Leve! to TRI-STATE Propragation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		7	18	ns
tPOL(S)	TRISTATE to Low Logic Level Procagation Delay Time (Strobe)	(Figure 1)	$\begin{aligned} & \text { DS1651/ } \\ & \text { DS3651 } \end{aligned}$		19	27	ns
tPLO(S)	Low Logic Level to TRI-STATE Prooagation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		14	29	ns
tPHL(S)	Higr-to-Low Logic Level Procagation Delay Time (Strobe)	(Figure 2)	DS1653/ DS3653		16	25	ns
tPLH(S)	Low-to-High Logic Level Propragation Delay Time (Strobe)	(Figure 2)	$\begin{aligned} & \text { DS1653/ } \\ & \text { DS3653 } \end{aligned}$		13	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the $\operatorname{DS} 3651$. DS3653 and across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range for the DS1651. DS1653. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{E E}=-5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: A parameter which is of primary concern when designing with sense amplifiers is, what is the minimum differential input voltage required at the sense amplifier input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, bias currents, network source resistances, and voltage gain. As a design convenience, the DS1651, DS1653 and DS3651, DS3653 are specified to a parameter called input sensitivity (VIS). 7'his parameter takes into consideration input offset currents and bias currents, and guarantees a minimum input differential voltage to cause a given output logic state with respect to a maximum source impedance of 200Ω at each input.

AC Test Circuits and Switching Time Waveforms

	V 1	V 2	S 1	S 2	C_{L}
tPLO(S)	100 mV	GND	Closed	Closed	15 pF
tPOL(S)	100 mV	GND	Closed	Open	50 pF
tPHO(S)	GND	100 mV	Closed	Closed	15 pF
tPOH(S)	GND	100 mV	Open	Closed	50 pF

C_{L} includes jig and probe capacitance.
$\mathrm{E}_{\text {IN }}$ waveform characteristics $\mathrm{t}_{\mathrm{T} L H}$ and $\mathrm{t}_{\mathrm{TH}} \mathrm{HL} \leq 10 \mathrm{~ns}$ measured 10% to 90%
$\mathrm{PRR}=1 \mathrm{MHz}$
Duty cycle $=50 \%$
Note. Output of channel B shown under test, other channels are tested similarly.

FIGURE 1. Strobe Propagation Delay tPLO(S), tPOL(S), tPHL(S) and tPOH(S)

Note. Output of channel B shown under test, other channels are tested similarly.

Note. EIN waveform characteristics:
${ }^{\mathrm{t}} \mathrm{TLH}^{2}$ and $\mathrm{t}_{\mathrm{THL}} \leq 10 \mathrm{~ns}$ measured 10% to 90% $\mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=500 \mathrm{~ns}$

FIGURE 2. Strobe Propagation Delay tpLH(S) and tPHL(S)

Note. Output of channel B shown under test, other channels are tested similarly. S1 at "A" for DS1653/DS3653, $C_{L}=15 \mathrm{pF}$ total for DS1653/DS3653 S1 at "B" for DS1651/DS3651, $C_{L}=50 \mathrm{pF}$ total for DS1651/DS3651

EIN waveform characterıstics:
${ }^{\mathrm{t}} \mathrm{TLH}$ and $\mathrm{t}_{\mathrm{THL}} \leq 10 \mathrm{~ns}$ measured 10% to 90% PRR $=1 \mathrm{MHz}$, duty cycle $=500 \mathrm{~ns}$

Schematic Diagrams

DS1651/DS3651

DS1653/DS3653

Typical Applications (Continued)

$\overline{2^{0}}=(\bar{A}+B)(\bar{C}+D)(\bar{E}+F)(\bar{H}+J)(\bar{K}+L)(\bar{M}+N)(\bar{P}+R)(\bar{S})$
$\underline{2^{1}}=(\bar{B}+D)(\bar{F}+J)(\bar{L}+N)(\bar{R})$
$\frac{2^{2}}{3}=(\overline{\mathrm{D}}+J)(\overline{\mathrm{N}})$
$2^{3}=\sqrt{ }$
Conversion time $\simeq 50 \mathrm{~ns}$

Level Detector with Hysteresis

Transfer Characteristics and Equations for Level Detector with Hysteresis

$V_{\text {HIGH }}=V_{R E F}+\frac{R 2\left[V_{\text {O }}(M A X)-V_{\text {REF }}\right]}{R 1+R 2}$
$V_{\text {LOW }}=V_{R E F}+\frac{R 2\left[V_{O(M \mid N)}-V_{\text {REF }}\right]}{R 1+R 2}$
Hysteresis Loop (V_{H})
$V_{H}=V_{H I G H}-V_{\text {LOW }}=\frac{R 2}{R 1+R 2}\left[V_{\text {O }}(\right.$ MAX $\left.)-V_{\text {O(MIN }}\right)$

DS167I/DS3671 bootstrapped two phase MOS clock driver

generial description

The DS1671/DS3671 is a high speed dual MOS clock driver and interface circuit. Unique circuit design provides both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. It may be driven from standard 54/74 and $54 \mathrm{~S} / 74 \mathrm{~S}$ series gates and flip-flops or from drivers such as the DS8830 or DM7440. The circuit can be used in both P-channel and N-channel MOS memory system drive applications.

The DS1671/DS3671 is intended to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon gate shift registers, a single device can drive over 10 k bits at 5 MHz . Six devices provide input address and precharge drive for an 8 k by 16 -bit 1103 RAIM memory system.

Each driver uses output bootstrapping to provide a higher voltage to the output stage, thus eliminating the need for an additional $V_{D D}$ supply. The bootstrappirig function is accomplished by connecting a small value capacitor (typically 200 pF) from each output to each drivers bootstrap node.

features

- Fast rise and fall times-20 ns with 1000 pF load
- High output swing-20V
- High output current drive $- \pm 1.5 \mathrm{~A}$
- TTL/tS compatible inputs
- High rep rate -5 to 10 MHz depending on power dissipation
- Low power consumption in MOS " 0 " state-2 m'N
- Swings to 0.4 V of GND for RAM address drive

connection diagrams

typical applications

SEE GRAPI for value
DS3671 Opereting with Extre Supply to Inhance Output Voltege Level

absolute maximum ratings (Note 1)

$V^{+}-V^{-}$Differential	22 V
$V_{\mathrm{B}}-V^{-}$Differential	40 V
$V_{\mathrm{B}}-\mathrm{V}^{+}$Differential	20 V
Input Voltage ($V_{I N}-V^{-}$)	5.5 V
Input Current	100 mA
Peak Output Current	1.5 A
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solder ing, 10 seconds)	$300^{\circ} \mathrm{C}$
Power Dissipation* (P_{D})	
\quad Ceramic Package	1160 mW
Molded Package	890 mW
Metal Can	525 mW

operating conditions

	MIN	MAX	UNITS
Supply Voltage			
$V^{+}-V^{-}$Differential		20	V
$V_{B}-V^{-}$Differential		40	V
$V_{B}-V^{+}$Differential		20	V
Operating Jemperature Range			
DS3671	0	+70	${ }^{\circ} \mathrm{C}$
DS1671	-55	+125	${ }^{\circ} \mathrm{C}$

* Derate ceramic package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate metal can package at $200^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.
electrical characteristics (Notes 2 and 3)

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=20 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$t_{p d o}$	Propagation Delay to a Logical "0"	$\mathrm{R}_{\mathrm{D}}=10 \Omega, \mathrm{C}_{L}=1000 \mathrm{pF}$			7.5	15	ns
$t_{\text {pd } 1}$	Propagation Delay to a Logical "1"	$R_{D}=10 \Omega, C_{L}=1000 \mathrm{pF}$			12	15	ns
t_{r}	Rise Time	$R_{D}=10 \Omega$	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		25	35	ns
			$C_{L}=1000 \mathrm{pF}$		31	40	ns
$\mathrm{t}_{\text {f }}$	Fall Time	$R_{D}=1052$	$C_{L}=500 \mathrm{pF}$		30	40	ns
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		38	50	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1671 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3671. All typicals at $25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or \min on absolute value basis.

typical performance characteristics

typical performance characteristics (con't)

Output Pulse Width When
Controlled Only by Input
Coupling Capacitor

ac test circuit and switching time waveforms

node voltage waveforms

Note 1 Thi Iall turme has an exponentral becay with the following time constant $\mathrm{t}_{\mathbf{g}}=\mathrm{C}_{\mathbf{B}} \mathrm{R}_{\mathrm{B}}$ The range o values for R_{E} (hesistor tolerance, and temperature coe tircent included) can be found in the sble of electucal tha acterrstics
Note 2. The heqgh current trensisent las hrgh as 1.5 A) through the resistance of the external moterconnectring V^{\wedge} lead furing the output transition fiom the high state to the fow state can appear as negetive feedbscx to the imput If the extarnal mierconnectrig lead from the drivms ericurt to V-is electically long. of has signifreant $O C$ masstance, it can subtiact fiom the switching resjonse
typical applications (con't)

DS3671 Connected as DS0026 with Equivalent Characteristics

Typical Bootstrap

schematic diagram (One Driver)

 MOS Memory Interface Circuits

DS16149/DS36149, DS16179/DS36179 hex MOS drivers

general description

The DSI6149/DS36149 and DS16179/DS36179 are Hex MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers rieeded in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and a disable control that places the outputs in the logic "1" state (see truth table). This is especially useful in MOS RAM applications where a set of address lines has to be in the logic " 1 " state during refresh.

The DS1649/DS3649 has a 15Ω resistor in series with the outputs to dampen transients caused by the fast
switching output. The DS1679/DS3679 has a direct low impedance output for use with or without an external resistor.

features

- High speed capabilities
- Typ 9 ns driving 50 pF
- Typ 29 ns driving 500 pF
- TRI-STATE outputs for data bussing
- Built-in 15Ω damping resistor (DS16149/DS36149)
- Same pin-out as DM8096 and DM74366

schennatic diagram

connection diagram

Order Number DS16149J, DS36149J, DS16179J, DS36179J, DS36149N, DS36179N, DS16149W or DS16179W See NS Package J16A, N16A or W16A
absolute maximum ratings (Note 1)

Supply Voltage	7.0 V
Logical "1"' Input Voltage	7.0 V
Logical '"0' Input Voltage	-1.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation"	
Cavity Package	1160 mW
Molded Package	1000 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MiN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.5	5.5	V
Temperature $\left(T_{A}\right)$			
DS16149, DS16179	-55	+125	${ }^{\circ} \mathrm{C}$
DS36149. DS36179	0	+70	${ }^{\circ} \mathrm{C}$

*Derate cavity package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate molded package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.
dc electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IN (1) }}$	Logical "1" Input Voltage				2.0			V
VIN(0)	Logical " 0 " Input Voltage						0.8	V
IIN(1)	Logical "1" Input Current	$V_{C C}=5.5 V$	$V_{\text {IN }}=5.5 V$			01	40	$\mu \mathrm{A}$
$1 \mathrm{~N}(0)$	Logical "0" Input Current	$V \mathrm{CC}=5.5 \mathrm{~V}$	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$			-50	-250	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$V_{C C}=4.5 \mathrm{~V}$	$1 \mathrm{~N}=-18 \mathrm{~mA}$			-0.75	-1.2	V
VOH	Logical "1" Output Voltage (No Load)	$V_{C C}=4.5 V$	$1 \mathrm{OH}=-10 \mu \mathrm{~A}$	DS16149/DS16179	3.4	4.3		V
				DS36149/DS36179	3.5	4.3		\checkmark
VOL	Logical "O" Output Voltage (No Load)	$V_{C C}-4.5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$		DS16149/DS16179		0.25	0.4	V
				DS36149/DS36179		0.25	0.35	\checkmark
VOH	Logical "1" Output Voltage (W)th Load)	$V_{C C}=4.5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		DS16149	2.4	3.5		V
				DS16179	2.5	3.5		V
				DS36149	2.6	3.5		V
				DS36179	2.7	3.5		V
V_{OL}	Logical "0" Output Voltage (With Load)	$V_{C C}=4.5 \mathrm{~V}$	$1 \mathrm{OL}=20 \mathrm{~mA}$	DS16149		0.6	1.1	V
				DS16179		0.4	0.5	V
				DS36149		0.6	1.0	\checkmark
				DS36179		0.4	0.5	\checkmark
$\mathrm{I}_{1 \mathrm{D}}$	Logical "1" Drive Current	$V_{C C}=4.5 V$	VOUT $=0 \mathrm{~V},(\mathrm{~N}$	ote 4)		- 250		mA
IOD	Logical "0" Drive Current	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$, (N	Note 4)		150		mA
${ }^{1} \mathrm{CC}$	Power Supply Current	$V_{C C}=5.5 V$	Disable Inputs $=0 \mathrm{~V}$ All Other Inputs $=3 \mathrm{~V}$			33	60	mA
			All Inputs = OV			14	20	mA

switching characteristics $\left(V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}\right.$ (Note 4)

	PARAMETER		CONDITIONS	MiN	TYP	MAX	UNITS
${ }^{\text {t }}+$	Storage Delay Negative Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		4.5	7	ns
			$C_{L}=500 \mathrm{pF}$		7.5	12	ns
${ }^{\text {tS }}$-+	Storage Delay Positive Edge	(Figure 1)	$C_{L}=50 \mathrm{pF}$		5	8	ns
			$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		8	13	ns
tF	Fall Time	(Figure 1)	$C_{L}=50 \mathrm{pF}$		5	8	ns
			$C_{L}=500 \mathrm{pF}$		22	35	ns
t_{R}	Rise Time	(Figure 1)	$C_{L}=50 \mathrm{pF}$		6	9	ns
			$C_{L}=500 \mathrm{pF}$		26	35	ns
${ }^{\mathrm{t}} \mathrm{LH}$	Delay from Disable Input to Logical "1"	$R_{L}=2 \mathrm{k} \Omega$ to $\mathrm{Gnd}, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 2)			15	22	ns
thL	Delay from Disable Input to Logical " 0 "	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$. (Figure 3)			11	18	ns

notes

Note 1: "Absolute flaximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 16149 and DS16179 and across the $0^{\circ} \mathrm{C}$ to $+7 \mathrm{C}^{\circ} \mathrm{C}$ range for the DS36149 and DS36179. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: When meastring output drive current and switching response for the DS16179 and DS36179 a 15Ω resistor should be placed in serie: with each output. Thi; resistor is internal to the DS16149/DS36149 and need not be added

ac test circuits and switching time waveforms

FIGURE 3
*Internal on DS16143 and DS36149
Note 1: The pulse glenerator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$ and PRR $\leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% poin's $\leq 5 \mathrm{~ns}$.
Note 2: C_{L} includes probe and jig capacitance.
typical application

MOS Memory Interface Circuits

DS3245 Quad MOS Clock Driver

General Description

The DS3:245 is a quad bipolar-to-MOS clock driver with TTL/DTL compatible inputs. It is designed to provide high outiput current and voltage capabilities necessary for optirrium driving of high capacitance N -channel MOS memory systems.

Only 2 supplies, $5 V_{D C}$ and $12 \mathrm{~V}_{\mathrm{DC}}$, are required without compromising the usual high $\mathrm{VOH}_{\mathrm{OH}}$ specification obtained by circuits using a third supply.

The device features 2 common enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive loads at high speeds and uses Schottkyclamped transistors. PNP transistors are used on all inputs, thereby minimizing input loading.

Features

- TTL/LS compatible inputs
- Operates from 2 standard supplies: 5 VDC, 12 VDC:
- Internal bootstrap circuit eliminates need for exterıal PNP's
- PNP inputs minimize loading
- High voltage/current outputs
- Input and output clamping diodes
- Control logic optimized for use with MOS memery systems
- Pin and function equivalent to Intel 3245

Logic and Connection Diagrams

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)

Temperature Under Bias
Storage Temperature
Supply Voltage, VCC
Supply Voltage, VDD
All Input Voltages
Outputs for Clock Driver
Power Dissipation at $25^{\circ} \mathrm{C}$

$$
\begin{array}{r}
-10^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-0.5 \text { to }+7 \mathrm{~V} \\
-0.5 \text { to }+14 \mathrm{~V} \\
-1.0 \text { to } V_{D D} \\
-1.0 \text { to } V_{D D}+1 \mathrm{~V}
\end{array}
$$

Electrical Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%$

	PAR.IME:TER	CONDITIONS	MIN	TYP	MAX	UNITS
IFD	Select Input Load Current	$V_{F}=0.45 \mathrm{~V}$			-0.25	mA
IFE	Enable Input Load Current	$V_{F}=0.45 \mathrm{~V}$			-1.0	mA
IRD	Select Input Leakage Current	$V_{R}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
IRE	Enable Input Leakage Current	$V_{R}=5 \mathrm{~V}$			40	$\mu \mathrm{A}$
VOL	Output Low Voltage	$1 \mathrm{OL}=5 \mathrm{~mA} \cdot \mathrm{~V}^{\prime} \cdot \mathrm{H}=2 \mathrm{~V}$			0.45	V
		In. -5 mA	-1.0			V
VOH	Output High Voltage	$\cdots=1 \mathrm{~mA}, \mathrm{~V}_{\text {IL }} \quad 0.8 \mathrm{~V}$	VOD ${ }^{-0.50}$			V
		$1 \mathrm{OH}=5 \mathrm{~mA}$			$\mathrm{V}_{\text {DD }}+1.0$	V
$V_{\text {IL }}$	Input Low Voltage, All Inputs				0.8	\checkmark
$\mathrm{V}_{\text {IH }}$	Input High Voltage, All Inputs		2			\checkmark

Power Supply Current Drain

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{1} \mathrm{Cc}$	Current from $V_{C C}$ (Outputs High)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{D D}=12.6 \mathrm{~V} \end{aligned}$		26	34	mA
${ }^{\text {DD }}$	Current from VDD (Outputs High)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{D D}=12.6 \mathrm{~V} \end{aligned}$		23	30	mA
${ }^{\prime} \mathrm{Cc}$	Current from VCC (Outputs Low)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{D D}=12.6 \mathrm{~V} \end{aligned}$		29	39	mA
${ }^{\prime} \mathrm{DD}$	Current from VDD (Outputs Low)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{D D}=12.6 V \end{aligned}$		13	19	mA

Note' 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Switching Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{D D}=12 \mathrm{~V} \pm 5 \%$

PAFIAMETER		CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Notes 4, 6) } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { (Note 5) } \end{gathered}$	UNITS
t-+	Input to Output Delay	RSERIES $=0$	5	11		ns
tDR	Delay Plus Rise Time	RSERIES $=0$		20	32	ns
t+	Input to Output Delay	RSERIES $=0$	3	7		ns
tDF	Delay Plus Fall Time	RSERIES $=0$		18	32	ns
${ }^{\text {t }}$	Output Transition Time	RSERIES $=20 \Omega$	10	17	25	ns
tDR	Delay Plus Rise Time	RSERIES $=20 \Omega$		27	38	ns
tDF	Delay Plus Fall Time	RSERIES $=20 \Omega$		25	38	ns

Capacitance $T_{A}=25^{\circ} \mathrm{C}$ (Note 7)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
$C_{I N}$	Input Capacitance, $\overline{I_{1}}, \overline{I_{2}}, \overline{T_{3}}, \overline{I_{4}}$			5	8	pF
$\mathrm{C}_{\text {IN }}$	Input Capacitance, $\overline{\mathrm{R}}, \overline{\mathrm{C}}, \overline{\mathrm{E}} 1, \overline{\mathrm{E}} 2$			8	12	pF

Note 3: $C_{L}=150 \mathrm{pF}$
$\left.\begin{array}{l}\text { Note 4: } C_{L}=200 \mathrm{pF} \\ \text { Note 5: } C_{L}=250 \mathrm{pF}\end{array}\right\}$ These values represent a range of total stray plus clock capacitance for nine 4k RAMs.
Note 6: Typical values are measured at $25^{\circ} \mathrm{C}$.
Note 7: This parameter is periodically sampled and is not 100% tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{B}} \mathrm{IAS}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC Test Circuit and Switching Time Waveforms

Input pulse amplitudes: 3V
Input pulse rise and fall times:
5 ns between 1 V and 2 V
Measurement points: see waveforms

$\approx \begin{aligned} & \text { National } \\ & \text { Semiconductor }\end{aligned}$
MOS Memory Interface Circuits

DS75322 Dual TTL-MOS Driver

 DS3622 Dual Fail-Safe TTL-MOS Driver
General Description

The DS75322 is a dual TTL-MOS high speed driver. The input structure of the device is TTL and DTL compatible. A common strobe input is provided for gating the outputs to the low state. The outputs provide high current and high voltage levels ideal for driving MOS circuits. The D $\$ 75322$ specifically meets the requirements for driving N -channel RAMs where low power dissipation is desirable when the driver is in the low state.

The DS3622 provides output fail-safe protection. Powering down $V_{C C 1}$ activates the fail-safe circuit, forcing the outputs to the low state. The fail-safe feature eliminates output glitches that may occur in systems that power down $V_{C C 1}$. Functionally, the DS3622 and the DS75322 are identical.

The DS75322, DS3622 require 2 external PNP transistors per package.

The DS75322, DS3622 are characterized for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The DS75322 and the DS3622 are ideal for driving the UPD411D, MM5280 and the MM5270 4k RAMs.

Features

- Dual positive-logic and TTL-MOS driver
- TTL and LS compatible inputs
- High voltage/current outputs
- Operates from standard bipolar and MOS supplies
- High speed switching
- Input and output clamping diodes
- Separate driver address inputs with common strobe
- V_{OH} and V_{OL} compatible with 4 K RAMs and other popular MOS RAMs
- No current (leakage only) when outputs are in low state (DS75322)
- Outputs forced to low state with loss of VCC1 (DS3622)

Connection Diagram

Order Number DS75322J, DS3622J. DS75322N or DS3622N
See NS Package J14A or N14A

Absolute Maximum Ratings (Note 1)

Supply Voltage			MIN	MAX	UNITS
$\mathrm{V}_{\mathrm{CC} 1}$	-0.5 to 7 V	Supply Voltage			
$V^{\text {CC2 }}$	-0.5 to 15 V	$\mathrm{V}_{\mathrm{CC} 1}$	4.75	5.25	\checkmark
Input Voltage	5.5 V	$V_{C C 2}$	4.75	15	\checkmark
Inter-Input Voltage (Note 4)	- $5.5{ }^{\circ} \mathrm{C}$ V	Operating Free-Air	0	70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Temperature (T_{A})			
Operating Free-Air ${ }^{-7}$ emperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				
Power Oissipation ($\mathrm{P}^{\prime} \mathrm{O}$)					
Cavity Package	1160 mW				
Molded Package	1000 mW				
Lead Temperature (Soldering, 10 seconds	$300^{\circ} \mathrm{C}$				

Electrical Characteristics (Notes 2 and 3)

PAFIAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	High Level Input Voltage				2.0			\checkmark
$V_{\text {IL }}$	Low Level Input Voltage						0.8	\checkmark
VOH	High Livel Output Voltage	$V_{1 H}=2 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC} 2}-0.5$	$\mathrm{V}_{\mathrm{CC} 2}-0.25$		V
VOL	Low Lével Output Voitage	$V_{C C 2}=11$. $4 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, 1 \mathrm{OL}$	10 mA		0.23	0.5	\checkmark
$V_{\text {OL }}($ F.S. $)$	Low Leve! Output Voltage in Fail-Sa''e Mode (OS3622 Only)	$\begin{aligned} & V_{C C 1}=O \mathrm{~V}, V_{C C 2}=11.4 \mathrm{~V}, I_{O L}=1.6 \mathrm{~mA} . \\ & V_{1}=2.4 \mathrm{~V} \end{aligned}$					0.5	V
11	Input Current at Maximum Input Voltaç:	$V_{C C 1}=525 \mathrm{~V}, V_{C C 2}=11.4 \mathrm{~V}, V_{1}=5.25 \mathrm{~V}$					1	nıA
IIH	High L.evel Input Current	$V_{1}=2.4 \mathrm{~V}$	A Inputs				40	12 A
			E Input				80	
IIL	Low Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	A Inputs			-1	-1.6	IIA
			E Input			-2	-3.2	
ICC1(L)	Supply Current from VCC1, All Outpuis Low	$\begin{aligned} & V_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12.6 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0 \mathrm{~V} . \text { No Load } \end{aligned}$		DS75322		15.0	20	riA
				O53622		16.0	21	
${ }^{1} \mathrm{CC} 2(\mathrm{~L}$)	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, All Outputs Low	$\begin{aligned} & V_{\mathrm{CC} 1}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12.6 \mathrm{~V} \\ & V_{1}=0 \mathrm{~V}, \text { No Load } \end{aligned}$		OS75322		0.01	0.5	mA
				OS3622		1	4	
$\mathrm{ICC1}(\mathrm{HI}$	Supply Current from V_{CC}, All Outputs High	$\begin{aligned} & V_{\mathrm{CC} 1}=5.25 \mathrm{~V}, V_{\mathrm{CC} 2}=12.6 \mathrm{~V} \\ & V_{1}=5 \mathrm{~V}, \text { No Load } \end{aligned}$		DS75322		24	34	rา A
				OS3622		25	35	
${ }^{1} \mathrm{CC} 2(\mathrm{H})$	Supply Current from $V_{C C 2}$. All Outputs High	$\begin{aligned} & V_{C C 1}=4.75 \mathrm{~V}, V_{\mathrm{CC} 2}=12.6 \mathrm{~V} . \\ & V_{1}=5 \mathrm{~V}, \text { No Load } \end{aligned}$		OS75322		9.5	13	nA
				DS3622		10	14	
ICC2 ${ }^{(F . S .)}$	Suppl'/ Current from VCC2 In Fail-Sife Mode (DS3622 Only)	$\begin{aligned} & V_{\mathrm{CC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12.6 \mathrm{~V}, \mathrm{~V}_{1}=5 \mathrm{~V}, \\ & \text { No Load } \end{aligned}$				1	4	rn A

Switching Characteristics $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNI'TS
TDLH Delay Time, Low-to-High Level Output	$C_{L}=300 \mathrm{pF}$		14	21	ns
tDHL Delay Time, High-to-Low Lever, O utput			16	24	ns
tTLH Transition, Time, Low-to-Hightievel Output			11	17	ns
tTHL Transitior, Time, High-to-Low Level Output			13	20	ns
tPLH Propagation Delay Time, Low-to-High Level Output		12	25	38	ns
tpHL Propagation Oelay Time, High-to-Low Level Output		14	29	44	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operatimg Temperature Rance" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All typicals are given for $V_{C C 1}=5 \mathrm{~V}, V_{C C 2}=12 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted All values shown as max or min on absolute value basis.
Note 4: This rating applies between any 2 inputs of any one of the gates.

AC Test Circuit (Note 1)

Switching Time Waveforms

Note 1: Recommended minimum load 200 pF.
Note 2: The pulse generator has the following characteristics: $P R R=1 \mathrm{MHz}, Z_{O U Y}=50 \Omega, t_{r}=t_{f} \leq 10 \mathrm{~ns}$.
Note 3: C_{L} includes probe and jig capacitance.
Note 4: Fecommended external PNP transistors: 2N5771 (plastic), 2N5910 (plastic).

Typical Application

> DS75322 Driving the MM5280 Memory-Only Four MM5280's Shown

Note. External PNP transistor should be located as close as possible to the DS75322.
Recommended minimum load: 200 pF

DS75361 dual TTL-to-MOS driver

general description

The DS75361 is a monolithic integrated dual TTL-toMOS driver interface circuit. The device accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103 and MM5270 and MM5280

The DS75361 operates from standard TTL 5V supplies and the MOS $V_{\text {SS }}$ supply in many applications. The device has been optimized for operation with $V_{C C 2}$ supply volltage from 16 V to 20 V ; however, it is designed for use over a much wider range of $\mathbf{V}_{\mathbf{c C 2}}$.

features

- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- $\mathrm{V}_{\mathrm{CC} 2}$ supply voltage variable over wide range to 24 V
- Diode-clamped inputs
- TTL and LS compatible
- Operates from standard bipolar and MOS supplies
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

connection diagram

Dual-In-Line Packege

absolute maximum rat	gs (Note 1)
Supply Voltage Range of $\mathrm{V}_{\mathrm{CCl}}$ (Note 1)	-0.5 V to 7 V
Supply Voltage Range of $\mathrm{V}_{\mathrm{CC} 2}$	-0.5 V to 25 V
Input Voltage	5.5 V
Inter-Input Voltage (Note 4)	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature 1/16 tnch from Case for	
60 Seconds: 」 Package	$300^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for	
10 Seconds: N or P Package	$200^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC1)	4.75	5.25	V
Supply Voltage (VC2)	4.75	24	V
Operating Temperature (T_{A})	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{1 H}$	High-Level Input Voltage			2			v
V_{11}	Low Level Input Voltage					0.8	v
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1}=-12$				-1.5	V
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{cc} 2}-1$	$\mathrm{V}_{\mathrm{Cc}_{2}}-0.7$		V
		$\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc} 2}-2.3$	$\mathrm{V}_{\mathrm{Cc2} 2}-1.8$		V
V_{OL}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.15	0.3	v
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V} \text { to } 24 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$			0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$				$\mathrm{v}_{\mathrm{Cc}_{2}+1.5}$	V
I_{1}	Input Current at Maximum Input Voltage	$V_{1}=5.5 \mathrm{~V}$				1	mA
$I_{1 H}$	High Level Input Current	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	A Inputs			40	$\mu \mathrm{A}$
			E Input			80	$\mu \mathrm{A}$
1 L	Low-Level Input Current	$V_{1}=0.4 \mathrm{~V}$	A Inputs		--1	-1.6	mA
			E Input		-2	-3.2	mA
$\mathrm{ICC1(H)}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 1}$, Both Outputs High	$\mathrm{V}_{\mathrm{cc} 1}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V},$ All Inputs at OV, No Load			2	4	mA
${ }^{\text {ccen(H) }}$	Supply Current from $\mathrm{V}_{\mathrm{cc} 2}$, Both Outputs High					0.5	mA
${ }^{\prime} \mathrm{Cc} 1(\mathrm{~L})$	Supply Current from $\mathrm{V}_{\mathrm{cc} 1}$, Both Outputs Low	$V_{\mathrm{cC} 1}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{cc} 2}=24 \mathrm{~V},$ All Inputs at 5V, No Load			16	24	mA
${ }^{\text {cce2(L) }}$	Supply Current from $\mathrm{V}_{\mathrm{cc} 2}$, Both Outputs Low				7	11	mA
${ }^{\text {ccals }}$	Supply Current from $\mathrm{V}_{\mathrm{Cc} 2}$, Stand-by Condition	$\begin{aligned} & V_{\mathrm{cc} 1}=0 \mathrm{~V} \\ & \text { All Inputs } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc} 2}=24 \mathrm{~V}, \\ & \text { No Load } \end{aligned}$			0.5	mA

switching characteristics $\left(V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {DLH }}$ Delay Time, Low to-High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=390 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{D}}=10 \Omega \\ & \text { (Figure 1) } \end{aligned}$		11	20	ns
$\mathrm{t}_{\mathrm{OHL}}$ Delay Time, High-to-Low Level Output			10	18	ns
$\mathrm{t}_{\text {TLH }}$ Transition Time, Low-to-High Level Output			25	40	ns
${ }^{\text {thel }}$ L Transition Time, High-to-Low Level Output			21	35	ns
$\mathrm{t}_{\text {PLH }} \quad$ Propagation Delay Time, Low.to-High Level Output		10	36	55	ns
$\mathrm{t}_{\text {PHL }} \quad$ Propagation Delay Time, High-to-Low Level Output		10	31	47	ns

Note 1: "Absolute Maximurri Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75361. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C 1}=5 \mathrm{~V}$ and $V_{C C 2}=20 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: This rating applies between the A input of either driver and the common E input.

typical performance characteristics

Propagation Delay Time, Low-to-High Level Output vs $V_{C C 2}$ Supply Voltage

Low-Level Output Voltage vs Output Current

Propagation Delay Time, Low-to-High Level Output vs Ambient Temperature

Propagation Delay Time, High-to-Low Level Output vs VCC2 Supply Voltage

Propagation Oelay Time, High-to-Low Level Output vs Load Capacitance

Voltage Transfer Characteristics

Propagation Delay Time, High-to-Low Level Output vs Ambient Temperature

Propagation Delay Time, Low-to-High Level Dutput vs Load Capacitance

ac test circuit and switching time waveforms

Note 1: Tha puise generator hes the followng charecteristics: $\mathbf{P R R}=1 \mathrm{MHz}, \mathrm{Z}_{\text {Out }} \approx 50 \Omega$. Nate 2: C_{L} includes probe and jig capmitance.

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient
overshoot. The optimum value of the damping resistor to use depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

FIGUFIE 2. Interconnection of DS75361 Devices with 1103 RAM

FIGURE 3. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot in Certain DS75361 Applications

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75361 driver when eharging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75361 as a function of load capacitance and frequency. Average power dissipated by this driver can be broken into three components:

$$
P_{T(A V)}=P_{D C(A V)}+P_{C(A V)}+P_{S(A V)}
$$

where $P_{D C(A V)}$ is the steady-state power dissipation with the output high or low, $\mathrm{P}_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $\mathbf{P}_{S(A V)}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$
\begin{aligned}
& P_{D C(A V)}=\frac{p_{L} t_{L}+p_{H} t_{H}}{T} \\
& P_{C(A V)} \approx C \cdot V_{C}{ }^{2} f \\
& P_{S(A V)}=\frac{p_{L \cdot H} t_{L H}+p_{H L L} t_{H L}}{T}
\end{aligned}
$$

where the times are as defined in Figure 4.
$\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{H}}, \mathrm{p}_{\mathrm{LH}}$, and p_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75361 is so designed that $\mathrm{P}_{\mathbf{S}}$ is a negligible portion of P_{T} in most applications. Except at very high frequencies, $t_{\mathrm{L}}+\mathrm{t}_{\mathrm{H}} \gg \mathrm{t}_{\mathrm{LH}}+\mathrm{t}_{\mathrm{HL}}$ so that P_{S} can be
neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from both channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume both channels are operating identically with $\mathrm{C}=200 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 2}=$ 20 V , and duty cycle $=60 \%$ outputs high $\left(\mathrm{t}_{\mathrm{H}} / \mathrm{T}=0.6\right)$. Also, assume $\mathrm{V}_{\mathrm{OH}}=19.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.1 \mathrm{~V}, \mathrm{P}_{\mathrm{S}}$ is negligible, and that the current from $\mathrm{V}_{\mathrm{CC} 2}$ is negligible when the output is high.

On a per-channel basis using data sheet values:

$$
\begin{aligned}
& P_{D C(A V)}= {\left[(5 \mathrm{~V})\left(\frac{2 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{2}\right)\right](0.6)+} \\
& {\left[(5 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{7 \mathrm{~mA}}{2}\right)\right](0.4) } \\
& P_{\mathrm{DC}(\mathrm{AV})}=47 \mathrm{~mW} \text { per channel }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{C}(\mathrm{AV})} \approx(200 \mathrm{pF})(19.2 \mathrm{~V})^{2}(2 \mathrm{MHz}) \\
& \mathrm{P}_{\mathrm{C}(\mathrm{AV})} \approx 148 \mathrm{~mW} \text { per channel. }
\end{aligned}
$$

For the total device dissipation of the two channels:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 2(47+148) \\
& \mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 390 \mathrm{~mW} \text { typical for total package. }
\end{aligned}
$$

FIGURE 4. Output Voltage Waveform

DS75362 dual TTL-to-MOS driver

general description

The DS75362 is a dual monolithic integrated TTL-toMOS driver and interface circuit that accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels suitable for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103.

The DS75362 operates from the TTL 5V supply and the MOS $V_{S S}$ and $V_{B B}$ supplies in many applications. This device has been optimized for operation with V_{CC} supply voltage from 16 V to 20 V , and with nominal $\mathrm{V}_{\mathrm{cc} 3}$ supply voltage from 3 V to 4 V higher than $\mathrm{V}_{\mathrm{cc} 2}$. However, it is designed so as to be usable over a much wider range of $V_{\text {cc2 }}$ and $V_{\text {cc3 }}$. In some applications the $V_{\mathrm{cc} 3}$ power supply can be eliminated by connecting the $V_{\mathrm{cc} 3}$ pin to the $V_{\mathrm{cc} 2}$ pin.

features

- Dual positive-logic NAND TTL-to-MOS driver
- Versatile interface circuit for use between TTL and high-current, high-voltage systems
- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- $\mathrm{V}_{\mathrm{CC} 2}$ supply voltage variable over wide range to 24 V maximum
- $V_{\mathrm{CC} 3}$ supply voltage pin available
- $V_{\text {cc3 }}$ pin can be connected to V_{CC2} pin in some applications
- TTL and LS compatible diode-clamped inputs
- Operates from standard bipolar and MOS supply voltages
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation
schematic and connection diagrams

Dual-In-Line Package

Order Number DS75362J-8 or DS75362N-8 See NS Package JOBA or N08A

absolute maximum ratings	(Note 1)
Supply Voltage Range of $V \mathrm{VCC}$	-0.5 V to 7 V
Supply Voltage Range of $\mathrm{VCC2}$	-0.5 V to 25 V
Supply Voltage Range of $\mathrm{VCC3}$	-0.5 V to 30 V
Input Voltage	5.5 V
Inter-Input Voltage (Note 4)	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C 1}\right)$	4.75	5.25	V
Supply Voltage $\left(V_{C C 2}\right)$	4.75	24	V
Supply Voltage $\left(V_{C C 3}\right)$	$V_{C C 2}$	28	V
Voltage Difference Between Supply Voltages: $V_{C C}-V_{C C 2}$	0	10	V
Operating Ambient Temperature Range $\left(T_{A}\right)$	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {IH }}$	High-Level Input Voltage		2			V
$V_{\text {IL }}$	Low-Level Input Voltage				0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-Level Output Voltage	$V_{C C 3}=V_{C C 2}+3 \mathrm{~V}, V_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$V_{c c 2}-0.3$	$V_{\mathrm{cc} 2}-0.1$		V
		$V_{C C 3}=V_{C C 2}+3 \mathrm{~V}, \mathrm{~V}_{\text {L }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$V_{c c 2}-1.2$	$V_{c c 2}-0.9$		V
		$V_{\mathrm{CC3}}=\mathrm{V}_{\mathrm{CC2} 2}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	$\mathrm{VCc2}^{-1}$	$V_{\mathrm{cc} 2}-0.7$		V
		$V_{\mathrm{CC3}}=\mathrm{V}_{\mathrm{CC2}}, V_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$V_{\mathrm{cc} 2}-2.3$	$V_{\text {cc2 }}-1.8$		V
VOL	Low-Level Output Voltage	$\mathrm{V}_{1 H}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.15	0.3	V
		$\mathrm{V}_{\mathrm{CC3}}=15 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$			$V_{c c 2}+1.5$	V
I_{1}	Input Current at Maximum Input Voltage	$V_{1}=5.5 \mathrm{~V}$			1	mA
I_{HH}	High-Level Input Current	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$I_{1 L}$	Low-Level Input Current	$V_{1}=0.4 \mathrm{~V}$		-1	-1.6	$m A$
$\mathrm{I}_{\mathrm{CC1}(\mathrm{H})}$	Supply Current from $\mathrm{V}_{\mathrm{cc} 1}$, All Outputs High	$\begin{aligned} & V_{\mathrm{Cc} 1}=5.25 \mathrm{~V}, V_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & V_{\mathrm{cc3}}=28 \mathrm{~V}, \text { All Inputs at } 0 \mathrm{~V}, \text { No Load } \end{aligned}$		2	4	mA
$\mathrm{ICC2}_{\text {(H) }}$	Supply Current from $V_{\mathrm{cc} 2}$, All Outputs High			-1.1	$+0.25$	mA
				-1.1	-1.6	mA
${ }^{\text {CCC3(}}$ ($)$	Supply Current from $\mathrm{V}_{\mathrm{cc} 3}$. All Outputs High			1.1	1.8	mA
$\operatorname{lcc1(L)}$	Supply Current from $V_{\text {cci }}$. All Outputs Low	$\begin{aligned} & V_{c c 1}=5.25 \mathrm{~V}, V_{\mathrm{cc} 2}=24 \mathrm{~V} \\ & V_{\mathrm{cc} 3}=28 \mathrm{~V}, \text { All Inputs at } 5 \mathrm{~V}, \text { No Load } \end{aligned}$		15	23.5	mA
$1 \mathrm{cc2(L)}$	Supply Current from $V_{\mathrm{CC} 2}$. All Outputs Low				1.5	mA
$1 \operatorname{ccs}(\mathrm{~L})$	Supply Current from $V_{\text {cc3 }}$. All Outputs Low			8	12.5	mA
${ }^{\text {CC2(H) }}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, All Outputs High	$\begin{aligned} & V_{\mathrm{cc} 1}=5.25 \mathrm{~V}, V_{\mathrm{cc} 2}=24 \mathrm{~V} \\ & V_{\mathrm{cc3}}=24 \mathrm{~V}, \text { All Inputs at } 0 \mathrm{~V}, \text { No Load } \end{aligned}$			0.25	mA
$\mathrm{ICC3}(\mathrm{H})$	Supply Current from $V_{\text {ces }}$. All Outputs High				0.5	mA
$\mathrm{I}_{\mathrm{CC2}(\mathrm{~S})}$	Supply Current from $V_{\text {cc2 }}$, Stand-by Condition	$\begin{aligned} & V_{\mathrm{cc} 1}=0 \mathrm{~V}, V_{\mathrm{cc} 2}=24 \mathrm{~V}, \\ & V_{\mathrm{cc} 3}=24 \mathrm{~V}, \text { All Inputs at } 5 \mathrm{~V}, \text { No Load } \end{aligned}$			0.25	mA
$\mathrm{ICC3}^{(s)}$	Supply Current from $\mathrm{V}_{\mathrm{Cc} 3}$. Stand-by Condition				0.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meent to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75362. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C 1}=5 \mathrm{~V}$ and $V_{C C 2}=20 \mathrm{~V}$ and $V_{C C 3}=24 V$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute velue basis.
Note 4: This rating applies between any two inputs of any one of the gates.
switching characteristics $\left(\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 3}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tolh Delay Time, Low-to-High Level Output	$\begin{aligned} & C_{L}=200 \mathrm{pF}, \\ & R_{D}=24 \Omega, \end{aligned}$ (Figure 1)		11	20	ns
${ }_{\text {t }}^{\text {DHL }}$ (Delay Time, High-to-Low Level Output			10	18	ns
$t_{\text {TLH }} \quad$ Transition Time, Low-to-High Level Output			20	33	ns
$t_{\text {THL }} \quad$ Transition Time, High-to-Low Level Output			20	33	ns
$\mathrm{t}_{\text {PLH }}$ Propagation Delay Time, Low-to-High Level Output		10	31	48	ns
$\mathrm{t}_{\text {PHL }}$ Propagation Delay Time, High-to-Low Level Output		10	30	46	ns

ac test circuit and switching time waveforms

Note 1: The pulse generator has the follownt charaetarisucs: PRR $=1 \mathrm{MHz}, Z_{\text {our }} \approx 50 \Omega$.
Note 2: C_{L} meludes prabe and jig capacitance.
FIGURE 1. Switching Times, Each Driver

typical performance characteristics

typical performance characteristics (con't)

Propagation Delay Time,
Low-to-High Level Output vs Load Capacitance

Propagation Delay Tima,
High-to-Low Level Output vs Load Capecitance

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 2).

FIgURE 2. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot In Certain DS75362 Applications.

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75362 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75362 as a function of load capacitance and frequency. Average power dissipation by this driver can be broken into three components:

$$
P_{T(A V)}=P_{O C(A V)}+P_{C(A V)}+P_{S(A V)}
$$

where $P_{\text {DC(A V })}$ is the steady-state power dissipation with the output high or low, $\mathrm{P}_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $P_{S(A V)}$ is the power dissipation oluring switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$
\begin{aligned}
& P_{D C(A V)}=\frac{p_{L} t_{L}+p_{H} t_{H}}{T} \\
& P_{C(A V)} \approx C V_{C}^{2} f \\
& P_{S(A V)}=\frac{p_{L H} t_{L H}+p_{H L} t_{H L}}{T}
\end{aligned}
$$

where the times are as defined in Figure 3.

FIGURE 3. Output Voltage Waveform
$p_{L}, p_{H}, p_{L H}$, and $p_{H L}$ are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75362 is so designed that \mathbf{P}_{S} is a negligible portion of P_{T} in most applications. Except at very high frequencies, $t_{L}+t_{H} \gg t_{L H}+t_{H L}$ so that P_{S} can be neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from two channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume two channels are operating identically with $\mathrm{C}=100 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=$ $20 \mathrm{~V}, \mathrm{~V}_{\text {cc3 }}=24 \mathrm{~V}$ and duty cycle $=60 \%$ outputs high $\left(\mathrm{t}_{\mathrm{H}} / \mathrm{T}=0.6\right)$. Also, assume $\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.1 \mathrm{~V}$, P_{S} is negligible, and that the current from $V_{C C 2}$ is negligible when the output is low.

On a per-channel basis using data sheet values:

$$
\begin{align*}
P_{\mathrm{DC}(\mathrm{AV})}= & {\left[\left(5 \mathrm{~V}\left(\frac{4 \mathrm{~mA}}{4}\right)+(20 \mathrm{~V})\left(\frac{-2.2 \mathrm{~mA}}{4}\right)+(24\right.\right.} \tag{24~V}\\
& \left.\left(\frac{2.2 \mathrm{~mA}}{4}\right)\right](0.6)+\left[(5 \mathrm{~V})\left(\frac{31 \mathrm{~mA}}{4}\right)+\right. \\
& \left.(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{4}\right)\right](0 . \tag{0.4}
\end{align*}
$$

$$
P_{D C(A V)}=58 \mathrm{~mW} \text { per channel }
$$

$$
P_{C(A V)} \approx(100 \rho F)(19.9 V)^{2}(2 \mathrm{MHz})
$$

$P_{C(A V)} \approx 79 \mathrm{~mW}$ per channel.

For the total device dissipation of the two channels
$\mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 2(58+79)$
$P_{T(A V)} \approx 274 \mathrm{~mW}$ typical for total package.

National Semiconductor

MOS Memory Interface Circuits

DS75364 dual MOS clock driver

general description

The DS75364 is a dual MOS driver and interface circuit that operates with either current source or voltage source input signals. The device accepts signals from TTL levels or other logic systems and provides high current and high voltage output levels suitable for driving MOS circuits. It may be used to drive address, control and/or timing inputs for several types of MOS RAMs and MOS shift registers.

The DS75364 operates from standard MOS and bipolar supplies, and has been optimized for operation with $\mathrm{V}_{\mathrm{CC} 1}$ supply voltage from $12-20 \mathrm{~V}$ positive with respect to $V_{E E}$, and with nominal $V_{C C 2}$ supply voltage from 3-4V more positive than V_{cc}. However, it is designed so as to be useable over a much wider range of $V_{\mathrm{CC} 1}$ and $V_{\mathrm{CC} 2}$. In some applications the V_{CC} power supply can be eliminated by connecting the $V_{\mathrm{CC} 2}$ pin to the $\mathrm{V}_{\mathrm{cc} 1}$ pin.

Inputs of the DS75364 are referenced to the V_{EE} terminal and contain a series current limiting resistor. The device will operate with either positive input current signals or input voltage signals which are positive with respect to $V_{E E}$. In many applications the $V_{E E}$ terminal is connected to the MOS $V_{D D}$ supply of -12 V to -15 V with the inputs to be driven from TTL levels or other positive voltage levels. The required negative level
shifting may be done with an external PNP transistor current source or by use of capacitive coupling and appropriate input voltage pulse characteristics.

The DS75364 is characterized for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

features

- Versatile interface circuit for use between TTL levels and level shifted high current, high voltage systems
- Inputs may be level shifted by use of a current source or capacitive coupling or driven directly by a voltage source
- Capable of driving high capacitance loads
- Compatible with many popular MOS RAMs and MOS shift registers
- $V_{C C 1}$ supply voltage variable over wide range to 22 V maximum with respect to $V_{E E}$
- $V_{C C 2}$ pull-up supply voltage pin available
- Operates from standard bipolar and/or MOS supply voltages
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

connection diagram

absolute maximum ratings (Note 1)
Supply Voltage Range of $V_{C C 1}$
-0.5 V to 22 V
Supply Voltage Range of V_{CC}
-0.5 V to 30 V
Input Voltage
Most Positive Voltage at Any Input
with Respect to V_{CC}
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{1 H}$	High Level Input Voltage	Voltage Mode Input Logic Levels			5		10	V
$V_{\text {IL }}$	Low Level Input Voltage	Voltage Mode Input Logic Levels					1	V
$1_{1 H}$	High Level Input Current	Current Mode Input Logic Levels			8		15	mA
I_{IL}	Low Level Input Current	Current Mode Input Logic Levels					0.7	mA
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 1}+3 \mathrm{~V} \\ & (\text { Note 4) } \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$V_{\text {IL }}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{Cc} 1}-0.3$	$\mathrm{V}_{\mathrm{cc} 1} 0.1$		V
				$\mathrm{I}_{1 \mathrm{~L}}=0.7 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CCl},}-0.3$	$\mathrm{V}_{\mathrm{CC1}}-0.1$		V
			$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$V_{L L}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CCI}}{ }^{-1} 2$	$V_{\text {cc1 }}{ }^{-0.9}$		V
				$\mathrm{I}_{1 \mathrm{~L}}=0.7 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC1}}{ }^{-1.2}$	$\mathrm{V}_{\mathrm{cc} 1} 0.9$		V
		$\begin{aligned} & V_{\mathrm{CC} 2}=V_{\mathrm{Cc} 1} \\ & \text { (Note 4) } \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	$\mathrm{V}_{1 \mathrm{~L}}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC} 1}{ }^{-1}$	$\mathrm{V}_{\mathrm{cc}_{1}}-0.7$		V
				$\mathrm{I}_{\mathrm{IL}}=0.7 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC1}^{-1}}$	$\mathrm{V}_{\text {cct }}{ }^{-0.7}$		\checkmark
			$\mathrm{I}_{\mathrm{OH}}=10 \mathrm{~mA}$	$\mathrm{V}_{1 \mathrm{~L}}=1 \mathrm{~V}$	$\mathrm{VCC1}^{-2.3}$	$\mathrm{V}_{\mathrm{CC} 1}-1.8$		V
				$\mathrm{I}_{\mathrm{IL}}=0.7 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC} 1}{ }^{-2.3}$	$\mathrm{V}_{\mathrm{CC1}}-1.8$		\checkmark
V_{OL}	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$	$V_{1 H}=5 \mathrm{~V}$			0.15	0.3	V
			$\mathrm{I}_{\text {HH }}=8 \mathrm{~mA}$			0.15	0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC2}}=15 \text { to } 28 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$	$V_{1 H}=5 \mathrm{~V}$			0.25	0.5	V
			$\mathrm{I}_{1 H}=\mathrm{BmA}$			0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$					$\mathrm{V}_{\mathrm{CO}}+1.5$	\checkmark
1	Input Current at Maximum Input Voltage	$V_{C C 2}=10 \mathrm{~V}$ to 2BV. $\mathrm{V}_{1}=10 \mathrm{~V}$				17	26	mA
V_{1}	Input Voltage at Maximum Input Current	$V_{\mathrm{cc} 2}=13.5 \mathrm{~V}$ to $28 \mathrm{~V}, t_{1}=15 \mathrm{~mA}$				9	13.5	V
I_{IH}	High Level Input Current	$\mathrm{V}_{1}=5 \mathrm{~V}$				7	11	mA
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	$\mathrm{I}_{1}=8 \mathrm{~mA}$				5.5	ε	V
${ }_{1+}$	Low Level Input Current	$\mathrm{V}_{1}=1 \mathrm{~V}$				1.1	1.6	mA
$V_{\text {IL }}$	Low Level Input Voitage	$\mathrm{I}_{1}=0.7 \mathrm{~mA}$				0.7	1	V
${ }^{\text {CCOT(H) }}$	Supply Current From V_{CC}. 8oth Outputs High	$V_{\mathrm{CC} 1}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=26 \mathrm{~V} .$ Both Inputs at $0 V$, No Load				-1.1	-1.6	mA
							0.25	mA
$\mathrm{I}_{\mathrm{CC} 2(\mathrm{H})}$	Supply Current From $\mathrm{V}_{\mathrm{CC} 2}$. Both Outputs High	$V_{C C 1}=22 \mathrm{~V}, V_{C C 2}=26 \mathrm{~V}$ Both Inputs at 0 V , No Load				1.1	2	mA
$\mathrm{I}_{\text {ccidu }}$	Supply Current From $V_{\text {ccl }}$, 8oth Outputs Low	$V_{\mathrm{cc} 1}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 2}=28 \mathrm{~V} .$ Both Inputs at 7 V , No Load				05	1	mA
$I_{\text {cce }}(\mathrm{L})$	Supply Current From $\mathrm{V}_{\mathrm{CC} 2}$, Both Outputs Low	$V_{\mathrm{CC} 1}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=28 \mathrm{~V}$, Both Inputs at 7V, No Load				8	14	mA
${ }^{\text {cCli(H) }}$	Supply Current From $\mathrm{V}_{\mathrm{cc} 1}$, Both Outputs High	$V_{\mathrm{CC} 1}=22 \mathrm{~V}, V_{\mathrm{CC} 2}=22 \mathrm{~V}$ Both Inputs at 0 V , No Load					0.25	mA
${ }^{\text {CCO2(H) }}$	Supply Current From $\mathrm{V}_{\mathrm{Cc} 2}$. 8oth Outputs High	$\begin{aligned} & V_{\mathrm{cc} ~}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC2}}=22 \mathrm{~V}, \\ & \text { Both Inputs at } 0 \mathrm{~V}, \text { No Load } \end{aligned}$					05	mA

Note 1: "Absolute Maximum Ratings" arr those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise sfecified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75364. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $V_{C C 1}=20 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}$ and $V_{E E}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Many of these parameters are specified independently for either voltage source or current source external forcing functions at the inputs. Use the appropriate set of specifications for each application.
Note 5: All parameters are specified with $V_{E E}=O V$ and for input voltage no more positive than $V_{C C 2}$.
switching characteristics $V_{C C 1}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {DLH }}$	Delay Time, Low-to-High Level Output	$C_{L}=390 \mathrm{pF}, R_{D}=10 \Omega .$ (Figure 1)	$V_{\mathrm{CC} 2}=24 \mathrm{~V}$		13		ns
			$\mathrm{V}_{\mathrm{cc} 2}=20 \mathrm{~V}$		14		ns
	Delay Time, High to-Low Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=390 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=10 \Omega . \\ & \text { (Figure 1) } \end{aligned}$	$V_{C C 2}=24 \mathrm{~V}$		9		ns
			$V_{\text {CC2 }}=20 \mathrm{~V}$		10		ns
${ }^{\text {t }}$ L ${ }_{\text {LH }}$	Transition Time, Low-to-High Level Output	$C_{L}=390 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=10 \Omega$ (Figure 1)	$V_{C C 2}=24 \mathrm{~V}$		21		ns
			$V_{C C 2}=20 \mathrm{~V}$		21		ns
${ }^{\text {t }}$ THL	Transition Time, High to-Low Level Output	$C_{L}=390 \mathrm{pF}, R_{D}=10 \Omega .$ (Figure 1)	$V_{\mathrm{CC} 2}=24 \mathrm{~V}$		19		ns
			$\mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}$		18		ns
$\mathrm{tPLH}_{\text {LH }}$	Propagation Delay Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=390 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=10 \Omega,$ (Figure 1)	$V_{\text {cc2 }}=24 \mathrm{~V}$		34		ns
			$V_{C C 2}=20 \mathrm{~V}$		35		ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=390 \mathrm{pF}, \mathrm{R}_{\mathrm{D}}=10 \Omega,$ (Figure 1)	$V_{C C 2}=24 \mathrm{~V}$		28		ns
			$\mathrm{V}_{\mathrm{cc} 2}=20 \mathrm{~V}$		28		ns

schematic diagram (1/2 shown)

ac test circuit and switching time waveforms

FIGURE 1. Switching Times, Each Driver

typical applications

FIGURE 2. MOS RAM Clock Driver System with PNP Transistor Current Source used to Level-Shift to Inputs of DS75364

FIGURE 3. MOS Shift Register Clock Driver Systam with Capacitive Coupling used to Laval-Shift to Inputs of DS75364

application hints

Applications of the DS75364 used as an interface device in systems converting TTL signals to negative polarity MOS clock signals are shown in Figures 2 and 3. In both applications the DS75364 V_{EE} pin is connected to a negative MOS supply voltage. The $\mathrm{V}_{\mathrm{CC} 2}$ supply pin may be connected to the $\mathrm{V}_{\mathrm{cc} 1}$ pin as shown in Figure 3 or connected to a separate voltage more-positive than $\mathrm{V}_{\mathrm{cc} 1}$ as shown in Figure 2. The DS75364 may be used over a wide range of $\mathrm{V}_{\mathrm{cc} 1}$ and $\mathrm{V}_{\mathrm{Cc} 2}$ supply voltages which are positive with respect to V_{EE}. However, for proper operation the voltage at the inputs of the DS 75364 should not be more positive than the voltage at $\mathrm{V}_{\mathrm{CC} 2}$.

Both applications shown require negative level shifting from positive voltage levels to the inputs of the DS75364 which are referenced to the V_{EE} terminal. A PNP transistor current source is used to level shift in

Figure 2. Resistor R sets the current and an open. collector TTL gate is used to switch the PNP transistor. Figure 3 shows capacitive coupling being used to level shift with the DS75361 TTL-to-MOS driver used as a low impedance voltage source driver. The value of coupling capacitor C depends on the frequency and characteristics of the signal applied to the capacitor.

The fast switching of the DS 75364 may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10 and 30 ohms (Figure 4).

FIGURE 4. Use of Damping Resistor to Reduce or Eliminata Output Transient Overshoot in Certain DS 75364 Applications

DS75365 quad TTL-to-MOS driver

general description

The DS75365 is a quad monolithic integrated TTL-toMOS driver and interface circuit that accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels suitable for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103.

The DS75365 operates from the TTL 5 V supply and the MOS $V_{S S}$ and $V_{B B}$ supplies in many applications. This device has been optimized for operation with V_{CC} supply voltage from 16 V to 20 V , and with nominal $\mathrm{V}_{\mathrm{Cc} 3}$ supply voltage from 3 V to 4 V higher than $\mathrm{V}_{\mathrm{cc} 2}$. However, it is designed so as to be usable over a much wider range of $V_{C C 2}$ and $V_{C C 3}$. In some applications the $V_{c c 3}$ power supply can be eliminated by connecting the $V_{\mathrm{CC} 3}$ pin to the $\mathrm{V}_{\mathrm{CC} 2}$ pin.

features

- Quad positive-Iogic NAND TTL-to-MOS driver
- Versatile interface circuit for use between TTL and high-current, high-voltage systems
- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- Interchangeable with Intel 3207
- $V_{\mathrm{CC} 2}$ supply voltage variable over wide range to 24 V maximum
- $V_{C C 3}$ supply voltage pin available
- $V_{C C 3}$ pin can be connected to $V_{C C 2}$ pin in some applications
- TTL and LS compatible diode-clamped inputs
- Operates from standard bipolar and MOS supply voltages
- Two common enable inputs per gate-pair
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

schematic and connection diagrams

Dual-In-Line Package

TOP VIEw
Pureve Leic: $Y=\overline{\mathbf{A} \cdot E 1 \cdot E 2}$
Order Number DS75365J
or DS75365N
See NS Package J16A or N16A
absolute maximum ratings (Note 1)

Supply Voltage Range of $V \mathrm{VCC}$	-0.5 V to 7 V
Supply Voltage Range of $V \mathrm{VC2}$	-0.5 V to 25 V
Supply Voltage Range of $V \mathrm{CC} 3$	-0.5 V to 30 V
Input Voltage	5.5 V
Inter-Input Voltage (Note 4)	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C 1}\right)$	4.75	5.25	V
Supply Voltage $\left(V_{C C 2}\right)$	4.75	24	V
Supply Voltage $\left(V_{C C 3}\right)$	$V_{C C 2}$	28	V
Voltage Difference Between	0	10	V
Supply Voltages: $V_{C C 3}-V_{C C 2}$			
Operating Ambient Temperature Range $\left(T_{A}\right)$	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V_{IH}	High-Level Input Voltage			2			V
$V_{\text {IL }}$	Low-Level Input Voltage					0.8	V
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1}=-12 \mathrm{~m}$				-1.5	V
V_{OH}	High-Level Output Voltage	$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}+3 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{cc} 2}-0.3$	$\mathrm{V}_{\mathrm{CC2}-0.1}$		V
		$\mathrm{V}_{\mathrm{CC3}}=\mathrm{V}_{\mathrm{CC} 2}+3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc} 2}-1.2$	$\mathrm{V}_{\mathrm{CC2} 2-0.9}$		V
		$\mathrm{V}_{\mathrm{CC} 3}=\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC2} 2-1}$	$\mathrm{V}_{\mathrm{CC2} 2-0.7}$		V
		$\mathrm{V}_{\mathrm{CC3}}=\mathrm{V}_{\text {CC2 }}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc} 2}-2.3$	$\mathrm{V}_{\mathrm{cc} 2-1.8}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.15	0.3	V
		$\mathrm{V}_{\mathrm{CC3}}=15 \mathrm{~V}$ to $28 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mathrm{~mA}$			0.25	0.5	V
V_{0}	Output Clamp Voltage	$\mathrm{V}_{1}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=20 \mathrm{~mA}$				$\mathrm{V}_{\mathrm{cc} 2}+1.5$	V
1	Input Current: at Maximum Input Voltage:	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High-Level Input Current	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	A Inputs			40	$\mu \mathrm{A}$
			E1 and E2 Inputs			80	$\mu \mathrm{A}$
ItL	Low-Level Input Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	A Inputs		-1	-1.6	mA
			E1 and E2 Inputs		-2	-3.2	mA
${ }^{1} \mathbf{C c 1 (H)}$	Supply Current from V_{CC}. All Outputs High	$\begin{aligned} & V_{c c 1}=5.25 \mathrm{~V}, V_{c c 2}=24 \mathrm{~V}, \\ & V_{c c 3}=28 \mathrm{~V}, \text { All Inputs at } 0 \mathrm{~V}, \text { No Load } \end{aligned}$			4	8	mA
${ }^{\text {cce2(H) }}$	Supply Current from $\mathrm{V}_{\mathrm{cc} 2}$. All Outputs High				-2.2	$\frac{+0.25}{-3.2}$	$\frac{\mathrm{mA}}{\mathrm{mA}}$
${ }^{\text {c }}$ c3(H)	Supply Current from V_{cc}. All Outputs High				2.2	3.5	mA
${ }^{\mathbf{c}} \mathbf{C 1}$ (L)	Supply Current from V_{cc}. All Outputs Low	$\mathrm{V}_{\mathrm{CC} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}$, $V_{\mathrm{cc} 3}=28 \mathrm{~V}$, All Inputs at 5V, No Load			31	47	mA
${ }^{\text {ccez(L) }}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$. All Outputs Low					3	mA
${ }^{\text {c }}$ c3(L)	Supply Current from V_{cc}, All Outputs Low				16	25	mA
${ }^{\text {cce2(H) }}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$. All Outputs High	$\mathrm{V}_{\mathrm{Cc} 1}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 2}=24 \mathrm{~V}$, $V_{\mathrm{cc} 3}=24 \mathrm{~V}$, All Inputs at 0 V , No Load				0.25	mA
${ }^{\text {ces3(H) }}$	Supply Currerit from $\mathrm{V}_{\mathrm{cc} 3}$, All Outputs High					0.5	mA
	Supply Currert from $\mathrm{V}_{\mathbf{c c} 2}$, Stand-by Condition	$\begin{aligned} & V_{c C 1}=0 \mathrm{~V}, V_{\mathrm{cc} 2}=24 \mathrm{~V}, \\ & V_{\mathrm{cc} 3}=24 \mathrm{~V}, \text { All Inputs at } 5 \mathrm{~V}, \text { No Load } \end{aligned}$				0.25	$n \mathrm{~A}$
$\mathrm{I}_{\text {ccsis) }}$	Supply Currerit from $V_{\text {ces }}$. Stand-by Condition					0.5	nA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Exicept for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/riax limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75365. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $V_{C C 1}=5 V$ and $V_{C C 2}=20 V$ and $V_{C C 3}=24 V$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: This rating applies between any two inputs of any one of the gates.
switching characteristics $\left(V_{c c 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 3}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {dLH }}$ Delay Time. Low-to-High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{O}}=24 \Omega, \\ & \text { (Figure 1) } \end{aligned}$		11	20	ns
$\mathrm{t}_{\text {OHL }}$ Delay Time, High-to-Low Level Output			10	18	ns
$\mathrm{t}_{\text {TLH }}$ Transition Time, Low-to-High Level Output			20	33	ns
$\mathrm{t}_{\text {THL }} \quad$ Transition Time, High-to-Low Level Output			20	33	ns
$\mathrm{t}_{\text {PLH }} \quad$ Propagation Delay Time, Low-to-High Level Output		10	31	48	ns
$\mathrm{t}_{\text {PHL }}$ Propagation Delay Time, High-to-Low Level Output		10	30	46	ns

ac test circuit and switching time waveforms

Nate 1: The pulse generator has the following chatectaristics: $P R R=1 \mathrm{MHz}, Z_{\text {OUT }} \approx 50 \Omega$.
Note 2- C_{L} includes probe and ig capacitance.
FIGURE 1, Switching Times, Each Driver

typical performance characteristics

typical performance characteristics (con't)

Propagation Deley Tima,
High-to-Low Level Output vs Ambient Temperature

Total Dissipation (All Four
Drivers) vs Frequency

Propegation Delay Time,
Low-to-High Level Output vs VCC2 Supply Voltage

Propagation Deley Time Low.to-High Level Outpuivs Ambient Temperature

Propagetion Delay Tima,
High-to-Low Level Output vs VCC2 Supply Voltage

Propegation Deley Time,
Low-to-High Level Output vs Load Capacitance

Propagation Delay Time, High-to-Low Level Output vs Loed Cepacitance

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or elimiriate this output transient
overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

FIGURE 2. Intarconnection of DS75365 Davices With 1103-Type Silicon-Gata MOS RAM

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75365 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75365 as a function of load capacitance and frequency. Average power dissipation by this driver can be broken into three components:

$$
P_{T(A V)}=P_{D C(A V)}+P_{C(A V)}+P_{S(A V)}
$$

where $P_{D C(A V)}$ is the steady-state power dissipation with the output high or low, $\mathrm{P}_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $\mathbf{P}_{\mathrm{S}(\mathrm{AV})}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$
\begin{aligned}
& P_{D C(A V)}=\frac{p_{L} t_{L}+p_{H} t_{H}}{T} \\
& P_{C(A V)} \approx C V_{C}{ }^{2} f \\
& P_{S(A V)}=\frac{p_{L H} t_{L H}+p_{H L} t_{H L}}{T}
\end{aligned}
$$

where the times are as defined in Figure 4.
$\rho_{\mathrm{L}}, \rho_{\mathrm{H}}, \rho_{\mathrm{LH}}$, and ρ_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75365 is so designed that P_{S} is a negligible portion of P_{T} in most applications. Except at very high frequencies, $t_{L}+t_{H} \gg t_{L H}+t_{H L}$ so that P_{S} can be
neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from all four channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume all four channels are operating identically with $\mathrm{C}=100 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=$ $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc} 3}=24 \mathrm{~V}$ and duty cycle $=60 \%$ outputs high $\left(\mathrm{t}_{\mathrm{H}} / \mathrm{T}=0.6\right)$. Also, assume $\mathrm{V}_{\mathrm{OH}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.1 \mathrm{~V}$, P_{S} is negligible, and that the current from $V_{C C 2}$ is negligible when the output is low.

On a per-channel basis using data sheet values:

$$
\begin{align*}
P_{D C(A V)}= & {\left[\left(5 \mathrm{~V}\left(\frac{4 \mathrm{~mA}}{4}\right)+(20 \mathrm{~V})\left(\frac{-2.2 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\right.\right.} \\
& \left.\left(\frac{2.2 \mathrm{~mA}}{4}\right)\right](0.6)+\left[(5 \mathrm{~V})\left(\frac{31 \mathrm{~mA}}{4}\right)+\right. \\
& \left.(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{4}\right)\right](0.4) \tag{0.4}
\end{align*}
$$

$$
\begin{aligned}
& P_{\mathrm{OC}(\mathrm{AV})}=58 \mathrm{~mW} \text { per channel } \\
& \mathrm{P}_{\mathrm{C}(\mathrm{AV})} \approx(100 \mathrm{pF})(19.9 \mathrm{~V})^{2}(2 \mathrm{MHz}) \\
& \mathrm{P}_{\mathrm{C}(\mathrm{AV})} \approx 79 \mathrm{~mW} \text { per channel. }
\end{aligned}
$$

For the total device dissipation of the four channels:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 4(58+79) \\
& \mathrm{P}_{\mathrm{T}(\mathrm{AV})} \approx 548 \mathrm{~mW} \text { typical for total package. }
\end{aligned}
$$

FIGURE 4. Output Voltage Waveform

Section 7

Magnetic Memory
Interface Circuits

TEMPERATURE RANGE
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ DS7520 DS7522
DS5522
DS5524
DS5528
DS5534
DS7524
DS7528
DS5538
DS7534
DS7538
DS75324
DS55325
DS75325

DESCRIPTION
PAGE NUMBER
7.1

Dual Core Memory Sense Amplifier
7.6

Dual Core Memory Sense Amplifier 7.8
Dual Core Memory Sense Amplifier
7-10
Dual Core Memory Sense Amplifier 7-12
Dual Core Memory Sense Amplifier
7-14
Memory Driver with Decoded Inputs 7.20

Memory Driver $\quad 7.26$7.26

MAGNETIC MEMORY INTERFACE CIRCUITS

DEVICE FUNCTION	LOGIC FUNCTION	TEMPERATURE	
		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Sense Amplifier	Dual Gated with Complementary Outputs or Latch	DS7520	DS5520
Sense Amplifier	Dual Gated, Open-Collector Outputs	DS7522	DS5522
Sense Amplifier	Duail Channel, May be Wire-OR	DS7524	DS5524
Sense Amplifier	Same as DS7524 with Test Points	DS7528	DS5528
Sense Amplifier	Same as DS7524 with Open-Collector Outputs	DS7534	DS5534
Sense Amplifier	Same as DS7534 with Test Points	DS7538	DS5538
Core Driver	Dual Decoded 400 mA Sink and Source Drivers	DS75324	
Core Driver	Dual 600 mA Sink and Source Drivers	DS75325	DS55325

Note. Comparators such as the LM711 and line receivers such as the DS75107 also may be used as sense amplifiers. Peripheral drivers such as the DS75450 also may be used as core drivers.

typical application

The devices in this series of dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTL/TTL compatible. All devices of the series have identical preamplifier configurations, while various logic connections are provided to suit the specific application.

The DS5520/DS7520 has output latch capability and provides sense, strobe, and memory function for two sense lines. The DS5522/DS7522 contains a single open collector output which may be used to expand the number of inputs of the DS5520/DS7520, or to drive an external Memory Data Register (MDR). Intended for small memories, the two channels of the DS5524/DS7524 are independent with two separate outputs. The DS5534/DS7534 is similar to the DS5524/ DS7524 but has uncommitted, wire-ORable outputs. The DS5528/DS7528 has the same logic configuration of the DS5524/DS7524 and in addition provides separate low impedance Test Points at each preamplifier output. A similar device having uncommitted, wire-ORable outputs is the DS5538/DS7538.
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Because these devices are duals that contain an internal regulator, care must be exercised in testing to insure that while one half is being tested, the other inputs must be grounded or connected to a signal that is within the input range of the device.

absolute maximum ratings

Supply Voltage	$\pm 7 \mathrm{~V}$
Differential or Reference Input Voltage	$\pm 5 \mathrm{~V}$
Logic Input Voltage	5.5 V
Operating Temperature Range	
\quad DS55XX	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DS75XX	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Storage Temperature Range

features

- High speed
- Guaranteed narrow threshold uncertainty over temperature
- Adjustable input threshold voltage
- Fast overload recovery times
- Two amplifiers per package
- Molded or cavity dual-in-line package
- Six logic configurations
\qquad

DS5520/DS7520

electrical characteristics

DS5520: The following apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
DS7520: The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Note 1: For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ operation, electrical characteristics for DS5520 are guaranteed the same as DS7520.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
Note 4: For minimum $V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 16 mA . For maximum $V_{T H}$ logic output is $>2.4 \mathrm{~V}$ at $-400 \mu \mathrm{~A}$.

DS5520/DS7520

switching characteristics

$V^{+}=5.0 \mathrm{~V}, V^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {pd1 }}$	Differential input to	$\mathrm{V}_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 1	Q Qutput		20	40	ns
	Logical "1"		$\overline{\mathrm{O}}$ Output		36	56	ns
$\mathbf{t}_{\text {pado }}$	Differential Input to Logical " 0 "	$V_{\text {REF }}=20 \mathrm{~mA}$, ac Test Circuit 1	O Output		28	50	ns
			Q Output		28	55	ns
$t_{\text {pd1 }}$	Strobe Input to Logical " 1 "	$\mathrm{V}_{\text {REF }}=20 \mathrm{~mA}$, ac Test Circuit 1	Q Qutput		10	30	ns
			Q Output		33	53	ns
${ }^{\text {pado }}$	Strobe Input to Logical "0"	$V_{\text {REF }}=20 \mathrm{~mA}$, ac Test Circuit 1	O Output		20	40	ns
			$\overline{\mathrm{O}}$ Output		16	55	ns
$t_{\text {pd }}$	Gate O Input to Logical " 1 "	$\mathrm{V}_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2	O Output		12	32	ns
			Q Qutput		17	20	ns
$t_{\text {pat }}$	Gate Q Input to Logical " 0 "	$V_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2	O Qutput		6	26	ns
			$\overline{\text { Q Output }}$		19	30	ns
taO_{1}	Gate \bar{O} Input to Logical "1"	$\mathrm{V}_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2, Q Qutput			12	32	ns
$t_{p d 0}$	Gate $\overline{\mathrm{O}}$ Input to Logical " 0 "	$V_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2, $\mathrm{O}_{\text {O }}$ Output			6	20	ns
${ }^{t} \mathrm{DR}$	Differential Input Overload Recovery Time	$V_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2			10	30	ns
$t_{\text {cmR }}$	Common-Mode Input Overload Recovery Time	$V_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2			5	25	ns
t_{Cr}	Minimum Cycle Time	$V_{\text {REF }}=20 \mathrm{mV}$, ac Test Circuit 2			200		ns
V_{CM}	AC Common-Mode Input Firing Voltage	Pulse			± 2.5		V

Note 1: For $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ operation, electrical characteristics for DS5520 are guaranteed the same as DS7520.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
Note 4: For minimum $V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 16 mA . For maximum $V_{T H}$ logic output is $>2.4 \mathrm{~V}$ at $-400 \mu \mathrm{~A}$.

DS5520/DS7520
schematic diagram

connection diagram

Dual-In-Line Package

Order Numbar DS5520J, DS7520J
or DS7520N
See NS Package J16A or N16A

DS5520/DS7520
AC test circuit (1)

voltage waveforms (1)

1. Pulse generator characteristics-
$Z_{\text {OUT }}=5052, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}=15 \pm 5 \mathrm{~ms}, \mathrm{PRR}=1 \mathrm{MHz}$
2 Propagation delays:
$A=$ Differential ınput to logical "1" output 0
$8=$ Qifferentisl input to logical " 0 " output $\mathbf{0}$
$\overline{0}=$ Difterental input to logeal " $\mathbf{0}$ " outpur $\overline{\mathrm{Q}}$
= Differential input to iogical " 1 " outpui 0
$\mathrm{E}=$ Strobe input to logreal "1" output 0
$F=$ Strobe input to logical " \mathbf{O} " output $\mathbf{0}$
$G=$ Strobe input to logical "O" output $\overline{\mathbf{Q}}$
$H=$ Strobe input to lomial " 1 " outpu $\overline{\mathbf{0}}$
Strobe input to logical " 1 " output 0

AC test circuit (2)
voltage waveforms

1. Pulse penarator characteristics:
$Z_{\text {out }}=50 \Omega, t_{1}=t_{4}=15 \pm 5 \mathrm{~ns}$, PRR $=9 \mathrm{MHz}$ 2. Propapation dilaye:
$A=$ Gate Q onput ta lonicen " O " output Q
$B=G$ ate Q input to logien " $\$$ " outaut 0
$\mathrm{C}=$ Gate \mathbf{Q} input to logical " 1 " output $\overline{\mathrm{O}}$
$\mathrm{Q}=\mathrm{Gatt} \mathrm{Q}$ input to lojical " O " output $\overline{\mathrm{Q}}$
$E=$ Gata $\overline{\mathbf{a}}$ input to logices " T " output $\overline{\mathbf{a}}$
$\mathbf{F}=$ Gate $\hat{\mathbf{Q}}$ input to logiens " 1 " output $\overline{\mathbf{a}}$

DS5522/DS7522

electrical characteristics

DS5522: The following apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$
DS7522: The following apply for $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential input Threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} \\ & \text { (Note } 4) \end{aligned}$	$V_{\text {REF }}=15 \mathrm{mV}$		11	15	19	mV
	Voltage		$V_{\text {REF }}=40 \mathrm{mV}$		36	40	44	mV
$\left.\right\|_{B \mid A S}$	Differential and Reference	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		DS5522		30	100	$\mu \mathrm{A}$
	Input Bias Current			DS7522		30	75	$\mu \mathrm{A}$
los	Differential Input Offset Current	$\mathrm{V}_{\mathrm{CC}}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$				0.5		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage				2			V
$\mathrm{I}_{\text {IH }}$	Logical "1 ' Input Current	$V_{C C}= \pm 5.25 \mathrm{~V}$	$V_{\text {IN }}=2.4 \mathrm{~V}$			5	40	$\mu \mathrm{A}$
	Strobe, Gate Inputs		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
V_{12}	Logical "0' Input Voltage						0.8	V
$\mathrm{I}_{\text {IL }}$	Logical " 0 ' Input Current Strobe, Gate Inputs	$\mathrm{V}_{\mathrm{CC}}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-1	-1.6	mA
$V_{C D}$	Input Clamp Voltage	$\mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}$					-1.5	V
VOH	Logical '1' Output Voltage	$\mathrm{V}_{\mathrm{CC}}= \pm 4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=-400 \mu \mathrm{~A}$			2.4	3.9		V
$l_{\text {Sc }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$			-2.1	-2.8	-3.5	mA
V_{OL}	Logical '0' Output Voltage	$\mathrm{V}_{\mathrm{cc}}= \pm 4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$				0.25	0.4	V
$\mathrm{I}_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$					250	$\mu \mathrm{A}$
$I_{\text {cc }+}$	V^{+}Supply Current	$V_{c c}= \pm 5.25 \mathrm{~V}$				23	36	mA
ICC	V^{-}Supply Current	$\mathrm{V}_{\text {Cc }}= \pm 5.25 \mathrm{~V}$				-13	-18	mA

switching characteristics The following apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{pd} 1}$	Differentral Input to Logical "1" Output	AC Test Circuit		26		ns
${ }^{\text {t }}$ pd	Strobe Input to Logical "1" Output	AC Test Circuit		22		ns
$t_{p d 1}$	Gate Input to Logical " 1 " Output	$V_{\text {CC }}= \pm 5.0 \mathrm{~V}, \mathrm{AC}$ Test Circuit		4		ns
$t_{p a O}$	Differential Inout to Logical "0" Output	AC Test Circuit		21	45	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Strobe Input to Logical "0" Output	AC Test Circuit		12	40	ns
$\mathrm{t}_{\text {pao }}$	Gate Input to Logical "0" Output	AC Test Circuit		15	25	ns
$t_{\text {DR }}$	Differential Input Overload Recovery Time			10		ns
${ }_{\text {t }}^{\text {cmi }}$	Common Mode Input Overload Recovery Time			5		ns
$\mathrm{t}_{\mathrm{C}} \mathrm{r}$	Minimum Cycle Time			200		ns
$V_{C M}$	AC Common-Mode Input Firing Voltage	Pulse		± 2.5		V

Note 1: For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ operation, electrical characteristics for DS5522 are guaranteed the same as DS7522.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
Note 4: For $\min V_{T H}$, logic output is $>2.4 \mathrm{~V}$ at $-400 \mu \mathrm{~A}$. For max $V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 16 mA .

DS5522/DS7522

schematic diagram

connection diagram

Drder Number DS5522J, DS7522J, DS7523J
DS7522N or DS5522W
See NS Package J16A, N16A or W16A

AC test circuit

voltage waveforms

1. Ane strobe is grounded when the other side is being tested. 2. Pulbo genera tor cheracterstics:
$Z_{\text {out }}=50 \mathrm{Sl}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{4}=15 \pm 5 \mathrm{~ns}$, PAR $=1 \mathrm{MHz}$
2. Propagation delays.
$A=$ Differential input to logital "Di" output
$B=0$ itterentisl input to logicel " 1 " output
$C=S$ troba input to logical " 0 " output
$0=$ Straba inpur to logical " 1 " output
E - Giste input to logical " 1 " output
$F=$ Gote input to logical " 0 " output

DS5524/DS7524

electrical characteristics

DS5524: The following apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
DS7524: The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{T H}$	Differential Input Threshold Voltage	$V_{C C}= \pm 5 \mathrm{~V}$ (Note 4)	$V_{\text {REF }}=15 \mathrm{mV}$		11	15	19	mV
			$V_{\text {REF }}=40 \mathrm{mV}$		36	40	44	mV
$I_{\text {BiAS }}$	Differential and Reference Input 8ias Current	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		DS5524		30	100	$\mu \mathrm{A}$
				DS7524		30	75	$\mu \mathrm{A}$
Ios	Differential Input Offset Current	$\mathrm{V}_{\text {CC }}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$				0.5		$\mu \mathrm{A}$
$V_{1 H}$	Logical "1" Input Voltage				2			V
$\mathrm{I}_{\text {IH }}$	Logical "1 'Input Current Strobe, Gate Inputs	$V_{C C}= \pm 5.25 \mathrm{~V}$	$V_{\text {IN }}=2.4 \mathrm{~V}$			5	40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
$V_{\text {IL }}$	Logical "0" Input Voltage						0.8	V
$I_{\text {IL }}$	Logical " 0 " Input Current Strobe, Gate Inputs	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{1 N}=0.4 \mathrm{~V}$				--1	-1.6	mA
V_{CD}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$					-1.5	V
V_{OH}	Logıcal "1" Output Voltage	$V_{C C}= \pm 4.75 \mathrm{~V}, 1_{0}=-400 \mu \mathrm{~A}$			2.4	3.9		V
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{cc}}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$			-2.1	-2.8	-3.5	mA
V_{OL}	Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}= \pm 4.75 \mathrm{~V}, \mathrm{I}_{0}=16 \mathrm{~mA}$				0.25	0.4	V
Icct	V^{+}Supply Current	$\mathrm{V}_{\mathrm{cc}}= \pm 5.25 \mathrm{~V}$				29	40	mA
${ }^{\text {Cce }-}$	V^{-}Supply Current	$V_{c c}= \pm 5.25 \mathrm{~V}$				-13	-18	mA

switching characteristics The following apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{\text {pal } 1}$	Differential Input to Logical "1" Output	AC Test Circuit		20	40	ns
${ }^{\text {tpal }}$	Strobe Input to Logical "1" Output	AC Test Circuit		10	30	ns
$\mathrm{t}_{\text {pao }}$	Differential Input to Logical " 0 " Output	$V_{C C}= \pm 5.0 \mathrm{~V}, \mathrm{AC}$ Test Circuit		28	45	ns
$t_{\text {pao }}$	Strobe Input to Logical "0" Output	AC Test Circuit		20	40	ns
${ }^{\text {t }}$ D	Differential Input Overload Recovery Time			10	30	ns
${ }_{\text {t }}^{\text {cmi }}$	Common-Mode Input Overload Recovery Time			5	25	ns
$\mathrm{t}_{\mathrm{c}} \mathrm{r}$	Minimum Cycle Time			200		ns
V_{CM}	AC Common-Mode Input Firing Voltage	Pulse		± 2.5		V

Note 1: For $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ operaticn, electrical characteristics for DS5524 are guaranteed the same as DS7524.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacito connected to ground.
Note 4: For min $V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 16 mA . For $\max \mathrm{V}_{\mathrm{TH}}$, logic output is $>2.4 \mathrm{~V}$ at $-400 \mu \mathrm{~A}$.

AC test circuit

voltage waveforms

1. Pulse menerator charicterstizs:
$Z_{\text {our }}=50 \Omega, \mathrm{t}_{4}=\mathrm{t}_{4}=15 \pm 5 \mathrm{~ms}, \mathrm{PAR}=1 \mathrm{MHz}$
2. Propegation derays:
$A=$ Differentiel input to lasical " f " output
$\mathrm{B}=\mathrm{Differentrel}$ ingut to logical " C " output
$C=$ Surbe input to lopical " 1 " output
$0=$ Strobe input to tonical " 0 " autput

DS5528/DS7528

electrical characteristics

DS5528: The following apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
DS7528: The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential input Threshold	$\begin{aligned} & V_{c c}= \pm 5 \mathrm{~V} . \\ & (\text { Note } 5) \end{aligned}$	$V_{\text {REF }}=15 \mathrm{mV}$		11	15	19	mV
	Voltage		$V_{\text {REF }}=40 \mathrm{mV}$		36	40	44	$m \mathrm{~V}$
$I_{\text {BIAS }}$	Differential and Reference Input Bias Current	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		DS5528		30	100	$\mu \mathrm{A}$
				DS7528		30	75	$\mu \mathrm{A}$
los	Differential Input Offset Current	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$				0.5		$\mu \mathrm{A}$
$\mathrm{V}_{1 \mathrm{H}}$	Logical "1" Input Voltage				2			V
I_{H}	Logical "1 'Input Current Strobe, Gate Inouts	$V_{C c}= \pm 5.25 \mathrm{~V}$	$V_{1 N}=2.4 \mathrm{~V}$			5	40	$\mu \mathrm{A}$
			$V_{1 N}=5.5 \mathrm{~V}$				1	mA
$V_{\text {IL }}$	Logical " 0 " Input Voltage						0.8	V
$1_{1 L}$	Logical "0" Input Current Strobe, Gate Inputs	$V_{\text {CC }}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-1	-1.6	mA
$V_{\text {CD }}$	Input Clamp Voltage	$\mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$					-1.5	V
V OH	Logical "1" Output Voltage	$V_{C C}= \pm 4.75 \mathrm{~V}, \mathrm{I}_{0}=-400 \mu \mathrm{~A}$			2.4	3.9		V
I_{SC}	Output Short Circuit Current	$V_{C C}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$			-2.1	-2.8	-3.5	mA
V_{OL}	Logical "0" Ourput Voltage	$V_{c c}= \pm 4.75 \mathrm{~V} .1_{0}=16 \mathrm{~mA}$				0.25	0.4	V
$1 \mathrm{CC}+$	V^{+}Supply Current	$V_{c c}= \pm 5.25 \mathrm{~V}$				29	40	mA
Icc	$V^{\text {- Supply Current }}$	$V_{C C}= \pm 5.25 \mathrm{~V}$				$\cdot 13$	-18	mA

switching characteristics The following apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

	PARAMETEF:	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pal }}$	Differential Input to Logical "1" Output	AC Test Circuit		20	40	ns
${ }^{\text {pad }}$	Strobe input to Logical "1" Onsput	AC Test Circuit		10	30	ns
$t_{\text {pdo }}$	Differential Input to Logical " 0 " Ouiput	$V_{C C}= \pm 5.0 \mathrm{~V}, \mathrm{AC}$ Test Circuit		28	45	ns
${ }_{\text {tpao }}$	Strobe Input to Logical " 0 " Output	AC. Test Circuit		20	40	ns
${ }^{\text {t }}$ (${ }^{\text {a }}$	Differential input Overload Recovery Time			10	30	ns
$t_{\text {cma }}$	Common-Mode Input Overload Recovery Time			5	25	ns
$\mathrm{t}_{\mathrm{C}} \mathrm{r}$	Minımum Cycle Tıme			200		ns
$V_{C M}$	AC Common-Mode Input Firing Voltage	Puise		+25		V

Note 1: For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ operation; electrical characteristics for DS5528 are guaranteed the same as OS7528.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
Note 4: Each test point to have $\leq 15 \mathrm{pF}$ capacitive load to ground.
Note 5: For $\min V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 16 mA . For $\max V_{T H}$, logic output is $>2.4 \mathrm{~V}$ at $-400 \mu \mathrm{~A}$.
schematic diagram
connection diagram

Dual-In-Line Package

Order Number DS5528」, DS7528J or DS7528N
See NS Package J16A or N16A

AC test circuit

voltage waveforms

DS5534/DS7534

electrical characteristics

DS5534: The following apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
DS7534: The following apply for $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential Input Threshold	$\begin{aligned} & V_{C C}= \pm 5 \mathrm{~V}, \\ & (\text { Note } 4) \end{aligned}$	$V_{\text {REF }}=15 \mathrm{mV}$		11	15	19	mV
	Voltage		$\mathrm{V}_{\text {REF }}=40 \mathrm{mV}$		36	40	44	$\mathrm{m} V$
$I_{\text {BIAS }}$	Differential and Reference Input Bias Current	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{1 N}=0 \mathrm{~V}$		DS5534		30	100	$\mu \mathrm{A}$
				DS7534		30	75	$\mu \mathrm{A}$
los	Differential Input Offset Current	$V_{C C}= \pm 5.25 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$				0.5		$\mu \mathrm{A}$
$V_{\text {IH }}$	Logical "1" Input Voltage				2			V
I_{IH}	Logical "1 ' Input Current	$V_{C C}= \pm 5.25 \mathrm{~V}$	$V_{\text {IN }}=2.4 \mathrm{~V}$			5	40	$\mu \mathrm{A}$
	Strobe, Gate Inputs		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				1	mA
$V_{\text {IL }}$	Logical "0" Input Voltage						0.8	V
$I_{\text {IL }}$	Logical " 0 ' Input Current Strobe, Gate Inputs	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V}$				-1	-1.6	mA
V_{CD}	Input Clamp Voltage	$\mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}$					-1.5	V
$\mathrm{V}_{\text {OL }}$	Logical "0" Output Voltage	$V_{C C}= \pm 4.75 \mathrm{~V}, I_{O}=16 \mathrm{~mA}$				0.25	0.4	V
$I_{\text {CEX }}$	Output Leakage Current	$\mathrm{V}_{0}=5.25 \mathrm{~V}$					250	$\mu \mathrm{A}$
ICC^{+}	V^{+}Supply Current	$V_{C C}= \pm 5.25 \mathrm{~V}$				28	38	mA
ICc-	V^{-}Supply Current	$V_{C C}= \pm 5.25 \mathrm{~V}$				-13	-18	mA

switching characteristics The following apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{pa} 1}$	Differential Input to Logical "1"Output	AC Test Circuit		24	44	ns
$t_{\text {pd } 1}$	Strobe Input to Logical "1" Output	AC Test Circuit		16	36	ns
$\mathrm{t}_{\text {poio }}$	Differential Input to Logical "0" Output	$\mathrm{V}_{\mathrm{CC}}= \pm 5.0 \mathrm{~V}, \mathrm{AC}$ Test Circuit		20	40	ns
$t_{\text {poo }}$	Strobe Input to Logical "0" Output	AC Test Circuit		10	30	ns
t_{DR}	Differential Input Overload Recovery Time			10	30	ns
$\mathrm{t}_{\text {cmi }}$	Common-Mode Input Overload Recovery Time			5	25	ns
t_{Cr}	Minimum Cycle Time			200		ns
$V_{\text {CM }}$	AC Common-Mode Input Firing Voltage	Pulse		± 2.5		V

Note 1: For $0^{\circ} \mathrm{C} \leq T_{\mathrm{T}} \leq+70^{\circ} \mathrm{C}$ operation, electrical characteristics for DS5534 are guaranteed the same as DS7534.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor connected to ground.
Note 4: For $\min V_{T H}$, logrc output is $<250 \mu \mathrm{~A}$ at 5.25 V . For max $V_{T H}$, logic output is $<0.4 \mathrm{~V}$ at 20 mA .
schematic diagram

connection diagram

Dual-In-Line Package

Order Number DS5534J, DS7534.J or DS7534N
See NS Package J16A or N16A

AC test circuit

voltage waveforms

1. Pulse generator chalacteristics
$Z_{\text {OUT }}=50 \therefore \mathrm{~L},=\mathrm{t}_{\mathrm{f}}=15+5 \mathrm{~ns}$, PRR $=\$ \mathrm{MHz}$
2. Propagation delays.
$A=$ Differential input to logical " 0 " putpal
$B=$ Differentis input ta logical " 1 " output
$C=$ Stuobe input to lagical " 0 " outpui
$0=$ Stiobe input to logical " 1 " output

DS5538/DS7538

electrical characteristics

DS5538: The following apply for $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
DS7538: The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{\text {TH }}$	Differential Input Threshold	$\begin{aligned} & V_{C C}= \pm 5 \mathrm{~V}, \\ & (\text { Note } 5) \end{aligned}$	$V_{\text {REF }}=15 \mathrm{mV}$		11	15	19	mV
	Voltage		$V_{\text {REF }}=40 \mathrm{mV}$		36	40	44	$m \mathrm{~V}$
$I_{\text {BIAS }}$	Differential and Reference Input Bias Current	$V_{C C}= \pm 5.25 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		DS5538		30	100	$\mu \mathrm{A}$
				DS7538		30	75	$\mu \mathrm{A}$
los	Differential Input Offset Current	$V_{\text {CC }}=+5.25 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$				05		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage				2			\checkmark
$\mathrm{I}_{1 H}$	Logical "1 ' Input Current	$\mathrm{V}_{\mathrm{Cc}}{ }^{-} \pm 5.25 \mathrm{~V}$	$V_{\text {in }}=2.4 \mathrm{~V}$			5	40	$\mu \mathrm{A}$
	Strobe, Gate Inputs		$V_{1 N}=55 \mathrm{~V}$				1	mA
$V_{\text {IL }}$	Logical "0" Input Voltage						0.8	\checkmark
$I_{\text {IL }}$	Logical '0" Input Current Strobe, Gate Inputs	$V_{C C}= \pm 525 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V}$				-1	-1.6	mA
$V_{\text {CO }}$	Input Ctamp Voltage	$\mathrm{I}_{\text {IN }}--12 \mathrm{~mA}$					-1.5	V
$\mathrm{VOL}_{\mathrm{OL}}$	Logical "0" Output Voltage	$V_{C C}= \pm 475 \mathrm{~V}, \mathrm{I}_{0}=16 \mathrm{~mA}$				0.25	0.4	V
${ }_{\text {I CEX }}$	Output Leakage Current	$\mathrm{V}_{0}-525 \mathrm{~V}$					250	$\mu \mathrm{A}$
$1 \mathrm{CC}+$	V^{+}Supply Current	$V_{\text {CC }}=+525 \mathrm{~V}$				28	38	mA
ICC_{-}	V^{-}Supply Curront	$V_{c c}-+5.25 \mathrm{~V}$				-13	-18	mA

switching characteristics T he following apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	Ufits
$\mathrm{t}_{\text {pat }}$	Differential Input to Logical "1" Output	AC Test Circuit		24	45	ns
$\mathrm{t}_{\text {pat }}$	Strobe Input to Logical "1" Output	AC Test Circuit		16	40	ns
$\mathrm{t}_{\text {pdo }}$	Differential input to Logical " 0 " Output	$\mathrm{V}_{\mathrm{CC}}= \pm 5.0 \mathrm{~V}, \mathrm{AC}$ Test Circuit		20	40	ns
$t_{\text {pao }}$	Strobe Input to Logical "0" Output	AC Test Circuit		10	30	ns
${ }_{\text {t }}$	Differential Input Overload Recovery Time			10	30	ns
${ }^{\text {cma }}$	Common-Mode Input Overload Recovery Time			5	25	ns
${ }^{\text {t }} \mathrm{Cr}$	Minimum Cycle Time			200		ns
V_{CM}	AC Common-Mode tnput Firing Voltage	Pulse		± 2.5		V

Note 1: For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ operation, electrical characteristics for DS5538 are guaranteed the same as DS7538.
Note 2: Positive current is defined as current into the referenced pin.
Note 3: Pin 1 to have $\geq 100 \mathrm{pF}$ capacitor sonnected to ground.
Note 4: Each test point to have $\leq 15 \mathrm{pF}$ capacitive toad to ground.
Note 5: For min $V_{T H}$, logic output is $<250 \mu \mathrm{~A}$ at 5.25 V . For $\max V_{\mathrm{TH}}$, logic output is $<0.4 \mathrm{~V}$ at 20 mA .
schematic diagram

connection diagram

Order Number DS5538J, DS7538J
or DS7538N
See NS Package J16A or N16A

AC test circuit

voltage waveforms

guaranteed performance characteristics

typical performance characteristics

typical performance characteristics (cont.)

typical performance characteristics (cont.)

typical applications

Large Memory System with Sectored Core Planes

typical applications (cont.)

Large Memory System

DS75324 memory driver with decode inputs

general description

The DS75324 is a monolithic memory driver which features two 400 mA (source/sink) switch pairs along with decoding capability from four address lines. Inputs B and C function as mode selection lines (source or sink) while lines A and D are used for switch-par selection (output parr \mathbf{Y} / \mathbf{Z} or $W / X)$.

features

- High voltage outputs
- Dual sink/source outputs
- Internal decoding and timing circuitry
- 400 mA output capability
- LSITTL compatible
- Input clamping diodes

schematic and connection diagrams

Supply Voltage V_{CC} (Note 4)	17 V
Input Voltage (Note 5)	5.5 V
Operating Case Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Dissipation	800 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics $\quad\left(V C C=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted) (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {IN(1) }}$	Input Voltage Required to Insure Logical "1" At Any Input	(Figure 1)		3.5			V
$V_{\text {IN(0) }}$	Input Voltage Required to Insure Logical " 0 " At Any Input	(Figure 1)				0.8	V
$I_{\text {IN(1) }}$	Logical "1" Level Input Current	$V_{I N}=5 \mathrm{~V}$ (Figure 1)	Address Input			200	$\mu \mathrm{A}$
			Timing Input			100	$\mu \mathrm{A}$
IIN(O)	Logical ' 0 ' Level Input Current	$V_{I N}=0 V,$ (Figure 1)	Address Input			-6	mA
			Timing Input			-12	mA
$V_{\text {SAT }}$	Saturation Voltage	(Figure 2)	Sink, $I_{\text {SINK }} \simeq 420 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=53 \Omega$.		0.75	0.85	V
			Source, $\mathrm{I}_{\text {SOURCE }} \simeq-420 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=475 \Omega$		0.75	0.85	V
loff	Output Reverse Current ("OFF" State)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$.	Figure 1)		125	200	$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply Current	All Sources and Sinks OFF, V ${ }_{\text {IN }}=0 \mathrm{~V}$, (Figure 3)			12.5	15	mA
		(Figure 4)	Ether Sink Selected		30	40	mA
			Either Source Selected		25	35	mA
V_{1}	Input Clamp Voltage	$\mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$				-1.5	V

switching characteristics $\left(V_{C C}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay Time to Logical "1" Level	$C_{L}=20 \mathrm{pF}$	Sink Output, $R_{\text {L }}=53 \Omega$, (Figure 6)			110	ns
			Source Output, $R_{L 1}=53 \Omega$, $R_{L 2}=500 \Omega$, (Figure 5)			90	ns
$t_{\text {pad }}$	Propagation Delay Time to Logical ' 0 ' Level	$C_{L}=20 \mathrm{pF}$	Sink Output, $R_{L}=53 \Omega$, (Figure 6)			40	ns
			Source Output, $R_{L, i}=53 \Omega$, $R_{\mathrm{L} 2}=500$ 2, (Figure 5)			50	ns
t_{5}	Sink Storage Time					70	ก5

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DS75324.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Voltage values are with respect to network ground terminal.
Note 5: Input signals must be zero or positive with respect to network ground terminal.

truth table

INPUTS							OUTPUTS			
ADDRESS				TIMING			$\frac{\text { SINK }}{w}$	SOURCES		$\frac{\operatorname{SINK}}{2}$
A	B	c	D	E	F	G		x	Y	
0	0	1	1	1	1	1	ON	OFF	OFF	OFF
0	1	0	1	1	1	1	OFF	ON	OFF	OFF
1	1	0	0	1	1	1	OFF	OFF	ON	OFF
1	0	1	0	1	1	1	OFF	OFF	OFF	ON
x	x	x	x	0	x	\times	OFF	OFF	OFF	OFF
X	x	x	x	\times	0	x	OFF	OFF	OFF	OFF
\times	\times	\times		\times	\times	0	OFF	OFF	OFF	OFF

test circuits and switching time waveforms

Nole 2. Measure $\mathrm{I}_{\text {tiviot }}$ per test table
Noie 3 When measuring lini11, all other inputs are at GNO Each input is tested separately

TEST TABLE FOR IIN(O)

APPLY 3.5V	GROUND	TEST I IN(O)
B, C, E, F, and G	A and D	A
B, C, E, F, and G	A and D	D
A, D, E, F, and G	B and C	B
A, D, E, F, and G	B and C	C
A, B, C. D, F, and G	E	E
A, B, C, D. E, and G	F	F
A, B, C, D, E, and F	G	G

FIGURE 1. $V_{\text {IN }}(0), V_{\text {IN }}(1), \operatorname{IIN}(0)$, IIN(1), and Ioff
test circuits and switching time waveforms (con't)

Note This parameter must he measured umno puise techmques
$t_{p}=500 \mathrm{~ns}$, duly cycie $=1 \%$

FIGURE 2. $V_{(S A T)}$

FIGURE 3. ICC (All Outputs "OFF")

test circuits and switching time waveforms (con't)

Note 1 GNO A ant 8 , apply +3.5 V to C and D , and measure I_{CC} (output W is on)
Note 2 GND B and D apply +35 V 10 A and C . and measure $I_{\text {CC }}$ (outpur Z is on)
Note 3 GNO A and C. apply +35 V to B and D . and measure Icc <output X is ont
Note 4. GNO C and D, apply +3.5 V to A and B . and mensure $I_{\text {cc }}$ (output Y is on)

FIGURE 4. ICC One Output "ON")

FIGURE 5. Source-Output Switching Times

test circuits and switching time waveforms (con't)

FIGURE 6. Sink-Output Switching Times

Magnetic Memory Interface Circuits

DS55325/DS75325 memory drivers general description

The DS55325 and DS75325 are monolithic memory drivers which feature high current outputs as well as internal decoding of logic inputs These circuits are designed for use with magnetic memories
The circuit contains two 600 mA sink-switch pars and two 600 mA source-switch parrs. Inputs A and B determine source selection while the source strobe (S,) allows the selected source turn on. In the same manner, inputs C and D determine sink selection while the sink strobe (S_{2}) allows the selected sink turn on.

Sink-output collectors teature an internal pull-up resistor in parallel with a clamping diode connected to $\mathrm{V}_{\mathrm{cc} 2}$. This protects the outputs from voltage surges associated with switching inductive loads

The source stage features Node R which allows extreme fiexibility in source current selection by controlling the amount of base dr ve to each source transistor. This method of setting the base drive brings the power associated with the resistot out side the package thereby allowing the circuit to
operate at higher source curients for a given junction temperature. If this method of source current setting is not desired, then Nodes R and $R_{\text {INT }}$ can be shorted externally activating an internal resistor connected from $\mathrm{V}_{\mathrm{CC} 2}$ to Node R . This provides adequate base drive for source currents up to 375 mA with $\mathrm{V}_{\mathrm{CC} 2}-15 \mathrm{~V}$ or 600 mA with $\mathrm{V}_{\mathrm{CC} 2}$ ~ 24 V .
The DS55325 operates over the fully military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, while the DS5325 operates from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

features

- 600 mA output capability
- 24 V output capability
- Dual sink and dual source outputs
- Fast switching tımes
- Source base drive externally adjustable
- Input clamping diodes
- LS.TTL compatible
schematic and connection diagrams

Order Number DS55325J, DS75325J, DS75325N or DS55325W
See NS Package J14A, N14A or W14A
truth table

ADDRESS INPUTS				STROEE INPUTS		Outputs			
SOURCE		SINK		SOURCE $\$ 1$	SINK \$2	SOURCE		SINK	
A	8	c	0			W	x	\checkmark	2
	H	x	x	1	H	ON	OFF	OFF	OFF
H	L	x	X	L	H	OFF	ON	OFF	GFF
x	x	L	H	H	L	OFF	OFF	ON	OFF
x	x	H	L	H	L	OFF	OFF	OFF	ON
K	\times	X	x	H	H	OFF	OFF	OFF	OFF
H	H	H	H	\times	\times	OFF	OFF	OFF	OFF

$H=$ high level, L - Iow level, $X=$ urrelevant
NOTE Not more than one output is to be on at any one time.
absolute maximum ratings (Note 1)

			MIN	MAX	UNITS
Supply Voltage $V_{\text {CC1 }}$ (Note 5)	7 V	Temperature (T_{A})			
Supply Voltage $V_{\text {CC2 }}$ (Note 5)	25 V	DS55325	-55	+125	${ }^{\circ} \mathrm{C}$
Input Voltage (Any Address or Strobe Input)	5.5 V	DS75325	0	+70	C
Power Dissipation	600 mW				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$				

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$V_{1 H}$	High Level Input Voltage	(Figures 1 and 2)			2			\checkmark
$V_{\text {IL }}$	Low Level Input Voltage	(Figures 3 and 4)					0.8	\checkmark
V	Input Clamp Voltage	$\begin{aligned} & V_{C C 1}=45 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA} . \\ & \mathrm{T}_{\mathrm{A}}=25^{-} \mathrm{C}, \text { (Figure } 5 \text {) } \end{aligned}$				-13	-17	V
loff	Source Collectors Teimiral 'OFF" State Current	$V_{C C 1}=45 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V} .$ (Figure 1)	Full Range	DS55325			500	$\mu \mathrm{A}$
				DS75325			200	$\mu \mathrm{A}$
			$T_{A}=25^{\circ} \mathrm{C}$	DS55325		3	150	$\mu \mathrm{A}$
				DS75325		3	200	$\mu \mathrm{A}$
V_{OH}	High Level Sink Output Voltage	$V_{C C 1}=4.5 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0,($ F Gure 2)			19	23		\checkmark
$V_{\text {SAT }}$	Saturation Voltage Souice Outputs	$\begin{aligned} & V_{C C 1}=45 \mathrm{~V}, V_{C C 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega 2, \\ & \mathrm{I}_{\text {SOURCE }} \approx-600 \mathrm{~mA}, \\ & \left(F_{\text {Igure }} 3\right),(\text { Notes } 4 \text { and } 6) \end{aligned}$	Full Range				0.9	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		043	0.7	V
				DS75325		0.43	0.75	V
$V_{\text {SAT }}$	Saturation Voltage Sink Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC1}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC2}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \leq 2 . \\ & \mathrm{I}_{\mathrm{S} \mid \mathrm{NK}} \approx 600 \mathrm{~mA},(\text { Figure } 4), \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	Full Range				0.9	V
			$T_{A}=25^{\wedge} \mathrm{C}$	DS55325		0.43	0.7	V
			A $=25$	DS75325		0.43	0.75	V
1	Input Current at Max.mum Input Voltage	$\begin{aligned} & V_{C C 1}=5.5 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}, \\ & V_{1}=5.5 \mathrm{~V}, \text { (Figure } 5 \text {) } \end{aligned}$	Address Inputs				1	mA
			Strobe Inputs				2	mA
$\mathrm{I}_{1} \mathrm{H}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \\ & \left.\mathrm{~V}_{1}=2.4 \mathrm{~V}, \text { (Figure } 5\right) \end{aligned}$	Address Inputs			3	40	$\mu \mathrm{A}$
			Strobe Inputs			6	80	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Curient	$\begin{aligned} & V_{\mathrm{CC}_{1}}=55 \mathrm{~V} \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} . \\ & \left.\mathrm{V}_{1}=0.4 \mathrm{~V}, \text { (Figure } 5\right) \end{aligned}$	Address Inputs			-1	-1.6	mA
			Strohe Inputs			-2	-3.2	mA
ICCOFF	Supply Current, All Sources and Sinks "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=55 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { (Figure 6) } \end{aligned}$	$\mathrm{V}_{\mathrm{cc} 1}$			14	22	$m A$
			$\mathrm{V}_{\mathrm{CC} 2}$			7.5	20	mA
${ }^{\text {tecl }}$	Supply Current From $V_{\text {CCl }}$. Either Sink "ON"	$\begin{aligned} & V_{C C 1}=5.5 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}, I_{\text {SINK }}=50 \mathrm{~mA} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} .\left(\mathrm{F}_{\text {IGure }} 7\right) \end{aligned}$				55	70	mA
${ }^{\text {cce }}$	Supply Curtent From V:ecz, Elther Source "ON"	$\begin{aligned} & V_{C C 1}=55 \mathrm{~V}, V_{C C 2}=24 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=-50 \mathrm{~mA}, \\ & T_{A}=25 \mathrm{C},\left(\text { Figure 8) }^{2}\right. \end{aligned}$				32	50	mA

operating conditions

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$
switching characteristics $\left(V_{c c 1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLH }}$	Propagation Delay Time, Low to-High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC2}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF},(\text { Figure } 9) \end{aligned}$	Source Collectars		25	50	ns
	Level Output		Sink Outputs		20	45	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High to Low Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC2}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \left.\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \text { (Figure } 9\right) \end{aligned}$	Source Collectors		25	50	ns
			Sink Outputs		20	45	ns
$\mathbf{t}_{\mathbf{T} \text { LH }}$	Transition Time, Low-to•High Level Output	$C_{L}=25 \mathrm{pF}$	Source Outputs, $\mathrm{V}_{\mathrm{Cc} 2}=20 \mathrm{~V}$, $R_{\mathrm{L}}=1 \mathrm{k} \Omega$. (Figure 10)		55		nis
			Sink Outputs, $V_{C C 2}=15 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=24 \Omega$, (Figure 9)		7	15	ns
$t_{\text {THL }}$	Transition Tıme, High to Low Level Output	$C_{L}=25 \mathrm{pF}$	Source Outputs, $\mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, (Figure 10)		7		ns
			Sink Outputs, $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$. $\mathrm{R}_{\mathrm{L}}=24 \Omega$, (Figure 9)		9	20	ns
t_{5}	Storage Time, Sink Outputs	$\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, (Figure 9)			15	30	ns

dc test circuits

A	B	S1
GND	GND	$2 V$
$2 V$	$2 V$	GND

figure 1. Ioff

test table

\mathbf{C}	D	S2	\mathbf{Y}	\mathbf{Z}
2 V	45 V	GND	$V_{O H}$	OPEN
GND	45 V	2 V	$V_{O H}$	OPEN
4.5 V	2 V	GND	OPEN	$V_{O H}$
45 V	GND	2 V	OPEN	V_{OH}

FIGURE 2. $\mathrm{V}_{\text {IH }}$ and V_{OH}

dc test circuits(con't)

Nate 1 Figures 3 and 4 parameters musi be measured using pulse techniques $t_{w}=200 \mathrm{Ls}$, duty cycle $\leq 2 \%$
test table

A	B	$S 1$	W	X
0.8 V	4.5 V	0.8 V	GND	OPEN
4.5 V	0.8 V	08 V	OPEN	GND

FIGURE 3. $V_{\text {IL }}$ and Source $V_{S A T}$

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
0.8 V	4.5 V	0.8 V	\mathbf{R}_{L}	OPEN
4.5 V	0.8 V	0.8 V	OPEN	R_{L}

FIGURE 4. $V_{\text {il }}$ and Sink $V_{S A T}$

$I_{1}, I_{1 H}$

APPLY $V_{1}=5.5 \mathrm{~V}$ MEASURE 1_{1}	GROUND	APPLY 5.5V
APPLY $V_{1}=2.4 \mathrm{~V}$ MEASURE		
A	S1	B, C, S2, D
S1	A. B	C. S2, D
8	S1	A, C, S2, D
C	S2	A, S1, B, D
S2	C. D	A, S1, B
D	S2	A, S1, B, C

test tables
V_{1}, I_{11}

APPLY $V_{1}=0.4 \mathrm{~V}$. MEASUREIIL	APPLY5.5V
APPLY $I_{1}=-10 \mathrm{~mA}$, MEASURE V_{1}	
A	S1, B, C. S2, D
S 1	A, B, C, S2, D
B	A, S1, C, S2, D
C	A, S1, B, S2, D
S2	A, S1, B, C, D
D	A. S1, B, C, S2

FIGURE 5. $V_{1}, i_{1}, I_{I} H$, and $I_{I L}$

dc test circuits(con't)

FIGURE 6. ICCI(OFF) and ICC2(OFF)

FIGURE 7. 'CC1, Either Sink On

test table

A	8	S 1
GND	$5 V$	GND
$5 V$	GND	GND

FIGURE 8. ICC2, Either Source On

dc test circuits(con't)

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
tPLH and tphl	Source collectors	A and $S 1$	B, C and $S 2$
		B and SI	A C D and S2
	Sink output Y	C and S 2	A, B and S I
	Sink output Z	D and S2	A B. C and $\mathrm{Si}^{\text {i }}$

FIGURE 9. Switching Times

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
tTLH and TTHL	Source output W	A and S1	B. C. D, and S2
	Source output X	B and St	A, C, D, and S2

FIGURE 10. Transition Times of Source Outputs

applications

External Resistor Calculation

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one DS75325 delivers load current (I_{L}). The sink-output transistor of another DS75325 sinks this current.

The value of the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) for a particular memory application may be determined using the following equation:

$$
\begin{equation*}
R_{\text {ext }}=\frac{16\left(V_{\mathrm{CC} 2(\min)}-V_{S}-2.2\right]}{I_{L}-1.6\left[V_{\mathrm{cc} 2(\mathrm{~min})}-V_{S}-2.9\right]} \tag{1}
\end{equation*}
$$

where: $R_{\text {ext }}$ is in $k \Omega$,
$V_{\text {cc2(min) }}$ is the lowest expected value of $V_{\mathrm{CC} 2}$ in volts, V_{S} is the scurce output voltage in volts with respect to ground, I_{L} is in mA .

The power dissipated in resistor $R_{\text {ext }}$ during the load current pulse duration is calculated using Equation 2.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{Rext}} \approx \frac{\mathrm{I}_{\mathrm{L}}}{16}\left[\mathrm{~V}_{\mathrm{CC} 2(\mathrm{~min})}-\mathrm{V}_{\mathrm{S}}-2\right] \tag{2}
\end{equation*}
$$

where: $P_{\text {Rext }}$ is in mW .

After solving for $R_{\text {ext }}$, the magnitude of the source collector current (I_{cs}) is determined from Equation 3.

$$
\begin{equation*}
I_{\mathrm{cs}} \approx 0.94 \mathrm{I}_{\mathrm{L}} \tag{3}
\end{equation*}
$$

where: $I_{C S}$ is in mA.
As an example, let $V_{c c 2}\{\mathrm{~min}\}=20 \mathrm{~V}$ and $V_{L}=3 \mathrm{~V}$ while I_{L} of 500 mA flows. Using Equation 1:

$$
R_{e x t}=\frac{16(20-3-2.2)}{500-1.6(20-3-2.9)}=0.5 \mathrm{k} \Omega
$$

and from Equation 2

$$
P_{\mathrm{Rext}} \approx \frac{500}{16}[20-3-2] \approx .470 \mathrm{~mW}
$$

The amount of the memory system current source (Ics) from Equation 3 is.

$$
I_{\mathrm{cs}} \approx 0.94(500) \approx 470 \mathrm{~mA}
$$

In this example the regulated source-output transistor base current through the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) and the source gate is approximately 30 mA . This current and I_{cs} comprise I_{L}.

Note 1. For clerity, pantiel logic dragams of two 0555325's ere shown. Nate 2. Source and sink shaym aro in different packayes

FIGURE 11. Typical Application Data

Section 8
 Microprocessor Support Circuits

TEMPERATURE RANGE		DESCRIPTION	PAGE
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		NUMBER
	DP4201	Clock Generator	8-1
DP8212M	DP8212	8-Bit Input/Output Port	8.5
DP8216M, 26M	DP8216, 26	4-Bit Bidirectional Bus Transceiver	8-12
	DP8224	Clock Generator and Driver	8-17
DP8228M, 38M	DP822B, 3B	System Controller and Bus Driver	8-23
	DP8300	PACE Bidirectional Transceiver Element (PACE BTE/8)	8-28
	DP8302, 05	PACE System Timing Element (PACE STE)	8.35
DP7304B	DP8304B	B-Bit TRI-STATE ${ }^{\circledR}$ Bidirectional Transceiver	B-40
	DP8350	Programmable CRT Controllers	B-45

MICROPROCESSOR SUPPORT CIRCUITS						
DESCRIPTION	4004	PACE	GENERAL PURPOSE	8080	PART NUMBER	
					$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Series 40 Clock Generator	\bullet				DP4201	
8-Bit I/O Port			-	\bullet	DP8212	DP8212M
4-8it Parallel Receiver/Driver			\bullet	-	DP8216,	DP8216M,
					DP8226	DP8226M
Clock Generator/Driver				-	DP8224	
System Controller/Bus Driver				-	DP8228,	DP8228M,
					DP8238	DP8238M
PACE 8-Bit Parallel Receiver/Driver		-			DP8300	
$8-8$ it 48 mA 8 us Driver			-		DP83048	DP7304B
PACE Clock Generator Driver		-			DP8305	
CRT Controller		-	-	\bullet	DP8350	
Octal D-Type Latch			-		MM74C373	MM54C373
Octal D-Type Flip-Flop			-		MM74C374	MM54C374
16-Key Encoder			-		MM74C922	MM54C922
20-Key Encoder			-		MM54C923	MM54C923
Octal Transparent D Latch			-		SN74LS373	SN54LS373
Octal Edge-Triggered D Flip-Flop			-		SN74LS374	SN54LS374

Microprocessor Support Circuits

DP4201 clock generator

general description

The DP4201 Clock Generator is designed for 4004 micro-computer series family applications, and satisfies clock signal requirements MCS-40 ${ }^{\text {TM }}$ and FIPS (4-Bit Integrated Processing System) micro-computer devices. An externally crystal controlled oscillator is required for generation of TTL and MOS level clock signals. Power "ON" or external reset may be accomplished with the DP4:201. A single step feature also exists.

features

- Satisfies clock requirements for FIPS and MCS-40
- Crystal controlled oscillator
- MOS and TTL level clock outputs
- Power "ON" and external reset control
- Operative frequency from dc to 6 MHz

block diagram

connection diagram

Order Number DP4201J or DP4201N
See NS Package J16A or N16A

absolute maximum ratings (Note 1)

$V_{C C}-V_{D D}$ de Supply Voltage $\quad-0.5$ to $+18 V_{D C}$
$V_{\text {IN }}$ Input Voltage $\quad V_{D D}-0.3$ to $V_{C C}+0.5 V_{D C}$
TS Storage Temperature Range P_{D} Package Dissipation $\quad 500 \mathrm{~mW}$ T_{L} Lead Temperature (Soldering, 10 seconds) 00 m
recommended operating conditions
$V_{C C}-V_{D D} d e$ Supply Voltage
$V_{C C}$ - Gnd dc Supply Voltage
VIN Input Voltage
TA Operating Temperature Range
$15 V_{D C}$
$5 V_{D C}$
$V_{D D}$ to $V_{C C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
electrical characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%$, Gnd $=\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V} \pm 5 \%$

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{1} \mathrm{CC}$	Supply Current (Measurement in V_{CC} Pin)	Static Operation, Pin 6, $\operatorname{Pin} 9=V_{C C}$, $\operatorname{Pin} 12, \operatorname{Pin} 10=V_{D D}$, $\operatorname{Pin} 7=V_{C C}$			300	$\mu \mathrm{A}$
	-	Dynamic Operation, 5.185 MHz Crystal, $C_{L}=20 \mathrm{pF}, \phi_{1}$ and ϕ_{2}			25	mA
'L1	Input Leakage Current	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {DD }}$. All Inputs Except $\times 1, \times 2, N$. Open, N. Closed			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage	All Inputs Except X1, X2, Reset	$V_{C C}-1.5$		$v_{C C}+0.5$	V
$V_{\text {IL }}$	Input Low Voltage	All Inputs Except $\times 1$, X2, Reset	VDD		$\mathrm{V}_{\mathrm{CC}}{ }^{-13}$	V
VOH	Output High Voltage	Capacitive Load Only	$V_{C C}{ }^{-1.5}$		VCC	\checkmark
VOL	Output Low Voltage	Capacitive Load Only	VDD		$V_{C C}{ }^{-13.4}$	V
V_{OH}	$\phi_{1} \mathrm{~T}, \phi_{2} \mathrm{~T}$. Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$V_{C C}-0.75$			V
VOL	$\phi_{1} \mathrm{~T}, \phi_{2} \mathrm{~T}$ Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			Gnd +0.5	V
IOL	ϕ_{1}, ϕ_{2} Sink Current	$\begin{aligned} & \text { VOUT }=V_{\text {CC }}, \text { Pulse } \\ & \text { Width } \leq 1 \mu \mathrm{~s} \end{aligned}$	400			mA
${ }^{\mathrm{IOH}}$	ϕ_{1}, ϕ_{2} Source Current	$V_{\text {OUT }}=V_{\text {DD }}$	180			mA
${ }^{\text {IOL }}$	ϕ_{17} T, $\phi_{2 T}$ S Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$	15			mA
IOH	ϕ_{17} T, $\phi_{2 T}$ Source Current	$V_{\text {OUT }}=V_{\text {DD }}$	8			mA
IOL	Reset Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$	6			$m A$
$\mathrm{IOH}^{\text {I }}$	Reset Source Current	$V_{\text {OUT }}=V_{\text {DD }}$	6			mA
IOL	Stop Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$	1			mA
${ }^{\mathrm{O}} \mathrm{OH}$	Stop Source Current	$V_{\text {OUT }}=V_{\text {DD }}$	1			mA
$V_{\text {IL }}$	Reset Input Low Voltage		$V_{\text {D }}$		$V_{C C}{ }^{-11}$	V
$V_{\text {IH }}$	Reset Input High Voitage		$V_{C C}{ }^{-6.5}$		$v_{C C}+0.5$	V
R_{1}	Pull-Up Resistance on N. Open, N. Closed	$V_{\text {IN }}=V_{\text {DD }}$	20		120	k Ω
$\mathrm{CiN}^{\text {d }}$	Input Capacitance	All Inputs Except $\times 1, \times 2$		5		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
switching characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 5 \%, \mathrm{Gnd}=\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V} \pm 5 \%, 1.35 \mathrm{~ns} \leq \mathrm{t}_{\mathrm{Cy}} \leq 2 \mu \mathrm{~s}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{t} \mathrm{cy}$	Clock Period	Mode $=$ VCC		t×TAL×7		ns
${ }^{t_{\phi} \mathrm{PW}}$	Clock Pulse Width	Mode $=V_{\text {CC }}$	$(2 / 7)_{t_{c y}}-10$	(2/7) t_{c}	(2/7) $\mathrm{t}_{\mathrm{cy}}+10$	ns
$t_{\phi}{ }^{\text {D }} 1$	Clock Delay From ϕ_{1} to ϕ_{2}	Mode $=V_{\text {CC }}$	$(2 / 7) \mathrm{t}_{\mathrm{cy}}{ }^{-10}$	$(2 / 7) t_{c y}$	$(2 / 7) t_{c y}+10$	ns
${ }_{t}{ }_{\text {D }}{ }^{\text {2 }}$	Clock Delay From ϕ_{2} to ϕ_{1}	Mode $=$ VCC	$(1 / 7) \mathrm{t}_{\mathrm{cy}}-10$	$(1 / 7) \mathrm{t}_{\mathrm{cy}}$	$(1 / 7) \mathrm{t}_{\mathrm{cy}}+10$	ns
$\mathrm{t}_{\mathrm{cy}} \mathrm{y}$	Clock Period	Mode $=V_{\text {DD }}$		${ }^{\text {t }}$ XTAL $\times 8$		ns
${ }_{t}{ }_{\text {PW }}$	Clock Pulse Width	Mode $=V_{\text {DD }}$	(1/4) $\mathrm{t}_{\mathrm{cy}}{ }^{-10}$	$(1 / 4) t_{\text {cy }}$	$(1 / 4) t_{c y}+10$	ns
${ }^{t}{ }_{\phi}{ }^{1}$	Clock Delay From ϕ_{1} to ϕ_{2}	Mode $=V_{\text {DD }}$	$(1 / 4) t_{c y}-10$	$(1 / 4) t_{\text {cy }}$	$(1 / 4) t_{c y}+10$	ns
${ }^{t}{ }_{\phi} \mathrm{D} 2$	Clock Delay From ϕ_{2} to ϕ_{1}	Mode $=V_{\text {DD }}$	$(1 / 4) \mathrm{t}_{\mathrm{cy}}{ }^{-10}$	(1/4) ${ }^{\text {c }} \mathrm{Cy}$	$(1 / 4) t_{c y}+10$	ns
$\mathrm{t}_{\phi \text { D }}$	TTL Clock to MOS Clock Skew		0	20	40	ns
$t_{\phi r}, t_{\phi f}$	Clock Rise and Fall Time	$\begin{aligned} & C_{L}=300 \mathrm{pF}=\phi_{1}, \phi_{2} \\ & C_{L}=50 \mathrm{pF}=\phi_{1} \mathrm{~T}, \phi_{2} \mathrm{~T} \end{aligned}$		25	50	ns
${ }^{\text {t }}$	Delay From ACK to Stop	$C_{L}=20 \mathrm{pF}$		60	500	ns

pin description

Pin No.	Designation	Description of Function	Pin No.	Designation	Description of Function
1	GND	Circuit ground potential. This pin can be left floating for low power application. MOS clock	9	N. CLOSED	Input of single step circuitry to which normally closed contact of SPDT switch is connected.
		output will be operative. TTL clock outputs will not.	10	ACK	Acknowledge input to single step circuitry normally con-
2	ϕ_{1} T	Phase 1. TTL level clock output. Positive true.			nected to stop acknowledge output of 4004.
3	ϕ_{2}	Phase 2. MOS level clock output.	11	STOP	Stop output of single step circuitry normally connected to stop input of 4004. A SPDT toggle switch may be inserted in this line for RUN/HALT control.
4	$V_{\text {DD }}$	Main power supply pin. $V_{D D}=V_{C C}-15 V \pm 5 \%$.			
5	MODE	Counter mode control pin. Determines whether counter divides basic frequency by 8			
		or 7 . Mode $=V_{C C} ; \div 7$ Mode $=V_{\text {DD }} ; \div 8$	12	RESET IN	Input to which RC network is connected to provide power on reset timing.
6	N. OPEN	Input of single step circuitry to	13	RESET OUT	This signal is active low.
		which normally open contact of	14	ϕ_{1}	Phase 1 MOS level clock output.
		SPDT switch is connected.	15	$v_{C C}$	Circuit reference potential-most positive supply voltage.
7	X1	External crystal connection.			
		This pin may be driven by an external frequency source. X2 should be left unconnected.	16	$\phi_{2} T$	Phase 2. TTL level clock output. Positive true.
8	X2	External crystal connection.			

timing diagrams

switching time waveforms

7 National Semiconductor

DP8212/DP8212M 8-Bit Input/Output Port

general description

The DP8212/DP8212M is an 8-bit input/output port contained in a standard 24 -pin dual-in-line package. The device, which is fabricated using Schottky 8ipolar technology, is part of National Semiconductor's N8080 microcomputer family. The DP8212/DP8212M can be used to implement latches, gated buffers, or multiplexers. Thus, all of the major peripheral and input/output functions of a microcomputer system can be implemented with this device.

The DP8212/DP8212M includes an 8-bit latch with TRI-STATE ${ }^{(3)}$ output buffers, and device selection and control logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor.

features

- 8-8it Data Latch and Buffer
- Service Request Flip-flop for Generation and Control of Interrupts
- 0.25 mA Input Load Current
- TRI-STATE TTL Output Drive Capability
- Outputs Sink 15 mA
- Asynchronous Latch Clear
- 3.65V Output for Direct Interface to INS8080A
- Reduces System Package Count by Replacing Buffers, Latches, and Multiplexers in Microcomputer Systems

N8080A microcomputer family block diagram

absolute maximum ratings

operating conditions

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
All Output or Supply Voltages	-0.5 V to +7 V
All Input Voltages	-1.0 V to 5.5 V
Output Currents	125 mA

Note: Maxımum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under dc electrical characteristics.
electrical characteristics ($\operatorname{Min} \leq T_{A} \leq \operatorname{Max}, \operatorname{Min} \leq V_{C C} \leq M a x$, unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I^{\prime}	Input Load Current, STB, DS2, $\overline{\text { CLR }}, ~ D I_{1}-[)_{8}$ Inputs	$V_{F}=0.45 V$				-0.25	mA
I^{\prime}	Input Load Current, MD Input	$V_{F}=0.45 \mathrm{~V}$				-0.75	mA
IF	Input Load Current, $\overline{\mathrm{DS} 1}$ Input	$V_{F}=0.45 \mathrm{~V}$				-1.0	mA
I_{R}	Input Leakage Current STB, DS2, $\overline{\mathrm{CLR}}, \mathrm{DI}_{1}-\mathrm{DI}_{8}$ Inputs	$V_{R}=V_{C C} \operatorname{Max}$				10	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{R}$	Input Leakage Current, MD Input	$V_{R}=V_{C C}$ Max				30	$\mu \mathrm{A}$
IR	Input Leakage Current, $\overline{\text { DS1 }}$ Input	$V_{R}=V_{\text {CC }} \operatorname{Max}$				40	$\mu \mathrm{A}$
V_{C}	Input Forward Voltage Clamp	$\mathrm{IC}=-5 \mathrm{~mA}$				-1	V
VIL	Input "Low" Voltage		DP8212M			0.80	V
			DP8212			0.85	V
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage			2.0			V
VOL	Output "Low' Voltage	$\mathrm{IOL}=10 \mathrm{~mA}$	DP8212M			0.45	V
		$\mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$	DP8212			0.45	V
VOH	Output "High" Voltage	$1 \mathrm{OH}=-0.5 \mathrm{~mA}$	DP8212M	3.40	4.0		V
		$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	DP8212	3.65	4.0		V
ISC	Short-Circuit Output Current	$V_{O}=0 V, V_{C C}=5 \mathrm{~V}$		-15		-75	mA
$1 \mathrm{O} \mid$	Output Leakage Current, High Impedance State	$V_{O}=0.45 \mathrm{~V} / \mathrm{V}_{\mathrm{CC}} \operatorname{Max}$				20	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Power Supply Current		DP8212M		90	145	mA
			DP8212		90	130	mA

capacitance*

$F=1 \mathrm{MHz}, V_{B I A S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CIN	DS1, MD Input Capacitance		9	12	pF
CIN $^{\text {IN }}$	DS2, $\overline{\text { CLR }, ~ S T B, ~ C I I-D I 8 ~ I n p u t ~ C a p a c i t a n c e ~}$		5	9	pF
COUT	DO1-DO8 Output Capacitance		8	12	pF

[^11]
switching characteristics

$\left(\operatorname{Min} \leq \mathrm{TA}_{\mathrm{A}} \leq \operatorname{Max}, \operatorname{Min} \leq \mathrm{V}_{\mathrm{CC}} \leq \operatorname{Max}\right)$

SYMBOL	PARAMETER	CONDITIONS	DP8212M		DP8212		UNITS
			MIN	MAX	MIN	MAX	
tPW	Pulse Width		40		30		ns
tPD	Data to Output Delay	(Note 5)		30		30	ns
tWE	Write Enable to Output Delay	(Note 5)		50		40	ns
tSET	Data Set-Up Time		20		15		ns
th	Data Hold Time		30		20		ns
tR	Reset to Output Delay	(Note 5)		55		40	ns
tS	Set to Output Delay	(Note 5)		35		30	ns
tE	Output Enable/Disable Time	(Note 6)		50		45	ns
tC	Clear to Output Delay	(Note 5)		65		55	ns

switching conditions

Conditions of Test:

1. Input Pulse Amplitude $=2.5 \mathrm{~V}$.
2. Input Rise and Fall Times $=5 \mathrm{~ns}$.
3. Between 1 V and 2 V Measurements made at 1.5 V with $15 \mathrm{~mA} \& 30 \mathrm{pF}$ Test Load.
4. C_{L} includes jig and probe capacitance.
5. $C_{L}=30 \mathrm{pF}$.
6. $C_{L}=30 \mathrm{pF}$ except for DP8212M tE(DISABLE) $C_{L}=5 \mathrm{pF}$

Test Load

Alternate Test Load (Refer to Timing Diagram)

timing diagram

logic diagram

Logic Table A

STB	MD	$\left(\right.$ DS $_{1} \cdot$ DS $\left._{2}\right)$	DATA OUT EQUALS
0	0	0	TRI STATE
1	0	0	TRISTATE
0	1	0	DATA LATCH
1	1	0	DATA LATCH
0	0	1	DATA LATCH
1	0	1	DATA IN
0	1	1	DATA IN
1	3	1	DATA IN

$\overline{C L R} \simeq$ resets data latch to the output low state
The data latch clock is level sensitive，a low level clock latches the data．

Logic Table B

$\overline{\text { CLR }}$	$\left(D S_{1} \cdot D S_{2}\right)$	STB	Q	INT
ORESET	0	0	0	1
1	0	0	0	1
1	0	－	1	0
1	1 RESET	0	0	0
1	0	0	0	1

＊Internal Service Request flip．flop．
and the service request flip－flop is asynchronously reset （cleared）when the device is selected．
Mode（MD）：When high（output mode），the output buffers are enabled and the source of the data latch clock input is the device selection logic（ $\mathrm{DS}_{1} \cdot \mathrm{DS}_{2}$ ）．When low（input mode），the state of the output buffers is determined by the device selection logic（ $\mathrm{DS}_{1} \cdot \mathrm{DS}_{2}$ ）and the source of the data latch clock input is the strobe（STB）input．

functional pin definitions

INPUT SIGNALS

Device Select（ $\overline{D_{1}}, \mathrm{DS}_{2}$ ）：When $\overline{\mathrm{DS}}$ ，is low and DS_{2} is high，the device is selected．The output buffers are enabled

The following describes the function of all the DP8212／ DP8212M input／output pins．Some of these descriptions reference internal circuits．
\square

functional pin definitions (cont'd.)

Strobe (STB): Used as data latch clock input when the mode (MD) input is low (input mode). Also used to synchronously set the service request flip-flop, which is negative edge triggered.
Data $\ln \left(\mathrm{DI}_{1}-\mathrm{DI}_{8}\right)$: Eight-bit data input to the datalatch, which consists of eight D-type flip-flops. Incorporating a level sensitive clock while the data latch clock input is high, the Q output of each flip-flop follows the data input. When the clock input returns low, the data latch stores the data input. The clock input high overrides the clear ($\overline{\mathrm{CL}} \overline{\mathrm{R}}$) input data latch reset.
Clear ($\overline{\mathrm{CLR}}$): When low, asynchronously resets (clears) the data latch and the service request flip-flop. The service request flip-flop is in the non-interrupting state when reset.

OUTPUT SIGNALS

Interrupt (INT): Goes low (interrupting state) when either the service request flip-flop is synchronously set by the strobe (STB) input or the device is selected.
Data Out $\left(\mathrm{DO}_{1}-\mathrm{DO}_{8}\right)$: Eight-bit data output of data buffers, which are TRI-STATE, non-inverting stages. These buffers have a common control line that either enables the buffers to transmit the data from the data latch outputs or disables the buffers by placing them in the high-impedance state.

connection diagram

Order Number DP8212J, DP8212N or DP8212MJ
See NS Package J24A or N24A

applications in microcomputer systems

Gated Buffer
(TRI-STATE)

applications in microcomputer systems (cont')

Interrupting Input Port

Interrupt Instruction Port

Output Port (with Hand-Shaking)

INS8080A Status Latch

DP8216/DP8216M, DP8226/DP8226M 4-Bit Bidirectional Bus Transceivers

General Description

The DP8216/DP8216M and DP8226/DP8226M are 4-bit bidirectional bus drivers for use in bus oriented applications. The non-inverting DP8216/DP8216M and inverting DP8226/DF8226M drivers are provided for flexibility in system design.

Each buffered line of the four-bit driver consists of two separate buffers that are TRI-STATE ${ }^{\circledR}$ to achieve direct bus interface and bidirectional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB); this side is used to interface to the system side componerits such as memories, I/O, etc., because its interface is TTL compatible and it has high drive (50 mA). On the other side of the driver the inputs and outputs are separated to provide maximum flexibility. Of course, they can be tied together so that the driver can be usec to buffer a true bidirectional bus. The DO outputs on this side of the driver have a special high voltage output drive capability so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity.

The CS input is a device enable. When it is "high" the output drivers are all forced to their high impedance state. When it is a "low" the device is enabled and the direction of the data flow is determined by the DIEN input.

The DIEN input controls the direction of data flow, which is accomplished by forcing one of the pair of buffers into its high-impedance state and allowing the other to transmit its data. A simple two gate circuit is used for this function.

Features

- Data bus buffer driver for 8080 type CPUs
- Low input load current -0.25 mA maximum
- High output drive capability for driving system data bus - 50 mA at 0.5 V
- Power up-down protection
- DP8216/DP8216M have non-inverting outputs
- DP8226/DP8226M have inverting outputs
- Output high voltage compatible with direct interface to MOS
- TRI-STATE outputs
- Advanced Schottky processing
- Available in military and commercial temperature ranges

Logic and Connection Diagrams

Absolute Maximum Ratings (Note 1)				Operating Conditions			
	Min	Max	Units		Min	Max	Units
All Output and Supply Voltages	-0.5	+7.0	\checkmark	Supply Voltage, V_{CC}			
All Input Voltages	-1.0	+5.5	V	DP8216M, DP8226M	4.5	5.5	V
Output Currents		125	mA	DP8216, DP8226	4.75	5.25	V
Lead Temperature (soldering, 10 seconds)		+300	${ }^{\circ} \mathrm{C}$	Temperature, TA DP8216M, DP8226M	-55	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$	DP8216, DP8226	0	+70	${ }^{\circ} \mathrm{C}$
Power Dissipation*							
Cavity Package		1160	mW				
Molded Package		1000	mW				

*Derate Cavity Package at $80^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$; derate Molded Package at $90^{\circ} \mathrm{C} / \mathrm{W}$ above $70^{\circ} \mathrm{C}$.

Electrical Characteristics DP8216, DP8226 $V_{C C}=5 \mathrm{~V} \pm 5 \%$ (Notes 2, 3, and 4)

Parameter		Conditions	Limits			Units
Symbol	Description		Min	Typ	Max	
DRIVERS						
$V_{\text {IL }}$	Input Low Voltage				0.95	\checkmark
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2			\checkmark
I_{F}	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		-0.03	-0.25	mA
IR	Input Leakage Current	$V_{R}=5.25 \mathrm{~V}$			10	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	${ }^{1} \mathrm{C}=-5 \mathrm{~mA}$			-1.2	\checkmark
$\mathrm{V}_{\text {OL } 1}$	Output Low Voltage	$1 \mathrm{OL}=25 \mathrm{~mA}$		0.3	0.45	\checkmark
$\mathrm{V}_{\text {OL } 2}$	Output Low Voltage	$\begin{aligned} & \mathrm{DP8} 216 \mathrm{I} \mathrm{OL}=55 \mathrm{~mA} \\ & \mathrm{DP} 8226 \mathrm{I}_{\mathrm{OL}}=50 \mathrm{~mA} \end{aligned}$		0.5	0.6	v
V_{OH}	Output High Voltage	$1 \mathrm{OH}=-10 \mathrm{~mA}$	2.4	3.0		\checkmark
${ }^{\text {ISC }}$	Output Short Circuit Current	$V_{C C}=5.0 \mathrm{~V}$	-30	-75	-120	mA
HO°	Output Leakage Current TRI-STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$

RECEIVERS

$V_{\text {IL }}$	Input Low Voltage				0.95	\checkmark
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2			\checkmark
I_{F}	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		-0.08	-0.25	mA
V_{C}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$			-1.2	v
V_{OL}	Output Low Voltage	$1 \mathrm{OL}=15 \mathrm{~mA}$		0.3	0.45	V
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage	$1 \mathrm{OH}=-1 \mathrm{~mA}$	3.65	4.0		\checkmark
${ }^{\text {ISC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{O}} \approx 0 \mathrm{~V}$	-15	-35	-65	mA
1101	Output Leakage Current TRI-STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			20	$\mu \mathrm{A}$

CONTROL INPUTS ($\overline{\mathrm{CS}}, \overline{\mathrm{DIEN}}$)

$V_{I L}$	Input Low Voltage				0.95	V
$V_{I H}$	Input High Voltage		2			V
I_{F}	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		-0.15	-0.5	mA
I_{R}	Input Leakage Current	$V_{R}=5.25 \mathrm{~V}$			20	$\mu \mathrm{~A}$
IC	Power Supply Current					
	DP8216			95	130	mA
	DP8226		85	120	mA	

Electrical Characteristics DP8216M, DP8226M $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Notes 2,3 and 4)

Parameter		Conditions	Limits			Units
Symbol	Description		Min	Typ	Max	
DRIVERS						
$V_{\text {IL }}$	$\begin{aligned} & \text { Input Low Voltage } \\ & \text { DP8216M } \\ & \text { DP82.26M } \\ & \hline \end{aligned}$				$\begin{aligned} & 0.95 \\ & 0.90 \end{aligned}$	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2			V
IF	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		-0.08	-0.25	mA
I_{R}	Input Leakage Current	$V_{R}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
V_{C}	Input Clamp Voltage	${ }^{\prime} \mathrm{C}=-5 \mathrm{~mA}$			-1.2	V
$\mathrm{V}_{\mathrm{OL} 1}$	Output Low Voltage	$\mathrm{I}^{\mathrm{OL}}=25 \mathrm{~mA}$		0.3	0.45	V
$\mathrm{V}_{\mathrm{OL} 2}$	Output L.ow Voltage	$\mathrm{I}^{\text {OL }}=45 \mathrm{~mA}$		0.5	0.6	V
VOH	Output High Voltage	$\mathrm{I}^{\mathrm{OH}}=-5 \mathrm{~mA}$	2.4	3.0		\checkmark
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-30	-75	-120	mA
1 Ol	Output Leakage Current TRI-STATE	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V} / 5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$

RECEIVERS

$\left.\begin{array}{c|l|l|l|c|c|c}\hline V_{I L} & \begin{array}{l}\text { Input Low Voltage } \\ \text { DP8216M } \\ \text { DP8226M }\end{array} & & & & \begin{array}{c}0.95 \\ 0.9\end{array} & \mathrm{~V} \\ \mathrm{~V}\end{array}\right]$

CONTROL INPUTS ($\overline{\mathrm{CS}}, \overline{\mathrm{DIEN}}$)

$V_{\text {IL }}$	Input Low Voltage DP8216M DP8226M				0.95	V
$V_{\text {IH }}$	Input High Voltage		2			V
IF	Input Load Current	$V_{F}=0.45 \mathrm{~V}$		-0.15	-0.5	mA
IR	Input Leakage Current	$V_{R}=5.5 \mathrm{~V}$			80	$\mu \mathrm{~A}$
ICC	Power Supply Current DP8216M DP8226M					

Switching Characteristics

Parameter		Conditions	Limits			Units
Symbol	Description		Min	Typ	Max	
DP8216M, DP8226M, ${ }^{\text {C }}$ CC $=5 \mathrm{~V}=10 \%$						
tPD 1	Input to Output Delay, DO Outputs	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$		15	25	ns
tPD 2	Input to Output Delay, DB Outputs DP8216M DP8226M	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{1}=90 \Omega, \\ & R_{2}=180 \Omega \end{aligned}$		$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tE	$\begin{aligned} & \text { Output Enable Time } \\ & \text { DP8216M } \\ & \text { DP8226M } \end{aligned}$	$\begin{aligned} & \text { DO Outputs: } C_{L}=30 \mathrm{pF}, \\ & \mathrm{R}_{1}=300 \Omega / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=600 \Omega / 1 \mathrm{k} \Omega \\ & \text { DB Outputs: } \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \\ & \mathrm{R}_{1}=90 \Omega / / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=180 \Omega / 1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 75 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t }}$	Output Disable Time DP8216M DP8226M	DO Outputs: $C_{L}=5 p F$, $\mathrm{R}_{1}=300 \Omega / 10 \mathrm{k} \Omega$, $\mathrm{R}_{2}=600 \Omega / 1 \mathrm{k} \Omega$ D8 Outputs: $C_{L}=5 \mathrm{pF}$, $\mathrm{R}_{1}=90 \Omega / 10 \mathrm{k} \Omega$, $R_{2}=180 \Omega 2 / 1 \mathrm{k} \Omega$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 40 \\ & 38 \end{aligned}$	ns
DP8216, DP8226 VCC $=5.0 \mathrm{~V} \pm 5 \%$						
tPD 1	Input to Output Delay, DO Outputs	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega, \\ & R_{2}=600 \Omega \end{aligned}$		15	25	ns
tPD 2	Input to Output Delay, D8 Outputs DP8216 DP8226	$\begin{aligned} & C_{L}=300 \mathrm{pF}, \mathrm{R}_{2}=90 \Omega, \\ & R_{2}=180 \Omega \end{aligned}$		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	ns
${ }^{\text {t }}$ E	Output Enable Time DP8216 DP8226	$\begin{aligned} & \text { DO Outputs: } C_{L}=30 \mathrm{pF}, \\ & \mathrm{R}_{1}=300 \Omega / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=600 \Omega / 1 \mathrm{k} \Omega \\ & \text { DB Outputs: } \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}, \\ & \mathrm{R}_{1}=90 \Omega / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=180 \Omega / 1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 65 \\ & 54 \end{aligned}$	ns
tD	Output Disable Time	$\begin{aligned} & \text { DO Outputs: } \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{1}=300 \Omega / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=600 \Omega / 1 \mathrm{k} \Omega \\ & \text { DB Outputs: } \mathrm{CL}=5 \mathrm{pF}, \\ & \mathrm{R}_{1}=90 \Omega / 10 \mathrm{k} \Omega, \\ & \mathrm{R}_{2}=180 \Omega / 1 \mathrm{k} \Omega \end{aligned}$		20	35	ns

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. "hey are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DP8216M ard DP8226M and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DP8216 and DP8226. All typical values are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive: all currents out of device pins are negative. All voltages are referenced to ground unlass otherwise specified.
Note 4: Only one output at a time should be shorted.

Test Conditions

Test Load Circuit

Input pulse amplitude of 2.5 V .
Input rise and fall times of 5.0 ns between 1.0 V and 2.0 V
Output loading is 5.0 mA and 10 pF .
Speed measurements are made at 1.5 V levels.

Switching Time Waveforms

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

		Limit			
Symbol		Min.	Typ.	Max.	Unit
CIN 2			4	6	pF
COUT	Output Capacitance				
	DO Outputs		6	10	pF
	DB Outputs		13	18	pF

Nole: This parameter is periodically sampled and is not 100\%
tested. Condition of measurement is $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$, $V_{C C}=5.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DP8224 Clock Generator and Driver

general description

The DP8224 is a clock generator／driver contained in a standard， 16 －pin dual－in－line package．The chip，which is fabricated using Schottky Bipolar technology，generates clocks and timing for National Semiconductor＇s N8080 microcomputer family．

Included in the DP8224 is an oscillator circuit that is controlled by an external crystal，which is selected by the designer to meet a variety of system speed require－ ments．Also included in the chip are circuits that provide： a status strobe for the DP8228 or DP8238 system con－ trollers，power－on reset for the INS8080A microproces－ sor，and synchronization of the READY input to the INS8080A．

features

－Crystal－Controlled Oscillator for Stable System Operation
－Single Chip Clock Generator and Driver for INS8080A Microprocessor
－Provides Status Strobe for DP 8228 or DP 8238 System Controllers
－Provides Power－On Reset for INS8080A Micro－ processor
－Synchronizes READY Input to INS8080A Micro－ processor
－Provides Oscillator Output for Synchronization of External Circuits
－Reduces System Component Count

N8080A microcomputer family block diagram

absolute maximum ratings (Note 2)
operating conditions

Supply Voltage	
$V_{C C}$	7 V
$V_{D D}$	15 V
Input Voltage	-1 V to +5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage			
$V_{\text {CC }}$	4.75	5.25	V
$V_{D D}$	11.4	12.6	V
Temperature $\left(T_{A}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IF	Input Current Loading	$V_{F}=0.45 \mathrm{~V}$			-0.25	mA
IR	Input Leakage Current	$V_{R}=5.25 \mathrm{~V}$			10	$\mu \mathrm{A}$
V_{C}	Input Forward Clamp Voltage	$I^{\prime} \mathrm{C}=-5 \mathrm{~mA}$				\checkmark
$V_{\text {IL }}$	Input "Low" Voltage	$V_{\text {CC }}=5 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\text {IH }}$	Input "High" Voltage	$\overline{\text { RESIN }}$ Input	2.6			V
		All Other Inputs	2.0			V
$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}$	$\overline{\text { RESIIN }}$ Input Hysteresis	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	0.25			V
VOL	Output "Low" Voltage					
	($\phi 1, \phi 2$), Ready, Reset, $\overline{\text { STSTB }}$	$\mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA}$			0.45	V
	Osc., $\phi 2$ (TTL)	$1 \mathrm{OL}=10 \mathrm{~mA}$			0.45	V
	Osc., $\phi 2$ (TTL)	$1 \mathrm{OL}=15 \mathrm{~mA}$			0.45	V
VOH	Output "High" Voltage					
	$\phi 1 . \phi 2$	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	9.4			V
	Ready, Reset	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	3.6			V
	Osc., $\phi 2$ (TTL), STSTB	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4			V
ISC	Output Short-Circuit Current (All Low Voltage Outputs Only), (Note 1)	$V_{O}=0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=5 \mathrm{~V}$	-10		-60	mA
ICC	Power Supply Current				115	mA
IDD	Power Supply Current				12	mA

Note 1: Caution $-\phi 1$ and $\phi 2$ output drivers do not have short circuit protection.
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 3: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DP8224. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $V_{C C}=5 \mathrm{~V}$, and $V_{D D}=12 \mathrm{~V}$.

crystal requirernents*

Tolerance
Resonance
Load Capacitance
0.005% at $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Fundamental** 20 pF to 30 pF

Equivalent Resistance
75Ω to 20Ω
Power Dissipation (Min)
4 mW

[^12]** With tank circuit, use 3rd overtone mode
switching characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\phi 1} \quad \phi 1$ Pulse Width	$C_{L}=20 \mathrm{pF}$ to 50 pF	$\frac{2 \mathrm{t} C \mathrm{C}}{9}-20$			ns
$t_{\text {t } 22 ~}^{\text {2 }}$ (Pulse Width		$\frac{5 t}{}-\frac{C Y}{9}-35$			ns
tD1 $\quad 1$ to $\phi 2$ Delay		0			ns
tD2 \quad 2 to $\phi 1$ Delay		$\frac{2 \mathrm{C}}{-\frac{\mathrm{C}}{9}-14}$			ns
tD3 $\quad 1$ to $\$ 2$ Delay		$\frac{2 \mathrm{t}}{} \mathrm{C}_{9}$			ns
$\mathrm{tr}_{\text {r }} \quad \phi 1$ and $\phi 2$ Rise Time				20	п5
$\mathrm{t}_{\mathrm{f}} \quad \$ 1$ and $\phi 2 \mathrm{Fall}$ Time				20	ns
tDo2 02 to d2 (TTL) Delay	$\begin{aligned} & \text { Q TTL. CL }=30 \mathrm{pF}, \\ & R 1=300 \Omega, \text { R2 }=600 \Omega \end{aligned}$	5		15	ns
tDSS \quad 2 to $\overline{\text { STSTB }}$ Delay	$\begin{aligned} & \overline{\text { STSTB }, ~ C L}=15 \mathrm{pF} \\ & R 1=2 \mathrm{k} \Omega, \mathrm{R} 2=4 \mathrm{k} \Omega \end{aligned}$	$\frac{6{ }^{6} \mathrm{CY}}{9}-30$		$\frac{6{ }^{\text {t }} \mathrm{C} Y}{9}$	ns
tPW STSTB Pulse Width		$\frac{{ }^{\text {t }} \mathrm{C} Y}{9}-15$			ns
tDRS RDYIN Set.Up Time to Status Strobe		$50-\frac{{ }^{4} \mathrm{C} C Y}{9}$			ns
${ }^{\text {t DRH }}$ RDVIN Hold Time After STSTB		$\frac{{ }^{4} \mathrm{C} Y}{9}$			ns
tDR READY or RESET to 02 Delay	Ready and Reset, $C_{L}=10 \mathrm{pF}$, $R 1=2 \mathrm{k} \Omega 2, R 2=4 \mathrm{k} \Omega$	$\frac{{ }^{4 t} \mathrm{CY}}{9}-25$			ns
${ }^{\text {t CLK }}$ CLK Period			$\frac{\mathrm{t} C \mathrm{Y}}{9}$		ns
fmax Maximum Oscillating Frequency		27			MHz
CIN Input Capacitance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, V_{D D}=12 \mathrm{~V}, \\ & V_{B I A S}=2.5 \mathrm{~V}, f=1 \mathrm{MHz} \end{aligned}$			8	pF

test circuit

VOLTAGE MEASUREMENT POINTS: $\phi 1, \phi 2$ Logic " 0 " $=1.0 \mathrm{~V}$, Logic " 1 " $=8.0 \mathrm{~V}$. All other signals measured at 1.5 V .
switching characteristics (For $\mathrm{t}_{\mathrm{CY}}=488.28 \mathrm{~ns}$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\phi 1}$	$\phi 1$ Pulse Width	$\phi 1$ and $\phi 2$ Loaded to $\mathrm{C}_{\mathrm{L}}=20$ to 50 pF Ready \& Reset Loaded to $2 \mathrm{~mA} / 10 \mathrm{pF}$ All Measurements Referenced to 1.5 V unless Specified Otherwise	89			ns
$\mathrm{t}_{\phi} 2$	$\phi 2$ Pulse Width		236			ns
tD1	Delay $\phi 1$ to $\phi 2$		0			ns
tD2	Delay $\phi 2$ to $\phi 1$		95			ns
tD3	Delay $\phi 1$ to $\phi 2$ Leading Edges		109		129	ns
t_{r}	Output Rise Time				20	ns
tf_{f}	Output Fall Time				20	ns
tDSS	$\phi 2$ to STST8 Delay		296		326	ns
${ }^{\text {t }}{ }^{\prime} 2$	$\phi 2$ to $\phi 2$ (TTL) Delay		-5		15	ns
tPW	Status Strobe Pulse Width		40			ns
tDRS	RDYIN Set-Up Time to $\overline{\text { STST }}$		-167			ns
tDRH	RDYIN Hold Time after STST8		217			ns
tDr	READY or RESET to $\phi 2$ Delay		192			ns
${ }_{\text {f MAX }}$	Oscillator Frequency				18.432	MHz

functional pin definitions

The following describes the function of all of the DP8224 input／output pins．Some of these descriptions reference internal circuits．

INPUT SIGNALS

Crystal Connections（XTAL 1 and XTAL 2）：Two inputs that connect an external crystal to the oscillator circuit of the DP8224．Normally，a fundamental mode crystal is used to determine the basic operating frequency of the oscillator．However，overtone mode crystals may also be used．The crystal frequency is 9 times the desired microprocessor speed（that is，crystal fre－ quency equals $1 / \mathrm{t} C \mathrm{Y} \times 9$ ）．When the crystal frequency is above 10 MHz ，a selected capacitor（ 3 to 10 pF ） may have to be connected in series with the crystal to produce the exact desired frequency．Figure A ．

Tank：Allows the use of overtone mode crystals with the oscillator circuit．When an overtone mode crystal is used，the tank input connects to a parallel LC network that is ac coupled to ground．The formula for determin－ ing the resonant frequency of this LC network is as follows：

$$
F=\frac{1}{2 \pi \sqrt{L C}}
$$

Synchronizing（SYNC）Signal：When high，indicates the beginning of a new machine cycle．The INS8080A microprocessor outputs a status word（which describes the current machine cycle）onto its data bus during the first state（SYNC interval）of each machine cycle．

Reset $\ln (\overline{R E S I N})$ ：Provides an automatic system reset and start－up upon application of power as follows．The $\overline{R E S I N}$ input，which is obtained from the junction of an external RC network that is connected between V_{CC} and ground，is routed to an internal Schmitt Trigger circuit．This circuit converts the slow transition of the power supply rise into a sharp，clean edge when its input reaches a predetermined value．When this occurs，an internal D－type flip－flop is synchronously reset，thereby providing the RESET output signal discussed below．

For manual system reset，a momentary contact switch that provides a low（ground）when closed is also con－ nected to the $\overline{\text { RESIN }}$ input．
Ready In（RDYIN）：An asynchronous READY signal that is re－clocked by a D－type flip－flop of the DP8224 to provide the synchronous READY output discussed below．
+5 Volts：$V_{C C}$ supply．
+12 Volts：$V_{D D}$ supply．
Ground： 0 volt reference．

OUTPUT SIGNALS

Oscillator（OSC）：A buffered oscillator signal that can be used for external timing purposes．
ϕ_{1} and ϕ_{2} Clocks：Two non－TTL compatible clock phases that provide nonoverlapping timing references for internal storage elements and logic circuits of the INS8080A microprocessor．The two clock phases are produced by an internal clock generator that consists of a divide－by－nine counter and the associated decode gating logic．Figure B．
ϕ_{2}（TTL）Clock：A TTL ϕ_{2} clock phase that can be used for external timing purposes．
Status Strobe（ $\overline{\mathrm{STSTB}}$ ）：Activated（low）at the start of each new machine cycle．The $\overline{\text { STST8 }}$ signal is generated by gating a high－level SYNC input with the $\phi_{1 A}$ timing signal from the internal clock generator of the DP8224． The $\overline{\text { STSTB }}$ signal is used to clock status information into the status latch of the DP8228 system controller and bus driver．
Reset：When the RESET signal is activated，the content of the program counter of the INS 8080A is cleared． After RESET，the program will start at location 0 in memory．
Ready：The READY signal indicates to the INS8080A that valid memory or input data is available．This signal is used to synchronize the INS8080A with slower memory or input／output devices．

logic diagram and connection diagram（Top View）

Order Number DP8224J or DP8224N See NS Package J16A or N16A

EXAMPLE: (8080 tcy $=500 \mathrm{~ns})$
$D S C=18 \mathrm{mHz} / 55 \mathrm{~ns}$
$\phi_{1}=110 \mathrm{~ns}(2 \times 55 \mathrm{~ns})$
$\phi_{2}=275 \mathrm{~ns}(5 \times 55 \mathrm{~ns})$
$\phi_{2}-\phi_{1}=110 \mathrm{~ns}(2 \times 55 \mathrm{~ns})$

Figure B. DP8224 Clock Generator Waveforms

Figure A. DP8224 Connection Diagram

National Semiconductor

DP8228/DP8228M, DP8238/DP8238M System Controller and Bus Driver

general description

The DP8228/DP8228M, DP8238/DP8238M are system controller/bus drivers contained in a standard, 28-pin dual-in-line package. The chip, which is fabricated using Schottky Bipolar technology, generates all the read and write control signals required to directly interface the memory and input/output components of National Semiconductor's INS8080A microcomputer family. The chip also provides drive and isolation for the bidirectional data bus of the INS8080A microprocessor. Data bus isolation enables the use of slower memory and input/output components in a system, and provides for enhanced system noise immunity.

A user-selected single-level interrupt vector (RST 7) is provided by the device for use in the interrupt structure of small systems that need only one basic vector. No additional components (such as an interrupt instruction port) are required to use the single interrupt vector in these systems. The devices also generate an Interrupt Acknowledge (INTA) control signal for each byte of a multibyte CALL instruction when an interrupt is
acknowledged by the INSB080A. This feature permits the use of a multilevel priority interrupt structure in large, interrupt-driven systems.

features

- Single Chip System Controller and Bus Driver for INS8080A Microcomputer Systems
- Allows Use of Multibyte CALL Instructions for Interrupt Acknowledge
- Provides User-Selected Single-Level Interrupt Vector (RST 7)
- Provides Isolation for Data Bus
- Supports A Wide Variety of System Bus Structures
- Reduces System Component Count
- DP8238/DP8238M Provides Advanced Input/Output Write and Memory Write Control Signals for Large System Timing Control

N8080A microcomputer family block diagram

absolute maximum ratings

operating conditions

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage, V_{CC}	-0.5 V to +7 V
Input Voltage	$-1.5 \mathrm{to}+7 \mathrm{~V}$
Output Current	100 mA

	MIN	MAX	UNITS
Supply Voltage (V_{CC})			
DP8228M, DP8238M	4.50	5.50	$V_{\text {DC }}$
DP8228, DP8238	4.75	5.25	$V_{\text {DC }}$
Operating Temperature (T_{A})			
DP8228M, DP8238M	-55	+125	${ }^{\circ} \mathrm{C}$
DP8228, DP8238	0	+70	${ }^{\circ} \mathrm{C}$

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC electrical characteristics.

electrical characteristics

(Min $\leq \mathrm{T}_{\mathrm{A}} \leq \operatorname{Max}, \operatorname{Min} \leq \mathrm{V}_{\mathrm{CC}} \leq \mathrm{Max}$, unless otherwise noted)

PARAMETER		CONDITIONS		MIN	TYP (Note 1)	MAX	UNITS
V_{C}	Input Clamp Voltage, All Inputs	$V_{C C}=\operatorname{Min}, I_{C}=-5 \mathrm{~mA}$			0.6	-1.0	V
IF	Input Load Current $\overline{\text { STST8 }}$ D2 and DE D0, D1, D4, D5 and D7 All Other Inputs	$\begin{aligned} & V_{C C}=M a x \\ & V_{F}=0.45 V \text { for DP8228,DP8238 } \\ & V_{F}=0.40 V \text { for } D P 8228 \mathrm{M}, D P 8238 \mathrm{M} \end{aligned}$					
						500	$\mu \mathrm{A}$
						750	$\mu \mathrm{A}$
						250	$\mu \mathrm{A}$
						250	$\mu \mathrm{A}$
I_{R}	Input Leakage Current D80-D87 All Other Inputs	$V_{C C}=\operatorname{Max}, V_{R}=V_{C C}$					
						20	$\mu \mathrm{A}$
						100	$\mu \mathrm{A}$
$V_{\text {TH }}$	Input Threshold Voltage, All Inputs	$V_{C C}=5 \mathrm{~V}$		0.8		2.0	V
ICC	Power Supply Current	$V_{C C}=\operatorname{Max}$	DP8228, DP8238		160	190	mA
			DP8228M, DP8238M		160	210	mA
V_{OL}	Output Low Voltage D0-D7 All Other Outputs						
		$V_{C C}=\operatorname{Min}, I_{O L}=2 \mathrm{~mA}$	DP8228M, DP8238M			0.50	V
			DP8228, DP8238			0.45	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$	DP8228M, DP8238M			0.50	V
			DP8228, DP8238			0.45	V
VOH	Output High Voltage D0-D7 All Other Outputs						
		$V_{C C}=\operatorname{Min}, I_{O H}=-10 \mu \mathrm{~A}$	DP8228, DP8238	3.3	3.8		V
			DP8228M, DP8238M	3.6	3.8		V
		$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$		2.4	3.8		V
Ios	Short Circuit Current, All Outputs	$V_{C C}=5 \mathrm{~V}, V_{O}=0 \mathrm{~V}$		15		90	mA
IO(OFF)	OFF State Output Current All Control Outputs	$V_{C C}=\operatorname{Max}, V_{O}=V_{C C}$				100	$\mu \mathrm{A}$
		$V_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$				-100	$\mu \mathrm{A}$
$I_{\text {INT }}$	INTA Current	(See Test Conditions, Figure 3)				5	mA

Note 1: Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and typical supply voltages.

capacitance

$\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

| PARAMETER | MIN | TYP
 (Note 1) | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| CIN | Input Capacitance | 8 | 12 | |
| COUT | Output Capacitance Control Signals | | 7 | 15 |
| I/O | I/O Capacitance (D or D8) | | 8 | pF |

This parameter is periodically sampled and not 100% tested.

switching characteristics

$\left(\operatorname{Min} \leq V_{C C} \leq \operatorname{Max}, \operatorname{Min} \leq T_{A} \leq M a x\right)$

PARAMETER		CONDITIONS	DP8228M,DP8238M		DP8228, DP8238		UNITS	
		MIN	MAX	MIN	MAX			
tPW	Width of Status Strobe			25		22		ns
tSS	Set-Up Time, Status Inputs D0-D7		8		8		ns	
${ }^{\text {tS }} \mathrm{H}$	Hold Time, Status Inputs D0-D7		5		5		ns	
${ }^{\text {t }}$ C	Delay from STST 8 to Any Control Signal	(Figure 2)	20	75	20	60	ns	
tRR	Delay from DBIN so Control Outputs	(Figure 2)		30		30	ns	
tre	Delay from DBIN to Enable/ Disable 8080 8us	(Figure 1)		45		45	ns	
${ }^{\text {tr }}$ D	Delay from System Bus to 8080 Bus during Read	(Figure 1)		45		30	ns	
twr	Delay from $\overline{W R}$ to Control Outputs	(Figure 2)	5	60	5	45	ns	
twe	Delay to Enable System Bus DB0-DB7 after S̄TSTB	(Figure 2)		30		30	ns	
twD	Delay from 8080 Bus D0-D7 to System 8 us DB0--DB7 during Write	(Figure 2)	5	40	5	40	ns	
${ }^{\text {t }}$ E	Delay from System Bus Enable to System 8us D80--D87	(Figure 2)		30		30	ns	
thD	HLDA to Read Status Outputs	(Figure 2)		25		25	ns	
tDS	Set-Up Time, System Bus Inputs to HLDA		10		10		ns	
to	Hold Time, System Bus Inputs to HLDA		20		20		ns	

test conditions

FIGURE 1. Test Load

FIGURE 2. Test Load

FIGURE 3. INTA Test Circuit (For RST 7)

timing diagram

VOLTAGE MEASUREMENT POINTS: $\mathrm{D}_{\mathrm{O}}-\mathrm{D}_{7}$ (when outputs) Logic " 0 " $=0.8 \mathrm{~V}$. Logic " 1 " $=3.0 \mathrm{~V}$. All other signals measured at 9.5 V .
*Advanced $\overline{\mathrm{I} / O W} \overline{M E M W}$ for 8238 only.

functional pin definitions

The following describes the function of all of the DP8228/DP8228M, DP8238/DP8238M pinouts. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Status Strobe (STSTB): Activated (low) at the start of each new machine cycle. The $\overline{\text { STSTB }} \bar{B}$ input is used to store a status word (refer to chart) from the INS8080A microprocessor into the internal status latch of the DP8228, DP8238. The status word is latched when the STSTB returns to the high state. The INS8080A outputs this status word onto its data bus during the first state (SYNC interval) of each machine cycle.
Data Bus In (DBIN): When high, indicates that the INS8080A data bus is in the input mode. The DBIN signal is used to gate data from memory or an input/ output device onto the data bus.
Write ($\overline{W R}$): When low, indicates that the data on the INS8080A data bus are stable for WRITE memory or output operation.
Hold Acknowledge (HLDA): When high, indicates that the INS 8080A data and address buses will go to their high impedance state. When in the data bus read mode, DBIN input in the high state, a high HLDA input will latch the data bus information into the driver circuits and gate off the applicable control signal $\overline{/ / O R}, \overline{M E M R}$, or $\overline{\text { INTA }}$ (return to the output high state).
Bus Enable ($\overline{\text { BUSEN }}$): Asynchronous DMA input to the internal gating array. When low, normal operation of the internal bidirectional bus driver and gating array occurs. When high, the bus driver and gating array are driven to their high impedance state.
$V_{\text {CC }}$ Supply: +5 volts.
Ground: 0 volt reference.

OUTPUT SIGNALS

Memory Read (MEMR): When low, signals data to be loaded in from memory. The $\overline{M E M R}$ signal is generated by strobing in status word 1,2, or 4. (Refer to status word chart.)
Memory Write ($\overline{\mathrm{MEMW}}$): When low, signals data to be stored in memory. The $\overline{M E M W}$ signal is generated for the DP8238 by strobing in status word 3 or 5 . (Refer to status word chart.) For the DP8228, the $\bar{M} E M W$ signal is generated by gating a low-level $\overline{W R}$ input with the strobed in status word 3 or 5 .
Input/Output Read (I/OR): When low, signals data to be loaded in from an addressed input/output device. The $\overline{1 / O R}$ signal is generated by strobing in status word 6.
Input/Output Write ($\overline{\mathrm{I} / \mathrm{OW}}$): When low, signals data to be transferred to an addressed input/output device. The I/OW signal for the DP8238 is generated by strobing in status word 7. For the DP8228 the I/OW signal is generated by gating in a low-level $\overline{W R}$ input with the strobed in status word 7.
Interrupt Acknowledge (INTA): When low, indicates that an interrupt has been acknowledged by the INS8080A microprocessor. The INTA signal is generated by strobing in status word 8 or 10.
Single Level Interrupt (RST 7): When the TNTA output is tied to 12 V through a $1 \mathrm{k} \Omega$ resistor, strobing in status word 8 or 10 will cause the CPU data bus outputs, when active, to go to the high state.

INPUT/OUTPUT SIGNALS

CPU Data ($D_{7}-D_{0}$) Bus: This bus comprises eight TRI-STATE input/output lines that connect to the INS8080A microprocessor. The bus provides bidirec-

functional pin definitions（con＇d．）

tional communication between the CPU，memory，and input／output devices for instructions and data transfers． A status word（which describes the current machine cycle）is also outputted on this data bus during the first microcycle of each machine cycle（SYNC $=\operatorname{logic} 1$ ）．

System Data $\left(\mathrm{DB}_{7}-\mathrm{DB}_{\mathbf{0}}\right)$ Bus：This bus comprises eight TRI－STATE input／output lines that connect to the memory and input／output components of the system． The internal bidirectional bus driver isolates the $D B_{7}-D_{0}$ Data Bus from the $D_{7}-D_{0}$ Data Bus．

Status Word Chart

Machine Cycle	Status Word	Data Bus Bit								Control Signal
		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Instruction Fetch	1	1	0	1	0	0	0	1	0	$\overline{M E M R}$
Memory Read	2	1	0	0	0	0	0	1	0	$\overline{M E M R}$
Memory Write	3	0	0	0	0	0	0	0	0	$\overline{M E M W}$
Stack Read	4	1	0	0	0	0	1	1	0	$\overline{\text { MEMR }}$
Stack Write	5	0	0	0	0	0	1	0	0	$\overline{M E M W}$
Input Read	6	0	1	0	0	0	0	1	0	I／OR
Output Write	7	0	0	0	1	0	0	0	0	I／OW
Interrupt Acknowledge	8	0	0	1	0	0	0	1	1	INTA
Halt Acknowledge	9	1	0	0	0	1	0	1	0	（none）
Interrupt Acknowledge While Halt	10	0	0	1	0	1	0	1	1	$\overline{\text { INTA }}$

block diagram and connection diagram

Order Number DP8228J，DP8228MJ，DP8228N，
DP8238J，DP8238MJ or DP8238N See NS Package J28A or N28A

\Longrightarrow National Semiconductor

 Microprocessor Support Circuits
DP8300 PACE bidirectional transceiver element (PACE BTE/8)

general description

The DP8300 is an 8-bit TRI-STATE ${ }^{\circledR}$ MOS/TTL bus transceiver element specifically intended for application in PACE microprocessor-based systems. Its electrical characteristics and control flexibility make the BTE/8 attractive in other applications requiring the translation of MOS current out:puts to high fan-out TTL levels.

Two BTE/8 devices provide complete system buffering for all 16 -bit address and data input/output between the PACE CPU and all system memory and peripheral interfaces.

In the driving mode, the MOS sense amplifiers convert the MOS current outputs of the PACE CPU to a fan-out 30 (50 mA) TTL system bus. [This characteristic makes the BTE/8 an ideal buffer (driving mode only) for the PACE system timing and control bus consisting of the address data strobe (NADS), input data strobe (IDS), output data strobe (DDS) and the four output control flags (F11, F12, F13, F14).]

In the receiving mode the BTE accepts bus data through high impedance input buffers and applies the TTL signals to the PACE I/O pins.

A third mode allows both the MOS and TTL bus to be placed in the TRI-STATE (high impedance) mode. This function facilitates direct memory access (DMA) over the TTL system bus.

A latched chip enable allows the use of multiplexed address/data lines to drive CE 1 and CE 2^{*}, selecting the $\mathrm{BTE} / 8$ for an input cycle. The latching function may be eliminated by connecting the strobe to ground.

features

- High TTL fan-out eliminates additional buffering requirements
- Low system data bus loading for minimum input drive
- TRI-STATE data ports and chip enables maximize application flexibility
- 8-bit parallel data flow reduces system package count
- Pin-outs are compatible with hybrid version and simplify system interconnections and layout
- Latched chip enable simplifies transmit/receive control
- High voltage output high level ($\mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V}$) on TTL bus

block diagram

Signal ${ }^{*}=\mathbf{N}$ Signal $=\overline{\text { Signal }}=$ Low Active Signal
logic diagram

connection diagram

Order Number DP8300N See NS Package N24A

truth table

t_{n}			$\mathrm{t}_{\mathrm{n}}+1$	
CE 1	CE 2*	STR*	WBO*	TRANSCEIVER MODE
X	X	X	0	Receiving MOS Bus and Driving TTL Bus
x	x	1	1	Mode t_{n} See Note 1
0	0	0	1	TRI-STATE Mode
0	1	0	1	TRI-STATE Mode
1	0	0	1	Receiving TTL Bus and Driving MOS Bus
1	1	0	1	TRI STATE Mode

Note 1. On the positive-edge transition of STR* logic conditions present on CE 1 and CE 2* at the time of transition will be latched internally. The transceiver will either be in the TRI-STATE or receiving mode.

absolute maximum ratings (Note 1)

Supply Voltage	7 V
Input Voltage (All Inputs Except MBI/O Input Active)	5.5 V
Output Voltage	5.5 V
MOS Bus Input Current	$\pm 10 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

recommended operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(V_{C C}\right)$	4.75	5.25	V
Temperature (TA)	0	+70	${ }^{\circ} \mathrm{C}$

$4.75 \quad 5.25$
${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

TTL BUS PORT (BDI/O 00-07)

$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage			2.0			V
$V_{\text {IL }}$	Logical ' 0 ' Input Voltage					0.8	V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \\ & \mathrm{MBI} / \mathrm{O}=0.5 \mathrm{~mA} \end{aligned}$	$1 \mathrm{OH}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-1.1}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-0.8}$		V
			$1 \mathrm{OH}=-5.2 \mathrm{~mA}$	2.4	3.7		V
V_{OL}	Logical '0' Output Voltage	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V} \\ & \mathrm{MBI} / \mathrm{O}=100 \mu \mathrm{~A} \end{aligned}$	$1 \mathrm{OL}=20 \mathrm{~mA}$		0.25	0.4	V
			$\mathrm{IOL}=50 \mathrm{~mA}$		0.4	0.5	\checkmark
IOS	Output Short Circuit Current	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \mathrm{MBI} / \mathrm{O}=0.5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V},(\text { Note } 4) \end{aligned}$		-10	-35	-75	$m \mathrm{~A}$
1/H	Logical "1" Input Current	$W B D^{*}=2 \mathrm{~V}, \mathrm{~V}_{1 H}=2.4 \mathrm{~V}$				80	$\mu \mathrm{A}$
11	Input Current at Maximum Input Voltage	$\begin{aligned} & W B D^{*}=2 \mathrm{~V}, V_{1 H}=5.5 \mathrm{~V} \\ & V C C=5.25 \mathrm{~V} \end{aligned}$				1	mA
IIL	Logical " 0 ' Input Current	$W B D^{*}=2 \mathrm{~V}, \mathrm{~V}_{1 L}=0.4 \mathrm{~V}$			-10	-250	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	$W B D^{*}=2 \mathrm{~V}, ~ / 1 \mathrm{~N}=-12 \mathrm{~mA}$			-0.2	-1.5	V
${ }^{1} \mathrm{OD}$	Output/Input Bus Disable Current	$\begin{aligned} & \mathrm{WBD}^{*}=\mathrm{STR}^{*}=2 \mathrm{~V}, \mathrm{BDI} / \mathrm{O}=0.4 \mathrm{~V} \\ & \text { to } 4 \mathrm{~V}, \mathrm{VCC}=5.25 \mathrm{~V} \end{aligned}$		-80		80	$\mu \mathrm{A}$

MOS BUS PORT (MBI/O 00-07)

10	Logical '0' Input Current	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OL}(\mathrm{TTL})=50 \mathrm{~mA}, \\ & V_{\mathrm{OL}} \leq 0.5 \mathrm{~V},(\text { Note } 5) \end{aligned}$	-5.0		0.10	mA
I_{1}	Logical " 1 " Input Current	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OH}(\mathrm{TTL})=-1 \mathrm{~mA}, \\ & V_{\mathrm{OH}} \geq V_{C C}-1.1 \mathrm{~V},(\text { Notes } 5 \text { and } 6) \end{aligned}$	0.50		5.0	mA
V_{O}	Logical ' 0 ' Input Voltage	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OL}(\mathrm{TTL})=50 \mathrm{~mA}, \\ & V_{\mathrm{OL}} \leq 0.5 \mathrm{~V} \end{aligned}$			0.8	V
V_{1}	Logical "1" Input Voltage	$\begin{aligned} & \mathrm{WBD}^{*}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{OH}(T \mathrm{TL})=-1 \mathrm{~mA}, \\ & V_{\mathrm{OH}} \geq \mathrm{V}_{\mathrm{CC}}-1.1 \mathrm{~V} \end{aligned}$	2.0	1.5		V
V_{OH}	Logical "1" Output Voltage	$\begin{aligned} & \text { WBD }^{*}=\mathrm{CE} 1=\mathrm{BDI} / \mathrm{O}=2 \mathrm{~V}, \\ & \mathrm{IOH}(\mathrm{MOS})=-1 \mathrm{~mA}, \mathrm{CE} 2^{*}= \\ & \text { STR }^{*}=0.8 \mathrm{~V} \end{aligned}$	2.4	3.3		V
V_{OL}	Logical " 0 " Output Voltage	$\begin{aligned} & W B D^{*}=C E 1=2 V, I O L(M O S)= \\ & 5 \mathrm{~mA}, C E 2^{*}=S T R^{*}=B D I / O=0.8 V \end{aligned}$		0.28	0.5	V
IOS	Output Short Circust Current	$\begin{aligned} & \text { WBD }^{*}=C E 1=\mathrm{BDI} / \mathrm{O}=2 \mathrm{~V}, \\ & V_{C C}=5.25 \mathrm{~V}, \mathrm{VOUT}=0 \mathrm{~V}, \\ & \text { STR }^{*}=C E 2^{*}=0.8 \mathrm{~V},(\text { Note } 4) \end{aligned}$	-7	-15	-45	mA
$\mathrm{V}_{\text {CLAMP }}$	Input Clamp Voltage	$I_{\text {IN }}=-12 \mathrm{~mA}$			-1.5	V
IOD	Output/Input Bus Disable Current	$\mathrm{MBI} / \mathrm{O}=0.4 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	-80		80	$\mu \mathrm{A}$
CONTROL INPUTS (WBD*, CE1, CE2*, STR*)						
$\mathrm{V}_{1 H}$	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical '0' Input Voltage				0.8	V
11 H	Logical "1' Input Current	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
I_{1}	Input Current at Maximum Input Voltage	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$			1.0	mA

electrical characteristics (Continued) (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CONTROL INPUTS (WBD*, CE1, CE2*, STR*) (continued)						
IIL	Logical "I' Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-250	-400	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$	Input Clamp Voltage	IIN $=-12 \mathrm{~mA}$		-0.85	-1.5	V
POWER SUPPLY CURRENT						
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		70	110	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are shown as positive, out of device pins are negative. All voltages are referenced to ground unless otherwise noted.
Note 4: Only one output at a time should be shorted.
Note 5: The MBI/O Input Characteristic Graph illustrates this parameter and defines the regions of guaranteed logical " 0 " and logical " 1 " outputs. See equivalent input structure for clarification. When the MBI/O input is loaded with a high impedance source (open), the TTL output will be in the logic " 0 " state.
Note 6: The maximum MOS bus positive input current specification is intended to define the upper limit on guaranteed input clamp operation. At higher input currents (up to the absolute maximum rating) clamp operation is not guaranteed but TTL bus logic state is valid and no device damage will occur.
Note 7: In most applications the MOS bus data lines are higher impedance and more sensitive to noise coupling than TTL bus lines. Conservative design practice would dictate routing MOS bus lines away from high speed, low impedance TTL lines and MOS clock lines or providing a ground shield when they are adjacent.
switching characteristics $V_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DATA TRANSFER SPECIFICATIONS						
Receiving Mode (BDI/O Bus to MBI/O Bus)	$\begin{aligned} & \mathrm{WBD}^{*}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega,(\text { Figures } 4 \text { and } 6 \text {) } \end{aligned}$	$t_{\text {pdo }}$		17	40	ns
		${ }^{\text {tpd }} 1$		20	40	ns
Driving Mode (MBI/O Bus to BDI/O Bus)	$\begin{aligned} & \text { WBD }^{*}=C E 1=0 \mathrm{~V}, \\ & S T R^{*}=C E 2^{*}=3 \mathrm{~V}, \\ & C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=100 \Omega, \end{aligned}$ (Figures 3 and 5)	${ }^{\text {tpd0 }}$		40	60	ns
		${ }^{\text {tpal }}$		40	60	ns

TRANSCEIVER MODE SPECIFICATIONS

Select Bus					
tDS	Chip Enable Data Set-Up	(Figure 1)	45	23	ns
${ }^{\text {t }} \mathrm{DH}$	Chip Enable Data Hold	(Figure 1)	0		s
tES	Set-Up	(Figure 1)	0		is

TTL Data Bus (BDI/O 00-07)

tBD OD	Bus Data Output Disable	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, (Figure 1)	5	20	50	ns
tBD OE	Bus Data Output Enable	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, (Figure 1)		25	80	ns
tBDIE	Bus Data Input Enable	(Figure 1)		30		ns
tBD ID	Bus Data Input Disable	(Figure 1)		30		ns

MOS Data Bus (MBI/O 00-07)

$\mathrm{t}_{\mathrm{MB} \mathrm{O}}$ OD	MOS Bus Output Disable	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, (Figure 1)	15	50	100	ns
${ }^{\text {t M }}$ M OE	MOS Bus Output Enable	$\mathrm{C}_{\mathbf{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathbf{L}}=1 \mathrm{k} \Omega$, (Figure 1)		50	100	ns
tMB ID	MOS Bus Input Disable	(Figure 1)		55		ns
${ }^{\text {t MB IE }}$	MOS Bus Input Enable	(Figure 1)		20		ns

Select Bus

tCLR	Clear Previous Chip Enable	(Figure 2)		25	50

switching time waveforms and ac test circuits

FIGURE 2

FIGURE 3. BOI/O Bus

*This input network simulates the actual drive characteristic of the PACE outputs FIGURE 5. MBI/O to BOI/O ac Loads

FIGURE 6. BOI/O to MBI/O ac Loads

typical performance characteristics

equivalent circuit

MOS Bus Driver Input

typical applications

Multiplexed TTL System Bus*

*See Note 7 under electrical characteristics

DP8302, DP8305 PACE system timing element (PACE STE)

general description

The PACE STE provides an oscillator, CPU clock driver, and TTL system clocks in a single 16-pin DIP. The STE is intended specifically for application in PACE microprocessor-based systems.
An external crystal provides frequency control. True and complemented non-overlapping clock outputs are generated at one-half the oscillator frequency. Nonoverlap intervals may be controlled with a single external capacitor. Series damping resistors are provided on the MOS (CPU) clock outputs (CLK, NCLK).
TTL level system clock outputs are also provided to facilitate the synchronizing of system operations.
DP8302 is used with 2.6667 MHz crystal, and DP8305 is used with 4.0 MHz crystal.

features

- Internal Oscillator Driven Directly from External Crystal, Minimizing Package Count
- External Oscillator Input Maximizes Application Flexibility
- TTL System Clocks Simplify Interfaces and Facilitate Synchronization of System Operations
- MOS Clock Outputs, No External MOS Clock Drivers Required
- High Voltage Output High Level ($\mathrm{V}_{\mathrm{cc}}-1.1 \mathrm{~V}$) on TTL System Clocks

block and connection diagrams

Signal* \equiv N Signal \equiv
Low Active Signal
NC $=$ No Connection

Figure 1.

absolute maximum ratings [1]

electrical characteristics (Notes 2 and 3)

Parameter	Conditions	Min.	Typ.	Max.	Units

OUTPUT SPECIFICATIONS:

TCLK, TCLK* (TTL Clocks)							
$\mathrm{V}_{\text {OH }}$ Logic " 1 " Output Voltage	$V_{C C}=4.75 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	3.65	4.25		v	
$\mathrm{V}_{\text {OL }}$ Logic "0" Output Voltage	$\mathrm{V}_{\text {cc }}=4.75 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$		0.25	0.4	\checkmark	
Ios Output Short Circuit Current	(Note 4), $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$		-10	-33	-55	mA	
CK, NCK, CLK, NCLK	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\text {cc }}-0.9$	$V_{c C}-0.5$		V	
V_{OH} Logic "1" Output Voltage							
$V_{\text {OL }}$ Logic '0" Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{G G}=-11.4 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$			$V_{G G}+0.1$	$\mathrm{V}_{\mathrm{GG}}+0.25$	V
		$\mathrm{IOL}^{\text {L }}=5 \mathrm{~mA}$		$V_{G G}+0.2$	$V_{G G}+0.5$	V	

INPUT SPECIFICATIONS

EXTC			2.0			V
$\mathrm{V}_{\text {IH }}$ Logic "1" Input Voltage						
'IH Logic " 1 " Input Current	$V_{C C}=5.25 V$	$V_{1 N}=2.4 V$			40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
$V_{\text {IL }}$ Logic ' 0 ' Input Voltage					0.8	\checkmark
IIL Logic "0" Input Current	$V_{C C}=5.25 \mathrm{~V}$	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$		-0.9	-1.6	mA
$V_{\text {CLAMP }}$ Input Clamp Diode	$V_{C C}=4.75 \mathrm{~V}$	$\mathrm{I}_{\mathrm{IL}}=-12 \mathrm{~mA}$		-0.8	-1.5	V
POWER SUPPLY CURRENT	$V_{C C}=5.25 V$			20	30	mA
$I_{\text {CC }}$ Supply Current from $V_{\text {CC }}$						
I_{GG} Supply Current from V_{GG}	$V_{G G}=-12.6 \mathrm{~V}$			-40	-55	mA

switching characteristics

Crystal frequency at 2.6667 MHz for DP8302 or 4 MHz for DP8305, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{GG}}=+17 \mathrm{~V} \pm 5 \%$.

Symbol	Parameter		Limits			Units	Test Conditions
			Min.	Typ.	Max.		
$\mathrm{t}_{\text {NOV }}{ }_{1}$, $\mathrm{N}_{\text {NOV }}$	Non-Overlap Timie	at 2.6667 MHz $\mathrm{C}_{\text {NOV }}=60 \mathrm{pF}$	5	12		ns	See Note 5
		$\begin{aligned} & \text { at } 4.0 \mathrm{MHz} \\ & \mathrm{C}_{\mathrm{NOV}}=40 \mathrm{pF} \end{aligned}$	5	10		ns	
${ }_{\text {t PW }}$	MOS Clocks Pulse Width (NCLK, CLK, NCK, CK)	at 2.6667 MHz $\mathrm{C}_{\text {NOV }}=60 \mathrm{pF}$	300	320		ns	See Note 5
		at 4.0 MHz $\mathrm{C}_{\text {NOV }}=40 \mathrm{pF}$	205	213		ns	
$t_{\text {R }}$	MOS Clocks Rise Time (NCLK, CLK, NCK, CK)				40	ns	See Note 5
t_{F}	MOS Clocks Fall Time (NCLK, CLK, NCK, CK)				40	ns	See Note 5
${ }^{\mathrm{PPH}_{1}}{ }^{\text {t }}{ }_{\text {PH2 }}$	TTL Clocks to MOS Clocks High Level Delay		-40		40	ns	See Note 5
$\mathrm{tPL}, \mathrm{tPL}$	TTL Clocks to MOS Clocks Low Level Delay		-5		80	ns	See Note 5
${ }_{\text {TD }}{ }_{1},{ }^{\text {t }}$ TD2	TTL Clock to TTL Clock Delay		-25		25	ns	See Note 5
tSTART	Time Delay from Last Power Applied to MOS Ciocks Stabilized				100	ms	See Figure 7

Notes:

1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated ct these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
2. Unless otherwise specified, mın/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-11.4 \mathrm{~V}$ to -12.6 V power supply range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All currents into device pins are shown as positive; currents out of device pins are shown as negative. All voltages are references to ground unless otherwise noted.
4. Only one output at a tilme should be shorted.
5. The test conditions for measuring AC parameters are shown in Figure 3, with $\mathrm{C}_{1}=\mathrm{C}_{2}=60 \mathrm{pF}, \mathrm{C}_{\mathrm{NOV}}=60 \mathrm{pF}$ at 2.6667 MHz and 40 pF at 4.0 MHz . Load conclitions for MOS clocks and TTL clocks are shown in Figures 4 and 5 . Including probe and jig capacitance, $C_{L 1}=20 \mathrm{pF}$ to 80 pF , and $\mathrm{C}_{\mathrm{L} 2}=410 \mathrm{pF}$.

recommended crystal specifications

- AT-cut crystal
- $2.6667 \mathrm{MHz} \pm 0.1 \%$, or $4.0 \mathrm{MHz} \pm 0.1 \%$, fundamental mode
- 5 mW maximum
- 150Ω maximum series resistance

functional description

OSCILLATOR

The oscillator incorporates a low-power inverter biased in the linear region utilizing an internal feedback network. An external crystal is connected between pins $\times 1$ and X 2 to provide frequency control. EXTC must be grounded for this operating mode. The circuit board traces connecting the crystal to pins $X 1$ and $X 2$ should be as short as possible and should be physically isolated from all high energy. level switching signal traces, particularly the CPU MOS clock lines.
When an external oscillator is to be used in place of the internal crystal oscillator, pin $\times 1$ must be tied to $V_{G G}$ and pin X2 must be left open. Then, EXTC may be used as a TTL input for the external oscillator.

DIVIDE AND SQUARING CIRCUIT

A flip-flop is used to provide a square wave clock signal by dividing the buffered oscillator output by two. The outputs of this circuit are buffered to provide TTL system clock signals which lead the MOS level clock outputs.

NON-OVERLAP CIRCUIT

The Divider output drives a cross-coupled latch containing a delay in the feedback path which insures nonoverlapping MOS clock signals. The delay in the feedback path can be increased by connecting a capacitor between pins LCK and LCK*. The effect of the capacitor on increasing the non-overlap interval is shown in the Typical Characterıstics section. (Figure 6)

MOS CLOCK DRIVER

The MOS Clock Driver produces output voltage swings from the +5 V supply to the -12 V supply. CLK and NCLK outputs contain a 25Ω series damping resistor, a typically optimum value for circuit board layouts with clock interconnect lines of less than two inches.
Undamped MOS clock outputs, CK and NCK, are also available in the event other values of series damping resistors are desired.
It is recommended that $0.1 \mu \mathrm{~F}$ high frequency capacitors be provided from $V_{C C}$ to ground and from $V_{G G}$ to ground immediately adjacent to the STE.

timing diagram

[^13]Figure 2.
test conditions

Figure 3.

Figure 4.

TCAK TCLK LOAO

Figure 5.

typical characteristics

> TSTART - TIME OELAY FROM LAST PUWER APPLIED TOMOS CLOCKS STABILIZEO.

Figure 7.

typical applications

DP7304B/DP8304B 8-Bit TRI-STATE ${ }^{\ominus}$

Bidirectional Transceiver

General Description

The DP7304B/DP8304E are 8-bit TRI-STATE® Schottky transceivers. They provide bidirectional drive for busoriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16 mA drive capability on the A ports and 48 mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

Transmit/Receive inputs determine the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a TRI-STATE condition.

The output high voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ is specified at $\mathrm{V}_{\mathrm{CC}}-1.15 \mathrm{~V}$ minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Features

- 8-Bit Bidirectional Data Flow Reduced System Package Count
- Bidirectional TRI-STATE Inputs/Outputs Interface with Bus-Oriented Systems
- PNP Inputs Reduce Input Loading
- Output High Voltage Interfaces with TTL, MOS, and CMOS
- $48 \mathrm{~mA} / 300 \mathrm{pF}$ Bus Drive Capability
- Pinouts Simplify System Interconnections
- Transmit/Receive and Chip Disable Simplify Control Logic
- Compact 20-Pin Dual-In-Line Package
- Low ICC Power (8 mA per bidirectional bit)

Logic and Connection Diagrams

Logic Table

Inputs		Resulting Conditions	
Chip Disable	Transmit/扁eceive	A Port	B Port
0	0	OUT	IN
0	1	IN	OUT
1	X	TRI-STATE	TRI-STATE

[^14]| Absolute Maximum Ratings | (Note 1) |
| :--- | ---: |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Output Voltage | 5.5 V |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (soldering, 10 seconds) | $300^{\circ} \mathrm{C}$ |
| Power Dissipation | |
| Cavity Package (J) | 730 mW at $125^{\circ} \mathrm{C}$ |
| Molded Package (N) | 600 mW at $70^{\circ} \mathrm{C}$ |

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (VCC)			
DP7304B	4.5	5.5	V
DP83048	4.75	5.25	V
Temperature (TA)			
DP73048	-55	125	${ }^{\circ} \mathrm{C}$
DP83048	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Parameter	Conditions		Min	Typ	Max	Units
A Port (A0-A7)						
$V_{\text {IH }}$ Logical "1" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$		2.0			V
Logical "0" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$	DP8304B			0.8	V
		DP 73048			0.7	V
Logical "1" Output Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}$,	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\text {CC- }} 1.15$	$\mathrm{V}_{\mathrm{CC}}-0.7$		V
		$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.7	3.95		V
Logical "0" Output Voltage	$\mathrm{CD}=\mathrm{T} / \overline{\mathrm{R}}=0.8 \mathrm{~V} \quad \mathrm{IOL}=16 \mathrm{~mA}(83048)$			0.35	0.5	V
	$\mathrm{OLL}=8 \mathrm{~mA}$ (both)			0.3	0.4	V
IOS Output Short Circuit Current	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\max , \text { Note } 4 \end{aligned}$		-10	-38	-75	mA
IIH Logical "1" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \overline{\mathrm{~V}} \mathrm{IH}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
IIInput Current at Maximum Input Voltage	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\max , \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1	mA
IIL Logical "0" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
$V_{\text {CLAMP }}$ Input Clamp Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, 1 / \mathrm{N}=-12 \mathrm{~mA}$			-0.7	-1.5	V
IOD Output/Input	$C D=2.0 \mathrm{~V}$	$V_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
TRI-STATE Current		$\mathrm{V}_{1 \mathrm{~N}}=4.0 \mathrm{~V}$			80	$\mu \mathrm{A}$

8 Port (80-87)						
$V_{\text {IH }}$ Logical "1" Input Voltage	$C D=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}$		2.0			V
Logical "0" Input Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}$	DP83048			0.8	V
		DP73048			0.7	V
Logical "1" Output Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$	$\mathrm{I} \mathrm{OH}=-0.4 \mathrm{~mA}$	$V_{\text {CC- }} 1.15$	$V_{C C}-0.8$		V
		$\mathrm{IOH}^{\mathrm{OH}}=-5 \mathrm{~mA}$	2.7	3.9		V
		$\mathrm{IOH}^{\prime}=-10 \mathrm{~mA}$	2.4	3.6		V
Logical "0" Output Voltage	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}$	$1 \mathrm{OL}=20 \mathrm{~mA}$		0.3	0.4	V
		$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.4	0.5	V
IOS $\begin{aligned} & \text { Output Short Circuit } \\ & \text { Current }\end{aligned}$	$\begin{aligned} & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\max , \text { Note } 4 \end{aligned}$		-25	-50	-150	mA
I/H Logical "1" Input Current	$C D=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{1 H}=2.7 \mathrm{~V}$			0.1	80	$\mu \mathrm{A}$
II Input Current at Maximum	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{C C}=\max , \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1	mA
IIL Logical "0" Input Current	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-70	-200	$\mu \mathrm{A}$
VCLAMP Input Clamp Voltage	$\mathrm{CD}=2.0 \mathrm{~V}, \mathrm{I}_{1} \mathrm{~N}=-12 \mathrm{~mA}$			-0.7	-1.5	V
Output/Input TRI-STATE Current	$\mathrm{CD}=2.0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-200	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=4.0 \mathrm{~V}$			+200	$\mu \mathrm{A}$

Electrical Characteristics（cont＇d．）（Notes 2 and 3 ）

Parameter	Conditions		Min	Typ	Max	Units
Control Inputs CD，T／／						
$V_{\text {IH }} \quad$ Logical＂1＂Input Voltage			2.0			V
$V_{\text {IL }}$ Logical＂0＂Input Voltage					0.8	\checkmark
IIH Logical＂1＂Input Current	$V_{I H}=2.7 \mathrm{~V}$			0.5	20	$\mu \mathrm{A}$
II Input Current at Maximum Iriput Voltage	$V_{C C}=\max , \mathrm{V}_{1 H}=5.25 \mathrm{~V}$				1.0	mA
IIL Logical＂0＂Input Current	$V_{I L}=0.4 \mathrm{~V}$	T／R		－0．1	－0．25	mA
		CD		－0．25	－0．5	mA
VCLAMP Input Clamp Voltage	$1 \mathrm{IN}=-12 \mathrm{~mA}$			－0．8	－1．5	V
Power Supply Current						
ICC Power Supply Current	$C D=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{VCC}=\max$			60	100	mA
	$\mathrm{CD}=\mathrm{V}$ INA $=0.4 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max$			80	130	mA

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Characteristics (cont'd.) $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	Parameter	Conditions	Min	Typ	Max	Units
Transmit/Receive Mode Specifications						
tPHZR	Propagation Delay from a Logical " 1 " to TRI-STATE from T/R to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V} \text { (figure } \mathrm{B}) \\ & \mathrm{S} 1=1, R 4=100 \Omega, C 3=300 \mathrm{pF} \\ & \mathrm{~S} 2=0, R 3=1 \mathrm{k}, \mathrm{C} 2=15 \mathrm{pF} \end{aligned}$		7	12	ns
tPLZR	Propagation Delay from a Logical " 0 " to TRI-STATE from T/R to A Port	$\begin{aligned} & C D=0.4 \mathrm{~V} \text { (figure } B \text {) } \\ & S 1=0, R 4=1 \mathrm{k}, \mathrm{C} 3=300 \mathrm{pF} \\ & S 2=1, R 3=1 \mathrm{k}, \mathrm{C} 2=15 \mathrm{pF} \end{aligned}$		10	14	ns
tPHZT	Propagation Delay from a Logical " 1 " to TRI-STATE from T/R to B Port	$\begin{aligned} & C D=0.4 V(\text { figure } B) \\ & S 1=0, R 4=1 k, C 3=15 \mathrm{pF} \\ & S 2=1, R 3=5 k, C 2=30 \mathrm{pF} \end{aligned}$		16	22	ns
tPLZT	Propagation Delay from a Logical " 0 " to TRI-STATE from T/R to B Port	$\begin{aligned} & C D=0.4 V(\text { figure } B) \\ & S 1=1, R 4=1 \mathrm{k}, C 3=15 \mathrm{pF} \\ & S 2=0, R 3=1 \mathrm{k}, C 2=30 \mathrm{pF} \end{aligned}$		17	22	ns
tPRL	Propagation Delay from Transmit Mode to a Logical " 0, " T / R to A Port			25	40	ns
tPRH	Propagation Delay from Transmit Mode to a Logical "1," T/R to A Port	tPRH $=$ tPLZT + tPDLHA		30	40	ns
tPTL	Propagation Delay from Receive Mode to a Logical " 0, , T / R to B Port	tPTL $=$ tPHZR + tPDHLB		25	35	ns
tPTH	Propagation Delay from Receive Mode to a Logical " 1, , T / R to B Port	tPTH $=$ tPLZR + tPDLHB		26	35	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

NOTE: CI INCLUDES TEST FIXIURE CAPACITANCE.

FIGURE A. Propagation Dalay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (cont'd.)

NOTE C2 ANOC3INCLUDE TEST FIXTURE CAPACITANCE

FIGURE B. Propagation Delay from T / \bar{R} to A Port or B Port

NOTE. CA INCLUOESTEST FIXTURE CAPACITANCE
PORT INPUT IS IN AFIXEO LOGICAL
CONOITION SEE AC TABLE

FIGURE C. Propagation Delay to/from TRI-STATE ${ }^{(\mathbb{B}}$ from CD to A Port or B Port

Microprocessor Support Circuits

DP8350 Series Programmable CRT Controllers

General Description

The DP8350 Series of CRT Controllers are single-chip bipolar ($1^{2} \mathrm{~L}$ technology) circuits in a 40 -pin package. They are designed to be dedicated CRT display refresh circuits.

The CRT Controller (CRTC) provides an internal dot rate crystal controlled oscillator for ease of system design. For systems where a dot rate clock is already provided, an external clock input may be used by the CRTC. In either case system synchronization is made possible with the use of the buffered Dot Rate Clock Output.

The DP8350 Series has 11 character generation related timing outputs. These outputs are compatible for systems with or without line buffers, using character ROMS, or DM8678-type latch/ROM/shift register circuits.
12 bits (4 k) of bidirectional TRI-STATE ${ }^{\circledR}$ character memory addresses are provided by the CRTC for direct interface to character memory.

Three on-chip registers provide for external loading of the row starting address, cursor address, and top-of-page address.

A complete set of video outputs is available including cursor enable, programmable vertical blanking, programmable horizontal sync, and programmable vertical sync.

The DP8350 Series CRTC provides for a wide range of programmability using internal mask programmable ROMs:

- Character Field (both number of dots/character and number of scan lines/character)
- Characters per Row
- Character Rows per Video Frame

The CRTC also provides system sync and program inputs including $50 / 60 \mathrm{~Hz}$ control, system clear, external character/line rate clock, and character generator program.

The DP8350 Series operates on a single +5 V power supply. Outputs and inputs are TTL compatible.

Features

- Internal crystal controlled dot rate oscillator
- External dot rate clock input
- Buffered dot rate clock output
- Timing pulses for character generation
- Character memory address outputs (12 bits)
- Internal cursor address register
- Internal row starting address register
- Top-of-page address register (for scrolling)
- Programmable horizontal and vertical sync outputs
- Programmable cursor enable output
- Programmable vertical blanking output
- $50 / 60 \mathrm{~Hz}$ refresh rate
- Programmable characters/row (5 to 110)
- Programmable character field size (up to 16 dots $\times 16$ scan line field size)
- Programmable character rows/frame (1 to 64)
- Single $+5 \vee$ power supply
- Inputs and outputs TTL compatible
- Ease of system design/application

DP8350 Series Connection Diagram

DP8350 Block Diagram

CHARACTER GENERATION/TIMING OUTPUTS

The CRTC provides 11 interface timing outputs for line buffers, character generator ROM, DM8678-type latch/ ROM/shift register combination character generators, and system status timing. All outputs are TTL compatible and directly interface to popular system circuits, including:

- DM8678 Series Character Generators
- MCM6570 Series Character ROM
- DM74166 Dot Shift Register
- MK1007P, 33571/2, 2532 80-8it Shift Registers (Line 8uffers)

Dot Rate Clock: This output is buffered for use in system synchronization and interface to dot shift register. Positive edge clock at crystal oscillator frequency.

Load Video Shift Register: Buffered output at character rate frequency. Used for direct interface to dot shift register. This output is active only during video time and therefore performs both the horizontal and vertical blanking functions. Low level active.

Latch Character Generator Address: Buffered output at character rate frequency. Active at all times. Positive edge clock.

Line Buffer Clock: This output directly interfaces to line buffers. Output operates at character rate. Negative edge clock. Not active during horizontal blanking. The number of clocks per scan line is equivalent to the number of video characters per row.
Line Rate Clock: Line rate frequency output for use with DM8678-type character generator.

Line Counter Outputs ($\mathbf{L C}_{0}$ to $\mathbf{L C}_{3}$): 8uffered outputs at line rate frequency for use with character ROMs without internal line counter. These outputs are also useful for system decode of present line position in character row. Outputs clock in sync with Line Rate Clock at start of horizontal blanking. Outputs are always active.
Clear Line Counter: Row rate clock - occurs in sync with Line Rate Clock during horizontal blanking between last line of any row and first line of a new row. This output is always active and is a negative edge clock - direct interface to the DM8678.

Line Buffer Recirculate Enable: This output interfaces to a line buffer and becomes inactive (logic " 0 " state) during the last line or the first line of a character row, depending on the state of the character generator program input. A low level on this output indicates (in line buffer applications) the time during which the line buffer is loaded with the next row of character codes.

Table 1. Character Generetor Progrem Truth Table

Character Generator Program Input	Recirculate Enable Output Low Level and New Row Address at Address Outputs
" 0 "	Last line of character row
"1"	First line of character row

The pulse appears at the start of horizontal blanking prior to when the memory address bus must be transferred to the CRTC, then returns to the high state at the next horizontal blanking interval.

MEMORY ADDRESS OUTPUTS/INPUTS AND REGISTERS

CRT Character Address Outputs (TRI-STATE) - A ${ }_{0}$ to A11: 12 bits of bidirectional CRT character address counter outputs are provided by the CRTC. These outputs directly interface to the system RAM memory address bus.

Within a scan line the counter is pre-set to the address contained within the Row Start Register (RSR) three character times before the start of video time. The counter is then advanced sequentially at character rate to the max video character address plus 1 for the present scan line. This address is then held during the horizontal blanking interval up to three character times before video start for the next scan line. At this point the counter is again pre-set to the contents of the RSR and the above sequence is repeated. This sequence provides scan line address repetition for every scan line of a character location within a row. Row-to-row start address modifications are accomplished by updating the contents of the RSR.

During vertical blanking the address counter operation is modified by stopping the pre-set load of the contents of the RSR into the address counter, thereby allowing the address outputs to free run during vertical blanking. This allows minimum access time to the CRTC when the CRTC address counter outputs are being used for dynamic RAM refresh.
RAM Address Enable Input: At all times the status of the address counter outputs is controlled externally by the Enable Input. Logic " 1 " = TRI.STATE, Logic " 0 " = Active.

Internal Top-of-Page, Row Start, and Cursor Registers: Control pins are provided for loading the top-of-page, row start, and cursor address into three 12 -bit CRTC registers from the bidirectional memory address pins.
The Top-of-Page Register (TOPR) holds the address of the first character of the first video row. This register allows display scroll with the CRTC without the use of external memory address adders. If the TOPR is not loaded after a system clear its contents will be zero and the address outputs will be sequential from zero at the top-of-page.
The Cursor Register (CR) holds the present address of the cursor and is cleared to zero after a system clear. Once the TOPR and CR registers have been loaded they need not be accessed again until modification of their contents is required. These registers may be loaded at any time, but to cause minimum display distortion it is recommended that they be loaded only during blanking intervals.

The Row Start Register (RSR) is the working register for the CRTC address counter. It determines the first video character address on a scan line to scan line basis.

Modification of this register after the start of video in a scan line will modify the address counter outputs at the start of video on the next scan line. (See address output description.) If the RSR is never externally loaded, the CRTC address outputs will be sequential on a row-torow basis from the TOPR contents at the start of the video page. With external lcading, row-to-row nonsequential operation of the CRTC address outputs is possible, thus row-to-row edit capability. When used in this mode the RSR should be loaded after the start of video time of the last scan line of the previous row. A load to the RSR during vertical blanking will also load the TOPR.

Table 2. Register Loatd Truth Table

Register Select A	Register Select B	Register Load Input	Register Access
0	0	0	No Select
0	1	0	Top-of-Page
1	0	0	Row Start ${ }^{*}$
1	1	0	Cursor
X	X	1	No Select

*During vertical blariking a load to this register will also load the top-of-page register

VIDEO RELATED OUTPUTS

Horizontal Sync: This output provides the necessary line (scan) rate sync to either three-terminal or composite sync monitors. The pulse is programmable in position and width at character time increments. This output may also be programmed to have RS-170 compatible serration pulses during the vertical sync interval. The active logic state of this output is also programmable.

Vertical Sync: This output provides the necessary frame rate sync consistent with either three-terminal or composite type monitors. The pulse is programmable in position and width at line (scan) time increments. The active logic state of this output is also programmable.

Cursor Enable: When a match with the CRTC cursor address register and address counter occurs a pulse will appear at this output at that video character time (character field width) for every line in that row. This output may also be programmed to appear on only one line of a character row. With the character generator program pin in a logic " 0 " position the cursor enable output will not be valid on the last line of a character row for that row. Like the Load Video Shift Register Output, this output is not active during horizontal or vertical blanking. High level active output.

CRT SYSTEM CONTROL FUNCTIONS

$50 / 60 \mathrm{~Hz}$ Control Input: This input controls the CRT system refresh rate. The CRTC may also be programmed for refresh rates other than 50 and 60 Hz .

$50 / 60 ~ H z$ Control	Refresh Rate
1	$60 \mathrm{~Hz}\left(\mathbf{f}_{1}\right)$
0	$50 \mathrm{~Hz}\left(\mathrm{f}_{\mathrm{o}}\right)$

Vertical Blanking Output: This output becomes active (logic "1") at the start of vertical blanking and may be programmed to stop at the end of any line of the character row before the start of the first video row. This output is useful for flag applications to other elements in the CRT system. Its active level is also programmable.

System Clear Input: This input when low sets and holds the CRTC at the start of vertical blanking for system sync and test. It also clears to zero the cursor and top-of-page registers. The input has hysteresis and may be connected to a resistor to VCC and a capacitor to ground to provide power-up system clear.
Character Generator Program Input: This input modifies both the position of the recirculate enable output low level and the time at which the address outputs change to a new row address. 11 is intended to provide optimum use of the CRTC with character generator/ROMs programmed with or without active video on the first or last line of a character row. ISee Recirculate Enable for truth table.)

External Character/Line Rate Clock: This input is intended to aid testing of the CRTC and is not meant to be used as an active input in a CRT system. When this input is left open it is quaranteed not to interfere with normal operation.

Crystal Inputs X1 and X2: The oscillator is controlled by an external, parallel resonant crystal connected between the X 1 and X 2 pins. Normally, a fundamental mode crystal is used to determine the operating frequency of the oscillator; however, overtone mode crystals may be used.

Crystal Specifications (parallel resonant):

Connection Diagram

If the DP8350 series is clocked at dot rate by a system clock, pin 22 (X 1 input) should be clocked directly using a Schottky series circuit. Pin 21 (X 2 input) may be left open.

Timing Waveforms

Figure 1. Dot/Character Rate Timing

Figure 2. Character/Line Rate Timing

Timing Waveforms (cont'd.)

Note 1: The load video shift register output is not active during vertical or horizontal blanking (remains in the logic " 1 " state during these intervals
Note 2: The horizontal sync output start and stop point positions are user-programmable at character width intervals.
Note 3: The position of the recirculate enable output logic " 0 " level is dependent on the state of the character generator program input (CGPI). With CGPI = "0," recirculate enable occurs on the max line of a character row (solid line) and the address counter outputs roll over to the new row address at point A. With CGPI $=" 1$," recirculate enable occurs on the first line of a character row (dashed line) and the address counter outputs roll over to the new row address at point B.
Note 4: The address counter outputs clock to the address of the last character of a video row plus 1 . This address is then held during the horizontal blanking interval until video minus three character times. At this point the outputs are modified to the contents of the Row Start Register (RSR). With no external loading of the RSR the contents will be either the character address of the first character in the present row or the character address of the first character of the next video row (depending on the state of the Character Generator Program input) which will be sequential from the last character address of the last row. If the RSR was loaded, then the address outputs will be modified to the contents of the register.

Figure 3. Character/Line Rate Functional Diagram

Timing Waveforms (cont'd.)

Note 1: One full row before start of video the line counter is set to zero state - this provides line counter synchronization in cases where the number of lines in vertical blanking are not even multiples of the number of lines per row.
Note 2: The stop point of vertical blanking is programmable at line intervals within the last character row before start of video
Note 3: The Vertical Sync Output start and stop points are programmable at line rate increments.

Figure 4. Line/Frame Rate Functional Diagram

Test Load Circuits

NOTE. Cl includes probe and jig capacitance ALL DIODES ARE YNG14 DF EQUIVALENT

Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage, VCC	7.0 V
Input Voltage	-1 V to +5.5 V
Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

	Min	Max	Units
$V_{\text {CC }}$, Supply Voltage	4.75	5.25	V
$T_{\text {A }}$, Ambient Temperature	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $V_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Notes 2 and 3)

Parameter		Conditions	Min	Typ	Max	Units
V IH	Logic "1" Input Voltage (System Clear) (All Other Inputs Except $\times 1, \times 2$)		2.6			V
			2.0			V
$V_{\text {IL }}$	Logic "0" Input Voltage (System Clear) (All Other Inputs Except $\times 1$, X2)				0.8	V
					0.8	V
$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}$	System Clear Input Hysteresis			0.4		V
$V_{\text {clamp }}$	Input Clamp Voltage (All Inputs Except X1, X2, \& Char/Line Rate Clock)	$\mathrm{IIN}=-12 \mathrm{~mA}$		-0.8		V
IH	Logic "1" Input Current (Address Outputs) (All Other Inputs Except $\times 1, \times 2$)	Enable Input $=0 \mathrm{~V}$, $V_{C C}=5.25 \mathrm{~V}, V_{R}=5.25 \mathrm{~V}$		10		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=5.25 \mathrm{~V}$		2		$\mu \mathrm{A}$
IIL	Input Current (Address Outputs) (All Other Inputs Except X1, X2)	Enable Input $=0 \mathrm{~V}$, $V_{C C}=5.25 \mathrm{~V}, V_{\text {IN }}=0.5 \mathrm{~V}$		-20		$\mu \mathrm{A}$
		$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$		-20		$\mu \mathrm{A}$
VOH	Logic " 1 " Output Voltage	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	3.2	4.1		V
		$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.5	3.3		V
$\mathrm{VOL}_{\text {OL }}$	Logic "0" Output Voltage	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$		0.35	0.5	V
Ios	Output Short Circuit Current	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$		-40		mA
${ }^{\text {I CC }}$	Power Supply Current	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$		170		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.
Note 4: Only one output at a time should be shorted.

Switching Characteristics $V_{C C}=5.0 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$ (Notes 1 and 2)

	Parameter	Conditions	Min	Typ	Max	Unit
${ }^{\text {t }}$ 1 1	Dot Clock to Load Video Shift Register Negative Edge	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \text { Load Circuit } 1 \end{aligned}$		5		ns
${ }^{\text {t }}$ 2	Dot Clock to Load Video Shift Register Positive Edge	$C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		11		ns
tD3	Dot Clock to Latch Character Generator Positive Edge	$C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=1 \mathrm{k} \Omega,$ Load Circuit 1		11		ns
tD4	Dot Clock to Latch Character Generator Negative Edge	$C_{L}=50 p F, R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		4		ns
${ }^{\text {t }}$ 5	Dot Clock to Line Buffer Clock Negative Edge	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ $\text { Load Circuit } 1$		20		ns
tPW1	Line Buffer Clock Pulse Width	$C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega .$ Load Circuit 1		$N(D T) *$		ns
tD6	Dot Clock to Cursor Enable Output Transition	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {, } \\ & \text { Load Circuit } 1 \end{aligned}$		25		ns
${ }^{\text {t }}$ 7	Dot Clock to Valid Address Output	$C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		20		ns
${ }^{\text {t }}$ DB	Latch Character Generator to Line Rate Clock Transition	$C_{L}=50 \mathrm{p} F, R_{\mathrm{L}}=1 \mathrm{k} \Omega$ Load Circuit 1		$300+2 \mathrm{DT}$		ns
tD9	Latch Character Generator to Clear Line Counter Transition	$C_{L}=50 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		$400+2 \mathrm{DT}$		ns
t ${ }^{10}$	Line Rate Clock to Line Counter Output Transition	$C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=1 \mathrm{k} \Omega,$ Load Circuit 1		180		ns
t ${ }^{1} 1$	Line Rate Clock to Line Buffer Recirculate Enable Transition	$C_{L}=50 \mathrm{p} F_{,} R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		200		ns
${ }^{\text {D }} 12$	Line Rate Clock to Vertical Blanking Transition	$\begin{aligned} & C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \text {, } \\ & \text { Load Circuit } 1 \end{aligned}$		200		ns
${ }^{\text {t }} 13$	Line Rate Clock to Vertical Sync Transition	$C_{L}=50 \mathrm{p} F, R_{L}=1 \mathrm{k} \Omega,$ Load Circuit 1		200		ns
${ }^{\text {t }} 14$	Latch Character Generator to Horizontal Sync Transition	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \text { Load Circuit } 1 \end{aligned}$		100		ns
${ }^{\text {tS }}$	Register Select/Memory Address Setup Time Prior to Register Load Negative Edge			100		ns
tHI	Register Select Memory Hold Time After Register Load Positive Edge			0		ns
tPW2	Register Load Pulse Width			150		ns
$\mathrm{f}_{\text {MAX }}$ dot	Maximum Dot Rate Frequency			25		MHz
fMAX ${ }_{\text {char }}$	Maximum Character Rate Frequency			2.5		MHz
t LZ, thz	Delay from Enable Input to High Impedance State from Logic " 0 " and Logic " 1	$C_{L}=15 \mathrm{pF}$, Load Circuit 2		25		ns
${ }^{\text {t }} \mathrm{LL}, \mathrm{t} \mathrm{ZH}$	Delay from Enable Input to Logic " 0 " and Logic " 1 " from High Impedance State	$C_{L}=15 \mathrm{pF}$, Load Circuit 2		25		ns

Note 1: Unless otherwise specified, all $A C$ measurements are referenced to the 1.5 V level of the input to 1.5 V of the output.
Note 2: When external clock inputs are used, the input characteristics are $Z_{O U T}=50 \Omega$ and $t_{R} \leqslant 10 \mathrm{~ns}, t_{F} \leqslant 10 \mathrm{~ns}$.
*"DT" is defined as the duration (in ns) of one full cycle of the Dot Rate Clock (Item 20 of the ROM Program Table). "N" denotes the number of DTs per definition in Item 24 of the ROM Program Table.

DP8350 Series Option Program Table (Notes 1, 2, and 3)				
Item No.	Parameter		Value	
12	Character (Font Size)	Dots per Character		
		Scan Lines per Charact		
34	Character Field (Block Size)	Dots per Character		
		Scan Lines per Charact		
5	Number of Video Characters per Row			
6	Number of Video Character Rows per Frame			
7	Number of Video Scan Lines (Item $4 \times$ Item 6)			
8	Frame Refresh Rate ($\mathrm{Hz}^{\text {) (}}$ (wo frequencies allowed)		$\mathrm{f} 1=$	$\mathrm{f0}=$
9	Delay after/before Vertical Blank start to start of Vertical Sync ($+/$ - Number of Scan Lines)			
10	Vertical Sync Width (Number of Scan Lines)			
11	Delay after Vertical Blank start to start of Video (Number of Scan Lines)			
12	Total Scan Lines per Frame (Item $7+$ Item $11=1$ tem $13 \div$ Item 8)			
13	Horizontal Scan Frequency (Line Rate) (kHz) Item $8 \times$ Item 12)			
14	Number of Character Times per Scan Line			
15	Character Clock Rate (MHz) Item $13 \times$ Item 14)			
16	Character Time (ns) ($1 \div$ Item 15)			
17	Delay after/before Horizontal Blank start to Horizontal Sync Start (+/-Character Times)			
18	Horizontal Sync Width (Character Times)			
19	Dot Frequency ($\mathrm{MHz}_{\text {) }}$ (Item $3 \times$ Item 15)			
20	Dot Time (ns) (1 \div Item 19)			
21	Vertical Blanking Stop before start of Video (Number of Scan Lines) (Range $=1$ tem $4-1$ line to 0 lines)			
22	Cursor Enable on all Scan Lines of a Row? (Yes or No) If not, which Line?			
23	Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No)			
24	Width of Line Buffer Clock logic " 0 " state within a Character Time (Number of Dot Time increments)			
25	Serration Pulse Width, if used (Character Times)			
26	Horizontal Sync Pulse Active state logic level (1 or 0)			
27	Vertical Sync Pulse Active state logic level (1 or 0)			
28	Vertical Blanking Pulse Active state logic level (1 or 0)			

Note 1: If the Cursor Enable, Item 22, is active on only one line of a character row, then Item 21 must be either " 1 " or " 0 " unless it is the same as the line selected for Cursor Enable.
Note 2: Item $24 \times$ item 20 should be $>250 \mathrm{~ns}$.
Note 3: Item 11 must be greater than Item $4+1$.

DP8350 Series Option Program Table

DP8350 Option: 80 Characters $\times 24$ Rows, 5×7 Character Font, 7×10 Character Field

Item No.	Parameter		Value	
1	Character (Font Size)	Dots per Character		5
		Scan Lines per Character		7
34	Character Field (Block Size)	Dots per Character		7
		Scan Lines per Character		10
5	Number of Video Characters per Row			80
6	Number of Video Character Rows per Frame			24
7	Number of Video Scan Lines (1 tem $4 \times$ Item 6)		240	
B	Frame Refresh Rate ($\mathrm{Hz}_{\mathbf{z}}$ ((two frequencies allowed)		$\mathrm{f} 1=60 \mathrm{~Hz}$	$f 0=50 \mathrm{~Hz}$
9	Delay after/before Vertical Blank start to start of Vertical Sync ($+/-$ Number of Scan Lines)		4	30
10	Vertical Sync Width (Number of Scan Lines)		10	10
11	Delay after Vertical Blank start to start of Video (Number of Scan Lines)		20	72
12	Total Scan Lines per Frame (Item $7+$ Item $11=$ Item $13 \div$ Item B)		260	312
13	Horizontal Scan Frequency (Line Rate) (kHz) Item $B \times$ Item 12)		15.6 kHz	
14	Number of Character Times per Scan Line		100	
15	Character Clock Rate (MHz) Item $13 \times$ Item 14)		1.56 MHz	
16	Character Time (ns) ($1 \div$ Item 15)		641 ns	
17	Delay after/before Horizontal Blank start to Horizontal Sync Start (+/- Character Times)		0	
1B	Horizontal Sync Width (Character Times)		43	
19	Dot Frequency (MHz) (1 tem 3×1 tem 15)		10.920 MHz	
20	Dot Time (ns) ($1 \div$ Item 19)		91.6 ns	
21	Vertical Blanking Stop before start of Video (Number of Scan Lines) (Range $=\operatorname{Item} 4-1$ line to 0 lines)		1	
22	Cursor Enable on all Scan Lines of a Row? (Yes or No) If not, which Line?		Yes	
23	Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No)		No	
24	Width of Line Buffer Clock logic " 0 " state within a Character Time (Number of Dot Time increments)		4	
25	Serration Pulse Width, if used (Character Times)			-
26	Horizontal Sync Pulse Active state logic level (1 or 0)			1
27	Vertical Sync Pulse Active state logic level (1 or 0)			0
28	Vertical Blanking Pulse Active state logic level (1 or 0)		1	

FULL/HALF ROW CONTROL (PIN 5)

Device pin 5 converts the DPB350 programmed display from 80 characters by 24 rows to B0 characters by 12 rows.

Full/Half Row (Pin 5) Logic Stete	Display Size
1	80 by 24
0	80 by 12

With pin 5 in logic " 0 " state, the 12 character rows are equally spaced vertically on the CRT. Each row is spaced by one full row of blanked video.

Also in this mode the address counter outputs address the same memory space for two rows - the video row and the blanked row. Thus one half of the CRT memory space is addressed with pin 5 in logic " 0 " state as compared to pin 5 in logic " 1 " state.

Figure 6. System Diagram Using a Line Buffer

Figure 7. System Diagram with no Line Buffer

Note 1: If the Cursor Enable, Item 22, is active on only one line of a character row, then Item 21 must be either "1" or " 0 " untess it is the same as the line selected for Cursor Enable.

Note 2: Item $24 \times$ Item 20 should be $>250 \mathrm{~ns}$.
Note 3: Item 11 must be greater than Item $4+1$.

Section 9
Applicable TTL and CMOS Logic Circuits

TEMPERATURE RANGE
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DM54LS373, 374

DM54S240, 241, 940 ,
941
MM54C373
MM54C374
MM54C901
MM54C902
MM54C903
MM54C904
MM54C906
MM54C907

MM54C922
MM54C923
MM78C29
MM78C30

DM74LS373, 374

DM74S240, 241,940 941
MM74C373
MM74C374
MM74C90 1
MM74C902
MM74C903
MM74C904
MM74C906
MM74C907
MM74C908
MM74C918
MM74C922
MM74C923
MM88C29
MM88C30

DESCRIPTION

Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops
Octal TRI-STATE ${ }^{\circledR}$ Buffers/Line Drivers/Line Receivers
PAGE NUMBER
9.1 $9-5$

TRI-STATE ${ }^{\circledR}$ Octal D-Type Latch
9-12
TRI-STATE ${ }^{\circledR}$ Octal D.Type Flip-Flop
9-12
Hex Inverting TTL 8uffer
9-18
Hex Non-Inverting TTL Buffer 9-18
Hex Inverting PMOS Buffer 9-18
Hex Non-Inverting PMOS Buffer 9-18
Hex Open Drain N-Channel Buffers 9-22
Hex Open Drain P-Channel Buffers $9-22$
Dual CMOS 30V Driver 9-25
Dual CMOS 30 V Driver $\quad 9-25$
16 Key Encoder 9-30
20 Key Encoder $\quad 9.30$
Quad Single-Ended Line Driver 9-35
Dual Differential Line Driver 9.35

Additional information on products listed in this section should be addressed to the local sales office, distributor of your choice, or the respective CMOS or TTL logic marketing managers.

DM54LS373/DM74LS373, DM54LS374/DM74LS374 Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8 -bit registers feature totem-pole TRI-STATE ${ }^{(6)}$ outputs designed specifically for drivinghighly-capacitive or relatively low impedance loads. The high impedance TRI-STATE and increased high logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, $1 / \mathrm{O}$ ports, bidirectional bus drivers, and working registers.

The 8 latches of the DM54LS373 are transparent Dtype latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

The 8 flip-flops of the DM54LS374/DM74LS374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the 8 outputs in either a normal logic state (high or low logic levels) or a high impedance state. In the high impedance state the outputs neither load nor drive the bus lines signific antly.

The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- TRI-STATE bus driving outputs
- Full parallel access for loading
- Buffered control inputs
- PNP inputs reduce DC loading on data lines

Connection Diagrams and Truth Tables

Order Number DM54LS373J, DM74LS373J,
DM54LS373N or DM74LS373N
See NS Pack age J20A or N20A

ENABLE G	D	OUTPUT
H	H	H
H	L	L
L	X	Q0

DM54LS374/DM74LS374
Dual-In-Line Package

Order Number DM54LS374J, DM74LS374J,
DM54LS374N or DM74 LS374N
See NS Package J20A or N20A

[^15] operation of these devices are not affected.

Absolute Maximum Ratings

Recommended Operating Conditions

Supply Voltage (Note 1)
Input Voltage
OFF-State Output Voltage Operating Temperature Range DM54LS373, DM54LS374
DM74LS373, DM74LS374
Storage Temperature Range
7 V
7 V
7 V

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DM54LS373, DM54LS374	4.5	5.5	V
DM74LS373, DM74LS374	4.75	5.25	V
High Level Output Voltage (V OH)		5.5	V
High Level Output Current (IOH)			
DM54LS373, DM54LS374		-1	mA
DM74LS373, DM74LS374		-2.6	mA
Width of Clock/Enable Pulse (tw)			
High	15		ns
Low	15		ns
Data Set-Up Time (tSU)			
DM54LS373/DM74LS373	$0 \downarrow$		ns
DM54LS374/DM74LS374	$20 \uparrow$		ns
Data Hold Time (th)			ns
DM54LS373/DM74LS373	$15 \downarrow$		ns
DM54LS374/DM74LS374	$5 \uparrow$		
Temperature (TA)			${ }^{\circ} \mathrm{C}$
DM54LS373, DM54LS374	-55	+125	${ }^{\circ} \mathrm{C}$

The arrow indicates the transition of the clock/enable input used for reference: \uparrow for the low-to-high transition; \downarrow for the high-to-low transition.

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		CONDITIONS (Note 2)		DM54LS373, DM54LS374			DM74LS373, DM74LS374			UNITS		
		MIN	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \end{gathered}$	MAX	MIN	$\begin{gathered} \hline \text { TYP } \\ \text { (Note 3) } \end{gathered}$	MAX					
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage					2			2			V
$V_{\text {IL }}$	Low Level Input Voltage					07			08	V		
$V_{\text {IK }}$	Input Clamp Voltage	$V_{C C}=M i n, I_{1}=-18 \mathrm{~m}$				-15			-15	V		
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & V_{C C}=M \operatorname{Min}, V_{I H}=2 V \\ & I_{C H}=M a x \end{aligned}$	$I L=V_{I L}(M A X) .$	2.4	3.4		2.4	3.1		V		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V, \\ & V_{I L}=V_{I L}(\text { MAX }) \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5	V		
IOZH	OFF State Output Current, High Level Voitage Applied	$V_{C C}=\operatorname{Max}, V_{\text {IH }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
1 OZL	OFF State Output Current, Low Leve! Voltage Applied	$V_{C C}=\operatorname{Max}, V_{\text {IH }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$				-20			-20	$\mu \mathrm{A}$		
1	Input Current at Maximum Input Voltage	$V_{C C}=$ Max, $V_{1}=7 \mathrm{~V}$				0.1			0.1	mA		
${ }_{1 / \mathrm{H}}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$		
IIL	Low Level Input Carrent	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$				-0.4			-04	mA		
Ios	Short Circuit Output Current (Note 4)	$V_{C C}=\operatorname{Max}$		-30		-130	- 30		-130	mA		
${ }^{1} \mathrm{CC}$	Supply Current	$V_{C C}=$ Max, Output Control at 4.5 V	DM54LS373/DM74LS373		24	40		24	40	mA		
			DM54LS374/DM74LS374		27	45		27	45	mA		

Switching Characteristics $\vee_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		FROM INPUT	$\begin{gathered} \text { TO } \\ \text { OUTPUT } \end{gathered}$	CONDITIONS	$\begin{aligned} & \text { DM54LS373/ } \\ & \text { DM74LS373 } \end{aligned}$			$\begin{aligned} & \text { DM54LS374/ } \\ & \text { DM74LS374 } \end{aligned}$			UNITS	
		MIN			TYP	MAX	MIN	TYP	MAX			
fmax	Maximum Clock Frequency				$\begin{aligned} & C_{L}=45 \mathrm{pF}, R_{\mathrm{L}}=667 \Omega, \\ & \text { (Notes } 5 \text { and 6) } \end{aligned}$				35	50		MHz
tPLH	Propagation Delay Time, Low-to-High Level Output	Data	Any 0			12	18				ns	
tPHL	Propagation Delay Time, High-to-Low Level Output	Data	Any O			12	18				ns	
tPLH	Propagation Delay Time, Low.to-High Level Output	Clock or Enable	Any 0			20	30		16	28	ns	
tPHL	Propagation Delay Time, High-to Low Level Output	Clock or Enable	Any O			18	30		22	34	n n	
tPZ	Output Enable Time to High Level	Ostput Control	Any 0			15	28		16	28	n s	
tPZL	Output Enable Time to Low Level	Ostput Control	Any 0			22	36		22	28	n:	
tPHZ	Output Disable Time from High Level	Output Control	Any O	$\left\{\begin{array}{l} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \mathrm{~S} \text {, } \\ \text { (Note 6) } \end{array}\right.$		12	20		10	18	ns	
tPLZ	Output Disable Time from Low Level	Output Control	Any O			15	25		14	24	n ;	

Note 1: Voltage values are with respect to network ground termina
Note 2 For conditions shown as min or max, use the appropriate value specified under recommended operating conditions.
Note 3: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time and duration of the short carcuit should not exceed one second
Note 5: Maximum clock frequency is tested with all outputs toaded
Note 6: See load circuits and waveforms.

Logic Diagrams

DM54LS373/DM74LS373
Transparent Latches

DM54LS374/DM74LS374
Positive-Edge-Triggered Flip-Flops

Schematic Diagrams

Equivalent of Data, Enable, and Output Control Inputs

Data: $R_{e q}=20 \mathrm{k} \Omega$ typ
Output control: $R_{\mathrm{eq}}=98 \mathrm{k} \Omega$

Typical of All Outputs

DM54LS374/DM74LS374

Equivalent of Data Inputs

Equivalent of Output Control Clock Inputs

Typical of All Outputs
 DM54S940/DM74S940, DM54S941/DM74S941 Octal TRI-STATE ${ }^{\oplus}$ Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed specifically to improve both the performance and PC board density of TRI-STATE ${ }^{\circledR}$ buffers/drivers employed as memoryaddress drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs to restore Schottky TTL levels completely, and can be used to drive terminated lines down to 133Ω.

Features

- High performance Schottky TTL line drivers and/or receivers in a high density 20 -pin package
- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins

Connection Diagrams

DM54S240/DM74S240

$1 Y=1 \bar{A}$ when $1 \bar{G}$ is low
$2 Y=2 \bar{A}$ when $2 \bar{G}$ is low
When $1 \overline{\mathrm{G}}$ is high, 1 Y outputs are at a high impedance When $2 \bar{G}$ is high, $2 Y$ outputs are at a high impedance
Order Number DM54S240J, DM74S240J or DM74S240N See NS Package J20A or N20A

DM54S940/DM74S940

$1 Y=1 \bar{A}$ when $1 \bar{G}$ and $2 \bar{G}$ are low
$2 Y=2 \bar{A}$ when $1 \bar{G}$ and $2 \bar{G}$ are low
When either $1 \overline{\mathrm{G}}$ or $2 \overline{\mathrm{G}}$ is high, all outputs are a high impedance
Order Number DM54S940J, DM74S940J or DM74S940N See NS Package J20A or N20A

Typical Characteristics

- . Fanout

IOL (Sink Current)	
DM54S941	48 mA
DM74S941	64 mA
I OH (Source Current) $^{\text {DM54S941 }}$	
DM54S941	-12 mA

- Typical propagation delay times

Data to Output
DM54S240/DM74S240. DM54S940/DM74S940
(inverting)
DM54S241/DM74S241, DM54S940/DM74S940 (non-Inverting)

- Enable to output

Absolute Maximum Ratings

(Notes 1, 2 and 3)
Supply Voltage
Logical "1" Input Voltage
Logical " 0 " Input Voltage
$-1.5 \mathrm{~V}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Cavity Package
1160 mW
Molded Package 1000 mW
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Recommended Operating Conditions
$\left.\begin{array}{lllc} & \text { MIN } & \text { MAX } & \text { UNITS } \\ \begin{array}{l}\text { Supply Voltage (V } C C) \\ \text { DM54S240, DM54S241, }\end{array} & 4.5 & 5.5 & \mathrm{~V} \\ \text { DM54S940, DM54S941 }\end{array}\right)$

Electrical Characteristics Over recommended operating free-air temperature range (Notes 2 and 3)

PARAMETER		CONDITIONS	DM54S240/DM74S240, DM54S940/DM74S940			DM54S241/DM74S241, DM54S941/DM74S941			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
VIH	High Level Input Voltage			2			2			V
V_{1} L	Low Level Input Voltage				0.8			0.8	V	
VIK	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V	
	Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}}-\cdots \mathrm{V}_{\mathrm{T}_{-}}$)	$V_{C C}=$ Min	0.2	0.4		0.2	0.4		V	
VOH	High Level Output Voltage	$V_{C C}=$ Min, $V_{\text {IL }}=0.8 \mathrm{~V}, 10 \mathrm{H}=-3 \mathrm{~mA}$	2.4	3.4		2.4	3.4		V	
		$V_{C C}=\operatorname{Min}, V_{\text {IL }}=0.5 \mathrm{~V}, \mathrm{IOH}=$ Max	2			2			V	
V_{OL}	Low Level Output Voltage	$V_{C C}=$ Min, $\mathrm{IOL}=\mathrm{Max}$			0.55			0.55	V	
1 OZH	OFF State Output Current, High Level Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I H}=2 \mathrm{~V}, V_{I L}=0.8 \mathrm{~V} . \\ & V_{O}=2.4 \mathrm{~V} \end{aligned}$			50			50	$\mu \mathrm{A}$	
IOZL	OFF State Output Current, Low Level Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I H}=2 V, V_{I L}=0.8 V \\ & V_{O}=0.5 \mathrm{~V} \end{aligned}$			-50			50	$\mu \mathrm{A}$	
11	Input Current at Maximum Input Voltage	$V_{C C}=M_{\text {ax }}, V_{1}=5.5 \mathrm{~V}$			1			1	mA	
I_{H}	High Level Input Current, Any Input	$V_{\text {CC }}=$ Max. $V_{\text {IH }}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$	
1 IL	Low Level Input Current Any A	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$			--400			-400	$\mu \mathrm{A}$	
	Any G				-2			-2	mA	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM54S240, DM54S241, DM54S940 and DS54S94.1, and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DM74S240, DM74S241, DM74S940 and DM74S941, All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: A CM54S241J, DM74S941J operating at free-air temperature above $116^{\circ} \mathrm{C}$ requires a heat sink that provides a thermal resistance from case to free-air $R_{\theta C A}$, of rot more than $40^{\circ} \mathrm{C} / \mathrm{W}$.

Electrical Characteristics (Continued) Over recommended operating free-air temperature range (Notes 2 and 3)

PARAMETER	CDNDITIDNS		DM54S240/DM74S240, DM54S940/DM74S940			DM54S241/DM74S241, DM54S941/DM74S941			UNITS
			MIN	TYP	MAX	MIN	TYP.	MAX	
IOS Short Circuit Output Current (Note 5)	$V_{C C}=$ Max		-50		-225	-50		-225	mA
ICC Supply Current Total, Outputs High	$V_{C C}=\mathrm{Max},$ Outputs Open	DM54S240, DM54S241, DM54S940, DM54S941		80	123		95	147	mA
		DM74S240, DM74S241. DM74S940, DM74S941		80	135		95	160	mA
Total, Outputs Low		DM54S240, DM54S241, DM54S940, DM54S941		100	145		120	170	mA
		$\begin{aligned} & \text { DM74S240, DM74S24 1. } \\ & \text { DM74S940, DM74S941 } \end{aligned}$		100	150		120	180	mA
Outputs at $\mathrm{HI} \cdot \mathrm{Z}$		DM54S240, DM54S241, DM54S940, DM54S941		100	145		120	170	mA
		$\begin{aligned} & \text { DM74S240, DM74S241, } \\ & \text { DM74S940, DM74S941 } \end{aligned}$		100	150		120	180	mA

Note 5: Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		CDNDITIDNS	$\begin{aligned} & \text { DM54S240/ } \\ & \text { DM74S240 } \end{aligned}$		$\begin{aligned} & \text { DM54S241/ } \\ & \text { DM74S241 } \end{aligned}$		$\begin{aligned} & \text { DM54S940/ } \\ & \text { DM74S940 } \end{aligned}$		$\begin{aligned} & \hline \text { DM54S } 941 / \\ & \text { DM74S } 941 \end{aligned}$		UNITS	
		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX			
TPLH	Propagation Delay Time, Low-to-High Level Output		$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=90 \Omega .($ Note 6)	4.5	7	6	9	${ }^{6}$		7		n s,
tPHL	Propagation Delay Time, High-to Low Level Output	4.5		7	6	9	6		7		n :	
12L	Output Enable Time to Low Level	10		15	10	15	15		13		n :	
t 2 H	Output Enable Time to High Level	6.5		10	8	12	10		10		ns	
${ }_{\text {L }}$	Output Disable Time From Low Level	$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=90 \Omega$	10	15	10	15	12		8		n ;	
thz	Output Disable Time From High Level		6	9	6	9	1		5		ns	

Truth Tables

DM54S240/DM74S240 SIDE 1 OR SIDE 2

$\overline{\mathbf{G}}$	INPUT \mathbf{A}	DUTPUT \mathbf{Y}
0	0	1
0	1	0
1	X	Z

DM54S241/DM74S241
SIDE 1

$1 \overline{\mathrm{G}}$	INPUT 1 A	DUTPUT $1 \mathbf{Y}$
0	0	0
0	1	1
1	X	2

SIDE 2

$\mathbf{2 G}$	INPUT $2 A$	OUTPUT $2 Y$
1	0	0
1	1	1
0	x	2

DM54S940/DM74S940, DM54S941/DM74S941

DISABLE INPUTS		INPUT	DUTPUT
$\mathbf{1} \mathbf{~}$	$\mathbf{2} \overrightarrow{\mathbf{G}}$		
0	0	0	$\mathbf{1}$
0	0	1	0
0	1	x	z
1	0	x	z
1	1	x	z

DM54S240/DM74S240, DM54S241/DM74S241,
DM54S940/DM74S940, DM54S941/DM74S941

AC Test Circuits and Switching Time Waveforms dm545240/DM74S240, DM545940/DM745940

FIGURE 1. Propagation Delay from A Input to Y Output

FIGURE 2. Propagation Delay from TRI-STATE ${ }^{\text {® }}$ to High or Low Level

Note 1: The puise generator has the following characteristics: $Z_{O U T}=50 \Omega$ and $P R R \leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points \leq 2.5 ns.

Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are 1 N916 or 1 N3064.

AC Test Circuits and Switching Time Waveforms dm54s241/Dm74S241

FIGURE 4. Propagation Delay from A Input to Y Output

FIGURE 5. Propagation Delay from TRI-STATE to High or Low Level

FIGURE 6. Propagation Delay to TRI-STATE from High or Low Level
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and PRR $\leq 1 \mathrm{MHz}$. Rise and fall times between 10% and 90% points \leq 2.5 ns .

Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are 1N916 or 1N3064.
DM54S240/DM74S240, DM54S241/DM74S241,
DM54S940/DM74S940, DM54S941/DM74S941

AC Test Circuits and Switching Time Waveforms dm54S941/DM74S941

FIGURE 7. Propagation Delay from A Input to Y Output

FIGURE 8. Propagation Delay from TRI-STATE to High or Low Level

FIGURE 9. Propagation Delay to TRI-STATE from High or Low Level
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$ and $P R R \leq 1 M H z$, Rise and fall tımes between 10% and 90% points \leq 2.5 ns .

Note 2: C_{L} includes probe and jig capacitance.
Note 3: All diodes are 1 No 16 or 1 N3064.

Typical Applications

(Used as system AND/OR memory bus driver. 4-bit organization can be applied to handle binary or $B C D$.)
DM54S240/DM74S240, DM54S940/DM74S940

DM54S241/DM74S241

DM54S941/DM74S941

a

Applicable TTL and CMOS Logic Circuits

MM54C373/MM74C373
TRI-STATE ${ }^{\oplus}$ Octal D-Type Latch MM54C374/MM74C374
TRI-STATE ${ }^{\oplus}$ Octal D-Type Flip-Flop

General Description

The MM54C373/MM74C373, MM54C374/MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with TRI-STATE ${ }^{(1)}$ outputs. These outputs have been specially designed to drive highly capacitive loads, such as one might find when driving a bus, and to have a fan-out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM54C373/MM74C373 is an B-bit latch. When LATCH ENABLE is high the Q outputs will follow the D inputs. When LATCH ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again.

The MM54C374/MM74C374 is an 8-bit, D-type, positiveedge triggered flip-flop. Data at the D inputs, meeting
the set-up and hold time requirements, is transferred to the O outputs on positive-going transitions of the CLOCK input.

Both the MM54C373/MM74C373 and the MM54C374/ MM74C374 are being assembled in 20 -pin dual-in-line packages with $0.300^{\prime \prime}$ pin centers.

Features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity
$0.45 V_{\text {CC }}$ typ
- Low power consumption
- TTL compatibility
fan-out of 1 driving
standard TTL
- Bus driving capability
- TRI-STATE outputs
- Eight storage elements in one package
- Single CLOCK/LATCH ENABLE and OUTPUT DISABLE control inputs
- 20-pin dual-in-line package with 0.300 ' centers takes half the board space of a 24 -pin package

Connection Diagrams

Dual-In-Line Package

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad MM54C373, MM54C374	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MM74C373, MM74C374	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissipation	500 mW
Operating $V_{\text {CC }}$ Range	3 V to 15 V
Absolute Maximum VCC	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos rocmos						
$V_{1 N(1)}$	Logical " 1 " input Voltage	$\begin{aligned} & V_{C C}=5 V \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 35 \\ & 8.0 \end{aligned}$			\checkmark
$V_{1 N(0)}$	Logical "0' Input Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	V V
$V_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			V
$\mathrm{V}_{\mathrm{O}} \cup \mathrm{T}(0)$	Logical "0" Output Vo tage	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, 1 \mathrm{O}=10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	V V
$\mathrm{l} / \mathrm{N}(1)$	Logical "1" input Current	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$\mathrm{I}\|\mathrm{N}\| 0 \mid$	Logical ' 0 ' Input Current	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
${ }^{1} \mathrm{OZ}$	TRI-STATE Leakage Current	$\begin{aligned} & V_{C C}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V} \end{aligned}$	-1.0	$\begin{array}{r} 0.005 \\ -0.005 \end{array}$	1.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Supply Current	$V C C=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE						
$V\|N\| 1 \mid$	Logical "1" Input Voltage	$\begin{aligned} & 54 \mathrm{C}, V_{C C}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{C C}{ }^{-1.5} \\ & V_{C C^{-1}} \end{aligned}$			$\begin{aligned} & V \\ & V \end{aligned}$
VIN(0)	Logical " 0 ' Input Voltage	$\begin{aligned} & 54 \mathrm{C}, V_{C C}=4.5 V \\ & 74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V V
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A} \\ & 54 \mathrm{C}, V_{C C}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA} \\ & 74 \mathrm{C}, V_{C C}=45 \mathrm{~V}, I_{O}=-1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} v_{C C^{-0}} .4 \\ v_{C l^{-0}} 0.4 \\ 2.4 \\ 2.4 \end{gathered}$			V V V V
VOUT(0)	Logical "0" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \\ & 74 \mathrm{C}, V_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
OUTPUT DRIVE						
ISOURCE	Output Source Current	$V_{C C}=5 \mathrm{~V}, V_{O U T}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C},$ (Note 4)	-12.0	-24		$m A$
ISOURCE	Output Source Current	$V_{C C}=10 \mathrm{~V}, V_{O U T}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \text {, }$ (Note 4)	-24.0	-48		mA.
ISINK	Output Sink Current (N - Channel)	$V_{C C}=5 V, V_{O U T}=V_{C C}, T_{A}=25^{\circ} C,$ (Note 4)	6.0	12		m A.
ISINK	Output Sink Current (N.Channel)	$V_{C C}=10 \mathrm{~V}, V_{O U T}=V_{C C}, T_{A}=25^{\circ} \mathrm{C},$ (Note 4)	240	48		m A.

Switching Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {tpd }} 1$, tpdo Propagation Delay, $\overline{\text { LATCH ENABLE }}$ to Output MM54C373, MM74C373	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF} \\ & V_{C C}=10 \mathrm{~V}, C_{L}=50 \mathrm{pF} \\ & V_{C C}=5 \mathrm{~V}, C_{L}=150 \mathrm{pF} \\ & V_{C C}=10 \mathrm{~V}, C_{L}=150 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 165 \\ & 70 \\ & 195 \\ & 85 \end{aligned}$	$\begin{aligned} & 330 \\ & 140 \\ & 390 \\ & 170 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$

Switching Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Propagation Delay Data in to	$\overline{\text { LATCH ENABLE }}=\mathrm{VCC}$				
	Output	$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		155	310	ns
	MM54C373, MM74C373	$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		70	140	ns
		$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		185	370	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{CL}=150 \mathrm{pF}$		B5	170	ns
${ }^{\text {p }}$ d $1 . t_{\text {pdo }}$	Propagation Delay CLOCK to Output MM54C374/MM74C374	$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		150	300	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		65	130	ns
		$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		180	360	ns
		$V_{C C}=10 \mathrm{~V}, C_{L}=150 \mathrm{pF}$		B0	160	ns
${ }^{\text {t SET.UP }}$	Minimum Set-Up Time Data In to CLOCK/ $\overline{L A T C H E N A B L E}$	${ }^{\text {tHOLD }}=0 \mathrm{~ns}$				
		$V_{C C}=5 V$		70	140	ns
		$V_{C C}=10 \mathrm{~V}$		35	70	ns
tPWH	Minimum $\overline{\mathrm{LATCH}} \overline{\mathrm{ANABLE}}$ Pulse	$V C C=5 V$		75	150	ns
	Width	$V_{C C}=10 \mathrm{~V}$		55	110	ns
	MM54C373, MM74C373					
tPWH, tPWL	Minimum CLOCK Pulse Width	$V C C=5 V$		70	140	ns
	MM54C374, MM74C374	$V_{C C}=10 \mathrm{~V}$		50	100	ns
$f_{\text {MAX }}$	Maximum LATCH ENABLE	$V_{C C}=5 V$		6.7	3.3	MHz
	Frequency	$V_{C C}=10 \mathrm{~V}$		9.0	4.5	MHz
	MM54C373, MM74C373					
$f_{\text {MAX }}$	Maximum CLOCK Frequency	$V_{C C}=5 \mathrm{~V}$		7.0	3.5	MHz
	MM54C374, MM74C37.4	$V_{C C}=10 \mathrm{~V}$		10.0	5.0	MHz
${ }^{1} 1 \mathrm{H}, \mathrm{tOH}$	Propagation Delay OUTPUT	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$				
	DISABLE to High Impedance	$V_{C C}=5 \mathrm{~V}$		105	210	ns
	State (From a Logic Level)	$V_{C C}=10 \mathrm{~V}$		60	120	ns
${ }^{\text {t }} \mathrm{H} 1, \mathrm{t} \mathrm{HO}$	Propagation Delay OUTPUT	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$				
	DISABLE to Logic Level (From	$V_{C C}=5 \mathrm{~V}$		105	210	ns
	High Impedance State)	$V_{C C}=10 \mathrm{~V}$		45	90	ns
tTHL, tTLH	Transition Time	$V C C=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		65	130	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35	70	ns
		$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		110	220	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		70	140	ns
t_{r}, t_{f}	Maximum $\overline{\overline{A T C H}} \overline{\text { ENABLE }} \overline{\mathrm{E}}$ Rise	$V_{C C}=5 \mathrm{~V}$		NA		$\mu \mathrm{s}$
	and Fall Time	$V_{C C}=10 \mathrm{~V}$		NA		$\mu \mathrm{s}$
	MM54C373, MM74C373					
$t_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	Maximum CLOCK Rise and Fall Time	$V_{C C}=5 V$	15	>2000		μs
	MM54C374, MM74C374	$V_{C C}=10 \mathrm{~V}$	5	>2000		$\mu \mathrm{s}$
CCLK, CLE	Input Capacitance	CLOCK/LE Input		7.5	10	pF
COD	Input Capacitance	OUTPUT DISABLE Input, (Note 2)		7.5	10	pF
$\mathrm{Cin}^{\text {N }}$	Input Capacitance	Any Other Input, (Note 2)		5.0	7.5	pF
COUT	Output Capacitance	High Impedance State, (Note 2)		10	15	pF
CPD	Power Dissipation Capacitance MM54C373, MM74C373	Per Package, (Note 3)		200		pF
CPD	Power Dissipation Capacitance MM54C374, MM74C374	Per Package, (Note 3)		250		pF

Note 1: "Absolute Maxirnum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply "hat the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is quaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: These are peak output current capabilities. Continuous output current is rated at 12 mA max.

Typical Performance Characteristics $T_{A}=25^{\circ} \mathrm{C}$

MM54C373/MM74C373
Propagation Delay, $\overline{\text { LATCH }}$
ENABLE to Output vs Load
Capacitance

MM54C373/MM74C373,
MM54C374/MM74C374
Change in Propagation Delay per pF of Load Capacitance (Δ tPD/pF) vs Power Supply Voltage

Truth Tables

MM54C373/MM74C373

OUTPUT DISABLE	$\overline{\overline{\text { EATCH}}}$	D	O
L	H	H	H
L	H	L	L
L	L	X	O
H	X	X	$\mathrm{Hi} \cdot \mathrm{Z}$

Typical Applications

Data Bus Interfacing Element

MM54C373/MM74C373
Propagation Delay, Data In to Output vs Load Capacitance

MM54C374/MM74C374
Propagation Delay, CLOCK to Output vs Load Capacitance

MM54C373/MM74C373, MM54C374/MM74C374 Output Source Current vs VCC - VOUT

MM54C374/MM74C374

OUTPUT DISABLE	CLOCK	D	0
L	-	H	H
L	-	L	L
L	L	X	O
L	H	X	Q
H	X	X	$\mathrm{H} \cdot \mathrm{Z}$

$L=$ low logic levei
$H=$ high logic level
$X=$ irrelevant

- = low to high logic level transition

O = preexisting output level
$H_{1} \cdot Z=$ high impedance output state

Simple, Latching, Octal, LED Indicator Driver with Blanking For Use As Data Display, Bus Monitor, μ P Front Panel Display, Etc.

MM54C373/MM74C373, MM54C374/MM74C374

Logic Diagrams

TRI-STATE ${ }^{\circledR}$ Test Circuits and Timing Diagrams

toH. ${ }^{\text {H }} \mathrm{O}$

${ }^{t} 1 \mathrm{H}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

$\mathrm{t}_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

$t_{H} 1, C_{L}=50 \mathrm{pF}$

$\mathrm{t} \mathrm{HO}, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$

Switching Time Waveforms

MM54C373/MM74C373

OUTPUT DISABLE = GND

Applicable TTL and CMOS Logic Circuits

MM54C901/MM74C901 hex inverting TTL buffer MM54C902/MM74C902 hex non-inverting TTL buffer MM54C903/MM74C903 hex inverting PMOS buffer MM54C904/MM74C904 hex non-inverting PMOS buffer

general description

These hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced V_{cc} supply.

features

- Wide supply voltage range	3.0 V to 15 V
- Guaranteed noise margın	1.0 V
- High noise immunity	$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- TTL compatibility	fan out of 2 driving standard TTL

connection and logic diagrams

> MM54C901/MM74C907
> MM54C903/MM74C903
> Dual-In-Line Package

Order Number MM54C901J, MM74C901N
MM54C903J or MM74C:903N
See NS Package J14A or N14A
MM54C901/MM74C901
CMOS to TTL Inverting Buffer

MM54C902/MM74C902 MM54C904/MM74C904

Dual-In-Line Package

Order Number MM54C902J, MM74C902N MM54C904J or MM74C904N See NS Package J14A or N14A

MM54C903/MM74C903
PMOS to TTL or CMOS Inverting Buffer

MM54C904/MM74C904 PMOS to TTL or CMOS Buffer

absolute maximum ratings (Note 1)

Voltage at Any Output Pin
Voltage at Any Input Pin MM54C901/MM74C901 MM54C902; MM74C902 MM54C903'MM74C903 MM54C904,MM74C904
0.3 V to $\mathrm{V} \mathrm{Cc}+0.3 \mathrm{~V}$
-03 V to +15 V
-0.3 V to +15 V
$V_{c c}-17 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
$V_{c c}-17 \mathrm{~V}$ to $V_{c c}+0.3 \mathrm{~V}$

Operating Temperature Range
MM54C901, M M54C902, MM54C903, MM54C904 $-55^{\circ} \mathrm{C}$ to $+1215^{\circ} \mathrm{C}$
MM74C901. MM74C902, MM74C903, MM74C904-40 C to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation 500 mW
Operating $V_{c c}$ Range 30 V to 15 V
Absolute Maxımum $V_{c c}$
$\begin{array}{lr}\text { Absolute Maximum } V_{c c} & 18 \mathrm{~V} \\ \text { Lead Temperature (Soldering, } 10 \text { seconds) } & 300^{\circ} \mathrm{C}\end{array}$

electrical characteristics

Min/max limits apply across temperature range, unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
cmos to cmos						
Logical "1" Input Voltage (Virwnil	$\begin{aligned} & v_{c c}-50 v \\ & v_{c c}-10 v \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$	
Logreal "O" Input Voltage (Vinion'	$\begin{aligned} & V_{c c}=50 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 2.0 \end{aligned}$	v	
Logesal "1" Output Voltage \|Voutinl	$\begin{aligned} & V_{c c}=50 \mathrm{~V}, I_{O}=10 \mu \mathrm{~A} \\ & V_{C c}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 90 \end{aligned}$			v	
Logical "O" Outpl Voitage (Vout of	$\begin{array}{ll} v_{c c} & 50 \mathrm{~V}, 1_{0}-10 \mu \mathrm{~A} \\ v_{c:} & 10 \mathrm{~V} \\ 10 & +10 \mu \mathrm{~A} \end{array}$			$\begin{aligned} & 05 \\ & 10 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	
Logical " 1 " Input Current (11 manul	$V_{\text {ce }} 15 \mathrm{~V}$ VIN $=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$	
Logral " 0 " Inuut Currme \\|iviol	vre $15 \mathrm{~V} V_{\text {IN }}$ OV	10	0005		$\mu \mathrm{A}$	
Supply Current (I_{CC})	$V_{c c}-15 \mathrm{~V}$		005	15	$\mu \mathrm{A}$	
TTL TO CMOS						
Logical ' ${ }^{\prime \prime}$ Input Voltage $\mid V_{\text {IN }}$ ul	$\begin{aligned} & 54 \mathrm{C} V=c-45 \mathrm{~V} \\ & 74 \mathrm{C} V \mathrm{Vc}-475 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} V_{c c} & 15 \\ v_{c c} & -15 \end{array}$			$\begin{aligned} & v \\ & v \end{aligned}$	
Logical ${ }^{\circ}{ }^{\prime \prime}$ Input Voltige (Vimior)	$\begin{array}{lll} 54 \mathrm{C} & V_{c c} & 45 \mathrm{~V} \\ 14 \mathrm{C} & V_{c c} & -4 / 5 \mathrm{~V} \end{array}$			$\begin{aligned} & 08 \\ & 08 \end{aligned}$	v	

CMOS TO TTL

Logical "1" input Voltage (Vin 1,1 MM54C901 MM54C903 MM54C902 MM54C904 MM74C901, MM74C903 MM74C902 M И74C904

Logical " 0 " Input Voltage iVinion' MM54C901 MV54C903 MM54C902 MV54C904 MM74C901 MV74C903 MM74C902 MV74C904

Logical 'I Output Voltage (Voutul

Logical "0" Output Voltage (Voutio) MM54C901 MM54C903
MM54C902 MV54C904
MM74C901 MM74C903
MM74C902. MM74C904

$v_{c c}+5 \mathrm{~V}$	40
$v_{c c} 45 \mathrm{~V}$	
$v_{c c}=4 / 5$	$v_{c c}-15$
$v_{c c}-475$	425
$v_{c c}-45 \mathrm{~V}$	
$v_{c c} 45 \mathrm{~V}$	
$v_{c c}-475$	
$v_{c c} 475$	
$54 c, v_{c c}=45 \mathrm{~V}, 1_{0}-800 \mu \mathrm{~A}$	
$74 C V_{c c}-475 \mathrm{~V}, 10$	$800 \mu \mathrm{~A}$
	24
$v_{c c}=45 \mathrm{~V}, 1_{0}=2.6 \mathrm{~mA}$	
$v_{c c}=45 \mathrm{~V}, 1_{0}=3.2 \mathrm{~mA}$	
$v_{c c}=475 \mathrm{~V}, 1_{0}=2.6 \mathrm{~mA}$	
$v_{c c}-475 \mathrm{~V}, 1_{0}=3.2 \mathrm{~mA}$	

OUTPUT DRIVE (MM54C901/MM74C901, MM54C903/MM74C903) (See 54C/74C Family Characteristics Oata Sheet)

Output Source Curren: (Isourace) (P.Channel

Output Source Current (Isource) (P Channel)

Output Sink Current (Isink)
(N. Channel)

Output Sink Current (I SINk) (N-Channel)

$V_{C C}=50 V, V_{O U T}=0 \mathrm{~V}$	-50		mA
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V}$			
$V_{C C}=10 \mathrm{~V}, V_{O U T}=0 \mathrm{~V}$	-20		mA
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V}$			
$V_{C C}=5.0 \mathrm{~V}, V_{O U T}-V_{C C}$	9	mA	
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V_{C C}$	38	mA	
$V_{C C}=50 \mathrm{~V}, V_{O U T}=0.4 \mathrm{~V}$			
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V_{C C}$			

electrical characteristics (con't)

PARAMETEF	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT DRIVE (MM54C'902/MM74C902, MM54C904/MM74C904 (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (Isource) (P Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {IN }}=V_{C C} \end{aligned}$	-50			mA
Output Source Current (ISOURCE) (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{O U T}=0 V \\ & T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V_{C C} \end{aligned}$	-20			$m A$
Output Sink Current (I Sink) (N Channel)	$\begin{aligned} & V_{C C}=50 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {IN }}=O V \end{aligned}$	9			$m A$
Output Sink Current (II ${ }_{\text {sink }}$) (N -Channel)	$\begin{aligned} & V_{C C}=50 \mathrm{~V}, V_{\text {OUT }}=04 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V} \end{aligned}$	38			$m A$

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}$, unless otherwise specified.

PARAME TER	CONDITIONS	MIN	TYP	MAX	UNITS
MM54C901/MM74C901, MM54C903/MM74C903					
Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$) Power Dissipation Capacity $\left(\mathrm{C}_{\text {po }}\right)$ Propagation Delay Tıne to a Logical " 1 " ($\mathbf{t}_{\text {k\|d\|1 }}$) Propagation Delay Time to a Logical " 0 " (tydon)	Any Input (Note 2) (Note 3) Per Buffer $\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & v_{C C}=50 \mathrm{~V} \\ & v_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 14 \\ & 30 \\ & 38 \\ & 22 \\ & 21 \\ & 13 \end{aligned}$	$\begin{aligned} & 70 \\ & 30 \\ & 35 \\ & 20 \end{aligned}$	pF pF ns ns ns ns
MM54C902/MM74C902, MM54C904/MM74C904					
Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$) Power Dissipation Capacity (C_{pu}) Propagation Delay Time to a Logical "1" (tral1) Propagation Delay Time to a Logical " 0 " (t_{1} diok)	Any Input (Note 2) (Note 3) Per Buffel $\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 57 \\ & 27 \\ & 54 \\ & 25 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 90 \\ & 40 \end{aligned}$	pF pF ns ns ns ns

Note 1: "Absolute Maxirnum Ratings" эre those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is quaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Familv Characteristics application note, AN-90.

typical applications

ac test circuit and switching time waveforms
CMOS to CMOS

typical performance characteristics

MM54C906/MM74C906, MM54C907/MM74C907

MM54C906/MM74C906 hex open drain N-channel buffers MM54C907/MM74C907 hex open drain P-channel buffers

general description

These buffers employ monolithic CMOS technology in achieving open drain outputs. The MM54C906/ MM74C906 consists of six inverters driving six N-channel devices; and the MM54C907/MM74C907 consists of six inverters driving six P-channel devices. The open drain feature of these buffers makes level shifting or wire AND and wire OR functions by just the addition of pull-up or pull-down resistors. All inputs are protected from static discharge by diode clamps to $V_{C C}$ and to ground.

features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ
- High current sourcing and sinking open drain outputs

connection diagram

logic diagrams


```
absolute maximum ratings (Note 1)
```

Voltage at Any Input Pin Voltage at Any Output Pin

MM54C906/MM74C906
MM54C907/MM74C907
Operating Temperature Range
MM54C906/MM54C907
MM74C906/MM74C907
Storage Temperature Range
Package Dissipation
Operating $V_{C C}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature (Soldering, 10 seconds)

```
\(-03 V\) to \(V_{c c}+0.3 V\)
\(-0.3 V\) to \(+18 V\)
\(V_{C C}-18 V\) to \(V C C+03 V\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
-40 C to +85 C
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
500 mW
3.0 V to 15 V
18 V
```

electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN+1) }}$)	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & V_{\mathrm{Cc}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 35 \\ & 80 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & v_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 20 \end{aligned}$	V V
Logical "1" Input Current ($1_{\text {IN/T }}$,	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	10	$\mu \mathrm{A}$
Logical " 0 " Input Current ($I_{\text {iN }(0)}$)	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}-0 \mathrm{~V}$	-10	0005		$\mu \mathrm{A}$
Supply Current (${ }_{\text {CC }}$)	$V_{c c}=15 \mathrm{~V}$, Output Open		0.05	15	$\mu \mathrm{A}$
Output Leakage					
MM54C906	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \quad V_{I N}=V_{C C}-1.5 \\ & V_{C C}=4.5 \mathrm{~V}, \quad V_{O U T}=18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$
MM74C906	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, V_{\text {IN }}=V_{C C} 15 \\ & V_{C C}=475 \mathrm{~V}, V_{O U T}=18 \mathrm{~V} \end{aligned}$		0005	5	μA
MM54C907	$\begin{aligned} & V_{C C}=45 \mathrm{~V}, \quad V_{\text {AN }}=10 \mathrm{~V}+0.1 \mathrm{~V} V_{C C} \\ & V_{C C}=45 \mathrm{~V}, \quad V_{O U T}=V_{C C}-18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$
MM74C907	$\begin{aligned} & V_{C C}=475 \mathrm{~V}, V_{1 N}=10 \mathrm{~V}+0.1 \mathrm{~V} V_{C C} \\ & V_{C C}=475 \mathrm{~V}, V_{\text {OUT }}=V_{C C} 18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$

CMOS/LPTTL INTERFACE

Logical "1" Input Voltage ($\mathrm{V}_{(N, 1)}$)	$\begin{aligned} & 54 C, V_{C C}=45 V \\ & 74 C, V_{C C}=4.75 V \end{aligned}$	$\begin{aligned} & v_{C C}-15 \\ & v_{C C} \\ & V^{15} \end{aligned}$		V V
Logical "O" Input Voltage ($\mathrm{V}_{\text {INiO) }}$)	$\begin{aligned} & 54 \mathrm{C}, V_{C C}=45 \mathrm{~V} \\ & 74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V V

OUTPUT DRIVE CURRENT

MM54C906

MM74C906

MM54C907

MM74C907

MM54C906/MM74C906

MM54C907/MM74C907
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {IN }}=10 \mathrm{~V}+0.1 V_{C C}$
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {OUT }}=05 \mathrm{~V}$
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {OUT }}=10 \mathrm{~V}$
$V_{C C}=4.75 \mathrm{~V}, V_{\text {IN }}=10 \mathrm{~V}+0.1 V_{C C}$
$V_{C C}=4.75 \mathrm{~V}, \quad V_{\text {OUT }}=0.5 \mathrm{~V}$
$V_{C C}=4.75 \mathrm{~V}, \quad V_{\text {OUT }}=10 \mathrm{~V}$
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {IN }}=V_{C C}-1.5$
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C} 0.5 \mathrm{~V}$
$V_{C C}=4.5 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C}-10 \mathrm{~V}$
$V_{C C}=4.75 \mathrm{~V}, \quad V_{\text {IN }}=V_{C C}-15$
$V_{C C}=4.75 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C}-0.5 \mathrm{~V}$
$V_{C C}=4.75 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C}-1.0 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {IN }}=2.0 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=0.5 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=1.0 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {IN }}=8.0 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=9.5 \mathrm{~V}$
$V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=9.0 \mathrm{~V}$

$\infty \stackrel{\sim}{\sim}$	$\infty \stackrel{\sim}{\sim}$	$\stackrel{0}{\circ}$	$\stackrel{0}{9}$	앙	$\begin{aligned} & 00 \\ & \hline 10 \end{aligned}$
$\bar{\sim}$	$\stackrel{-}{\sim}$	$\stackrel{\circ}{\square}$	¢	$\stackrel{+}{\sim}$	$\begin{aligned} & \text { Fi } \\ & \underset{i}{\prime} \end{aligned}$

mA	
mA	
m	

mA
mA
switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logical " 0 " ($\mathrm{t}_{\mathrm{pdO}}$)					
MM54C906/MM74C906	$\begin{array}{ll} V_{C C}=5 V, & R=10 \mathrm{k} \\ V_{C C}=10 \mathrm{~V}, & R=10 \mathrm{k} \end{array}$			$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
MM54C907/MM74C907	$\begin{array}{ll} \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \quad(\text { Note 4) } \\ \mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V}, & \text { (Note 4) } \end{array}$			$\begin{array}{r} 150+0.7 R C \\ 75+0.7 R C \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay to a Logical "1" ($\mathrm{t}_{\mathrm{pa} 1}$)					
MM54C906/MM74C906	$\begin{array}{ll} V_{c c}=5 \mathrm{~V}, & (\text { Note 4) } \\ V_{c c}=10 \mathrm{~V} & (\text { Note 4) } \end{array}$			$\begin{array}{r} 150+0.7 R C \\ 75+0.7 R C \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
MM54C907/MM74C907	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & R=10 \mathrm{k} \\ V_{C C}=10 \mathrm{~V}, & R=10 \mathrm{k} \end{array}$			$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Capacity ($\mathrm{C}_{\mathbf{⿺}}$)	(Note 2)		5		pF
Output Capacity ($\mathrm{C}_{\text {OUT }}$)	(Note 2)		20		pF
Power Dissipation Capacity (C_{pd})	(Note 3) Per Buffer		30		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operôtion.
Note 2: Capacitance is guranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90. (Aissumes outputs are open.)
Note 4: " C " used in calculating propagation includes ourput toad capacity (C_{L}) plus device output capacity ($\mathrm{C}_{\mathrm{OUT}}$).

typical applications

Wire OR Gate

Note: Can be extended to more than 2 imputs

Wire AND Gate

Note Can be extended to more than 2 inputs

CMOS or TTL to CMOS at a Higher VCC

MM74C908, MM74C918 dual CMOS 30 volt driver

general description

The MM74C908 and MM74C918 are general purpose dual high voltage drivers, each capable of sourcing a minimum of 250 mA at $\mathrm{V}_{\mathrm{OuT}}=\mathrm{V}_{\mathrm{Cc}}-3 \mathrm{~V}$, and $T_{1}=+65^{\circ} \mathrm{C}$.

The MM74C908 and MM74C918 consist of two CMOS NAND gates driving an emitter follower darlington output to achieve high current drive and high voltage capabilities. In the "OFF" state the outputs can withstand a maximum of -30 V across the device. These

CMOS drivers are useful in interfacing normal CMCS voltage levels to driving relays, regulators, lamps, etc.

features

- Wide supply voltage range

3 V to 18 V

- High noise immunity $0.45 \mathrm{~V}_{\mathrm{Cc}}$ (typ)
- Low output "ON" resistance 8Ω (typ)
- High voltage
- High current

250 mA

connection diagrams

Dual-in-Line Package

absolute maximum ratings (Note 1)

Voltage at Any Input Pin
Voltage at Any Output Pin
Operating Temperature Range
MM74C908, MM74C918
Operating V_{CC} Range
Absolute Maximum $V_{C c}$
I source
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Package Dissipation

Refer to Maximum Power Dissipation vs Ambient Temperature Graph
electrical characteristics Min / \max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN(1) }}$)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 V \end{aligned}$	$\begin{aligned} & 35 \\ & 8 \end{aligned}$			V V
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN:O3 }}$)	$\begin{aligned} & V_{C C}-5 V \\ & V_{C C}=10 V \end{aligned}$			$\begin{aligned} & 15 \\ & 2 \end{aligned}$	V v
	$V_{\text {CC }}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
Logical ' 0 " Input Current "İN(0)	$V_{C C}-15 \mathrm{~V}, V_{\text {IN }}-0 \mathrm{~V}$	-1	-0005		$\mu \mathrm{A}$
Supply Current (ICC)	$V_{c c}=15 \mathrm{~V}$, Outputs Open Circuit		0.05	15	$\mu \mathrm{A}$
Output "OFF" Voltage	$V_{\text {IN }}=V_{\text {cc, }}$, $\mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}$			30	V
CMOS/LPTTL. INTERFACE					
Logical " 1 " Input Voltage $\mid V_{\text {IN }} 11$) MM74C908, MM74C918	$V_{c c}-4.75 \mathrm{~V}$	$V_{\text {cr }} 15$			V
Logical " 0 " Input Voltage i $V_{\text {IN }}$ rol) MM74C908, MM74C918	$V_{C C}=475 \mathrm{~V}$			0.8	V
OUTPUT DRIVE					
Output Voltage (Vout)	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-300 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{3}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {OUT }}=-250 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, \mathrm{~T}_{1}=65^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {OUT }}=-175 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{1}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{c c}-27 \\ & V_{C c}-30 \\ & V_{c c}-315 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}^{-1}} 8 \\ & V_{\mathrm{CC}^{-1}}-9 \\ & V_{\mathrm{CC}^{-}}-0 \end{aligned}$		V V V
Output Resistance ($\mathrm{R}_{\text {ON }}$)	$\begin{aligned} & I_{\text {OUT }}=300 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{1}=25^{\circ} \mathrm{C} \\ & I_{\text {OUT }}=250 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{1}=65^{\circ} \mathrm{C} \\ & I_{\text {OUT }}=-175 \mathrm{~mA}, V_{C C} \geq 5 V, T_{1}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 6 \\ & 75 \\ & 10 \end{aligned}$	$\begin{aligned} & 9 \\ & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
Output Resistance Temperature Coefficient			0.55	0.80	$\% /{ }^{\circ} \mathrm{C}$
```Thermal Resis:ance (0,A) MM74C908 MM74C918```	(Note 3)   (Note 3)		$\begin{aligned} & 100 \\ & 45 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / W \\ & { }^{\circ} \mathrm{C} / W \end{aligned}$

## switching characteristics

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logic " 1 " (tod1)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \Omega, C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, R_{L}=50 \Omega, C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 150 \\ & 65 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	ns ns
Propagation Delay to a Logic " 0 " ( $\mathrm{t}_{\mathrm{pdO}}$ )	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, R_{L}=50 \Omega, C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, R_{L}=50 \Omega 2, C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
Input Capacitance ( $\mathrm{CiN}_{\text {IN }}$ )	(Note 2)		5.0		pF

Note 1: "Absolute Maximurn Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\theta_{\mathrm{j}}$ measured in free air with device soldered into printed circuit board.

## typical performance characteristics

Maximum Power Dissipation vs Ambient Temperature



Maximum $V_{C C}-V_{\text {OUT }}$
vs IOUT


Typical IOUT vs Typical Voutr


## ac test circuit



Typical IOUT vs Typical VOUT

power considerations
Calculating Output "ON" Resistance ( $\mathrm{R}_{\mathrm{L}}>18 \Omega$ )
The output "ON"' resistance, $\mathrm{R}_{\mathrm{ON}}$, is a function of the junction temperature, $\mathrm{T}_{1}$, and is given by:

$$
\begin{equation*}
R_{O N}=9\left(T_{1}-25\right)(0.008)+9 \tag{1}
\end{equation*}
$$

and $T_{1}$ is given by:

$$
\begin{equation*}
T_{1}=T_{A}+P_{D A V} \theta_{J A} \tag{2}
\end{equation*}
$$

where $T_{A}=$ ambient temperature, $\theta_{\mathrm{JA}}=$ thermal resistance, and $\mathrm{P}_{\text {DAV }}$ is the average power dissipated within the device. $P_{D A V}$ consists of rormal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, $A$ and $B . P_{D}$ is given by:

$$
\begin{equation*}
P_{D}=I_{O A}{ }^{2} R_{O N}+I_{O B}{ }^{2} R_{O N} . \tag{3}
\end{equation*}
$$

where $I_{O}$ is the output current, given by:

$$
\begin{equation*}
I_{O}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L}} \tag{4}
\end{equation*}
$$

$V_{L}$ is the load voltage.
The average power dissipation, $\mathrm{P}_{\mathrm{DAV}}$, is a function of the duty cycle:

$$
\begin{align*}
P_{\text {DAV }}= & I_{O A}^{2} R_{O N} \text { (Duty Cycle } A_{A} \text { ) }+  \tag{5}\\
& I_{O B}^{2} R_{O N} \text { (Duty Cycle }{ }_{B} \text { ) }
\end{align*}
$$

where the duty cycle is the \% time in the current source state. Substituting equations (1) and (5) into (2) yields:

$$
\begin{equation*}
T_{1}=T_{A}+\theta_{J A}\left[9\left(T_{j}-25\right)(0.008)+9\right] \tag{6a}
\end{equation*}
$$

$\left[I_{O A}{ }^{2}\right.$ (Duty Cycle $A$ ) $+I_{O_{E}}{ }^{2}$ (Duty Cycle ${ }_{B}$ )]
simplifying:

Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.


For example, let $V_{C C}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{LA}}=100 \Omega, \mathrm{R}_{\mathrm{LB}}=100 \Omega$, $V_{L}=0 V, T_{A}=25^{\circ} \mathrm{C}, \theta_{I A}=110^{\circ} \mathrm{C} / \mathrm{W}$. Duty Cycle ${ }_{A}=$ $50 \%$, Duty $\mathrm{Cycle}_{\mathrm{B}}=75 \%$.
Assuming $R_{\mathrm{ON}}=11 \Omega$, then:
$I_{O A}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L A}}=\frac{15}{11+100}=135.1 \mathrm{~mA}$,
$I_{O B}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L B}}=135.1 \mathrm{~mA}$
and

$T_{1}=\frac{25+(7.2)(110)\left[(0.1351)^{2}(0.5)+(0.1351)^{2}(0.75)\right]}{1 \cdot(0.072)(110)\left[(0.1351)^{2}(0.5)+(0.1351)^{2}(0.75)\right]}$
$T_{1}=52.6^{\circ} \mathrm{C}$
and $R_{O N}=9\left(T_{1}-25\right)(0.008)+9=$
$9(52.6-25)(0.008)+9=11 \Omega$

## APPLICATIONS

Like most other drivers, the MM74C908, MM74C918 can be used to drive relays, lamps, speakers, etc. These are shown in Figure 12. (To suppress transient spikes at turn-off, a diode as shown as Figure 12a is recommended at the relay coil or any other inductive load.)

15 V , power dissipation per package is typically 750 nW when the outputs are not drawing current. Thus, the drivers can be sitting out on line (a telephone line, for example) drawing essentially zero current until acti-vated-an ideal feature for many applications.

The dual feature and the NAND function of the driver design can also be used to advantage as shown in the following applications:

However, the MM74C908, MM74C918 offers a unique CMOS feature that is not available in drivers from other logic families-extremely low standby power. At $V_{C C}=$


## MM54C922/MM74C922 16 key encoder MM54C923/MM74C923 20 key encoder

## general description

These CMOS key encoders provioe all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have onchip pull-up devices which permit switches with up to $50 \mathrm{k} \Omega 2$ on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two key roll over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The TRIISTATE ${ }^{* 3}$ outputs
provide for easy expansion and bus operation and are LPTTL compatible.

## features

- $50 \mathrm{k} \Omega 2$ maxımum switch on resistance
- On or off chip clock
- On chip row pull-up devices
- 2 key roll-over
- Keybounce elimınation with single capacitor
- Last key register at outputs
- TRISTATE outputs LPTTL compatible
- Wide supply range 3 V to 15 V
- Low power consumption


## connection diagrams



Dual-in-Line Package


Order Number MM54C923.J or MM74C923N
See NS Package J20A or N20A

## absolute maximum ratings

Voltage at Any Pin Operating Temperature Range MM54C922, MM54C923 MM74C922, MM74C923
Storage Temperature Range
$V_{C C}-0.3 V$ to $V_{C C}+0.3 V$ $55^{\prime} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissıpation
500 miW 3 V to 15 V 18 V $300^{\circ} \mathrm{C}$

Operating $V_{C C}$ Range
$V_{\mathrm{CC}}$
Lead Temperature (Soldering, 10 seconds)
electrical characteristics Min max limits apply across temperature range unless otherwise noted


## cmos to cmos

$\mathrm{V}_{\mathrm{T}+} \quad$ Positive-Going Threshold Voltage at Osc and KBM Inputs
$V_{T}$.. Negative-Going Threshold Voltage at Osc and KBM Inputs

VIN(1) Logical "1" Input Voltage, Except Osc and KBM Inputs

VIN(0) Logical "0" Input Voltage, Except Osc and KBM Inputs

Irp Row Pull-Up Current a: Y1, Y2, Y3, Y4 and Y5 Inputs

VOUT(1) Logical "1" Output Voltage

VouT(0) Logical "0' Output Voltage

Ron Column "ON" Resistarice at $\times 1, \times 2, \times 3$ and $\times 4$ Outputs

ICC Supply Current

IIN\{1) Logical "1" Inpu: Current at Output Enable

IIN(0) Logical ' 0 " Input Current at Output Enable
$V_{C C}=5 V, \quad I_{N} \geq 07 \mathrm{~mA}$
$V_{C C}=10 \mathrm{~V}, I_{\mathrm{N}} \geq 1.4 \mathrm{~mA}$
$V_{C C}=15 V, I / N \geq 21 \mathrm{~mA}$
$V_{C C}=5 V, \quad I_{N} \geq 07 \mathrm{~mA}$
$V_{C C}=10 \mathrm{~V}, I_{I N} \geq 14 \mathrm{~mA}$
$V_{C C}=15 \mathrm{~V} .1 / \mathrm{N} \geq 21 \mathrm{~mA}$
$V_{C C}=5 \mathrm{~V}$.
$V_{C C}=10 V$.
$V_{C C}=15 \mathrm{~V}$.
$V_{C C}=5 \mathrm{~V}$.
$V_{C C}=10 \mathrm{~V}$.
$V_{C C}=15 V$.
$V_{C C}=5 V, \quad V_{\text {IN }}=01 V_{C C}$
$V_{C C}=10 V$
$V_{C C}=15 \mathrm{~V}$
$V_{C C}-5 V . \quad 1 O=-10 \mu \mathrm{~A}$
$V_{C C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A}$
$V_{C C}-15 V, 1_{O}=-10 \mu \mathrm{~A}$
$V_{C C}-5 V, \quad I_{O}=10 \mu \mathrm{~A}$
$V_{C C}=10 V, t_{O}=10 \mu \mathrm{~A}$
$V_{C C}=15 \mathrm{~V}, I_{O}=10 \mu \mathrm{~A}$
$v_{C C}-5 V . \quad v_{O}=0.5 V$
$V_{C C}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$
$V_{C C}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V}$
$V_{C C}=5 \mathrm{~V} . \quad$ Osc at 0 V
$V_{C C}=10 V$
$V_{C C}=15 V$
$V_{C C}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$
$V_{C C}=15 \mathrm{~V} . V_{I N}-0 V$
electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
'SOURCE Output Source Current (P-Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$-1.75$	$-3.3$		mA
ISOURCE Output Source Current (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-8	-15		mA
ISINK Output Sink Current (N-Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
ISINK Output Sink Current (N-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8	16		mA

## switching characteristics $T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {pd0 }}{ }^{\text {t }}$ pd 1	Propagation Delay Time to Logical " 0 " or Logical " 1 " from D.A	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		60	150	ns
		$V_{C C}=10 \mathrm{~V}$		35	80	ns
		$V_{C C}=15 \mathrm{~V}$		25	60	ns
${ }^{\mathrm{t}} \mathrm{OH}, \mathrm{t} 1 \mathrm{H}$	Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, (Figure 2)				
		$V_{C C}=5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		80	200	ns
		$V_{C C}=10 \mathrm{VCL}=10 \mathrm{pF}$		65	150	ns
		$V_{C C}=15 \mathrm{~V}$		50	110	ns
${ }^{\text {tH0, }} \mathrm{H}$ H1	Propagation Delay Time from High Impedance State to a Logical " 0 " or Logical " 1 "	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 2)				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		100	250	ns
		$V_{C C}=10 \mathrm{~V} C_{L}=50 \mathrm{pF}$		55	125	ns
		$V_{C C}=15 \mathrm{~V}$		40	90	ns
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	Any Input, (Note 2)		5	7.5	pF
COUT	TRI-STATE Output Capacitance	Any Output, (Note 2)		10		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" thev are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.

## switching time waveforms


$T 1 \simeq T 2 \approx R C, T 3 \approx 0.7 R C$ where $F i \simeq 10 k$ and $C$ is external capacitor at KBM input.

## block diagram



## truth table

$\begin{gathered} \text { SWITCH } \\ \text { POSITION } \end{gathered}$		${ }^{0}$	${ }^{1}$	${ }^{2}$	${ }^{3}$	${ }^{4}$	${ }_{4}^{5} \times 2$	${ }_{6}^{6} \times 3$	$\begin{gathered} 7 \\ x 0^{7} \end{gathered}$		$\begin{gathered} 9 \\ \times 3 . \times 2 \end{gathered}$	$\begin{gathered} 10 \\ Y 3 \times 3 \end{gathered}$	$\begin{gathered} 11 \\ Y_{3} \times 4 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{Y} 4, \times 1 \end{gathered}$	$\begin{gathered} 13 \\ Y 4 . \times 2 \end{gathered}$	$\begin{gathered} 14 \\ Y 4 \times 3 \end{gathered}$	$\begin{gathered} 15 \\ \times 4, \times 4 \end{gathered}$	$\begin{gathered} 16 \\ \times 55^{*} \times 1 \end{gathered}$	$\begin{gathered} 17 \\ Y 5^{*} \times 2 \end{gathered}$	$\begin{gathered} 18 \\ Y 5 * \\ Y \end{gathered}$	$\begin{aligned} & 19 \\ & Y 5^{*} \times 44 \\ & \hline \end{aligned}$
		Y1×1	V1.x2	Y1, $\times 3$	V1, $\times 4$	$v_{2} \times 1$	Y2. $\times 2$	Y2, $\times 3$	$\bigcirc 2 . \times 4$	Y3. ${ }^{1}$											
$\begin{array}{ll} \hline D & A \\ A & A \\ \text { T } & B \\ A & C \\ O & D \\ \mathbf{U} & E^{*} \end{array}$		0	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	$\bigcirc$	1
		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
		0	0	D	0	,	0	$\bigcirc$	0	1	1	1	1	1	1	1	1	0	0	$\bigcirc$	
		0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	

## *Omit for MM54C922/MM74C922

typical performance characteristics

Typical $I_{r p}$ vs $V_{i N}$ at Any
$Y$ Input


Typical Ron vs Vout at Any $\times$ Output

typical performance characteristics (con't)


## typical applications

Synchronous Handshake (MM74C922)


Synchronous Data Entry Onto Bus (MM74C922)


Outputs are enabled when valid entry is made and go into TRI-STATE when key is released.

Asynchronous Data Entry Onto Bus (MM74C922)


Outputs are in TRI-STATE until key is pressed, then data is placed on bus When key is released, outputs return to TRISTATE.

Note 3: The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz .

## Applicable TTL and CMOS Logic Circuits

## MM78C29/MM88C29 quad single ended line driver MM78C30/MM88C30 dual differential line driver

## general description

The MM78C30/MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to $V_{C C}$ in the input protection circuitry allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a $V_{C c}$ voltage greater than the $V_{C c}$ voltage of the MM78C30 line driver. The differential output of the MM78C30/MM88C30 eliminates ground foop errors.

The MM78C29/MM88C29 is a non inverting single wire transmission line driver with a similar input protection circuit. And since the output ON resistance is a low $20 \Omega$
typ, the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines

## features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity
$045 \mathrm{~V}_{\mathrm{Cc}}$ typ
- Low output ON resistance

20S2 typ
logic and connection diagrams

Dual-In-Line Package MM78C 29/MM88C29


1/4 MM78C29/MM88C 29



TQP VIEW
absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM78C29/MM78C30
MM88C29/MM88C30
Storage Temperature Range
Package Dissipation
Operating $V_{C C}$ Range
-0.3 V to +16 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW
3.0 V to 15 V

Absolute Maximum $V_{C C}$
18 V 100 mA
Average Current at Output
MM78C30/MM88C30 50 mA
MM78C29/MM88C29
25 mA
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical "1" Input Voltage ( $V_{\text {IN/1 }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical "0" Input Voltage ( $\mathrm{V}_{\text {! }}(\mathrm{O})$ )	$\begin{aligned} & V_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & V_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical " 1 " Input Current ( ${ }^{\text {IN (1) }}$ )	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical ' 0 " Input Current ( $\mathrm{I}_{\text {ivso }}$ )	$V_{C C}=15 \mathrm{~V}, V_{1 \mathrm{~N}}=0 \mathrm{~V}$	1.0	-0.005		$\mu \mathrm{A}$
Supply Current ( ${ }_{\text {cc }}$ )	$V_{C C}=15 \mathrm{~V}$		0.05	100	$\mu \mathrm{A}$

## OUTPUT DRIVE

Output Source Current
MM78C29/MM78C30

MM88C29/MM88C30

MM78C29/MM88C29
MM78C30/MM88C30
Output Sink Current
MM78C29/MM78C30

MM88C29,MM88C30

Output Source Resistance MM78C29'MM78C30

MM88C29/MM88C30
$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}-1.6 \mathrm{~V}$,
$V_{C c} \geq 4.5 \mathrm{~V}, \mathrm{~T}_{3}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{1}=125^{\circ} \mathrm{C}$
$V_{\text {OUT }}=V_{\text {Cc }}-1.6 \mathrm{~V}$.
$V_{c c} \geq 4.75 \mathrm{~V}, \mathrm{~T}_{1}=25^{\circ} \mathrm{C}$
$T_{1}=85^{\circ} \mathrm{C}$
$V_{\text {OUT }}=V_{\text {CC }}-0.8 \mathrm{~V}$
$V_{c c} \geqslant 4.5 \mathrm{~V}$
$V_{\text {OUT }}=0.4 \mathrm{~V}, V_{\text {CC }}=4.50 \mathrm{~V}$
$T_{1}=25^{\circ} \mathrm{C}$
$T_{1}=125^{\circ} \mathrm{C}$
$V_{\text {OUT }}=0.4 \mathrm{~V}, V_{\text {CC }}=10 \mathrm{~V}$
$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$
$T_{1}=125^{\circ} \mathrm{C}$
$V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$T_{1}=25^{\circ} \mathrm{C}$
$\mathrm{T}=85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}$
$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$
$T_{1}=85^{\circ} \mathrm{C}$
$V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}$.
$V_{C C} \geq 4.5 \mathrm{~V}, \mathrm{~T}_{1}=25 \mathrm{C}$
$\mathrm{T}_{1}=125^{\circ} \mathrm{C}$
$V_{\text {OUT }}=V_{C C} 1.6 \mathrm{~V}$,
$V_{c C} \geq 4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$
electrical characteristics (con't)

switching characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical "1" or " $0^{\prime \prime}$ ( $t_{\text {pg }}$ )	(See Figure 2)				
MM78C29/MM88C29	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$		80	200	ns
	$V_{C C}=10 \mathrm{~V}$		35	100	ns
MM78C30/MM88C30	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		110	350	ns
	$V_{C C}=10 \mathrm{~V}$		50	150	ns
Power Dissipation Capacitance ( $\mathrm{C}_{\mathrm{PO}}$ )					
MM78C29/MM88C29	(Note 3)		150		pF
Mм78С30/M 888С30 $^{\text {c }}$	(Note 3)		200		pF
Input Capacitance ( $\mathrm{C}_{\text {\| }}$ )					
MM78C29/MM88C29	(Note 2)		5.0		pF
MM78С30/Mm88С30	(Note 2)		5.0		pF
Differential Propagation Delay Time to Logical " 1 " or " 0 "	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF} \\ & \text { (See Figure 1) } \end{aligned}$				
MM78С30/MM88C30	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			400	ns
	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$			150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characterist cs" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
MM78C29/MM88C29, MM78C30/MM88C30

## typical performance characteristics

MM78C29/MM88C29
Typical Propagation Delay vs Load Capacitance


MM78C30/MM88C30
Typical Propagation Delay vs Load Capacitance


MM78C29/MM88C29
Typical Propagation Delay vs Load Capacitance


LOAO CAPACITANCE, $\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$


MM78C 30/MM88C30
Typical Propagation Delay vs Load Capacitance


Typical Source Current vs Output Voltage


## ac test circuits



FIGURE 1.


FIGURE 2.

Digital Data Transmission



Typical Data Rate vs Transmission Line Length


LENGTH OF TRANSMISSION LINE (FT)
Note 1 The transmission line used was \#22 gauge unshielded twisted pait (40k termenation)
Note 2: The curves generated assume that hoth drivers are driving equal hines, and that the maximum power is $500 \mathrm{~mW} /$ package

Section 10
Application Notes

## Summary of Electrical Characteristics of Some Well Known Digital Interface Standards

## FORWARD

Not the least of the problems associated with the design or use of data processing equipment is the problem of providing for or, actually, interconnecting the differing types and models of equipment to form specific processing systems.

The magnitude of the problem becomes apparent when one realizes that every aspect of the electrical, mechanical and architectural format must be specified. The most common of the basic decisions confronting the engineer include:

- Type of logic (negative or positive)
- Threshold levels
- Noise immunity
- Form of transmission
- Balanced/unbalanced, terminated/unterminated
- Unidirectional/bidirectional. simplex/multiplexed
- Type of transmission line
- Connector type and pin out
- Bit or byte oriented
- Baud rate

If each make and/or model of equipment presented a unique interface at its $1 / 0$ ports, "interface" engineering would become a major expenditure associated with the use of data processing equipment.

Fortunately, this is not the case as various interested or cognizant groups have analyzed specific recurring interface areas and recommended "official" standards around which common l/O ports could be structured. Also, the $1 / O$ specifications of some equipment with widespread popularity such as the IBM $360 / 370$ computer and DEC minicomputer have become "defacto"
standards because of the desire to provide/use equipment which interconnect to them.

Compliance with either the "official" or "defactc" standards on the part of equipment manufacturers is voluntary. However, it is obvious that much can be gained and little lost by providing equipment that offers either the "official" or "defacto" standard I/O ports.

As can be imagined, the entire subject of interface in data processing systems is complicated and confusing, particularly to those not intimately involved in the day-to-day aspects of interface engineering or management. However, at the component level the questions simplify to knowing what standards apply and what circuits or components are available to meet the standards.

This application note summarizes the important electrical characteristics of the most commonly accepted interface standards and offers recommendations on how to use National Semiconductor integrated circuits to meet those standards.

### 1.0 INTRODUCTION

The interface standards covered in this application note are listed in Table 1. The body of the text expands upon the scope and application of each listed standard and summarizes important electrical parameters.

Table II summarizes the National Semiconductor IC's applicable to each standard.

*Changed to "Data Circuit--Terminating Equipment"
${ }^{(1)}$ Registered trademark of Digital Equipment Corp.

TABLE II. LINE DRIVER/RECEIVER INTEGRATED CIRCUIT SELECTION GUIDE FOR DIGITAL INTERFACE STANDARDS

STANDARD DESIGNATION	PART NUMBER			
	LINE DRIVER		LINE RECEIVER	
	$0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

U.S. Industrial Standards

RS232C	DS1488   DS75150	Not Applicable   Not Applicable	DS1489 (A)   DS75154	Not Applicable   Not Applicable
RS357	See RS232C			
RS366	See RS232C			
RS408	DS75453	DS55454		DS7820A
	DS75454	DS55454	DS75115	DS7820A
RS422	DS3691	DS1691	DS88LS120	DS78LS120
	DS26LS31	DS26LS31M	DS26LS32	DS26LS32M
	DS3487		DS3486	
RS423			DS26LS33	DS88C120

## Government Standards

MIL-STD-188C	DS3691	DS1691	DS88LS120	DS78LS120
MIL-STD-188-114	DS3691	DS1691	DS88LS120	DS78LS120
FED-STD-1020	See RS423			
FED-STD-1030	See RS422			
MIL-STD-1397   (NTDS-Slow)	Use Discrete Components and/or Comparators			
MIL-STD-1397   (NTDS--Fast)	Use Discrete Components and/ar Comparators			

[^16]SELECTION GUIDE FOR DIGITAL INTERFACE STANDARDS (Continued)

STANDARD DESIGNATION	PART NUMBER			
	LINE DRIVER		LINE RECEIVER	
	$0^{\circ} \mathrm{C} \mathrm{TO}+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $+70{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
International Standards (CCITT)				
1969 White Book   Vol. VIII, V. 24	See RS232C			
Circular No. 97. $\times .26$	See RS422			
Circular No. 97. $\times .27$	See RS423			

### 2.0 DATA TERMINAL EQUIPMENT (DTE) TO DATA COMMUNICATIONS EQUIPMENT (DCE) INTER. FACE STANDARDS

### 2.1 Application

The DTE/DCE standards cover the electrical, mechanical and functional interface between/ among terminals (i.e., teletypewriters, CRT , etc.) and communications equipment (i.e., modems, cryptographic sets, etc.).

### 2.2 U.S. Industrial DTE/DCE Standards

### 2.2.1 EIA RS232C

The oldest and most widely known DTE/ DCE: standard. It provides for one-way/ non reversible, single-ended (unbalanced), non terminated line, serial digital data transmission.
technology the EIA, in 1975, introduced 2 new specifications covering:

1) Single-ended data transmission at modulation rates up to kilobaud* (RS423)
2) Balanced data transmission at modulation rates up to 10 megabaud (RS422).

### 2.2.2.1 RS423

RS423 closely resembles RS232C in that it, too, specifies one-way/ non-reversible, single-ended, data transmission lines. Key differences between RS423 and RS232C are:

## RS423

4 V to 6 V Logical " 1 " -4 V to -6 V Logical " 0 " 100k Baud at 40 Feet
Balanced Receiver, Referred to Driver Ground, Permitting Ground Potential Difference Between Driver and Receiver

Important features are:
a) Positive logic $( \pm 5 \mathrm{~V}$ min to $\pm 15 \mathrm{~V}$ max $)$
b) Fault protec:ion
c) Slew-rate control
d) 50 feet recommended cable length and 20 k bits per second data signaling rate.

### 2.2.2 EIA RS422, RS423

In a move to upgrade system capabilities by utilizing state-of-the-art devices and

RS232
5 V to 15 V Logical "1" -5 V to - 25 V Logical " 0 " 20k Baud at 50 Feet Unbalanced Receiver

FIGURE 1. EIA RS232C Application


FIGURE 2. EIA RS423 Application

[^17]TABLE III. EIA RS232C SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	EIA RS232C			UNITS	
		MIN	TYP	MAX			
V OH	Driver Output Voltage Open					25	$\checkmark$
VOL	Circuit		-25			V	
VOH	Driver Output Voltage Loaded	$3 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 7 \mathrm{k} \Omega$	5		15	$v$	
VOL	Output		-15		-5	V	
Ro	Driver Output Resistance Power OFF	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2 \mathrm{~V}$			300	$\Omega$	
IOS	Driver Output Short-Circuit Current		-500		500	mA	
$\mathrm{RIN}_{\mathrm{N}}$	Driver Output Slew Rate   All Interchange Circuits   Control Circuits   Rate and Timing Circuits		$\begin{aligned} & 6 \\ & 6 \end{aligned}$		30	$\mathrm{V} / \mu \mathrm{s}$   $\mathrm{V} / \mathrm{ms}$   $\mathrm{V} / \mathrm{ms}$	
		\% of Unit Interval	4			\%	
	Receiver Input Resistance	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	3000		7000	$\Omega$	
	Receiver Open Circuit Input Bias Voltage		-2		2	V	
	Receiver Input Threshold $\begin{aligned} & \text { Output }=\text { MARK } \\ & \text { Output }=\text { SPACE } \end{aligned}$		-3		3	V	

TABLE IV. EIA RS423 SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	EIA RS423			UNITS	
		MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{O}}$	Driver Unloaded Output Voltage			4		6	$\checkmark$
$\overline{V_{0}}$			-4		-6	$\checkmark$	
$V_{T}$	Driver Loaded Output Voltage	$R_{L}=450 \Omega$	3.6			$\checkmark$	
$\overline{V_{T}}$			$-3.6$			$\checkmark$	
RS	Driver Output Resistance				50	12	
IOS	Driver Output Short-Circuit	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			$\pm 150$	mA	
	Current						
	Driver Output Rise and Fall	Baud Rate $\leq 1 \mathrm{k}$ Baud			300	$\mu s$	
	Time	Baud Rate $\geq 1 \mathrm{k}$ Baud			30	\% Unit	
						Interval	
IOX	Driver Power OFF Current	$\mathrm{V}_{\mathrm{O}}= \pm 6 \mathrm{~V}$			$\pm 100$	$\mu \mathrm{A}$	
$V_{\text {TH }}$	Receiver Sensitivity	$\mathrm{V}_{\mathrm{CM}} \leq \pm 7 \mathrm{~V}$			$\pm 200$	$m \mathrm{~V}$	
$\mathrm{V}_{\mathrm{CM}}$	Receiver Common-Mode Range				$\pm 10$	$v$	
RIN	Receiver Input Resistance		4000			$\Omega$	
	Receiver Common-Mode Input Offset				$\pm 3$	$\checkmark$	

2.2.2.2 RS422

RS422 provides for balanced data transmission with unidirec-tional/non-reversible, terminated or non terminated transmission lines. Important features are:
a) $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ driver output
b) 0.4 V differential output matching
c) $\pm 200 \mathrm{mV}$ receiver input sensitivity
d) 10 M baud modulation rate

### 2.3 International Standards

2.3.1 CCITT 1969 Wh te Book Vol. VIII, V. 24. This standard is dentical to RS232C.
2.3.2 CCITT circular No. 97 Com SPA/13, X. 26. This standard is similar to RS422 with the exception that the receiver sensitivity at the specified maximum common-mode voltage ( $\pm 7 \mathrm{~V}$ ) shall be $\pm 300 \mathrm{mV}$ vs $\pm 200 \mathrm{mV}$ for RS422.
2.3.3 CCITT circular No. 97 Com SPA/13, X. 27. This standard is similar to RS423 with 2 exceptions:
a) The receiver sensitivity is as specified in paragraph X. 26, and
b) The driver output voltage is specified at a load resistance of $3.9 \mathrm{k} \Omega$.


FIGURE 3. EIA RS422 Application

TABLE V. EIA RS422 SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	EIA RS422			UNITS	
		MIN	TYP	MAX			
$\frac{v_{O}}{v_{O}}$	Driver Unloaded Output Voltage		$\mathrm{R}_{\mathrm{T}}=100 \mathrm{~S} 2$			6	V
					-6	V	
$\frac{V_{T}}{V_{T}}$	Driver Loaded Output Voltage	2				$v$	
		-2				V	
RS	Driver Output Resistance	Per Output			50	S2	
'os	Driver Output Short-Circuit	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$			150	mA	
	Current						
	Driver Output Rise Time				10	\% Unit	
						Interval	
IOX	Driver Power OFF Current	$-0.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 6 \mathrm{~V}$			$\pm 100$	$\mu \mathrm{A}$	
$V_{\text {TH }}$	Receiver Sensitivity	$V_{\mathrm{CM}}= \pm 7 \mathrm{~V}$			200	mV	
$\checkmark \mathrm{CM}$	Receiver Common-Mode Voltage		-10		10	$v$	
	Receiver Input Offset		+3			$\checkmark$	

2.4.1 MIL-STD-188C (Low Level)

The military equivalent to RS232C is MIL-STD-188C. Devices intended for

RS232C can be applied to MIL-STD-188C by use of external wave shaping components on the driver end and input resistance and threshold tailoring on the receiver end


FIGURE 4. MIL-STD-188C Application

TABLE VI. MIL-STD-188C SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	MIL-STD-188C LOW LEVEL LIMITS			UNITS	
		MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{OH}}$	Driver Output Voltage Open Circuit		(Note 1)	5		7	V
$\mathrm{V}_{\mathrm{OL}}$			-7		-5	V	
$\mathrm{R}_{\mathrm{O}}$	Driver Output Resistance Power ON	IOUT $\leq 10 \mathrm{~mA}$			100	$\Omega$	
Ios	Driver Output Short-Circuit Current		-100		100	mA	
	Driver Output Slew Rate   All Interchange Circuits   Control Circuits   Rate and Timing Circuits	(Note 2)	5		15	\% 14	
RIN	Receiver Input Resistance	Mod Rate $\leq 200 \mathrm{k}$ Baud	6			$\Omega$	
	Receiver Input Threshold $\begin{aligned} & \text { Output }=\text { MARK } \\ & \text { Output }=\text { SPACE } \end{aligned}$	(Note 3)	-100		100	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	

Note 1: Ripple $<0.5 \%, V_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$ matched to within $10 \%$ of each other
Note 2: Waveshaping required on driver output such that the signal rise or fall time is $5 \%$ to $15 \%$ of the unit interval at the applicable modula* tion rate.
Note 3: Balance between marking and spacing (threshoid) currents actually required shall be within 10\% of each other


FIGURE 5. MIL-STD-188-114 (Balanced) Application

### 2.4.2 MIL-STD-188-114 Balanced

This standard is similar to RS422 with the exception that the driver offset voltage level is limited to $\pm 0.4 \mathrm{~V}$ vs $\pm 3 \mathrm{~V}$ allowed in RS422.

### 2.4.3 MIL-STD-188-114 Unbalanced.

This standard is similar to RS423 with the exception that loaded circuit driver output voltage at $R_{L}=450 \Omega$ must be $90 \%$ of the open circuit output voltage vs $\pm 2 \mathrm{~V}$ at RS $=100 \Omega$ for RS422.

### 2.4.4 MIL-STD-1397 (Slow and Fast)

2.5 U.S. Government (non-military) standards FED-STD. 1020 and 1030 are identical without exception to EIA RS423 and RS422, respectively.

### 3.0 COMPUTER TO PERIPHERAL INTERFACE STANDARDS

To date, the only standards dealing with the interface between processors and other equipment are the "defacto" standards in the form of specifications issued by IBM and DEC covering the models 360/370 I/O ports and the Unibus ${ }^{(3)}$, respectively.
3.1 IBM specification GA-22-6974.0 covers the electrical characteristics, the format of information and the control sequences of the data transmitted between 360/370's and up to 10 I/O ports.

The interface is an unbalanced bus using $95 \Omega$, terminated, coax cables. Devices connected to the bus should feature short-circuit protection, hysteresis in the receivers, and open-emitter drivers. Careful attention should be paid to line lengths and quality in order to limit cable noise to less than 400 mV .
TABLE VII. MIL-STD-1397 SPECIFICATION SUMMARY

	PARAMETER	CONDITIONS	COMPARISON LIMITS (MIL-STD)		UNITS
			$\begin{gathered} 1397 \\ \text { (SLOW) } \end{gathered}$	$\begin{gathered} 1397 \\ \text { (FAST) } \end{gathered}$	
	Data Transmission Rate		42	250	k Bits/Sec
$\mathrm{V}_{\mathrm{OH}}$	Driver Output Voltage		$\pm 1.5$	0	V
VOL			-10 to -15.5	-3	$\checkmark$
${ }^{\mathrm{OH}}$	Driver Output Current		$\geq-4$		mA
IOL			1		mA
$\mathrm{R}_{\mathrm{S}}$	Driver Power OFF Impedance		$\geq 100$		$k \Omega$
$\mathrm{V}_{\text {IH }}$	Receiver Input Voltage	Fail Safe Open Circuit	$\leq 4.5$	$\leq-1.1$	$\checkmark$
$V_{\text {IL }}$			$\geq-7.5$	$\geq-1.9$	$\checkmark$


FIGURE 6. IBM 360/370 I/O Application

[^18]
## TABLE VIII. IBM 360/370 SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	IBM 360/370			UNITS	
		MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{OH}}$	Driver Output Voltage		$1 \mathrm{OH}=123 \mathrm{~mA}$			7	$\checkmark$
$\mathrm{VOH}^{\text {OH}}$		$1 \mathrm{OH}-30 \mu \mathrm{~A}$			5.85	$v$	
$\mathrm{V}_{\mathrm{OH}}$		$\mathrm{I}^{\mathrm{OH}}=59.3 \mathrm{~mA}$	3.11			V	
$\mathrm{V}_{\mathrm{OL}}$		IOL $=-240 \mu \mathrm{~A}$			0.15	V	
VIH	Recemer Input Threshold				1.7	$v$	
$V_{\text {IL }}$	Voltage		0.7			$v$	
$1 / \mathrm{H}$	Receiver Input Current	$V_{1 N}=3.11 \mathrm{~V}$			$-0.42$	mA	
IIL		$V_{1 N}=0.15 \mathrm{~V}$	0.24			mA	
	Receiver Input Voltage						
	Range						
$V_{\text {IN }}$	Power ON		-0.15		7	V	
$V I N$	Power OFF		-0.15		6	v	
RIN	Receiver Input Impedance	$0.15 \mathrm{~V} \leq \mathrm{V} \mathbb{N} \leq 3.9 \mathrm{~V}$	7400			$\Omega$	
IIN	Receiver Input Current	$V_{\text {IN }}=0.15 \mathrm{~V}$			240	$\mu \mathrm{A}$	
ZO	CABLE Impedance		83		101	$\Omega$	
$\mathrm{R}_{\mathrm{O}}$	CABLE Termination	$\mathrm{PD} \geq 390 \mathrm{~mW}$	90		100	$\Omega$	
	Line Length (Specified as Noise on Signal and Ground Lines)				400	mV	



FIGURE 7. DEC Unibus ${ }^{\circledR}$ Application

TABLE IX. DEC UNIBUS ${ }^{\text {® }}$ SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	DEC UNIBUS ${ }^{\text {(1) }}$			UNITS	
		MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{OL}}$	Driver Output Voltage		$1 \mathrm{OL}=50 \mathrm{~mA}$			0.7	V
$\mathrm{V}_{\mathrm{O}}$		Absolute Maximum			7	V	
V IH	Receiver Input Voltage		1.7			$v$	
VIL					1.3	V	
$1 / \mathrm{H}$	Receiver Input Current	$V 1 N=4 V$			100	$\mu \mathrm{A}$	
IIL		$V_{\text {IN }}=4 V$ Power OFF			100	$\mu \mathrm{A}$	

### 3.2 DEC Unibus ${ }^{\text {T }}$

Another example of an unofficial industry standard is the interface to a number of DEC minicomputers. This interface, configured as a $120 \Omega$ double-terminated data bus is given the
name Unibus ${ }^{(\sqrt{(1)})}$. Devices connected to the bus should feature hysteresis in the receivers and open-collector driver outputs. Cable noise should be held to less than 600 mV .

[^19]
### 4.0 INSTRUMENTATION TO COMPUTER INTERFACE STANDARDS

### 4.1 Introduction

The problem of linking instrumentation to processors to handle real-time test and measurement problems was largely a custom interface problem. Each combination of instruments demanded unique interfaces, thus inhibiting the wide spread usage of smiall processors to day-today test, measurement and control applications.

Two groups addressed the problem for specific environments. The results are:
a) IEEE 488 bus standard based upon proposals made by HP, and
b) The CAMAC system pioneered by the nuclear physics community.

### 4.2 IEEE 488

IEEE 488 covers the functional, mechanical and electrical interface between laboratory instrumentation (i.e., signal generators, DPM's, counters, etc.) and processors such as programmable calculators and minicomputers. Equipment with IEEE 488 I/O ports can be readily daisy chained in any combination of up to 15 equipments (including processor) spanning distances of up to 60 feet. 16 lines ( 3 handshake, 5 control and 8 data lines) are required.


FIGURE 8. IEEE 488 Application
TABLE X. IEEE 488 SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	IEEE 488			UNITS	
		MIN	TYP	MAX			
$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{VOL}_{\mathrm{OL}} \end{aligned}$	Driver Output Voltage		$\mathrm{IOH}^{\prime}=-5.2 \mathrm{~mA}$	2.4			$V$
		$1 \mathrm{OL}=48 \mathrm{~mA}$			0.4	V	
	Driver Output Current						
IOZ	TRI-STATE ${ }^{\oplus}$	$V_{O}=2.4 V$			$\pm 40$	$\mu \mathrm{A}$	
${ }^{1} \mathrm{OH}$	Open Бollector	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$			250	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IH }}$	Receiver Input Voltage:	0.4V Hysteresis Recommended	2.0			$V$	
VIL					0.8	$V$	
IIH	Receiver Imput Current:	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$	
IIL		$V_{1 N}=0.4 V$			$-1.6$	mA	
	Receiver Clamp Current	$\mathrm{V}_{\text {IN }}=-1.5 \mathrm{~V}$			12	mA	
RL1	Termination Resistor	$V_{C C}=5 \mathrm{~V}( \pm 5 \%)$	2850		3150		
$\mathrm{R}_{\mathrm{L} 2}$		$V=$ Gnd	5890		6510		

### 4.3 CAMAC

The CAMAC system is the result of efforts by those in the nuclear physics conimunity to standardize the interface between laboratory instruments and computers before the introduction of IEEE 488.

It allows either serial or parallel interconnection of instruments via a "crate" controller.

The electrical requirements of the interfaces are compatible with DTL and TTL logic levels.

### 5.0 MICROPROCESSOR SYSTEMS INTERFACE STANDARDS

5.1 Microprocessor systems are bus organized systems with two types of bus requirements:
a) Minimal system: for data transfer over short distances (usually on 1 PC board), and,
b) Expanded system: for data transfer to extend the memory or computational capabilities of the system.

### 5.2 Minimal Systems and Microbus ${ }^{\text {TM }}$

Microbus ${ }^{\text {TM }}$ considers the interface between MOS/LSI microprocessors and interfacing devices in close physical proximity which communicate over 8 bit parallel unified bus systems. It specifies both the functional and electrical characteristics of the interface and is modeled after the 8060,8080 and 8900 families of microprocessors as shown in Figures 8, 9 and 10.

The electrical characteristics of Microbus are shown in Table $\times I$.

TABLE XI. MICROBUS ELECTRICAL SPECIFICATION SUMMARY

PARAMETER		DRIVER	RECEIVER		UNITS	
		STANDARD	HYSTERESIS (RECOMMENDED)			
$\mathrm{VOL}_{\text {OL }}$	Output Voltage (At 1.6 mA )		$\leq 0.4 \mathrm{~V}$			
VOH	(At $-100 \mu \mathrm{~A}$ )	$\geq 2.4 \mathrm{~V}$				
$V_{\text {IL }}$	Input Voltage		0.8	0.6	$\checkmark$	
$V_{1 H}$			2.0	2.0	$\checkmark$	
	Internal Capacitive Load at $25^{\circ} \mathrm{C}$	15	10	10	pF	
$\mathrm{tr}_{\mathrm{r}}$	Rise Time (Maximum)	100			ns	
${ }_{\text {t }}{ }_{\text {f }}$	Fall Time (Maximum)	100			nis	



FIGURE 9. $8060 \mathrm{SC} / \mathrm{MP}$ II System Model


### 5.3 Expanded Microprocessor System Interfaces

Since the outputs of most microprocessor devices are limited to a loading of one relative to a TTL load, expanded systems will require buffers on both their address and data lines.

To date, no formal standards exist which govern this interface. However, "detacto" standards are emerging in the form of the specifications for "recommended devices" which are mentioned in the data sheets and application notes for the widely sourced microprocessor devices. Here, the answer to the question of how to provide a "'standard" interface is simplified to that of proper usage of recommended devices.

Table XII summarizes the important electrical characteristics of recommended bus drivers for expanded microprocessor systems.

### 6.0 OTHER INTERFACE STANDARDS

Some other commonly occurring interfaces which have become standardized are:
a) Interface between facsimile terminals and voice frequency communications terminals,
b) Interface between terminals and automatic calting equipment used for data communications, and
c) Interface be tween numerically controlled equipment and data terminals.

### 6.1 EIA RS357

RS357 defines the electrical, functional and mechanical characteristics of the interface between analog facsimile equipment to be used for telephone data transmission and the data sets used for controlling/transmitting the data.

Figure 11 summarizes the functional and electrical characteristics of RS357.

### 6.2 EIA RS366

RS366 defines the electrical, functional and mechanical characteristics of the interface between automatic calling equipment for data communications and data terminal equipment.

The electrical characteristics are encompassed by RS232C

TABLE XII. RECOMMENDED SPECIFICATION OF BUS DRIVERS FOR EXPANDED MICROPROCESSOR SYSTEMS

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Driver Input Voltage		2			V
$V_{1 L}$					0.8	$v$
$\mathrm{VOH}_{\mathrm{OH}}$	Driver Output Voltage	$\mathrm{I}^{\mathrm{OH}}=-10 \mathrm{~mA}$	2.4			v
VOL		$1 \mathrm{OL}=48 \mathrm{~mA}$			0.5	$v$
IOS	Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			-150	mA
$C_{L}$	Bus Drive Capability		300			pF



FIGURE 12. Functional and Electrical Characteristics of RS357

### 6.3 EIA RS408

RS408 recommends the standardization of the 2 interfaces shown in Figure 13.

The electrical characteristics of NCE to DTE interface are, in summary, those of conventional TTL. drivers (series 7400 ) with:

$$
\begin{aligned}
& V_{\mathrm{OL}} \leq 0.4 \mathrm{~V} \text { at } \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{OH}} \geq 2.4 \mathrm{~V} \text { at } \mathrm{I}_{\mathrm{OH}} \leq-1.2 \mathrm{~mA} \text {, and } \\
& \mathrm{C}_{\mathrm{L}} \leq 2000 \mathrm{pF} .
\end{aligned}
$$

Short circuit protection should be provided.


FIGURE 13. EIA RS4D8 Interface Applications

# Integrated Circuits for Digital Data Transmission 

## INTRODUCTION

It is frequently necessary to transmit digital data in a high-noise environment where ordinary integrated logic circuits cannot be used because they do not have sufficient noise immunity. One solution to this problem, of course, is to use high-noise-immunity logic. In many cases, this approach would require worst case logic swings of 30 V , requiring high power supply voltages. Further, considerable power would be needed to transmit these voltage levels at high speed. This is especially true if the lines must be terminated to eliminate reflections, since practical transmission lines have a low characteristic impedance.

A much better solution is to convert the ground referred digital data at the transmission end into a differential signal and transmit this down a balanced, twisted-pair line. At the receiving end, any induced noise, or voltage due to ground-loop currents, appears equally on both ends of the twisted-pair line. Hence, a receiver which responds only to the differential signal from the line will reject the undesired signals even with moderate voltage swings from the transmitter.

Figure 1 illustrates this situation more clearly. When ground is used as a signal return as in Figure 1 a , the voltage seen at the receiving end will be the output voltage of the transmitter plus any noise voltage induced in the signal line. Hence, the noise immunity of the transmitter-receiver combination must be equal to the maximum expected noise from both sources.

The differential transmission scheme diagrammed in Figure 1b solves this problem. Any groursd noise or voltage induced on the transmission lines will appear equally on both inputs of the receiver. The receiver responds only to the differential signal coming out of the twisted-pair line and delivers a single-ended output signal referred to the ground


FIGURE 1. Comparing Differential and Single-Ended Data Transmission
at the receiving end. Therefore, extremely high noise immunities are not needed; and the transmitter and receiver can be operated from the same supplies as standard integrated logic circuits.

This article describes the operation and use of a line driver and line receiver for transmission systems using twisted-pair lines. The transmitter provides a buffered differential output from a DTL or TTL input signal. A four-input gate is included on the input so that the circuit can also perform logic. The receiver detects a zero crossing in the differential input voltage and can directly drive DTL or TTL integrated circuits at the receiving end. It also has strobe capability to blank out unwanted input signals. Both the transmitter and the receiver incorporate two independent units on a single silicon chip.

## LINE DRIVER

Figure 2 shows a schematic diagram of the line transmitter. The circuit has a marked resemblance to a standard TTL buffer. In fact, it is possible to use a standard dual buffer as a transmitter. However, the DS7830 incorporates additional features. For one, the output is current limited to protect the driver from accidental shorts in the transmission lines. Secondly, diodes on the output clamp severe voltage transients that may be induced into the transmission lines. Finally, the circuit has internal inversion to produce a differential output signal, reducing the skew between the outputs and making the outout state independent of loading,


FIGURE 2. Schematic Diagram of the DS7830 Line Driver

As can be seen from the upper half of Figure 2, a quadruple-emitter input transistor, Q9, provides four logic inputs to the transmitter. This transistor drives the inverter stage formed by Q10 and Q11
to give a NAND output. A low state logic input on any of the emitters of Q 9 will cause the base drive to be removed from Q10, since Q 9 will be saturated by current from R8, holding the base of Q10 near ground. Hence, Q10 and Q11 will be turned off; and the output will be in a high state. When all the emitters of Q9 are at a one logic level, Q10 receives base drive from R8 through the forward biased collector-base junction of Q9. This saturates Q10 and also Q11, giving a low output state. The input voltage at which the transition occurs is equal to the sum of the emitter-base turn on voltages of Q10 and Q11 minus the saturation voltage of Q 9 . This is about 1.4 V at $25^{\circ} \mathrm{C}$.

A standard "totem-pole" arrangement is used on the output stage. When the output is switched to the high state, with Q10 and Q11 cut off, current is supplied to the load by Q13 and Q14 which are connected in a modified Darlington configuration. 8ecause of the high compound current gain of these transistors, the output resistance is quite low and a large load current can be supplied. R10 is included across the emitter-base junction of Q13 both to drain off any collector-base leakage current in Q13 and to discharge the collector-base capacitance of Q13 when the output is switched to the low state. In the high state, the output level is approximately two diode drops below the positive supply, or roughly 3.6 V at $25^{\circ} \mathrm{C}$ with a 5.0 V supply.
With the output switched into the low state, Q10 saturates, holding the base of Q14 about one diode drop above ground. This cuts off Q13. Further, both the base current and the collector current of Q10 are driven into the base of Q11 saturating it and giving a low-state output of about 0.1 V . The circuit is designed so that the base of Q11 is supplied 6 mA , so the collector can drive considerable load current before it is pulled out of saturation.
The primary purpose of R12 is to provide current to remove the stored charge in Q11 and charge its collector-base capacitance when the circuit is switched to the high state. Its value is also made enough less than R9 to prevent supply current transients which might otherwise occur* when the power supply is coming up to voltage.

[^20]The lower half of the transmitter in Figure 2 is identical to the upper, except that an inverter stage has been added. This is needed so that an input signal which drives the output of the upper half positive will drive the lower half negative, and vice versa, producing a differential output signal. Transistors Q2 and Q3 produce the inversion. Even though the current gain is not necessarily needed, the modified Darlingt:on connection is used to produce the proper logic transition voltage on the input of the transmitter. Because of the low load capacitance that the inverter sees when it is completely within the integrated circuit, it is extremely fast, with a typical delay of 3 ns . This minimizes the skew between the outputs.

One of the schemes used when dual buffers are employed as a differential line driver is to obtain the NAND output in the normal fashion and provide the AND output by connecting the input of the second buffer to the NAND output. Using an internal inverter has some distinct advantages over this: for one, capacitive loads which slow down the response of the NAND output will not introduce a time skew between the two outputs; secondly, line transients on the NAND output will not cause an unwanted change of state on the AND output.

Clamp diodes, D1 through D4, are added on all inputs to clamp undershoot. This undershoot and ringing can occur in TTL systems because the rise and fall times are extremely short.

Qutput-current limiting is provided by adding a resistor and transistor to each of the complementary outputs. Referring again to Figure 2, when the current on the NAND output increases to a value where the voltage drop across $R 11$ is sufficient to turn on Q 12 , the short circuit protection comes into effect. This happens because further increases in output current flow into the base of Q12 causing it to remove base drive from Q14 and, therefore, Q13. Any substantial increase in output current will then cause the output voltage to collapse to zero. Since the magnitude of the short circuit depends on the emitter base turn-on voltage of Q12, this current has a negative temperature coefficient. As the chip temperature increases from power dissipation, the available short circuit current is reduced. The current limiting also serves to control the current transient that occurs when
the output is going through a transition with both Q11 and Q13 turned on.

The AND output is similarly protected by R6 and Q5, which limit the maximum output current to about 100 mA , preventing damage to the circuit from shorts between the outputs and ground.

The current limiting transistors also serve to increase the low state output current capability under severe transient conditions. For example, when the current into the NAND output becomes so high as to pull Q11 out of saturation, the output voltage will rise to two diode drops above ground. At this voitage, the collector-base junction of Q12 becomes forward biased and supplies additional base drive to Q 11 through Q 10 which is saturated. This minimizes any further increase in output voltage.

When either of the outputs are in the high state, they can drive a large current towards ground without a significant change in output voltage. However, noise induced on the transmission line which tries to drive the output positive will cut it off since it cannot sink current in this state. For this reason, D6 and D8 are included to clamp the output and keep it from being driven much above the supply voltage, as this could damage the circuit.

When the output is in a low state, it can sink a lot of current to clamp positive-going induced voltages on the transmission line. However, it cannot source enough current to eliminate negative-going transients so D5 and D7 are included to clamp those voltages to ground.

It is interesting to note that the voltage swing produced on one of the outputs when the clamp diodes go into conduction actually increases the diffferential noise immunity. For example with no induced common mode current, the low-state output will be a saturation voltage above ground while the high output will be two diode drops below the positive supply voltage. With positivegoing common mode noise on the line, the low output remains in saturation; and the high output is clamped at a diode drop above the positive supply. Hence, in this case, the common mode noise increases the differential swing by three diode drops.


FIGURE 3．High State Output Voltage as a Function of Output Current

Having explained the operation of the line driver， it is appropriate to look at the performance in more detail．Figure 3 shows the high－state output characteristics under load．Over the normal range of output currents，the output resistance is about $10 \Omega$ ．With higher output currents，the short circuit protection is activated，causing the output voltage to drop to zero．As can be seen from the figure， the short－circuit current decreases at higher temperatures to minimize the possibility of over－ heating the integrated circuit．


FIGURE 4．Low－State Output Current as a Function of Output Current

Figure 4 is a similar graph of the low－state output characteristics．Here，the output resistance is about 582 with normal values of output current．With larger currents，the output transistor is pulled out of saturation；and the output voltage increases． This is most pronounced at $-55^{\circ} \mathrm{C}$ where the tran－ sistor current gain is the lowest．However，when the output voltage rises about two diode drops above ground，the collector－base junction of the current－limit transistor becomes forward biased，
providing additional base drive for the output tran－ sistor．This roughly doubles the current available for clamping positive common－mode transients on the twisted－pair line．It is interesting to note that even though the output level increases to about 2 V under this condition，the differential noise immunity does not suffer because the high－state output also increases by about 3 V with positive going common－mode transients．

It is clear from the figure that the low state output current is not effectively limited．Therefore，the device can be damaged by shorts between the out－ put and the 5 V supply．However，protection against shorts between outputs or from the out－ puts to ground is provided by limiting the high－ state current．

The curves in Figures 3 and 4 demonstrate the performance of the line driver with large，capaci－ tively－coupled common－mode transients，or under


FIGURE 5．Differential Output Voltage as a Function of Differential Output Current
gross overload conditions．Figure 5 shows the ability of the circuit to drive a differential load： that is，the transmission line．It can be seen that for output currents less than 35 mA ，the output resistance is approximately $15 \Omega$ ．At both tempera－ ture extremes，the output falls off at high currents． At high temperatures，this is caused by current limiting of the high output state．At low tem－ peratures，the falloff of current gain in the low－ state output transistor produces this result．

Load lines have been included on the figure to show the differential output with various load resistances．The output swing can be read off from the intersection of the output characteristic with the load line．The figure shows that the driver can easily handle load resistances greater than $100 \Omega$ ．

This is more than adequate for practical, twistedpair lines.

Figure 6 shows the no load power dissipation, for one-half of the dual line driver, as a function of frequency. This information is important for two reasons. First, the increase in power dissipation at high frequencies must be added to the excess power dissipation caused by the load to determine the total package dissipation. Second, and more important, it is a measure of the "glitch" current which flows from the positive supply to ground through the output transistors when the circuit is going through a transition. If the output stage is


FIGURE 6. Power Dissiplation as a Function of Switching Frequency
not properly designed, the current spikes in the power supplies can become quite large; and the power dissipation can increase by as much as a factor of five between 100 KHz and 10 MHz . The figure shows that, with no capacitive loading, the power increase with frequencies as high as 10 MHz is almost negligible. However, with large capacitive loads, more power is required.

The line receiver is designed to detect a zero crossing in the differential output of the line driver. Therefore, the propagation time of the driver is measured as the time difference between the appli cation of a step input and the point where the differential output voltage crosses zero. A plot of the propagation time over temperature is shown in Figure 7. This delay is added directly to the propagation time of the transmission line and the delay of the line receiver to determine the total datapropagation time. However, in most cases, the delay of the driver is small, even by comparison to the uncertainties in the other delays.


FIGURE 7. Propagation Time as a Function of Temperature

To summarize the characteristics of the DS7830 line driver, the input interfaces directly with standard DTL or TTL circuits. It presents a load which is equivalent to a fan out of 3 to the circuit driving it, and it operates from the $5.0 \mathrm{~V}, \pm 10 \%$ logic supplies. The output can drive low impedance lines down to $50 \Omega 2$ and capacitive loads up to 5000 pF . The time skew between the outputs is minimized to reduce radiation from the twisted-pair lines, and the circuit is designed to clamp common mode transients coupled into the line. Short circuit protection is also provided. The integrated círcuit consísts of two independent drivers fabricated on a $41 \times 53$ mil-square die using the standard TTL process. A photomicrograph of the chip is shown in Figure 8.


FIGURE 8 . Phatomicragraph of the DS7830 Dual Line Driver

## LINE RECEIVER

As mentioned previously, the function of the line receiver is to convert the differential output signal of the line driver into a single ended, groundreferred signal to drive standard digital circuits on the receiving end. At the same time it must reject the common mode and induced noise on the trans. mission line.

Normally this would not be too difficult a task because of the large signal swings involved However, it was considered important that the receiver operate from the +5 V logic supply without requiring additional supply voltages, as do most other line receiver designs. This complicates the situation because the receiver must operate with $\pm 15 \mathrm{~V}$ input signals which are considerably greater than the operating supply voltage.

The large common mode range over which the circuit must work can be reduced with an attenuator on the input of the receiver. In this design, the input signal is attenuated by a factor of 30 . Hence, the $\pm 15 \mathrm{~V}$ common mode voltage is reduced to $\pm 0.5 \mathrm{~V}$, which can be handled easily by circuitry operating from a 5 V supply. However, the differential input signal, which can go down as low as $\pm 2.4 \mathrm{~V}$ in the worst case, is also reduced to $\pm 80 \mathrm{mV}$. Hence, it is necessary to employ a fairly accurate zero crossing detector in the receiver.

System requirements dictated that the threshold inaccuracy irtroduced by the zero crossing detector be less than 17 mV . In principle, this accuracy requirement should not pose insurmountable problems because it is a simple matter to make well matched parts in an integrated crrcuit.

Figure 9 shows a simplified schematic diagram of the circuit configuration used for the line receiver. The input signal is attenuated by the resistive dividers R1-R2 and R8-R3. This attenuated signal is fed into a balanced dc amplifier, operating in the common base configuration. This input amplifier, consisting of Q 1 and Q2, removes the common mode component of the input signal. Further, it delivers an output signal at the collector of Q 2 which is nearly equal in amplitude to the original differential input signal. This output signal s buffered by O 6 and drives an output amplifier, 08 . The output stage drives the logic load directly


FIGURE 9. Simplified Schematic of the Line Receiver

An understanding of the circuit can be obtained by first considering the input stage. Assuming high current gains and neglecting the voltage drop across R3, the collector current of Q1 will be:

$$
\begin{equation*}
I_{C 1}=\frac{V^{+}-V_{B E 1}-V_{B E 3}-V_{B E 4}}{R 11} . \tag{1}
\end{equation*}
$$

With equal emitter-base voltages for all transistors, this becomes:

$$
\begin{equation*}
I_{C 1}=\frac{V^{+}-3 V_{B E}}{R 11} \tag{2}
\end{equation*}
$$

The output voltage at the collector of Q 2 will be:

$$
\begin{equation*}
V_{C 2}=V^{+}-1_{C 2} \mathrm{R} 12 \tag{3}
\end{equation*}
$$

When the differential input voltage to the receiver is zero, the voltages presented to the emitters of Q 1 and Q 2 will be equal. If Q 1 and Q 2 are matched devices, which is easy to arrange when they are fabricated close together on a single silicon chip, their collector currents will be equal with zero input voltage. Hence, the output voltage from Q2 can be determined by substituting (2) into (3)

$$
\begin{equation*}
V_{C 2}=V^{+}-\frac{R 12}{R 11}\left(V^{+}-3 V_{B E}\right) \tag{4}
\end{equation*}
$$

For R11 = R12, this becomes:

$$
V_{C 2}=3 V_{B E} .
$$

The voltage on the base of Q 6 will likewise be $3 V_{B E}$ when the output is on the verge of switching from a zero to a one state. A differential input signal which causes Q2 to conduct more heavily will then make the cutput go high, while an input signal in the opposite direction will cause the output to saturate.

It should be noted that the balance of the circuit is not affected by absolute values of componentsonly by how well they match. Nor is it affected by variations in the positive supply voltage, so it will perform well with standard logic supply voltages between 4.5 V and 5.5 V . In addition, component values are chosen so that the collector currents of Q 4 and Q 6 are equal As a result, the base currents of Q4 and O6 do not upset the balance of the input stage. This means that circuit performance is not greatly affected by production or temperature variations in transistor current gain.

A complete schematic of the line receiver, shown in Figure 10, shows several refinements of the basic circuit which are needed to secure proper
operation under all conditions. For one, the explanation of the simplified circuit ignores the fact that the collector current of Q 1 will be affected by common mode voltage developed across R3. This can give a 0.5 V threshold error at the extremes of the $\pm 15 \mathrm{~V}$ common mode range. To compensate for this, a separate divider, R9 and R10, is used to maintain a constant collector current in Q1 with varying common mode signals. With an increasing common mode voltage on the non-inverting input, the voltage on the emitter of Q1 will increase. Normally, this would cause the voltage across R11 to decrease, reducing the collector current of Q1. However, the increasing common mode signal also drives the top end of R11 through R9 and R10 so as to hold the voltage drop across R11 constant.

In addition to improving the common mode rejection, R9 also forces the output of the receiver into the high state when nothing is connected to the input lines. This means that the output will be in a pre-determined state when the transmission cables are disconnected.

A diode connected transistor, Q 5 , is also added in the complete circuit to provide strobe capability. With a logic zero on the strobe terminal, the out-

put will be high no matter what the input signal is. With the strobe, the receiver can be made immune to any noise signals during intervals where no digital information is expected. The output state with the strobe on is also the same as the output state with the input terminals open.

The collector of Q 2 is brought out so that an external capacitor can be used to slow down the receiver to where it will not respond to fast noise spikes. This capacitor, which is connected between the response-time-control terminal and ground, does not give exactly-symmetrical delays. The delay for input signals which produce a positivegoing output will be less than for input signals of opposite polarity. This happens because the impedance on the collector of Q2 drops as Q 6 goes into saturation, reducing the effectiveness of the capacitor.

Another difference in the complete circuit is that the output stage is improved both to provide more gain and to reduce the output resistance in the high output state. This was accomplished by adding Q9 and Q10. When the output stage is operating in the linear region, that is, on the verge of switching to either the high or the low state, Q9 and Q10 form sort of an active collector load for Q8. The current through R15 is constant at approximately 2 mA as the output voltage changes through the active region. Hence, the percentage change in the collector current of Q8 due to the voltage change across $R 17$ is made smaller by this pre-bias current; and the effective stage gain is increased.

With the output in the high state (O8 cut off), the output resistance is equal to R15, as long as the load current is less than 2 mA . When the load current goes above this value, Q 9 turns on; and the output resistance increases to 1.5 K , the value of R17.

This particular output configuration gives a higher gain than either a standard DTL or TTL output stage. It can also drive enough current in the high state to make it compatible with TTL, yet outputs can be wire OR'ed as with DTL.

Remaining details of the circuit are that Q 7 is connected as an emitter follower to make the circuit even less sensitive to transistor current gains. R16 limits the base drive to Q7 with the output saturated, while R17 limits the base drive to the output transistor, Q8. A resistor, R7, which can be used to terminate the twisted pair line is also included on the chip. It is not connected directly
across the inputs. Instead, one end is left open so that a capacitor can be inserted in series with the resistor. The capacitor significantly reduces the power dissipation in both the line transmitter and receiver, especially in low-duty-cycle applications, by terminating the line at high frequencies but blocking steady-state current flow in the terminating resistor.

Since line receivers are generally used repetitively in a system, the DS7820 has been designed with two independent receivers on a single silicon chip. The device is fabricated on a $41 \times 49 \mathrm{mil}$-square die using the standard six mask planar-epitaxial process. The processing employed is identical to that used on TTL circuits, and the design does not impose any unusual demands on the processing. It is only required that various parts within the circuit match well, but this is easily accomplished in a monolithic integrated circuit without any special effort in manufacturing. A photomicrograph of the integrated circuit chip is shown in Figure 11.


FIGURE 11. Photomicrograph of the DS7820 Dual Line Recerver
The only components in the circuit which see voltages higher than standard logic circuits are the resistors used to attenuate the input signal. These resistors, R1, R7, R8 and R9, are diffused into a separate, floating, $N$-type isolation tub, so that the higher voltage is not seen by any of the transistors. For a $\pm 15 \mathrm{~V}$ input voltage range, the breakdown voltages required for the collector-isolation and collector-base diodes are only 15 V and 19 V . respectively. These breakdown voltages can be achieved readily with standard digital processing

The purpose of the foregoing was to provide some insight into circuit operation. A more exact mathematical analysis of the device is developed ir Appendix A.

## RECEIVER PERFORMANCE

The characteristics of the line receiver are described graphically in Figures 12 through 18. Figure 12 illustrates the effect of supply voltage variations on the threshold accuracy. The upper curve gives the differential input voltage required to hold the output at 2.5 V while it is supplying $200 \mu \mathrm{~A}$ to the digital load. The lower curve shows the differential input needed to hold the output at 0.4 V while it sinks 3.5 mA from the digital load. This load corresponds to a worst case fanout of 2 with either DTL or TTL integrated circuits. The data shows that the threshold accuracy is only affected by $\pm 60 \mathrm{mV}$ for a $\pm 10 \%$ change in supply voltage. Proper operation can be secured over a wider range of supply voltages, although the error becomes excessive at voltages below 4 V .


FIGURE 12. Differential Input Voltage Required for High or Low Output as a Function of Supply Voltage

Figure 13 is a similar plot for varying common mode input voltage. Again the differential input voltages are given for high and low states on the output with a worst case fanout of 2 . With precisely matched components within the integrated circuit, the threshold voltage will not


FIGURE 13. Differential Input Voltage Required for High or Low Output as a Function of Common Mode Voltage
change with common mode voltage. The mismatches typically encountered give a threshold voltage change of $\pm 100 \mathrm{mV}$ over a $\pm 20 \mathrm{~V}$ common mode range. This change can have either a positive slope or a negative slope.


FIGURE 14. Voltage Transfer Function

The transfer function of the circuit is given in Figure 14. The loading is for a worst case fanout of 2. The digital load is not linear, and this is reflected as a non-linearity in the transfer function which occurs with the output around 1.5 V . These transfer characteristics show that the only significant effect of temperature is a reduction in the positive swing at $-55^{\circ} \mathrm{C}$. However, the voltage available remains well above the 2.5 V required by digital logic.


FIGURE 15. Response Time With and Without an Exter. nal Delay Capacitor

Figure 15 gives the response time, or propagation delay, of the receiver. Normally, the delay through the circuit is about 40 ns . As shown, the delay can be increased, by the addition of a capacitor between the response-time terminal and ground, to make the device immune to fast noise spikes on the input. The delay will generally be longer for negative going outputs than for positive going outputs.

Under normal conditions, the power dissipated in the receiver is relatively low. However, with large common mode input voltages, dissipation increases markedly, as shown in Figure 16. This is of little consequence with common mode transients, but the increased dissipation must be taken into account when there is a dc difference between the grounds of the transmitter and the receiver. It is important to note that Figure 16 gives the dissipation for one half the dual receiver. The total package dissipation will be twice the values given when both sides are operated under identical conditions.


FIGURE 16. Internal Power Dissipation as a Function of Common Mode Input Voltage

Figure 17 shows that the power supply current also changes with common mode input voltage due to the current drawn out of or fed into the supply through R 9 . The supply current reaches a maximum with negative input voltages and can actually reverse with large positive input voltages. The figure also shows that the supply current with the output switched into the low state is about 3 mA higher than with a high output.


FIGURE 17. Power Supply Current as a Function of Common Mode Input Voltage

The variation of the internal termination resistance with temperature is illustrated in Figure 18. Taking into account the initial tolerance as well as the change with temperature, the termination resistance is by no means precise. Fortunately, in most cases, the termination resistance can vary appreciably without greatly affecting the characteristics of the transmission line. If the resistor tolerance is a problem, however, an external resistor can be used in place of the one provided within the integrated circuit.


FIGURE 18. Variation of Termination Resistance With Temperature

## DATA TRANSMISSION

The interconnection of the DS7830 line driver with the DS7820 line receiver is shown in Figure 19. With the exception of the transmission line, the design is rather straightforward. Connections on the input of the driver and the output or strobe of the receiver follow standard design rules for DTL or TTL integrated logic circuits. The load presented by the driver inputs is, equal to 3 standard digital loads, while the receiver can drive a worst-case fanout of 2 . The load presented by the receiver strobe is equal to one standard load.

The purpose of C 1 on the receiver is to provide dc isolation of the termination resistor for the transmission line. This capacitor can both increase the differential noise immunity, by reducing attenuation on the line, and reduce power dissipation in both the transmitter and receiver. In some applications, C1 can be replaced with a short between Pins 1 and 2, which connects the internal termination resistor of the DS7820 directly across the line. C2 may be included, if necessary, to control the response time of the receiver, making it immune to noise spikes that may be coupled differentially into the transmission lines.


FIGURE 20. Transmission Line Response With Various Termination Resistances
The effect of termination mismatches on the transmission tine is shown in Figure 20. The line was constructed of a twisted pair of No. 22 copper conductors with a characteristic impedance of approximately $170 \Omega$. The line length was about 150 ns and it was driven directly from a DS7830 line driver. The data shows that termination resistances which are a factor of two off the nominal value do not cause significant reflections on the line. The lower termination resistors do, however, increase the attenuation.


FIGURE 19. Interconnection of the Line Driver and Line Receiver

Figure 21 gives the line－transmission characteristics with various termination resistances when a dc isolation capacitor is used．The line is identical to that used in the previous example．It can be seen that the transient response is nearly the same as a dc terminated line．The attenuation，on the other hand，is considerably lower，being the same as an unterminated line．An added advantage of using the isolation capacitor is that the de signal current is blocked from the termination resistor which reduces the average power drain of the driver and the power dissipation in both the driver and receiver．


FIGURE 21．Line Response for Various Termination Resistances With a DC Isolation Capacitor


Figure 23．Line Response With Difierent Terminations and Common Mode Input Voltages

The effect of different values of dc isolation capacitors is illustrated in Figure 22．This shows that the RC time constant of the termination resis． tor／isolation capacitor combination should be 2 to 3 times the line delay．As before，this data was taker for a 150 ns long line．


FIGURE 22．Response of Terminated Line With Dif－ ferent DC Isolation Capacitors

In Figure 23，the influence of a varying ground voltage between the transmitter and the receiver is shown．The difference in the characteristics arises because the source resistance of the driver is not constant under all conditions．The high output of
the transmitter looks like an open circuit to voltages reflected from the receiving end of the trans. mission line which try to drive it higher than its normal dc state. This condition exists until the voltage at the transmitting end becomes high enough to forward bias the clamp diode on the 5 V supply. Much of the phenomena which does not follow simple transmission-line theory is caused by this. For example, with an unterminated line, the overshoot comes from the reflected signal charging the line capacitance to where the clamp diodes are forward biased. The overshoot then decays at a rate determined by the total line capacitance and the input resistance of the receiver.

When the ground on the receiver is 15 V more negative than the ground at the transmitting end, the decay with an unterminated line is faster, as shown in Figure 23b. This occurs because there is more current from the input resistor of the receiver to discharge the line capacitance. With a terminated line, however, the transmission characteristics are the same as for equal ground volt ages because the terminating resistor keeps the line from getting charged.

Figure 23c gives the transmission characteristics when the receiver ground is 15 V more positive than the transmitter ground. When the line is not terminated, the differential voltage swing is increased because the high output of the driver will be pulled against the clamp diodes by the common mode input current of the receiver. With a dc isolation capacitor, the differential swing will reach this same value with a time constant determined by the isolation capacitor and the input resistance of the receiver. With a dc coupled termi ation, the characteristics are unchanged because the differential load current is large by comparison to the common mode current so that the output transistors of the driver are always conducting.

The low output of the driver can also be pulled below ground to where the lower clamp diode con-
ducts, giving effects which are similar to those described for the high output. However, a current of about 9 mA is required to do this, so it does not happen under normal operating conditions.

To summarize, the best termination is an RC combination with a time constant approximately equal to 3 times the transmission-line delay. Even though its value is not precisely determined, the internal termination resistor of the integrated circuit can be used because the line characteristics are not greatly affected by the termination resistor.

The only place that an RC termination can cause problems is when the data transmission rate approaches the line delay and the attenuation down the line (terminated) is greater than 3 dB . This would correspond to more than 1000 ft . of twisted-pair cable with No. 22 copper conductors. Under these conditions, the noise margin can disappear with low-duty-cycle signals. If this is the case, it is best to operate the twisted-pair line without a termination to minimize transmission losses. Reflections should not be a problem as they will be absorbed by the line losses.

## CONCLUSION

A method of transmitting digital information in high-noise environments has beel described. The technique is a much more attractive solution than high-noise-immunity logic as it has lower power consumption, provides more noise rejection, operates from standard 5 V supplies, and is fully compatible with almost all integrated logic circuits. An additional advantage is that the circuits can be fabricated with integrated circuit processes used for standard logic circuits.

## APPENDIXA

## LINE RECEIVER

## Design Analysis

The purpose of this appendix is to derive mathe matical expressions describing the operation of the line receiver. It will be shown that the performance of the circuit is not greatly affected by the absolute value of the components within the integrated circuit or by the supply voltage. Instead, it depends mostly on how well the various parts match.

The analysis will assume that all the resistors are well matched in ratio and that the transistors are likewise matched, since this is easily accomplished over a broad temperature range with monolithic construction. However, the effects of component mismatching will be discussed where important. Further, large transistor current gains will be assumed, but it will be pointed out later that this is valid for current gains greater than about 10 .

A schematic diagram of the DS7820 line receiver is shown in Figure A-1. Referring to this circuit, the collector current of the input transistor is given by

$$
\begin{aligned}
I_{C_{1}} & =\frac{V^{+}-V_{B E 1}-V_{B E 3}-V_{B E 4}}{R 9 / / R 10+R 11+R 3 / / R 8} \\
& -\frac{R 4+2 R}{R 6+R 3} V_{B E 1}-\frac{R 3 / / R 11}{R 8+R 3 / / R 1} V_{I N} \\
& +\frac{\left(V_{I N}-V^{+}\right) \frac{R 10+R 11+R 3 / / R 8}{R 9+R 10 / / R 11}}{R 9 / / R 10+R 11+R 3 / / R 8} \quad \text { (A. 1) }
\end{aligned}
$$

where $V_{\text {IN }}$ is the common mode input voltage and $R_{a} / / R_{b}$ denotes the paralle! connection of the two resistors In Equation (A. 1), R8 = R9, R3 = R10, $R 10 \ll R 11, R 9 \gg R 10, R 3 \ll R 11, R 8 \gg R 3$
and $\frac{R 3}{R 4+2 R 6+R 3} \ll 3$ so it can be reduced to
$I_{C 1}=\frac{v^{+}-3 V_{B E}-\frac{R 10}{R 9} v^{+}}{R 10+R 11+R 3}$
which shows that the collector current of Q 1 is not affected by the common mode voltage.

The output voltage on the collector of O 2 is

$$
\begin{equation*}
V_{C 2}=V^{+}-I_{C 2} R 12 \tag{A.3}
\end{equation*}
$$

For zero differential input voltage, the collector currents of Q1 and Q2 will be equal so Equation (A. 3) becomes

$$
\begin{equation*}
V_{C 2}=v^{+}-\frac{R 12\left(v^{+}-3 V_{B E}-\frac{R 10}{R 9} v^{+}\right)}{R 10+R 11+R 3} \tag{A.4}
\end{equation*}
$$

It is desired that this voltage be $3 \mathrm{~V}_{\mathrm{BE}}$ so that the output stage is just on the verge of switching with zero input. Forcing this condition and solving for R12 yields

$$
\begin{equation*}
R 12=(R 10+R 11+R 3) \frac{V^{+}-3 V_{B E}}{V^{+}-3 V_{8 E}-\frac{R 10}{R 9} V^{+}} \tag{A.5}
\end{equation*}
$$



FIGURE A.1. Schematic Diagram of One Half of the DS7820 Line Receiver

This shows that the optimum value of R 12 is dependent on supply voltage. For a 5 V supply it has a value of $4.7 \mathrm{k} \Omega$. Substituting this and the other component values into (A. 4),

$$
\begin{equation*}
V_{\mathrm{C} 2}=2.83 \mathrm{~V}_{\mathrm{BE}}+0.081 \mathrm{v}^{+} \tag{A.6}
\end{equation*}
$$

which shows that the voltage on the collector of Q 2 will vary by about 80 mV for a 1 V change in supply voltage.

The next step in the analysis is to obtain an expression for the voltage gain of the input stage.


FIGURE A-2. Equivalent Circuit Used to Calculate Input Stage Gain
$A_{n}$ equivalent circuit of the input stage is given in Figure A-2. Noting that $\mathrm{R} 6=\mathrm{R} 7=\mathrm{R} 8$ and $R 2 \cong 0.1$ ( $R 6+R 7 / / R 8$ ), the change in the emitter current of $Q 1$ for a change in input voltage is
$\Delta I_{E 2}=\frac{0.9 R 2}{R 1\left(0.9 R 2+\overline{\left.R_{E 2}\right)}\right.} \Delta V_{I N}$.
Hence, the change in output voltage will be
$\Delta V_{\text {OUT }}=\alpha I_{\text {E2 }} R 12$

$$
\begin{equation*}
=\frac{0.9 \alpha \mathrm{R} 2 \mathrm{R} 12}{\mathrm{R} 1\left(0.9 \mathrm{R} 2+\bar{R}_{\mathrm{E} 2}\right)} \Delta \mathrm{V}_{\mathrm{IN}} . \tag{A.8}
\end{equation*}
$$

Since $\alpha \cong 1$, the voltage gain is
$A_{V_{1}}=\frac{0.9 R 2 R 12}{R 1\left(0.9 R 2+R_{E 2}\right)}$
The emitter resistance of Q 2 is given by

$$
\begin{equation*}
R_{E 2}=\frac{k T}{q I_{C 2}} \tag{A.10}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{C 2}=\frac{V^{+}-3 V_{B E}}{R 12} \tag{A.11}
\end{equation*}
$$

so

$$
\begin{equation*}
R_{E 2}=\frac{k T R 12}{q\left(V^{+}-3 V_{B E}\right)} \tag{A.12}
\end{equation*}
$$

Therefore, at $25^{\circ} \mathrm{C}$ where $V_{B E}=670 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=26 \mathrm{mV}$, the computed value for gain is 0.745 . The gain is nct greatly affected by temperature as the gain at $-55^{\circ} \mathrm{C}$ where $V_{B E}=810 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=18 \mathrm{mV}$ is 0.774 , and the gain at $125^{\circ} \mathrm{C}$ where $V_{B E}=480 \mathrm{mV}$ and $k T / q=34 \mathrm{mV}$ is 0.730 .

With a voltage gain of 0.75 , the results of Equation (A. 6) show that the input referred threshoid voltage will change by 0.11 V for a 1 V change in supply voltage. With the standard $\pm 10$-percent supplies used for logic circuits, this means that the threshold voltage will change by less than $\pm 60 \mathrm{mV}$.

Finally, the threshold error due to finite gain in the output stage can be considered. The collector current of Q7 from the bleeder resistor R14, is large by comparison to the base current of Q8, if 08 has a reasonable current gain. Hence, the collector current of Q7 does not change appreciably when the output switches from a logic one to a logic zero. This is even more true for Q6, an emitter follower which drives Q7. Therefore, it is safe to presume that Q6 does not load the output of the first-stage amplifier, because of the compounded current gain of the three transistors, and that Q 8 is driven from a low resistance source.

It follows that the gain of the output stage can be determined from the change in the emitter-base voltage of 08 required to swing the output from a logic one state to a logic zero state. The expression

$$
\begin{equation*}
\Delta V_{B E}=\frac{k T}{q} \log _{\mathrm{e}} \frac{\mathrm{I}_{\mathrm{C} 1}}{\mathrm{I}_{\mathrm{C} 2}} \tag{A.13}
\end{equation*}
$$

describes the change in emitter-base voltage required to vary the collector current from one value, $I_{\mathrm{C}_{1}}$, to a second, $\mathrm{I}_{\mathrm{C} 2}$. With the output of the receiver in the low state, the collector current of $\mathrm{Q8}$ is
$I_{O L}=\frac{V^{+}-V_{O L}-V_{\text {BE9 }}-V_{B E 10}}{R_{17}}$

$$
\begin{equation*}
+\frac{V_{B E 9}}{R 15}-\frac{V_{B E B}}{R 14}+\frac{V_{B E 7}}{R 13}+I_{\text {SINK }} \tag{A.14}
\end{equation*}
$$

where $V_{O L}$ is the low state output voltage and $I_{\text {SINK }}$ is the current load from the logic that the receiver is driving. Noting that R13 $=2$ R14 and figuring that all the emitter-base voltages are the same, this becomes

$$
\begin{gather*}
\mathrm{I}_{\mathrm{OL}}=\frac{V^{+}-V_{\mathrm{OL}}-2 V_{B E}}{R 17}+\frac{V_{B E}}{R 15} \\
-\frac{V_{B E}}{2 R 14}+I_{\text {SINK }} . \tag{A.15}
\end{gather*}
$$

Similarly, with the output in the high state, the collector current of Q8 is

$$
\begin{align*}
I_{\mathrm{OH}} & =\frac{V^{+}-V_{O H}-V_{B E 9}-V_{B E 10}}{R 17} \\
& +\frac{V_{B E 9}}{R 15}-\frac{V_{B E B}}{R 14} \\
& +\frac{V_{B E 7}}{R 13}-I_{\text {SOURCE }} \tag{A.16}
\end{align*}
$$

where $\mathrm{V}_{\mathrm{OH}}$ is the high-level output voltage and $I_{\text {Source }}$ is the current needed to supply the input leakage of the digital circuits loading the comparator.

With the same conditions used in arriving at (A. 15), this becomes

$$
\begin{align*}
I_{O H} & =\frac{V^{+}-V_{O H}-2 V_{B E}}{R 17}+\frac{V_{B E}}{R 15} \\
& =\frac{V_{B E}}{2 R 14}-I_{\text {SOURCE }} . \tag{A.17}
\end{align*}
$$

From (A. 13) the change in the emitter-base voltage of Q 8 in going from the high output level to the low output level is
$\Delta V_{B E}=\frac{k T}{q} \log _{\mathrm{e}} \frac{l_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OH}}}$
providing that Q 8 is not quite in saturation, although it may be on the verge of saturation.

The change of input threshold voltage is then
$\Delta V_{T H}=\frac{k T}{q A_{V 1}} \log _{\mathrm{e}} \frac{\mathrm{I}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OH}}}$
where $A_{V_{1}}$ is the input stage gain. With a worst case fanout of 2 , where $\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$. $I_{\text {SOURCE }}=40 \mu \mathrm{~A}$ and $\mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$, the calculated change in threshold is 37 mV at $25^{\circ} \mathrm{C}$, 24 mV at $-55^{\circ} \mathrm{C}$ and 52 mV at $125^{\circ} \mathrm{C}$.

The measured values of overall gain differ by about a factor of two from the calculated gain. This is not too surprising because a number of assumptions were made which introduce small errors, and all these errors lower the gain. It is also not too important because the gain is high enough where another factor of two reduction would not cause the circuit to stop working.

The main contributors to this discrepancy are the non-ideal behavior of the emitter-base voltage of 08 due to current crowding under the emitter and the variation in the emitter base voltage of $Q 7$ and Q 8 with changes in collector-emitter voltage ( $\mathrm{h}_{\mathrm{RE}}$ ).

Although these parameters can vary considerably with different manufacturing methods, they are relatively fixed for a given process. The $\Delta V_{B E}$ errors introduced by these quantities, if known, can be added directly into Equation (A. 18) to give a more accurate gain expression.

The most stringent matching requirement in the receiver is the matching of the input stage divider resistors: R1 with R8 and R2 with R3. As little as $1 \%$ mismatch in one of these pairs can cause a threshold shift of 150 mV at the extremes of the $\pm 15 \mathrm{~V}$ common mode range. Because of this, it is necessary to make the resistors absolutely identical and locate them close together. In addition, since R1 and R8 do dissipate a reasonable amount of power, they have to be located to minimize the thermal gradient between them. To do this, R9 was located between R1 and R8 so that it would heat both of these resistors equally. There are not serious heating problems with R2 and R3; however, because of their low resistance value, it was necessary even to match the lengths of the aluminum interconnects, as the resistance of the aluminum is high enough to cause intolerable mismatches. Of secondary importance is the matching of Q1 and Q2 and the matching of ratios between R11 and R12. A 1 mV difference in the emitterbase voltages of Q 1 and Q 2 causes a 30 mV input offset voltage as does a $1 \%$ mismatch in the ratio of R11 to R12.

The circuit is indeed insensitive to transistor current gains as long as they are above 10 . The collector currents of Q4 and Q6 are made equal so that their base currents load the collectors of Q1 and Q2 equally. Hence, the input threshold voltage is affected only by how well the current gains match. Low current gain in the output transistor, O8, can cause a reduction in gain. But even with a current gain of 10 , the error produced in the input threshold voltage is less than 50 mV .

# Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Circuits 

## INTRODUCTION

Circuitry for driving high voltage cold cathode gas discharge 7 -segment displays, such as Sperry Information Displays* and 8urroughs Panaplex II, is greatly simplified by a complete line of monolithic integrated circuits from National Semiconductor. These products also make possible reduced cost of system implementation. They are: DS8880 high voltage cathode decoder/driver; DS8884A high voltage cathode decoder/driver; DS8885 MOS to high voltage cathode buffer; DS8889 low power cathode driver; DS8887 8-digit anode driver; DS8980, DS8981 latch/decoder/cathode drivers.

In addition to satisfying all the displays' parameter requirements, including high output breakdown voltage, these circuits have capability of programming segment current, and providing constant current sinking for the display segments. This feature alleviates the problem of achieving uniformity of brightness with unregulated display anode voltage. The National circuits can drive the displays directly.

Sperry Information Displays* and 8urroughs Panaplex II are used principally in calculators and digital instruments. These 7 -segnent, multi-digit displays form characters by passing controlled currents through the appropriate anode/segment combinations. The cathode in any digit will glow when a voltage greater than the ionization voltage is applied between it (the cathode) and the anode for that digit. In the multiplexed mode of operation, a digit position is selected by driving the anode for that digit with a positive voltage pulse At the same time, the selected cathode segments are driven with a negative current pulse. This causes the potential between the anode and the selected cathodes to exceed the ionization level, causing a visible glow discharge

Generally, these displays exhibit the following characteristics: low "on" current per segmentfrom $200 \mu \mathrm{~A}$ (in DC mode) to 1.2 mA (in multiplex mode); high tube anode supply voltage-180V to 200 V ; and moderate ionization voltage-170V. Once the element fires, operating voltage drops to approximately 150 V and light output becomes a direct function of current, which is controlled by current limiting or current regulating cathode circuits. Current regulation therefore is most desirable since brightness will then be constant for large anode voltage changes. Tube anode to cathode "off" voltage is approximately 100 V ; and maximum "off" cathode leakage is $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$.

Correspondingly, specifications for the cathode driver must be complimentary, approximately as follows: A high "off" output breakdown voltage 80 V minimum; typical "on" output voltage of 50 V ; maximum '"on" output current of 1.5 mA per segment; and maximum "off" leakage current of $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$.

To allow operation without anode voltage regulation, the cathode driver must be able to sink a constant current in each output, with the output


FIGURE 1.
"on" voltage ranging from 5 V to 50 V isee Figure $1)$. The following is a brief description of the circuits now offered by National:

## DS8880 High Voltage Cathode Decoder/Driver

The DS8880 offers 7 -segment outputs with high output breakdown voltage of 80 V minimum; constant current-sink outputs; and programmable output current from 0.2 mA to 1.5 mA .

## Application

The circuit has a built-in BCD decoder and can interface directly to Sperry and Panaplex il displays, minimizing external components (Figure 2). The inputs can be driven by TTL or MOS outputs directly. It is optimized for use in systems with 5 V supplies.


FIGURE 2. DC Operation From TTL

The DS8880 decoder/driver provides for unconditional as well as leading and trailing zero blanking. It utilizes negative input voltage clamp diodes. Typically, output current varies only $1 \%$ for output voltage changes of 3 V to 50 V . Operating power supply voltage is 5 V . The device can be used for multiplexed or DC operation.

Available in 16 -pin cavity DIP packages, the DS7880 is guaranteed over the full military operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DS8880 in molded DIP over the industrial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## DS8980, DS8981

The DS8980, DS8981 offer 7-segment and decimal point outputs with high output breakdown voltage of 80 V minimum, constant current, programmable from 0.1 mA to 4.0 mA and independent of the $V_{C C}$ voltage, latched $8 C D$ inputs and decimal point input.

## Application

The circuits have similar applications as DS8880. The devices will operate with a power supply
range of from 4.75 V to 15.0 V . The input fallthrough latches are enabled by a high logic level at the enable input for the DS8980, and by a low logic level for the DS8981.

Available in 18 -pin molded dual-in-line packages, and guaranteed over the commercial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

DS8884A High Voltage Cathode Decoder/Driver
The DS8884A offers 9 -segment outputs with high output breakdown voltage of 80 V minimum, constant current-sink outputs, programmable from 0.2 mA to 1.2 mA . it also offers input negative and positive voltage clamp diodes for DC restoring. and tow input load current of -0.25 mA maximum

## Application

DS8884A decodes four lines of BCD input and drives 7 -segment digits of gas-filled displays. There are two separate inputs and two additional outputs for direct control of decimal point and comma cathodes. The inputs can be DC coupled to TTL (Figure 3) or MOS outputs (Figure 4), or AC. coupled to TTL or MOS outputs (Figure 5) using only a capacitor. This means the device is useful in applications where level shifting is required. It can be used in multiplexed operation, and is available in an 18 -pin molded DIP package.

Other advantages of the DS8884A are: typical output current variation of $1 \%$ for output voltage changes of 3 V to 50 V ; and operating power supply

figure 3. Interfacing Directly With TTL Output


FIGURE 4. BCD Data Interfacing Directly With MOS Output


NOTE Capacitive coupling between the logic and the sagment diver
the segment divels aie tuined "OFF" duing digit to digit tianstions
FIGURE 5. Cathode BCD Data AC Coupled From MOS Output
voltage of 5 V . Inputs have pull-up resistors to increase noise immunity in AC coupled applications.

The DS8884A is guaranteed over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range.

## DS8885 MOS to High Voltage Cathode Buffer

The DS8885 features seven constant current-sink outputs; programmable output current of 0.2 mA to 1.5 mA ; high output breakdown voltage of 80 V minimum; and capability for blanking through program current input. It operates from a +5 V supply.

## Application

DS8885 is best suited for interfacing 7 -segment fully decoded MOS chips to digit displays. It is also useful for driving polarity, overrange, and decimal point segments.

DS8885 has 6 inputs and 7 outputs. Output c is decoded internally; the other 6 outputs are directly controlled by the 6 corresponding inputs. A typical application of this device is interfacing between an MOS calculator chip with 7 -segment decoded outputs (open-drain or push-pull) and Sperry/ Panaplex II displays (Figure 6).

When the DS8885 is used to drive minus and plus (polarity) cathodes, overrange, and decimal points, output c should be tied to $\mathrm{V}_{\mathrm{Cc}}$ so it does not saturate (Figure 7). This leaves 6 inputs and 6 outputs related one-to-one. The inputs can be driven directly from TTL or MOS outputs.

*Output may be paratieled for cathodes ieqiut ing moie culiest, ploviding the coiresponding inputs aie also paralleled

FIGURE 7. Polarity, Overrange, Decimal Point Driving

The DS8885 is available in 16 -pin molded DIP package, and is guaranteed over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## DS8889 Low Power Cathode Driver

The DS8889 requires no power supply since power is derived from program current. It offers extremely low standby power-only 1 mW internally. Features include programmable output currents 0.3 mA to 1.7 mA ; 8 constant current-sink outputs; and input negative voltage clamp diodes for DC restoring. Outputs have 80 V mınımum breakdown voltage.

The device is sultable for multiplexed operation from fully decoded chips and is capable of driving decimal point segments simultaneously with numeric segments.

## Application

The DS8889 has 8 inputs and 8 outputs, and interfaces directly between 7 -segment decoded MOS outputs and numeric display tubes (Figures 8 and 9). It is optımized for use in systems with a limited number of power supplies.


FIGURE 6. Fully Decoded MOS Cathode Outputs

The program input is characterized in terms of input current, therefore any supply (greater than $5 \mathrm{~V})$ can provide proper operation by connecting a single resistor to the program pin from the supply.

The DS8889, guaranteed for the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range, is offered in the 18 pin molded DIP.

DS8887 8-Digit Anode Driver
The DS8887 interfaces directly to MOS chips and operates from a -40 V to -80 V power supply.

The DS8887 can operate virtually any multiplex display system requiring more output performance from the MOS chip than is avalable (Figures 4, 6, 8 and 9 ). It has low input current and voltage swing requirements but can drive up to 16 mA , and exhbits -55 V minimum output breakdown voltage.

The DS8887 is available in the 18 -pin moldec DIP package; and is guaranteed over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.


FIGURE 8. Decoded Cathode Data AC Coupled From MOS Output


FIGURE 9. Decoded Cathode Data Direct Coupled From MOS Output

## Transmission Line Characteristics

National Semiconductor
Bill Fowler
May 1974


## INTRODUCTION

Digital systems generally require the transmission of digital signals to and from other elements of the system. The component wavelengths of the digital signals will usually be shorter than the electrical length of the cable used to connect the subsystems together and, therefore, the cables should be treated as a transmissions line. In addition, the digital signal is usually exposed to hostile electrical noise source which will require more noise immunity then required in the incividual subsystems environment.

The requirements for transmission line techniques and noise immunity are recognized by the designers of subsystems and systems, but the solution used vary considerably. Two widely used example methods of the solution are shown in figure 1. The two methods

balainced methdo


Figure 1.
illustrated use unbalanced and balanced circuit techniques. This applicatior note will delineate the characteristics of digital signals in transmission lines and characteristics of the line that effect the quality, and will compare the unbalanced and balanced circuits performance in digital systems.

## NOISE

The cables used to transmit digital signals external to a subsystem and in route between the subsystem, are exposed to external electromagnetic noise caused by
switching transients from actuating devices of neighboring control systems. Also external to a specific subsystem, another subsystem may have a ground problem which will induce noise on the system, as indicated in Figure 2.


Inguced ndise aldong cable route
GROUND PRDBLEMS IN ASSOCIATED EOUIPMENT
FIGURE 2. External Noise Sources
The signals in adjacent wires inside a cable may induce electromagnetic noise on other wires in the cable. The induced electromagnetic noise is worse when a line terminated at one end of the cable is near to a driver at the same end, as shown in Figure 3. Some noise may be


FIGURE 3. Internal Noise Sources
induced from relay circuits which have very large transient voltage swings compared to the digital signals in the same cable. Another source of induced noise is current in the common ground wire or wires in the cable.

## DISTORTION

The objective is the transmission and recovery of digital intelligence between subsystems, and to this end, the characteristics of the data recovered must resemble the data transmitted. In Figure 4 there is a difference in the pulse width of the data and timing signal transmitted, and the corresponding signal received. In addition there is a further difference in the signal when the data is "AND"ed with the timing signal. The distortion of the signal occurred in the transmission line and in the line driver and receiver.


FIGURE 4. Effect of Distortion

A primary cause of distortion is the effect the transmission line has on the rise time of the transmitted data. Figure 5 shows what happens to a voltage step from the driver as it travels down the line. The rise time of the signal increases as the signal travels down the line. This effect will tend to affect the timing of the recovered signal.


FIGURE 5. Signal Response at Receiver


FIGURE 6. Signal Rise Time

The rise time in a transmission line is not an exponential function but a complementary error function. The high frequency components of the step input are attenuated and delayed more than the low frequency components. This attenuation is inversely proportional to the frequency. Notice in Figure 6 particularly that the signal takes much longer to reach its final dc value. This effect is more significant for fast risetimes.

The Duty Cycle of the transmitted signal also causes distortion. The effect is related to the signal rise time as shown in Figure 7. The signal doesn't reach one logic level before the signal changes to another level. If the signal has a $1 / 2(50 \%)$ Duty Cycle and the threshold of the receiver is halfway between the logic levels, the distortion is small. But if the Duty Cycle is $1 / 8$ as shown in the second case the signal is considerably distorted. In some cases, the signal may not reach the receiver threshold at all.


FIGURE 7. Signal Distortion Due to Duty Cycle
In the previous example, it was assumed that the threshold of the receiver was halfway between the ONE and ZERO logic levels. If the receiver threshold isn't halfway the receiver will contribute to the distortion of the recovered signal. As shown in Figure 8, the pulse time is lengthened or shortened, depending on the polarity of the signal at the receiver. This is due to the offset of the receiver threshold.


FIGURE 8. Slicing Level Distortion

## UNBALANCED METHOD

Another source of distortion is caused by the IR losses in the wire. Figure 9 shows the IR losses that occur in a thousand feet of no. 22 AWG wire. Notice in this
example that the losses reduce the signal below the threshold of the receiver in the unbalanced method. Also that part of the IR drop in the ground wire is common to other circuits-this ground signal will appear as a source of noise to the other unbalanced line receivers in the system.


Figulre 9. Unbalanced Method
Transmission lines don't necessarily have to be perfectly terminated at both ends, (as will be shown later) but the termination used in the unbalariced method will cause additional distortion. Figure 10 shows the signal on the transmission line at the driver and at the receiver. In this case the receiver was terminated in $120 \Omega$, but the characteristic impedance of the line is much less. Notice that the wave forms have significant steps due to the incorrect termination of the line The signal is subject to misinterpretation by the line receiver during the period of this signal transient because of the distortion caused by Duty Cycle and attenuation. In addition, the noise margin of the signal is reduced.


FIGURE 10, LM75451, DM7400 Line Voltage Waveforms
The signal waveforms on the transmission line can be estimated before hand by a reflection diagram. Figure 11 shows the reflection diagram of the rise time wave forms. The voltage versus current plot on left is used to predict the transient rise time of the signal shown on the right. The initial condition on the transmission line is an IR drop across the line termination. The first transient on the line traverses from this initial point to zero current. The path it follows corresponds to the characteristic impedance of the line. The second transient on the diagram is at the line termination. As shown, the signal reflects back and forth until it reaches its final dc value.

Figure 12 shows the reflection diagram of the fall time. Again the signal reflects back and forth between the line
termination until it reaches its final dc value. In both the rise and fall time diagrams, there are transient voltage and current signals that subtract from the particular signal and add to the system noise.


FIGURE 11. Line Reflection Diagram of Rise Time


FIGURE 12. Line Reflection Diagram of Fall Time

## BALANCED METHOD

In the balanced method shown in Figure 13, the transient voltages and currents on the line are equal and

the grduno lodp current is much less than signal current
FIGURE 13. Cross Talk of Signals
opposite and cancel each others noise. Also unlike the unbalanced method, they generate very little ground noise. As a result, the balanced circuit doesn't contribute to the noise pollution of its environment.

The circuit used for a line receiver in the balanced method is a differential amplifier. Figure 14 shows a noise transient induced equally on lire $A$ and line $B$ from line $C$. Because the signals on line $A$ and $B$ are equal, the signals are ignored by the differeritial line receiver.

Likewise for the same reason, the differential signals on line $A$ and $B$ from the driver will not induce transients on line $\mathbf{C}$. Thus, the balanced method doesn't generate noise and also isn't susceptible to nose. On the other hand the unbalanced method is more sensitive to noise and also generates more noise.


FIGURE 14. Cross Talk of Signals
The characteristic impedance of the unbalanced transmission line is less than the impedance of the balanced transmission line. In the unbalanced method there is more capacitance and less inductance than in the balanced method. In the balance method the Reactance to adjacent wires is almost cancelled (see Figure 15). As a result a transmission line may have a $60 \Omega$ unbalanced impedance and a $90 \Omega$ balanced impedance. This means that the unbalanced method, which is more susceptible to IR drop, must use a smaller value termination, which will further increase the IR drop in the line.


FIGURE 15. $Z_{O}$ Unbalanced $<Z_{O}$ Balanced
The impedance measurement of an unbalance and balance line must be made differently. The balanced impedance must be measured with a balanced signal. If there is any unbalance in the signal on the balanced line, there will be
an unbalance reflection at the terminator. Therefore, the lines should also be terminated for unbalanced signals. Figure 16 shows the perfect termination configuration of a balanced transmission line. This termination method is primarily required for accurate impedance measure. ments.


FIGURE 16. Impedance Measurement

## MEASURED PERFORMANCE

The unbalanced method circuit used in this application note up to this point is the unbalanced circuit shown in Figure 1. The termination of its transmission line was greater than the characteristic impedance of the unbalanced line and the circuit had considerable threshold offset. The measured performance of the unbalanced circuit wasn't comparable to the balanced method. Therefore, for the following comparison of unbalanced and balanced circuits, an improved termination shown in Figure 17 will be used. This circuit terminates the line in $60 \Omega$ and minimized the receiver threshold offset.


FIGURE 17. Improved Unbalanced Method
A plot of the Absolute Maximum Data Rate versus cable type is shown in Figure 18. The graph shows the different performances of the DM7820A line receiver and


FIGURE 18. Data Rate vs Cable Type
Transmission Line Characteristics

FIGURE 19. Data Rate vs Duty Cycle


FIGURE 20. Data Rate vs Line Termination


FIGURE 21. Data Rate vs Distorion of LM75452, DM7400
the DM7830 line driver circuits with a worse case $1 / 8$ Duty Cycle in no. 22 AWG stranded wire cables. In a single twisted pair cable there is less reactance than in a cable having nine twisted pairs and in turn this cable has less reactance than shielded pairs. The line length is reduced in proportion to the increased line attenuation which is proportional to the line reactance. The plot shows that the reactance and attenuation has a significant effect on the cable length. Absolute Maximum Data Rate is defined as the Data Rate at which the output of the line receiver is starting to be degraded. The roll off of the performance above 20 mega baud is due to the circuit switching response limitation.

Figure 19 shows the reduction in Data Rate caused by Duty Cycle. It can be observed that the Absolute Maximum Duty Rate of $1 / 8$ Duty Cycle is less than $1 / 2$ Duty Cycle. The following performance curves will use $1 / 8$ Duty Cycle since it is the worst case.

Absolute Maximum Duty Rate versus the Line Termination Resistance for two different lengths of cable is shown in Figure 20. It can be seen from the figure that the termination doesn't have to be perfect in the case of balanced circuits. It is better to have a termination resistor to minimize the extra transient signal reflecting between the ends of the line. The reason the Data Rate increases with increased Termination Resistance is that there is less IR drop in the cable.

The graphs in Figure 21 shows the Data Rate versus the Line Length for various percentage of timing distortion using the unbalanced LM75452 and DM7400 circuits shown in Figure 17. The definition of Timing Distortion


FIGURE 22. Data Rate vs Distorion of DM7820A, DM7830
is the percentage difference in the pulse width of the data sent versus the data received.

Data Rate versus the Line Length for various percentage of timing distorition using the balanced DM7820A and DM7830 circuit is shown in Figure 22. The distortion of this method is improved over the unbalanced method, as was previously theorized.

The Absolute Maximum Data Rate versus Line Lengths shown in the previous two figures didn't include any induced signal noise. Figure 23 shows the test configuration of the unbalanced circuits which was used to


FIGURE 23. Signal Cross Talk Experiment Using DM75452, DM7400
measure near end cross talk noise. In this configuration there are eight line drivers and one receiver at one end of the cable. The performance of the receiver measured in the presence of the driver noise is shown in Figure 24.

Figure 24 shows the Absolute Maximum Duty Rate of the unbalanced method versus lire length and versus the number of line drivers corresponding to the test configuration delineated in Figure 23. In the noise measurement set-up there was a ground return for each signal wire. If there is only one ground return in the cable the performance is worse. The graph shows that the effective line length is drastically reduced as additional Near End Drivers are added. When this performance is compounded by timing distortion the performance is further reduced.


FIGURE 24. Data Rate vs Signal Cross Talk of LM75452, DM7400

Figure 25 shows the test configuration of the balanced circuit used to generate worst case Near End cross talk


FIGURE 25. Signal Cross Talk Experiment Using DM7830, DM7820A
noise similar to the unbalance performance shown in the previous figure. Unlike the unbalanced case, there was no measurable degradation of the circuits Data Rate or distortion.

## CONCLUSION

National has a full line of both Balanced and Unbalanced Line Drivers and Receivers. Both circuit types work well when used within their limitations. This application note shows that the balanced method is preferable for long lines in noisy electrical evironments. On the other hand the unbalanced circuit works perfectly well with shorter lines and reduced data rates. It should be kept in mind that when you are spending $\$ 500,000$ for a CPU and $\$ 75,000$ for peripherals, it pays to investigate the best way to transmit data between them.

## DEFINITION OF BAUD RATE



The data in this note was plotted versus Baud Rate. The minimum unit interval reflected the worse case conditions and also normalized the diagrams so that the diagrams were independent of duty cycle. If the duty cycle is $50 \%$ then the Baud Rate is twice the Bit Rate.

## REFERENCES

IC's for Digital Data Transmission, Widlar and Kubinec, National Semiconductor Application Note AN-22.

Data Bus and Differential Line Drivers and Receivers, Richard Percival, National Semiconductor Application Note AN-83.

RADC TR73-309, Experimental Analysis of the Transmission of Digital Signals over Twisted Pair Cable, Hendrickson and Evanowski, Digital Communication Section Communications and Navigation Division, Rome Air Development Center, Griffis Air Force Base, New York.

Fast Pulse Techniques, Thad Dreher, E-H Research Laboratories, Inc., The Electronic Engineer, Aug. 1969.

Transient Analysis of Coaxial Cables, Considering Skin Effects, Wigingtom and Nahmaj, Proceedings of the IRE, Feb. 1957.

Reflection and Crosstalk in Logic, Circuit Interconnections, John DeFalco, Honeywell, Inc., IEEE Spectrum, July 1970.

# Simplify CRT Terminal Design with the DP8350 

## INTRODUCTION

This application note is a description of a 'low cost" CRT data terminal card design, based upon National's CRT Controller (DP8350) and 8-bit $N$-channel microprocessor (SC/MP). The terminal has a minimum parts count and implements all TTY functions. Even with this minimum number of parts, the terminal provides some "smart" features by efficiently utilizing the available hardware. Screen scroll, RS-232C interface and adjustable baud-rate (up to 1200 -baud) are featured on the card Higher baud-rates are available on a word-by-word basis if the RS-232-handshake signal is used. The design also demonstrates use of 2 new microprocessor-interface parts: the Asynchronous Communications Element (ACE), for serial $1 / \mathrm{O}$; and the RAM Input/Output (RAM I/O), for keyboard scanning and scratch pad memory. A 2-kilobyte video RAM is implemented with four $1024 \times 4$-bit, static RAM chips (MM2114), and dot generation uses the DN18678 $5 \times 7$ Character Generator.

The card is self-contained except for the CRT monitor and power supply. It holds a keyboard and monitorinterface circuitry. Moritors requiring separate video and sync signals (Ball Brothers), and those requiring composite video (Motorola) are accommodated

## System Architecture

Since system cost is typicallv somewhat proportional to parts count, arriving at a minimum parts count solution has been a goal throughout this design effort.

A full-blown CRT terminal is showr in Figure 1 and its low cost counterpart in Figure 2. Adcress decoding details are omitted in both cases.

Removing overhead circuitry shown in Figure 1, and making use of the TRI-STATE ${ }^{\circledR}$ concept greatly facilitated the parts reduction effort.

Obviously, extreme tirne conflicts for communicating on the system busses are created because all essential parts require access. Let us investigate this problem a little further.

Because the CRT Controller does the CRT display refresh function, it must have access to a memory containing current data for display. This memory may be a shift register (octal, 80 -bit line buffer in Figure 1) which is loaded at the first video line in a character row and then recirculated for the number of video lines in that character row. Using such a line buffer allows the microprocessor access to the system busses for more than $90 \%$ of the video time (screen time). On the other hand, by removing the buffer, the refresh circuit needs direct memory access (DMA) during video display time.

However, with the bidirectional data buffer and the TRI-STATE address buffer in the system, the situation is not yet too serious. (We are only preventing the SC/MP microprocessor from updatirig video RAM data or using the scratch pad during character display time.) Instruction fetch (ROM) and keyboard scanning are
still not affected. However, with the saving of the data buffer and the address buffer, a well-organized "time share" of the busses is required. How does this limited bus access affect the time-critical features such as scroll and high baud rate?

## Scroll

Several scrolling methods may be implemented with the CRT Controller. The most straightforward is a rewrite of memory. This requires long processing time and bus access and is not feasible with the minimum hardware indicated in Figure 2. Sensing when the CRT is scanning character-row 24 and then loading a new "row start" requires additional overhead circuitry. An alternative approach is to load a new "top of page" address for each scroll and have the video RAM "wrapped-around" when it is accessed by the CRT!

In the latter approach, the processor only has to clear a row in video RAM and load a register in the CRT Controller to perform a total-screen scroll. The only problem remaining is handling the location of the scratch pad in the video RAM address space. By using the RAM I/O chip for a keyboard scanning and scratch pad RAM, the problem is solved. An additional feature for the software programmer is that the keyboard and RAM are addressable within the reach of one 8 -bit index register.

## Maximizing Communication Baud Rate

Assuming that the processor has bus access only during the vertical blanking period and the ACE interrupt service subroutine is executed in iess than this time, only one received data word could be processed per frame! The processor's task is to transfer the word from ACE to scratch pad memory, check for terminal or system control functions, write into the proper locations in video RAM and check the keyboard for "Break" (BRK). A quick calculation reveals 60 bits/second as the maximum baud rate! To improve communication speed, the processor must have bus access during the video frame scan time. Three of the 10 scan lines making up a character row are blanked except during cursor time. Using these three lines (minimum decoding required) for processor bus access during video time allows us to communicate at 1200 baud.

Note that the baud rate is limited by the frame rate in the first approach; in the second approach, the limitation is the real time required to execute the service routine. The calculation is performed as follows. Estimated execution time for service routine with $100 \%$ availability of the bus is 2 ms . However, bus access is only granted during 3 video lines in each character row which is worth $192 \mu \mathrm{~s}$. In terms of video time, we need 10 character rows to finish the routine and be ready for the next interrupt. Display time for 10 character rows is 6.4 ms , which in turn is the time interval for one 10 -bit word. This translates into a 1600 -baud maximum capability if scroll is not included in the service routine.


FIGURE 1. System Block Schematic Using Line Buffer, Address and Data Buffer


FIGURE 2. System Block Schematic for the Low Cost Terminal

## Address Decoding

Holding parts to a minimum leads to a one ROM address decoding scheme. However, this does not coincide with minimum cost. Instead, 2 low-power Schottky MSI devices replace the ROM in the final design.

## Memory Address Space Utilization

A very simple decoding scheme is facilitated by partitioning the processor memory space into 500-byte
pages. The detailed memory map is shown in Figure 3. In addition, address bits 12 and 13 (multiplexed on the data bus), are used to map four 4 -kilobyte pages, with the first page dedicated to processor peripherals and the following 3 pages dedicated to register loading of the CRT Controller. The 3 CRT Controller registers to be loaded are "top of page", "row start" and "cursor".

A11A10 A9
000
$\begin{array}{lll}0 & 0 & 1\end{array}$

010
$\begin{array}{lll}0 & 1 & 1\end{array}$ 10 -


FIGURE 3. Memory Map

## DISCUSSION OF SPECIFICATIONS

A device used to communicate with a computer is called interactive if it has the following properties:
a. Data may be entered on a keyboard and sent to the computer, which in turn echoes it back to the display.
b. Data may be received from the computer and displayed; keyboard is scanned for "Break" (BRK) entry by the operator of the system.

The concept of an interactive terminal is illustrated by the block diagram shown in Figure 4. To understand this, follow the data from the keyboard to the display and list the specifications for each block. An overall terminal specification is depicted in Table I.


FIGURE 4. Block Diagram of an Interactive Terminal
TABLE I. TERMINAL SPECIFICATIONS

Keyboard
Style
Characters/code set
Cursor controls
Keyboard encoder
Communication
Mode
Technique
Communications protocol
Code
Bitsicharacter
Speed, bits/second
Operator selectable speeds
Format
Terminal interface
Display
Display positions, characters/display
Display arrangement (line $x$ characters)
Total display symbols
Symbol formation
Reverse video
Scrolling
Cursor type
Cursor position

Typewriter
64/ASC II
6
Software

Full duplex, half duplex option
Asynchronous
ASC II
ASC II
10/11
110 to 1200 (19,200 word-by-word)
4
Character
RS-232, 20 mA current loop

1920
$24 \times 80$
64
$5 \times 7$ dot matrix
Cursor and whole screen
Yes
Block, reverse video
Down, left, right, home and return, back space.

The keyboard is a copy of a standard teletypewriter with two-key rollover. The 54 keys can be broken into alphanumeric, purictuation, symbols, cursor control, and system control keys. The processor scans the keys at all times and translates any key closure into a unique code (ASC II), which is sent to the input/output channel for serial transmission to the computer. It should be noted that the RAM I/O chip has the capability of scanning 64 keys ( $8 \times 8$ ).

## Communications

The input/output channel is based upon the Asynchronous Communication Element (ACE). This integrated circuit performs parallel-to-serial conversion of the data received from the keyboard, and serial-to-parallel conversion of data sent from the computer for display on the screen. When the system is initiated (power-up), the on-chip programmable baud generator is loaded with the desired baud rate (switch selectable). Start, stop, and parity bits are appended or deleted in this block of the system, depending on the direction of data flow. All control signals for the standard RS-232C interface are likewise generated here. Standard electrical specifications for RS-232C and 20 mA current loop are met by adding dedicated interface parts.

## Display

After the data is received from the computer, it is stored in the video RAM. The CRT Controller chip refreshes the display at 60 Hz by sequentially addressing the video RAM; 1920 addresses are generated to fetch data for 24 lines of 80 characters. The standard 64 -character ASC II set is displayed using a $5 \times 7$ dot-matrix block for each character. Data is entered from left to right and from top to bottom, until the screen is full. After that, upward scrolling with top-line overflow and newly cleared bottom line takes place automatically with line feed.

## Software

A detailed flow chart of the software is shown in Figure 5. It is set up to service 3 major functions: a) initialize the system; b) scan the keyboard and c) service the ACE upon interrupt request.
a. Initialization

The video RAM is cleared and the cursor is loaded at the upper left corner of the screen. ACE is set up with the desired baud rate and the interrupt enable flag is armed.
b. Keyboard Scan

The keyboard is first checked for "Any Key Down" status. If positive, the keyboard is scanned and the binary code (ASC II) is computed by the program and read to ACE.
c. ACE Interrupt Service Routine

When its receiver buffer is full, the ACE puts out an interrupt request. The SC/MP immediately suspends keyboard scanning and reads the buffer register. The main portion of this routine is checking incoming data for control functions and updating the video RAM and the CRT Controller registers. It should be noted that the need for executing this routine is the limiting factor for high baud rate communications.

## Hardware

The detailed hardware implementation is shown in Figure 6. The CRT Controller grants the SC/MP microprocessor bus access during blanked scanlines and vertical blanking interval by logically OR-ing line counter outputs with the vertical blanking pulse and using this signal as a bus-available signal. The CRT Controller is held off the bus by disabling the TRI-STATE address output. This is done by applying logical " 0 " to the RAM address enable pin of the CRT Controller, the $\mathrm{SC} / \mathrm{MP}$ then takes the bus as needed.

Sense-A of SC/MP is used as an interrupt request input whenever received data is available in the receiver buffer register of the ACE. The interrupt service routine is executed during vertical blanking and "inactive" video time as indicated above.

The keyboard is sensed for "Any Key Down" (under program control) by reading Port-B of the RAM 1/O chip. Upon a positive result, the keys are scanned by a special sequence for key identification and encoding.

## Mechanical

A PC board layout and its assembly is shown in Figure 7. Note that the keyboard is mounted directly on the card.

## Acknowledgment

The development of the terminal involved significant contribution by a large number of people. The author would particularly like to express his appreciation to Len Bryson for software development and Dana Knight for invaluable suggestions and ideas during the hardware design phase.




FIGURE 6. Low Cost CRT Terminal


FIGURE 6. Low Cost CRT Terminal (Continued)



> A Low Component Count Video Data Terminal Using the DP8350 CRT Controller and the INS8080 CPU

## introduction

The DP8350 is an $1^{2} \mathrm{~L}$. - LS technology integrated circuit, designed to provide all control signals for a cathode ray tube (CRT) display system. This application note explains a system using the DP8350 and the INS8080 microprocessor. The design philosophy shows how the DP8350 interfaces to the INS8080, completing the function of a video data terminal with a minimum component count. After reading and understanding this application note the reader will realize the ease and flexibility of designing video terminals with the DP8350*.
To thoroughly understand this application note the reader must be familiar with the DP8350 and the INS8080 microprocessor.

The video data terminal described is divided into the following sections, (Figure 1).

The DP8350 CRT controller (CRTC).
The $8080 \mu \mathrm{P}$ system which includes ROM, RAM, interrupt instruction port, oscillator, and control support chips.

The character generator.
The communication element.
The keyboard and baud rate select ports.

## THE CRTC

The DP8350 generates all the required control and timing signals for displaying video information on the video monitor. Here is a summary of the controller's functions:

Dot clock, control, and counter outputs for the character generator.

Bidirectional RAM address refresh counter for refreshing the video RAM and allowing microprocessor loading to the internal DP8350 registers.

Direct drive horizontal and vertical sync signal outputs.

Direct cursor address location output. The cursor is internally delayed or pipelined, allowing for the access time of video RAM and the character generator ROM, (Figure 1).

## THE CPU

The microprocessor provides CRTC, operator, and external machine control for the system. When the CRT controller is not actively refreshing the video RAM, (i.e., during vertical retrace or blank scan lines), the microprocessor is enabled for system housekeeping, (Figure 2). This method of multiplexing the RAM with *The DP8350 is equivalent to the INS8276

National Semiconductor Application Note 199
Al Brilliott
August 1978

the CPU and the CRTC eliminates the need for line buffers.

## THE CHARACTER GENERATOR

The character generator consists of 3 elements: an address latch to hold the input address to the character ROM allowing for the access time of the ROM; the character ROM that stores the ASCII character in a form for parallel to serial conversion by the shift register; the shift register converts the character ROMs parallel output to serial form. The serial output from the shift register is the true video output, modulating the video monitors electron beam which writes characters on the screen. All of the 3 elements of the character generator are combined in the DM8678, (Figure 3). The DP8350 CRTC provides all the control signals for the DM8678.

## THE COMMUNICATION ELEMENT

The INS8250 is the asynchronous communication element (ACE) for the data terminal. The ACE allows the CPU portion of the data terminal communication with peripherals or host computers at the correct baud rate, (Figure 1). The ACE is programmed by the CPU to send and receive serial data at the standard baud rates from 110 to 4800 baud. The ACE, in conjunction with the DS1488 and DS1489 line drivers and receivers, also provides full RS232C synchronous communication if higher baud rates are desired. System communication speed must always be considered to insure the baud rate does not exceed the time required for the CPU to process a data byte. Asynchronous communication at baud rates higher than 4800 are possible by adding a line buffer.

## SYSTEM INITIALIZATION

Application of the terminal's power supply resets the microprocessor, the communication element, and the CRT controller. Resetting the ACE is necessary to clear the interrupt. Resetting the CRTC is not absolutely necessary since the microprocessor loads the cursor and top of page registers in the intialization routine.

Following the reset all interrupts are disabled to avoid unwanted interrupts from the CRTC, ACE , or I/O ports. Refer to the initialization routine in the flowchart.

The stack pointer is loaded to the bottom of scratch pad RAM (3FFFH) for use as the register save pointer, (Figure 4).

The entire RAM is written with ASCII spaces generating a cleared screen. After completion of the screen clear loop the CPU writes 000 H to the cursor and the top of page registers in the DP8350 CRTC. The routine homes the cursor to the upper left corner of the screen. The top of page register was loaded with 000 H , therefore, the video RAM is refreshed by the CRTC from that starting address to the last address on the screen of video RAM ( 1920 characters).

## 




FIGURE 2. Row Start Interrupting and Multiplexing the INS8080 with the DP8350


FIGURE 3. DM8678 Character Generator Block Diagram

The CPU is ready to perform the communication element (ACE) load routine. First, the baud rate divisor for the ACE must be determined The baud rate select switch is read providing a code which corresponds to the appropriate 16 -bit divisor for the ACE. This divisor determines the baud rate at which the ACE will communicate. Any additional programming requirements needed for the ACE to communicate with host computer systems could also be done at this time. The software in this system does not contain any additional programming for the ACE. There are many programming modes related to the ACE. Details of these modes are beyond the scope of this application note.

The row start look-up table, (Figure 5), is loaded up by a simple algorithm that loads and adds the data for referencing a row number to that row's starting address. The reference table, (Figure 6), is initialized next by direct loading. This table provides the CPU with top of page, bottom of page, next row load, cursor row, and scratch row numbers for system housekeeping.

Finally, the new row start and vertical interrupt latches are cleared, (Figure 7). The register pointers are loaded and the CPU is forced in a wait loop with interrupts enabled.

## NON-SEQUENTIAL ADDRESSING

The data terminal described here was designed for non-sequential starting row addressing. In many systems sequential row addressing is used. If a character row consists of 10 scan lines the RANI is addressed 10 repetitive times from 000 H through 04 FH , (Figure 2). The next row is refreshed in the same manner from 050 H to 09 FH . The starting row address is sequential $000 \mathrm{H}, 050 \mathrm{H}, 0 \mathrm{~A} 0 \mathrm{H}-\mathrm{E} 80 \mathrm{H}$ for row numbers $0 \mathrm{H}, 1 \mathrm{H}$, $2 \mathrm{H},-2 \mathrm{FH}$, respectively. Non-sequeritial row addressing would be equivalent to $050 \mathrm{H}, 000 \mathrm{H}, 0 \mathrm{AOH}-\mathrm{E} 80 \mathrm{H}$ for row numbers $1 \mathrm{H}, 0 \mathrm{H},-2 \mathrm{FH}$, respectively, (Figure 4).

In conjunction with the CPU, non-sequential row addressing is quite easily accomplished with the DP8350 since this is one of the features designed into the part. Accomplishing this task basically requires the following sequence of events. Assume the CRTC has finished writing a video row in the middle of the monitor's screen. This system has a $5 \times 7$ character font in a $7 \times 10$ field, (Figure 2). At the completion of the last video scan line 7 the CRTC line counters continue to count the last 3 lines. Video is not present since the character is only 7 scan lines high. The blank: scan lines are 7, 8, and 9 permitting the CRTC address outputs to be TRI-STATED ${ }^{(\sqrt{3})}$, allowing the CPU to run. When the line counter outputs increment to scan line 8 an interrupt signals the CPU. The interrupt occurring is the new row start interrupt. The interrupt routine fetches the next CRTC row number from the reference table (Figure 6). This number is converted to the new starting row address, explained later, and loaded to the CRTC row start register. The CPU finishes the routine by clearing the interrupt, readying itself for the next new row start interrupt. The entire routine takes 1 scan line of time, approximately $64 \mathrm{~m} \mu \mathrm{~s}$. The CRTC continues to scan the video RAM from that new starting address on for the next 3 repetitive scan lines of the next row. Many advantages become apparent using the nonsequential addressing scheme. Scrolling up or down with the cursor always on the screen may be done
faster and easier from a hardware/software standpoint. Exchanging one row with another row is fast since it is not necessary to rewrite the video RAM. Row swapping is useful for higher end terminals requiring row editing functions.
ADDRESS MAP


FIGURE 4. RAM Organization
Using the DP8350 CRT Controller and the INS8080 CPU

ROW NUMBER		NRS HIGH		NRS LOW	
		ADDRESS	$\begin{aligned} & \text { ROW } \\ & \text { DATA } \end{aligned}$	ADDRESS	$\begin{aligned} & \text { ROW } \\ & \text { DATA } \end{aligned}$
DEC	HEX				
0	00	3 F 00	31	3 F 30	
1	01	3 F 01		3 F 3	50
2	02	3 FO 2		3 F 32	A 0
3	03	$3 \mathrm{~F} O 3$	310	3 F 3 l	F 0
4	04	3 F 04	31	3 F 34	40
5	05	3 F 05	31	3 F 35	90
6	06	3 F 06	31	3 F 36	E 0
7	07	3 F 07		3 F 37	30
8	08	3 F 08	32	3 F 38	B 0
9	09	3 F 09		3 F 3 l	D 0
10	0 A	3 F 0 A		3 F 3 A	20
11	0 B	3 F 0 B		3 F 3 B	70
12	0 C	3 F 0 C		3 F 3 C	C 0
13	0 D	3 F 0 D	34	3 F 3 D	10
14	0 E	3 FF 0 E	34	3 F 3 E	60
15	0 F	3 F 0 F	34	3 F 3 F	$B \quad 0$
16	10	3 F 10		3 F 40	00
17	11	$3 \mathrm{~F}: 11$	35	3 F 4.1	50
18	12	3 F 12	35	3 F 42	A 0
19	13	3 F 13	35	3 F 43	F 0
20	14	3 F 14		3 F 44	40
21	15	3 F 15	36	$3 F 45$	90
22	16	3 F 16	36	$3 F 46$	E 0
23	17	3 F 17		3 F 47	30

Page 2

ROW NUMBER		NRS HIGH		NRS LOW	
		ADDRESS	$\begin{aligned} & \text { ROW } \\ & \text { DATA } \end{aligned}$	ADDRESS	$\begin{aligned} & \text { ROW } \\ & \text { DATA } \end{aligned}$
DEC	HEX				
24	1 B	3 F 1 B	37	3 F 48	80
25	19	3 F 19		3 F 49	D 0
26	1 A	3 F 1 A	38	3 F 4 A	20
27		3 F 1 B	38	3 F 4 B	70
2B	1 C	3 F 1 C	3 B	3 F 4 C	C 0
29		3 F 1 D		3 F 4 D	10
30	1 E	3 F 1 E	39	3 F 4 E	60
31	1 F	3 F 1 F		3 F 4 F	B 0
32	20	3 F 20		3 F 500	00
33	21	3 F 21		3 F 551	50
34	22	3 F 22		3 F 52	A 0
35	23	3 F 23	3 A	3 F 53	F 0
36	24	3 F 24	3 B	3 F 54	40
37	25	3 F 25	3 B	3 F 55	90
38	26	3 F 26	3 B	3 F 56	E 0
39	27	3 F 27		3 F 57	30
40	2 B	3 F 28	3 C	3 F 58	80
41	29	3 F 29		3 F 59	D 0
42	2 A	3 F 2 A		3 F 5 A	20
43	2 B	3 F 2 B		3 F 5 B	70
44	2 C	3 F 2 C		3 F 5 C	C 0
45	2 D	3 F 2 D		3 F 5 D	10
46	2 E	3 F 2 E	3 E	3 F 5 E	60
47	2 F	3 F 2 F	3 E	3 F 5 F	B 0

FIGURE 5. New Row Start Look Up Table

FUNCTION	ADDRESS	DATA	INITIALIZED   DATA
Last Row \#	3F60	$X Y$	17
80BO Row $\#$	$3 F 61$	$X Y$	00
First Row $\#$	$3 F 62$	$X Y$	00
Character $\#$	$3 F 63$	$X Y$	00
CRTC Row $\#$	$3 F 64$	$X Y$	00
Row Save $\#$	$3 F 65$	$X Y$	00
Temp. 1	3F66	$X Y$	00
Temp. 2	3F67	$X Y$	00


COMMAND		FUNCTION
OUT	40	Clear new row start and vertical
interrupt latches		
IN	80	Read keyboard
IN	40	Read baud rate select switch

FIGURE 7. Input/Output Space

FIGURE 6. Fieference Table

DEVICE	ADDRESS*
ROM	0000 to OFFF
RAM	3000 to 3FFF
CRTC	5000 to 5FFF
ACE	9000 to 9007

*Direct device selecting was used to minimize trie system component count
 for Row 20H
$3 \times \times \times$ Selects RAM.
$5 \times \times \times$ Selects CRTC.

FIGURE 8. CPU Addressing Space
FIGURE 9. Example From the New Row Start Look Up Table

Obtaining the next starting row address for the CRT controller is accomplished by an addressing and adding scheme from the new row start look up table. The same scheme is used to determine any needed address, given the row number.

Figure 9 shows a row number and address taken from the new row start look up table.

The row number is loaded from the reference table in RAM to a register. The CPU determines the starting address from the row number and stores it in a 16 -bit pointer register. The higher order 4 bits contain address for the RAM or the CRT controller, (Figure 8).

Here are the details of how this is accomplished. Refer to the new row start interrupt in the software listing and Figure 9.

The CPU D.E registers are loaded to point to a row number in the reference table. The number is put in the accumulator and moved into the E register. The D-E register in this example now contains 3F20 which points to NRS HIGH ROW DATA (3A). The addressed data is moved to the accumulator and then to the H register. If it was desired to point to the CRTC then 20 H would have been added to it first. The D-E register still contains $3 F 20 H$. To obtain the NRS LOW ROW DATA the E register is moved to the accumulator and 30 H is added to it. Now the D-E register contains 3 F 50 H and points to NRS LOW ROW DATA $(00 \mathrm{H})$. The data is loaded to the accumulator and then to the L register. The $\mathrm{H} \cdot \mathrm{L}$ registers contain 3 A 00 H which is the starting row address for row number 20 H . The method just described is used throughout the terminals program to move the cursor, load the top of page, and load the new starting row address in the CRTC.

## VERTICAL INTERRUPT

The vertical interrupt occurs when the CRTC has completed refreshing a video page (1920 characters) of information. Vertical blanking identifies that condition and interrupts the CPU forcing it to the vertical interrupt routine. Refer to the vertical interrupt in the flow chart. The routine moves the first row number to the CRTC row number, updating it so the next new row start load occurs with the top of the page address or the first row of the video screen.

## KEYBOARD INTERRUPT

The external keyboard requirements are ASCII outputs with a suitable strobe to interrupt the CPU for keyboard servicing. Refer to the keyboard interrupt in the flow chart. After the keyboard buffer is read the data byte is tested for a (CNTL E), new baud rate command. If the test fails the CPU writes the data byte to the ACE. Passing the test forces the CPU to read the baud switch and load the ACE with the new baud rate.

## ACE INTERRUPT

As mentioned above, a data byte read from the keyboard that is not a baud rate command enter's the accumulator. The CPU writes the data byte from the accumulator to
the transmitter holding register in the ACE. The ACE proceeds to shift out the data byte, with the appropriate start and stop bits, serially from the (SOUT) output. The data is shifted to the serial input (SIN) of the ACE and loaded into the receiver holding register. When the register is full the ACE interrupts the CPU, initializating the $A C E$ service routine. Refer to the $A C E$ interrupt in the flow chart.

The CPU reads the receiver holding register in the ACE. Reading the ACE resets the interrupt. The data byte now resides in the accumulator. The CPU tests for a control or an escape function. The function is executed if test conditions are met. Refer to the keyboard interrupt routine in the software listing. The data byte is written to the video RAM at the cursor address which appears on the monitor screen. The cursor and character numbers are incremented as long as it is not at the end of a row. A character at the end of a row requires further testing to recognize the following situations. Is it the last row on the monitor's screen? Or is it on the maximum row of the video RAM? Essentially, the cursor is forced to stay visible on the video monitor's screen and video RAM is always kept out of scratch pad RAM, (Figure 10).


The video screen is allowed to scroli only through the video RAM $(000 \mathrm{H}$ to EFFH). The CPU keeps the video screen within these bounds by loading the new row start register with that address range only (row 00 H to 2 FH ).

FIGURE 10. Drum Analogy for the RAM

## FULL/HALF DUPLEX OPERATION

The data terminal and a host computer in the full duplex mode of operation would receive the serial information, process it, and send it back to the SIN input of ACE. Using the terminal in a stand alone mode for testing, the serial out SOUT is tied to the serial in SIN of the ACE. In the half duplex mode a data byte is sent to the host computer at the same time it is sent to the terminal. When the data terminal is set up to communicate with a host computer the full duplex mode of operation is desirable.





VIDEO DATA TERMINAL SYSTEM SCHEMATIC

## FEATURES

- Keyboard input port
- Serial I/O up to 9600 baud 4 k bytes RAM 1 k byte ROM
- 2 video pages
- $80 \times 24$ characters
- $5 \times 7$ character font. $7 \times 10$ field size
- Block cursor
- Single crystal
- Maximum CPU tıme/frame without line buffers
- Line or page scroll capa bility
- Full cursor control
- Complete software fexibility
- Modem control capability
- Low component count
- Field reverse
- Clear screen, clear row, home and clear
- Row swap (row iriterchange)



\section*{VIDEO DATA TERMINAL SYSTEM SCHEMATIC (Continued)} | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 7 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
|  |
| -7 |

Note 1: See DP8350 data sheet for sync dezails
Note 2 SW open reverses video page.
(


Parts:
1 - DP8350
1 - DP8228
1 - DP8224
1 - INS8080A.
1 - INS8250
8 - MM5257
1 - MM27013
1 - DM81 LS95 or DM8ILS94 2 - DM74LS32 ( $\mathrm{VCC}^{14,7 \mathrm{GND} \text { ) }}$
1 - DM74LS74
(VCC 14,7 GND)
$1-D M 74 L S 08$ (VCC 14,7 GND) I-DM74LSO4
(VCC 14.7 GND) 1 - DM74Lラ73 ( $V_{C C} 14,11$ GND) 1 - DM74365 1 - DM74148 1 - DM7474 1 - DP8212 1 - DM74L586 1 - DM867BCAB 2 -Res, arrays. 3.3k
$1-21.84 \mathrm{MHz}$ Bypass capecitors on all parts



FOINT LI•E TGI FHAR＊

FlfaEilf TII THE EEGINNING GF

FOINT I－E TO シ，ED ROWM
 CTGRE RLIW SAVE IN FEF TAB
RETUFN － FIINT D－ETTHNR E DATA HI FOIW＊TONR S GATA HIEH FOIW TOH REL
FITT IET FOUW＊TOA ACL

 FETIJGN

DT．NEXT ROW EUERGUYINE OFF CTREEN I－LEAR KOW RCHITINE Fiow＊ $\mathrm{TO} \mathrm{H}-\mathrm{L}$ LIAL H－L
CHAK \＃
GDI THE CHAR＊TI THE IRES RUW ADDRESS
IF A CARFY OCGLIRED ADD THE DATA HIGH GII CUR：OK TIINE FED ROW

FOINT I－E TUI $1: 1$ ROIW TIIRE FIF－TRIOW TOI ROWEISO

MOUF REFERFNCE ROW TO H－L FIT ZHAN EACY Full ELEEUS HOME

FIIT IN H－L REI

 FITT IN AIE R CTORE EDEい FOW \＃TH N F lata hish

FIIT Eiミ0 RIOW＊TO
 OIMENT＝AME AE ABGVE

MIMF TU AILLI I．HAR

GINT THE II－E REI，TII HAK GNI FITT IN AIL TE－T FIJF THE VHAF N TO ZEFII NEMENT CHAK IF TOFE CDECREMENTED CHAR＊ DET H－L FGK NEW CUKEOR LOMA


FINI H－L TII EDEU ROW AND LI－ $\because$ NEw rlg Elik loratlün
EET IF NEXT IFF CURGDE WILL
E N THE RIRCH RGW
IF TAIF＂IMF TG：
GIINT H－L EAC．YO EnSO ROW

HNINT H－L YO NEW CURSOR LGCA ANE［－F TO EDEN FOW I JUMF

FIT FIFET ROW INTO ALC
TE：IF FIFET ROW IN ZERU IF TRUE JHMF TO ROW
4E RUUTINE

534	O31E	3E2F	RO 48	MVI	A． 027	－Change bogo row＊
535	0320	77		mov	M．A	－TD 23D And store
$53 t$	0321	C30103		JMP	LOOP 1	－Jump to pointer excmange rou
537						
538	¢524	3E2F	FF048	MUI	A． $\mathrm{w}_{\text {\％}}$	，
539	0326	77		mov	M．A	
540	0327	csofos		JMF	LOMF 2	
541						
542	Oこ2A	3E2F	LRO48	M M I	A． 123 F	，Put the 1st row to
543	O：24	77		MOV	M．A	，17H
544	4320	C！1きいこ		，IMF	Loof：	JUMP TO sosn ROW STORE
545 （						
546				－ElEAK	ROW RCUTINE	
54.						
548	n354	cosso3	LLROW	Call	CLFOW1	
540	1333	C 36E42		JMF	CR	
550						
551	0336	1EC 1	ELRCW1	MVI	E，ROWEOSC	
552	0338	CDEVO2		call	LDHL．	，fut row data in h－l feg
553	－338	3E50	［LROW2	MVI	A． 050	，INTILITE LGOP COLINTER
554	4330	$3 ¢ 20$	LOOF 4	MV1	M． 920	－STURE ASC11 SFACE in mem
555	033F	35		me：${ }^{\text {c }}$	A	－decfement ligof countef
556	0340	cs		82		，RETURN IF ZERO BIT is SET
557	0341	23		INX	H	－next location
559 （ 59 （						
56.1	034 ）	［c）	BELI	EET	81	－K1NG EELL
$5 \in 2$						
563	1.348	AF	IVEATN	XFA	A	
56.4	1.349	1Ebe		mvj	E，imas	POint u．e tú mask
565	034B	1 A		LEAX	5	
588	0345	17		RAL		－1ik cite eitatus
56.7	U34D	DA5203		－	KESET	
568	4550	3E84		mV1	A． 18.	INVERT EIT
569	0352	12	RESET	stax	$a$	store Luj wew masp
570	0353	co		RE＊		
571						
572	0354	ES	1 VERTE	Pu＇H	H	
573	，1355	1E6．		MV：	E ROW\％${ }^{\text {a }}$	
574	0957	CHE202		call	LUHL．	．Lutad ：it anc if eugnkna tat
575	035a	1ESG		MV：	E 050	－SET Ciunter
576	035 C	7E	LOCP6	mav	A．M	－GET EHAR
577	0350	17		Rat．		，it Bit estatis and invert
578	035 E	ha＞0u：		$\cdots$	RESEI 1	
57.	い3E1	1 F		RAF		
580	0362	F6E0		ik！	＂Fin	－MACt C：T 3 HILH
581	0364	77	BACI 2	mal	M，A	¢TORE MOL ¢HAF TÖ MEM
582	0365	23		1Ny	H	FOINT Til next mem
583	0366	78		MiN	A E	
584	0367	FErit		ifi	10.1	
585	U3E ${ }^{\text {a }}$	ATS：		12	TuINE	REE TAN IF TGMKT＝TERL
586	U3EC	1 L		［u－5．	E	CEC COHNTER
5ee						
$58 \%$	0370	： 8	RESET 1	Raf		
500	n371	E6TF		ANI	1）7F	－FESET［1T ${ }^{\text {a }}$
51	ロこフマ	［36．41\％		IMF	［AI］：	
59						
593	U57E	E1	aline	FGF	H	
594	0377	$\because$		GE：		
595		Duto		END	＝taft	

## DEFINITIONS

ACE－Asynchronous communication element
CRTC－Cathode ray tube controller
Video Page－Visible screen data
Video RAM－Entire portion of RAM used only for display
First Row \＃－Address for top row of video page Last Row \＃－Address for bottom row of video page CRTC Row \＃－Address for next row load
8080 Row \＃－Address for cursor row
Character \＃－Character location in a row
XXXH are hexidecimal numbers

## REFERENCES

National Semiconductor Data Sheets：
DP8350 Series Programmable CRT Controllers
INS8250 Asynchronous Communications Element
DM8678 Bipolar Character Generator
INS8080 Assembly and Reference Manuals
National Semiconductor Application Notes：
Simplify CRT Terminal Design with the DP8350， AN－198

DM8678 Bipolar Character Generator，AN－167
Data Bus and Differential Line Drivers and Receivers， AN． 83

Transmission Line Characteristics，AN－108
Hardware Reference Manual BLC 80／10 Board Level Computer．National Semiconductor Microcomputer Systems Chapter 6 －System Interfacing．

## Section 11

Appendices/
Physical Dimensions
11

National Understanding Rel Flows Semiconductor


## National Semiconductor

## Quality Conformance

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL.STD-883. These tests are conducted on a sample basis with Group A performed on each sublot, Group B on each lot, and Group $C$ as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must qualify the devices he plans to supply to the detal specifications. Qualification consists of notifying the qualifying activity of one's interit to qualify to MIL.M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of the Group $\mathrm{A}, \mathrm{B}$, and C requirements of Method 5005 of MIL.STD-883 for the specified classes and types of IC. The qualification tests shall be monttored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualifica. tion test data to the qualifying agency. Groups $A$, 8 , and $C$ inspections then shatl be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various quali. fication test sub-groups. Qualification testing is performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a $100 \%$ basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL.M38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MIL.M. 38510 specifications

National Semiconductor

A+ Program: a comprehensive program that utilizes National's experience gained from participation in the many Military/Aerospace programs.

A program that not only assures high quality but also increases the reliability of molded integrated circuits.

The At program is intended for users who cannot perform incoming inspection of IC's or does not wish to do so, yet needs significantly better than usual incoming quality and higher reliability levels for his standard integrated circuit.

Users who specify $A+$ processed parts will find that the program

- Eliminates incoming electrical inspection.
- Eliminates the need for, and thus the added cost, of independent testing laboratories
- Reduces the cost of reworking assembly boards
- Reduces field failures
- Reduces equipment down-time
- Reduces the need for excess inventories due to yield loss incurred as a result of processing performed at independent testing laboratories


## The A+ Program Saves You Money

It is a widely accepted fact that down-time of equipment is costly root only in lost hours of machine usage but also costly in the reapir and maintenance cycle. One of the adcled advantages of the A+ program is the burn-in screen, which is one of the most effective screening procedures in the semiconductor industry. Failure rates as a result of the burn-in can be decreased many times. The objective of burn-in is to stress the device much higher than would be stressed during normal usage.

## Reliability vs Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliabili:y and quality are different. and IC users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for products improvement
that are generally available, and National's A+ program in particular.

The concept of quality gives us information about the population and faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty IC's that escape detection at the IC vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty IC's that escape detection. Quality Control does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level ( AQL ) in turn determines the stringency of the sampling. As the AQL decreases it becomes more difficult for defective parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.

Thus. the difference between quality and reliability means the IC's of high quality may, in fact, be of low reliability, while those of low quality may be of high reliability.

## Improving the Reliability of Shipped Parts

The most important factor that affects a part's reliability is its construction: the materials used and the method by which they are assembled.

Reliability cannot be tested into a part. Still, there are tests and procedures that an IC vendor can implement which will subject the IC to stresses in excess of those that it will endure in actual use, and which will eliminate marginal, short-life parts.

In any test of reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time of failuie of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

## National's A+ Program

National has combined the successful $\mathrm{B}+$ program with the Military/Aerospace processing specifications and provides the A+ program as the best practical approach to maxinum quality and reliability on molded devices. The following flow chart shows how we do it step by step.


SEM - Randomly selected wafers are taken from production regularly and subjected to SEM analysis.

Epoxy B Seal -- At National, all molded semiconductors, including IC`s, have been built by this process fol some time nuw. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. 1 A reliability report is available that gives. in detail. the background of Epoxy B. the reason for its selection at National and reliability data that proves its success.)

Six Hour, $\mathbf{1 5 0}^{\circ} \mathrm{C}$ Bake - This stress places the die bond and all wire bonds into a combined tensile and shear stress mode and helps eliminate marginal bonds and electrical connections.

Five Temperature Cycles ( $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ ) Exercising the circuits over $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and generally eliminated any marginal bouds missed during the bake.

Electrical Testing - Every device will be tested at $25^{\circ} \mathrm{C}$ for functional and DC parameters.

Burn-In Test -- Devices are stressed at maximum operating conditions to eliminate marginal devices. Test is performed per MIL-STD-883A, method 1015.1.


High Temperature ( $100^{\circ} \mathrm{C}$ ) Functional Electrical Test - A high temperature test with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}$ $30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient.

DC Functional and Parametric Tests - These room-temperature functional and parametric tests are the normal. final tests through which all National products pass.

Tighter-Than-Normal QC Inspection Plans Most vendors sample inspect outgoing parts to a $0.65 \%$ AQL. Some even use a looser $1 \%$ AQL. When you specify the A+ program, however. not only do we sample your parts to a $0.28 \% \mathrm{AQL}$ for all data sheet DC parameters, but they receive $0.14 \% \mathrm{AQL}$ for functionality as well. Now functional failures - not parameter shifts beyond spec - cause most system failures. Thus, the five-times to seven-times tightening of the sampling procedure (from $0.65 \%$ to $0.14 \%$ AQL ) gives a substantially higher quality to your A+ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.

## Ship Parts

Here are the AC sampling plans used in our $\mathrm{A}+$ test program.

TEST	TEMPERATURE	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric. DC	$25^{\circ} \mathrm{C}$	$0.28 \%$
Major Mechanical	$25^{\circ} \mathrm{C}$	$0.25 \%$
Minor Mechanical	$25^{\circ} \mathrm{C}$	$1 \%$

[^21]
## 行 <br> National Semiconductor

B+ Program: a corr.prehensive program that assures ligh quality and high reliability of molded, integrated circuits.

The $\mathrm{B}+$ program improves both the quality and the reliability of National's linear integrated circuits in Epoxy B packages. It is intended for the manufacturing user who cannot perform incoming inspection of discrete components, or does not wish to do so, yet needs significantly-better-than usual incoming qua ity and reliability levels for his parts.

Integrated circuit users who specify B+ processed parts will find that the program

- Eliminates incorring electrical inspection
- Eliminates the nced for, and thus the cost of, independent test ng laboratories
- Reduces the cost of reworking assembled boards
- Reduces fielu fai ures
- Reduces equipment downtime


## Reliability Saves You Money

Witll the increased component density in modern electronic products has come an increased concern with component failures in such products.

And rightly so, for at least two major reasons.
First of all, the effect of component reliability on product reliability can be quite dramatic. For example, suppose that you, as a product manufacturar, were to choose an IC component that is 99 percent reliable. You would find that if your product used only 70 such components, the overall reliability of the product's IC component por:ion would be only 50 percent. In other words, only one product in two would operate. The result? Products very costly to build and probably very difficult to sell.

Secondly, you cannot afford to be hounded by the spectre of unnecessary maintenance costs. Not only because labor, repair and rework costs have risen - and promise to cont nue to rise - but also because field replacement may be prohibitively expensive.

If you ship a product that contains a marginallyperforming component, a component that later fails in the field, the cost of replacement may be literally -hundreds of times more than the cost of the failed component itself.

## Reliability vis-a-vis Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted
identical facets of a product's merit. But reliability and quality are different, and discrete component users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for product improvement that are generally available, and National's B+ program in particular.

The concept of quality gives us information about the population of faulty components among good components, and generally relates to the number of faulty components that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty components that escape detection at the component vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty components that escape detection. QC does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level (AQL) in turn determines the stringency of the sampling. As the AQL decreases it becones more difficult for bad parts to escape detection, thus the quality of the shipped parts increases.

The concept of relrability, on the other hand, refers to how well a part that is initially good will withstand its cnvisonment. Reliability is measured by the percentage of parts that fail in a given period of time.

Thus, the difference between quality and reliability means that disercte components of high quality may. in fact, be of low reliability, while those of low quality may be of high reltability.

## Improving the Reliability of Shipped Parts

The most important factor that affects a component's reliahility is is construction: the materials used and the method by which they are assembled.

Now. it's true that reliability cannot be tested into a part. Still, there are tests and procedures that a component vendor can implement, which will subject the component to stresses in excess of those that it will endure in actual use, and which will eliminate most marginal, short-life parts.

In any test for reliability the weaker parts will nomally fail first. Further, stress tests wall accelerate, or shorten, the time to failure of the weak parts. Because the stress tests cause weak parts to fail prion to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

## Quality Improvement

When a discrete component vendor specifies 100 percent final testing of his parts then, in theory, every slipped part should be a good part. However, in any population of massproduced items there does exist some small percentage of defective parts.

One of the best ways to reduce the number of such faulty parts is simply to retest the pats. prior to shipment. Thus, if there is a one-percent chance that a bad part will escape detection initially, retesting the parts reduces that probabilty to only 0.01 percent. (A comparable tightening of the QC group's sampled test plan ensures the maintenance of the improved quality level.)

## National's B+ Program Gets It All Together

We've stated that the B+ program improse both the quality and reliability of National's epoxy-packaged discrete transistors, and pomted out the difference between the two concepts. Now. how do we bring them together? The answer is in B+ progran processing, whish is a continuam of stress and double tesing. With the exception of the final QC inspection. which is sampled, all steps of the $\mathrm{B}+$ process are performed on 100 percent of the program parts. The following flow chart shows how we do 1t. step by step.


Epoxy B Processing for All Molded Parts At National, all molded semicenductors have been built by this process for some time now. All processing steps, inspections and QC monitoring are designed to provide highly relable products. (A retiability report is avalable that gres, in detail. the background of Fpoxy B. the reason for its selection at National and reliability data that proves its success.)

## Six Hour, $150^{\circ} \mathrm{C}$ Bake-

This stress places the die bond and all wre bonds into a combined ternsile and sheur stress mode, and helps elminate marginal honds and electrical connections.

Five Thermal Shock Cycles $\left(0^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)-$ Exercising the transistors over a $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and generally eliminates any marginal honds missed during the bake.

## High Temperature ( $100^{\circ} \mathrm{C}$ ) Functional

 Electrical Test-A high-temperature test such as this with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}$ : that's $30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices
ate thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient. (Even though Epoxy B processing us virtually elminated themal mtemitents. we perform this test to ensure i.ganst even the remote possbihity of such a problem. Remember, the emphasis in the $\mathrm{B}+$ program is on the elimination of those marginally perfoming devices that would otherwise lower tield relabilits of the parts.)

## DC Functional and Parametric Tests-

These roon-temperature functional and parametric tests are the normal, final tests throngh which all National products pass.

## Tighter Than-Normal QC Inspection

Plans-Most vendors sample inspect outgoing parts to a $0.65 \%$ AQL. Some use even a looser $1 \% \mathrm{AQL}$. When you specify the $B+$ program, however, not only do we sample your parts to a 0.28 AQL for all data-sheet dc paramerers, but they receive a $0.14 \%$ AQL for functionality as well. Now, functional failures- not parameter shifts beyond spec-cause most product failures. Thus the five-times to seven-times tightening of the sampling procedure (from 0.65-1" to 0.14\% AQL ) gives a substantally higher quality to your $B+$ parts you can relay on the integrity of your received transistors without incoming tests at your facility.

## Ship Parts

Here are the QC sampling plans used in our $B+$ test program.

TEST	TEMPERATURE	AQL
Electrical Functonality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, dc	$25^{\circ} \mathrm{C}$	$0.28 \%$
Parametric, de	$\left(100^{\circ} \mathrm{C}\right)$	$1 \%$
Parametric, ac	$25^{\circ} \mathrm{C}$	$1 \%$
Major Mechanical		$0.25 \%$
Minor Mechanical		$1 \%$

## Okay-Want More Information?

Simple. Just contact your local National Field Sales office. They'll be happy to help you.
As always.

The National Semiconductor 883/RETS Program was conceived with the intent of offering our customers a standardized, off-the-shelf, integrated circuit fully compliant to MIL-STD-883.

The following specification outlines the program qualification, quality conformance and processing requirements. Records and data substantiating the testing as specified herein are controlled and administered by the National Semiconductor Quality Assurance and Reliability groups and are available for review.

As a complement to this program, the National Quality system is designed to encompass the requirements of MIL-O-9858 and associated documents.
J. Edward Thompson, Director

Quality Assurance and Reliability
National Semiconductor Corporation

### 1.0 Scope

### 1.1 Purpose

This specification establishes the requirements for screening and processing of integrated circuits in accordance with MIL-STD-883, Class B or C.

### 1.2 Intent

This program is intended to provide the user with the ability to procure standardızed, off-the-shelf integrated circuits manufactured by National Semiconductor Corporation that are fully compliant to MIL-STD-883.

### 2.0 Applicable Documents

The following specifications and standards, of the issue in effect on the date of invitation for bids or request for proposal, form a part of this specification to the extent specified herein.

### 2.1 Specifications

## Military

MiL-M-55565 Microcircuits, Packaging of
MIL-M-38510 General Specification for Microcircuits
MIL-C-45662 Calibration System Requirements
MIL-Q-9858 Quality System Requirements

### 2.2 Standards

Military
MIL-STD-105 Sampling Procedures and Tables
MIL-STD-883 Test Methods and Procedures for Microelectronics

### 2.3 Detail Specifications

The detail specification for a particular device is the manufacturer's RETS (Rel Electrical Test Spec. see Figure 2).

### 3.0 General Requirements

The individual requirements shall be as specified herein and in accordance with the applicable detail specification. The static and clynamic e'ectrical performance requirements of the integrated circuits and electrical test methods shall be as specified in the detail specification.

### 3.1 Process Conditioning, Testing, Reliability and Quality Assurance Screening

Two levels of reliability and quality assurance for integrated circuits are provided for in this specification. Process conditioning, screening and testing shall be as specified in Section 4.0.

MIL-STD-883 Q.A.   Process Level	Applicable Process   Flow Chart	Suffix Level   Indicator
B	Figure 1a	18838
C	Figure 1b	1883 C

### 3.1.1 Qualification

The devices furnished under this specification shall be products which have been produced and tested and have passed the qualification tests specified herein. Successful qualification for a given level results in qualification approval for that level and all lower product assurance levels of that device (reference appendix E MiL-M38510C).

### 3.1.2 Alternate Qualification

In lieu of meeting the requirements of 3.1.1, the manufacturer may establish qualification by performing an initial, one time qualification test. Qualification testing shall be performed on each generic family supplied. Upon successful completion of the qualification program, the manufacturer shall remain qualified for a period not to exceed 12 months.

### 3.2 Quality Conformance Inspection

Devices furnished under this specification shall be products which have been produced and tested in conformance with all the provisions of this specification for the applicable level. Devices which have been accepted as conforming to a given product assurance level may be furnished as conforming to any other level for which they meet or exceed the quality conformance requirements.

### 3.3 Marking

### 3.3.1 Marking on Each Device

The following marking shall be placed on each inte grated circuit:
a) Index point (see 3.3.4)
b) Part number (see 3.3.5)
c) Product assurance level (see 3.3.6)
d) Inspection lot identification code (see 3.3.8)
e) Manufacturer's Identification (see 3.3.9)

### 3.3.2 Marking on Initial Container

All of the marking specified in 3.3.1, except the index point, shall appear on the initial protection or wrapping for delivery.

### 3.3.3 Marking Permanence

Marking shall be permanent in nature and remain legible after testing. Damage to marking caused by mechanical fixturing in Group B and C tests shall not be cause for lot rejection.

## Class B

Class C


FIGURE 1. MIL-STD-883 Screening


### 3.3.4 Index Point

The index point indicating the starting point for numbering of leads and/or mechanical orientation of the integrated circuit may be a tab, color dot, or other suitable indicator.

### 3.3.5 Part Number

The part number shall be the manufacturer's generic part number.

### 3.3.6 Product Assurance Level

Integrated circuits shall be marked with a code indicating the product assurance level to which they have been tested and found to conform. The code shall consist of /883 followed by the letter B or C corresponding to the applicable product issurance level designation.

### 3.3.7 Formation of Lots

Microcircuits shall be assembled into inspection lots as required to meet the product assurance inspection and test requirements of this specification. An inspection sublot shall consist: of microcircuits of a single type contained on a single detail specification, manufactured on the same production line(s) through final seal by the same product techniques, and to the same device design rules and package with the same material requirements, and within the same period not exceeding 6 weeks.

### 3.3.8 Inspection Lot Identification Code

Integrated circuits shali be marked by a 4-digit date code indicating the date the lot was submitted for inspection. The first 2 numbers in the code shall be the last 2 digits of the number of the year. The third and fourth numbers shall be 2 digits indicating the calendar week of the year. When the number of the week is a single digit, it shall be preceded by a zero. Reading from left to right, the code number shall designate year, year, week, week.

### 3.3.9 Manufacturer's Identification

Integrated circuits shall be marked with the name, logo, or trademark of the manufacturer.

### 4.0 Conditions and Methocls of Test

Conditions and methods of test shall be in accordance with Method 5004 of MIL-STD-883 and as specified herein on a $100 \%$ basis. The general requirements of MIL-STD-883 apply as applicable. This section establishes the stress screening tests and quality conformance inspection tests for this program. The purpose of these tests is to assure the quality and reliability of the product to a particular process level commensurate with the product's intended application

### 4.1 Internal Visual Inspection (Precap)

Internal visual inspection shall be performed per MIL-STD-883, Method 2010, Condition B. Hybrid internal visual shall be performed per Method 2017.

### 4.2 Stabilization Bake

Stabilization bake shall be performed per MIL-STD-883, Method 1008, Condition C. The devices shall be stored for 24 hours minimum at $150^{\circ} \mathrm{C}$ minimum. No end point measurements shall be performed.

### 4.3 Temperature Cycling

Temperature cycling shall be performed per MIL-STD883, Method 1010 , Condition C, 10 cycles, from $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

### 4.4 Constant Acceleration

Constant acceleration shall be performed per MIL-STD883, Method 2001. Condition E, at $30,000 \mathrm{G}$ 's, in Y1 plane only.

### 4.5 Hermeticity

Hermeticity tests shall be performed per the following to determine the seal integrity of the package.

## Fine Leak Testing

Fine leak testing shall be performed per MIL-STD-883, Method 1014, Condition B. The criterion for rejection will be in accordance with MIL-STD-883.

Gross Leak Testing
Gross leak testing shall be performed per MIL-STD-883, Method 1014, Condition C. The rejection criterion will be per MIL-STD-883.

### 4.6 Interim Electrical Parameters

Interim electrical parameters shall be the $25^{\circ} \mathrm{C}$ DC parameters, specified in the detail specification (RETS). (Interim electrical parameters are performed at the manufacturer's option.)

### 4.7 Burn-In

Burn-in shall be performed per MIL-STD-833, Method 1015; Conditions A, B, C or D on all Class B devices. (Burn-in condition varies with product type.)

The ambient temperature shall be $125^{\circ} \mathrm{C}$.

### 4.8 Final Electrical Parameters

Final electrical parameters shall be as specified in the applicable detall specification (RETS). DC testing shall be performed at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$. AC testing shall be performed at $25^{\circ} \mathrm{C}$. The PDA (Percent Defective Allowable) shall be $10 \%$ maximum and shall only apply to DC measurements at $25^{\circ} \mathrm{C}$.

### 4.9 External Visual Inspection

All National Semiconductor products regardless of class shall receive external visual inspection per MIL.STD-883, Method 2009.

### 5.0 Quality Assurance Provisions

### 5.1 Quality Conformance Inspection

Quality conformance inspection shall be in accordance with Tables I, II, III and IV. Inspection lot sampling shall be in accordance with Method 5005 of MIL-STD 883. Inspection lots failing to meet quality conformance inspection for a given product assurance level shall be rejected.

### 5.1.1 Group A Inspection

Group A inspection shall consist of the electrical parameters in the RETS (Rel Electrical Test Spec). If an inspection lot is made up of a collection of sublots, each sublot shall be subjected to Group A, as specified, Isee Table I).

### 5.1.2 Group B Inspection

Group B inspection consists of construction testing. This sample test sequence includes physical dımensions,
resistance to solvents, internal visual and mechanical, bond strength and solderability (see Table II). The Group B qualifies the inspection sublot the sample is pulled from. It aso qualifies all generically similar devices if the date code is within 6 weeks of the sample date code.

### 5.1.3 Group C Inspection

Group C inspection consists of die stress testing. This sample test sequence includes operating life, temperature cycling, constant acceleration, hermeticity, visual examination and end point electricals (see Table III). A Group $C$ qualifies the lot the sample is pulled from and all generically similar die types for a period of 90 days.

### 5.1.4 Group D Inspection

Group D testing further stresses the package and the die. The Group D tests include physical dimensions, lead integrity, hermeticity, thermal shock, temperature cycling, moisture resistance, mechanical shock, vibration variable frequency, constant acceleration, salt atmosphere, visual examination, and end point electricals (see Table IV). A Group D qualifies the lot the sample is pulled from and all devices built in the same package for a period of 6 months.

## TABLE I. GROUP A ELECTRICAL TEST

SUBGROUPS	CLASS B   LTPD	CLASS C   LTPD
Subgroup 1   Static tests at $25^{\circ} \mathrm{C}$	5	5
Subgroup 2   Static tests at maximum rated   operating temperature	7	10
Subgroup 3   Static tests at minimum rated   operating temperature	7	10
Subgroup 4   Dynamic tests at 25		
Subgroup 5   Dynamic tests at maximum rated   operating temperature	7	10
Subgroup 6   Dynamic tests at minimum rated   operating temperature	7	5
Subgroup 7   Functional tests at 25		
Subgroup 8   Functional tests at maximum and   minimum rated operating   temperature	10	5
Subgroup 9   Switching tests at 25	C	10

TABLE II. GROUP B INSPECTION

TEST	METHOD	CONDITIONS	NSC   CLASS B AND C
Subgroup 1   Physical dirnension	2016		2 devices   (No failures)
Subgroup 2   a) Resistance to solvents	2015	2014	Failure criteria from design   \& construction requirements   of applicable procurement   document   Test condition C or D
b) Visual and mechanical	3 devices   (No failures)   (No failures)		
c) Bond strength	2011	2003	Soldering temperature of   $260 \pm 10^{\circ} \mathrm{C}$
Subgroup 3 Bonds   Solderability		15 leads   (3 units min   No failures)	

TABLE III. GROUP C INSPECTION

TEST	METHOD	CONDITIONS	NSC   CLASS B AND C   LTPD
Subgroup 1   Operating Lifes Test	1005	Test conditions to be specified   1000 hours	5
Subgroup 2   Temperature cycling   Constant acce eration	2001	Test condition C   Test condition E, Y1 axis   followed by X or Z   As applicable	Fine
Gross   Visual examingtion   End point electrical   parameters	1014	As specified in applicable   device specification	

TABLE IV. GROUP D INSPECTION

TEST	METHOD	CONDITIONS	$\begin{gathered} \text { NSC } \\ \text { CLASS B AND C } \\ \text { LTPD } \\ \hline \end{gathered}$
Subgroup 1   Physical dimenstons	2016		15
Subgroup 2   Lead integrity   Seal   Fine   Gross	$\begin{aligned} & 2004 \\ & 1014 \end{aligned}$	Test conditions B2 (lead fatigue)   As applicable	15
Subgroup 3   Thermal shock   Temperature cycling   Moisture resistance   Seal   Fine   Gross   Visual examination   End point electrical parameters	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \\ & 1010 \end{aligned}$	Test condition B-15 cycles   Test condition C-100 cycles   As applicable   As specified in the applicable device specification	15
Subgroup 4   Mechanical shock   Vibratıon varıable freq.   Constant acceleration   Seal   Fine   Gross   Visual examination   End point electrical   parameters	$\begin{aligned} & 2002 \\ & 2007 \\ & 2007 \\ & 1014 \\ & 2007 \end{aligned}$	Test condition B   Test condition A   Test condition E   As applicable   As specified in the applicable device specification	15
Subgroup 5   Salt atmosphere   Visual examination	$\begin{aligned} & 1009 \\ & 1009 \end{aligned}$	Test condition A Paragraph 3.3.1 of Method 1009	15

883 PROCESS FLOW

TEST	MIL-STD-883 METHOD	TTL, LS, LOW POWER CMOS, LINEAR. MOS/LSI, MEMORY	HYBRID
Internal visuat	2010, Cond. B	100\%	100\% (Method 2017)
Bake	1008, Cond. C	100\%	100\%
Temperature cycling	1010, Cond. C	100\%	100\%
Constant acceleration	2001, Cond. E	100\%	100\%
Fine leak	1014, Cond. B	100\%	100\%
Gross leak	1014, Cond. C	100\%	100\%
Burn-in	1015, Cond. A, B, C or D	100\%	100\%
Electrical test	Per the applicable	100\% RETS	
Group A	detail specification	LTPD Sample (RETS)	
External visual	2009	100\%	100\%

### 6.0 DATA

### 6.1 Certificate of Conformance

All $883 /$ RETS material shipped shall be accompanied by a Certificate of Conformance as shown on the opposite page.

### 6.2 Attributes Datá

Attributes data for $100 \%$ screening will not normally be provided, but shall be retained on file. Copies are available at nominal cost.

### 6.3 Quality Conformance Data

Quality conformance data will not normally be provided, but shall be retained on file. Copies are available at nominal cost.

## 勿 <br> National Semiconductor Corporation

## 883/RETS" PROGRAM CERTIFICATE OF <br> CONFORMANCE

TEST
INTERNAL VISUAL
STABILIZATION BAKE
TEMPERATURE CYCLING
CONSTANT ACCELERATION
FINE LEAK
GROSS LEAK
BURN-IN
FINAL ELECTRICAL PDA

QA ACCEPTANCE
EXTERNAL VISUAL

MIL-STD-883 METHOD**
2010B 100\%
1008 C 24 HRS @ $+150^{\circ} \mathrm{C} \quad 100 \%$
$1010 \mathrm{C} 10 \mathrm{CYCLES}-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C} \quad 100 \%$
2001 E 100\%
1014 B $5 \times 10^{-8} \quad 100 \%$
1014 C2 100\%
1015160 HRS @ $+125^{\circ} \mathrm{C}$ 100\%
$+25^{\circ} \mathrm{C}$ DC PER NSC RETS $100 \%$
10\% MAX ALLOWABLE
$+125^{\circ} \mathrm{C}$ DC PER NSC RETS $100 \%$
$-55^{\circ} \mathrm{C}$ DC PER NSC RETS $\quad 100 \%$
$+25^{\circ} \mathrm{C}$ AC PER NSC RETS 100\%
LTPD SAMPLE
2009

REQUIREMENT

100\%
*RETS = REL ELECTRICAL TEST SPECIFICATION
** All METHODS TO CURRENT REVISION LEVELS

THIS IS TO CERTIFY THAT ALL 883/RETS MATERIALS SUPPLIED TO YOUR PURCHASE ORDER COMPLY WITH ALL THE REQUIREMENTS, SPECIFICATIONS, AND DOCUMENTS PERTINENT TO THE NATIONAL 883/RETS PROGRAM. ALL TEST DATA AND CERTIFICATION IS ON FILE AT OUR FACILITY.

## Part Number

$\qquad$
P.O. Number $\qquad$
Date Code(s) $\qquad$
Lot Code(s) $\qquad$

## 7 National Semiconductor

## Thermal Ratings for IC's

## MAXIMUM POWER DISSIPATION

To insure reliable long term operation of its interface Integrated Circuits, National Semiconductor has specified maximum junction temperature ( $\mathrm{T}_{\mathrm{j}}$ ) limits. These limits are at $150^{\circ} \mathrm{C}$ for circuits packaged in a molded dual-in-tine package (Epoxy B), and $175^{\circ} \mathrm{C}$ for allother package types.

Maxımum power dissipation ( PD ) of an integrated circuit is limited by maximum allowable junction temperature of the silicone die, and thermal resistance $(\theta \mathrm{J}-\mathrm{X})$ of the package. Figure 1 illustrates the relationship between power dissipation and junction temperature.

The line indicatıng "Wlaximum Power Rating of Package" is projected from the maximum junction temperature limit ( $150^{\circ} \mathrm{C}$ in this exampie) at a slope corresponding to the package thermal resistance ( $1 / 9 \mathrm{~J}-\mathrm{X}$ ). Below
this line is the safe operating area of the device. Additional constraints are Maximum Power Dissipation and Maximum Operating Temperature ( $T_{A}$ ). These parameters may be determined from device data sheets. For this example, $\mathrm{PD}(\mathrm{MAX})-300 \mathrm{~mW}$ and $\mathrm{TA}(\mathrm{MAX})=$ $70^{\circ} \mathrm{C}$.

Point " $A$ " in Figure 1 is an operating point corresponding to $T_{A}-50^{\circ} \mathrm{C}$ and $\mathrm{P}_{\mathrm{D}}-100 \mathrm{~mW}$. Determine device junction temperature by projectıng a line from point " $A$ ", parallel to the Maximum Power Rating curve, until it intersects the horizontal axis. $\mathbf{T}_{j}$ is determined from the point of intersection with the horizontal axis. For this example, $T_{j}$ is $45^{\circ} \mathrm{C}$.

## THERMAL INFORMATION

Figure 2 Illustrates thermal resistance characteristics for Interface Integrated Circuit packages.


FIGURE 1, Power Dissipation vs Temperature


FIGURE 2. Maximum $\theta_{J}-X$ Values for IC Packages

Industry Package Cross Reference Guide


National

## interface circuits

Common Mode Voltage: Arithmetic mean of voltages at the differential inputs referenced to ground pin at the receiver

Common Mode Sensitivity: Rate of change of input differential voltage required to produce a given output level, against common mode voltage.

Supply Sensitivity: Rate of change of input dif.
ferential voltage required to prodcue a given output level, against power supply voltage (V Pin 14 VPin 71.
Disabled Output Clamp Current: The current which flows from the output of a disabled TRI-STATE gate when it is dragged below ground (for instance by a transmission line associated transient). It is derived from the $V_{C C}$ power rail.

## sense amplifiers

AC Common-Mode Input Firing Voltage: The peak level of a common-mode pulse which will exceed the input dynamic range and cause the logic output to switch. Pulse characteristics: $t_{r}=t_{f}$ $\leq 15 \mathrm{~ns}, \mathrm{PW}=50 \mathrm{~ns}$

Common-Mode Input Overload Recovery Time: The time necessary for the device to recover from $\mathrm{a} \pm 2 \mathrm{~V}$ common-mode pulse ( $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ ) prior to the strobe enable signal.
Differential Input Offset Current: The absolute difference in the two input blas currents of one differential input.
Differential Input Overload Recovery Time: The time necessary for the device to recover from a 2 V differential pulse ( $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$ ) prior to the strobe enable signal.

Differential Input Threshold Voltage: The DC input voltage which forces the logic output to the logic threshold voltage $(\sim 1.5 \mathrm{~V})$ level.

Input Bias Current: The DC current which flows into each input pin with differential input of $O V$.

Supply Current: The total DC current per package drawn from the voltage supply.

Offset Voltage: Difference between the absolute values of threshold voltage in positive. and negativegoing directions.

Propagation Delay Time: Interval from switching input through 1.5 V to output traversing its $50 \%$ voltage point. Measured with $50 \Omega$ load to +10 V 15 pF total capacitance.

## Ordering Information

Ordering information for National devices covered in this catalog is as follows:


## DEVICE FAMILY

DM - Digital Monolithic
DP - Digital Product
DS - Digital Special

DEVICE NUMBER
3,4 or 5 digit number.
Suffix Indicators:
A - Improved Electrical Specification

## PACKAGE

D - Glass/Metal Dual-In-Line Package
F - Flat Package ( $0.25^{\prime \prime}$ wide)
G - TO-8 (12 lead) Metal Can
H - TO-5 (multi-lead) Metal Can
J - Glass/Glass Dual-In-Line Package
N - Molded Dual-In-Lime Package
W - Flat Package (0.275" wide)

National's interface products use a $16 / 36$ prefix. The 16 is used to denote the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and the 36 denotes the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ ), i.e. DS 1630 / DS3630. Display drivers and line drivers and receivers employ a $76 / 86$ or a $78 / 88$ prefix. The 76 or 78 applies to the military part, and the 86 or 88 to the commercial part, i.e. DS7830/DS8830. Some interface circuits and sense amplifiers employ a 55 as the first two digits for the military temperature range part, and a 75 for the commercial part, i.e. DS5520/DS7520. Digital products employ a 54 as the first two digits for the military temperature range part, and a 74 for the commercial part, i.e. DM5446/DM7446.

Physical Dimensions
All dimensions in inches (millimeters)


NS Package F10A
10-Lead Flat Package (F)


NS Package H08C
8-Lead TO. 5 Metal Can Package (H)


NS Package H10C
10-Lead TO-5 Metal Can Package (H)
(Low Profile)

NS Package H12C
12-Lead TO-8 Metal Can Package (G)

NS Package J18A
18-Lead Cavity DIP (J)



NS Package J24A
24-Lead Cavity DIP (J)


NS Package J28A



NS Package N18A
18-Lead Molded DIP (N)


NS Package N24A
24-Lead Molded DIP (N)


NS Package N28A
28-Lead Molded Mini-DIP (N)


NS Package N40A
40-Lead Molded Mini-DIP (N)


National Semiconductor Corperation 2900 Samiconductor Drive Sante Clora, calfomia 95051
T01. 1408) 757-6000
TWX (910) 389-9240
National Semiconductor CmbH
Elsenheimerstr, $61 / 2$
8000 Munchan 21
West Germany
Te1. (089) 578091
Tolax 522772
Ferdinandspiatz 11
bse0 sad Homburg
WGst Germeny
Ta. (06172) 23011
ralex 415887
Hohenhaimer Str. 11
7022 Leinfelden-Stuttgart
Weal Germany
Tel. (07 11) 751057
TCLEx 7255746
Dockenhudener Sir 29
z000 Hamburg 65
West Germany
Tel. (040) 858457
TClex 211039
NS Electronics Pty, Ltd.
Criv. Stud Rd. Ef MIn. Highway
Beyswater, Victons 3153
Australia
T... (03) 729-8333

Tlex 32096
National Semiconductor
789 Ave. Houbs de Strooper
1020 Eruxalles
Belgium
Tcl. (02) 4783400
Telex 61007
NS Electronics Do Brazil
Avde Bngedeiro Farie Lime EAd
11 Andar Conjunto 1 t04
Jarcim Paulistarto
Sato Paulo, Brasil
Talax t121008 Cabine Sno Pault

## National Semiconductor

olstrict Sales office.
345 Wilson Avenuc, Suito 404
Downstrew, Ontano M3H 5W1
cancde
Tcl. (418) $835-7280$
National Semiconductor Ltd.
vedroffivej 44
1900 Copenhagen Y
Denmark
Tel. (01) 356533
Talex 15179
National Semioonductor France
Expansion 10000
28, rue de la Redoute
92280 Fontenay -aux-Roses
France
Tal. 10116808140
Tslex 250950

National Semiconductor (Hang Kong) Ltd.
Bth Floar,
Cheung Kong Eicetronic Bldg.
4 Hing Yip Streat
Kwan Tong
Kowioan, Hong Konq
Te., 3-411241-8
TElex 73886
Cable NATSEMI
Natiomal Semiconductor SRL
Via Alberlo Mario 28
20149 Mitano
Italy
TES. (102) $4692864 / 4692431$
Telex 39835
NS International Incs Jepan
Myake Building
l-9 Yotsuya, Shinjuku-ku 1 te0
Takyo dspan
Tel. 103) 355.37t
Telen 232 -2015
Mational Semiconductor (Hong Kong) Ltd.
Korea Liaison Office
Rm, 697,615 S.oul Bldg.
6. 2 KA Huchyun-Dong Bldg.
C. P. O. 8ox 7941

Jung Ku, Seoul 100
Korba
Tel. 28-4748
Telex K 28589 wyp
Mexirana de Eleptronica
Industrel S.A.
Tleroquemerptl No. 139-40t
Exquina Adolfo Priato
Mexien 12, D.F.
Tि. 575-78-68, 575-79-24
National Semiconductor (Pty) Ltd.
No. 1100 Lower Detta Road
Singlepare 3
Tal. 2700011
Talex 21402
Mational Semicornductor AB
Algrytevagen 23
S- 12732 skernalmen
Sweden
Tal. (0B) 9703s5
Telex 10731
National Semiconductor (Taiwan) Ltd.
Rim. B. 3rd Fle, Ching Lin Bldg.
No. 8, Chint Ro E. Rosed
P. O. 80x $68-382$ or $39-1178$

Taipei
Tel. 3917324-6
Teles 22837
Ccble NETW TAIPE
National Semiconductor (UK) Ltd.
G01 Harpur Centres, Home dene
Bedford, MK 40 TTR
United Kingdam
Tet. $(0234) 47147$
Taiex 826209


[^0]:    Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5 V on output.
    Note 2: Only one output at a time should be shorted.

[^1]:    $L=$ Low Logic State
    Open = TRI-STATE
    $H=$ High Logic State $\quad X=$ Indeterminate State

[^2]:    $\mathrm{L}=$ Low logic state
    $H=$ High logic state
    $X=$ |rrelevant
    $Z=$ TRI-STATE (high impedance)

[^3]:    $H=$ high level
    L = low level

[^4]:    Resistor values shown are typical and in ohms

[^5]:    *Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ and for supply voltages below 4.75 V and above 5.25 V are applicable to DS55114 circuits only. These parameters were measured with the active pull-up connected to the sink output.

[^6]:     clamp the output voltage fly-back transient at 56 V caused by the solenoid's stored inductive current. This clamp protects the circuit output and quenches the fly-back.
     supply voltage is 7.5 V to 9.5 V . The circuit can be cascoded to be a 20 or 30 -bit shift register.
    Note 3: Latch-up voltage is the maximum voltage the output can sustain when switching an

[^7]:    *A blank implies an H

[^8]:    $X=$ don't care state

[^9]:    $X=$ Don't care
    Hi-Z $=$ TRI-STATE mode

[^10]:    Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
    Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1645 and DS1675 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3645 and DS3675. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
    Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
    Note 4: When measuring output drive current and switching response for the DS1675 and DS3675 a 15 orm resistor should be placed in series with each output. This resistor is internal to the DS1645/DS3645, and need not be added.

[^11]:    *This parameter is sampled and not $100 \%$ tested.

[^12]:    * It is good design practice to ground the case of the crystal

[^13]:    TIMES FOR NCLK, NCK, CLK, AND CK MEASURED AT $10 \%$ AND $90 \%$

[^14]:    X = Don't Care

[^15]:    When output control is high, the output is disabled to high impedance state; however, sequential

[^16]:    ${ }^{(\text {® }}$ Registered trademark of Digital Equipment Corp.

[^17]:    * Modulation rate $=$ reciprocal of minimum pulsewidth (i.e., 20 ms pulse $=50$ baud

[^18]:    ${ }^{\left({ }^{( }\right)}$Registered trademark of Digital Equipment Corp.

[^19]:    ${ }^{\text {© }}$ Registered trademark of Digital Equipment Corp

[^20]:    *J. Kalb. "Design Considerations for a TTL Gate "National Semiconductor TP-6, May, 1968.

[^21]:    Okay - Want More information?
    Simple. Just contact your local National Field Sales Office They'll be happy to help you. As always.

