INTERFACE DATABOOK

NATIONAL SEMICONDUCTOR

37 Loverock Road Reading Berkshire RG3 1ED Telephone (0734) 585171 Telex 848370

Electronic Distribution Specialists

Active Components Division

WITH COMPLIMENTS FROM CELDIS DATA CENTRE

ACTIVE COMPONENTS DIVISION
MICROSYSTEMS DIVISION
MICROSYSTEMS DIVISION
MICROSYSTEMS DIVISION
FAIRCHILD, MOSTEK, MOTOROLA.
NATIONAL SEMICONDUCTOR,
HEWLETT PACKARD, FAIRCHILD,
PLESSEY SEMICONDUCTOR,
FERRANTI SEMICONDUCTOR
FERRANTI SEMICONDUCTOR
MICROSYSTEMS DIVISION
NATIONAL SEMICONDUCTOR.
NATIONAL SEMICONDUCTOR.
SPECIAL PRODUCTS DIVISION
AMPHENOL, COOPER WELLER, PAPST,
BOSCH, REDPOINT.

INTERFACE DATABOOK

This is the *Interface* databook from National Semiconductor Corporation. It contains complete information on all of National's *Interface* products which are defined as special IC circuits such as Linear/Digital/Power functions—which are used in association with standard logic or microprocessor functions.

Product selection guides and a complete product applications section are also included. For information on products that become available after this databook goes to print, please contact your local National office.

				-	-
	B 0 B 10 0 10 B	1	ITELLARA	, .	^ ^ ^ !!!
112	nsmission	11164	IJIIVEIS		
	1101111001011				

Bus Transceivers

Peripheral/Power Drivers

Level Translators/Buffers

Display Drivers

MOS Memory Interface Circuits

Magnetic Memory Interface Circuits

Microprocessor Support Circuits

Applicable TTL and CMOS Logic Circuits

Application Notes

Appendices/Physical Dimensions

2

9

2

9

10

11

Table of Contents

*: Product added to this Data Book since last Edition

	Edge Index by Product Family	1
	Introduction	1
	Alpha-Numerical Index	6
	Interface Cross-Reference Guide	12
	Section 1—Transmission Line Drivers/Receivers	
	Transmission Line Drivers/Receivers Selection Guides	1-ii
	DS1488 Quad Line Driver	1-1
	DS1489/DS1489A Quad Line Receiver	1-4
	DS1603/DS3603, DS3604, DS55107/DS75107, DS55108/DS75108,	
	DS75207, DS75208 Dual Line Receivers	1-6
	DS1650/DS3650, DS1652/DS3652 Quad Differential Line Receivers	1-13
¥	DS1691/DS3691 (RS-422/RS-423) Line Drivers	1-19
*	DS1692/DS3692 TRI-STATE® Differential Line Drivers	1-19
*	DS26LS31/DS26LS31M Quad High Speed Differential Line Driver	1-25
¥	DS26LS32/DS26LS32M, DS26LS33/DS26LS33M Quad Differential Line Receivers	1-28
*	DS3486 Quad RS-422, RS-423 Line Receiver	1-31
*	DS3487 Quad TRI-STATE® Line Driver.	1-35
	DS55113/DS75113 Dual TRI-STATE® Differential Line Driver	1-38
*	DS55114/DS75114 Dual Differential Line Drivers	1-43
*	DS55115/DS75115 Dual Differential Line Receiver	1-47
	DS55121/DS75121 Dual Line Drivers	1-52
	DS75123 Dual Line Driver	1-54 1-57
	DS75124 Triple Line Receiver	1-57
	DS75150 Dual Line Driver	1-62
	DS75154 Quad Line Receiver	1-65
	DS8642 Quad Transceiver	1.69
	DS7820/DS8820 Dual Line Receiver	1-72
	DS7820A/DS8820A Dual Line Receiver	1-75
*	DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver	1-79
	DS7830/DS8830 Dual Differential Line Driver	1-82
	DS7831/DS8831, DS7832/DS8832 Dual TRI-STATE® Line Driver	1-85
*	DS78LS120/DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe)	1-90
*	DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receiver	1-97
	The state of the s	
	Section 2—Bus Transceivers	
	8us Transceivers Selection Guides	2-ii
*	DS26S10, DS26S11 Quad 8us Transceivers	2-1
	DS7640/DS8640 Quad NOR Unified Bus Receiver	2-6
	DS7641/DS8641 Quad Unified 8us Transceiver	2-8
	DS7833/DS8833, DS7835/DS8835 Quad TRI-STATE® 8us Transceivers	2-10
	DS7834/DS8834, DS7839/DS8839 Quad TRI-STATE® Bus Transceivers	2-14
	DS7836/DS8836 Quad NOR Unified 8us Receiver	2-18
	DS7837/DS8837 Hex Unified Bus Receiver	2-20
	DS7838/DS8838 Quad Unified Bus Transceiver	2-22
*	DS8T26A, DS8T26AM, DS8T28, DS8T28M 4-Bit Bidirectional Bus Transceivers	2-24

Table of Contents (Continued)

Section 3—Peripheral/Power Drivers	
Peripheral/Power Drivers Selection Guide	3 -ii
DS1614/DS3614 Dual Peripheral Drivers	3-1
DS1634/DS3634 CMOS Dual Peripheral Drivers	3-7
	3-12
	3-16
	3-18
	3-20
DS55460/DS75460 Series Dual Peripheral Drivers	3-31
Section 4-Level Translators/Buffers	
Level Translators/Buffers Selection Guide	4-ii
DS1630/DS3630 Hex CMOS Compatible Buffer	4-1
DS7800/DS8800 Dual Voltage Level Translator	4-4
DS7810/DS8810 Quad 2-Input TTL-MOS Interface Gate	4-7
DS7811/DS8811 Quad 2-Input TTL-MOS Interface Gate	4-7
DS7812/DS8812 Hex TTL-MOS Inverter	4-7
DS78L12/DS88L12 Hex TTL-MOS Inverter/Interface Gate	4-10
DS7819/DS8819 Quad 2-Input TTL-MOS AND Gate	4-12
Section 5—Display Drivers	
	e ::
Display Drivers Selection Guides	5-ii
DS8646 Low Voltage 6-Digit LED Driver	5-1
DS8647, DS8648, DS8979 Low Voltage 9-Segment LED Drivers	5-3 5-5
DS8656 Diode Matrix	5-5
DS8658 Low Voltage 4-Digit LED Driver	5-9
	5-11
DS7664/DS8664 14-Digit Decoder/Driver With Low Battery Indicator	5-13
DS8665 14-Digit Decoder/Driver (Hi-Drive)	5-16
DS8666 14-Digit Decoder/Driver (P.O.S.)	5-19
	5-22
DS8692, DS8693, DS8694 Printing Calculator Interface Set	5-25
DS7856/DS8856, DS8857, DS7858/DS8858 BCD-to-7-Segment LED Drivers	5-32
DS8859, DS8869 Open Collector Hex Latch LED Drivers	5-36
DS8861 MOS-to-LED 5-Segment Driver	5-39
D\$8863 MOS-to-LED 8-Digit Driver	5-39
DS8963 MOS-to-LED 8-Digit Driver	5-39
DS8867 8-Segment Constant Current Driver	5-42
DS8868 12-Digit Decoder/Driver	5-44
	5-46
DS8871, DS8872, DS8873, DS8920, DS8977 Saturating LED Cathode Drivers	5-48
DS8874 9-Digit Shift Input LED Driver	5-50
D\$8877 6-Digit LED Driver	5-52
DS7880/DS8880 High Voltage 7-Segment Decoder/Driver	
(for Driving Panaplex II TM and Sperry/Beckman Displays)	5-54
DS8881 Vacuum Fluorescent Display Driver	5-57
DS8884A High Voltage Cathode Decoder/Driver (for Driving	
Panaplex II TM and Sperry/Beckman Displays)	5-61
DS8885 MOS to High Voltage Cathode Buffer	5-63

Table of Contents (Continued)

	Section 5—Display Drivers (Continued)	
	DS8887 8-Digit High Voltage Anode Driver (Active-High Inputs)	5-65
	DS7889/DS8889 8-Segment High Voltage Cathode Driver (Active-High Inputs)	5-65
	DS7897/DS8897 8-Digit High Voltage Anode Driver (Active-Low Inputs)	5-65
	DS7891/DS8891 High Voltage Anode Drivers (Active-Low Inputs)	5-69
	DS8892 Programmable Hex LED Digit Driver	5-71
	DS7895/DS8895 Quad LED Segment Driver	5-73
*	DS8968 12-Digit Decoder/Driver (Modification)	5-76
	DS8973, DS8974, DS8975, DS8976, DS8978 9-Digit LED Drivers	5-78
*	DS8980, DS8981 High Voltage 7-Segment Latches/Decoders/Drivers	5-81
	DS75491 MOS-to-LED Quad Segment Driver	5-85
	DS75492 MOS-to-LED Hex Digit Driver	5-85
	DS55493/DS75493 Quad LED Segment Driver	5-88
	DS55494/DS75494 Hex Digit Driver	5-90
	Section 6-MOS Memory Interface Circuits	
	MOS Memory Interface Circuits Selection Guides	6-i
	Memory Support Circuits	6-iv
	DS0025/DS0025C Two Phase MOS Clock Driver.	6-1
	DS0026, DS0056 5 MHz Two Phase MOS Clock Drivers	6-4
	DS3605, DS3606, DS3607, DS3608 Hex TRI-STATE®	
	MOS Sense Amplifiers (MOS to TTL Converters)	6-11
	DS3625, DS7802/DS8802, DS7806/DS8806 Dual High Speed	
	TRI-STATE® MOS to TTL Level Converters	6-16
*	DS1628/DS3628 Octal TRI-STATE® MOS Drivers	6-20
	DS1640/DS3640, DS1670/DS3670 Quad MOS TRI-SHARE TM Port Drivers	6-23
	DS1642/DS3642, DS1672/DS3672 Dual Bootstrapped TTL to MOS Clock Drivers	6-26
	DS3643, DS3673 Decoded Quad MOS Clock Drivers	6-29
	DS1644/DS3644, DS1674/DS3674 Quad TTL to MOS Clock Drivers	6-32
	DS1645/DS3645, DS1675/DS3675 Hex TRI-STATE® TTL to MOS Latches/Drivers DS1646/DS3646, DS1676/DS3676 6-Bit TRI-STATE®	6-35
	TTL-to-MOS Refresh Counter/Driver	0.40
	DS1647/DS3647, DS1677/DS3677, DS16147/DS36147, DS16177/DS36177	6-40
	Quad TRI-STATE® MOS Memory I/O Registers	6-45
	DS1648/DS3648, DS1678/DS3678 TRI-STATE® TTL to MOS Multiplexers/Drivers	6-51
	DS1649/DS3649, DS1679/DS3679 Hex TRI-STATE® TTL to MOS Drivers	6-56
	DS1651/DS3651, DS1653/DS3653 Quad High Speed MOS Sense Amplifiers	6-59
	DS1671/DS3671 Bootstrapped Two Phase MOS Clock Driver	6-65
	DS16149/DS36149, DS16179/DS36179 Hex MOS Drivers	6-69
*	DS3245 Quad MOS Clock Driver	6-73
*	DS75322 Dual TTL-MOS Driver	6-76
*	DS3622 Dual Fail-Safe TTL-MOS Driver	6-76
	DS75361 Dual TTL-to-MOS Driver	6-79
	DS75362 Dual TTL-to-MOS Driver	6-84
	DS75364 Dual MOS Clock Driver	6-89
	DS75365 Quad TTL-to-MOS Driver.	6-93
		5 50
	Section 7—Magnetic Memory Interface Circuits	

7-ii

7-1

7-20

7-26

Magnetic Memory Interface Circuits Selection Guide

DS75324 Memory Driver with Decode Inputs

Table of Contents (Continued)

	Section 8-Microprocessor Support Circuits	
* * * * * * * *	Microprocessor Support Circuits Selection Guide DP4201 Clock Generator DP8212/DP8212M 8-Bit Input/Output Port DP8216/DP8216M, DP8226/DP8226M 4-Bit Bidirectional Bus Transceivers DP8224 Clock Generator and Driver DP8228/DP8228M, DP8238/DP8238M System Controller and Bus Driver DP8300 PACE Bidirectional Transceiver Element (PACE BTE/8) DP8302, DP8305 PACE System Timing Element (PACE STE) DP7304B/DP8304B 8-Bit TRI-STATE Bidirectional Transceiver DP8350 Series Programmable CRT Controllers	8 ii 8 1 8 5 8 12 8 17 8-23 8 28 8-35 8-40 8 45
	Section 9-Applicable TTL and CMOS Logic Circuits [†]	
* * * * * * * * * * * * *	DM54LS373/DM74LS373, DM54LS374 DM74LS374 Octal D Type Transparent Latches and Edge-Triggered Flip-Flops DM54S240/DM74S240, DM54S241/DM74S241, DM54S940/DM74S940, DM54S941/DM74S941 Octal TRI-STATE Buffers Line Drivers Line Receivers MM54C373/MM74C373 TRI-STATE Octal D-Type Latch MM54C374/MM74C374 TRI-STATE Octal D-Type Flip-Flop MM54C901/MM74C901 Hex Inverting TTL Buffer MM54C902/MM74C902 Hex Non Inverting TTL Buffer MM54C903/MM74C903 Hex Inverting PMOS Buffer MM54C904/MM74C904 Hex Non-Inverting PMOS Buffer MM54C906/MM74C906 Hex Open Drain N Channel Buffers MM54C907/MM74C907 Hex Open Drain P-Channel Buffers MM74C908, MM74C918 Dual CMOS 30-Volt Driver MM54C922/MM74C922 16 Key Encoder MM54C923/MM74C923 20 Key Encoder MM78C29/MM88C29 Quad Single Ended Line Driver MM78C30/MM88C30 Dual Differential Line Driver †For additional information on CMOS products, see National Semiconductor's 1978 CMOS Databook	9 1 9 5 9-12 9 12 9 18 9 18 9 18 9 18 9 22 9 25 9 30 9 30 9 35 9 35
	Section 10-Application Notes	
	Summary of Electrical Characteristics of Some Well Known Digital Interface Standards AN-22 Integrated Circuits for Digital Data Transmission AN-84 Driving 7 Segment Gas Discharge Display Tubes with National Semiconductor Circuits AN-108 Transmission Line Characteristics AN-198 Simplify CRT Terminal Design with the DP8350 AN-199 A Low Component Count Video Data Terminal Using the DP8350 CRT Controller and the INS8080 CPU	10 32 10 36 10 42
	Section 11—Appendices/Physical Dimensions	
	Understanding Rei Flows MIL-STD-883/MIL-M-38510 The A+ Program from National The B+ Program from National 883/RETS Program Thermal Ratings for IC's Industry Package Cross-Reference Guide Definition of Terms Ordering Information	11 1 11 2 11 3 11 5 11 7 11 17 11 18 11 20 11 21 11 22

Alpha-Numerical Index
*: Product added to this Data Book since last Edition

*	DP4201 Clock Generator	8-1
*	DP7304B 8-Bit TRI-STATE® Bidirectional Transceiver	8-40
*	DP8212 8-Bit Input/Output Port	8-5
*	DP8212M 8-Bit Input/Output Port	8-5
*	DP8216 4-Bit Bidirectional Bus Transceiver	8-12
*	DP8216M 4-Bit Bidirectional Bus Transceiver	8-12
*	DP8224 Clock Generator and Driver	8-17
¥	DP8226 4-Bit Bidirectional Bus Transceiver	8-12
*	DPB226M 4-Bit Bidirectional Bus Transceiver.	8-12
*	DPB228 System Controller and Bus Driver	8-23
*	DP8228M System Controller and Bus Driver.	8-23
*	DP8238 System Controller and Bus Driver	8-23
*	DPB238M System Controller and Bus Driver.	8-23
*	DP8300 PACE Bidirectional Transceiver Element (PACE BTE/8)	8-28
*	DPB302 PACE System Timing Element (PACE STE)	
	DPB002 FACE System Timing Element (FACE STE)	8-35
*	DP8304B 8-Bit TRI-STATE Bidirectional Transceiver	8-40
*	DPB305 PACE System Timing Element (PACE STE)	8-35
¥	DPB350 Series Programmable CRT Controller	8-45
	DS0025 Two Phase MOS Clock Driver	6-1
	DS0025C Two Phase MOS Clock Driver	6-1
	DS0026 5 MHz Two Phase MOS Clock Driver.	6-4
	DS0056 5 MHz Two Phase MOS Clock Driver.	6-4
	DS1488 Ouad Line Driver	1-1
	DS1489 Ouad Line Receiver	1-4
	DS1489A Quad Line Receiver	1-4
	DS1603 Dual Line Receiver	1-6
	DS1611 Dual Peripheral Driver	3-1
	DS1612 Dual Peripheral Driver	3-1
	DS1613 Dual Peripheral Driver	3-1
	DS1614 Dual Peripheral Driver	3-1
*	DS1628 Octal TRI-STATE® MOS Driver	6-20
	DS1630 Hex CMOS Compatible Buffer	4-1
	DS1631 CMOS Dual Peripheral Driver	3-7
	DS1632 CMOS Dual Peripheral Driver	3-7
	DS1633 CMOS Dual Peripheral Driver	3-7
	DS1634 CMOS Dual Peripheral Driver	3-7
	DS1640 Ouad MOS TRI-SHARE TM Port Driver	6-23
	DS1642 Dual Bootstrapped TTL-to-MOS Clock Driver.	6-26
	DS1644 Quad TTL-to-MOS Clock Driver	6-32
	DS1645 Hex TRI-STATE® TTL-to-MOS Latch/Driver	6-35
	DS1646 6-Bit TRI-STATE® TTL-to-MOS Refresh Counter/Driver	6-40
	DS1647 Quad TRI-STATE Memory I/O Register	6-45
	DS1648 TRI-STÂTE TTL-to-MOS Multiplexer/Driver	
		6-51
	DS1649 Hex TRI-STATE TL-to-MOS Driver	6-56
	DS1650 Ouad Differential Line Receiver	1-13
	DS1651 Ouad High Speed MOS Sense Amplifier	6-59
	DS1652 Ouad Differential Line Receiver	1-13
	DS1653 Ouad High Speed MOS Sense Amplifier.	6-59
	DS1670 Ouad MOS TRI-SHARE TM Port Driver	6-23
	DS1671 Bootstrapped Two Phase MOS Clock Driver	6-65
	DS1672 Dual Bootstrapped TTL-to-MOS Clock Driver	6-26
	DS1674 Ouad TTL-to-MOS Clock Drivers.	6-32
	DS1675 Hex TRI-STATE TTL-to-MOS Latch/Driver	6-35
	DS1676 6-Bit TRI-STATE TTL-to-MOS Refresh Counter/Driver	6-40
	DS1677 Quad TRI-STATE® MOS Memory I/O Register	6-45

DS1678 TRI-STATE TTL-to-MOS Multiplexer/Driver	6-51
DS1679 Hex TRI-STATE® TTL-to-MOS Driver	6-56
DS1686 Dual Positive Voltage Relay Driver	3-16
DS1687 Negative Voltage Relay Driver	3-18
DS1691 (RS-422/RS-423) Line Driver	1-19
DS1692 TRI-STATE Differential Line Driver	1-19
DS16147 Ouad TRI-STATE® MOS Memory I/O Register	6-45
DS16149 Hex MOS Driver	6-69
DS16177 Ouad TRI-STATE® MOS Memory I/O Register	6-45
DS16179 Hex MOS Driver	6-69
DS26LS31 Quad High Speed Differential Line Driver	1.25
DS26LS31M Ouad High Speed Differential Line Driver	1-25
DS26LS32 Ouad Differential Line Receiver	1-28
DS26LS32M Ouad Differential Line Receiver	1-28
DS26LS33 Quad Differential Line Receiver	1-28
DS26LS33M Quad Differential Line Receiver.	1-28
DS26S10 Ouad 8us Transceiver	2-1
DS26S11 Ouad Bus Transceiver	2-1
DS3245 Ouad MOS Clock Driver	6-73
DS3486 Ouad RS-422, RS-423 Line Receiver.	1-31
DS3487 Ouad TRI-STATE® Line Driver.	_
DS3603 Dual Line Receiver	1-35
	1.6
DS3604 Dual Line Receiver	1-6
DS3605 Hex TRI-STATE MOS Sense Amplifier (MOS-to-TTL Converter)	6-11
DS3606 Hex TRI-STATE MOS Sense Amplifier (MOS-to-TTL Converter)	6-11
DS3607 Hex TRI-STATE® MOS Sense Amplifier (MOS-to-TTL Converter)	6-11
DS3608 Hex TRI STATE MOS Sense Amplifier (MOS-to-TTL Converter)	6-11
DS3611 Dual Peripheral Driver	3-1
DS3612 Dual Peripheral Driver	3-1
DS3613 Dual Peripheral Driver	3-1
DS3614 Dual Peripheral Driver	3-1
DS3622 Dual Fail-Safe TTL-MOS Driver.	6-76
DS3625 Dual High Speed TRI-STATE® MOS-to-TTL Level Converters	6-16
DS3628 Octal TRI-STATE® MOS Driver	6-20
DS3630 Hex CMOS Compatible 8uffer	4-1
DS3631 CMOS Dual Peripheral Driver	3.7
DS3632 CMOS Dual Peripheral Driver	3-7
DS3633 CMOS Dual Peripheral Driver	3-7
DS3634 CMOS Dual Peripheral Driver	3-7
DS3640 Ouad MOS TRI-SHARE TM Port Driver	6.23
DS3642 Dual Bootstrapped TTL-to-MOS Clock Driver	6.26
DS3643 Decoded Ouad MOS Clock Driver	6-29
DS3644 Ouad TTL-to-MOS Clock Driver	6-32
DS3645 Hex TRI-STATE® TTL-to-MOS Latch/Driver	6-35
DS3646 6-8it TRI-STATE TTL-to-MOS Refresh Counter/Driver	6-40
DS3647 Ouad TRI-STATE® MOS Memory I/O Register	6-45
DS3648 TRI-STATE* TTL-to-MOS Multiplexer/Driver	6-51
DS3649 Hex TRI-STATE TTL-to-MOS Driver	6-56
DS3650 Ouad Differential Line Reciever	1-13
DS3651 Ouad High Speed MOS Sense Amplifier	6-59
DS3652 Ouad Differential Line Receiver	1-13
DS3653 Ouad High Speed MOS Sense Amplifier	6-59
DS3654 Printer Solenoid Driver	3-12
DS3670 Ouad MOS TRI-SHARE TM Port Driver	6.23
DS3671 Bootstrapped Two Phase MOS Clock Driver	6-65
	0 00

	DS3672 Dual Bootstrapped TTL-to-MOS Clock Driver	6-26 6-29
	DS3674 Ouad TTL to MOS Clock Driver	6-32
	DS3675 Hex TRI STATE TTL to MOS Latch Driver	6-35
	DS3676 6 Bit TRI STATE TTL-to-MOS Refresh Counter Driver	6-40
	DS3677 Quad TRI STATE MOS Memory I O Register	6-45
	DS3678 TRI STATE TTL to MOS Multiplexer Driver	6-51
	DS3679 Hex TRI-STATE TTL to MOS Driver	6-56
	DS3686 Dual Positive Voltage Relay Driver	3-16
	DS3687 Negative Voltage Relay Driver	3-18
*	DS3691 (RS 422 RS 423) Line Driver	1 19
	DS3692 TRI-STATE Differential Line Driver	1 19
	DS36147 Quad TRI STATE MOS Memory I O Register	6-45
	DS36149 Hex MOS Driver	6-69
	DS36177 Ouad TRI STATE MOS Memory I O Register	6 45
	DS36179 Hex MOS Driver	6-69
	DS5520 Dual Core Memory Sense Amplifier.	7-1
	DS5522 Dual Core Memory Sense Amplifier	7-1
	DS5524 Dual Core Memory Sense Amplifier	7 1
	DS5528 Dual Core Memory Sense Amplifier.	7 · 1
	DS5534 Dual Core Memory Sense Amplifier	7·1
	DS5538 Dual Core Memory Sense Amplifier.	7-1
	DS7520 Dual Core Memory Sense Amplifier	7 1
		7 1
	DS7522 Dual Core Memory Sense Amplifier	7-1
	DS7524 Dual Core Memory Sense Amplifer	7-1
	DS7528 Dual Core Memory Sense Amplifier	7-1
	DS7534 Dual Core Memory Sense Amplifier	26
	DS7640 Ouad NOR Unified Bus Receiver.	2-8
	DS7641 Quad Unified Bus Transceiver	∠-8 5-13
•	DS7664 14-Digit Decoder Driver with Low Battery Indicator	1-79
•	DS78C20 Dual CMOS Compatible Differential Line Receiver	1-79
*	DS78C120 Dual CMOS Compatible Differential Line Receiver	4-10
	DS78L12 Hex TTL MOS Inverter Interface Gate	1-90
*	DS78LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe)	4-4
	DS7800 Dual Voltage Level Translator	6-16
	DS7802 Dual High Speed TRI STATE MOS to TTL Level Converter	
	DS7806 Dual High Speed TRI STATE MOS-to TTL Level Converter	6-16 4-7
	DS7810 Ouad 2-Input TTL-MOS Interface Gate	4-7 4-7
	DS7811 Quad 2-Input TTL-MOS Interface Gate	
	DS7812 Hex TTL-MOS Inverter	4-7
	DS7819 Quad 2-Input TTL-MOS AND Gate	
	DS7820 Dual Line Receiver	
	DS7820A Dual Line Receiver	
	DS7830 Dual Differential Line Driver	
	DS7831 Dual TRI-STATE Line Driver	
	DS7832 Dual TRI-STATE Line Driver	1-85
	DS7833 Ouad TRI STATE Bus Transceiver	2-10
	DS7834 Quad TRI-STATE Bus Transceiver	2-14
	DS7835 Quad TRI-STATE Bus Transceiver	2-10
	DS7836 Quad NOR Unified Bus Receiver	2-18
	DS7837 Hex Unified Bus Receiver	2-20
	DS7838 Quad Unified Bus Transceiver	2-22
	DS7839 Ouad TRI-STATE Bus Transceiver	2-14
	DS7856 BCD to 7 Segment LED Driver	5-32
	DS7858 BCD-to-7 Segment LED Driver	5-32

	DS7880 High Voltage 7-Segment Decoder Driver (for Driving Panaplex II ***
	and Sperry/Beckman Displays)
	DS7889 8-Segment High Voltage Cathode Driver (Active-High Inputs)
	DS7891 High Voltage Anode Driver (Active-Low Inputs)
	DS7895 Quad LED Segment Driver
	DS7897 8-Digit High Voltage Anode Driver (Active Low Inputs)
*	DS8T26A 4-Bit Bidirectional Bus Transceiver
*	DS8T26AM 4-Bit Bidirectional Bus Transceiver
	DS8T28 4-Bit Bidirectional Bus Transceiver
*	DS8T28M 4-Bit Bidirectional Bus Transceiver.
	DS8640 Quad NQR Unified Bus Receiver.
	DS8641 Quad Unified Bus Transceiver
	DS8642 Quad Transceiver
*	DS8646 Low Voltage 6-Digit LED Driver
*	DS8647 Low Voltage 9-Segment LED Driver
*	DS8648 Low Voltage 9-Segment LED Driver
	DS8654 8-Qutput Display Driver (LED, VF, Thermal Printer)
	DS8656 Diode Matrix
	DS8658 Low Voltage 4-Digit LED Driver
	DS8659 Low Voltage 7 Segment LED Driver
*	DS8664 14-Digit Decoder/Driver with Low Battery Indicator
*	DS8665 14 Digit Decoder (Driver (Hi Drive)
*	DS8666 14 Digit Decoder/Driver (P.Q.S.)
*	DS8669 2-Digit BCD-to-7-Segment Decoder Driver
	DS8692 Printing Calculator Interface Set
	DS8693 Printing Calculator Interface Set
	DS8694 Printing Calculator Interface Set
*	DS88C20 Dual CMOS Compatible Differential Line Receiver
*	DS88C120 Dual CMOS Compatible Differential Line Receiver.
	DS88L12 Hex TTL-MQS Inverter/Interface Gate
*	DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe).
	DS8800 Dual Voltage Level Translator
	DS8802 Dual High Speed TRI-STATE MQS-to-TTL Level Converter
	DS8806 Dual High Speed TRI-STATE MQS-to-TTL Level Converter
	DS8810 Quad 2-Input TTL-MOS Interface Gate
	DS8811 Quad 2-Input TTL-MQS Interface Gate
	DS8812 Hex TTL:MOS Inverter
	DS8819 Quad 2 Input TTL MQS AND Gate
	DS8820 Dual Line Receiver
	DS8820A Dual Line Receiver
	DS8830 Dual Differential Line Driver
	DS8831 Dual TRI-STATE Line Driver
	DS8832 Dual TRI-STATE* Line Driver
	DS8833 Quad TRI-STATE* Bus Transceiver
	DS8834 Quad TRI-STATE Bus Transceiver
	DS8835 Quad TRI-STATE Bus Transceiver
	DS8836 Quad NQR Unified Bus Receiver
	DS8837 Hex Unified Bus Receiver
	DS8838 Quad Unified Bus Transceiver
	DS8839 Quad TRI-STATE Bus Transceiver
	DS8856 BCD-to-7-Segment LED Driver
	DS8857 BCD-to-7-Segment LED Driver
	DS8858 BCD-to-7-Segment LED Driver
	DS8859 Open Collector Hex Latch LED Driver
	DS8861 MOS-to-LED 5-Segment Driver

	DS8863 MOS-to-LED 8-Digit Driver	5-39
	DS8867 8-Segment Constant Current Driver	5-42
	DS8868 12-Digit Decoder/Driver	5-44
	DS8869 Open Collector Hex Latch LED Driver	5-36
	DS8870 Hex LED Digit Driver	5-46
	DS8871 Saturating LED Cathode Driver	5-48
	DS8872 Saturating LED Cathode Driver.	5-48
	DS8873 Saturating LED Cathode Driver.	5-48
	DS8874 9-Digit Shift Input LED Driver	5-50
	DS8877 6-Digit LED Driver	
	DS8880 High Voltage 7-Segment Decoder/Driver (for Driving Panaplex II TM	5-52
		F F 4
	and Sperry/Beckman Displays)	5-54
*	DS8881 Vacuum Fluorescent Display Driver	5-57
	DS8884A High Voltage Cathode Decoder/Driver (for Driving Panaplex II TM	
	and Sperry/Beckman Displays)	5-61
	DS8885 MOS-to-High Voltage Cathode Buffer	5-63
	DS8887 8-Digit High Voltage Anode Driver (Active-High Inputs)	5-65
	DS8889 8-Segment High Voltage Cathode Driver (Active-High Inputs)	5-65
	DS8891 High Voltage Anode Driver (Active-Low Inputs)	5-69
	DS8892 Programmable Hex LED Digit Driver	5-71
	DS8895 Quad LED Segment Driver	5-73
	DS8897 8-Digit High Voltage Anode Driver (Active-Low Inputs)	5-65
*	DS8920 Saturating LED Cathode Driver	5-48
*	DS8968 12-Digit Decoder/Driver (Modification).	5-76
	DS8963 MOS-to-LED 8-Digit Driver	5-39
	DS8973 9-Digit LED Driver	5-78
	DS8974 9-Digit LED Driver	5-78
	DS8975 9-Digit LED Driver	5-78
	DS8976 9-Digit LED Driver	5-78
	DS8977 Saturating LED Cathode Driver.	5-48
	DS8978 9-Digit LED Driver	5-78
		_
_	DS8979 Low Voltage 9-Segment LED Driver	5-3
*	DS8980 High Voltage 7-Segment Latch/Decoder/Driver	5-81
*	DS8981 High Voltage 7-Segment Latch/Decoder/Driver	5-81
	DS55107 Dual Line Receiver	1-6
	DS55108 Dual Line Receiver	1-6
*	DS55113 Dual TRI-STATE® Differential Line Driver.	1-38
*	DS55114 Dual Differential Line Driver	1-43
*	DS55115 Dual Differential Line Receiver	1-47
	DS55121 Dual Line Driver	1-52
	DS55122 Triple Line Receiver	1-54
	DS55325 Memory Driver	7-26
	DS55450 Dual Peripheral Driver	3-20
	DS55451 Dual Peripheral Driver	3-20
	DS55452 Dual Peripheral Driver	3-20
	DS55453 Dual Peripheral Driver	3.20
	DS55454 Dual Peripheral Driver	3-20
	DS55460 Dual Peripheral Driver	3-31
	DS55461 Dual Peripheral Driver	3-31
	DS55462 Dual Peripheral Driver	3-31
	DS55463 Dual Peripheral Driver	3-31
	DS55464 Dual Peripheral Driver	3 -31
	DS55493 Quad LED Segment Driver	5-88
	DS55494 Hex Digit Driver	5-90
	DS75107 Dual Line Receiver	1-6

	DS75108 Dual Line Receiver	1-6
*	DS75113 Dual TRI-STATE® Differential Line Driver	1-38
*	DS75114 Dual Differential Line Driver	1-43
*	DS75115 Dual Differential Line Receiver	1-47
	DS75121 Dual Line Driver	1-52
	DS75122 Triple Line Receiver	1-54
	DS75123 Dual Line Driver	1-57
	DS75124 Triple Line Receiver	1-59
	DS75150 Dual Line Driver	1-62
	DS75154 Ouad Line Receiver	1-65
	DS75207 Dual Line Receiver	1-6
	DS75208 Dual Line Receiver	1-6
*	DS75322 Dual TTL-MOS Driver	6-76
	DS75324 Memory Driver with Decode Inputs	7-20
	DS75325 Memory Driver	7-26
	DS75361 Dual TTL-to-MOS Driver	6-79
	DS75362 Dual TTL-to-MOS Driver	6-84
	DS75364 Dual MOS Clock Driver	6-89
	DS75365 Ouad TTL-to-MOS Driver	6-93
	DS75450 Dual Peripheral Driver	3-20
	DS75451 Dual Peripheral Driver	3-20
	DS75452 Dual Peripheral Driver	3-20
	DS75453 Dual Peripheral Driver	3-20
	DS75454 Dual Peripheral Driver	3-20
	DS75460 Dual Peripheral Driver	3-31
	DS75461 Dual Peripheral Driver	3-31
	DS75462 Dual Peripheral Driver	3-31
	DS75463 Dual Peripheral Driver	3-31
	DS75464 Dual Peripheral Driver	3-31
	DS75491 MOS-to-LED Ouad Segment Driver	5-85
	DS75492 MOS to LED Hex Digit Driver	5-85
	DS75493 Quad LED Segment Driver	5.88

DS75494 Hex Digit Driver

5.90

Interface Cross Reference Guide

DEVICE NUMBER	NATIONAL EXACT REPLACEMENT	DEVICE NUMBER	NATIONAL EXACT REPLACEMENT
AMD		SIGNETICS (con't)
AM26S10	DS26S10	8T37	D\$8837
AM26S11	DS26S11	8T38	D\$8838
AM26LS30	DS3691	8T51	D\$8856
AM26LS31	DS26LS31	8T100	DS75114
AM26LS32	DS26LS32	8T101	DS75115
AM26LS33	D\$26L\$33	8T380	DS8836
FAIRCHILD		TEXAS INSTRUM	IENTS
9614	DS75114	SN7520	DS 7520
9615	DS75115	SN7522	D\$7522
9640	DS 26S10	SN7524	DS7524
		SN 7528	DS7528
		SN 7534	DS 7534
INTEL		SN7538	DS7538
2045	DC334E	SN75107	DS75107
3245	DS3245 DP8212	SN75108	DS75108 DS75113
8212	DP8212 DP8216	SN75113 SN75114	D\$75113 D\$75114
8216 8224	DP8224	SN75114 SN75115	DS75115
8226	DP8226	SN75113	DS75121
8228	DP8228	SN75122	DS75122
8238	DP8238	SN75123	DS75123
		SN75124	DS75124
		SN 75150	DS75150
MOTOROLA		SN 75154	DS 75154
		SN75180	D\$8800
MC1488	DS1488	SN75182	DS8820
MC1489	DS1489	SN 75183	DS8830
MC3430	DS3650	SN75188 SN75189	D\$1488 D\$1489
MC3432	DS3651 DS8837	SN 75189 SN 75207	DS75207
MC3437 MC3438	D\$8838	SN75207	DS75208
MC3440	DS3440	SN75322	DS75322
MC3441	DS3441	SN 75324	DS75324
MC3442	DS3442	SN 75325	D\$75325
MC3443	D\$3443	SN 75361	DS75361
MC3446	DS3446	SN75362	DS75362
MC3450	DS3652	SN 75364	DS 75364
MC3452	D\$3653	SN75365	DS75365
MC3460	DS3674	SN75369	DS75369
MC3486	DS3486	SN 75450 SN 75451	D\$75450 D\$75451
MC3487 MMH0026C	DS3487 DS0026C	SN 75451 SN 75452	D\$75451 D\$75452
MMH0056C	D\$0056C	SN75454	DS75454
		SN75460	DS75460
		SN75461	DS75461
SIGNETICS		SN 75462	DS75462
		SN 75463	DS75463
8T13	DS75121	SN75464	DS75464
8T14	DS75122	SN75480	D\$8880
8T23	DS75123	SN75484	D\$8980
8T24	DS75124	SN75491	DS75491
8T25 8T26A	DS3625 DS8T26A	SN 75492 SN 75493	DS75492 DS75493
8126A 8T28	DS8128A	SN 75493 SN 75494	D\$75493 D\$75494
8T34	D\$8834	31473737	55.5404

Section 1 Transmission Line Drivers/Receivers

TEMPERA	ATURE RANGE	0.70.7.17	PAGE
-55°C to +125°C	0° C to $+70^{\circ}$ C	DESCRIPTION	NUMBER
-	DS1488	Quad Line Driver	1-1
_	DS1489	Quad Line Receiver	1-4
_	DS1489A	Quad Line Receiver	1-4
DS1603	DS3603/04	Dual TRI-STATE® Line Receiver	1-6
DS1650	DS3650	Quad Differential Line Receiver	1-13
DS1652	DS3652	Quad Differential Line Receiver	1-13
DS1691	DS3691	RS422-RS423 Line Drivers	1-19
DS1692	DS3692	TRI-STATE® Differential Line Driver	1-19
DS26LS31M	DS26LS31	Quad Differential Line Driver	1-25
DS26LS32M	DS26LS32	Quad Differential Line Receiver	1-28
DS26LS33M	DS26LS33	Quad Differential Line Receiver	1-28
-	DS3486	Quad RS422-RS423 Line Receiver	1-31
_	DS3487	Quad TRI-STATE® Line Driver	1-35
DS55107/207	DS75107/207	Dual Line Receiver	1-6
DS55108/208	DS75108/208	Dual Line Receiver	1-6
DS55113	DS75113	Dual TRI-STATE® Differential Line Driver	1-38
DS55114	DS75114	Dual Differential Line Driver	1-43
DS55115	DS75115	Dual Differential Line Receiver	1-47
DS55121	DS75121	Dual Line Dirver	1-52
DS55122	DS75122	Triple Line Receiver	1-54
_	DS75123	Dual Line Driver	1-57
_	DS75124	Triple Line Receiver	1-59
DS55150	DS75150	Dual Line Driver	1-62
_	DS75154	Dual Line Receiver	1-65
_	DS8642	Quad Transceiver	1-69
DS7820	DS8820	Dual Line Receiver	1-72
DS7820A	DS8820A	Dual Line Receiver	1-75
DS78C20	DS88C20	Dual CMQS Compatible Differential Line Receiver	1-79
DS7830	DS8830	Dual Differential Line Driver	1-82
DS7831	DS8831	Dual TRI-STATE® Line Driver	1-85
DS7832	DS8832	Dual TRI-STATE® Line Driver	1-85
DS78LS120	DS88LS120	Dual Differential Line Receiver	1-90
DS78C120	DS88C120	Dual CMQS Compatible Line Receiver	1-97
MM78C29	MM88C29	Quad Single-Ended Line Driver	9-35
MM78C30	MM88C30	Dual Differential Line Driver	9-35

UNBALANCED (COMMON-MODE) TRANSMISSION DRIVERS AND RECEIVERS

Unbalanced data transmission isn't recommended for long lines or fast data rates. Unbalanced line receivers are sensitive to common-mode noise, such as ground IR noise and induced reactive noise. Unbalanced line drivers should employ slew rate control to prevent near end signal plus ground and the circuits were lower cost. New lower cost circuits available today crosstalk to other wires in the cable. Receivers should employ response control and hysteresis. Unbalanced data transmission was preferred because the cabling requires only one wire/ negate the last argument. Many old interfaces such as RS-232 will continue to exist for many years, and so will the application for unbalanced circuits. Line length is a function of data rate (baud) and slew rate. The recommended safe operating line receiver is used which is referenced at the driver ground. Also, it assumes that the interval). Otherwise, line lengths greater than 50 feet are not recommended. The exception to line length is the 360 I/O coaxial interface. The coaxial provides improved grounding area (line length vs baud rate is shown below for 24 AWG wire. It assumes that a differential driver slew rate is between 0.1 to 0.3 times the reciprocal of the baud rate (minimum unit and eliminates crosstalk.

UNBALANCED DRIVERS

Propagation Output	Output	Output	Olem Bote	O	Open-Collector	Power			Device	Device Number	
Delay (ns)	Voltage (V)	Current (mA)	Control	Application	or Open Emitter	Supplies (V)	Standard	Package Package	Commercial 0°C to +70°C	Military -55°C to +125°C	Comment
200	46 or ±9	9+	J/S01			±9 or ±15	RS-232	4	DS1488		
9	7-2	±10	J/S0			±12	RS-232	2	DS75150		
200	+2	±20	CEXT	Yes	TRI-STATE®	5 or ±5	RS-423	4	DS3691	DS1691	
200	±2	±20	CEXT	Yes	TRI-STATE	5 or ±5	MIL 188-114	4	DS3692	DS1692	±10V common-mode range
10	2.4	-100		Yes	Emitter	22	360 1/0	2	DS75121	DS55121	50Ω coax, driver
01	2.4	-100		Yes	Emitter	5	0/1 098	2	DS75123	DS55123	50Ω coax, driver (18M)
17	8.0	100		Yes	Collector	22		4	DS8642		50Ω coax, transceiver
20	0.7	300		Yes	Emitter and	22		2	DS75450	DS55450	
					Collector						
18	0.7	300		Yes	Collector	2		2	DS75451	DS55451	
26	0.7	300		Yes	Collector	2		2	DS75452	DS55452	
18	0.7	300		Yes	Collector	2		2	DS75453	DS55453	
27	0.7	300		Yes	Collector	Z.		2	DS75454	DS55454	

UNBALANCED RECEIVERS

Propagation	Threshold	Input				Power		, 4	Device	Device Number	
Delay (ns)	Sensitivity (V)	Range (V)	Hysteresis (mV)	Kesponse	Strobed or TRI-STATE®	Supplies (V)	Supplies Standard (V)	Package	Commercial 0°C to +70°C	Military -55°C to +125°C	Comments
30	3	±25	250	CEXT		5	RS-232	4	DS1489		
30	ю	±25	1150	CEXT		5	RS-232	4	DS1489A		Preferential in applica-
											CO 1 5 100 1
22	8	±25	800	CEXT		5 or 15	RS-232	4	DS75154		_
20	±0.2	+25	20	CEXT	Strobed	2	RS-423	2	DS88LS120	DS78LS120	Fail-safe
20	±0.2	+25	50	CEXT	Strobed	5 to 15	RS-423	2	DS88C120	DS78C120	Fail-safe
17	±0.2	Z +	30	:	TRI-STATE	5	RS-423	4	DS26LS32	DS26LS32M	
17	±0.3	±15	30		TRI-STATE	5	RS-423	4	DS26LS33	DS26LS33M	
25	±0.1	±15	100		TRI-STATE	5	RS-423	4	DS3486		
50	0.8 to 2	7	009		Strobed	5	0/1 098	က	DS75122	DS55122	50Ω coax, receiver
20	0.8 to 2	7	400		Strobed	5	360 1/0	က	DS75124	DS55124	50Ω coax. receiver (IBM)
17	1.4 to 3.1	2			Open-	5		4	DS8642		50Ω coax, transceiver
					Collector						

BALANCED (DIFFERENTIAL) TRANSMISSION LINE DRIVERS AND RECEIVERS

₹ ğ Balanced data transmission is applicable for long lines in the presence of high common-mode noise. Balanced circuits don't generate much noise and are also not susceptible to commonmode noise, and therefore work well in long lines when cabled with other signals.

effect. Refer to AN-108 and AN-22. The recommended safe operating area (line length vs Line length is a function of data rate (baud) and the combination of IR drop and skin baud rate) is shown for 24 AWG wire.

BALANCED DRIVERS

Device Number

						<u></u>								
	Comments		CMOS comparator	Non-inverting MM88C30		DS8831 without VCC clamp diode				±10V TRI-STATE common-mode	range			
Device Number	Commercial Military 0°C to +70°C -55°C to +125°C	DS7830	MM78C30	MM78C29	DS7831	DS7832	DS55113	DS55114	DS1691	DS1692		DS26LS31M		
		DS8830	MM88C30	MM88C29	DS8831	DS8832	DS75113	DS75114	DS3691	DS3692		DS26LS31	DS3487	
/ " " " " " " " " " " " " " " " " " " "	Package	2	2	2	2	2	2	2	2	2		4	4	
	Standard Package								RS-422			RS-422	RS-422	
Doming	Supplies (V)	2	5 or 15	5 or 15	2	വ	Э	വ	5 or ±5	5 or ±5		5	5	
	TRI-STATE® Open-Collector						Optional	Optional						
	TRI-STATE®				TRI-STATE	TRI-STATE	TRI-STATE		TRI-STATE	TRI-STATE		TRI-STATE	TRI-STATE	
Darty I in	Application				Yes	Yes	Yes		≺es	≺es		Yes	Yes	
/(//)	Delay (ns) IOL (mA) IOH (mA) Application	1.8/40	2.9/–57	2.9/-57	1.8/–40	1.8/40	2/-40	2/-40	2/-20	2/-20		2.5/~20	2/–20	
////	10L (mA)	0.5/40	0.4/11	0.4/11	0.5/40	0.5/40	0.4/40	0.4/40	-2/20	-2/20		0.5/40	0.5/48	
Propagation Ve. (VV Ve.) (VV Party Line	Delay (ns)	10	100	100	10	10	13	15	200	200		12	15	

BALANCED RECEIVERS

	Throshold	Through Common Mode				Power			Device	Device Number	
Propagation	Secretarion	Pand	Hysteresis	Response	Strobed or		Supplies Standard	Circuits/	Commercial	Military	Comments
Delay (ns)	(mV)) (S)	(m/)	Control	TRI-STATE®			Package	0°C to +70°C	–55°C to +125°C	
70	+1000	+15		Yes	Strobed	5		2	DS8820	DS7820	
0 6	1000	+ + - \		Yes	Stroped	Ŋ		2	DS8820A	DS7820A	
000	200	+10	Ę.	λ γ	Strobed	5 to 15	RS-422	2	DS88C20	DS78C20	CMOS compatible
90	007	2 0	3 6	- >	Strobed	7 17	RS-422	2	DS88C120	DS78C120	Fail-safe, CMOS
09	nnZ+	2	O.	g -	2000	2		1			compatible
C	+200	+10	20	Yes	Strobed	Ŋ	RS-422	2	DS88LS120	DS78LS120	Fail-safe
8 8	+500	1+ 1	<u> </u>	Yes	Strobed	2		7	DS75115	DS55115	
17	+200	+10	80		TRI-STATE	2	RS-422	4	DS26LS32		
17	+300	+:	40		TRI-STATE	വ	RS-422	4	DS26LS33		
25	+200	01+1	80		TRI-STATE	2	RS-422	4	DS3486		
10	+25	·			TRI-STATE	÷5		4	DS3650	DS1650	
5 5	+25	÷			Strobed	÷		4	DS3652	DS1652	
2 5	+25	÷			Strobed	+1		2	DS75107	DS55107	
<u>;</u> ;	+10) (°			Strobed	1+2		2	DS75207	DS55207	
17	+ - + C	÷ +			Strobed	1+		2	DS75108	DS55108	
17	+10	<u>۳</u>			Strobed	+1 2		2	DS75208	DS55208	
, 1	+ 5) K			TRI-STATE	+1		2	DS3603	DS1603	
	7	2 +			TRI-STATE	£		2	DS3604	DS1604	

Note. Voltage comparators (such as the LM710) have good threshold sensitivity and good common-mode range and, in turn, also make good line receivers. These comparators generally use 2 power supplies (±15V), which may not be available in some digital systems.

Transmission Line Drivers/Receivers

DS1488 quad line driver

general description

The DS1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS-232C and CCITT Recommendation V. 24.

features

- Current limited output
- ±10 mA typ
- Power-off source impedance
- 300Ω min
- Simple slew rate control with external capacitorFlexible operating supply range
- Inputs are DTL/TTL compatible

schematic and connection diagrams

Dual-In-Line Package V 14 13 12 11 10 9 8 TOP VIEW

Order Number DS1488J or DS1488N See NS Package J14A or N14A

typical applications

RS232C Data Transmission

*Optional for noise filtering

absolute maximum ratings (Note 1)

Supply Voltage $\begin{array}{ccc} V^{+} & & +15V \\ V^{-} & & -15V \leq V_{1N} \leq 7.0V \\ \text{Input Voltage (V_{1N})} & -15V \leq V_{1N} \leq 7.0V \\ \text{Output Voltage} & & \pm 15V \\ \text{Operating Temperature Range} & 0^{\circ}\text{C to} +75^{\circ}\text{C} \\ \text{Storage Temperature (Soldering, 10 sec)} & & 300^{\circ}\text{C} \\ \end{array}$

electrical characteristics (Notes 2, 3 and 4)

	PARAMETER		CONDITIONS	MiN	TYP	MAX	UNI
l _{IL}	Logical "0" Input Current	V _{IN} = 0V			-1.0	-1.3	mA
ін	Logical "1" Input Current	V _{IN} = +5.0V			0.005	10.0	μА
/он	High Level Output Voltage	$R_{L} = 3.0 \text{ k}\Omega,$ $V_{IN} = 0.8 \text{ V}$	$V^{+} = 9.0V, V^{-} = -9.0V$ $V^{+} = 13.2V, V^{-} = -13.2V$	6.0 9.0	7.0		V
V _{OL}	Low Level Output Voltage	$R_L = 3.0 \text{ k}\Omega$, $V_{IN} = 1.9 \text{ V}$	V ⁺ = 9.0V, V ⁻ = -9.0V V ⁺ = 13.2V, V ⁻ = -13.2V		-6.8 -10.5	6.0 9.0	\
los+	High Level Output Short-Circuit Current	V _{OUT} = 0V, V	<u> </u>	-6.0	-10.0	-12.0	m/
os ⁻	Low Level Output Short-Circuit Current	V _{OUT} = 0V, V	IN ≈ 1.9V	6.0	10.0	12.0	m
R _{out}	Output Resistance	$V^{+} = V^{-} = 0V$,	, V _{OUT} = ±2V	300			2
cc*	Positive Supply Current		V ⁺ = 9.0V, V ⁻ = -9.0V		15.0	20.0	m
	(Output Open)	V _{IN} = 1.9V	V ⁺ = 12V, V ⁻ = -12V		19.0	25.0	m.
			V ⁺ = 15V, V [−] = −15V		25.0	34.0	m
			V ⁺ = 9.0V, V ⁻ = -9.0V		4.5	6.0	m
		V _{IN} = 0.8V	V ⁺ = 12V, V = −12V		5.5	7.0	m
			V ⁺ = 15V, V ⁻ = 1JV		8.0	12.0	m
lcc-	Negative Supply Current		$V^{+} = 9.0V, V^{-} = -9.0V$		-13.0	17.0	m
	(Output Open)	V _{IN} = 1.9V	$V^+ = 12V, V^- = -12V$		-18.0	-23.0	m
			V ⁺ = 15V, V ⁻ = -15V		-25.0	-34.0	m
			$V^{+} = 9.0V, V^{-} = -9.0V$		-0.001	-0.015	m
		V _{IN} = 0.8V	$V^+ = 12V, V^- = -12V$		-0.001	-0.015	m
			$V^+ = 15V, V^- = -15V$		-0.01	-2.5	m
P _d	Power Dissipation	$V^{+} = 9.0V, V^{-}$	= -9.0V		252	333	m'
		V ⁺ = 12V, V =	= -12V		444	576	m'

switching characteristics $(V_{CC} = 9V, V_{EE} = -9V, T_A = 25^{\circ}C)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
_t _{pd1}	Propagation Delay to a Logical "1"	$R_L = 3.0 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ}\text{C}$		230	350	ns
_t _{ed0}	Propagation Delay to a Logical "0"	$R_L = 3.0 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $T_A \approx 25^{\circ}\text{C}$		70	175	ns
_t _r	Rise Time	$R_L = 3.0 \text{ k}\Omega, C_L = 15 \text{ pF}, T_A \approx 25^{\circ}\text{C}$		75	100	ns
_t _f	Fall Time	$R_L = 3.0 \text{ k}\Omega$, $C_L = 15 \text{ pF}$, $T_A = 25^{\circ}\text{C}$		40	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1488.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

F

applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the DS1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$C = I_{SC} (\Delta T / \Delta V)$$

where C is the required capacitor, I_{SC} is the short circuit current value, and $\Delta V/\Delta T$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

typical applications (con't)

DTL/TTL-to-MOS Translator

DTL/TTL-to-HTL Translator

DTL/TTL-to-RTL Translator

ac load circuit

switching time waveforms

typical performance characteristics

Output Voltage and Current-Limiting Characteristics

Transmission Line Drivers/Receivers

DS1489/DS1489A quad line receiver

general description

The DS1489/DS1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C. The DS1489/DS1489A meet and exceed the specifications of MC1489/ MC1489A and are pin-for-pin replacements. The DS1489/DS1489A are available in 14-lead ceramic dual-in-line package.

features

- Four totally separate receivers per package
- Programmable threshold
- 8uilt-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand ±30V

schematic and connection diagrams

Dual-In-Line Package

Order Number DS1489J, DS1489AJ, DS1489N or DS1489AN See NS Package J14A or N14A

ac test circuit and voltage waveforms

typical applications

RS232C Data Transmission

MOS to TTL/DTL Translator

absolute maximum ratings (Note 1)

The following apply for $T_A = 25^{\circ}C$ unless otherwise specified.

 Power Supply Voltage
 10V

 Input Voltage Range
 ±30V

 Output Load Current
 20 mA

Power Dissipation (Note 2)

Operating Temperature Range 0° C to +75 $^{\circ}$ C Storage Temperature Range -65° C to +150 $^{\circ}$ C

electrical characteristics (Notes 2, 3 and 4)

DS1489/DS1489A . The following apply for V $_{CC}$ = 5.0V ±1%, 0°C \leq T $_{A}$ \leq +75°C unless otherwise specified.

	PARAMETER	cc	NDITIONS	;	MIN	TYP	MAX	UNITS
V _{TH}	Input High Threshold Voltage	T _A = 25°C, V _{OUT}	≤ 0.45∨,	DS1489	1.0		1.5	V
•••		I _{OUT} = 10 mA		DS1489A	1.75		2.25	V
V _{TL}	Input Low Threshold Voltage	T _A = 25°C, V _{OUT}	≥ 2.5V, I _O	UT = -0.5 mA	0.75		1.25	
I _{IN}	Input Current	V _{IN} = +25V			+3.6	+5.6	+8.3	mA
114	·	V _{IN} = -25V			-3.6	-5.6	-8.3	mΑ
		V _{IN} = +3V			+0.43	+0.53		mΑ
		V _{IN} = -3V			-0.43	−0.53		mA
V _{OH}	Output High Voltage		V _{IN} = 0.7	5V	2.6	3.8	5.0	V
0,,	· · ·	$I_{OUT} = -0.5 \text{ mA}$	Input = O		2.6	3.8	5.0	V
VoL	Output Low Voltage	V _{IN} = 3.0V, I _{OUT}	= 10 mA			0.33	0.45	V
I _{sc}	Output Short Circuit Current	V _{IN} = 0.75V				3.0		mA
Icc	Supply Current	V _{IN} = 5.0V				14	26	mA
P _d	Power Dissipation	V _{IN} = 5.0V				70	130	mW

switching characteristics (V_{CC} = 5V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Input to Output "High" Propagation Delay	R _L = 3.9k, (Figure 1) (ac Test Circuit)		28	85	ns
t _{pd0}	Input to Output "Low" Propagation Delay	$R_L = 390\Omega$, (Figure 1) (ac Test Circuit)		20	50	ns
t _r	Output Rise Time	R _L = 3.9k, (Figure 1) (ac Test Circuit)		110	175	ns
t _f	Output Fall Time	$R_L = 390\Omega$, (Figure 1) (ac Test Circuit)		9	20	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2. Unless otherwise specified min/max limits apply across the 0°C to +75°C temperature range for the DS1489 and DS1489A.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: These specifications apply for response control pin = open.

Transmission Line Drivers/Receivers

DS1603/DS3603, DS3604, DS55107/DS75107, DS55108/DS75108, DS75207, DS75208 dual line receivers

general description

The nine products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers or MOS sensing, any of the products may effectively be used as voltage comparators, level translators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the DS55109/DS75109 and DS55110/DS75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems. The improved input sensitivity and delay specifications of the DS75207, DS75208 and DS3604 make them ideal for sensing high performance MOS memories as well as high sensitivity line receivers and voltage comparators. TRI-STATE® products enhance bused organizations.

features

- Diode protected input stage for power "OFF" condition
- 17 ns typ high speed
- TTL compatible
- ±10 mV or ±25 mV input sensitivity
- ±3V input common-mode range
- High input impedance with normal V_{CC} , or $V_{CC} = 0V$
- Strobes for channel selection
- TRI-STATE outputs for high speed buses
- Dual circuits
- Sensitivity antd. over full common-mode range
- Logic input clamp diodes—meets both "A" and "B" version specifications
- ±5V standard supply voltages

connection diagrams

Order Number DS55107J, DS75107J, DS55108J, DS75108J, DS75207J or DS75208J See NS Package J14A

Order Number DS75107N, DS75108N, DS75207N or DS75208N See NS Package N14A

Order Number DS55107W or DS55108W See NS Package W14A

Order Number DS1603J, DS3603J DS3604J or DS1603W See NS Package J14A or W14A

Order Number DS3603J, DS3603N, DS3604J or DS3604N See NS Package N14A

product selection guide

TEMPERATURE→ PACKAGE→	$55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ CAVITY DIP	$0^{\circ}C \le T_{A}$ CAVITY OR N	_
INPUT SENSITIVITY→ OUTPUT LOGIC+	: 25 mV	±25 mV	±10 mV
TTL Active Pull-up TTL Open Callector TTL TRI STATE	D\$55107 D\$55708 D\$1603	DS75107 DS75108 DS3603	DS75207 DS75208 DS3604

absolute maximum ratings (Notes 1, 2 and 3)

Supply Voltage, V _{CC} ⁺	7V	Strobe Input Voltage	5 5 V
Supply Voltage, V _{CC} ⁻	7V	Storage Temperature Range	-65° C to +150° C
Differential Input Voltage	-6V	Power Dissipation	600 mW
Common Mode Input Voltage	-5V	Lead Temperature (Soldering, 10 sec)	300° C

operating conditions

		DS55107, DS55108, DS1603		DS	75107, DS7520 75108, DS7520 83603, DS360	80
	MIN	NOM	MAX	MIN	NOM	MAX
Supply Voltage VCC+	4 5V	5V	5 5 V	4 75V	5V	5 25V
Supply Voltage VCC	4 5 V	5V	-5 5∨	4 75∨	5∨	5 25∨
Operating Temperature Range	55 C	to	+125 C	0 C	to	+70°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics"

provides conditions for actual device operation. Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1603, DS55107 and DS55108 and across the 0° C to $+70^{\circ}$ C range for the DS3603, DS3604, DS75107, DS75108. All typical values are for T_A = 25° C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical applications

Line Receiver Used in a Party-Line or Data-Bus System

Line Receiver Used in MOS Memory System

schematic diagrams

DS55107/DS75107, DS75207 DS55108/DS75108, DS75208

Note 1. 1/2 o the dual circuit is shown

Note 2" *Indicates connections common to second half of dual circuit

Note 3 Components shown with dash lines are applicable to the DS55107, DS75107 and DS75207 only

DS1603/DS3603, DS3604

-1.5

DS55107/DS75107, DS55108/DS75108

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I _{IH}	High Level Input Current Into A1, B1, A2 or B2	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{ID} = 0.5V, V_{IC} = -3V \text{ to } 3V$		30	75	μΑ
l _{1L}	Low Level Input Current Into A1, B1, A2 or B2	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{ID} = -2V, V_{IC} = -3V \text{ to } 3V$			-10	μΑ
I _{IH}	High Level Input Current Into G1 or G2	$V_{CC+} = Max$, $V_{IH(S)} = 2.4V$ $V_{CC-} = Max$ $V_{IH(S)} = Max V$	CC+		40 1	μA mA
I _{IL}	Low Level Input Current Into G1 or G2	V_{CC^+} = Max, V_{CC^-} = Max, $V_{IL(S)}$ = 0.4V			-1.6	mA
I _{IH}	High Level Input Current Into S	$V_{CC+} = Max$, $V_{IH(S)} = 2.4V$ $V_{CC-} = Max$ $V_{IH(S)} = Max V$	CC+		80	μA mA
I _{IL}	Low Level Input Current Into S	$V_{CC+} = Max, V_{CC-} = Max$ $V_{IL(S)} = 0.4V$			-3.2	mA
V _{OH}	High Level Output Voltage	$V_{CC^+} = Min, V_{CC^-} = Min,$ $I_{LOAD} = -400\mu A, V_{ID} = 25 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V, \text{ (Note 3)}$	2.4			V
V _{OL}	Low Level Output Voltage	$V_{CC+} = Min, V_{CC-} = Min,$ $I_{SINK} = 16 \text{ mA}, V_{ID} = -25 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$			0.4	V
Гон	High Level Output Current	$V_{CC+} = Min, V_{CC-} = Min$ $V_{OH} = Max V_{CC+}$ (Note 4)			250	μΑ
Ios	Short Circuit Output Current	$V_{CC^+} = Max, V_{CC^-} = Max,$ (Notes 2 and 3)	-18		-70	m A
I _{CCH+}	High Logic Level Supply Current From V _{CC}	V_{CC} , = Max, $V_{CC^{-}}$ = Max, V_{ID} = 25 mV, T_A = 25°C		18	30	mA
I _{CCH} -	High Logic Level Supply Current From V _{CC}	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{ID} = 25 \text{ mV}, T_A = 25^{\circ}\text{C}$		-8.4	-15	mA

switching characteristics (V_{CC+} = 5V, V_{CC-} = -5V, T_A = 25°C)

Input Clamp Voltage on G or S

	PARAMETER	ER CONDITIONS		MIN	TYP	MAX	UNITS
t _{PLH(D)}	Propagation Delay Time, Low to	$R_{L} = 390\Omega, C_{L} = 50 pF,$	(Note 3)		17	25	ns
	High Level, From Differential Inputs A and B to Output	(Note 1) (No	(Note 4)		19	25	ns
t _{PHL(D)}	Propagation Delay Time, High to	R _L = 390½, C _L = 50 pF, (No	(Note 3)		17	25	ns
	Low Level, From Differential Inputs A and B to Output		(Note 4)		19	25	ns
telh(s)	Propagation Delay Time, Low to		(Note 3)		10	15	ns
	High Level, From Strobe Input G or S to Output	$R_L = 390\Omega, C_L = 50 \text{ pF}$	(Note 4)		13	20	ns
t _{PHL(S)}	Propagation Delay Time, High to	5 2020 0 50 5	(Note 3)		8	15	ns
	Low Level, From Strobe Input G or S to Output	$R_L = 390\Omega$, $C_L = 50 pF$	(Note 4)		13	20	ns

V_{CC+} = Min, V_{CC-} = Min,

 $I_{1N} = -12 \text{ mA}, T_A = 25^{\circ}\text{C}$

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5V on output. Note 2: Only one output at a time should be shorted.

Note 3: DS55107/DS75107 only. Note 4: DS55108/DS75108 only.

DS75207, DS75208

electrical characteristics (0°C \leq $T_A \leq$ +70°C)

	PARAMETER	CON	IDITIONS	MIN	TYP	MAX	UNITS
l _{iH}	High Level Input Current Into A1, B1, A2 or B2	$V_{CC^{+}} = Max, V_{CC^{+}}$ $V_{ID} = 0.5V, V_{IC}$			30	75	μΑ
I _{IL}	Low Level Input Current Into A1, B1, A2 or B2	$V_{CC+} = Max, V_{iD}$ $V_{iD} = -2V, V_{iC}$				-10	μΑ
I _{IH}	High Level Input Current Into G1 or G2	V _{CC+} = Max, V _{CC} = Max	$V_{IH(S)} = 2.4V$ $V_{IH(S)} = Max V_{CC+}$			40	μA mA
I _{IL}	Low Level Input Current Into G1 or G2	$V_{CC+} = Max, V_{IL(S)}$ $V_{IL(S)} = 0.4V$				-1.6	mA
I _{IH}	High Level Input Current Into S	V _{CC+} = Max,	V _{IH(S)} = 2.4V			80	μΑ
_		V _{CC} = Max	V _{IH(S)} = Max V _{CC+}			2	mA
I _{IL}	Low Level Input Current Into S	$V_{CC+} = Max, V$ $V_{IL(S)} = 0.4V$	_{CC} — = Max,			-3.2	mA
V _{DH}	High Level Output Voltage	$V_{CC+} = Min, V_{CC}$ $I_{LOAD} = -400\mu$ $V_{IC} = -3V \text{ to } 3$	A, V _{ID} = 10 mV,	2.4	·		V
V _{DL}	Low Level Output Voltage	$V_{CC+} = Min, V_{CC+}$ $I_{SINK} = 16 \text{ mA},$ $V_{IC} = -3V \text{ to } 3$	$V_{1D} = -10 \text{ mV},$			0.4	٧
I _{OH}	High Level Output Current	$V_{CC+} = Min, V_C$ $V_{OH} = Max V_{CC}$, ,			250	μΑ
los	Short Circuit Output Current	V _{CC+} = Max, V _{cc+} (Notes 2, 3 and	00	-18		-70	mA
I _{CCH+}	High Logic Level Supply Current From V _{CC}	V _{CC+} = Max, V ₀ V _{ID} = 10 mV, T	• •		18	30	mA
I _{CCH} -	High Logic Level Supply Current From V _{CC}	V _{CC+} = Max, V ₀ V _{ID} = 10 mV, T	,		-8.4	-15	mA
Vı	Input Clamp Voltage on G or S	$V_{CC+} = Min, V_{CC+}$ $I_{IN} = -12 \text{ mA}, T_{CC}$			1	-1.5	V

switching characteristics (V_{CC^+} = 5V, V_{CC^-} = -5V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH(O)}	Propagation Delay Time, Low-to- High Level, From Differential Inputs A and B to Output	R _L = 470Ω, C _L = 15 pF, (Note 1)	: 1)		35	ns
t _{PHL(D)}	Propagation Delay Time, High-to- Low Level, From Differential Inputs A and B to Output	R _L = 470Ω, C _L = 15 pF, (Note 1)			20	ns
t _{PLH(S)}	Propagation Delay Time, Low-to- High Level, From Strobe Input G or S to Output	R _L = 470Ω, C _L = 15 pF			17	ns
t _{PHL(S)}	Propagation Delay Time, High-to- Low Level, From Strobe Input G or S to Output	R _L = 470Ω, C _L = 15 pF			17	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5V on output.

Note 2: Only one output at a time should be shorted.

Note 3: DS75207 only.

Note 4: DS75208 only.

DS1603/DS3603

electrical characteristics $(T_{MIN} < T_{\Delta} < T_{M\Delta X})$

	PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS
I _{IH}	High Level Input Current Into A1, B1, A2 or B2	$V_{CC+} = Max$, $V_{CC-} = Max$, $V_{ID} = 0.5V$, $V_{IC} = -3V$ to $3V$			30	75	μΑ
I _{IL}	Low Level Input Current Into A1, B1, A2 or B2	$V_{CC+} = Max$, $V_{CC-} = Max$, $V_{ID} = -2V$, $V_{IC} = -3V$ to $3V$				-10	μΑ
I _{IH}	High Level Input Current	V _{CC+} = Max,	V _{IH(S)} = 2.4V			40	μА
	Into G1, G2 or D	V _{CC} - = Max	V _{IH(S)} = Max V _{CC+}			1	mA_
I _{IL}	Low Level Input Current Into D	$V_{CC+} = Max, V_C$ $V_{IL(D)} = 0.4V$	_{CC} - = Max,			-1.6	mA
I _{IL}	Low Level Input Current	V _{CC+} = Max,	V _{IH(D)} = 2V			-40	μΑ
	Into G1 or G2	$V_{CC-} = Max,$ $V_{IL(G)} = 0.4V$	V _{IL(D)} = 0.8V			-1.6	mA
V _{OH}	High Level Output Voltage	$V_{CC+} = Min, V_{CC-} = Min,$ $I_{LOAD} = -2 \text{ mA}, V_{ID} = 25 \text{ mV}$ $V_{(L(D)} = 0.8V, V_{IC} = -3V \text{ to } 3V$		2.4			V
VOL	Low Level Output Voltage	0	$c_{C-} = Min,$ $V_{ID} = -25 \text{ mV},$ $V_{IC} = -3V \text{ to } 3V$			0.4	V
lop	Output Disable Current	V _{CC+} = Max, V _{CC−} = Max	V _{OUT} = 2.4V			40	μΑ
		V _{IH(D)} = 2V	V _{OUT} = 0.4V			-40	μΑ
los	Short Circuit Output Current	V _{CC+} = Max, V ₁ V _{CC-} = Max, (N		-18		-70	mA
I _{CCH} +	High Logic Level Supply Current From V _{CC+}	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{ID} = 25 \text{ mV}, T_A = 25^{\circ}\text{C}$			2B	40	mA
I _{CCH} -	High Logic Level Supply Current From V _{CC} -	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{ID} = 25 \text{ mV}, T_A = 25^{\circ}\text{C}$			−B.4	-15	mA
Vı	Input Clamp Voltage on G or D	$V_{CC+} = Min, V_C$ $I_{IN} = -12 \text{ mA},$			-1	-1.5	v

switching characteristics $(V_{CC+} = 5V, V_{CC-} = -5V, T_A = 25^{\circ}C)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH} (D)	Propagation Delay Time, Low-to- High Level, From Differential Inputs A and B to Output	$R_L = 390\Omega$, $C_L = 50$ pF, (Note 1)		17	25	ns
t _{PHL} (D)	Propagation Delay Time, High-to- Low Level, From Differential Inputs A and B to Output	$R_L = 390\Omega$, $C_L = 50 pF$, (Note 1)		17	25	ns
t _{PLH} (S)	Propagation Delay Time, Low-to- High Level, From Strobe Input G to Output	R _L = 390Ω, C _L ≈ 50 pF		10	15	ns
t _{PHL} (S)	Propagation Delay Time, High-to- Low Level, From Strobe Input G to Output	$R_L = 390\Omega, C_L \approx 50 pF$		В	15	ns
t _{1H}	Disable Low-to-High to Output High to Off	$R_L = 390\Omega$, $C_L = 5 pF$			20	ns
tон	Disable Low-to-High to Output Low to Off	$R_L = 390\Omega$, $C_L = 5 pF$			30	ns
t _{H1}	Disable High-to-Low to Output Off to High	$R_L = 1k \text{ to } 0V, C_L = 50 \text{ pF}$			25	ns
t _{H0}	Disable High-to-Low to Output Off to Low	R _L = 390Ω, C _L = 50 pF			25	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5V on output.

Note 2: Only one output at a time should be shorted.

$\begin{tabular}{ll} \textbf{DS3604} \\ \textbf{electrical characteristics} & (0^{\circ}C \le T_A \le +70^{\circ}C) \end{tabular}$

	PARAMETER	CONI	DITIONS	MIN	TYP	MAX	UNITS
I _{IH}	High Level Input Current Into A1, 81, A2 or 82	$V_{CC+} = Max, V_C$ $V_{ID} = 0.5V, V_{IC}$			30	75	μΑ
I _{IL}	Low Level Input Current Into A1, 81, A2 or B2	$V_{CC+} = Max, V_{CC}$ $V_{ID} = -2V, V_{IC}$				-10	μΑ
I _{tH}	High Level Input Current	V _{CC+} = Max,	V _{IH(S)} = 2.4V			40	μΑ
	Into G1, G2 or D	V _{CC} = Max	V _{IH(S)} = Max V _{CC+}			1	mA
I _{IL}	Low Level Input Current Into D	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{IL(D)} = 0.4V$				-1.6	mA
ارر	Low Level Input Current Into G1 or G2	V _{CC+} = Max, V _{CC-} = Max,	V _{IH(D)} = 2V			-40	μΑ
		V _{IL(G)} = 0.4V	$V_{IL(D)} = 0.8V$			-1.6	mA
V _{он}	High Level Output Voltage	$V_{CC+} = Min, V_{CC-} = Min,$ $I_{LOAD} = -2 \text{ mA}, V_{ID} = 10 \text{ mV}$ $V_{IL(D)} = 0.8V, V_{IC} = -3V \text{ to } 3V$		2.4			٧
V _{OL}	Low Level Output Voltage	$V_{CC+} = Min, V_{CC-} = Min,$ $I_{SINK} = 16 \text{ mA}, V_{ID} = -10 \text{ mV},$ $V_{IL(D)} = 0.8V, V_{IC} = -3V \text{ to } 3V$				0.4	٧
I _{OD}	Output Disable Current	V _{CC+} = Max, V _{CC-} = Max,	V _{OUT} = 2.4V			40	μΑ
		V _{IH(D)} = 2V	$V_{OUT} = 0.4V$			-40	μΑ
los	Short Circuit Output Current	V _{CC+} = Max, V _{IL} V _{CC-} = Max, (No		-18		-70	mA
I _{CCH+}	High Logic Level Supply Current From V _{CC+}	$V_{CC^+} = Max, V_{CC^-} = Max,$ $V_{ID} = 10 \text{ mV}, T_A = 25^{\circ}\text{C}$			28	40	mA
I _{CCH}	High Logic Level Supply Current From V _{CC} -	$V_{CC+} = Max, V_{CC-} = Max,$ $V_{1D} = 10 \text{ mV}, T_A = 25^{\circ}\text{C}$			-8.4	-15	mA
Vi	Input Clamp Voltage on G or D	V _{CC+} = Min, V _{CC}	,		-1	-1.5	V

switching characteristics (V_{CC+} = 5V, V_{CC-} = -5V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	мах	UNITS
t _{PLH(O)}	Propagation Delay Time, Low·to· High Level, From Differential Inputs A and B to Output	R _L = 470Ω, C _L = 15 pF, (Note 1)			35	ns
t _{PHL(D)}	Propagation Delay Time, High-to- Low Level, From Differential Inputs A and 8 to Output	R _L = 470Ω, C _L = 15 pF, (Note 1)		-	20	ns
t _{PLH(S)}	Propagation Delay Time, Low-to- High Level, From Strobe Input G to Output	R _L = 470Ω, C _L = 15 pF			17	ns
t _{PHL(S)}	Propagation Delay Time, High-to- Low Level, From Strobe Input G to Output	R _L = 470\$2, C _L = 15 pF			17	ns
t _{1H}	Disable Low-to-High to Output High to Off	$R_L = 470\Omega$, $C_L = 5 pF$			20	ns
t _{OH}	Disable Low-to-High to Output Low to Off	$R_L = 470\Omega, C_L = 5 pF$			30	ns
t _{H1}	Disable High to-Low to Output Off to High	R _L = 1k to 0V, C _L = 15 pF			25	ns
t _{HO}	Disable High-to-Low to Output Off to Low	R _L = 470\$2, C _L = 15 pF			25	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5V on output.

Note 2: Only one output at a time should be shorted.

National Semiconductor

DS1650/DS3650, DS1652/DS3652 **Quad Differential Line Receivers**

General Description

The DS1650/DS3650 and DS1652/DS3652 are TTL compatible quad high speed circuits intended primarily for line receiver applications. Switching speeds have been enhanced over conventional line receivers by the use of Schottky technology, and TRI-STATE® strobing is incorporated offering a high impedance output state for bussed organizations.

The DS1650/DS3650 has active pull-up outputs and offers a TRI-STATE strobe, while the DS1652/DS3652 offers open collector outputs providing implied "AND" operation.

The DS1652/DS3652 can be used for address decoding as illustrated below. All outputs of the DS1652/DS3652 are tied together through a common resistor to 5V. In

Transmission Line Drivers/Receivers

this configuration the DS1652/DS3652 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for

Features

address decoding.

- High speed
- TTL compatible
- Input sensitivity

±25 mV

- TRI-STATE outputs for high speed busses
- Standard supply voltages

+51/

Pin and function compatible with MC3450 and MC3452

Connection Diagram

Dual-In-Line Package ۷۲۲ DIITR VFF DUT D +IN D DUT C DUT A TOP VIEW

DS3650J, DS3652J, DS3650N or DS3652N See NS Package J16A or N16A

Order Number DS1650J, DS1652J,

Truth Table

		OUT	PUT
INPUT	STROBE	DS1650/ DS3650	DS 1652/ DS 3652
$V_{1D} \ge 25 \text{ mV}$	L	н	Open
	Н	Open	Open
$-25~\text{mV} \leq \text{V}_{1D} \leq 25~\text{mV}$	L	×	×
	Н	Open	Open
$V_{1D} \le -25 \text{ mV}$	L	L	L
	н	Open	Open

L = Low Logic State

Open = TRI-STATE

H = High Logic State

X = Indeterminate State

Typical Applications

Implied "AND" Gating ADD 10 ARR 2 O ADD 3 C DS3652

Wired "OR" Data Selecting Using TRI-STATE Logic

Absolute Maximum Ratings	(Note 1)	Operating Condit	ions		
-		· -	MIN	MAX	UNITS
Power Supply Voltages VCC VEE	+7.0 V _{DC} -7.0 V _{DC}	Supply Voltage, V _{CC} DS1650, DS1652 DS3650, DS3652	4.5 4.75	5.5 5.25	V _{DC}
Differential-Mode Input Signal Voltage Range, V _{IDR} Common-Mode Input Voltage Range, V _{ICR}	±6.0 V _{DC} ±5.0 V _{DC}	Supply Voltage, VEE DS1650, DS1652 DS3650, DS3652	4.5 4.75	-5.5 -5.25	V _{DC} V _{DC}
Strobe Input Voltage, VI(S)	5.5 V _{DC} C to +150° C	Operating Temperature, T _A DS1650, DS1652 DS3650, DS3652	-55 0	+125 +70	°C °C
Lead Temperature (Soldering, 10 Seconds)	300 C	Output Load Current, IOL		16	mA
		Differential-Mode Input Voltage Range, V _{IDR}	-5.0	+5.0	V _{DC}
		Common-Mode Input Voltage Range, V _{ICR}	-3.0	+3.0	V _{DC}
Electrical Characteristics		Input Voltage Range (Any Input to GND), V _{IR}	-5.0	+3.0	v _{DC}
(V _{CC} = 5.0 V _{DC} , V _{EE} = -5.0 V _{DC} , Min \leq T	$A \leq Max$, unless of	therwise noted) (Notes 2 and 3)			

	PARAMETER	co	NOITIONS	MIN	TYP	MAX	UNIT
V _{IS}	Input Sensitivity, (Note 5) (Common-Mode Voltage Range = $-3V \le V_{IN} \le 3V$)	Min ≤ V _{CC} ≤	_			±25.0	m\
hн(I)	High Level Input Current to Receiver Input	(Figure 5)				75	μ
I _I L(I)	Low Level Input Current to Receiver Input	(Figure 6)				-10	μ.
IH(S)	High Level Input Current to Strobe Input		V _{1H(S)} = 2.4V, DS1650, DS1652			100	μ
		(Figure 3)	V _{IH(S)} = 2.4V, DS3650, DS3652			40	μ.
			VIH(S) = VCC			1	m.
IIL(S)	Low Level Input Current to Strobe Input		V _{IH(S)} = 0.4V			-1.6	m
Vон	High Level Output Voltage		DS1650, DS3650	2.4			٧D
ICEX	High Level Output Leakage Current	(Figure 1)	DS1652, DS3652			250	μ
VOL	Low Level Output Voltage	(5: 4)	DS3650, DS3652			0.45	
		(Figure 1)	DS1650, DS1652			0.50	\ \rangle D
los	Short-Circuit Output Current (Note 4)	(Figure 4)	DS1650/DS3650	-18		-70	m
OFF	Output Disable Leakage Current		DS1650		-	100	μ
0.,		(Figure 7)	D\$3650			40	μ
Іссн	High Logic Level Supply Current from VCC	(Figure 2)			45	60	m
IEEH	High Logic Level Supply Current from VEE	(Figure 2)			-17	-30	m

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS3650, DS3652 and the -55° C to $+125^{\circ}$ C range for the DS1650, DS1652. All typical values are for T_A = 25° C, V_{CC} = 5V and V_{EE} = -5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: A parameter which is of primary concern when designing with line receivers is, what is the minimum differential input voltage required as the receiver input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, bias currents, network source resistances, and voltage gain. As a design convenience, the DS1650, DS1652 and the DS3650, DS3652 are specified to a parameter called input sensitivity (V_{IS}). This parameter takes into consideration input offset currents and bias currents and guarantees a minimum input differential voltage to cause a given output logic state with respect to a maximum source impedance of 200 Ω at each input.

Switching Characteristics $(V_{CC} = 5 V_{DC}, V_{EE} = -5 V_{DC}, T_A = 25^{\circ}C \text{ unless otherwise noted})$

	PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS	
tPHL(D)	High-to-Low Logic Level Propagation Delay Time (Differential Inputs)	(5)	DS1650/DS3650 DS1652/DS3652		21 20	25 25	ns ns
^t PLH(D)	Low-to-High Logic Level Propagation Delay Time (Differential Inputs)	(Figure 8)	DS1650/DS3650 DS1652/DS3652		20	25 25	ns ns
tPOH(S)	TRI-STATE to High Logic Level Propagation Delay Time (Strobe)		DS1650/DS3650		16	21	ns
tPHO(S)	High Logic Level to TRI-STATE Propagation Delay Time (Strobe)	- (Figure 9)	DS1650/DS3650		7	18	ns
tPOL(S)	TRI-STATE to Low Logic Level Propagation Delay Time (Strobe)		DS1650/DS3650		19	27	ns
tPLO(S)	Low Logic Level to TRI-STATE Propagation Delay Time (Strobe)		DS1650/DS3650		14	29	ns
tPHL(S)	High-to-Low Logic Level Propagation Delay Time (Strobe)	(Figure 10)	DS1652/DS3652		16	25	ns
tPLH(S)	Low-to-High Logic Level Propagation Delay Time (Strobe)		DS1652/DS3652		13	25	ns

Electrical Characteristic Test Circuits

	V1		V2		V3		V4		
	DS1650/ DS3650	DS1652/ DS3652	DS1650/ DS3650	DS1652/ DS1652	DS1650/ DS1650	DS1652/ DS1652	DS1650/ DS1650	DS1652/ DS1652	l1
νон	+2.975V		+3.0V		+3.0V		GND		+0.4 mA
	-3.0∨		−2.97 5 ∨		GND		−3.0∨		+0.4 mA
ICEX		+2.975V		+3.0V		+3.0V		GND	
		-3.0V		−2 975V		GND	1	−3.0V	Ì
VOL	+3.0V	+3.0V	+2.97 5 V	+2 97 5 V	GND	GND	+3.0V	+3.0V	-16 mA
	-2.97 5 V	−2.975V	-3.0V	-3.0V	-3.0∨	-3.0V	GND	GND	−16 mA

Channel A shown under test. Other channels are tested similarly.

FIGURE 1. ICEX, VOH and VOL

Electrical Characteristic Test Circuits (Continued)

FIGURE 2. ICCH and IEEH

FIGURE 3. I_{IH}(S) and I_{IL}(S)

Note. Channel A shown under test, other channels are tested similarly. Only one output shorted at a time.

FIGURE 4. IOS

Note. Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from 3V to -3V.

FIGURE 6. IIL

Note. Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from 3V to -3V.

FIGURE 5. I_{IH}

Note. Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4V and 2.4V.

FIGURE 7. IOFF

AC Test Circuits and Switching Time Waveforms

E_O V_{OL} 50%

Note. Output of Channel B shown under test, other channels are tested similarly.

S1 at "A" for DS1652/DS3652

S1 at "B" for DS165C/DS3650

C_L = 15 pF total for DS1652/DS3652

C_L = 50 pF total for DS1650/DS3650

 E_{IN} waveform characteristics: t_{TLH} and $t_{THL} \leq 10$ ns measured 10% to 90% PRR = 1 MHz Duty Cycle = 500 ns

TPLO(S)

FIGURE 8. Receiver Propagation Delay tPLH(D) and tPHL(D)

Note, Output of Channel B shown under test, other channels are tested similarly.

(PLO(3)	
50% 50% tpLO(S)	—_ ≈ 1.5V
Ε ₀ ν _{0L} 0.5ν	
tPHO(S)	
3V 50% 0V + tPHO(S)	_
E ₀	V _{OH} - 0.5V ≈ 1.5V

	V1	V2	S1	\$2	СГ
tPLO(S)	100 mV	GND	Closed	Closed	15 pF
tPOL(S)	100 mV	GND	Closed	Open	50 pF
tPHO(S)	GND	100 mV	Closed	Closed	15 pF
tPOH(S)	GND	100 mV	Open	Closed	50 pF

C_L includes jig and probe capacitance.

EIN waveform characteristics. tŢĹḤ and tŢḤĹ ≤ 10 ns measured

10% to 90%

PRR = 1 MHz

Duty Cycle = 50%

FIGURE 9. Strobe Propagation Delay tpLO(S), tpOL(S), tpHO(S) and tpOH(S)

AC Test Circuits and Switching Time Waveforms (Continued)

tPHL(S)

Note. Output of Channel B shown under test, other channels are tested similarly.

Note. EIN waveform characteristics: t_{TLH} and $t_{THL} \leq 10$ ns measured 10% to 90% PRR = 1 MHz

Duty Cycle = 500 ns

FIGURE 10. Strobe Propagation Delay tpLH(S) and tpHL(S)

Schematic Diagrams

Transmission Line Drivers/Receivers

DS1691/DS3691(RS-422/RS-423) Line Drivers DS1692/DS3692 TRI-STATE Differential Line Drivers

General Description

The DS1691/DS3691 are low power Schottky TTL line drivers designed to meet the requirements of EIA standards RS-422 and RS-423. They feature 4 buffered outputs with high source and sink current capability with internal short circuit protection. A mode control input provides a choice of operation either as 4 independent line drivers or 2 differential line drivers. A rise time control pin allows the use of an external capacitor to reduce rise time for suppression of near end crosstalk to other receivers in the cable.

The DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature ±10V output common-mode range in TRI-STATE and 0V output unbalance when operated with ±5V supply.

Features

- Dual RS-422 line driver or quad RS-423 line driver in DS1691/DS3691
- Individually TRI-STATEable differential drivers in the DS1692/DS3692 meets MIL-STD-188-114
- Short circuit protection for both source and sink outputs
- Individual rise time control for each output
- 100Ω transmission line drive capability
 - Low ICC and IEE power consumption
 RS-422
 RS-423
 35 mW/driver typ
 RS-423
 26 mW/driver typ
- Low current PNP inputs compatible with TTL, MOS and CMOS

Logic Diagram (1/2 Circuit Shown)

Connection Diagram

Dual-In-Line Package RISE TIME CONTROL A Vcc INPIIT A OUTPUT A OUTPUT B INPUT B/OISABLE RISE TIME CONTROL B MODE SELECT RISE TIME CONTROL C GNO INPUT C/OISABLE OUTPUT C OUTPUT O INPUT O RISE TIME CONTROL O VEE

Order Number DS1691J, DS1691W, DS3691J, DS3691N, DS1692J, DS1692W, DS3692J or DS3692N See NS Package J16A, N16A or W16A

TOP VIEW

Truth Table

. 1	NPUTS		OUTPUTS		
MODE	A (D)	B (C)	A (D)	B (C)	
0	0	0	0	1	
0	0	1	TRI-STATE	TRI-STATE	
0	1	0	1	0	
0	1	1	TRI-STATE	TRISTATE	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	0	
1	1	1	1	1	

Absolute Maximum Ratings (Note 1)		Operating Conditions				
			MIN	MAX	UNITS	
Supply Voltage		Supply Voltage				
Vcc	7V	DS1691, DS1692				
VEE	-7V	Vcc	4.5	5.5	V	
Power Dissipation	600 mW	V _{FF}	-4.5	-5.5	V	
Input Voltage	15V	DS3691, DS3692				
Output Voltage (Power OFF)	±15V	Vcc	4.75	5.25	V	
Storage Temperature	–65° C to +150° C	VEE	-4.75	-5.25	V	
Lead Temperature (Soldering, 10 seconds)	300°C	Temperature (T _A)				
		DS1691, DS1692	55	+125	°C	
		DS3691, DS3692	0	+70	°c	

Electrical Characteristics Ds1691/Ds3691 (Notes 2, 3, 4 and 5)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
RS-422 Connec	tion, VEE Connection to Ground	d, Mode Select ≤ 0.8\	/				
V _o	Differential Output Voltage	RL∸∞	V _{IN} = 2V		3.6	6.0	V
V _o	V _{A,B}		VIN = 0.8V		-3.6	-6.0	V
V _T	Differential Output Voltage	$R_1 = 100\Omega$	V _{IN} = 2V	2	2.4		V
VΤ	VA,B		VIN = 0.8V	-2	- 2.4		V
V _{OS} , V _{OS}	Common-Mode Offset Voltage	RL=100Ω			2.5	3	V
$ V_T - \overline{V_T} $	Difference in Differential Output Voltage	R _L = 100Ω			0.05	0.4	٧
$ V_{OS} - \overline{V_{OS}} $	Difference in Common- Mode Offset Voltage	R _L = 100Ω			0.05	0.4	٧
V _{SS}	$ V_T - \overline{V_T} $	R _L = 100Ω		4.0	4.8		V
I _{SA}		V _{IN} = 2.4V	V _O A = 6V		80	150	mA
	Output Short Circuit Current		V _{oB} = 0V	ļ	-80	-150	mA
I _{SB}		V _{IN} = 0.4V	$V_0A = 0V$	ļ	- 80	-150	mA
			V _{oB} = 6V	ļ	80	150	mA
lcc	Supply Current			<u> </u>	18	30	mA
RS-423 Connec	ction, V _{CC} = V _{EE} , Mode Selec	t ≥ 2V					
V _o	Output Voltage	R _L = ∞,	V _{IN} = 2.4V	4.0	4.4	6.0	V
Vo	Output Voltage	$V_{CC} \ge 4.75V$	V _{IN} = 0.4V	-4.0	-4.4	-6.0	V
VΤ	Output Voltage	R _L = 450Ω,	V _{IN} = 2.4V	3.6	4.1		V
VT	Output vortage	V _{CC} ≥ 4.75V	V _{1N} = 0.4V	-3.6	-4.1		٧
IX ⁺	Output Leakage Power OFF	V _{CC} = V _{EE} = 0V	Vo ≃ 6V		2	100	μΑ
'x ⁻	Output Leakage rower OFF	VCC - VEE - OV	V _o = −6V		-2	-100	μΑ
l _S ⁺	Outside Charles Committee), O),	V _{IN} = 2.4V		80	-150	mA
ls	Output Short Circuit Current	V _o = 0V	V _{IN} = 0.4V		80	150	mA
^I SLEW	Slew Control Current				±140		μΑ
Icc	Positive Supply Current	V _{IN} = 0.4V, R _L = ∞)		18	30	mA
lEE	Negative Supply Current	V _{IN} = 0.4V, R _I = ×	,		-10	-22	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the $^{-}55^{\circ}$ C to $+125^{\circ}$ C temperature range for the DS1691, DS1692 and across the 0 C to $+70^{\circ}$ C range for the DS3691, DS3692. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C. V_{CC} and V_{EE} as listed in operating conditions. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Note 5: Symbols and definitions correspond to EIA RS-422 and/or RS-423 where applicable.

Electrical Characteristics Ds1692/Ds3692 (Notes 2, 3 and 4)

Electrical	Characteristics DS1692	2/D\$3692 (Note:	s 2, 3 and 4)				
	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
DS1692, V _{CC}	= 5V ±10%, D\$3692, V _{CC} = 5V	±5%, VEE Connec	ction to Ground, M	ode Select	≤ 0.8V		
Vo	Differential Output Voltage		V _{IN} = 2V	2.5	3.6		V
Vo	VA,B	R _L = ∞	VIN = 0.8V	-2.5	-3.6		V
VT	Differential Output Voltage	$R_L = 100\Omega$	V _{IN} = 2V	2	2.6		V
VT	VA, B		V _{IN} = 0.8V	-2	-2.6		V
v _{os} , v _{os}	Common-Mode Offset Voltage	R _L = 100Ω			2.5	3	V
$ V_T - \overline{V_T} $	Difference in Differential Output Voltage	R _L = 100Ω			0.05	0.4	V
$ V_{OS} - \overline{V_{OS}} $	Difference in Common- Mode Offset Voltage	RL = 100Ω			0.05	0.4	V
V _{SS}	'VT -__\	R _L = 100Ω		4.0	4.8		V
IXA	Output Leakage Current		V _O = 15V		0.01	0.15	mA
IXB	Power OFF	VCC = 0	$V_0 = -15V$		-0.01	-0.15	mA
	T01074T5 0 0	$V_0 \ge -10V$			-0.002	-0.15	mA
lOX	TRI-STATE Output Current	$V_0 \le 15V$			0.002	0.15	mA
		V _{IN} = 2.4V	V ₀ A = 6V		80	150	mA
ISA	Output Short-Circuit Current	V [N - 2.4 V	V _{oB} = 0V		-80	-150	mA
I _{SB}	Output Short-Circuit Current	V _{IN} = 0.4V	V ₀ A = 0V		-80	150	mA
,2p			V _{oB} = 6V		80	150	mA
ICC	Supply Current			1	18	30	mA
DS1692, VCC	$= 5V \pm 10\%, V_{EE} = -5V \pm 10\%,$	D\$3692, V _{CC} = 5	5V +5%, VEE = -5	±5%, Mode	Select \leq 0	.8∨	
Vo	Differential Output Voltage	R ₁ = ∞	V _{IN} = 2.4V	7	8.5	12	V
$\overline{V_0}$	V _{A,B}	RL-w	V _{IN} = 0.4V	-7	8.5	-12	V
VT	Differential Output Voltage	D 2000	V _{1N} = 2.4V	6	7.3		V
√. VT	VA, B	R _L = 200Ω	V _{IN} = 0.4V	-6	-7.3		V
$ V_T - \widetilde{V_T} $	Output Unbalance	VCCI = IVEEI.	R _L = 200Ω		0.02	0.4	V
			V _o = 10V		0.002	0.15	mA
lOX	TRI-STATE Output Current		V _o = -10V		-0.002	-0.15	mA
IS ⁺		1,, 0,,	VIN = 2.4V		-80	150	mA
Is-	Output Short-Circuit Current	V ₀ = UV	V _{IN} = 0.4V		80	150	mA
ISLEW	Slew Control Current				±140		μА
	Positive Supply Current	V _{IN} = 0.4V, R _L	= ∞		18	30	mA
		VIN = 0.4V RI	= ∞		-10	-22	mA
IST ISLEW		V _{IN} = 0.4V, R _L V _{IN} = 0.4V, R _L	= ∞		±140	30	

Electrical Characteristics (Notes 2 and 3) $V_{EE} \le 0V$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
/IH High Level Input Voltage		2			V
VIL Low Level Input Voltage				0.8	V
IH High Level Input Current	V _{IN} = 2.4V		1	40	μΑ
	V _{IN} ≤ 15V		10	100	μΑ
IL Low Level Input Current	V _{IN} = 0.4V	-200	-30	200	μΑ
VI Input Clamp Voltage	I _{IN} = ~12 mA	-1.5		-1.5	V

Switching Characteristics Ds1691/Ds3691 TA = 25°C, (Note 5)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RS-422	2 Connection, $V_{CC} = 5V$, Mode	e Select = 0.8V				
t _r	Output Rise Time	$R_L = 100\Omega$, $C_L = 500 pF$, (Figure 1)		120	200	ns
tf	Output Fall Time	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
^t PDH	Output Propagation Delay	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
tPDL	Output Propagation Delay	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
RS-423	3 Connection, V _{CC} = 5V, V _{EE}	=-5V, Mode Select = 2.4V				
tr	Rise Time	$R_L = 450\Omega$, $C_L = 500 pF$, $C_C = 0$, (Figure 2)		120	300	ns
tf	Fall Time	R _L = 450Ω, C _L = 500 pF, C _C = 0, (Figure 2)		120	300	ns
t _r	Rise Time	$R_L = 450\Omega$, $C_L = 500$ pF, $C_C = 50$ pF, (Figure 3)		3.0		μς
tf	Fall Time	$R_L = 450\Omega$, $C_L = 500 \text{ pF}$, $C_C = 50 \text{ pF}$, (Figure 3)		3.0		μς
trc	Rise Time Coefficient	$R_L = 450\Omega$, $C_L = 500 pF$, $C_C = 50 pF$, (Figure 3)		0.06		μs/pF
^t PDH	Output Propagation Delay	R _L = 450Ω, C _L = 500 pF, C _C = 0, (Figure 2)		180	300	ns
tPDL	Output Propagation Delay	$R_L = 450\Omega$, $C_L = 500 \text{ pF}$, $C_C = 0$, (Figure 2)		180	300	ns

Switching Characteristics DS1692/DS3692 TA = 25°C

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC} =	5V, Mode Select = 0.8V					
t _r	Differential Output Rise Time	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
tf	Differential Output Fall Time	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
tPDH	Output Propagation Delay	R _L = 100Ω, C _L = 500 pF, (Figure 1)		120	200	ns
tPDL	Output Propagation Delay	R _L = 100Ω , C _L = 500 pF, (Figure 1)		120	200	ns
tPZL	TRI-STATE® Delay	$R_L = 100\Omega$, $C_L = 500 pF$, (Figure 4)		180	250	ns
tPZH	TRI-STATE Delay	R _L = 100Ω, C _L = 500 pF, (Figure 4)		180	250	ns
tPLZ	TRI-STATE Delay	R _L = 100Ω, C _L = 500 pF, (Figure 4)		80	150	ns
tPHZ	TRI-STATE Delay	R _L = 100Ω, C _L = 500 pF, (<i>Figure 4</i>)		80	150	ns
V _{CC} =	$5V$, $V_{EE} = -5V$, $Mode Select$	= 0.8V				
t _r	Differential Output Rise Time	R _L = 200Ω, C _L = 500 pF, (<i>Figure 1</i>)		190	300	ns
tf	Differential Output Fall Time	R _L = 200Ω, C _L = 500 pF, (Figure 1)		190	300	ns
tPDL	Output Propagation Delay	R _L = 200Ω, C _L = 500 pF, (Figure 1)		190	300	ns
tPDH	Output Propagation Delay	R _L = 200Ω, C _L = 500 pF, (Figure 1)		190	300	ns
tPZL	TRI-STATE Delay	R _L = 200Ω, C _L = 500 pF, (Figure 4)		180	250	ns
tPZH	TRI-STATE Delay	R _L = 200Ω, C _L = 500 pF, (Figure 4)		180	250	ns
tPLZ	TRI-STATE Delay	R _L = 200Ω, C _L = 500 pF, (Figure 4)		80	150	ns
tPHZ	TRI-STATE Delay	R _L = 200Ω, C _L = 500 pF, (Figure 4)		80	150	ns
		1 22				

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Differential Connection

FIGURE 2. RS-423 Connection

FIGURE 3. Rise Time Control for RS-423

FIGURE 4. TRI-STATE® Delays for DS1692/DS3692

Switching Waveforms

Typical Rise Time Control Characteristics

Transmission Line Drivers/Receivers

DS26LS31/DS26LS31M Quad High Speed Differential Line Driver

General Description

The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE® outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.

The DS26LS31 is constructed using advanced low power Schottky processing.

Features

- Output skew 2.0 ns typical
- Input to output delay 12 ns
- Operation from single 5V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when V_{CC} = 0
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA Standard RS-422
- Pin compatible with AM26LS31
- Available in military and commercial temperature
- Advanced low power Schottky processing

Logic Diagram

Connection Diagram

Order Number DS26LS31CJ, DS26LS31CN, DS26LS31MJ or DS26LS31MW See NS Package J16A, N16A or W16A

1-25

5

Absolute Maximum Ratings (Note 1)		Operating Conditions				
		MIN	MAX	UNITS		
7V	Supply Voltage, V _{CC}					
7V	DS26LS31M	4.5	5.5	V		
5V	D\$26LS31	4.75	5.25	V		
-0.25V to 6V	Temperature, T _A					
	DS26LS31M	-55	+125	°C		
	DS26L\$31	0	+70	°C		
	7V 7V 5V	7V Supply Voltage, V _{CC} 7V DS26LS31M 5V DS26LS31 -0.25V to 6V Temperature, T _A DS26LS31M	MIN 7V Supply Voltage, V _{CC} 7V DS26LS31M 4.5 5V DS26LS31 4.75 -0.25V to 6V Temperature, T _A DS26LS31M -55	7V Supply Voltage, V _{CC} 7V DS26LS31M 4.5 5.5 5V DS26LS31 4.75 5.25 -0.25V to 6V Temperature, T _A DS26LS31M -55 +125		

Electrical Characteristics (Notes 2, 3 and 4)

	PARAMETER	CO	NDITIONS	MIN	TYP	MAX	UNITS
Vон	Output High Voltage	IOH = -	-20 mA	2.5			٧
VOL	Output Low Voltage	I _{OL} = 2	0 mA	!		0.5	V
۷ін	Input High Voltage			2.0			V
VIL	Input Low Voltage					0.8	V
IIL	Input Low Current	VIN = C).4∨			-0.36	mA
Ιιн	Input High Current	V _{IN} = 2	2.7V			20	μΑ
Ц	Input Reverse Current	V _{IN} = 7	'V			0.1	mA
10	TRI-STATE Output Current		V _O = 2.5V			20	μΑ
		1	V _O = 0.5V			-20	μΑ
VCL	Input Clamp Voltage	IIN = -	18 mA			-1.5	٧
I _{SC}	Output Short-Circuit Current			-30		-150	mA
ICC	Power Supply Current	All Out	puts Disabled			80	mA

Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPLH	Input to Output	CL = 30 pF		8	20	ns
tPHL	Input to Output	C _L = 30 pF		8	20	ns
Skew	Output to Output	C _L = 30 pF		2.0	6.0	ns
tLZ	Enable to Output	C _L = 10 pF, S2 Open		15	35	ns
tHZ	Enable to Output	C _L = 10 pF, S1 Open		12	30	ns
tZL	Enable to Output	C _L = 30 pF, S2 Open		14	45	ns
tZH	Enable to Output	C _L = 30 pF, S1 Open		13	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS26LS31M and across the 0° C to $+70^{\circ}$ C range for the DS26LS31. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

Note. \$1 and \$2 of load circuit are closed except where shown.

FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delays

FIGURE 3. Enable and Disable Times

Typical Applications

Single Wire with Common Ground Unbalanced System, RS-423

National Semiconductor

Transmission Line Drivers/Receivers

DS26LS32/DS26LS32M, DS26LS33/DS26LS33M Quad Differential Line Receivers

General Description

The DS26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The DS26LS32 features an input sensitivity of 200 mV over the input voltage range of $\pm 7V$.

The DS26LS33 features an input sensitivity of 500 mV over the input voltage range of $\pm 15 V$.

The DS26LS32 and DS22LS33 provide an enable and disable function common to all four receivers. Both parts feature TRI-STATE® outputs with 8 mA sink capability.

The DS26LS32 and DS26LS33 are constructed using advanced low power Schottky processing.

Features

- Input voltage range of 15V (differential or commonmode) on DS26LS33, 7V (differential or commonmode) on DS26LS32
- ±0.2V sensitivity over the input voltage range on DS26LS32, ±0.5V sensitivity on DS26LS33
- DS26LS32 meets all the requirements of RS-422 and RS-423
- 6k minimum input impedance
- 140 mV input hysteresis, DS26LS32; 280 mV input hysteresis, DS26LS33
- Operation from single 5V supply
- 16-pin hermetic and molded DIP package
- TRI-STATE drive, with choice of complementary output enables for receiving directly onto a data bus
- Propagation delay 17 ns (typ)
- Available in military and commercial temperature range
- Advanced low power Schottky processing
- Pin replacement for Advanced Micro Devices AM26LS32 and AM26LS33

Logic Diagram

Connection Diagram

Order Number DS26LS32CJ, DS26LS32CN, DS26LS32MJ, DS26LS32MW, DS26LS33CJ, DS26LS33CN, DS26LS33MJ or DS26LS33MW See NS Package J16A, N16A or W16A

Absolute Maximum Ratings Operating Conditions

7V

Vout ≈ Vol or VoH

 $V_{CC} = Min, \Delta V_{IN} = 1V$

 $V_{CC} = M_{1D}$, $\Delta V_{IN} = -1V$,

VCC = Min, I_{IN} = -18 mA

 $V_0 = 0V$, $V_{CC} = Max$, $\Delta V_{IN} = 1V$

 $T_A = 25^{\circ}C$, $V_{CC} \approx 5V$, $C_L = 15 pF$, See Test Conditions

 $T_A = 25^{\circ}C$, $V_{CC} = 5V$, $C_L = 15$ pF, See Test Conditions

1.29

VCC = Max, All VIN = Gnd,

Outputs Disabled

 $T_A = 25^{\circ}C$, $V_{CC} \approx 5V$,

VIN = 5.5V

VCM = 0V

VENABLE = 0.8V

 $V_{CC} = Max$

 $V_{IN} = 0.4V$

 $V_{1N} = 2.7V$

VENABLE = 0.8V, $IOH = -440 \mu A$

MIN

MAX

UNITS

Supply Voltage (VCC)

-25V -25V 7.V

50 mA

300' C

(COML) Temperature (TA) DS26LS32M, DS26LS33M

(COML)

DS26LS32, $-7V \le V_{CM} \le +7V$

DS26LS33, $-15V \le V_{CM} \le +15V$

Commercial

IOL = 4 mA

10L = 8 mA

 $V_0 = 2.4V$

 $V_0 = 0.4V$

DS26LS32

DS26LS33

DS26LS32

DS26LS33

Military

5 - 5

-55

Ω

DS26LS32M, DS26LS33M DS26LS32C, DS26LS33C

D\$26L\$32C, D\$26L\$33C

5:10

+125

+70

٧

°C

°C

UNITS

V

٧

kΩ

mΑ

mΑ

٧

ν

٧

٧

٧

٧

V

μΑ

μА

mΑ

μА

mΑ

mΑ

mΑ

μА

m۷

mV

ns

ns

ns

ns

ns

ns

Supply Voltage Common-Mode Range Differential Input Voltage Enable Voltage Output Sink Current

Storage Temperature Range

Electrical Characteristics

Differential Input Voltage

Input Current (Under Test)

PARAMETER

Input Resistance

Output High Voltage

Output Low Voltage

Enable Low Voltage

Enable High Voltage

Enable Clamp Voltage

Output Current

Enable Low Current

Enable High Current

Output Short-Circuit

Power Supply Current

Input High Current

Input Hysteresis

Input to Output

Input to Output

Enable to Output

Enable to Output

Enable to Output

Enable to Output

Note 1: All typical values are V_{CC} = 5V, T_A = 25°C

Current

OFF-State (High Impedance)

VTH

RIN

lin

Vон

VOL

VIL

Vтн

۷ι

lo

HL

ΉН

ISC

Icc

VHYST

^tPLH

TPHL

tLZ

tHZ

^tZL

tZH

Over the operating temperature range unless otherwise specified

-65°C to +165 C Lead Temperature (Soldering, 10 seconds)

CONDITIONS

 $-15V \le V_{CM} \le +15V$ (One Input AC Ground)

 $V_{IN} = 15V$, Other Input $-15V < V_{IN} < +15V$

 $\overline{V_{IN}} = -15V$, Other Input $-15V \le V_{IN} \le +15V$

MIN

-0.2

-0.5

6.0

2.7

2.0

-15

52

57

±140

±280

17

17

15

15

15

TYP

±0.07

±0.14

8.5

4.2

4.2

MAX

0.2

0.5

2.3

0.45

0.8

-1.5

20

-0.36

-85

70

80

100

25

25

30

22

22

22

-2.8

AC Test Circuit and Switching Time Waveforms

Load Test Circuit for TRI-STATE Outputs

Note 2: \$1 and \$2 of Load Circuit are closed except where shown.

Note 3: Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Z_0 = 50 Ω ; $t_r \leq$ 15 ns; $t_f \leq$ 6.0 ns.

Typical Applications

Single Wire with Common Ground Unbalanced System, RS-423

Transmission Line Drivers/Receivers

DS3486 Quad RS-422, RS-423 Line Receiver

General Description

National's quad RS-422, RS-423 receiver features four independent receiver chains which comply with EIA Standards for the electrical characteristics of balanced/ unbalanced voltage digital interface circuits. Receiver outputs are 74LS compatible, TRI-STATE® structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms.

Features

- Four independent receiver chains
- TRI-STATE outputs
- High impedance output control inputs (PIA compatible)
- Internal hysteresis ~ 140 mV (typ)
- Fast propagation times 18 ns (typ)
- TTL compatible
- Single 5V supply voltage
- Pin compatible and interchangeable with MC3486

Block Diagram

Connection Diagram

Order Number DS3486J or DS3486N See NS Package J16A or N16A

	Absolute Maximum Rat	ings (Note 1)	Operating Conditions						
j				MIN	MAX	UNITS			
i	Power Supply Voltage, V _{CC}	8 V	Power Supply Voltage, V _{CC}	4.75	5.25	V			
	Input Common-Mode Voltage, VICM	±15 V	Operating Temperature, TA	0	70	°C			
	Input Differential Voltage, V _{ID} TRI-STATE Control Input Voltage, V _I Outout Sink Current, IO	+15 V 8 V 50 mA	Input Common-Mode Voltage Range, VICR	-7.0	7.0	V			
	Storage Temperature, TSTG	-65°C to +150°C	Input Differential Voltage Range, V _{IDR}	6.0	6.0	V			

Electrical Characteristics

(Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for $T_A = 25^{\circ}C$, $V_{CC} = 5V$ and $V_{IC} = 0V$. See Note 2.)

PARAMETER		PARAMETER CONDITIONS		TYP	MAX	UNITS
VIH	Input Voltage - High Logic State (TRI-STATE Control)		2.0			٧
ViL	Input Voltage — Low Logic State (TRI-STATE Control)				0.8	٧
V _{TH(D)}	Differential Input Threshold Voltage	$-7V \le V_{IC} \le 7V$, V_{IH} TRI-STATE = 2V $I_{O} = 0.4$ mA, $V_{OH} \ge 2.7V$ $I_{O} = 8$ mA, $V_{OI} \ge 0.5V$		0.070	0.2 -0.2	V
IB(D)	Input Bias Current	V _{CC} = 0V or 5.25V, Other Inputs at 0V V _I = -10V V _I = -3V V _I = 3V V _I = 10V		0.070	-3.25 -1.50 1.50	mA mA
	Input Balance	$-7V \le V_{IC} \le 7V$, $V_{IH(3C)} = 2V$, (Note 4) $I_{O} = 0.4 \text{ mA}$, $V_{ID} = 0.4V$ $I_{O} = 8 \text{ mA}$, $V_{ID} = -0.4V$	2.7		0.5	mA V
loz	Output TRI-STATE Leakage Current	$V_{I(D)} = 3V$, $V_{IL} = 0.8V$, $V_{OL} = 0.5V$ $V_{I(D)} = -3V$, $V_{IL} = 0.8V$, $V_{OH} = 2.7V$			-40 40	μA μA
los	Output Short Circuit Current	$V_{I(D)} = 3V$, V_{IH} TRI-STATE = $2V$, $V_O \approx 0$, (Note 3)	-15		-100	mA
III.	Input Current — Low Logic State (TRI-STATE Control)	V _{IL} = 0.5V			-100	μΑ
ΙН	Input Current — High Logic State (TRI-STATE Control)	V _{IH} = 2.7V V _{IL} = 5.25V			20	μΑ
VIC	Input Clamp Diode Voltage (TRI-STATE Control)	I _I N = -10 mA			-1.5	V
Icc	Power Supply Current	All Inputs VIL = 0V			85	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pips are shown as positive out of device pips a

Note 2: All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.

Note 3: Only one output at a time should be shorted.

Note 4: Refer to EIA RS-422/3 for exact conditions

-	PARAMETER	MIN	TYP	MAX	UNITS
	Propagation Delay Time - Differential Inputs to Output				
tPHL(D)	Output High to Low		19	35	ns
tPLH(D)	Output Low to High		19	30	ns
	Propagation Delay Time — TRI-STATE Control to				
	Output				
tPLZ	Output Low to TRI-STATE		23	35	ns
tPHZ	Output High to TRI-STATE		25	35	ns
tPZH	Output TRI-STATE to High		18	30	ns
tPZL	Output TRI-STATE to Low		20	30	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Propagation Delay Differential Input to Output

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 2. Propagation Delay TRI-STATE Control Input to Output

National Semiconductor

DS3487 Quad TRI-STATE® Line Driver

General Description

National's quad RS-422 driver features four independent driver chains which comply with EIA Standards for the electrical characteristics of balanced voltage digital interface circuits. The outputs are TRI-STATE® structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down.

Transmission Line Drivers/Receivers Advance Information

Features

- Four independent driver chains
- TRI-STATE outputs
- PNP high impedance inputs (PIA compatible)
- Power up/down protection
- Fast propagation times (typ 15 ns)
- TTL compatible
- Single 5V supply voltage
- Output rise and fall times less than 20 ns
- Pin compatible with MC3487

Block Diagram

Connection Diagram

Drder Number DS3487J or DS3487N See NS Package J16A or N16A

Truth Table

INPUT	CONTROL INPUT	NON-INVERTER OUTPUT	INVERTER OUTPUT
Н	Н	Н	L
L	н	L	н
×	L	Z	Z

L = Low logic state

H = High logic state

X = Irrelevant

Z = TRI-STATE (high impedance)

Absolute Maximum Ratings (Note 1)

Operating Conditions

 Supply Voltage
 8V

 Input Voltage
 5.5V

 Storage Temperature
 -65°C to +150°C

 Lead Temperature (Soldering, 10 seconds)
 300°C

Supply Voltage (V_{CC}) 4.75 5.25 V Temperature (T_A) 0 +70 °C

Electrical Characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	COND	TIONS	MIN	TYP	MAX	UNITS
VIL	Input Low Voltage					0.8	V
VIH	Input High Voltage			2.0			V
IIL	Input Low Current	V _{IL} = 0.5	V			200	μΑ
ΉΗ	Input High Current		V _{IH} = 2.7V			50	μΑ
			V _{IH} = 5.5V			100	μА
VCL	Input Clamp Voltage	I _{CL} =18	3 mA			-1.5	V
VOL	Output Low Voltage	IOL = 48	mA			0.5	V
V _{OH}	Output High Voltage	I _{OH} = -2	0 mA	2.5			V
los	Output Short-Circuit Current			40		-140	mA
loz	Output Leakage Current (TRI-STATE)		V _O = 0.5V			-100	μΑ
			V _O = 5.5V			100	μΑ
OFF	Output Leakage Current Power OFF	VCC = 0	V _O = 6V			100	μΑ
		1	V _O = -0.25V			~100	μΑ
$ v_{OS} - \overline{v}_{OS} $	Difference in Output Offset Voltage					0.4	V
٧T	Differential Output Voltage			2.0			V
$ V_T - \overline{V}_T $	Difference in Differential Output Voltage					0.4	V
Icc	Power Supply Current		Active			85	mA
			TRI-STATE			105	mA

Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
^t PHL	Input to Output				20	ns
tPLH	Input to Output				20	ns
tPDHL	Differential Fall Time				20	ns
^t PDLH	Differential Rise Time				20	ns
[†] PHZ	Enable to Output	$R_L = 200\Omega$, $C_L = 50 pF$			25	ns
tPLZ	Enable to Output	R _L = 200Ω, C _L = 50 pF			25	ns
tPZH	Enable to Output	R _L = ∞, C _L = 50 pF, S1 Open			30	ns
tPZL	Enable to Output	$R_L = 200\Omega$, $C_L = 50$ pF, S2 Open			30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS3487. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified

Note 4: Only one output at a time should be shorted.

Note 5: Symbols and definitions correspond to EIA RS-422, where applicable.

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Propagation Delays

FIGURE 2. TRI-STATE Enable and Disable Delays

Transmission Line Drivers/Receivers

DS55113/DS75113 Dual TRI-STATE® Differential Line Driver

General Description

The DS55113/DS75113 dual differential line drivers with TRI-STATE outputs are designed to provide all the features of the DS55114/DS75114 line drivers with the added feature of driver output controls. There are individual controls for each output pair, as well as a common control for both output pairs. When an output control is low, the associated output is in a high-impedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.

The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins.

Features

- Each circuit offers choice of open-collector or active pull-up (totem-pole) outputs
- Single 5V supply
- Differential line operation
- Dual channels
- TTL/DTL compatibility
- High-impedance output state for party-line applications
- Short-circuit protection
- High current outputs
- Single-ended or differential AND/NAND outputs
- Common and individual output controlsClamp diodes at inputs
- Easily adaptable to DS55114/DS75114 applications

Connection Diagram

Dual-In-Line Package

Positive logic: Y = AB $Z = \overline{AB}$

Output is OFF when C or CC is low

Truth Table

Order Number DS55113J, DS75113J, or DS75113N See NS Package J16A or N16A

	OUTPUTS						
OUTPUT (CONTROL DATA		OUTPUT CONTROL		ΓΑ	AND	NAND
С	cc	Α	B*	Υ	Z		
L	×	×	×	Z	Z		
X	L	×	×	Z	Z		
н	Н	L	×	L	Н		
	1		1		1		

H = high level

L = low level

X = irrelevant

Z = high impedance (OFF)

*B input and 4th line of truth table applicable only to driver number 1

Н

Absolute Maximum Ratings (Note 1) **Operating Conditions** UNITS MIN MAX 7V Supply Voltage (V_{CC}) Supply Voltage (VCC) (Note 1) 5.5V DS55113 4.5 5.5 Input Voltage DS75113 4.75 5.25 ٧ OFF-State Voltage Applied to 12V Open-Collector Outputs High Level Output Current (IOH) -40 mΑ Continuous Total Dissipation at (or Below) Low Level Output Current (IOL) 40 mΑ 25°C Free-Air Temperature (Note 2) 1W Operating Free-Air Tempera-Operating Free-Air Temperature Range ture (TA) -55°C to +125°C DS55113 °C DS55113 125 -550°C to +70°C DS75113 DS75113 °C Storage Temperature Range -65°C to +150°C

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

300°C

260° C

						Γ	DS55113		DS75113			
	PARAMETER		c D	NDITIDNS (Not	e 3)	MIN	TYP (Note 4)	мах	MIN	TYP (Note 4)	MAX	UNITS
VIΗ	High Level Input	Voltage			2			2			V	
VIL	Low Level Input	Voltage				T		0.8			0.8	V
Vik	Input Clamp Voi	tage	V _{CC} = M _I n, I _I = -	12 mA			-0.g	⊩ 1.5		-0.g	1.5	V
Vон	High Level Outpu	ıt Voltage	V _{CC} = Min, V _{IH} = V _{IL} = 0.8V	= 2V,	I _{OH} = -10 mA	2.4	3.4		2.4	3.4		٧
VOL	Low Level Outpu	t Voltage	V _{CC} = Min, V _{IH} =	2V, VIL = 0.8V	, I _{OL} = 40 mA		0.23	0.4		0.23	0.4	V
Voк	Output Clamp Vo	oltage	V _{CC} = Max, I _O =	-40 mA			=1.1	-1.5		-1.1	-1.5	٧
	OFF-State Open-	Collector		V _{OH} = 12V	T _A = 25°C T _A = 125°C		1	10 200				μА
IO(off)	Output Current		VCC = Max	V _{OH} = 5.25V	$T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$					1	10 20	,,,,
		-		TA = 25°C, VC	= 0 to V _{CC}			±10			±10	
			V _{CC} = Max,		VO = 0	L		-150		<u> </u>	-20	
1	OFF-State (High-	Impedance-	Output Controls	T _A = Max	V _O = 0.4V	I		±80			±20	μΑ
loz	State) Output Cu	irrent	at 0.8V	I A - IVIAX	V _O = 2 4V	T		±80			±20	
					AO = ACC			80			20	
l ₁	Input Current at Maximum Input Voltage	A, 8, C	V _{CC} = Max, V _I =	5.5V				1 2			2	mA
ΊΗ	High Level Input Current	A, B, C CC	V _{CC} = Max, V _I =	2 4V				40 80			40 80	μΑ
ЦЦ	Low Level Input Current	A, B, C	V _{CC} = Max, V _I = 0.4V				-1.6 -3.2			-1.6 -3.2	mA	
los	Short-Circuit Ou Current (Note 5)	•	V _{CC} = Max, V _O =	= 0		-40	- g 0	-120	-40	-90	-120	mA
	Supply Current (Both	All Inputs at 0V,	No Load,	V _{CC} = Max		47	65	<u> </u>	47	65	mA mA
ıcc	Drivers)		T _A = 25°C		V _{CC} = 7V		65	85		65	85	

Note 1: All voltage values are with respect to network ground terminal.

Lead Temperature (1/16" from case for

60 seconds): J Package Lead Temperature (1/16" from case for

10 seconds): N Package

Note 2: For operation above 25°C free-air temperature, refer to Dissipation Derating Curves in the Thermal Information section. In the J package, DS55113 chips are alloy-mounted, DS75113 chips are glass-mounted.

Note 3: All parameters with the exception of OFF-state open-collector output current are measured with the active pull-up connected to the sink output.

Note 4: All typical values are at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$, with the exception of I_{CC} at 7V.

Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics v_{CC} = 5V, c_L = 30 pF, T_A = 25°C

	PARAMETER	CONDITIONS	CONDITIONS DS55113				DS75113			
	PANAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
^t PLH	Propagation Delay Time, Low-to High-Level Output	(5		13	20		13	30	ns	
tPHL	Propagation Delay Time, High-to- Low-Level Output	(Figure 1)		12	20		12	30	ns	
tPZH	Output Enable Time to High Level	R _L = 180Ω, (Figure 2)		7	15		7	20	ns	
tPZL	Output Enable Time to Low Level	R _L 250Ω, (Figure 3)		14	30		14	40	ns	
[†] PHZ	Output Disable Time from High Level	R _L = 180Ω, (Figure 2)		10	20		10	30	nş	
tPLZ	Output Disable Time from Low Level	R _L = 250Ω, (Figure 3)		17	35		17	35	пѕ	

Schematic Diagram (One side shown only)

AC Test Circuits and Switching Time Waveforms

FIGURE 1. tpLH and tpHL

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50%, PRR = 500 kHz, t_W = 100 ns. Note 2. C_L includes probe and jig capacitance.

Typical Performance Characteristics*

^{*}Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75V and above 5.25V are applicable to DS55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

Typical Performance Characteristics* (Continued) Output Voltage vs Output Output Voltage vs Output Output Voltage vs Output Control Voltage Control Voltage Control Voltage LOAD = 5000 TO GROUND LOAD = 5000 TO VCC V_{CC} = 5.5V V_{CC} = 5V VCC = 5V 5 - OUTPUT VOLTAGE (V) 5 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) TA = 25 C VCC = 5V TA = 125 C 4 Vcc = 4.5V = 125 C 3 3 DISABLE A = 25°C 2 DISABLED 2 -55°C ۰0 LOAD = 500Ω TA = 25' C ISABLE เกพ 0 2 3 1 2 3 2 3 VI - INPUT VDLTAGE (OUTPUT CONTROL) (V) VI - INPUT VOLTAGE (OUTPUT CONTROL) (V) V1 - INPUT VOLTAGE (DUTPUT CONTROL) (V) High Level Output Low Level Output Output Voltage vs Free-Air Voltage vs Output Voltage vs Output Temperature Current Current V_{CC} = 4.5 V TA = 25 C TA = 25 C 3.6 /cc = 5V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.5 3.2 VDH (IDH VOH - OUTPUT VOLTAGE 2.B 0.4 cc 2.4 3 2 VOH (IOH = 40 mA) 0.3 1.6 2 0.2 1.2 ,0, 0.8 N 1 V_{OL} (I_{DL} = 40 mA) 0.4 n -75 -50 -25 O 25 50 75 100 125 -80 -40 -60 0 80 TA - FREE AIR TEMPERATURE (C) IOH - OUTPUT CURRENT (mA) IDL - OUTPUT CURRENT (mA) Supply Current (Both Supply Current (Both Drivers) vs Free-Air Supply Current (Both Drivers) vs Supply Voltage Temperature Drivers) vs Frequency 100 NO LOAO V_{CC} = 5V INPUTS GROUNDED V_{CC} = 5V TA = 25 °C 70 SUPPLY CURRENT (mA) - SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 52 NO LOAD 80 C_L = 30 pF 60 INPUTS GROUNDED 50 INPUTS. 3V SOUARE WAVE 50 TA = 25 C **4**B 60 40 46 INPUTS DPEN 44 30 42 20 ដ 23 40 3B 0 2 3 5 6 -50 -25 0 25 10 0.1 0.4 40 100 VCC - SUPPLY VOLTAGE (V) TA - FREE-AIR TEMPERATURE (°C) f - FREDUENCY (MHz) **Propagation Delay Times** from Data Inputs vs Free-Air Output Enable and Disable Temperature Times vs Free-Air Temperature 20 OUTPUT ENABLE AND DISABLE TIMES (ns) V_{CC} = 5V C₁ = 30 pF V_{CC} = 5V 18 (FIGURES 2 AND 3) 25 PROPAGATION OELAY TIMES FROM OATA INPUTS (ns) 16 (FIGURE 1 tPL Z 14 tPLH 12 tPZL tpHI 10 15 tPHZ 10 ^tPZH 4 2 -75 -50 -25 0 25 50 -50 -25 0 25

TA - FREE-AIR TEMPERATURE ('C)

TA - FREE-AIR TEMPERATURE ('C)

^{*}Data for temperatures below 0° C and above 70° C and for supply voltages below 4.75V and above 5.25V are applicable to DS55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

Transmission Line Drivers/Receivers

DS55114/DS75114 Dual Differential Line Drivers

General Description

The DS55114/DS75114 dual differential line drivers are designed to provide differential output signals with high current capability for driving balanced lines, such as twisted pair at normal line impedances, without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL compatible output levels, these devices may also be used as TTL expanders or phase splitters.

Features

- Each circuit offers choice of open-collector or active pull-up (totem-pole) outputs
- Single 5V supply
- Differential line operation
- Dual channels
- TTL/DTL compatibility
- Design to be interchangeable with Fairchild 9614 line drivers
- Short-circuit protection of outputs
- High current outputs
- Clamp diodes at inputs and outputs to terminate line transients
- Single-ended or differential AND/NAND outputs
- Triple inputs

Connection Diagram

Y = ABC Positive logic: $Z = \overline{ABC}$

Order Number DS55114J, DS75114J, or DS75114N See NS Package J16A or N16A

Truth Table

	INPUTS		OUTI	PUTS
Α	В	С	Υ	Z
Н	н	н	н	L
All Other	Input Com	binations	L	Н

H = high level

L = low level

Schematic Diagram (Each Driver)

Resistor values shown are typical and in ohms.

Absolute Maximum Ratings (Note 1)

for 60 seconds): J Package

Lead Temperature (1/16" from case for 10 seconds): N Package

Supply Voltage (VCC) 7V 5.5V Input Voitage OFF-State Voltage Applied to Open-Collector Outputs 12V Continuous Total Dissipation at (or Below) 25 C Free-Air Temperature (Note 2) 1W Operating Free-Air Temperature Range DS55114 -55° C to +125° C DS75114 0°C to +70°C Storage Temperature Range - 65°C to +150°C Lead Temperature (1/16" from case

Operating Conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			
DS55114	4.5	5 5	V
DS75114	4.75	5 25	V
High Level Output Current (IOH)		40	mA
Low Level Output Current (IOL)		40	mA
Operating Free-Air Tempera			
ture (TA)			
DS55114	-55	125	, C
DS75114	0	70	°C

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

300°C

260° C

	l l				D\$55114			i			
	PARAMETER	İ	CONDITIONS (Note 3)			TYP (Note 4)	мах	MIN	TYP (Note 4)	мах	UNITS
√IH	High Level Input Voltage				2			2			
۷IL	Low Level Input Voltage						0.8			0.8	l
VIK	Input Clamp Voltage	V _{CC} = Min, I	V _{CC} = Min, I _I = -12 mA			-0.9	-1.5		0.9	- 1.5	V
·/	High Level Output Voltage	V _{CC} = Min, V	V _{CC} = Min, V _{IH} = 2V, I _{OH} = -10 mA		2.4	3.4		2.4	3.4		
Vон	High Level Output voltage 1	VIL = 0.8V				3.0		2	3.0		<u> </u>
VOL	Low Level Output Voltage	V_{CC} = Min, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 40 mA				0.2	0.4		0.2	0.45	V
	$V_{CC} = 5V$, $t_{O} = 40$ mA, $T_{A} = 25^{\circ}C$					6_1	6.5		6.1	6.5	- V
Vок	Output Clamp Voltage	V _{CC} = Max, I _O = -40 mA, T _A = 25°C				1.1	-1.5		-1.1	15	
			Va = 12\V	T _A = 25°C		1	100				
lor m	OFF-State Open-Collector	V _{CiC} = Max	V _{OH} = 12V	T _A = 125°C			200				μΑ
O(off)	Output Current	V (1) = 1918x 1	V _{OH} = 5.25V	T _A = 25°C					1	100	1
		L'	1 VOH 5.25	TA = 70°C			<u> </u>			200	
l _l	Input Current at Maximum Input Voltage	V _{CC} = Max, V	/ ₁ = 5.5V				1			1	m/
ΊΗ	High Level Input Current	V _{CC} = Max, V	/ ₁ = 2.4V		Τ΄		40			40	μA
Iτ	Low Level Input Current	V _{CC} = Max, \	V _{CC} = Max, V ₁ = 0.4V			1.1	-1.6		-1,1	-1.6	m/
Ios	Short-Circuit Output Current (Note 5)	V _{CC} = Max, \	$V_{CC} = Max, V_O = 0$			90	- 120	40	-90	-120	m/
	Supply Current (Both	Inputs Ground	ded, No Load,	VCC = Max		37	50		37	50	
CC	Drivers)	TA = 25°C		V _{CC} = 7V	T	47	65		47	70	1

Note 1: All voltage values are with respect to network ground terminal.

Note 2: For operation above 25°C free-air temperature, refer to Dissipation Derating Curves in the Thermal Information section. In the J package, DS55114 chips are alloy-mounted; DS75114 chips are glass-mounted.

Note 3: All parameters, with the exception of OFF-state open-collector output current, are measured with the active pull-up connected to the sink output.

Note 4: All typical values are at $T_A = 25$ C and $V_{CC} = 5V$, with the exception of I_{CC} at 7V.

Note 5: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

	DARAMETER	CONDITIONS		D\$55114	-		DS75114		UNITS
PARAMETER		CONDITIONS	MIN	TYP	TYP MAX		TYP	MAX	UNITS
^t PLH	Propagation Delay Time, Low to-High-Level Output	0 00 5 45		15	20		15	30	ns
^t PHL	Propagation Delay Time, High-to-Low-Level Output	C _L = 30 pF, (Figure 1)		11	20		11	30	nş

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics. $Z_{OUT} = 50\Omega$, $t_W = 100$ ns, PRR = 500 kHz.

Note 2: C₁ includes probe and jig capacitance.

FIGURE 1

Typical Performance Characteristics*

^{*}Data for temperatures below 0° C and above 70° C and for supply voltages below 4.75V and above 5.25V are applicable to DS55114 circuits only. These parameters were measured with the active pull-up connected to the sink output.

Typical Performance Characteristics* (Continued)

^{*}Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75V and above 5.25V are applicable to DS55114 circuits only. These parameters were measured with the active pull-up connected to the sink output.

Transmission Line Drivers/Receivers

DS55115/DS75115 Dual Differential Line Receiver

General Description

The DS55115/DS75115 is a dual differential line receiver designed to sense differential signals from data transmission lines. Designed for operation over military and commercial temperature ranges, the DS55115/DS75115 can typically receive ± 500 mV differential data with $\pm 15 \text{V}$ common-mode noise. Outputs are open-collector and give TTL compatible signals which are a function of the polarity of the differential input signal. Active output pull-ups are also available, offering the option of an active TTL pull-up through an external connection.

Response time may be controlled with the use of an external capacitor. Each channel may be independently

controlled and optional input termination resistors are also available.

Features

- Single 5V supply
- High common-mode voltage range
- Each channel individually strobed
- Independent response time control

Uncommitted collector or active pull-up option

- TTL compatible output
- Optional 130Ω termination resistors
- Direct replacement for 9615

Connection Diagram

Dual-In-Line Package

Pin 8 of the W package is in electrical contact with the metal base.

Order Number DS55115J, DS75115J, DS75115N or DS55115W See NS Package J16A, N16A or W16A

Function Table

STROBE	DIFF.	ОИТРИТ
L	X	Н
H	L	Н
н	Н	L

$$\label{eq:hamiltonian} \begin{split} \text{H = V}_1 \geq \text{V}_{1H} \text{ min or V}_{1D} \text{ more positive than V}_{TH} \text{ max} \end{split}$$

 $L = V_{||} \leq V_{||L|} \text{ max or } V_{||D|} \text{ more negative than } V_{||L|} \text{ max}$

X = irrelevant

Absolute Maximum Ratings (Note 1) **Operating Conditions** MAX UNITS Supply Voltage, VCC (Note 1) Supply Voltage, (V_{CC}) 7V Input Voltage at A, B and R_T Inputs ±25V DS55115 4.5 5.5 Input Voltage at Strobe Input 5.5V DS75115 4.75 5.25 ٧ Off-State Voltage Applied to Open-Collector Outputs 14V High Level Output Current, (IOH) -5 mΑ Continuous Total Dissipation at {or below 70°C Low Level Output Current, (IOL) 15 mΑ free-air temperature (Note 2)] 600 mW Operating Temperature, (TA) Operating Free-Air Temperature Range D\$55115 °C -55 125 DS55115 –55°C to +125°C DS75115 DS75115 0°C to +70°C Storage Temperature Range -65°C to +150°C

300°C

Electrical Characteristics (Notes 2, 3 and 5)

Lead Temperature (1/16 inch from case

for 10 seconds)

P	ARAMETER	CONDITIONS			DS55115			D\$75115		
·	7.11.11.12.72.11	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vтн	Differential Input High- Threshold Voltage	VO = 0.4V, IOL = 15 mA, V	V _O = 0.4V, i _{OL} = 15 mA, V _{IC} = 0		200	500		200	500	mV
VTL	Differential Input Low-Threshold Voltage	V _O = 2.4V, I _{OH} =5 mA, V _{IC} = 0			-200	500		-200	-500	m∨
VICR	Common-Mode Input Voltage Range	V _{ID} = ±1V		15 to -15	24 to -19		15 to -15	24 to -19		v
VIH(STROBE)	High-Level Strobe Input Voltage			2.4			2.4			V
VIL(STROBE)	Low-Level Strobe Input Voltage					0.4			0.4	v
		V _{CC} = Min, V _{1D} = -0.5V,	T _A = Min	2.2			2.4			
Vон	High Level Output Voltage	IOH = -5 mA	T _A = 25°C	2.4	3.4		2.4	3.4		v
		1011 3 mm	T _A = Max	2.4			2.4		[
VOL	Low Level Output Voltage	V _{CC} = Min, V _{ID} = 0.5V, I _{OL} = 15 mA			0.22	0.4		0.22	0.45	V
	Low Level Input Current	V _{CC} = Max, V _I = 0.4V, Other Input at 5.5V	T _A = Min			-0.g			-0.9	mA
կլ.			T _A = 25°C		−0.5	~ 0.7		-0.5	-0.7	
		Other impar at 5.54	T _A = Max			− 0.7			− 0.7	
lsн	High Level Strobe Current	V _{CC} = Min, V _{ID} = -0.5V,	T _A = 25°C		0.5	2		0.5	5	
'SH	mgn Level Strobe Current	VSTROBE = 4.5V	T _A = Max			5			10	μА
^I SL	Low Level Strobe Current	V _{CC} = Max, V _{ID} = 0.5V, V _{STROBE} = 0.4V	T _A = 25°C		-1.15	-2.4		-1.15	- 2,4	mA
l ₄ , l ₁₂	Response Time Control Current (Pin 4 or Pin 12)	V _{CC} = Max, V _{ID} = 0.5V, V _{RC} = 0	T _A = 25°C	-1.2	-3.4		-1.2	-3.4		mA
		V _{CC} = Min, V _{OH} = 12V,	T _A = 25°C			100				
O(OFF)	Off-State Open-Collector	V _{ID} = -4.5V	T _A = Max			200				μА
0.0117	Output Current	VCC = Min, VOH = 5.25V,	T _A = 25°C	L					100	μ^
		V _{ID} = -4.75V	T _A = Max	L					200	
RŢ	Line Terminating Resistance	V _{CC} = 5V	T _A = 25°C	77	130	167	74	130	179	Ω
los	Short-Circuit Output Current	$V_{CC} = Max, V_{O} = 0V,$ $V_{ID} = -0.5V, (Note 4)$	T _A = 25°C	-15	-40	-80	-14	-40	-100	mA
lcc	Supply Current (Both Receivers)	V _{CC} = Max, V _{ID} = 0.5V, V _{IC} = 0V	T _A = 25°C		32	50		32	50	mA

Note 1: "Absolute Maximum Ratings' are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the OS55115 and across the 0° C to $+70^{\circ}$ C range for the DS75115. All typical values are for T_A = 25° C, V_{CC} = 5V and V_{CM} = 0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4. Only one output at a time should be shorted.

Note 5: Unless otherwise noted, V_{STROBE} = 2.4V. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output.

Switching Characteristics	$V_{CC} = 5V$, $C_L = 30 \text{ pF}$, $T_A = 25^{\circ}C$
---------------------------	---

PARAMETER		CONDITIONS		D\$55115			D\$75115	UNITS	
	PARAMETER	CONDITIONS		TYP	MAX	MIN	TYP	MAX	ONTIS
tPLH	Propagation Delay Time, Low- to-High Level Output	$R_L = 3.9 \text{ k}\Omega$, (Figure 1)		18	50		18	75	nş
tPHL.	Propagation Delay Time, High- to-Low Level Output	R _L = 390Ω, (Figure 1)		20	50		20	75	ns

Schematic Diagram

Typical Application

Basic Party-Line or Data-Bus Differential Data Transmission

 $^{^*}Z_O$ is internal to the DS55115/DS75115 A capacitor may be connected in series with Z_O to reduce power dissipation.

Frequency Response Control

Note. CR (response control) > 0.01 μ F may cause slowing of rise and fall times of the output

AC Test Circuit and Switching Time Waveforms

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50Ω , PRR = 500 kHz/ t_W = 100 ns. Note 2: C_L includes probe and test fixture capacitance.

FIGURE 1. Propagation Delay Times

Transmission Line Drivers/Receivers

DS55121/DS75121 dual line drivers

general description

The DS55121/DS75121 are monolithic dual line drivers designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines having impedances from 50 to 500 ohms. 8oth are compatible with standard TTL logic and supply voltage levels.

The DS55121/DS75121 will drive terminated low impedance lines due to the low-impedance emitter-follower outputs. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5V.

features

- Designed for digital data transmission over 50 to 500 ohms coaxial cable, strip line, or twisted pair transmission lines
- TTL compatible
- Open emitter-follower output structure for party-line operation
- Short-circuit protection
- AND-OR logic configuration
- High speed (max propagation delay time 20 ns)
- Plug-in replacement for the SN55121/SN75121 and the 8T13

connection diagram

Dual-In-Line Package

Order Number DS55121J, DS75121J, DS75121N or DS55121W See NS Package J16A, N16A or W16A

typical performance characteristics

Output Current vs Output Voltage

truth table

		INF	uts			оитрит
Α	В	С	D	E	F	Y
н	н	н	н	×	х	н
Х	X	X	X	н	н	н
ΑII	Other	L				

H = high level, L = low level, X = irrelevant

ac test circuit and switching time waveforms

Note 1: The pulse generators have the following characteristics: $Z_{OUT}\approx50\Omega_{c}$ tw ≈200 ns, duty cycle = 50%, t, = t_t ≈5.0 ns Note 2: C_{L} includes probe and jig capacitance.

°C

+75

absolute maximum ratings (Note 1) operating conditions MIN MAX Supply Voltage, VCC 6.0V Supply Voltage, VCC 5.25 Input Voltage 6.0V Temperature, TA Output Voltage 6.0V DS55121 -55 +125

DS75121

electrical characteristics V_{CC} = 4.75V to 5.25V (unless otherwise noted) (Notes 2 and 3)

-75 mA

600 mW

300°C

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage		2.0			V
VIL	Low Level Input Voltage				0.8	V
Vi	Input Clamp Voltage	$V_{CC} = 5.0V$, $I_1 = -12 \text{ mA}$			-1.5	V
l _i	Input Current at Max Input Voltage	V _{CC} = 5.25V, V _{IN} = 5.5V			1	mA
VoH	High Level Output Voltage	V _{IH} = 2.0V, I _{OH} = -75 mA (Note 4)	2.4			V
I _{OH}	High Level Output Current	$V_{CC} = 5.0V$, $V_{IH} = 4.75V$, $V_{OH} = 2.0V$, $T_A = 25^{\circ}C$ (Note 4)	-100		-250	mA
loL	Low Level Output Current	V _{IL} = 0.8V, V _{OL} = 0.4V (Note 4)			-800	μΑ
I _{O(OFF)}	Off State Output Current	V _{CC} = 0V, V _O = 3.0V			500	μА
I _{IH}	High Level Input Current	V ₁ = 4.5V			40	μΑ
I _{IL}	Low Level Input Current	V ₁ = 0.4V	-0.1		-1.6	mA
los	Short Circuit Output Current	V _{CC} = 5.0V, T _A = 25°C			-30	mA
I _{CCH}	Supply Current, Outputs High	V _{CC} = 5.25V, All Inputs at 2.0V, Outputs Open			28	mA
IccL	Supply Current, Outputs Low	V _{CC} = 5.25V, All Inputs at 0.8V,			60	mA

Outputs Open

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

Output Current

Power Dissipation

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIONS			TYP	MAX	UNITS
t_{PLH}	Propagation Delay Time, Low-	R_L = 37 Ω , (See ac Test Circuit	C _L = 15 pF		11	20	ns
	to-High Level Output	and Switching Time Waveforms)	C _L = 1000 pF		22	50	ns
t _{PHL}	Propagation Delay Time, High-	R_L = 37 Ω , (See ac Test Circuit	C _L = 15 pF		8.0	20	ns
	to-Low Level Output	and Switching Time Waveforms)	C _L = 1000 pF		20	50	ns

Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS55121 and across the 0°C to +70°C range for the DS75121. All typical values are for $T_A \approx 25^{\circ} C$ and $V_{CC} = 5V$.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

DS55122/DS75122 triple line receivers

general description

The DS55122/DS75122 are triple line receivers designed for digital data transmission with line impedances from 50Ω to 500Ω . Each receiver has one input with built-in hysteresis which provides a large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS55122/DS75122 are compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed . . . typical propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0V supply operation
- Fanout to 10 series 54/74 standard loads
- Plug-in replacement for the SN55122/SN75122 and the 8T14

connection diagram

Dual-In-Line Package Vcc S1 R1 Y1 A3 S3 R3 Y3 15 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 A1 B1 R2 S2 A2 B2 Y2 GND TOP VIEW

Order Number DS55122J, DS75122J, DS75122N or DS55122W See NS Package J16A, N16A or W16A

truth table

	INP	JTS		OUTPUT
Α	Вţ	R	s	Υ
н	Н	х	×	L
X	Х	L	Н	L
L	Х	Н	X	Н
L	X	Х	L	н
Х	L	Н	X	н
Х	L	×	L	Н

H = high level, L = low level, X = irrelevant

†B input and last two lines of the truth table
are applicable to receivers 1 and 2 only

ac test circuit and switching time waveforms

operating conditions absolute maximum ratings (Note 1) UNITS MIN MAX 4.75 5.25 V 6.0V Supply Voltage, VCC Supply Voltage, VCC Input Voltage Operating Temperature, TA R Input 6.0V °C -55 +125 DS55122 A, B, or S Input 5.5V °C DS75122 +75 Output Voltage 6.0V μΑ -500 High Level Output Current, ±100 mA **Output Current** Power Dissipation 600 mW mΑ 16 Low Level Output Current, -65°C to +150°C Storage Temperature Range 300°C loL Lead Temperature (Soldering, 10 seconds)

electrical characteristics V_{CC} = 4.75V to 5.25V (unless otherwise noted) (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage	A, B, R, or S		2.0			V
V _{IL}	Low Level Input Voltage	A, B, R, or S				0.8	V
V _{T+} V _{T-}	Hysteres _' s	V _{CC} = 5.0V, T _A	= 25°C, R,(Note 6)	0.3	0.6		٧
V ₁	Input Clamp Voltage	V _{CC} = 5 0V, I,	= -12 mA, A, B, or S			-1.5	V
I ₁	Input Current at Max Input Voltage	V _{CC} = 5.25V, V	Y _{IN} = 5.5V, A, B, or S			1.0	mA
V _{OH}	High Level Output Voltage		V _{IH} = 2V, V _{IL} = 0.BV, (Note 4)	26			٧
· 0#		I _{OH} = -500μA	$V_{I(A)} = 0V, V_{I(B)} = 0V,$ $V_{I(B)} = 1.45V, V_{I(S)} = 2.0V, (Note 7)$	2.6			>
VoL	Low Level Output Voltage		V _{IH} = 2.0V, V _{IL} = 0.BV, (Note 4)			0.4	V
O.E		I _{OL} = 16 mA	$V_{I(A)} = 0V, V_{I(B)} = 0V,$ $V_{I(B)} = 1.45V, V_{I(S)} = 2.0V, (Note B)$			0.4	٧
I _{IH}	High Level Input Current	V ₁ = 4 5V, A, B	, or S			40	μΑ
1,111		V ₁ = 38V, R				170	μΑ
I _{IL}	Low Level Input Current	V ₁ = 0.4V, A, B, or S		-0.1		-1.6	mA
Ios	Short Circuit Output Current	V _{CC} = 5 0V, T,	_λ = 25°C, (Note 5)	-50		-100	mA
I _{CC}	Supply Current	V _{CC} = 5.25V			Į	72	mA

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.

Note 3: Min/max limits apply across the guaranteed operating temperature range of -55° C to +125 $^{\circ}$ C for DS55122 and 0 $^{\circ}$ C to +75 $^{\circ}$ C for DS75122, unless otherwise specified. Typicals are for $V_{CC} = 5.0V$, $T_{A} = 25^{\circ}$ C. Positive current is defined as current into the referenced pin.

Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

Note 5: Not more than one output should be shorted at a time.

Note 6: Hysteresis is the difference between the positive going input threshold voltage, V_{T+,} and the negative going input threshold voltage, V_{T-}.

Note 7: Receiver input was at a high level immediately before being reduced to 1.45V.

Note 8: Receiver input was at a low level immediately before being raised to 1.45V.

typical performance characteristics

typical applications

Single-Ended Party Line Circuits

The high gain and built in hysteresis of the DS55122/DS75122 line receivers enable them to be used as Schmitt triggers in squaring up pulses

Pulse Squaring

DS75123 dual line driver

general description

The DS75123 is a monolithic dual line driver designed specifically to meet the I/O interface specifications for IBM System 360. It is compatible with standard TTL logic and supply voltage levels.

The low-impedance emitter-follower outputs of the DS75123 enable driving terminated low impedance lines. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5V.

features

- Meet IBM System 360 I/O interface specifications for digital data transmission over $\mathbf{50}\Omega$ to 500Ω coaxial cable, strip line, or terminated pair transmission lines
- TTL compatible with single 5.0V supply
- 3.11V output at I_{OH} = -59.3 mA
- Open emitter-follower output structure for party-line operation
- Short circuit protection
- AND-OR logic configuration
- Plug-in replacement for the SN75123 and the 8T23

connection diagram

Order Number DS75123J or DS75123N See NS Package J16A or N16A

typical performance characteristics

truth table

		INF	uts			OUTPUT
A	В	С	D	E	F	Υ
н	н	н	н	х	х	Н
х	X	Х	X	н	н	н
Αii	Other	Input	Comi	oinatio	ons	L.

H = high level, L = low level, X = irrelevent

ac test circuit and switching time waveforms

THE PULSE GENERATORS HAVE THE FOLLOWING CHARACTERISTICS: $Z_{OUT}\approx 50\Omega$. tw = 200 ns. DUTY CYCLE = 50%

Note 2: CL INCLUDES PROBE AND JIG CAPACITANCE.

absolute maximum ratings (Note 1)		operating conditions					
			MIN	MAX	UNITS		
Supply Voltage, VCC	7.0V	Supply Voltage, V _{CC}	4.75	5.25	V		
Input Voltage	5.5V	High Level Output Current,		100	mΑ		
Output Voltage	7.0V	Гон					
Power Oissipation	600 mW	Temperature, TA	0	+75	°C		
Operating Free-Air Temperature Range	0°C to +75°C						
Storage Temperature Range	-65°C to +150°C						
Lead Temperature (Soldering, 10 seconds)	300°C						

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage		2.0			V
V _{IL}	Low Level Input Voltage				0.8	V
Vı	Input Clamp Voltage	V _{CC} = 5.0V, I _I = -12 mA			-1.5	V
I ₁	Input Current at Max Input Voltage	V _{CC} = 5.25V, V _{IN} = 5.5V			1	mΑ
V _{OH}	High Level Output Voltage	$V_{CC} = 5.0V, V_{IH} = 2.0V, T_A = 25^{\circ}C$	3.11			V
		$I_{OH} = -59.3 \text{ mA}, \text{ (Note 4)} T_A = 0^{\circ}\text{C to } +75^{\circ}\text{C}$	2.9		L	V
I _{OH}	High Level Output Current	$V_{CC} = 5.0V$, $V_{1H} = 4.5V$, $T_A = 25^{\circ}C$, $V_{OH} = 2.0V$, (Note 4)	~100		-250	mA
V _{OL}	Low Level Output Voltage	V _{IL} = 0.8V, I _{OL} = -240μA, (Note 4)			0.15	V
I _{O(OFF)}	Off State Output Current	V _{CC} = 0, V _O = 3.0V			40	μΑ
I _{IH}	High Level Input Current	V ₁ = 4.5V			40	μΑ
t _{IL}	Low Level Input Current	V ₁ = 0.4V	-0.1		-1.6	mA
Ios	Short Circuit Output Current	$V_{CC} = 5.0V, T_A = 25^{\circ}C$			-30	mA
I _{CCH}	Supply Current, Outputs High	V _{CC} = 5.25V, All Inputs at 2.0V, Outputs Open			28	mA
I _{CCL}	Supply Current, Outputs Low	V _{CC} = 5.25V, All Inputs at 0.8V, Outputs Open			60	mA

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

PARAMETER CONDITIONS			MIN	TYP	MAX	UNITS	
t _{PLH}	Propagation Oelay Time, Low-	$R_L = 50\Omega$, (See ac Test Circuit	C _L = 15 pF		12	20	ns
	to-High Level Output	and Switching Time Waveforms	C _L = 100 pF		20	35	ns
t _{PHL}	Propagation Oelay Time, High-	R _L = 50Ω, (See ac Test Circuit	C _L = 15 pF		12	20	ns
	to-Low Level Output	and Switching Time Waveforms	C _L = 100 pF		15	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.

Note 3: Min/max limits apply across the guaranteed operating temperature range of 0° C to +75°C for DS75123, unless otherwise specified. Typicals are for $V_{CC} = 5.0V$, $T_{A} = 25^{\circ}$ C. Positive current is defined as current into the referenced pin.

Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output,

DS75124 triple line receiver

general description

The DS75124 is designed to meet the input/output interface specifications for IBM System 360. It has built-in hysteresis on one input on each of the three receivers to provide large noise margin. The other inputs on each receiver are in a standard TTL configuration. The DS75124 is compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed . . typ propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0V supply operation
- Plug-in replacement for the SN75124 and the 8T24

connection diagram and truth table

Dual-In Line Package

Order Number	D\$75124J	or	DS75124N
Cas NC Das	denne 11CA		ALC A

	INP		OUTPUT	
Α	Β [†]	R	s	Y
Н	н	Х	х	L
Х	X	L	Н	L
L	X	Н	X	H
L	X	Х	L	н
Х	L	Н	X	н
Х	L	X	L	н

H = high level, L = low level, X = irrelevant

†B input and last two lines of the truth table are applicable to receivers 1 and 2 only

typical application

absolute maximum ratings (Note 1) operating conditions MIN MAX UNITS Supply Voltage, V_{CC} 7.0V Supply Voltage, VCC 4.75 5.25 Input Voltage -800 High Level Output Current, μΑ R Input with V_{CC} Applied 7.0V ТОН R Input with V_{CC} not Applied 6.0V Low Level Output Current, 16 mΑ A, 8, or S Input 5.5V loL Output Voltage 7.0V °C 0 +75 Operating Temperature, TA **Output Current** ±100 mA Power Dissipation 600 mW Operating Temperature Range 0°C to +75°C Storage Temperature Range -65°C to +150°C

300°C

electrical characteristics (Notes 2 and 3)

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage	A, B, or S	2.0			V
		R	1.7			V
V_{IL}	Low Level Input Voltage	A, 8, or S			0.8	V
		R			0.7	V
$V_{T+}-V_{T-}$	Hysteresis	V _{CC} = 5.0V, T _A = 25°C, R, (Note 6)	0.2	0.4		>
V _I	Input Clamp Voltage	V _{CC} = 5.0V, I ₁ = -12 mA, A, B, or S			-1.5	V
I_1	Input Current at Maximum	V _{CC} = 5.25V, V _{IN} = 5.5V, A, B, or S			1	mA
	Input Voltage	R V ₁ = 7.0V			5.0	mA
		$V_i = 6.0V, V_{CC} = 0$			5.0	mA
V _{он}	High Level Output Voltage	$V_{IH} = V_{IHMIN}, V_{IL} = V_{ILMAX}, I_{OH} = -800\mu\text{A},$ (Note 4)	2.6			V
VoL	Low Level Output Voltage	$V_{IH} = V_{INMIN}, V_{IL} = V_{ILMAX}, I_{OL} = 16 \text{ mA}, (Note 4)$			0.4	V
I _{IH}	High Level Input Current	V ₁ = 4.5V, A, B, or S			40	μΑ
		V ₁ = 3.11V, R			170	μΑ
IIL	Low Level Input Current	V ₁ = 0.4V, A, 8, or S	− 0.1		-1.6	mA
los	Short Circuit Output Current	V _{CC} = 5.0V, T _A = 25°C, (Note 5)	-50		-100	mA
Icc	Supply Current	V _{CC} = 5.25V			72	mA

switching characteristics TA = 25°C, nominal power supplies unless otherwise noted

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns
t РНL	Propagation Delay Time, High-to-Low Level Output from R Input	(See ac Test Circuit and Switching Time Waveforms)		20	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Nota 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.

Note 3: Min/max limits apply across the guaranteed operating temperature range of 0°C to +75°C for DS75124, unless otherwise specified. Typicals are for V_{CC} = 5.0V, T_A = 25°C. Positive current is defined as current into the referenced pin.

Nota 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.

Note 5: Not more than one output should be shorted at a time.

Note 6: Hysteresis is the difference between the positive going input threshold voltage, V_{T+}, and the negative going input threshold voltaga, V_{T-}.

1

ac test circuit and switching time waveforms

Note 1. THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS. $Z_{OUT} \approx 50\Omega_{\rm c}, t_{W} \approx 200$ ns, DUTY CYCLE = 50%. Note 2. C., INCLUDES PROBE AND JIG CAPACITANCE.

typical performance characteristics

DS75150 dual line driver general description

The DS75150 is a dual monolithic line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from -12V and +12V power supplies.

features

- Withstands sustained output short-circuit to any low impedance voltage between −25V and +25V
- 2µs max transition time through the -3V to +3V transition region under full 2500 pF load
- Inputs compatible with most TTL and DTL families
- Common strobe input
- Inverting output
- Slew rate can be controlled with an external capacitor at the output
- Standard supply voltages

+12\/

schematic and connection diagrams

Order Number DS75150N-8 or DS75150J-8 See NS Package J08A or N08A

absolute maximum rati	ngs (Note 1)	operating conditions					
			MIN	MAX	UNITS		
Supply Voltage +V _{CC}	15V	Supply Voltage (+V _{CC})	10.8	13.2	V		
Supply Voltage -V _{CC}	-15V	Supply Voltage (-V _{CC})	-10.8	-13.2	V		
Input Voltage Applied Output Voltage	15∨ ±25∨	Input Voltage (V _I)	0	+5.5	٧		
Storage Temperature Range	-65°C to +150°C	Output Voltage (VO)		±15	V		
Lead Temperature (Soldering, 10 seconds)	300° C	Operating Ambient Temperature Range (T _A)	0	+70	°C		

dc electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	CONDITIO	ONS	MIN	TYP	MAX	UNITS
ViH	High-Level Input Voltage	(Figure 1)		2			V
VIL	Low-Level Input Voltage	(Figure 2)				0.8	V
V _{OH}	High-Level Output Voltage	$+V_{CC}$ = 10.8V, $-V_{CC}$ = -13.2V R _L = 3 kΩ to 7 kΩ, (Figure 2)	, V _{IL} = 0.8V,	5	8		V
V _{OL}	Low-Level Output Voltage	$+V_{CC}$ = 10.8V, $-V_{CC}$ = -10.8V R _L = 3 kΩ to 7 kΩ, (Figure 1)	, V _{IH} = 2V,		-8	- 5	V
1 _{IH}	High-Level Input Current	+V _{CC} = 13.2V, -V _{CC} = -13.2V, V ₁ = 2.4V, (Figure 3)	Data Input		1	10	μΑ
		$+V_{CC} = 13.2V, -V_{CC} = -13.2V,$ $V_1 = 2.4V, (Figure 3)$	Strobe Input		2	20	μΑ
I _{IE}	Low-Level Input Current	$+V_{CC} = 13.2V, -V_{CC} = -13.2V,$ $V_1 = 0.4V, (Figure 3)$	Data Input		-1	-1.6	mA
		$+V_{CC} = 13.2V, -V_{CC} = -13.2V,$ $V_1 = 0.4V, (Figure 3)$	Strobe Input		-2	-3.2	mA
los	Short-Circuit Output Current	+V _{cc} = 13.2V, -V _{cc} = -13.2V,	V ₀ = 25V		2	5	mA
		(Figure 4), Note 4			-3	-6	mA
		ingare 47, Note 4	$V_0 = 0V, V_1 = 3V$	<u> </u>	15	30	mA
			$V_0 = 0V, V_1 = 0V$	<u> </u>	-15	-30	mA
^{+l} ccH	Supply Current From $+V_{CC}$, High-Level Output	$+V_{CC} = 13.2V, -V_{CC} = -13.2V$ $R_{L} = 3 k\Omega, T_{A} = 25^{\circ}C, (Figure$			10	22	mA
-Іссн	Supply Current From -V _{CC} , High-Level Output	$+V_{CC} = 13.2V, -V_{CC} = -13.2V$ $R_L = 3 k\Omega, T_A = 25^{\circ}C, (Figure$			-1	-10	mA
+lccr	Supply Current From +V _{CC} , Low-Level Output	$+V_{CC} = 13.2V, -V_{CC} = -13.2V$ $R_L = 3 k\Omega, T_A = 25^{\circ}C, (Figure$			8	17	mA
-I _{CCL}	Supply Current From -V _{CC} , Low-Level Output	$+V_{CC} = 13.2V, -V_{CC} = -13.2V$ $R_{L} = 3 k\Omega, T_{A} = 25^{\circ}C, (Figu.$	•		-9	-20	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75150. All typical values are for T_A = 25°C and +V_{CC} = 12V, -V_{CC} = -12V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5V is the maximum, the typical value is a more-negative voltage.

ac electrical characteristics (+V $_{CC}$ = 12V, -V $_{CC}$ = -12V, T $_{A}$ = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{TLH}	Transition Time, Low-to-High Level Output	C_L = 2500 pF, R_L = 3 k Ω to 7 k Ω , (Figure 6)	0.2	1.4	2	μς
t _{THL}	Transition Time, High-to-Low Level Output	C_L = 2500 pF, R_L = 3 k Ω to 7 k Ω , (Figure 6)	0.2	1.5	2	μs
t _{TLH}	Transition Time, Low-to-High Level Output	$C_L = 15 \text{ pF}, R_L = 7 \text{ k}\Omega, \text{ (Figure 6)}$		40		ns
t _{THL}	Transition Time, High-to-Low Level Output	$C_L = 15 \text{ pF}, R_L = 7 \text{ k}\Omega, \text{ (Figure 6)}$		20		ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	$C_L = 15 \mathrm{pF}, \; R_L = 7 \mathrm{k}\Omega, \; (Figure 6)$		60		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$C_L = 15 \mathrm{pF}, \; R_L = 7 \mathrm{k}\Omega, \; (Figure \; 6)$		45		ns

dc test circuits

A¹ O

FIGURE 1. VIH, VOL

FIGURE 2. VIL, VOH

FIGURE 3. IIH, IIL

FIGURE 4. IOS

FIGURE 5. ICCH+, ICCH-, ICCL+, ICCL-

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: duty cycle \leq 50%, Z $_{OUT}\approx$ 50 Ω_{\odot}

Note 2. C_L includes probe and jig capacitance.

FIGURE 6.

typical performance characteristics

FIGURE 7.

DS75154 quad line receiver general description

The DS75154 is a quad monolithic line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. Other applications are in relatively short, single-line, point-to-point data transmission systems and for level translators. Operation is normally from a single 5V supply; however, a built-in option allows operation from a 12V supply without the use of additional components. The output is compatible with most TTL and DTL circuits when either supply voltage is used.

In normal operation, the threshold-control terminals are connected to the V_{CC1} terminal, pin 15, even if power is being supplied via the alternate V_{CC2} terminal, pin 16. This provides a wide hysteresis loop which is the difference between the positive-going and negative-going threshold voltages. In this mode, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing

the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condi-

features

- Input resistance, 3 k Ω to 7 k Ω over full RS-232C voltage range
- Input threshold adjustable to meet "fail-safe" requirements without using external components
- Inverting output compatible with DTL or TTL
- Built-in hysteresis for increased noise immunity
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage-5V or 12V

schematic and connection diagrams

Note. When using V_{CC1} (pin 15), V_{CC2} (pin 16) may be left open or shorted to V_{CC1}. When using V_{CC2}, V_{CC1} must be left open or connected to the threshold control pins.

Order Number DS75154J or DS75154N See NS Package J16A or N16A

absolute maximum ratings (Note 1) operating conditions MIN MAX UNITS Normal Supply Voltage (Pin 15),(V_{CC1}) 7V Supply Voltage (Pin 15),(V_{CC1}) 4.5 5.5 Alternate Supply Voltage (Pin 16),(VCC2) 14V Alternate Supply Voltage (Pin 16) 10.8 13.2 Input Voltage ±25V (VCC2) Storage Temperature Range –65°C to +150°C Input Voltage Lead Temperature (Soldering, 10 seconds) 300°C ±15

Temperature, (TA)

+70

°C

electrical characteristics (Notes 2, 3 and 4)

	PARAMETER	C	ONDITIONS	MIN	TYP	MAX	דואט
VIH	High-Level Input Voltage	(Figure 1)		3			V
V _{IL}	Low-Level Input Voltage	(Figure 1)				-3	V
V _{T+}	Positive-Going Threshold Voltage	(Figure 1)	Normal Operation	8.0	2.2	3	V
		(Figure 1)	Fail-Safe Operation	8.0	2.2	3	V
V _T _	Negative-Going Threshold Voltage	/Fi 11	Normal Operation	-3	-1.1	0	
		(Figure 1)	Fail-Safe Operation	0.8	1.4	3	\
V _{T+} -V _{T-}	Hysteresis	/Finance 11	Normal Operation	0.8	3.3	6	١
		(Figure 1)	Fail-Safe Operation	0	0.8	2.2	\
VoH	High-Level Output Voltage	I _{OH} = -400	A, (Figure 1)	2.4	3.5		,
VoL	Low-Level Output Voltage	I _{OL} = 16 m/	A, (Figure 1)		0.23	0.4	,
r _l	Input Resistance		$\Delta V_1 = -25V$ to $-14V$	3	5	7	ks
			$\Delta V_1 = -14V$ to $-3V$	3	5	7	ks
		(Figure 2)	$\Delta V_1 = -3V \text{ to } +3V$	3	6		ks
			$\Delta V_1 = 3V \text{ to } 14V$	3	5	7	ks
			$\Delta V_1 = 14V \text{ to } 25V$	3	5	7	ks
VI(OPEN)	Open-Circuit Input Voltage	I ₁ = 0, (Figu	ire 3)	0	0.2	2	,
Ios	Short-Circuit Output Current (Note 5)	V _{CC1} = 5.5\	/, V ₁ = -5V, (Figure 4)	-10	-20	-40	m
I _{CC1}	Supply Current From V _{CC1}	V _{CC1} = 5.5\	/, T _A = 25°C, (Figure 5)		20	35	m/
I _{CC2}	Supply Current From V _{CC2}	V _{CC2} = 13.2	2V, T _A = 25°C, (Figure 5)		23	40	m,

switching characteristics (V_{CC1} = 5V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	$C_L = 50 \text{ pF}, R_L = 390\Omega, (Figure 6)$		22		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$C_L = 50 \text{ pF}, R_L = 390\Omega, (Figure 6)$		20		ns
t _{TLH}	Transition Time, Low-to-High Level Output	$C_L = 50 \text{ pF}, R_L = 390\Omega \text{ (Figure 6)}$		9		ns
t _{THL}	Transition Time, High-to-Low Level Output	$C_L = 50 \text{ pF}, R_L = 390\Omega, (Figure 6)$		6		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75154. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC1} = 5V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic and threshold levels only, e.g., when -3V is the maximum, the minimum limit is a more-negative voltage.

Note 5: Only one output at a time should be shorted.

dc test circuits and truth tables

TEST	MEASURE	А	т	Y	V _{CC1} (PIN 15)	V _{CC2} (PIN 16)
Open Circuit Input	VoH	Open	Open	t _{on}	4.5V	Open
(fail-safe)	VoH	Open	Open	I _{OH}	Open	10.8V
V _{T+} min,	VoH	0.8V	Open	1 _{OH}	5.5V	Open
V⊤ (fail-safe)	V _{OH}	0.8V	Open	Іон	Open	13.2V
	VoH	Note 1	Pin 15	Іон	5.5V and T	Open
V _{T+} min (Normal)	V _{OH}	Note 1	Pin 15	Іон	Т	13.2V
V _{JL} max,	V _{OH}	-3V	Pin 15	Іон	5.5V and T	Open
V _{T-} min (Normal)	VoH	-3V	Pin 15	Іон	Τ	13.2V
V _{IH} min, V _T , max,	Vol	3∨	Open	loc	4 5 V	Open
V _⊤ max (fail-safe)	VoL	3∨	Open	loL	Open	10.8V
V _{IH} min, V _{T+} max	VoL	3V	Pin 15	lor	4.5V and T	Open
(Normal -	VoL	3V	Pin 15	lou	Т	10.8V
	VoL	Note 2	Pin 15	IoL	5 5V and T	Open
V _{T−} max (Normal)	V _{OL}	Note 2	Pin 15	IoL	Т	13.2V

Note 1: Momentarily apply -5V, then 0.8V. Note 2: Momentarily apply 5V, then ground.

FIGURE 1. V_{IH} , V_{IL} , V_{T+} , V_{T-} , V_{OH} , V_{OL}

т	V _{CC1} (Pin 15)	V _{CC2} (Pin 16)
Open	5V	Open
Open	Gnd	Open
Open	Open	Open
Pin 15	T and 5V	Open
Gnd	Gnd	Open
Open	Open	12∨
Open	Open	Gnd
Pin 15	Т	12V
Pin 15	Т	Gnd
Pin 15	T	Open

FIGURE 2. r

ī	V _{CC1} (Pin 15)	V _{CC2} (Pin 16)
Open	5.5V	Open
Pin 15	5.5∨	Open
Open	Open	13. 2 V
Pin 15	т	13. 2 V

FIGURE 3. VI(OPEN)

dc test circuits (con't)

FIGURE 4. IOS

FIGURE 5. ICC

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50 Ω , t_W = 200 ns, duty cycle \leq 20% Note 2: C_L includes probe and jig capacitance

FIGURE 6.

typical performance characteristics

DS8642 quad transceiver

general description

The DS8642 is a quad transceiver designed for bus organized data transmission systems terminated by 50Ω impedance. The bus can be terminated at one or both ends. It has four bus drivers with a common strobe gate and four bus receivers. Bus driver outputs can be "OR-tied" with up to 19 other drivers and with up to 20 bus receiver loads. The bus loading is 2k when $V_{\rm CC}$ = 0V.

features

- 100 mA Drive Capability
- Four separate driver/receiver pairs
- Open collector driver output allows wire-OR connection
- 50 Ω line termination
- Completely TTL compatible on driver and disable inputs, and receiver outputs

connection diagram

Dual-In-Line Package

Drder Number DS8642J or DS8642N See NS Package J16A or N16A

absolute maximum ratings (Note 1)

Lead Temperature (Soldering, 10 seconds)

operating conditions

			MIN	MAX	UNITS
Supply Voltage	7V	Supply Voltage, V _{CC}	4.75	5.25	V
Input Voltage	5.5V	Temperature, T _A	0	+70	°C
Output Voltage	5.5V	remperature, 1 A	U	170	C
Storage Temperature Range	-65°C to +150°C				
Power Dissipation	600 mW				

300°C

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DISABL	E/DRIVER INPUT			.	1	
V _{IH}	Logical "1" Input Voltage	V _{CC} = Min	2			v
V _{IL}	Logical "0" Input Voltage	V _{CC} = Min			0.8	V
IL.	Logical "0" Input Current	V _{CC} = Max, V _{IN} = 0.4V		-0.9	-1.6	mA
IH.	Logical "1" Input Current	$V_{CC} = Max \qquad \frac{V_{IN} = 2.4V}{V_{IN} = 5.5V}$			40	μΑ
		V _{IN} = 5.5V			1	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA		−0.8	-1.5	V
RECEIV	ER INPUT/BUS OUTPUT					
V _{IHB}	Logical "1" Input Voltage	V _{CC} = Max	3.1			٧
VILB	Logical "0" Input Voltage	V _{CC} = Min			1.4	٧
V _{CDB}	Input Clamp Diode	I _{IN} = -50 mA		-1.0	-1.5	٧
інв	Logical "1" Input Current	V _{CC} = Max, V _{INB} = V _{CC}		180	450	μΑ
ILB	Logical "0" Input Current	$V_{CC} = Max, V_{IN} = 0.4V$			-40	μΑ
V _{OLB}	Logical "0" Output Voltage	V _{CC} = Min, I _{OUT} = 100 mA		0.4	0.8	V
loL	Logical "0" Output Current	V_{CC} = Min, V_{OL} = 0.8V	100			mA
Іонв	Power "OFF" 8us Current	V _{CC} = 0V, V _{INB} = 5.25V		1.7	2.65	mA
RECEIV	ER OUTPUT					
V _{OH}	Logical "1" Output Voltage	V _{CC} = Min, I _{OUT} = -1 mA	2.4	3.2		V
Іон	Logical "1" Output Current	V _{CC} = Min, V _{OUT} = 5.5V			100	μΑ
los	Output Short Circuit Current	V _{CC} = Min, V _{OUT} = 0V, (Note	4) -10	-28	-55	mA
V _{OL}	Logical "0" Output Voltage	V _{CC} = Min, I _{OUT} = 16 mA		0.3	0.45	V
				•		
I _{cc}	Supply Current	V _{CC} = Max		49	64	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS8642. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

switching characteristics TA = 25°C, nominal power supplies unless otherwise noted

	PARAMETER	ARAMETER CONDITIONS		TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logical "0" From Data Input to Receiver Output	(Figure 1)		34	50	ns
t _{pd1}	Propagation Delay to a Logical "1" From Data Input to Receiver Output	(Figure 1)		25	50	ns
t _{pd0}	Propagation Delay to a Logical "0" From Strobe Input to Receiver Output	(Figure 1)		38	55	ns
t _{pd1}	Propagation Delay to a Logical "1" From Strobe Input to Receiver Output	(Figure 1)		25	55	ns

typical performance characteristics

Receiver OFF Impedance

ac test circuit and switching time waveforms

 $t_{r} = t_{f} \approx \text{5 ns}$

DS7820/DS8820 dual line receiver

general description

The DS7820, specified from -55° C to $+125^{\circ}$ C, and the DS8820, specified from 0° C to $+70^{\circ}$ C, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits.

features

- Operation from a single +5V logic supply
- Input voltage range of ±15V

- Each channel can be strobed independently
- High input resistance
- Fanout of two with either DTL or TTL integrated circuits

The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820 and the DS8820 are specified, worst case, over their full operating temperature range, for ±10-percent supply voltage variations and over the entire input voltage range.

schematic and connection diagrams

Order Number DS7820J or DS8820J Order Number DS8820N Order Number DS7820W or DS8820W See NS Package J14A, N14A or W14A

typical application

absolute maximum ratings (Note 1)		operating condit	ions		
			MIN	MAX	UNITS
Supply Voltage	8.0∨	Supply Voltage (VCC)			
Input Voltage	±20V	DS7820	4.5	5.5	V
Differential Input Voltage	±20V	DS8820	4.75	5.25	V
Strobe Voltage	8.0V	Temperature (T _△)			
Output Sink Current	25 mA	DS7820	-55	+125	°c
Power Dissipation	600 mW	D\$8820	0	+70	°c
Storage Temperature Range	-65°C to +150°C				
Lead Temperature (Soldering, 10 sec)	300°C				

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{TH}	Input Threshold Voltage	V _{CM} = 0	0.5	0	0.5	V
		$-15V \le V_{CM} \le 15V$	-1.0	0	1.0	V
V _{OH}	High Output Level	I _{OUT} ≤ 0.2 mA	2.5		5.5	V
VoL	Low Output Level	$I_{SINK} \leq 3.5 \text{ mA}$	0		0.4	V
R _I -	Inverting Input Resistance		3.6	5.0		kΩ
R _I +	Non-Inverting Input Resistance		1.8	2.5		kΩ
R _T	Line Termination Resistance	T _A = 25°C	120	170	250	Ω
t _r	Response Time	C _{DELAY} = 0		40		ns
		C _{DELAY} = 100 pF		150		ns
I _{ST}	Strobe Current	V _{STROBE} = 0.4V		1.0	1.4	mA
		V _{STROBE} = 5.5V			-5.0	μΑ
Icc	Power Supply Current	V _{IN} = 15V		3.2	6.0	mA
		V _{IN} = 0		5.8	10.2	mA
		V _{IN} = -15V		8.3	15.0	mA
l_{1N}^{+}	Non-Inverting Input Current	V _{IN} = 15V		5.0	7.0	mA
		V _{IN} = 0	-1.6	-1.0		mA
		V _{IN} = -15V	-9.8	-7.0		mA
I _{IN} -	Inverting Input Current	V _{IN} = 15V		3.0	4.2	mA
		V _{1N} = 0		0	-0.5	mA
		V _{IN} = -15V	-4.2	-3.0		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Derating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: These specifications apply for $4.5 \text{V} \le \text{V}_{CC} \le 5.5 \text{V}$, $-15 \text{V} \le \text{V}_{CM} \le 15 \text{V}$ and $-55^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$ for the DS7820 or $0^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$ for the DS8820 unless otherwise specified; typical values given are for $\text{V}_{CC} = 5.0 \text{V}$, $\text{T}_{A} = 25^{\circ}\text{C}$ and $\text{V}_{CM} = 0$ unless stated differently. Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

typical performance characteristics (Note 3)

DS7820A/DS8820A dual line receiver

general description

The DS7820A and the DS8820A are improved performance digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include:

- Operation from a single +5V logic supply
- Input voltage range of ±15V
- Strobe low forces output to "1" state
- High input resistance

- Fanout of ten with either DTL or TTL integrated circuits
- Outputs can be wire OR'ed
- Series 54/74 compatible

The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic "1" for both inputs open. Termination resistors for the twisted pair line are also included in the circuit. Both the DS7820A and the DS8820A are specified, worst case, over their full operating temperature range (-55°C to 125°C and 0°C to 70°C respectively), over the entire input voltage range, for ±10% supply voltage variations.

schematic and connection diagrams

Order Number OS7820AJ or DS8820AJ Order Number DS8820AN Order Number DS7820AW or OS8820AW See NS Package J14A, N14A or W14A

typical applications

Differential Line Driver and Receiver

Single Ended (EIA-RS232C) Receiver with Hysteresis

absolute maximum ratir	lute maximum ratings (Note 1) operating conditions				
			MIN	MAX	UNITS
Supply Voltage	8.0V	Supply Voltage (VCC)			
Common-Mode Voltage	±20V	DS7820A	4.5	5.5	V
Differential Input Voltage	±20V	DS8820A	4.75	5.25	v
Strobe Voltage	8.0V		4.75	3.23	٧
Output Sink Current	50 mA	Temperature (T _A)			
Power Dissipation	600 mW	DS7820A	-55	+125	°C
Storage Temperature Range	-65°C to 150°C	DS8820A	0	+70	°C
Lead Temperature (Soldering, 10 sec)	300°C				

electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V_{TH}	Differential Threshold Voltage	I _{OUT} = -400μA,	$-3V \le V_{CM} \le +3$	V		0.06	0.5	V
			$-15V \le V_{CM} \le +$			0.06	1.0	V
		I _{OUT} = +16 mA,	$-3V \le V_{CM} \le +3$	V		-0.08	−0.5	V
		V _{OUT} ≤ 0.4V	$-15V \le V_{CM} \le +$	15V		-0.08	-1.0	V
R,-	Inverting Input Resistance	$-15V \le V_{CM} \le +15$	-15V ≤ V _{CM} ≤ +15V			5		kΩ
R _I +	Non-Inverting Input Resistance	$-15V \le V_{CM} \le +15V$		1.8	2.5		kΩ	
R _T	Line Termination Resistance	T _A = 25°C			120	170	250	Ω
I_1^-	Inverting Input Current	V _{CM} = 15V				3.0	4.2	mA
		V _{CM} = 0V				0	− 0.5	mA
		V _{CM} = -15V				-3.0	-4.2	mA
(1+	[†] Non-Inverting Input Current	V _{CM} = 15V				5.0	7.0	mA
		V _{CM} = 0V				-1.0	-1.6	mA
		V _{CM} = -15V				7.0	-9.8	mA
l _{cc}	Power Supply Current	I _{OUT} = Logical "0"	V======1V	V _{CM} = 15V		3.9	6.0	mA
		I _{OUT} = Logical "0"				9.2	14.0	mA
			$V_{DIFF} = -0.5V$	V _{CM} = 0√		6.5	10.2	mA
VoH	Logical "1" Output Voltage	$I_{OUT} = -400\mu A, V_{D}$	DIFF = 1V		2.5	4.0	5.5	V
VoL	Logical "0" Output Voltage	I _{OUT} = +16 mA, V _E	DIFF = -1V		0	0.22	0.4	V
V _{SH}	Logical ''1" Strobe Input Voltage	I _{OUT} = +16 mA, V _C	$_{\rm DUT} \leq 0.4 \rm V_{DHFF}$	= -3V	2.1			V
V _{SL}	Logical ''0'' Strobe Input Voltage	I _{OUT} = -400μA, V _C	$_{\rm OUT} \ge 2.5 \rm V, V_{\rm DIFF}$	= -3V			0.9	V
I _{SH}	Logical "1" Strobe Input Current	V _{STROBE} = 5.5V, V	DIFF = 3V			0.01	5.0	μА
I _{SL}	Logical "0" Strobe Input Current	V _{STROBE} = 0.4V, V	' _{DIFF} =3V			-1.0	-1.4	mA
I _{sc}	Output Short Circuit Current	I _{OUT} = 0V, V _{CC} = 5	5.5V, V _{STROBE} = 0	v	-2.8	-4.5	-6.7	mA

switching characteristics $T_A = 25^{\circ}C$, $V_{CC} = 5V$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay, Differential Input to "0" Output			30	45	ns
t _{pd1}	Propagation Delay, Differential Input to "1" Output			27	40	ns
t _{pd0}	Propagation Delay, Strobe Input to "0" Output			16	25	ns
t _{pd1}	Propagation Delay, Strobe Input to "1" Output	-		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: These specifications apply for $4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V}$, $-15 \text{V} \leq \text{V}_{\text{CM}} \leq 15 \text{V}$ and $-55^{\circ} \text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ} \text{C}$ for the DS7820A or $0^{\circ} \text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ} \text{C}$ for the DS8820A unless otherwise specified. Typical values given are for $\text{V}_{\text{CC}} = 5.0 \text{V}$, $\text{T}_{\text{A}} = 25^{\circ} \text{C}$ and $\text{V}_{\text{CM}} = 0 \text{V}$ unless stated differently.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

typical performance characteristics (Note 3)

ac test circuit and waveforms

- A = Differential Input to "O" Dutput
 B = Differential Input to "1" Dutput
 C = Strobe Input to "0" Dutput
 O = Strobe Input to "1" Output

DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.

A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a 180 Ω terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a -55°C to $+125^{\circ}\text{C}$ operating temperature range, and the DS88C20 over a 0°C to $+70^{\circ}\text{C}$ range.

Features

- Meets requirements of EIA Standards RS-232-C RS-422 and RS-423, and Federal Standards 1020 and 1030
- Input voltage range of ±15V (differential or commonmode)
- Separate strobe input for each receiver
- 1/2 V_{CC} strobe threshold for CMOS compatibility
- 5k input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range = 4.5V to 15V
- DS7830/DS8830 or MM78C30/MM88C30 recommended driver

Connection Diagram

Dual-In-Line Package

Drder Number DS78C20J, DS88C20J or DS78C20N See NS Package J14A or N14A

Typical Applications

RS-422/RS-423 Application

INPUT

LINE DRIVER AND RECEIVER (NOTE 3)

AND
OUTPUT

TWISTED PAIR LINE

1/2 MAY8630

DS8830

DS8830

DS8830

STRD 8E

FOR THE PAIR LINE

STRD 8E

STRD 8E

STRD 8E

Note 1: (Optional internal termination resistor).

- a) Capacitor in series with internal line termination resistor, terminates the line and saves termination power. Exact value depends on line length.
- b) Pin 1 connected to pin 2; terminates the line.
- c) Pin 2 open; no internal line termination.
- d) Transmission line may be terminated elsewhere or not at all.

Note 2: Optional to control response time.

Note 3: V_{CC} 4.5V to 15V for the DS78C20. For further information on line drivers and line receivers, refer to application notes AN-22, AN-83 and AN-108.

RS-232-C Application with Hysteresis

For signals which require fail-safe or have slow rise and fall times, use R1 and D1 as shown above. Otherwise, the positive input (pin 3 or 11) may be connected to ground.

Vcc	R1 ±5%
5V	4.3 kΩ
100	15 k Ω
15V	24 kΩ

Absolute Maximum Ration	ngs (Note 1)	Operating Condition	ns		
			MIN	MAX	UNITS
Supply Voltage	18V	Supply Voltage (VCC)	4.5	15	V
Common-Mode Voltage	±25V	Temperature (T _A)			
Differential Input Voltage	±25V	DS78C20	-55	+125	°c
Strobe Voltage	18V	DS88C20	0	+70	°c
Output Sink Current	50 mA	Common-Mode Voltage (VCM)	-15	+15	V
Power Dissipation	600 mW	- GIVI			v
Storage Temperature Range	-65°C to +150°C	Differential Input Voltage (V _{DIFF}	1	≤6	V
Lead Temperature (Soldering, 10 seconds)	300°C				

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIO	ONS	MIN	TYP	MAX	UNIT
VTH	Differential Threshold Voltage	I _{OUT} = -200 μA,	$-10V \le V_{CM} \le 10V$		0.06	0.2	V
• • • •		$V_{OUT} \ge V_{CC} - 1.2V$	$-15V \le V_{CM} \le 15V$		0.06	0.3	V
		IOUT = 1.6 mA, VOUT < 0.5V	$-10V \le V_{CM} \le 10V$		-0.08	-0.2	V
		1001 - 1.0 mA, VOO1 \(\leq 0.5 \text{V}	$-15V \le V_{CM} \le 15V$		-0.08	-0.3	V
RIN	Input Resistance	$-15V \le V_{CM} \le 15V$	·		5		kΩ
RT	Line Termination Resistance	T _A = 25°C		100	180	300	Ω
IND	Data Input Current (Unterminated)	V _{CM} = 10V			2	3.1	mA
		V _{CM} = 0V			0	-0.5	mA
		V _{CM} = -10V			-2	-3.1	mA
V _{THB}	Input 8alance	I_{OUT} = 200 μA, $V_{OUT} \ge V_{CC} - 1.2V$, $R_S = 500Ω$, (Note 5)	-7V ≤ V _{CM} ≤ 7V		0.1	0.4	V
		I_{OUT} = 1.6 mA, $V_{OUT} \le 0.5 V$, R_S = 500 Ω , (Note 5)	-7V ≤ V _{CM} ≤ 7V		-0.1	-0.4	٧
Voн	Logical "1" Output Voltage	I _{OUT} = -200 μA, V _{DIFF} = 1V		V _{CC} -1.2	V _{CC} -0.75		٧
VOL	Logical "0" Output Voltage	IOUT = 1.6 mA, VDIFF = -1V			0.25	0.5	V
lcc	Power Supply Current	$15V \le V_{CM} \le -15V$,	V _{CC} = 5.5V		8	15	mA
		V _{D1FF} = -0.5V (Both Receivers)	V _{CC} = 15V		15	30	mA
¹ IN(1)	Logical "1" Strobe Input Current	VSTROBE = 15V, VDIFF = 3V			15	100	μА
I _{IN(0)}	Logical "0" Strobe Input Current	V _{STROBE} = 0V, V _{DIFF} = -3V			-0.5	-100	μΑ
ViH	Logical ''1" Strobe Input Voltage		V _{CC} = 5V	3.5	2.5		V
		IOUT = 1.6 mA, VOL ≤ 0.5V	V _{CC} = 10V	8.0	5.0		V
			V _{CC} = 15V	12.5	7.5		V
VII	Logical "0" Strobe Input Voltage		V _{CC} = 5V		2.5	1.5	V
		I _{OUT} = -200 μA,	V _{CC} = 10V		5.0	2.0	V
		$V_{OH} = V_{CC} - 1.2V$	V _{CC} = 15V		7.5	2.5	V
los	Output Short-Circuit Current	VOUT = 0V, VCC = 15V, VSTRO8	or = 0V (Note 4)	-5	-20	-40	mA

Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpd0(D) Differential Input to "0" Output	C _L = 50 pF		60	100	ns
tpd1(D) Differential Input to "1" Output	C _L = 50 pF		100	150	ns
tpd0(S) Strobe Input to "0" Output	C _L ≈ 50 pF		30	70	ns
tpd1(S) Strobe Input to "1" Output	CL = 50 pF		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS78C20 and across the 0° C to $+70^{\circ}$ C range for the DS88C20. All typical values are for T_A = 25° C, V_{CC} = 5V and V_{CM} = 0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Refer to E1A-RS-422 for exact conditions.

AC Test Circuit and Switching Time Waveforms

*Includes probe and jig capacitance

DS7830/DS8830 dual differential line driver

general description

The DS7830/DS8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function.

TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω . The differential feature of the output eliminates troublesome ground-loop errors

normally associated with single-wire transmissions.

features

- Single 5 volt power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing
- High speed
- Short circuit protection

schematic* and connection diagrams

Dual-In-Line and Flat Package

Order Number DS7830J or DS8830J Order Number DS8830N Order Number DS7830W or DS8830W See NS Package J14A, N14A or W14A

*2 PER PACKAGE

typical application

Digital Data Transmission

°C

0

+70

absolute maximum ratings (Note 1) operating conditions MIN MAX Supply Voltage (V_{CC}) Vcc 7.0V DS7830 4.5 5.5 Input Voltage 5.5V OS8830 -65°C to +150°C 4.75 5.25 Storage Temperature Lead Temperature (Soldering, 10 sec) 300°C Temperature (TA) Output Short Circuit Duration (125°C) DS7830 **-5**5 +125 °c 1 second

DS8830

electrical characteristics (Notes 2 and 3)

PARAMETER		СО	NDITIONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage			2.0			٧
VIL	Logical "0" Input Voltage					0.8	٧
VoH	Logical "1" Output Voltage		I _{OUT} = -0.8 mA	2.4			V
		$V_{IN} = 0.8V$	I _{OUT} = -40 mA	1.8	3.3		V
VoL	Logical "0" Output Voltage		I _{OUT} = 32 mA		0.2	0.4	V
			I _{OUT} = 40 mA		0.22	0.5	V
I _{IH}	Logical "1" Input Current	V _{IN} = 2.4V				120	μ Α
		V _{IN} = 5.5V				2	mA
I _{IL}	Logical "0" Input Current	V _{IN} = 0.4V				4.8	mA
I _{sc}	Output Short Circuit Current	V _{CC} = 5.0V,	T _A = 125°C, (Note 4)	40	100	120	mA
Icc	Supply Current	V _{IN} = 5.0V,	(Each Driver)		11	18	m A

switching characteristics $T_A = 25^{\circ}C$, $V_{CC} = 5V$, unless otherwise noted

	PARAMETER	PARAMETER CONDITIONS		TYP	MAX	UNITS
t _{pd1}	Propagation Delay AND Gate	$T_A = 25^{\circ}C$,		8	12	ns
t _{pd0}		C _L = 15 pF, (Figure 1)		11	18	ns
t _{pd1}	Propagation Delay NAND Gate	$T_A = 25^{\circ}C$,		8	12	ns
t _{pd0}		$C_L = 15 pF$, (Figure 1)		5	8	ns
t ₁	Differential Delay	Load, 100Ω and 5000 pF, (Figure 2)		12	16	ns
t ₂	Differential Delay	Load, 100Ω and 5000 pF, (Figure 2)		12	16	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to +125°C temperature range for the DS7830 and across the 0° C to +70°C range for the DS8830. Typical values are for T_A = 25° C and V_{CC} = 5.0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

typical performance characteristics

ac test circuit

switching time waveforms

DS7831/DS8831, DS7832/DS8832 dual TRI-STATE® line driver

general description

Through simple logic control, the DS7831/ DS8831, DS7832/DS8832 can be used as either a guad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DS7832/ DS8832 does not have the V_{CC} clamp diodes found on the DS7831/DS8831.

The DS7831 and DS7832 are specified for operation over the -55°C to +125°C military temperature range, The DS8831 and DS8832 are specified for operation over the 0°C to +70°C temperature range.

features

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance—high capability
- 40 mA sink and source currents
- Gating control to allow either single-ended or differential operation
- High impedance output state which allows many outputs to be connected to a common bus line.

mode of operation

To operate as a quad single-ended line driver apply logical "0"s to the Output Disable pins (to keep the outputs in the normal low impedance mode) and apply logical "0"'s to both Differential/ Single-ended Mode Control inputs. All four channels will then operate independently and no signal inversion will occur between inputs and outputs.

To operate as a dual differential line driver apply logical "0"s to the Output Disable pins and apply at least one logical "1" to the Differential/Singleended Mode Control inputs. The inputs to the A channels should be connected together and the inputs to the B channels should be connected together.

In this mode the signals applied to the resulting inputs will pass non-inverted on the A2 and B2 outputs and inverted on the A₁ and B₁ outputs.

When operating in a bus-organized system with outputs tied directly to outputs of other (continued)

connection and logic diagram

Dual-In-Line Package

Order Number DS7831J, DS8831J, DS7832J, DS8832J, DS8831N, DS8832N, DS7831W, or DS7832W See NS Package J16A, N16A or W16A

truth table (Shown for A Channels Only)

"A" OUTPU	JT DISABLE	SINGLE	ENTIAL/ ENDED ONTROL	INPUT A1	OUTPUT A1	INPUT A2	OUTPUT A2
0	0	0	0	Logical "1" or Logical "0"	Same as Input A1	Logical '1' or Logical '0''	Same as Input A2
0	0	X 1	1 X	Logical '1" or Logical "0"	Opposite of Input A1	Logical "1" or Logical "0"	Same as Input A2
1 X	×	×	×	×	High impedance state	×	High impedance state

x = Oon't Care

absolute maximum ratir	ngs (Note 1)	operating condit	ions		
Supply Voltage	7 V	Supply Voltage (V _{CC})	MIN	MAX	UNITS
Input Voltage	5.5V	DS7831, DS7832	4.5	5.5	V
Output Voltage Storage Temperature Range	5.5V -65°C to +150°C	DS8831, DS8832	4.75	5.25	v
Lead Temperature (Soldering, 10 sec.)	300°C	Temperature (T _A)			
Time that 2 bus-connected devices may		DS7831, DS7832	5 5	+125	°C
be in opposite low impedance states simultaneously	00	D\$8831, D\$8832	0	+70	°C

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage	V _{CC} ≃ Min			2.0			V
VIL	Logical "0" Input Voltage	V _{CC} = Min					0.8	V
VoH	Logical "1" Output Voltage	DS7831, DS7	922	I _O = -40 mA	1.8	2.3		V
		037631, 037	V _{CC} = Min	I _O = -2 mA	2.4	2.7		V
		DS8831, DS8	1	I _O = -40 mA	1.8	2.5		V
		200001, 200	992	I _O = -5.2 mA	2.4	2.9		V
VoL	Logical "0" Output Voltage	DS7831, DS7	822	I _O = 40 mA		0.29	0.50	V
		D37831, D37	V _{CC} = Min	I _O = 32 mA			0.40	V
		DS8831, DS8832	I _O = 40 mA		0.29	0.50	V	
		500057,500		I _O = 32 mA			0.40	V
I _{IH}	Logical "1" Input Current	V _{CC} = Max	DS7831, DS7832	V _{IN} = 5.5V			1	mA
		VCC - IVIAX	DS8831, DS8832	V _{IN} = 2.4V			40	μΑ
$A_{\rm LL}$	Logical "0" Input Current	V _{CC} = Max, \	/ _{IN} = 0.4V			~1.0	-1.6	mA
lop	Output Disable Current	V _{CC} = Max, \	/ _O = 2.4V or 0.4V		-40		40	μΑ
I _{sc}	Output Short Circuit Current	V _{CC} = Max, (Note 4)		-40	-100	-120	mA
I _{cc}	Supply Current	V _{CC} = Max in	TRI-STATE			65	90	mA
V _{CLi}	Input Diode Clamp Voltage	V _{CC} = 5.0V,	T _A = 25°C, I _{IN} = -	12 mA			-1.5	V
V _{CLO}	Output Diode Clamp Voltage		I _{OUT} = -12 mA	DS7831/DS8831 DS7832/DS8832			-1.5	٧
		T _A = 25°C	I _{OUT} = 12 mA	DS7831/DS8831			V _{CC} +1.5	v

switching characteristics $T_A = 25^{\circ}C$, $V_{CC} = 5V$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logical "0" from Inputs A1, A2, 81, 82 Differential Single-ended Mode Control to Outputs			13	25	ns
t _{pd1}	Propagation Delay to a Logical "1" from Inputs A1, A2, B1, B2 Differential Single-ended Mode Control to Outputs			13	25	ns
t _{1H}	Delay from Disable Inputs to High Impedance State (from Logical "1" Level)			6	12	ns
t _{OH}	Delay from Disable Inputs to High Impedance State (from Logical "0" Level)			14	22	ns
t _{H1}	Propagation Delay from Disable Inputs to Logical "1" Level (from High Impedance State)			14	22	ns
t _{HO}	Propagation Delay from Disable Inputs to Logical "O" Level (from High Impedance State)			18	27	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7831 and DS7832 and across the 0° C to $+70^{\circ}$ C range for the DS8831 and DS8832. All typical values are for T_A = 25° C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Applies for T_A = 125°C only. Only one output should be shorted at a time.

mode of operation (cont.)

D\$7831/D\$8831's, DS7832/DS8832's (Figure 1), all devices except one must be placed in the "high impedance" state. This is accomplished by ensuring that a logical "1" is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/ DM7442, BCD-to-decimal decoders, to decode as many as 100 DS7831/DS8831's, DS7832/ DS8832's (Figure 2).

The unique device whose Disable inputs receive two logical "0" levels assumes the normal low

impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical "0" to logical "1" state. The other outputs-in the high impedance state-take only a small amount of leakage current from the low impedance outputs. Since the logical "1" output current from the selected device is 100 times that of a conventional Series 54/74 device $(40 \text{ mA} \text{ vs. } 400 \,\mu\text{A})$, the output is easily able to supply that leakage current for several hundred other DS7831/DS8831's, DS7832/DS8832's and still have available drive for the bus line (Figure 3).

DNE DF FOUR DUTPUTS SELECTED AS DRIVING DEVICE D S 8 8 3 1 GATED INTO STATE 40 µA LEAKAGE CURRENT PER CONN GATED INTO

FOR DRIVING DTHER TTL INPUTS

STATE

Figure 3

switching time waveforms

tОН

	Switch \$1	Switch S2	C
t _{pd1}	closed	closed	50 pF
t _{cd0}	closed	closed	50 pF
^т он	closed	closed	* 5 pF
T1 pg	closed	closed	* 5 pF
t _{H0}	closed	0pen	50 pF
ten	open	closed	50 pF

^{*}Jig capacitance.

Transmission Line Drivers/Receivers

DS78LS120/DS88LS120 Dual Differential Line Receiver (Noise Filtering and Fail-Safe)

General Description

The DS78LS120 and DS88LS120 are high performance, dual differential, TTL compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.

The line receiver will discriminate a ± 200 mV input signal over a common-mode range of ± 10 V and a ± 300 mV signal over a range of ± 15 V.

Circuit features include hysteresis and response control for applications where controlled rise and fall times and/ or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes an optional 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78LS120 is specified over a -55° C to $+125^{\circ}$ C temperature range and the DS88LS120 from 0° C to $+70^{\circ}$ C.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.

Features

- Meets EIA Standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of ±15V (differential or commonmode)
- Separate strobe input for each receiver
- 5k input impedance
- Optional 180Ω termination resistor
- 50 mV input hysteresis
- 200 mV input threshold
- Separate fail-safe mode

Connection Diagram

Dual-In-Line Package

Order Number DS78LS120J, DS88LS120J, DS88LS120N or DS78LS120W See NS Package J16A, N16A or W16A

Absolute Maximum Ratings (Note 1) **Operating Conditions** MAX UNITS Supply Voltage 7V Supply Voltage (VCC) 4.5 Input Voltage ±25V Temperature (TA) Strobe Voltage 7V DS78LS120 -55 +125 **Output Sink Current** 50 mA °C DS88LS120 0 +70 Power Dissipation 600 mW Common-Mode Voltage (VCM) -15 +15 Storage Temperature Range -65°C to +150°C Differential Input Voltage (VDIFF) ≤6 Lead Temperature (Soldering, 10 seconds) 300°C

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
∨тн	Differential Threshold Voltage	I _{OUT} =400 μA,	$-7V \leq V_{CM} \leq 7V$		0.06	0.2	٧
		V _{OUT} ≥ 2.5V	$-15V \le V_{CM} \le 15V$		0.06	0.3	V
		IOUT = 4 mA, VOUT < 0.5V	$-7V \le V_{CM} \le 7V$		-0.08	−0.2	٧
		1001 4 ///2, 1001 25 0.01	-15V ≤ V _{CM} ≤ 15V		-0.08	-0.3	V
VTHO	Differential Threshold Voltage	I_{OUT} = $-400 \mu\text{A}$, $V_{OUT} \ge 2.5 V$	$-7V \le V_{CM} \le 7V$		0.47	0.7	V
VFS	Fail Safe Offset	I_{OUT} = 4 mA, $V_{OUT} \le 0.5$	$-7V \le V_{CM} \le 7V$	−0.2	-0.42		V
RIN	Input Resistance	$-15V \le V_{CM} \le 15V$, $0V \le V_{CC} \le$	7V	4	5		kΩ
RT	Line Termination Resistance	T _A = 25°C		100	1B0	300	Ω
RO	Offset Control Resistance	T _A = 25°C		42	56	70	kΩ
IND	Data Input Current (Unterminated)	V _{CM} = 10V			2	3.1	mA
		V _{CM} = 0V	0V ≤ V _{CC} ≤ 7V		0	− 0.5	mA
		V _{CM} = -10V		}	-2	−3.1	mA
Vтнв	Input Balance	$I_{OUT} = -400 \mu A$, $V_{OUT} \ge 2.5 V$, R _S = 500Ω, (Note 5)	-7∨ ≤ V _{CM} ≤ 7∨		0 1	0.4	V
		I_{OUT} = 4 mA, $V_{OUT} \le 0.5V$, R_S = 500 Ω , (Note 5)	-7V ≤ V _{CM} ≤ 7V		-0.1	0.4	V
Voн	Logical "1" Output Voltage	I _{OUT} = -400 μA, V _{DIFF} = 1V, V _C	C = 4.5V	2.5	3		V
VOL	Logical "0" Output Voltage	IOUT = 4 mA, VDIFF = -1V, VCC	= 4.5V		0.35	0.5	٧
ICC	Power Supply Current	V _{CC} = 5.5V,	V _{CM} = 15V		9	12	mA
		VDIFF = -0.5V, (Both Receivers)	V _{CM} ≈ -15V		10	16	mA
I _{IN(1)}	Logical "1" Strobe Input Current	VSTROBE = 5 5V, VDIFF = 3V			1	100	μА
I _{IN} (0)	Logical "0" Strobe Input Current	VSTROBE = 0V, VDIFF = -3V			-290	-400	μА
VIH	Logical "1" Strobe Input Voltage	$V_{OL} \leq$ 0.5, I_{OUT} = 4 mA		2.0	1.12		V
VIL	Logical "0" Strobe Input Voltage	$V_{OH} \ge 2.5 V$, $I_{OUT} = -400 \mu A$			1.12	8.0	٧
los	Output Short-Circuit Current	V _{OUT} = 0V, V _{CC} = 5.5V, V _{STROB}	E = 0V, (Note 4)	-30	-100	-170	mA

Switching Characteristics V_{CC} = 5V, T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpd0(D) Differential Input to "0" Output			38	60	ns
*pd1(D) Differential Input to "1" Output	Response Pin Open, $C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$		38	60	ns
tpd0(S) Strobe Input to "0" Output	Response Fill Open, of Topi , he 2 kgs		16	25	ns
tpd1(S) Strobe Input to "1" Output			12	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Theprature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS78LS120 and across the 0° C to $+70^{\circ}$ C for the DS88LS120. All typical values are for T_{A} = 25° C, V_{CC} = 5V and V_{CM} = 0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted

Note 5: Refer to EIA-RS422 for exact conditions

Schematic Diagram

AC Test Circuit and Switching Time Waveforms

Differential and Strobe Input Signal

DIFF INPUT -2.5V -

PRR = 1 MHz

Note. Optimum switching response is obtained by minimizing stray capacitance on Response Control pin (no external connection).

Application Hints

Balanced Data Transmission

Application Hints (Continued)

The DS78LS120/DS88LS120 may be used as a level translator to interface between ±12V MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to 1/2 the voltage of the input signal, and the other input to the driving gate.

LINE DRIVERS

Line drivers which will interface with the DS78LS120/ DS88LS120 are listed below.

Balanced Drivers

DS26LS31

MM87C30, MM88C30	Dual CMOS
DS7830, DS8830	Dual TTL
DS7831, DS8831	Dual TRI-STATE® TTL
DS7832, DS8832	Dual TRI-STATE TTL
DS1691, DS3691	Quad RS423/Dual RS422 TTL
DS1692, DS3692	Quad RS423/Dual TRI-STATE
	RS422 TTL
DS3487	Quad TRI-STATE RS422

Quad RS422 Line Driver

Unbalanced Drivers

DS1488 Quad RS232 DS75150 Dual RS232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS232/RS423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78LS120/ DS88LS120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a line receiver due to the input signal slowly varying about the threshold level for extended periods of time.

High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78LS120/DS88LS120, a high impedance response control pin in the input amplifier is available to filter the input signal without affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in Figures 1 and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

FIGURE 1. Noise Pulse Width vs Response Control Capacitor

FIGURE 2

Application Hints (Continued)

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/cross-talk. A 180 Ω termination resistor is provided in the DS78LS120/DS88LS120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180 Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.

The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns), and the termination resistor value is 180Ω , the capacitor value should be 1852 pF. For additional application details, refer to application notes AN-22 and AN-108 in the National Semiconductor Interface Data Book.

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or short. To facilitate the detection of input opens or shorts, the DS78LS120/DS88LS120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.

Given that the receiver input threshold is ± 200 mV, an input signal greater than ± 200 mV insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $V_{CC} = 5V$, the

input thresholds are offset from 200 mV to 700 mV, referred to the non-inverting input, or -200 mV to -700 mV, referred to the inverting input. Therefore, if the input is open or short, the input will be greater than the input threshold and the receiver will remain in a specified logic state.

The input circuit of the receiver consists of a 5k resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with common-mode input voltages greater than ±15V. The offset control input is actually another input to the attenuator, but its resistor value is 56k. The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5V the input amplifier will see VIN(INVERTING) + 0.45V or VIN(IN-VERTING) + 0.9V when the control input is connected to 10V. The offset control input will not significantly affect the differential performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver.

It is recommended that the receiver be terminated (500 Ω or less) to insure it will detect an open circuit in the presence of noise.

The offset control can be used to insure fail-safe operation for unbalanced interface (RS423) or for balanced interface (RS422) operation.

For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to 5V offsets the receiver threshold 0.45V. The output is forced to a logic zero state if the input is open or short.

Unbalanced R\$423 and R\$232 Fail-Safe

INPUT VOLTAGE

For balanced operation with inputs short or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector. Another method of fail-safe detection consists of filtering the output of the NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.

In a communications system, only the control signals are required to detect input fault conditions. Advantages of a balanced data transmission system over an unbalanced transmission system are:

INPUT VOLTAGE

- 1. High noise immunity
- 2. High data ratio
- 3 Long line lengths

Truth Table (For Balanced Fail-Safe)

INPUT VOLTAGE

INPUT	STROBE	A-OUT	B-OUT	C-OUT	D-OUT
0	1	0	1	0	0
1	1	1	0	1	0
X	1	0	0	Х	1
0	0	1	1	0	0
1	0	1	1	0	0
х	0	1	1	0	0

Transmission Line Drivers/Receivers

DS78C120/DS88C120 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C120 and DS88C120 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA, Federal and MIL standards.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver.

Features

- Full compatibility with EIA Standards RS232-C, RS422 and RS423, Federal Standards 1020, 1030 and MIL-188-114
- Input voltage range of ±15V (differential or commonmode)
- Separate strobe input for each receiver
- 1/2 VCC strobe threshold for CMOS compatibility
- 5k input impedance

- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range = 4.5V to 15V
- Separate fail-safe mode

Functional Description

The line receiver will discriminate a ± 200 mV input signal over a common-mode range of ± 10 V and a ± 300 mV signal over a range of ± 15 V.

Circuit features include hysteresis and response control for applications where controlled rise and fall times and/or high frequency noise rejection are desirable. Threshold offset control is provided for fail-safe detection, should the input be open or short. Each receiver includes a 180Ω terminating resistor and the output gate contains a logic strobe for time discrimination. The DS78C120 is specified over a $^-55^\circ\text{C}$ to $^+125^\circ\text{C}$ temperature range and the DS88C120 from 0°C to $^+70^\circ\text{C}$.

Connection Diagram

Dual-In-Line Package

TOP VIEW

Order Number DS78C120J, DS88C120J, DS88C120N or DS78C120W See NS Package J16A, N16A or W16A

Absolute Maximum R	Ratings (Note 1)	Operating Condition	ons		
			MIN	MAX	UNITS
Supply Voltage	18V	Supply Voltage (VCC)	4.5	15	V
Input Voltage	±25V	Temperature (T _A)			
Strobe Voltage	18V	DS78C120	-55	+125	°c
Output Sink Current	50 mA	DS88C120	0	+70	°Č
Power Dissipation	600 mW	Common-Mode Voltage (VCM)	- 15	+15	v
Storage Temperature Range	-65°C to +150°C	- 3		+15	V
Lead Temperature (Soldering, 10 secon	nds) 300°C	Differential Input Voltage (VDIFF	:)	≲6	V

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIO	ONS	MIN	TYP	MAX	UNITS
۷тн	Differential Threshold Voltage	I _{OUT} = -200 μA,	$-7V \le V_{CM} \le 7V$	-	0.06	0.2	V
		V _{OUT} ≥ V _{CC} - 1.2V	-15V ≤ V _{CM} ≤ 15V		0.06	0.3	V
		IOUT = 1.6 mA, VOUT < 0.5V	$-7V \le V_{CM} \le 7V$		-0.08	− 0.2	V
		1001 1.0 1112, \$0.01 \$ 0.0\$	$-15V \le V_{\text{CM}} \le 15V$		-0.08	-0.3	V
V _{THO}	Differential Threshold Voltage Offset	$I_{OUT} = -200 \mu\text{A},$ $V_{OUT} \ge V_{CC} - 1.2V$	-7∨ ≤ ∨ _{CM} ≤ 7∨		0.47	0.7	٧
VFS	Fail-Safe Offset	I _{OUT} ≈ 1.6 mA, V _{OUT} ≤ 0.5V	-7V ≤ V _{CM} ≤ 7V	0.2	0.42		V
RIN	Input Resistance	$-15V \le V_{CM} \le 15V, \ 0V \le V_{CC} \le 15V$	15V	4	5		kΩ
RT	Line Termination Resistance	T _A = 25°C		100	180	300	Ω
RO	Offset Control Resistance	T _A = 25°C			56		kΩ
IND	Data Input Current (Unterminated)		V _{CM} = 10V		2	3.1	mA
		0V ≤ V _{CC} ≤ 15V	V _{CM} = 0V		0	-0.5	mA
			V _{CM} = -10V		-2	-3.1	mA
∨тнв	Input Balance	I_{OUT} = 200 μA, $V_{OUT} \ge V_{CC} - 1.2V$, R_S = 500Ω, (Note 5)	-7V ≤ V _{CM} ≤ 7V		0.1	0.4	V
		I_{OUT} = 1.6 mA, $V_{OUT} \le 0.5 V$, R_S = 500 Ω , (Note 5)	-7∨ ≤ V _{CM} ≤ 7∨		-0.1	-0.4	V
Vон	Logical "1" Output Voltage	I _{OUT} = -200 μA, V _{DIFF} = 1V		V _{CC} -1.2	V _{CC} -0.75		V
VOL	Logical "0" Output Voltage	IOUT = 1.6 mA, VDIFF = -1V			0 25	0.5	V
Icc	Power Supply Current	$15V \le V_{CM} \le -15V$,	V _{CC} = 5.5V		8	15	mA
		VDIFF = -0.5V (Both Receivers)	V _{CC} = 15V		15	30	mA
I _{IN(1)}	Logical "1" Strobe Input Current	VSTROBE = 15V, VDIFF = 3V			15	100	μА
¹ IN(0)	Logical "0" Strobe Input Current	VSTROBE = 0V, VDIFF = -3V			-0 5	-100	μА
VIH	Logical "1" Strobe Input Voltage		V _{CC} = 5V	3.5	2.5		V
		V _{OL} ≤ 0.5V, I _{OUT} ≈ 1.6 mA	V _{CC} = 10V	8.0	50		V
			V _{CC} = 15V	12.5	7.5		V
VIL	Logical "0" Strobe Input Voltage	V _{OH} = V _{CC} - 1.2V,	V _{CC} = 5V		2 5	1 5	V
		IOUT = -200 µA	V _{CC} = 10V		5.0	2.0	V
			V _{CC} = 15V		7,5	2.5	V
los	Output Short-Circuit Current	VOUT = 0V, VCC = 15V, VSTROB	E = 0V, (Note 4)	-5	-20	-40	mΑ

Switching Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpd0(D) Differential Input to "0" Output	C _L = 50 pF		60	100	ns
tpd1(D) Differential Input to "1" Output	C _L = 50 pF		100	150	ns
tpd0(S) Strobe Input to "0" Output	C _L = 50 ρF		30	70	ns
tpd1(S) Strobe Input to "1" Output	C _L ≈ 50 pF		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS78C120 and across the 0° C to $+70^{\circ}$ C range for the DS88C120. All typical values are for T_A = 25° C, V_{CC} = 5V and V_{CM} = 0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Refer to EIA-RS422 for exact conditions.

AC Test Circuit and Switching Time Waveforms

Differential and Strobe Input Signal

*Includes probe and test fixture capacitance

Note. Optimum switching response is obtained by minimizing stray capacitance on Response Control pin (no external connection).

Application Hints

Balanced Data Transmission

Unbalanced Data Transmission

Application Hints (Continued)

Logic Level Translator

The DS78C120/DS88C120 may be used as a level translator to interface between ±12V MOS, ECL, TTL and CMOS. To configure, bias either input to a voltage equal to 1/2 the voltage of the input signal, and the other input to the driving gate.

LINE DRIVERS

Line drivers which will interface with the DS78C120/DS88C120 are listed below.

Balanced Drivers

DS26LS31	Quad RS422 Line Driver
MM87C30, MM88C30	Dual CMOS
DS7830, DS8830	Dual TTL
DS7831, DS8831	Dual TRI-STATE® TTL
DS7832, DS8832	Dual TRI-STATE TTL
DS1691, DS3691	Quad RS423/Dual RS422 TTL
DS1692, DS3692	Quad RS423/Dual TRI-STATE
	RS422 TT1

Quad TRI-STATE RS422

DS3587, DS3487 Unbalanced Drivers

DS1488	Quad RS232
DS75150	Dual RS232

RESPONSE CONTROL AND HYSTERESIS

In unbalanced (RS232/RS423) applications it is recommended that the rise time and fall time of the line driver be controlled to reduce cross-talk. Elimination of switching noise is accomplished in the DS78C120/DS8C120 by the 50 mV of hysteresis incorporated in the output gate. This eliminates the oscillations which may appear in a fine receiver due to the input signal slowly varying about the threshold level for extended periods of time.

High frequency noise which is superimposed on the input signal which may exceed 50 mV can be reduced in amplitude by filtering the device input. On the DS78C120/DS88C120, a high impedance response control pin in the input amplifier is available to filter the input signal without affecting the termination impedance of the transmission line. Noise pulse width rejection vs the value of the response control capacitor is shown in *Figures 1* and 2. This combination of filters followed by hysteresis will optimize performance in a worse case noise environment.

FIGURE 1. Noise Pulse Width vs Response Control Capacitor

FIGURE 2

Application Hints (Continued)

TRANSMISSION LINE TERMINATION

On a transmission line which is electrically long, it is advisable to terminate the line in its characteristic impedance to prevent signal reflection and its associated noise/cross-talk. A 180 Ω termination resistor is provided in the DS78C120/DS88C120 line receiver. To use the termination resistor, connect pins 2 and 3 together and pins 13 and 14 together. The 180Ω resistor provides a good compromise between line reflections, power dissipation in the driver, and IR drop in the transmission line. If power dissipation and IR drop are still a concern, a capacitor may be connected in series with the resistor to minimize power loss.

The value of the capacitor is recommended to be the line length (time) divided by 3 times the resistor value. Example: if the transmission line is 1,000 feet long, (approximately 1000 ns) the capacitor value should be 1852 pF. For additional application details, refer to application notes AN-22 and AN-108 in the National Semiconductor Interface Data Book.

FAIL-SAFE OPERATION

Communication systems require elements of a system to detect the presence of signals in the transmission lines, and it is desirable to have the system shut-down in a fail-safe mode if the transmission line is open or short. To facilitate the detection of input opens or shorts, the DS78C120/DS88C120 incorporates an input threshold voltage offset. This feature will force the line receiver to a specific logic state if presence of either fault is a condition.

Given that the receiver input threshold is ± 200 mV, an input signal greater than ± 200 mV insures the receiver will be in a specific logic state. When the offset control input (pins 1 and 15) is connected to $V_{CC} = 5V$, the

input thresholds are offset from 200 mV to 700 mV, referred to the non-inverting input, or -200 mV to -700 mV, referred to the inverting input. Therefore, if the input is open or short, the input will be greater than the input threshold and the receiver will remain in a specified logic state.

The input circuit of the receiver consists of a 5k resistor terminated to ground through 120Ω on both inputs. This network acts as an attenuator, and permits operation with common-mode input voltages greater than ±15V. The offset control input is actually another input to the attenuator, but its resistor value is 56k. The offset control input is connected to the inverting input side of the attenuator, and the input voltage to the amplifier is the sum of the inverting input plus 0.09 times the voltage on the offset control input. When the offset control input is connected to 5V the input amplifier will see VIN(INVERTING) + 0.45V or VIN(IN-VERTING) + 0.9V when the control input is connected to 10V. The offset control input will not significantly affect the differential performance of the receiver over its common-mode operating range, and will not change the input impedance balance of the receiver.

It is recommended that the receiver be terminated (500 $\!\Omega$ or less) to insure it will detect an open circuit in the presence of noise.

The offset control can be used to insure fail-safe operation for unbalanced interface (RS423) or for balanced interface (RS422) operation.

For unbalanced operation, the receiver would be in an indeterminate logic state if the offset control input was open. Connecting the offset to 5V offsets the receiver threshold 0.45V. The output is forced to a logic zero state if the input is open or short.

Unbalanced RS423 and RS232 Fail-Safe

For balanced operation with inputs short or open, receiver C will be in an indeterminate logic state. Receivers A and B will be in a logic zero state allowing the NOR gate to detect the short or open condition. The strobe will disable receivers A and B and may therefore be used to sample the fail-safe detector. Another method of fail-safe detection consists of filtering the output of the NOR gate D so it would not indicate a fault condition when receiver inputs pass through the threshold region, generating an output transient.

In a communications system, only the control signals are required to detect input fault conditions. Advantages of a balanced data transmission system over an unbalanced transmission system are:

- 1. High noise immunity
- 2. High data ratio
- 3 Long line lengths

Truth Table (For Balanced Fail-Safe)

	INPUT	STROBE	A-OUT	B-OUT	C-OUT	D-OUT
	0	1	0	1	0	0
	1	1	1	0	1	0
١	X	1	0	0	×	1
١	0	0	1	1	0	0
ĺ	1	0	1	1	0	0
ŀ	X	0	1	1	0	0

DM54\$241

DM74S241

Section 2

2

9-5

Bus Transceivers

TEMPER A	ATURE RANGE	DECODIFICAL	PAGE
–55°C to +125°C	0° C to +70 $^{\circ}$ C	DESCRIPTION	NUMBER
DS26S10M	DS26S10C	Quad Bus Transceiver	2-1
D\$26S11M	DS26\$11C	Quad 8us Transceiver	2-1
D\$7640	D\$8640	Quad NQR Unified 8us Receiver	2-6
D\$7641	D\$8641	Quad Unified Bus Transceiver	2-8
D\$7833	DS8833	Quad TRI-STATE® 8us Transceiver	2-10
D\$7834	DS8834	Quad TRI-STATE® Bus Transceiver	2-14
D\$7835	DS8835	Quad TRI-STATE® 8us Transceiver	2-10
D\$7836	DS8836	Quad NQR Unified 8us Transceiver	2-18
D\$7837	DS8837	Hex Unified Bus Receiver	2-20
D\$7838	DS8838	Quad Unified 8us Transceiver	2.22
D\$7839	DS8839	Quad TRI-STATE® Bus Transceiver	2.14
DS8T26M	DS8T26	4-8it Bidirectional Bus Transceiver	2-24
DS8T28M	DS8T28	4-Bit 8idirectional 8us Transceiver	2-24
DM545240	DM74S240	Octal TRI-STATE® Line Driver/Receiver	9.5

Octal TRI-STATE® Line Driver/Receiver

BUS CIRCUITS

to the baud rate. Like unbalanced transmission lines, the data transmission is susceptible to common-mode noise, such as ground IR noise and induced reactive noise from crosstalk. A bus is a communications method where many elements of a system time share the same signal (address or data) bus. A bus shouldn't extend out of its subsystem's electronic enclosure without special care. Line length in excess of 10 feet are not recommended without slew rate control. Cables Data bus circuits are not transmission line circuits in the normal interpretation where the transmission line is electrically long (1/4 wave length) with respect should be in the form of twisted pair or flat cable where a signal wire is alternated with a ground wire.

OPEN-COLLECTOR BUS CIRCUITS

Bus Driver	river		Bus Receiver	eiver		Driver/		Device	Device Number	
Propagation Delay (ns)	V _{1L} (V)/ foL (mA)	Propagation Delay (ns)	V _{1L} (V)/ I _{1L} (μΑ)	VIH (V)/ IH (µA)	Hysteresis (V)	Receiver/ Transceiver	Circuits/ Package	Commercial 0°C to +70°C	Military -55°C to +125°C	Comments
		23	1.2/-50	1.8/50		Receiver	4	DS8640	DS7640	Ouad NOR receiver
		20	1.05/-50	2.65/50	-	Receiver	4	DS8836	DS7836	Quad NOR receiver
		20	1.05/50	2.65/50	-	Receiver	9	DS8837	DS7837	
30	0.7/50	99	1.2/100	1.8/100		Transceiver	4	DS8641	DS7641	
20	0.7/50	17	1.05/-100	2.65/100	,-	Transceiver	4	DS8838	DS7838	
20	0.8/100	20	1.3/—40	3.1/450		Transceiver	4	DS8642	DS7642	50Ω coax. driver
10	0.8/100	10	1.75/-100	2.25/100		Transceiver	4	DS26S10C	DS26S10M	
10	0.8/100	10	1.75/-100	2.25/100		Transceiver	4	DS26S11C	DS26S11M	Input to bus is non-inverting
œ	0.5/50	7	0.8/500	2/100		Transceiver	4	DS36147	DS16147	Quad bidirectional I/O register
80	0.5/50	7	0.8/500	2/100		Transceiver	4	DS36177	DS16177	Quad bidirectional I/O register
20	0.7/300		-	•		Driver	2	DS75450	DS55450	AND separate output transistors
18	0.7/300					Driver	2	DS75451	DS55451	AND
56	0.7/300					Driver	2	DS75452	DS55452	NAND
18	0.7/300					Driver	2	DS75453	DS55453	OR
27	0.7/300					Driver	2	DS75454	DS55454	NOR

TRI-STATE® BUS CIRCUITS

	Bus Driver			Bus Receiver	eiver		Driver/		Device	Device Number	
Propagation	,,,,,	770	Propagation	V., (V)/	/(\(\)	Hysteresis	Receiver/	Circuits/		Military	Comments
Delay	VOL (V)/	VOH (V) (OH (mA)	Delay Tvn (ns)	ν ΙΓ (μΑ) Ιτ (μΑ)	I'H (#A)	(mV)	Transceiver	Package	Commercial 0°C to +70°C	Military -55°C to +125°C	
14	0.5/50	2.4/-10	20	0.8/~40	2/80	400	Transceiver	4	DS8833	DS7833	Non-inverting TRI-STATE receiver
. 4	0.5/50	2.4/-10	50	0.8/40	2/80	400	Transceiver	4	DS8835	DS7835	Inverting TRI-STATE receiver
. 41	0.5/50	2.4/-10	50	0.8/40	2/80	400	Transceiver	4	DS8834	DS7834	Inverting
. 41	0.5/50	2.4/-10	20	0.8/40	2/80	400	Transceiver	4	DS8839	DS7839	Non-inverting
14	0.5/48	2.4/-10	14	0.85/200	2/20		Transceiver	4	DS8T26A	DS8T26AM	Inverting
17	0.5/48	2.4/10	17	0.85/-200	2/20		Transceiver	4	DS8T28	DS8T28M	Non-inverting
50	0.6/55	3.6/-1	15	0.95/-250	2/10		Transceiver	4	DP8216	DP8216M	8080 MPU non-inverting
9 1	0.6/50	3,6/-1	15	0.95/-250	2/10		Transceiver	4	DP8226	DP8226M	8080 MPU inverting
. 4	0.55/64	2.4/-3	4.5	0.8/-400	2/50	400	Transceiver	4 or 8	DM74S240	DM54S240	Non-inverting
	0.55/64	24/-3	9	0.8/-400	2/50	400	Transceiver	4 or 8	DM74S241	DM54S241	Inverting
	0.55/64	24/-3	7 4	0.8/400	2/50	400	Transceiver	8	DM74S940	DM54S940	Non-inverting
ָר ע נ	0.55/64	2.4/-3		0.8/~400	2/50	400	Transceiver	8	DM74S941	DM54S941	Inverting
ρα	0.5250	24/-5	7	0.8/~500	2/100		Transceiver	4	DS3647	DS1647	Quad bidirectional I/O register
o 0	0.5/50	24/-5		0.8/-500	2/100		Transceiver	4	DS3677	DS1677	Quad bidirectional I/O register
17	0.5/50	3.6/-5	50	0.8/-250	2/80		Transceiver	ω	DP8304B	DP73048	8 idirectional non-inverting
20	0.45/15	3.6/-1					Driver	∞	DP8212	DP8212M	8080 MPU data latch and service request f/f
30	0.45/10	2.4/-1	20	0.8/- 250	2/20		Transceiver	8	DP8228	DP8228M	8080 MPU system bus controller and bus driver
30	0.45/10	2.4/-1	20	0.8/-250	2/20	·	Transceiver	8	DP8238	DP8238M	8080 MPU system bus controller and bus driver
40	0.5/50	3.6/-1	50	0.8/-250	2/80		Transceiver	ω	DP8300		PACE MPU bidirectional PMOS interface

Note. Unless otherwise specified, bus circuits listed above are TTL compatible and use 5V supplies.

Bus Transceivers

DS26S10, DS26S11 Quad Bus Transceivers

General Description

The DS26S10 and DS26S11 are quad Bus Transceivers consisting of 4 high speed bus drivers with open-collector outputs capable of sinking 100 mA at 0.8V and 4 high speed bus receivers. Each driver output is connected internally to the high speed bus receiver in addition to being connected to the package pin. The receiver has a Schottky TTL output capable of driving 10 Schottky TTL unit loads.

An active low enable gate controls the 4 drivers so that outputs of different device drivers can be connected together for party-line operation.

The bus output high-drive capability in the low state allows party-line operation with a line impedance as low as 100 $\!\Omega$. The line can be terminated at both ends, and still give considerable noise margin at the receiver. The receiver typical switching point is 2V.

The DS26S10 and DS26S11 feature advanced Schottky processing to minimize propagation delay. The device package also has 2 ground pins to improve ground current handling and allow close decoupling between VCC and ground at the package. Both GND 1 and GND 2 should be tied to the ground bus external to the device package.

Features

- Input to bus is inverting on DS26S10
- Input to bus is non-inverting on DS26S11
- Quad high speed open-collector bus transceivers
- Driver outputs can sink 100 mA at 0.8V maximum
- Advanced Schottky processing
- PNP inputs to reduce input loading

Logic and Connection Diagrams

Dual-In-Line Package

Order Number DS26S10J, DS26S10MJ, DS26S10N or DS26S10MW See NS Package J16A, N16A or W16A

Dual-In-Line Package

Order Number DS26S11J, DS26S11MJ, DS26S11N or DS26S11MW See NS Package J16A, N16A or W16A

Absolute Maximum Ratings Operating Conditions Storage Temperature --65°C to +150°C MIN MAX UNITS Temperature (Ambient) Under Bias -55°C to +125°C Supply Voltage (V_{CC}) Supply Voltage to Ground Potential --0.5V to +7V DS26S10XC, DS26S11XC 4.75 5.25 DC Voltage Applied to Outputs for -0.5V to $+V_{CC}$ Max DS26S10XM, DS26S11XM 5.5 **High Output State** Temperature (TA) DC Input Voltage ~0.5V to +5.5V DS26S10XC, DS26S11XC 0 +70 °C Output Current, Into Bus 200 mA DS26S10XM, DS26S11XM ~55 +125 °C Output Current, Into Outputs (Except Bus) 30 mA DC Input Current -30 mA to +5 mA

Electrical Characteristics (Unless otherwise noted)

	PARAMETER	CONDITION (Note 1)	vs	MIN	TYP (Note 2)	MAX	UNITS
۷он	Output High Voltage	V _{CC} = Min, I _{OH} = -1 mA,	Military	2.5	3.4		V
	(Receiver Outputs)	VIN = VIL or VIH	Commercial	2.7	3.4		V
VOL	Output Low Voltage (Receiver Outputs)	V _{CC} = Min, I _O L = 20 mA, V _{IN} = V _I L or V _I H				0.5	V
VłH	Input High Level (Except Bus)	Guaranteed Input Logical Hi All Inputs	gh for	2.0			v
VIL	Input Low Level (Except Bus)	Guaranteed Input Logical Lo	w for			0.B	V
VI	Input Clamp Voltage (Except Bus)	V _{CC} = Min, I _{IN} = -18 mA				-1.2	V
HL	Input Low Current	VCC = Max, VIN = 0.4V	Enable			-0.36	mA
	(Except Bus)	1 CC max, 1 N 0.44	Data			-0.54	mA
ŀН	Input High Current	VCC = Max. VIN = 2.7V	Enable	,		20	μА
	(Except Bus)	ACC - Max' AM - 5'14	Data			30	μА
H	Input High Current (Except Bus)	V _{CC} = Max, V _{IN} = 5.5V				100	μΑ
ISC	Output Short-Circuit Current	V = = = May (Note 2)	Military	-20		-55	mA
	(Except Bus)	V _{CC} = Max, (Note 3)	Commercial	-18		-60	mA
ICCL	Power Supply Current	Man = Man Frahla = C I	DS26S10		45	70	mA
	(All Bus Outputs Low)	VCC = Max, Enable = Gnd	DS26S11			BO	mA

Bus Input/Output Characteristics

	PARAMETER		CONDITION (Note 1)	is	MIN	TYP (Note 2)	MAX	UNITS
v_{OL}	Output Low Voltage			IOL = 40 mA		0.33	0.5	
			Military	IOL = 70 mA		0.42	0.7	
		V _{CC} = Min		I _{OL} = 100 mA		0.51	0.8	
		1,00		IOL = 40 mA		0.33	0.5	V
			Commercial	IOL = 70 mA		0.42	0.7	
				1 _{OL} = 100 mA		0.51	0.B	
10	Bus Leakage Current	,		V _O = 0.BV			-50	
		V _{CC} = Max	Military	V _O = 4.5V			200	μ A
			Commercial	V _O = 4.5V			100	
IOFF	Bus Leakage Current (Power OFF)	V _O = 4.5V					100	μΑ
V_{TH}	Receiver Input High Threshold	Bus Enable =	2.4V,	Military	2,4	2.0		V
		V _{CC} = Max		Commercial	2.25	2.0		V
٧TL	Receiver Input Low Threshold	Bus Enable =	2.4V,	Military		2.0	1.6	v
		V _{CC} = Min		Commercial		2.0	1.75	V

Note 1. For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type. Note 2: Typical limits are at $V_{CC} = 5V$, 25° C ambient and maximum loading.

Note 3: Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Switching Characteristics (T_A = 25°C, V_{CC} = 5V)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
tPLH	Data Input to Bus		DS26S10		10	15	ns
tPHL	Data Input to Bus		DS26510		10	15	ns
tPLH	Data Input to Bus		DC20011		12	19	ns
†PHL	Data Input to Bus		DS26S11		12	19	ns
tPLH	Enable Input to Bus	$R_B = 50\Omega$, $C_B = 50$ pF (Note 1)	DC26C10		14	1B	ns
tPHL	Enable Input to Bus		DS26S10		13	18	ns
tPLH	Enable Input to Bus		D020011		15	20	ns
tPHL	Enable Input to Bus		DS26S11		14	20	ns
^t PLH	Bus to Receiver Out	$R_B = 50\Omega$, $R_L = 280\Omega$, $C_B = 50 p$	F (Note 1),		10	15	ns
tPHL	Bus to Receiver Out	C _L = 15 pF			10	15	ns
tr	Bus	500.0 50.5 (1)		4.0	10		ns
tf	Bus	$R_B = 50\Omega$, $C_B = 50 pF$ (Note 1)		2.0	4.0		ns

Note 1: Includes probe and jig capacitance

Truth Tables

DS26S10

INPL	STU	OUT	PUTS
Ē	1	B	Z
L	L	Н	L
L	Н	L	Н
н	Х	Y	Ÿ

DS26S11

INP	UTS	оит	PUTS	
Ē	ī	B	z	
L	L	L	Н	
L	н	н	L	
н	x	Y	₹	

H = High voltage level

L = Low voltage level

X = Don't care

Y = Voltage level of bus (assumes control by another bus transceiver)

Typical Application

AC Test Circuit and Switching Time Waveforms

Note 1: Includes probe and jig capacitance.

Typical Performance Characteristics

Schematic Diagram

Bus Transceivers

DS7640/DS8640 quad NOR unified bus receiver

general description

The DS7640 and DS8640 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input threshold providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. This receiver has been specifically configured to replace the SP380 gate pin-for-pin.

features

- Plug-in replacement for SP380 gate
- Low input current with normal V_{CC} or V_{CC} = 0V (30µA typ)
- High noise immunity (1.1V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL/TTL compatible output
- Matched, optimized noise immunity for "1" and "0" levels
- High speed (19 ns typ)

connection diagram

Dual-In-Line Package

Order Number DS7640J, DS8640J DS8640N or DS7640W See NS Package J14A, N14A or W14A

typical application

120Ω Unified Data Bus

absolute maximum rati	ngs (Note 1)	operating condit	ions		
			MIN	MAX	UNITS
Supply Voltage	7.0V	Supply Voltage (VCC)			
Input Voltage	5.5V	DS7640	4.5	5.5	V
Power Dissipation	600 mW	DS8640	4.75	5.25	V
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	−65°C to +150°C 300°C	Temperature (T _A) DS7640 DS8640	55 0	+125 +70	°C °C

electrical characteristics

The following apply for $V_{MIN} \le V_{CC} \le V_{MAX}$, $T_{MIN} \le T_A \le T_{MAX}$, unless otherwise specified (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
VIH	High Level Input Threshold	V - V	D\$7640	1.80	1.50		V
		V _{OUT} = V _{OL}	DS8640	1.70	1.50		V
VIL	Low Level Input Threshold		D\$7640		1.50	1.20	V
		V _{OUT} = V _{OH}	DS8640		1.50	1.30	V
I _{IH} Ma:	ximum Input Current) () () () () () () () () () (V _{CC} = V _{MAX}		30	80	μΑ
		$V_{IN} = 4V$ $V_{CC} = 0V$			1.0	50	μΑ
I _{IL}	Maximum Input Current	V _{IN} = 0.4V, V _{CC} = V	/ _{MAX}		1.0	50	μΑ
Voh	Output Voltage	I _{OH} = -400μA, V _{IN}	= V _{IL}	2.4			V
VoL	Output Voltage	I _{OL} = 16 mA, V _{IN} =	V _{IH}		0.25	0.4	٧
los	Output Short Circuit Current	V _{IN} = 0.5V, V _{OS} = 0	OV, V _{CC} = V _{MAX} , (Note 4)	-18		-55	mA
Icc	Power Supply Current	V _{IN} = 4V, (Per Packa	ge)		25	40	m A

switching characteristics T_A = 25°C, nominal power supplies unless otherwise noted

	PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS
tpd	Propagation Delays	(4) 5 . (6)	Input to Logic "1" Output	10	23	35	ns
-		(Notes 5 and 6)	Input to Logic "0" Output	10	15	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7640 and across the 0°C to +70°C range for the DS8640. All typical values are for TA = 25°C and VCC = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Fan-out of 10 load, C_{LOAD} = 15 pF total, measured from V_{IN} = 1.5V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 6: Apply for V_{CC} = 5V, T_A = 25°C.

Bus Transceivers

DS7641/DS8641 quad unified bus transceiver

general description

The DS7641 and DS8641 are quad high speed drivers/receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when $V_{CC}=0V$. The receivers incorporate tight thresholds for better bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously.

features

- 4 separate driver/receiver pairs per package
- Guaranteed minimum bus noise immunity of 0.6V, 1.1V typ
- Temperature insensitive receiver thresholds track bus logic levels
- 30µA typical bus terminal current with normal V_{CC} or with V_{CC} ≈ 0V
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

connection diagram

Dual-In-Line Package

Order Number DS7641J, DS8641J, DS8641N or DS7641W See NS Packege J16A, N16A or W16A

typical application

absolute maximum rati	ngs (Note 1)	operating condition	ons		
	_		MIN	MAX	UNITS
Supply Voltage	7V	Supply Voltage, (VCC)			
Input and Output Voltage	5.5V	D\$7641	4.5	5.5	V
Power Dissipation	600 mW	DS8641	4.75	5,25	V
Storage Temperature Range	-65°C to +150°C	Temperature Range, (TA)			
Lead Temperature (Soldering, 10 seconds)	300°C	DS7641	55	+125	°C
		DS8641	0	+70	°C

electrical characteristics

The following apply for $V_{MIN} \le V_{CC} \le V_{MAX}$, $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified (Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER AND DISABLE INPUTS						
V _{IH} Logical "1" Input Voltage			2.0			V
V _{IL} Logical "0" Input Voltage					0.8	V
I Logical "1" Input Current	V _{IN} ≈ 5.5V				1	mA
I _{IH} Logical "1" Input Current	V _{IN} ≈ 2.4V				40	μΑ
I _{IL} Logical "0" Input Current	V _{IN} = 0.4V		Ţ		-1.6	mA
V _{CL} Input Diode Clamp Voltage	$I_{DIS} = -12 \text{ mA}, I_{IN} = -12 \text{ mA}, I_{BU}$ $T_A = 25^{\circ}\text{C}$	s = ~12 mA,		-1	-1.5	v
DRIVER OUTPUT/RECEIVER INPUT						
V _{OLB} Low Level Bus Voltage	V _{DIS} = 0.8V, V _{IN} = 2V, I _{BUS} = 50	mA		0.4	0.7	V
I _{IHB} Maximum Bus Current	V _{IN} = 0.8V, V _{BUS} = 4V, V _{CC} = V _N	IAX		30	100	μА
I _{ILB} Maximum 8us Current	$V_{IN} = 0.8V$, $V_{BUS} = 4V$, $V_{CC} = 0V$			2	100	μΑ
V _{IH} High Level Receiver Threshold	V -0.8V V -16.7A	DS7641	1.80	1.50		V
· · ·	V _{IND} = 0.8V, V _{OL} = 16 mA	DS8641	1.70	1.50		V
V _{IL} Low Level Receiver Threshold		DS7641		1.50	1.20	V
	$V_{IND} = 0.8V, V_{OH} = -400\mu A$	DS8641		1.50	1.30	V
RECEIVER OUTPUT						
V _{OH} Logical "1" Output Voltage	V _{IN} = 0.8V, V _{BUS} = 0.5V, I _{OH} =	-400μA	2.4			V
V _{OL} Logical "0" Output Voltage	V _{IN} = 0.8V, V _{BUS} = 4V, I _{OL} = 16	mA		0.25	0.4	V
I _{OS} Output Short Circuit Current	$V_{DIS} = 0.8V$, $V_{IN} = 0.8V$, $V_{BUS} = V_{CC} = V_{MAX}$, (Note 4)	0.5V, V _{OS} = 0V,	-18		-55	mA
I _{CC} Supply Current	V _{DIS} = 0V, V _{IN} = 2V, (Per Packag	e)		50	70	mA

switching characteristics $T_A = 25^{\circ}C$, $V_{CC} = 5V$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd}	Propagation Delays (Note 7) Disable to Bus ''1" Disable to Bus "0" Driver Input to Bus "1" Driver Input to Bus "0"	(Note 5)		19 15 17 9	30 30 25 15	ns ns ns
	Bus to Logical "1" Receiver Output 8us to Logical "0" Receiver Output	(Note 6)		20 18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to +125°C temperature range for the DS7641 and across the 0°C to +70°C range for the DS8641. All typical values are for T_A = 25°C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: 91Ω from bus pin to V_{CC} and 200Ω from bus pin to ground, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.5V to V_{8US} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 6: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.5V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 7: The following apply for V_{CC} = 5V, T_A = 25°C unless otherwise specified.

Bus Transceivers

D\$7833/D\$8833, D\$7835/D\$8835 quad TRI-STATE® bus transceivers

general description

This family of TRI-STATE bus transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated dc or ac, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{CC} = 0V$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DS7833/ DS8833 and DS7835/DS8835 employ TRI-STATE outputs on the receiver also.

The DS7833/DS8833 are non-inverting quad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

The DS7835/DS8835 are inverting guad transceivers with a common inverter driver disable control and a common inverter receiver disable control.

features

Receiver hysteresis

400 mV typ

Receiver noise immunity

1.4V typ

 Bus terminal current for normal V_{CC} or V_{CC} = 0V 80µA max

Receivers

Sink Source

Sink

16 mA at 0.4V max 2.0 mA (Mil) at 2.4V min

5.2 mA (Com) at 2.4V min

Drivers

50 mA at 0.5V max

32 mA at 0.4V max Source 10,4 mA (Com) at 2,4V min

5.2 mA (Mil) at 2.4V min

- Drivers have TRI-STATE outputs
- DS7833/DS8833, DS7835/DS8835 receivers have TRI-STATE outputs
- Capable of driving 100Ω dc-terminated buses
- Compatible with Series 54/74

connection diagrams

Dual-In-Line Package

Drder Number DS7833J, DS8833J. DS8833N or DS7833W See NS Package J16A, N16A or W16A

Dual-In-Line Package

Drder Number DS7835J, DS8835J, DS8835N or DS7835W See NS Package J16A, N16A or W16A

absolute maximum ratings (Note 1) operating conditions

			MIN	MAX	UNITS	
Supply Voltage	7 OV	Supply Voltage (VCC)				
Input Voltage	5.5∨	DS7833, DS7835	4.5	5 5	V	
Output Voltage	5.5V	DS8833, DS8835	4.75	5 25	V	
Storage Temperature	-65 C to +150°C	Temperature (T _{\(\Delta\)})				
Lead Temperature (Soldering, 10 secon	ds) 300 C	DS7833, DS7835	-55	+125	, C	
		DS8833, D\$8835	0	+70	~ C	

electrical characteristics (Notes 2 and 3)

	PARAMETER	METER CONDITIONS		MIN	TYP	MAX	UNITS	
NSWRLE	DB-7 EB L 4PU							
\	Right Scott New York	V , ··-			2 0			V
	Lot Energy Lyman	V _{CC} = Min		DS7835			0 7	V,
		* CC - 340		Others			0.8	
	HATTER FRANCES	7	V 245			1	10	/
			N 1, 1, 1				1.9	/
	Fit 61 bil. Critic.	·	10			1 ,	16	mi
15	Long Charles Danks		12 (4)			11.8	1 %	\
Ī	District of sol	Y -	2p. :				41	,.,
FECTIVE	ER PVPCT SESSIONSELE							
Vic	Higher of floor in the			C ()9496	1:	1.75	21	
		15		c = 1-82.15	15	179	2.6	
Α.	(() () () () () ()			in 820	3) Q	; 35	1.55	
				== =	0.5	1 35	1.5:	
I.	12 C - 11 1 1 1 1 1 2 2 2 2 2		12 110			25	80	J
	(46.2)		, 0V		 	5.0	80	.l.
			; ⇒V	,	-	2.0	10	
V o	Logic 1 Octobra William	25 0		1 50 3 1635	24	2 /5		
		<u></u>	10.4	1	7 4	1		
V	Last 6 Original South	V	1 50 + 4		·	0 28	0.5	<u> </u>
			1, 214		3.0	62	120	P
lo,	O tput Sight Certific Programmers	2 00 - 14			711	102	120	L
	ER OUTPUT	,	т	1000	1 5.	1 10		Ţ
V	tickir 1 Oppot Voltise	100		1 24 128035	2 1	30		-
			10 - 52 12	1 56 0 176939	+	0.22	0.4	1
V .	Logic O Output Voltage	V				022	40	-
$1_{\overline{O}^{\pi}}$	Output Disabled Clime 1	V Six Birth			+	+	40	14
		1.0 % 2.51	V 6.4V	T. (20 2 05 02	28	40	7.0	m
Lis	O tout Short Circuit Corent	1-5 124 Aug 4		D56833 D57835 D56833 D58835	36	40	70	P
				25 8 as D\$8833	+	84	116	ım
ارو	Scoply Corent	Vic Var		D=1835 US8835	+	75	95	m

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C to $+125^{\circ}$ C to $+25^{\circ}$ C page for the DS8833, DS8835. All typicals are given for $V_{CC} = 5.0V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis

Note 4: Only one output at a time should be shorted.

switching characteristics V_{CC} = 5.0V, T_A = 25°C

	PARAMETER CONDITIONS		3	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logic "0" From Input to Bus	(Figure 1)	DS7833/DS8833 DS7835/DS8835		14 10	30 20	ns ns
t _{pd1}	Propagation Delay to a	(Figure 1)	DS7833/DS8833		14	30	ns
	Logic "1" From Input to Bus	rrigute 1)	DS7835/DS8835		11	30	ns
t _{pd0}	Propagation Delay to a	(Figure 2)	DS7833/DS8833		24	45	ns
	Logic "0" From Bus to Output	(rigure 2)	DS7B35/DS8B35		16	35	ns
t _{pd1}	Propagation Delay to a	(Figure 2)	DS7833/DS8833		12	30	ns
	Logic "1" From Bus to Output	(rigure 2)	DS7835/DS8835		18	30	ns
tPHZ	Delay From Disable	C ₁ = 5.0 pF, (Figures 1 and 2)	Driver		8.0	20	ns
	Input to High Impedance State (From Logic "1" Level)	C _L = 5.0 pF, (Figures Fano 2)	Receiver		6.0	15	ns
tPLZ	Delay From Disable Input to	C ₁ = 5.0 pF, (Figures 1 and 2)	Driver		20	35	ns
	High Impedance State (From Logic "0" Level)	C _L = 5.0 pF, (Figures 1 and 2)	Receiver		13	25	ris
tPZH	Delay From Disable Input to	C ₁ = 50 pF, (Figures 1 and 2)	Driver		24	40	ns
	Logic "1" Level (From High Impedance State)	or sopi, in igures i and 2)	Receiver		16	35	ns
tPZL	Delay From Disable Input to	C ₁ = 50 pF, (Figures 1 and 2)	Driver		19	35	ns
	Logic "0" Level (From High	CL = 50 pt , ir igures I and 2)	Receiver DS7B33/DS8833		15	30	ns
	Impedance State)		Receiver DS7835/DS8835		33	50	ns
f _{MAX}	Maximum Clock Frequency						_

ac test circuits

FIGURE 1. Driver Output Load

FIGURE 2. Receiver Output Load

switching time waveforms

toH

Bus Transceivers

DS7834/DS8834, DS7839/DS8839 quad TRI-STATE® bus transceivers

general description

This family of TRI-STATE bus transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated dc or ac, at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low, allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $V_{CC} = 0V$. The receiver incorporates hysteresis to provide greater noise immunity. Both devices utilize a high current TRI-STATE output driver. The DS7834/DS8834 and DS7839/ DS8839 employ TTL outputs on the receiver.

The DS7839/DS8839 are non-inverting quad transceivers with two common inverter driver disable controls.

The DS7834/DS8834 are inverting quad transceivers with two common inverter driver disable controls.

features

Receiver hysteresis

400 mV typ

Receiver noise immunity

1.4V typ

Bus terminal current for normal V_{CC} or $V_{CC} = 0V$

80µA max

Receivers

Sink

16 mA at 0.4V max 2.0 mA (Mil) at 2.4V min

Source

5.2 mA (Com) at 2.4V min

Drivers Sink

50 mA at 0.5V max 32 mA at 0.4V max

Source

10.4 mA (Com) at 2.4V min

5.2 mA (Mil) at 2.4V min

- Drivers have TRI-STATE outputs
- Receivers have TRI-STATE outputs
- Capable of driving 100 Ω dc-terminated buses
- Compatible with Series 54/74

connection diagrams

Dual-In-Line Package

Order Number DS7834J, DS8834J DS8843N or DS7834W See NS Package J16A, N16A or W16A

Dual-In-Line Package

Drder Number D\$7839J, D\$8839J, DS8839N or DS7839W See NS Package J16A, N16A or W16A

absolute maximum ratings (Note 1)		operating conditions					
·			MIN	MAX	UNITS		
Supply Voltage	7.0V	Supply Voltage (VCC)					
Input Voltage	5.5∨	DS7834, DS7839	4.5	5.5	V		
Output Voltage	5.5V	DS8834, DS8839	4.75	5.25	V		
Storage Temperature Lead Temperature (Soldering, 10 Seconds)	65°C to +150°C 300°C	Temperature (T _A) DS7834, DS7839 DS8834, DS8839	55 0	+125 +70	° c °C		

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
DISA 8 LE	/DRIVER INPUT							
V _{IH}	High Level Input Voltage	V _{CC} = Min	V _{CC} = Min					V
VıL	Low Level Input Voltage	V _{CC} = Min					0.8	>
I _{IH}	High Level Input Current	V _{CC} = Max	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$				40 1.0	μA mA
)/ - Man)/	L			-1.0	-1.6	mA
I _{FL}	Low Level Input Current	V _{CC} = Max, V				1.0		
I _{IND}	Driver Disabled Input Low Current	Driver Disable	Input = $2.0V$, $V_{IN} = 0$	1.4V	}		[−] 40	μΑ
V _{CL}	Input Clamp Diode	V _{CC} = 5.0V, I	_{IN} = -12 mA, T _A = 25	5°C		-0.8	-1.5	V
RECEIVE	R INPUT/8US OUTPUT							
V _{TH}	High Level Threshold Voltage			DS7834, DS7839	1.4	1.75	2.1	V
		V _{CC} = Max		DS8834, DS8839	1.5	1.75	20	>
V _{TL}	Low Level Threshold Voltage			DS7834, DS7839	0.8	1.35	1.6	V
		V _{CC} ≈ Min		DS8834, DS8839	0.8	1.35	1.5	V
I _{BH}	8us Current, Output Disabled or High	V _{BUS} = 4.0V	V _{CC} = Max, Disable Input = 2.0V			25	80	μА
	,	555	V _{CC} = 0V			5.0	80	μΑ
		V _{CC} = Max, V	$_{\rm BUS}$ = 0.4V, Disable I	nput = 2.0V			-40	μΑ
V _{OH}	Logic "1" Output Voltage	V - W-	I _{OUT} ≃ ~5.2 mA	DS7834, DS7839	2.4	2.75		V
***		V _{CC} = Min	I _{OUT} = -10.4 mA	DS7834, DS8839	2.4	2.75		V
Vol	Logic "0" Output Voltage	V _{CC} = Min	I _{OUT} = 50 mA			0.28	0.5	V
		V CC - WIIII	I _{OUT} = 32 mA				0.4	V
los	Output Short Circuit Current	V _{CC} = Max, (Note 4)		-40	-62	-120	mA
RECEIV	ER OUTPUT							
VoH	Logic "1" Output Voltage	V _{CC} ≈ Min	I _{OUT} = -2.0 mA	DS7834, DS7839	2.4	3.0		V
	_	V _{CC} = Will	I _{OUT} = -5.2 mA	DS8834, DS8839	2.4	2.9		V
VoL	Logic "0" Output Voltage	V _{CC} = Min, I	_{DUT} = 16 mA			0.22	0.4	٧
los	Output Short Circuit Current	V _{CC} = Max, (Note 4)	DS7834, DS7839	-28	40	-70	m A
		Vcc - IVIAX, (DS8834, DS8839	-30		-70	mA
lcc	Supply Current	V _{CC} = Max				75	95	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7834, DS7839 and across the 0° C to $+70^{\circ}$ C range for the DS834, DS8839. All typicals are given for $V_{CC} = 5.0V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logic "0"	(Figure 1)	DS7839/DS8839		14	30	ns
	from Input to 8us		DS7834/DS8834	ļ	10	. 20	ns
t _{pd1}	Propagation Delay to a Logic "1"	(Figure 1)	DS7839/DS8839		14	30	ns
	from Input to Bus	(rigule I)	DS7834/DS8834		11	30	ns
t _{pd0}	Propagation Delay to a Logic "O"	(Fig 2)	DS7839/DS8839		24	45	ns
	from Bus to Output	(Figure 2)	DS7834/DS8834		16	35	ns
t _{pd1}	Propagation Delay to a Logic "1"	(Fig. 2)	DS7839/DS8839		12	30	ns
	from Bus to Output	(Figure 2)	DS7834/DS8834		18	30	ns
^t PHZ	Delay from Disable Input to High Impedance State (from Logic "1" Level)	C _L = 5.0 pF, (Figures 1 and 2)	Driver Only		8	20	ns
tPLZ	Delay from Disable Input to High Impedance State (from Logic "0" Level)	$C_L = 5.0 \text{ pF}, (Figures 1 \text{ and 2})$	Driver Only		20	35	ns
^t PZH	Delay from Disable Input to Logic "1" Level (from High Impedance State)	C _L ≈ 50 pF, (Figures 1 and 2)	Driver Only		24	40	ns
tPZL	Delay from Disable Input to Logic "O" Level (from High Impedance State)	C _L ≈ 50 pF, (Figures 1 and 2)	Driver Only		19	35	ns

ac test circuits

FIGURE 1. Driver Output Load

FIGURE 2. Receiver Output Load

switching time waveforms

t = 1 MHz t, = t_f ≤ 10 ns (10% to 90%) Outy Cycle = 50%

switching time waveforms (con't)

truth table

DISABLE INPUT	DRIVER INPUT (IN _X)	RECEIVER INPUT/ BUS OUTPUT (BUS _x)	RECEIVER OUTPUT (OUT _x)	MODE OF OPERATION
DS7834/DS8	834			
1	×		BUS	Receive bus signal
0	1	0	1	Drive bus
0	0	1	0	Drive bus
DS7839/DS8	839			
1	×		BUS	Receive bus signal
0	1	1	1	Drive bus
0	0	0	0	Drive bus

X = Don't care

Bus Transceivers

DS7836/DS8836 quad NOR unified bus receiver

general description

The DS7836/DS8836 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 12002 impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/ receiver pairs to utilize a common bus. This receiver has been specifically configured to replace the SP380 gate pin-for pin to provide the distinct advantages of the DS7837 receiver with built-in hysteresis in existing systems. Performance is optimized for systems with bus rise and fall times $< 1.0 \mu s/V$

features

- Low input current with normal V_{CC} or $V_{CC} = 0V$ (15 μ A typ)
- Built-in input hysteresis (1V typ)
- High noise immunity (2V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL/TTL compatible output
- Matched, optimized noise immunity for "1" and "0" levels
- High speed (18 ns typ)

typical application

connection diagram

Order Number DS7836J or DS8836J See NS Package J14A Order Number DS8836N See NS Package N14A Order Number DS7836W See NS Package W14A

operating conditions absolute maximum ratings UNITS MIN MAX 7.0V Supply Voltage (VCC) Supply Voltage 4.5 5.5 DS7836 5.5V Current Voltage 4.75 DS8836 5.25 600 mW Power Dissipation Storage Temperature Range -65°C to +150°C Temperature (TA) Lead Temperature (Soldering, 10 seconds) 300° C +125 °c -55 DS7836

DS8836

0

+70

electrical characteristics

The following apply for $V_{MIN} \leq V_{CC} \leq V_{MAX}$, $T_{MIN} \leq T_A \leq T_{MAX}$, unless otherwise specified (Notes 2 and 3)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V _{TH}	High Level Input Threshold			DS7836	1.65	2.25	2.65	V
• (H		V _{CC} = Max		DS8836	1.80	2.25	2.50	V
VIL	Low Level Input Threshold			DS7836	0.97	1.30	1.63	V
* IL		V _{CC} = Min	Voc = Max	DS8836	1.05	1.30	1.55	V
I _{IN}	Maximum Input Current		V _{CC} = Max			15	50	μА
.114		$V_{IN} = 4V$	V _{CC} = 0V			1	50	μΑ
VoH	Logical "1" Output Voltage	V _{IN} = 0.5V	, I _{OUT} = -400μA		2.4			V
Vol	Logical "0" Output Voltage	V _{IN} = 4V, I	OUT ≈ 16 mA			0.25	0.4	V
I _{sc}	Output Short Circuit Current	V _{IN} = 0.5V	, V _{OUT} = 0V, V _{CC} =	Max, (Note 4)	-18		-55	mA
I _{CC}	Power Supply Current	V _{IN} = 4V, ((Per Package)			25	40	mΑ
V _{CL}	Input Clamp Diode Voltage	I _{IN} ≈ −12 m	nA, T _A = 25°C			-1	-1.5	>

switching characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$ unless otherwise specified.

	PARAMETER	C	ONDITIONS	MIN	TYP	МАХ	UNITS
-	Propagation Delays		Input to Logical "1" Output		20	30	ns
^T pd	r opagation delays	(Notes 4 and 5)	Input to Logical "0" Output		18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7836 and across the 0°C to +70°C range for the DS8836. All typical values are for TA = 25°C and VCC = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Fan-out of 10 load, CLOAD = 15 pF total, measured from V_{IN} = 1.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 5: Fan-out of 10 load, C_{LOAD} = 15 pF total, measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Bus Transceivers

DS7837/DS8837 hex unified bus receiver

general description

The DS7837/DS8837 are high speed receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5V logic supply together with a 390 Ω resistor from the bus to ground. The receiver design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. Disable inputs provide time discrimination. Disable inputs and receiver outputs are DTL/TTL compatible. Performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu s/V$.

features

- Low receiver input current for normal V_{CC} or V_{CC} = 0V (15 µA typ)
- Six separate receivers per package
- Built-in receiver input hysteresis (1V typ)
- High receiver noise immunity (2V typ)
- Temperature insensitive receiver input thresholds track bus logic levels
- DTL/TTL compatible disable and output
- Molded or cavity dual-in-line or flat package
- High speed

typical application

connection diagram

Dual-In-Line Package

Order Number DS7837J or DS8837J See NS Package J16A Order Number DS8837N See NS Package N16A Order Number DS7837W See NS Package W16A

absolute maximum rating	gs	operating condit	ions		
			MIN	MAX	UNITS
Supply Voltage Input Voltage Power Dissipation	7 V 5.5 V 600 mW	Supply Voltage (V _{CC}) DS7837 DS8837	4.5 4.75	5.5 5.25	V V
Operating Temperature Range DS7837 DS8837 Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	~55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C	Temperature (T _A) DS7837 DS8837	-55 0	+125 +70	°c °c

electrical characteristics

The following apply for $V_{MIN} \le V_{CC} \le V_{MAX}$, $T_{MIN} \le T_A \le T_{MAX}$, unless otherwise specified (Notes 2 and 3)

	PARAMETER	CONI	DITIONS	MIN	TYP	MAX	UNITS
V _{TH}	High Level Receiver Threshold	V _c = Max	DS7837	1.65	2.25	2.65	V
•тн	riight Ectal Meserval (massile)		D\$8837	1.80	2.25	2.50	>
V _{TI}	Low Level Receiver Threshold	V _{ec} = Min	DS7837	0.97	1.30	1.63	>
. , [DS8837	1.05	1.30	1.55	<u>v</u>
l _{IH}	Maximum Receiver Input Current		V _{CC} = V _{MAX}		15.0	50.0	μΑ
in.	,	V _{1N} = 4V	V _{CC} = 0V		1.0	50.0	μΑ
l _{it}	Logical "0" Receiver Input Current	V _{IN} = 0.4V, V _{CC} = V _{MAX}			1.0	50.0	μΑ
V _{IH}	Logical "1" Input Voltage		Disable	2.0			v
VIL	Logical "0" Input Voltage		Disable			0.8	V
I _{IH}	Logical "1" Input Current		V _{IND} = 2.4V			80.0	μΑ
'ІН	Logicu	Disable Input	V _{IND} = 5.5V			2.0	mA
I _{IL}	Logical "0" Input Current	V _{IN} = 4V, V _{IND} = 0.4V, [V _{IN} = 4V, V _{IND} = 0.4V, Disable Input			-3.2	mA
V _{OH}	Logical "1" Output Voltage	$V_{IN} = 0.5 V$, $V_{IND} = 0.8 V$, $I_{OH} = -400 \mu A$		2.4			v
V _{OL}	Logical "0" Output Voltage	$V_{IN} = 4V$, $V_{IND} = 0.8V$, $I_{OL} = 16 \text{ mA}$			0.25	0.4	V
los	Output Short Circuit Current	V _{IN} = 0.5V, V _{IND} = 0V, \ (Note 4)	V _{IN} = 0.5V, V _{IND} = 0V, V _{OS} = 0V, V _{CC} = V _{MAX} ,			-55.0	mA
icc	Power Supply Current	$V_{IN} = 4V$, $V_{IND} = 0V$, (Pe	er Package)		45.0	60.0	mA
VCL	Input Clamp Diode	V _{IN} = -12 mA, V _{IND} = -	12 mA, T _A = 25°C		-1.0	−1.5	v

switching characteristics T_A = 25°C, nominal power supplies unless otherwise noted

_	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
+	Propagation Delays	V _{IND} = 0V, Input to Logical "	1" Output, (Note 5)	20	30	ns
_L pd	Tropagation Delays	1145	0" Output, (Note 6)	18	30	ns
		Input = 0V, Input to Logical "	1" Output	9	15	ns
		Disable, Input to Logical "		4	10	ns
		(Note 7)		<u> </u>	<u> </u>	<u></u>

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to +125°C temperature range for the DS7837 and across the 0° C to +70°C range for the DS8837. All typicals values are for T_A = 25°C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Fan-out of 10 load, $C_{LOAD} = 15$ pF total. Measured from $V_{IN} = 1.3V$ to $V_{OUT} = 1.5V$, $V_{IN} = 0V$ to 3V pulse.

Note 6: Fan-out of 10 load, C_{LOAD} =15 pF total. Measured from V_{IN} = 2.3V to V_{OUT} = 1.5V, V_{IN} = 0V to 3V pulse.

Note 7: Fan-out of 10 load, $C_{LOAD} = 15 \text{ pF}$ total. Measured from $V_{IN} = 1.5 \text{V}$ to $V_{OUT} = 1.5 \text{V}$, $V_{IN} = 0 \text{V}$ to 3V pulse.

Bus Transceivers

DS7838/DS8838 quad unified bus transceiver

general description

The DS7838/DS8838 are quad high speed drivers/ receivers designed for use in bus organized data transmission systems interconnected by terminated 120 Ω impedance lines. The external termination is intended to be a 180 Ω resistor from the bus to the +5V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loading is unchanged when V_{CC} = 0V. The receivers incorporate hysteresis to greatly enhance bus noise immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall times $\leq 1.0 \mu s/V$.

features

- 4 totally separate driver/receiver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minimum bus noise immunity of 1.3V, 2V typ.
- Temperature-insensitive receiver thresholds track bus logic levels
- 20 μ A typical bus terminal current with normal V_{CC} or with V_{CC} = 0V
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatible driver and disable inputs and receiver outputs

typical application

connection diagram

Dual-In-Line Package

Order Number DS7838J or DS8838J See NS Package J16A Order Number DS8838N See NS Package N16A Order Number DS7838W See NS Package W16A

absolute maximum ratings (Note 1)

Supply Voltage
Input and Output Voltage
Power Dissipation

7∨ 5.5∨ 600 mW Operating Temperature Range DS7838 DS8838 Storage Temperature Range

Lead Temperature, (Soldering, 10 sec)

-55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C

electrical characteristics

DS7838/DS8838: The following apply for $V_{MIN} \le V_{CC} \le V_{MAX}$, $T_{MIN} \le T_{A} \le T_{MAX}$ unless otherwise specified (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
DRIVE	R AND DISABLE INPUTS						
V _{IH}	Logical "1" Input Voltage			2.0			V
VIL	Logical "0" Input Voltage					0.8	V
I ₁	Logical "1" Input Current	V _{IN} = 5.5V				1	mA
I _{IH}	Logical "1" Input Current	V _{IN} = 2.4V				40	μΑ
	Logical "0" Input Current	V _{IN} = 0.4V				-1.6	mA
V _{CL}	Input Diode Clamp Voltage	$I_{DIS} = -12 \text{ mA}, I_{IN} = -12 \text{ mA}, I_{B}$ $T_{A} = 25^{\circ}\text{C}$	_{US} = −12 mA,		-1	- 1.5	٧
DRIVE	R OUTPUT/RECEIVER INPUT						
V _{OLB}	Low Level Bus Voltage	V _{DIS} = 0.8V, V _{IN} = 2V, I _{BUS} = 5	i0 mA		0.4	0.7	V
I _{IHB}	Maximum Bus Current	V _{IN} = 0.8V, V _{BUS} = 4V, V _{CC} = \	/ _{MAX}		20	100	μΑ
I _{ILB}	Maximum 8us Current	V _{IN} = 0.8V, V _{BUS} = 4V, V _{CC} = 0)V		2	100	μΑ
VIH	High Level Receiver Threshold	V _{IND} 0.8V, V _{OL} = 16 mA	D\$7838	1.65	2.25	2.65	V
- 114		V _{CC} = Max	D\$8838	1.80	2.25	2.50	V
V _{IL}	Low Level Receiver Threshold	$V_{IND} = 0.8V, V_{OH} = -400\mu A$	D\$7838	0.97	1.30	1.63	V
		V _{CC} = Min	D\$8838	1.05	1.30	1.55	V
RECEI	VER OUTPUT						
Voh	Logical "1" Output Voltage	$V_{1N} = 0.8V$, $V_{BUS} = 0.5V$, $I_{OH} = -400\mu A$		2.4			V
V _{OL}	Logical "0" Output Voltage	V _{IN} = 0.8V, V _{BUS} = 4V, I _{OL} = 1	6 mA		0.25	0.4	V
los	Output Short Circuit Current	$V_{DIS} = 0.8V, V_{IN} = 0.8V, V_{BUS} = 0.5V,$ $V_{OS} = 0V, V_{CC} = V_{MAX}, \{Note 4\}$		-18		-55	mA
Icc	Supply Current	V _{DIS} = 0V, V _{IN} = 2V, (Per Packa	age)		50	70	mA
tpd	Propagation Delays (Note 8)						
PO	Disable to Bus "1"	(Note 5)			19	30	ns
	Disable to Bus "0"	(Note 5)			15	23	ns
	Driver Input to Bus "1"	(Note 5)		<u> </u>	17	25	ns
	Driver Input to Bus "0"	(Note 5)			9	15	ns
	Bus to Logical "1" Reciever Output	(Note 6)		 	20	30	ns
	Bus to Logical "0" Receiver Output	(Note 7)			18	30	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7838 and across the 0° C to $+70^{\circ}$ C range for the DS8838. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC} = 5V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: 91Ω from bus pin to V_{CC} and 200 Ω from bus pin to ground, C_{LOAD} = 15 pF total. Measured from V_{IN} = 1.5V to V_{BUS} = 1.5V, V_{IN} = 0V to 3.0V pulse.

Note 6: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{1N} = 1.3V to V_{OUT} = 1.5V, V_{1N} = 0V to 3.0V pulse.

Note 7: Fan-out of 10 load, C_{LOAD} = 15 pF total. Measured from V_{IN} = 2.3V to V_{OUT} = 1.5V V_{IN} = 0V to 3.0V pulse.

Note 8: These apply for V_{CC} = 5V, T_A = 25°C unless otherwise specified.

Bus Transceivers

DS8T26A, DS8T26AM, DS8T28, DS8T28M 4-Bit Bidirectional Bus Transceivers

General Description

The DS8T26A, DS8T28 consists of 4 pairs of TRI-STATE® logic elements configured as quad bus drivers/ receivers along with separate buffered receiver enable and driver enable lines. This single IC quad transceiver design distinguishes the DS8T26A, DS8T28 from conventional multi-IC implementations. In addition, the DS8T26A, DS8T28's ultra high speed while driving heavy bus capacitance (300 pF) makes these devices particularly suitable for memory systems and bidirectional data buses.

Both the driver and receiver gates have TRI-STATE outputs and low current PNP inputs. PNP inputs reduce input loading to 200 μ A maximum.

Features

- Inverting outputs in the DS8T26A
- Non-inverting outputs in the DS8T28
 - TRI-STATE outputs
- Low current PNP inputs
- Fast switching times (20 ns)
- Advanced Schottky processing
- Driver glitch free power up/down
- Non-overlapping TRI-STATE

Logic and Connection Diagrams

Dual-In-Line Package

R/E 1 16 Vcc

RDUT 2 15 D/E

DDUT 3 14 ROUT

IN 4 13 DOUT

ROUT 5 11 ROUT

IN 7 10 DOUT

GND 8 IN

TOP VIEW

Order Number DS8T26AJ, DS8T26AMJ, DS8T28J, DS8T28MJ, DS8T26AN or DS8T28N See NS Package J16A or N16A

Absolute Maximum Rati	Recommended C	peratin	g Conc	litions	
			MIN	MAX	UNITS
All Output and Supply Voltages All Input Voltages Output Currents	-0.5V to +7V -1V to +5.5V ±150 mA	Supply Voltage (V _{CC}) DS8T26A, DS8T28 DS8T26AM, DS8T28M	4.75 4.5	5.25 5.5	v v
Storage Temperature Lead Temperature (Soldering, 10 seconds)	–65°C to +150°C 300°C	Temperature (T _A) DS8T26A, DS8T28 DS8T26AM, DS8T28M	0 -55	70 +125	°C °C

Electrical Characteristics (Notes 2, 3 and 4)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVE	R					
ΊL	Low Level Input Current	V _{IN} = 0.4V			-200	μΑ
IL	Low Level Input Current (Disabled)	V _{IN} = 0.4V			-25	μΑ
ΉΗ	High Level Input Current (DIN, DE)	VIN = VCC Max			25	μΑ
VOL	Low Level Output Voltage, (Pins 3, 6, 10, 13)	I _{OUT} ≈ 48 mA			0.5	٧
∨он	High Level Output Voltage, (Pins 3, 6, 10, 13)	I _{OUT} ≈ −10 mA	2.4			V
los	Short-Circuit Output Current, (Pins 3, 6, 10, 13)	VOUT = 0V, VCC =	-50		-150	mA
RECEI	VER					
11L	Low Level Input Current	V _{IN} = 0.4V			-200	μΑ
ΊΗ	High Level Input Current (RE)	V _{IN} = V _{CC} Max			25	μΑ
VOL	Low Level Output Voltage	1 _{OUT} = 20 mA			0.5	V
Voн	High Level Output Voltage,	I _{OUT} = -100 μA	3.5			V
	(Pins 2, 5, 11, 14)	I _{OUT} = −2 mA	2.4			
los	Short-Circuit Output Current, (Pins 2, 5, 11, 14)	V _{OUT} = 0V, V _{CC} = V _{CC} Max	-30		−75	mA
вотн	DRIVER AND RECEIVER					
VTL	Low Level Input Threshold Voltage	$V_{CC} = Min, V_{IN} = 0.8V,$ $I_{OL} = -400 \mu\text{A}$	0.85			V
∨тн	High Level Input Threshold Voltage	VCC = Max, V _{IN} = 0.8V,			2	V
loz	Low Level Output OFF Leakage Current	V _{OUT} = 0.5V			-100	μΔ
loz	High Level Output OFF Leakage Current	V _{OUT} = 2.4V			100	μΔ
νı	Input Clamp Voltage	1 _{1N} = -12 mA			-1.0	V
lcc	Power Supply Current DS8T26A	VCC = VCC Max			87	m A
	DST28	VCC = VCC Max			110	m/

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation. Note 2: Unless otherwise specified, min/max limits apply across the -55°C to +125°C temperature range for the DS8T26AM, DS8T28M and

across the 0°C to +70°C range for the DS8T26A, DS8T28. All typicals are given for V_{CC} = 5V and T_A = 25°C. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Switching Characteristics

	PARAMETER	CONDITIONS	DS8T26A MAX	DS8T28 MAX	UNITS
Propagat	ion Delay				
tON	DOUT to ROUT, (Figure 1)	C _L = 30 pF	14	17	ns
^t OFF	DOUT to ROUT, (Figure 1)		14	17	ns
tON	D _{IN} to D _{OUT} , (Figure 2)	C _L = 300 pF	14	17	ns
tOFF	DIN to DOUT, (Figure 2)		14	17	ns
Data Ena	ble to Data Output				
tPZL	High Z to O, (Figure 3)	C _L = 300 pF	25	28	ns
tPLZ	O to High Z, (Figure 3)		20	23	ns
Receiver	Enable to Receiver Output				
tPZL	High Z to O, (Figure 4)	C _L = 30 pF	20	23	ns
tPLZ	O to High Z, (Figure 4)		15	18	ns

AC Test Circuits and Switching Time Waveforms

Input pulse: $t_f = t_f = 5 \text{ ns } \{10\% \text{ to } 90\%\}$ Freq = 10 MHz (50% duty cycle) Amplitude = 2.6V

FIGURE 1. Propagation Delay (DOUT to ROUT)

Input pulse: $t_r = t_f \approx 5 \text{ ns (10\% to 90\%)}$ Freq = 10 MHz (50% duty cycle) Amplitude = 2.6V

FIGURE 2. Propagation Delay (D $_{\mbox{IN}}$ to D $_{\mbox{OUT}}$)

AC Test Circuits and Switching Time Waveforms (Continued) V_{CC} = 5V PULSE GENERATOR O_{OUT3} OOUTA OUT ROUTS (PROBE) O_{IN2} ROUT2 ROUT3 Input pulse: $t_r = t_f = 5 \text{ ns } (10\% \text{ to } 90\%)$ R_{OUT}4 Freq = 5 MHz (50% duty cycle) Amplitude = 2.6V FIGURE 3. Propagation Delay (Data Enable to Data Output)

FIGURE 4. Propagation Delay (Receive/Enable to Receiver Output)

Section 3 Peripheral/Power Drivers

TEMPERA	TURE RANGE	DESCRIPTION	PAGE
−55°C to +125°C	0° C to +70 $^{\circ}$ C	DESCRIPTION	NUMBER
DS1611	DS3611	Dual AND Peripheral Driver	3-1
DS1612	DS3612	Dual NAND Peripheral Driver	3-1
DS1613	DS3613	Dual OR Peripheral Driver	3-1
DS1614	DS3614	Dual NOR Peripheral Driver	3-1
DS1631	DS3631	Dual AND CMOS Peripheral Driver	3-7
DS1632	DS3632	Dual NAND CMOS Peripheral Driver	3-7
DS1633	DS3633	Dual OR CMOS Peripheral Driver	3-7
DS1634	DS3634	Dual NOR CMOS Peripheral Driver	3-7
_	DS3654	Serial Input, 10-Bit Driver	3-12
D\$1686	DS3686	Dual Positive Relay Driver	3-16
DS1687	DS3687	Dual Negative Relay Driver	3-18
DS55450	DS75450	Dual AND Peripheral Driver	3-20
DS55451	DS75451	Dual AND Peripheral Driver	3-20
DS55452	DS75452	Dual NAND Peripheral Driver	3-20
DS55453	DS75453	Dual OR Peripheral Driver	3-20
DS55454	DS75454	Dual NOR Peripheral Driver	3-20
DS55460	DS75460	Dual AND Peripheral Driver	3-31
DS55461	DS75461	Dual AND Peripheral Driver	3-31
DS55462	DS75462	Dual NAND Peripheral Driver	3-31
DS55463	DS75463	Dual OR Peripheral Driver	3-31
DS55464	DS75464	Dual NOR Peripheral Driver	3-31
_	MM74C908	Dual CMOS 30V Driver	9-25
_	MM74C918	Dual CMOS 30V Driver	9-25

PERIPHERAL/POWER DRIVERS

Output High	Latch-Up Voltage	Output Low	Output Low	Propagation Delay	ON Power Supply	Drivers/	Input	Logic Function	Device and Tempe	Device Number
Voltage (V)	(Note 3) (V)	Voltage (V)	Current (mA)	Typ (ns)	Current (mA)	Package	(Logic)	(Driver ON)	0°C to +70°C	-55°C to +125°C
30	20	0.7	300	31	55	2	TTL	AND	DS75450	DS55450
30	20	0.7	300	31	55	2	TTL	AND	DS75451	DS55451
30	20	0.7	300	31	55	2	TTL	NAND	DS75452	DS55452
30	20	0.7	300	31	55	2	TTL	OR	DS75453	DS55453
30	20	0.7	300	31	55	2	TTL	NOR	DS75454	DS55454
35	30	0.7	300	33	55	2	TTL	AND	DS75460	DS55460
32	30	0.7	300	33	55	2	TTL	AND	DS75461	DS55461
35	30	0.7	300	33	55	2	J.L.	NAND	DS75462	DS55462
35	30	0.7	300	33	55	2	TTL	OR	DS75463	DS55463
35	30	0.7	300	33	55	2	TTL	NOR	DS75464	DS55464
26	40	1.4	300	150	8	2	CMOS	AND	DS3631	DS1631
56	40	1.4	300	150	80	2	CMOS	NAND	DS3632	DS1632
99	40	4:1	300	150	80	5	CMOS	OR	DS3633	DS1633
56	40	1.4	300	150	80	2	CMOS	NOR	DS3634	DS1634
80	90	0.7	300	125	75	2	TTL/CMOS	AND	DS3611	DS1611
80	90	0.7	300	125	75	2	TTL/CMOS	NAND	DS3612	DS1612
80	50	0.7	300	125	75	2	TTL/CMOS	OR	DS3613	DS1613
80	20	0.7	300	125	75	2	TTL/CMOS	NOR	DS3614	DS1614
(Note 1)	56	1.3	300	1000	28	2	TTL/CMOS	NAND	DS3686	DS1686
(Note 1)	-26	-1.3	300	1000	28	2	TTL/CMOS	NAND	DS3687	DS1687
13.5	15	V _{CC} -1.8	300	150	0.015	2	CMOS	AND	MM74C908, MM74C918	
(Note 1)	45	1.6	250	1000	70	10	(Note 2)	(Note 2)	DS3654	

Note 1: The DS3886, DS3887 and DS3854 contain an internal inductive fly-back clamp circuit connected from the output to ground. As an example, DS3886 driving a relay solenoid connected to 28V would clamp the output voltage fly-back transient at 56V caused by the solenoid's stored inductive current. This clamp protects the circuit output and quenches the fly-back. Note 2: The DS3654 is a 10-bit shift register followed by 10 enabled drivers. The input circuit is equivalent to a 4k resistor to ground, and the logic input thresholds are 2.8V and 0.8V. The recommended power supply voltage is 7.5V to 9.5V. The circuit can be cascoded to be a 20 or 30-bit shift register.

Note 3: Latch-up voltage is the maximum voltage the output can sustain when switching an inductive load.

Peripheral/Power Drivers

DS1611/DS3611, DS1612/DS3612, DS1613/DS3613, DS1614/DS3614 dual peripheral drivers

general description

The DS1611 series of dual peripheral drivers was designed for those applications where a higher breakdown voltage is required than that provided by the DS75451 series. The pin outs for the circuits are identical to those of the DS75451 through DS75454. The DS1611 series parts feature high voltage outputs (80V breakdown in the "OFF" state) as well as high current (300 mA in the "ON" state). Typical applications include power drivers, relay drivers, lamp drivers, MOS drivers, and memory drivers.

features

- 300 mA output current capability per driver
- High voltage outputs (80V)
- TTL \ LS compatible
- Input clamping diodes
- Choice of logic function

connection diagrams (Dual-In-Line and Metal Can Packages)

Order Number DS1611J-8, DS3611J-8 or DS3611N-8

Order Number DS1612J-8, DS3612J-8 or DS3612N-8

Order Number DS1613J-8, DS3613J-8 or DS3613N-8

Order Number DS1614J-8, DS3614J-8 or DS3614N-8

See NS Package J08A or N08A

Order Number DS1611H or DS3611H

Drder Number DS1612H or DS3612H

Drder Number DS1613H or DS3613H

Order Number DS1614H or DS3614H

See NS Package H08C

absolute maximum ratings	S (Note 1)	operating conditions				
Supply Voltage, V _{CC}	7.0V	Supply Voltage (VCC)	MIN	MAX	UNITS	
Input Voltage	5.5V	DS161X	4.5	5.5	V	
Output Voltage (Note 5)	80∨	D\$361X	4.75	5.25	V	
Continuous Output Current	300 mA	Temperature (T _A)				
Continuous Total Power Dissipation (Note 4)	800 mW	DS161X	-55	+125	°C	
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	−65°C to +150°C 300°C	D\$361X	0	+70	°C	

electrical characteristics

DS1611/DS3611, DS1612/DS3612, DS1613/DS3613, DS1614/DS3614 (Notes 2 and 3)

	PARAMETER CONDITIONS			MIN	TYP	MAX	U	
V _{IH}	High Level Input Voltage	(Figure 1)			2			
V ,∟	Low Level Input Voltage	(Figure 2)					0.8	
V ₁	Input Clamp Voltage	V _{CC} = Min, I ₁ = -12 m	A, (Figure 3)			-1.2	-1.5	\vdash
V _{OL}	Low Level Output Voltage			I _{OL} = 100 mA		0.2	0.5	\vdash
-			DS1611, V _{IL} = 0.8V	I _{OL} = 300 mA	 	0.45	0.8	
				I _{OL} = 100 mA		0.2	0.5	1
			DS1612, V _{IH} =2V	I _{OL} = 300 mA		0.45	0.8	
				I _{OL} = 100 mA		0.2	0.5	†
			DS1613, V _{IL} =0.8V	1 _{OL} = 300 mA		0.45	0.8	İ
				I _{OL} = 100 mA		0.2	0.5	
		V _{CC} = Min,(Figure 1)	DS1614, V _{IH} =2V	I _{OL} = 300 mA		0.45	0.8	i -
			D00044 1/ -0.01/	I _{OL} = 100 mA		0.2	0.4	
			DS3611, V _{IL} =0.8V	I _{OL} = 300 mA		0.45	0.7	†
			0.00040 1/ 01/	I _{OL} = 100 mA		0.2	0.4	
			DS3612, V _{IH} =2V	I _{OL} = 300 mA		0.45	0.7	
			0.00040 1/ 0.01/	I _{OL} = 100 mA		0.2	0.4	
			D\$3613, V _{IL} =0.8V	I _{OL} = 300 mA		0.45	0.7	
				I _{OL} = 100 mA		0.2	0.4	
			DS3614, V _{IH} =2V	I _{OL} = 300 mA		0.45	0.7	t
/он	Dutput 8reakdown Voltage		V _{IH} = 2V,	DS1611,		·		\vdash
. Он	OH Datpat orsandown voltage		Ι _{ΟΗ} = 300 μΑ	DS1613	80			l
	ı		$V_{iH} = 2V_i$	DS3611,		 		
		V _{CC} = Min,(Figure 1)	I _{OH} = 100 μA	D\$3613	80			[
		35 11 5	V _{II} = 0.8V,	DS1612,		 		╁
			I _{OH} = 300 μA	DS1614	80			
		V _{IL} = 0.8V,	DS3612,				 	
			I _{OH} = 100 μA	DS3614	80			
1	Input Current at Maximum Input Voltage	V _{CC} = Max, V _I = 5.5V	, (Figure 2)				1	
IH.	High Level Input Current	V _{CC} = Max, V _I = 2.4V	, (Figure 2)		<u> </u>		40	
IL	Low Level Input Current	V _{CC} = Max, V ₁ = 0.4V				-1	-1.6	۱,
ССН	Supply Current		-	D\$1611/				
CON				DS3611			11	١ ١
			V ₁ = 5V	DS1613/				\vdash
		V _{CC} = Max, Outputs		D\$3613			14	'
		High, (Figures 4 and 5)		DS1612/	 			├
		riigii, (riigares 4 and 5)		DS3612			14	'
			V, = 0V	DS1614/				 -
				DS3614		1 1	17	
	Supply Current			DS1611/			-	
CCL	Supply Current			DS3611			69	,
	1		V, = 0V	DS1613/				
		V _{CC} = Max, Dutputs		DS3613			73	
		Low, (Figures 4 and 5)		DS1612/				
				D\$3612			71	
	•		V ₁ = 5V	DS1614/				
				DS3614		1 1	79	г

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

DS1611/DS3611, DS1612/DS3612, DS1613/DS3613, DS1614/DS3614

	PARAMETER	PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS
t _{PD1}	Propagation Delay Time,		DS1611/				
	Low-To-High Level Output		DS3611		130		ns
			DS1612/				
		$I_{O} \approx 200 \text{ mA}, C_{L} = 15 \text{ pF}, R_{L} = 50\Omega,$	DS3612	1	110		ns
		(Figure 6)	DS1613/				
			D\$3613		125		ns
			DS1614/				
			DS3614	}	220		ns
t _{PD0}	Propagation Delay Time,		DS1611/		10-		
	High-To-Low Level Output		DS3611		125		ns
			DS1612/				
		$I_{\Omega} \approx 200 \text{ mA}, C_{1} \approx 15 \text{ pF}, R_{1} = 50\Omega,$	DS3612	}	110		ns
		(Figure 6)	DS1613/		405		
		1	DS3613		125		ns
			DS1614/		450		
			DS3614	1	150	1	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range for the DS3611, DS3612, DS3613, DS3614, and -55°C to +125°C temperature range for the DS1611, DS1612, DS1613 and DS1614. All typical values are for T_A = 25°C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Maximum junction temperature is 150°C. For operating at elevated temperatures, the package must be derated based on a thermal resistance, θ_{JA} , of 110°C/W.

Note 5: Maximum voltage to be applied to either output in the "OFF" state.

Note 6: Delay is measured with a 50Ω load to 10V, 15 pF load capacitance, measured from 1.5V input to 50% point on output.

schematic diagrams (each driver)

schematic diagrams (con't)

DS3614 Dual NOR Peripheral Driver

test circuits

	INPUT	OTHER	DU	ITPUT
CIRCUIT	UNDER TEST	INPUT	APPLY	MEASURE
D\$3611	V _{IH} V _{IL}	V _{IH} V _{CC}	I _{OH}	V _{OH} V _{OL}
D\$3612	V _{IE}	V _{IH} V _{CC}	lor lon	V _{OL} V _{OH}
DS3613	V _{IH} V _{IL}	GND V _{IL}	I _{OH}	V _{OH} V _{OL}
D\$3614	V _{1H} V _{1C}	GND V _{IL}	I _{OL}	V _{OL} V _{OH}

NOTE: Each input is tested separately.

FIGURE 1. VIH, VIL, VOH, VOL

NOTES CIRCUIT YOUR TEST OFFIN

Note 1: teen input is usued supercury.

Note 2: When testing DS3613 and DS3614 input not under test is grounded. For all other circuits it is at 4.5V.

FIGURE 2. II, IIH

FIGURE 3. VI, IIL

Book and an and simultaneous

FIGURE 4. ICCH, ICCL for AND, NAND Circuits

FIGURE 5. ICCH, ICCL for OR, NOR Circuits

test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1.0 MHz, $Z_{OUT} \approx 50\Omega$

FIGURE 6. Switching Times of Complete Drivers

National Semiconductor

Peripheral/Power Drivers

DS1631/DS3631, DS1632/DS3632, DS1633/DS3633, DS1634/DS3634 CMOS dual peripheral drivers

general description

The DS1631 series of dual peripheral drivers was designed to be a universal set of interface components for CMOS circuits.

Each circuit has CMOS compatible inputs with thresholds that track as a function of V_{CC} (approximately $1/2\ V_{CC}$). The inputs are PNPs providing the high impedance necessary for interfacing with CMOS.

Outputs have high voltage capability, minimum breakdown voltage is 56V at $250\mu A$.

The outputs are Darlington connected transistors. This allows high current operation (300 mA max) at low internal $V_{\rm CC}$ current levels since base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply.

Typical V_{CC} = 5V power is 28 mW with both outputs ON. V_{CC} operating range is 4.5V to 15V.

The circuit also features output transistor protection if the V_{CC} supply is lost by forcing the output into the

high impedance OFF state with the same breakdown levels as when $V_{\rm CC}$ was applied.

Pin-outs are the same as the respective logic functions found in the following popular series of circuits: DS75451, DS75461, DS3611. This feature allows direct conversion of present systems to the MM74C CMOS family and DS1631 series circuits with great power savings.

The DS 1631 series is also TTL/LS compatible at $V_{\rm CC} = 5V$

features

- CMOS compatible inputs
- TTL/DTL compatible inputs
- High impedance inputs
- PNP's
- High output voltage breakdown
- 56V min
- High output current capability
- 300 mA max
- Same pin-outs and logic functions as DS75451, DS75461 and DS3611 series circuits
- Low V_{CC} power dissipation (28 mW both outputs "ON" at 5V)

connection diagrams (Dual-In-Line and Metal Can Package)

Order Number DS1631J-8, DS3631J-8 or DS3631N-8

Order Number DS1632J-8, DS3632J-8 or DS3632N-8

Order Number DS1633J-8, DS3633J-8 or DS3633N-8

Order Number DS1634J-8, DS3634J-8 or DS3634N-8

(Pin 4 is electrically connected to the case)
Order Number
DS1631H or DS3631H

 (Pin 4 is electrically connected to the case.)
 (Pin 4 is electrically connected to the case.)

 Order Number
 DS1632H or DS3632H

 See NS Package H08C

(Pun 4 is electrically connected to the case)
Order Number
DS1633H or DS3633H

(Pin 4 is electrically connected to the case)
Order Number
DS1634H or DS3634H

absolute maximum ratings (Note 1)

		,	JP 5. .	g 66		MIN	MA	X UNIT
Supply Volta	age	16V	Supply \	Voltage, V _{CC}				A 0
oltage at In		-0.3V to V _{CC} +0.3V	DS16	631/DS1632/		4.5	15	V
output Volta torage Temi	age sperature Range	56V −65°C to +150°C		633/DS1634				
	rature (Soldering, 10 seconds)			631/DS3632/ 633/DS3634		4.75	5 15	V
				nture, T _A 531/DS1632/ 533/DS1634		-55	+125	5 °C
electric	cal characterist	Cics (Notes 2 and 3	DS36	531/DS3632/ 533/DS3634		0	+70	°C
	PARAMETER		CONDITIONS		MIN	ТҮР	MAX	UNITS
ALL CI	IRCUITS							
VIН	Logical "1" Input Voltage		V _{CC} = 5V		3.5	2.5		V
	. 1	(Figure 1)	V _{CC} = 10V		8.0	5		V
			V _{CC} = 15V		12.5	7.5		V
VIL	Logical "0" Input Voltage		V _{CC} = 5V		·'	2.5	1.5	٧
	ļ	(Figure 1)	V _{CC} = 10V			5.5	2.0	V
			V _{CC} = 15V		<u> </u>	7.5	2.5	٧
ЧН	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V	I, (Figure 2)		l'	0.1	10	μА
IIL.	Logical "0" Input Current	V _{IN} = 0.4V, (Figure 3)	V _{CC} = 5V			-50	-120	μА
		V [N = 0.4 v, 17 19675 5,	V _{CC} = 15V			-200	-360	μА
voH	Output Breakdown Voltage	V _{CC} = 15V, I _{OH} = 250	μΑ, (Figure 1)		56	65		V
VOL	Output Low Voltage	V _{CC} = Min, (Figure 1),	100 4			3.05		.,
	I	DS1631, DS1632,	IOL = 100 mA			0.85	1.1	V
	I	DS1633, DS1634	IOL = 300 mA		ı!	1.1	1,4	V
	1	VCC = Min, (Figure 1),	- 100 A		,			
	1	DS3631, DS3632,	I _{OL} = 100 mA			0.85	1.0	<u>v</u>
		DS3633, DS3634	10F = 300 mV		11		1.3	v
DS1631	1/D\$3631							
¹ CC(0)	Supply Currents	V 0V (Simira 4)	V _{CC} = 5V	Output Low		7	11	mA
		V _{IN} = 0V, (Figure 4)	V _{CC} = 15V	Both Drivers		14	20	mA
¹ CC(1)		(Figure 4)	V _{CC} = 5V, V _{IN} = 5V	Output High		2	3	mA
			V _{CC} = 15V, V _{IN} = 15V	Both Drivers		7.5	10	mA
tPD1	Propagation to "1"	V _{CC} = 5V, T _A = 25°C, ((Figure 5)	$C_L = 15 pF, R_L = 50\Omega, V_I$	_ = 10V,		200		ns
tPD0	Propagation to "0"	V _{CC} = 5V, T _A = 25°C, ((Figure 5)	$C_L = 15 pF, R_L = 50\Omega, V_L$	L = 10V,		150		ns
D\$1632							1	
	Supply Currents		V _{CC} = 5V, V _{IN} = 5V	1		8	12	
·00(0)	Supply Surrents	(Figure 4)	V _{CC} = 15V, V _{IN} = 15V	Output Low	$\overline{}$	18	23	mA mA
ICC(1)			V _{CC} = 5V	++	\vdash	2.5	3.5	mA
.001.,		V _{IN} = 0V, (Figure 4)	V _{CC} = 15V	Output High		9	14	mA mA
^t PD1	Propagation to "1"	V _{CC} = 5V, T _A = 25°C, ((Figure 5)	$C_L = 15 \text{ pF}, R_L = 50\Omega, V_L$	= 10V,		150	-	ns
tPD0	Propagation to "0"		C _L = 15 pF, R _L = 50Ω, V _L	_ = 10V,		150		ns
D\$1633	3/D\$3633	(Figure 5)				1		
	Supply Currents		V _{CC} = 5V	T		7.5	12	mA
.00,2,	00000	V _{IN} = 0V, (Figure 4)	V _{CC} = 15V	Output Low		16	23	mA
ICC(1)		·	V _{CC} = 5V, V _{IN} = 5V	+		2	4	mA
,		(Figure 4)	V _{CC} = 15V, V _{IN} = 15V	Output High		7.2	15	mA
tPD1	Propagation to "1"	V _{CC} = 5V T _A = 25°C, ((Figure 5)	C _L = 15 pF, R _L = 50Ω, V _L	L = 10V,		200		ns
tPD0	Propagation to "0"		CL = 15 pF, R _L = 50Ω, V _I			150	-+	ns

operating conditions

electrical characteristics (con't)

PAR	PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS		
DS1634/DS3	3634							
I _{CC(0)} Su	ipply Currents	(5: 4)	V _{CC} = 5V, V _{IN} = 5V	VCC = 5V, VIN = 5V		7.5	12	mΑ
,,	35(0)	(Figure 4)	$\frac{V_{CC} = 15V, V_{IN} = 15V}{V_{CC} = 15V, V_{IN} = 15V}$ Output Low	Output Low		18	23	mA
ICC(1)			V _{CC} = 5V	0		3	5	mA
55(1)	$V_{IN} = 0V$, (Figure 4) $V_{CC} = 15V$ Output High		Output High		11	18	mA	
tPD1 Pr	opagation to "1"	$V_{CC} = 5V, T_A = 25^{\circ}C$ (Figure 5)	V_{CC} = 5V, T_A = 25°C, C_L = 15 pF, R_L = 50 Ω , V_L = 10V, (Figure 5)			150		ns
tPD0 Pr	ropagation to "0"	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, (Figure 5)	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15 pF$, $R_L = 50\Omega$, $V_L = 10V$, (Figure 5)			150		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS1631, DS1632, DS1633 and

DS1634 and across the 0° C to $\pm 70^{\circ}$ C range for the DS3631, DS3632, DS3633 and DS3634. All typical values are for $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

test circuits

CIRCUIT	INPUT UNDER	OTHER	OUT	TPUT
CINCOII	TEST	INPUT	APPLY	MEASURE
DS3631	VIH VIL	VIH VCC	IOH IOL	VOH VOL
D\$3632	VIH VIL	V _{IH} VCC	lor loh	VOL VOH
DS3633	V _{IH} V _{IL}	GND VIL	IOH IOL	V _{OL}
D\$3634	V _I H V _I L	GND VIL	IOH	Vol Voh

Note: Each input is tested separately

FIGURE 1. VIH, VIL, VOH, VOL

FIGURE 2. ItH

test circuits (con't) and switching time waveforms

V, OFFN

VCC

OPEN

V, OFFN

A

B

TOTAL

TO

Both gates are tested simultaneously

Note A. Each input is tested separately. Note B. When testing DS1633 and DS1634 input not under test is grounded. For all other circuits it is at V_{CC} .

FIGURE 3. I_{IL}

FIGURE 4. ICC

Note 1: The pulse generator has the following characteristics: PRR = 500 kHz, $Z_{OUT}\approx50\Omega$. Note 2: C_L includes probe and jig capacitance.

FIGURE 5. Switching Times.

Peripheral/Power Drivers

DS3654 Printer Solenoid Driver

General Description

The DS3654 is a serial-to-parallel 10-bit shift register with a clock and data input, a data output from the tenth bit, and 10 open-collector clamped relay driver outputs suitable for driving printer solenoids.

Timing for the circuit is shown in *Figure 1*. Data input is sampled on the positive clock edge. Data output changes on the negative clock edge, and is always active. Enable

transfers data from the shift register to the open-collector outputs. Internal circuitry inhibits output enable for power supply voltage less than 6V.

Each output sinks 250 mA and is internally clamped to ground at 50V to dissipate energy stored in inductive loads.

Connection Diagram

Order Number DS3654J or DS3654N See NS Package J16A or N16A

Pin Descriptions

Pin No.	Function			
1	Output Enable			
2	Output 6			
3	Output 7			
4	Output 8			
5	Output 9			
6	Output 10			
7	Data Output			
8	Ground			
9	Clock Input			
10	Data Input			
11	Output 1			
12	Output 2			
13	Output 3			
14	Output 4			
15	Output 5			
16	V _{CC}			

Logic Diagram

Absolute Maximum Ratings (Note 1)

Supply Voltage, VCC

Output Supply, Vp-p

Duty Cycle < 5%

Storage Temperature Range

Output Current (Single Output)

Average Power Dissipation, TA = 70°C

Peak Power Dissipation t < 10 ms,

Input Voltage

Ground Current

9.5V max -0.5V min. 9.5V max 45V max -65°C to +150°C Lead Temperature (Soldering, 10 seconds) 300°C 0.4A

Operating Conditions MAX UNITS 7.5 9.5 ٧ Supply Voltage (VCC) °C Temperature (TA) +70

Output Supply (Vp-p)

Electrical Characteristics (Notes 2, 3 and 4) Vp-p = 30V unless otherwise noted

4.0A

675 mW Max

4.5W Max

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage		2.6			V
Logical ''0'' Input Voltage				0.8	V
Logical ''1'' Output Voltage Clamp	I _{CLAMP} = 0.3A, V _{EN} = 0V	45	50	65	V
Logical "1" Output Current	V _{OH} = 40V, V _{EN} = 0			1.0	mΑ
Logical "O" Output Voltage	I _{OL} = 250 mA, V _{EN} = 2.6V			1.6	٧
Logical "1" Input Current					
Clock	$T_A = 70^{\circ}C$, $V_{CL} = 2.6V$	0.2	0.33		mΑ
Enable	T _A = 70°C, V _{EN} = 2.6V	0 2	0.33		mΑ
Data	$T_A = 70^{\circ} C$, $V_D = 2.6 V$	0.3	0.57		mA
Clock	$T_A = 0^{\circ}C, V_{CL} = 2.6V$		0.33	0.5	mΑ
Enable	$T_A = 0^{\circ} C$, $V_{EN} = 2.6 V$		0.33	0.5	mΑ
Data	$T_A = 0^{\circ}C, V_D = 2.6V$		0.57	0.75	mA
Logical "0" Input Current					
Clock	T _A = 70°C, V _{CL} = 1V		125		μΑ
Enable	$T_A = 70^{\circ} C, V_{EN} = 1V$	1	125		μА
Data	$T_A = 70^{\circ} C, V_D = 1V$		220		μΑ
Input Pull-Down Resistance					
Clock	$T_A = 25^{\circ}C$, $V_{CL} < V_{CC}$		8		kΩ
Enable	$T_A = 25^{\circ}C$, $V_{EN} < V_{CC}$		8		kΩ
Data	$T_A = 25^{\circ}C$, $V_D < V_{CC}$		4.5		kΩ
Supply Current (I _{CC})					
Outputs Disabled	$T_A \ge 25^{\circ} C$, $V_{EN} = 0$, $V_{DO} = 0$. $V_{CC} = 9.5V$		27	40	mA
Outputs Enabled	$T_A \ge 25^{\circ}C$, $V_{EN} = 2.6$, $I_{OL} = 250 \text{ mA}$ Each Bit		55	70	mA
Data Output Low (VDOL)	VD = 0, IOL = 0		0.01	0.5	V
Data Output High (VDOH)	$V_D = 2.6$, $I_{OH} = -0.75 \text{ mA}$	2.6	3.4		V
Data Output Pull-Down Resistance	V _D = 0, V _{DO} = 1V		14		kΩ

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the 0°C to +70°C temperature range and the 7 5V to 9.5V power supply range. All typical values given are for V_{CC} = 8.5V and T_A = 25° C.

Note 3: All currents into device pins are positive, all currents out of device pins are negative. All voltages are referenced to ground unless otherwise

Note 4: Only one output at a time should be shorted.

Switching Characteristics 0° C to +70°C, $T_{A} = 25^{\circ}$ C, nominal power supplies unless otherwise noted

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Clk, Data and Enable Inputs	(Figure 1)				
tFC				2.0	μs
tRC	${ m t_{BIT}} \geq$ 10 μ s			2.0	μs
^t CLK		2			μ s
[†] CLK		3.5			μs
†HOLD				1.0	μ s
tSET-UP				1.0	μs
^t RE, ^t RDIN				1.0	μs
tFE, tFD IN				5.0	μs
Output 110	Vp-p = 20V				
^t RO	$R_L = 100\Omega$, $C_L < 100 pF$		1.2		μs
tFO	$R_L = 100\Omega$, $C_L < 100 pF$		1.2		μs
^t PDEH			3.5		μs
tPDEL .			3.0		μs
Data Output					
tPDH, tPDL	RL = 5 k Ω , CL \leq 10 pF		0.8	2.5	μs
^t RD		1	0.4		μs
tFD		:	0.4		μs
Clock to Enable Delay					
tCE		2 t _{BIT}			μs
Enable to Clock Delay		tBIT			μs

Switching Time Waveforms

Definition of Terms

Vp-p: Output power supply voltage. The return for open-collector relay driver outputs.

tBIT: Period of the incoming clock.

 $V_{\mbox{CLK}}$: The voltage at the clock input.

 t_{CLK} : The portion of t_{BIT} when $V_{CLK} \ge 2.6 V$.

 $\overline{\text{tCLK}}\colon$ The portion of tBIT when $\text{VCLK} \leq 0.8\text{V}$

tSET-UP: The time prior to the end of $\overline{\text{tCLK}}$ required to insure valid data at the shift register input for subsequent clock transitions.

 $\textbf{tHOLD:}\ \ \text{The time following the start of tCLK}\ \ \text{required}$ to transfer data within the shift register.

National Semiconductor

Peripheral/Power Drivers

DS1686/DS3686 dual positive voltage relay driver

general description

The DS1686/DS3686 is a high voltage/current positive voltage relay driver having many features not available in present relay drivers.

PNP inputs provide both TTL/LS compatibility and high input impedance for low input loading.

Output leakage is specified over temperature at an output voltage of 54V. Minimum output breakdown (aclatch breakdown) is specified over temperature at 5 mA. This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which allow high current operation at low internal V_{CC}

current levels—base drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical VCC power with both outputs "ON" is 90 mW.

The circuit also features output transistor protection if the V_{CC} supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when V_{CC} was applied.

features

- TTL/LS CMOS compatible inputs
- High impedance inputs (PNP's).
- High output voltage breakdown (65V typ)
- High output current capability (300 mA max)
- Internal protection circuit eliminates need for output protection diode
- Output breakdown protection if VCC supply is lost
- Low VCC power dissipation (90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use intelephone relay applications

connection diagrams

Metal Can Package

Pin 4 is in electrical contact with the case

Drder Number DS1686H or DS3686H See NS Package H08C

schematic diagram

Dual-In-Line Package

Drder Number DS1686J-8, DS3686J-8 or DS3686N-8 See NS Package J08A or N08A truth table

_

T dortive region 7(b) 7(
В	OUTPUT X							
0	1							
0	1							
1	1							
1	0							
	B 0							

Positive logic: AR = X

Logic "0" output "ON" Logic "1" output "OFF"

operating conditions absolute maximum ratings (Note 1) MAX UNITS MIN Supply Voltage, VCC Supply Voltage 5.5 DS1686 4.5 15∨ Input Voltage V D\$3686 4.75 5.25 56V Output Voltage Temperature, TA Storage Temperature Range -65°C to +150°C °c Lead Temperature (Soldering, 10 seconds) 300°C DS1686 -55 +125 DS3686 0 +70

electrical characteristics (Notes 2 and 3)

PARAMETER			CONDITIONS		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage				2.0			V
IIН	Logical "1" Input Current	V _{CC} = Max, V _{IN} = 5.5V			0.01	40	μА	
VIL	Logical ''0'' Input Voltage						0.8	V
IIL	Logical "0" Input Current	V _{CC} = Max,	V _{IN} = 0.4	V		-150	-250	μΑ
V _{CD}	Input Clamp Voltage	V _{CC} = 5V, I	CLAMP =	$-12 \text{ mA, T}_{A} = 25^{\circ} \text{C}$		-1.0	-1.5	V
Voн	Output Breakdown	V _{CC} = Max, V _{IN} = 0V, I _{OUT} = 5 mx		56	65		V	
ЮН	Output Leakage	V _{CC} = Max, V _{IN} = 0V, V _{OUT} = 54V			0.5	250	μΑ	
VOL	Output ON Voltage		501000	I _{OL} = 100 mA		0.85	1.1	V
.02		V _{CC} = Min,	D\$1686	I _{OL} = 300 mA		1.0	1.3	V
		V _{IN} = 2V	Deacac	IOL = 100 mA		0.85	1.0	٧
			DS3686	I _O L = 300 mA		1.0	1.2	V
ICC(1)	Supply Current (Both Drivers)	VCC = Max	V _{1N} = 0V	, Outputs Open		2	4	mA
ICC(0)	Supply Current (Both Drivers)	V _{CC} = Max	Λ ¹ Μ = 3Λ	, Outputs Open		18	28	mA
tPD0	Propagation Delay to a Logical "0" (Output Turn ON)	$C_L = 15 \text{ pF}, V_L = 10V, R_L = 50\Omega,$ $T_A = 25^{\circ}C, V_{CC} = 5V$			50		ns	
tPD1	Propagation Delay to a Logical "1" (Output Turn OFF)	$C_L = 15 \text{ pF}, V_L = 10V, R_L = 50\Omega,$ $T_A = 25^{\circ}C, V_{CC} = 5V$			1		μς	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1686 and across the 0° C to $+70^{\circ}$ C range for the DS3686. All typicals are given for V_{CC} = 5V and T_A = 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 100 kHz, 50% duty cycle, $Z_{OUT}\cong 50\Omega$, $t_T=t_f\leq 10$ ns.

Note 2: C_L includes probe and jig capacitance.

National Semiconductor

Peripheral/Power Drivers

DS1687/DS3687 dual negative voltage relay driver

general description

The DS1687/DS3687 is a high voltage/current negative voltage relay driver having many features not available in present relay drivers.

PNP inputs provide both TTL/DTL compatibility and high input impedance for low input loading.

Output leakage is specified over temperature at an output voltage of -54V. Minimum output breakdown (ac/ latch breakdown) is specified over temperature at -5 mA. This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which

allow high current operation at low internal V_{CC} current levels—hase drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical V_{CC} power with both outputs "ON" is 90 mW.

The circuit also features output transistor protection if the V_{CC} supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when V_{CC} was applied.

features

- TTL/LS/CMOS compatible inputs
- High impedance inputs (PNP's)
- High output voltage breakdown (65V typ)
- High output current capability (300 mA max)
- Internal protection circuit eliminates need for output protection diode
- Output breakdown protection if V_{CC} supply is lost
- Low V_{CC} power dissipation (90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications

connection diagrams

Metal Can Package

Pin 4 is in electrical contact with the case

Order Number DS1687H or DS3687H See NS Package H08C

schematic diagram

Drder Number DS1687J-8, DS3687J-8 or DS3687N-8 See NS Package J08A or N08A

truth table

Positive logic: $\overline{AB} = X$

Α	В	OUTPUT X
0	0	1
1	0	1
0	1	1
1	1	0

Logic "0" output "ON" Logic "1" output "OFF"

absolute maximum rati	ngs (Note 1)	operating conditions						
			MIN	MAX	UNITS			
Supply Voltage Input Voltage Output Voltage	7V 15∨ 56∨	Supply Voltage, V _{CC} DS1687 DS3687	4.5 4.75	5.5 5.25	V V			
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	–65°C to +150°C 300°C	Temperature, T _A D S 1687 DS3687	-55 0	+125 +70	°c °c			

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDIT	IONS	MIN	TYP	MAX	UNITS
VIH	Logical '1" Input Voltage				2.0			
Iн	Logical "1" Input Current	V _{CC} = Max,	V _{IN} = 5.5	V		1.0		μΑ
VIL	Logical "0" Input Voltage						0.8	V
	Logical "0" Input Current	VCC = Max,	V _{IN} = 0.4	V		-150	-250	μΑ
VCD	Input Clamp Voltage	VCC = 5V, I	CLAMP =	-12 mA, T _A = 25°C		-1.0	-1.5	V
VOH	Output Breakdown	VCC = Max,	VIN = 0V	, I _{OUT} = -5 mA	-56	-65		V
- IOH	Output Leakage	VCC = Max	VIN = 0V	, V _{OUT} = -54V		-0.5	-250	μΑ
VOL	Output ON Voltage		204007	IOL = -100 mA		-0.9	-1.1	V
·OL	3	VCC = Min,	DS1687	IOL = -300 mA		-1.0	-1.3	V
		V _I N = 2V	D00007	I _{OL} = -100 mA		-0.9	-1.0	V
			DS3687	IOL = -300 mA		-1.0	-1.2	V
ICC(1)	Supply Current (Both Drivers)	VCC = Max	VIN = 0V	, Outputs Open		2	4	mA
1CC(0)	Supply Current (Both Drivers)	VCC = Max	, V _{IN} = 3V	, Outputs Open		18	28	mA
tPD(ON)	Propagation Delay to a Logical "0" (Output Turn ON)	C _L = 15 pF T _A = 25°C,)V, RL = 50Ω,		50		ns
tPD(OFF	Propagation Delay to a Logical ''1'' (Output Turn OFF)	C _L = 15 pF T _A = 25°C,)V, RL = 50Ω,		1.0		μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1687 and across the 0° C to $+70^{\circ}$ C range for the DS3687. All typicals are given for V_{CC} = 5V and T_A = 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, 50% duty cycle, $Z_{OUT}\cong 50\Omega$, $t_f=t_f\leq 10$ ns.

Note 2: CL includes probe and jig capacitance.

National Semiconductor

Peripheral/Power Drivers

DS55450/DS75450 series dual peripheral drivers

general description

The DS55450/DS75450 series of dual peripheral drivers are a family of versatile devices designed for use in systems that use TTL or LS logic. Typical application include high speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, bus drivers and memory drivers.

The DS55450/DS75450 series are unique general purpose devices each featuring two standard Series 54/74 TTL gates and two uncommitted, high current, high voltage NPN transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The DS55451/DS75451, DS55452/DS75452, DS55453/ DS75453 and DS55454/DS75454 are dual peripheral AND, NAND, OR and NOR drivers, respectively, (positive logic) with the output of the logic gates internally connected to the bases of the NPN output transistors.

features

- 300 mA output current capability
- High voltage outputs
- No output latch-up at 20V
- High speed switching
- Choice of logic function
- TTL or LS compatible diode-clamped inputs
- Standard supply voltages
- Replaces TI "A" and "B" series

connection diagrams (Dual-In-Line and Metal Can Packages)

Order Number DS55450J, DS75450J, or DS75450N See NS Package J14A or N14A

Order Number DS55451J-8, DS75451J-8 or DS75451N-8

Order Number DS55452J-8, DS75452J-8 or DS75452N-8

0S55452J-8, Order Number DS55453J-8, 0S75452N-8 DS75453J-8 or DS75453N-8 See NS Package J08A or N08A

Order Number DS55454J-8, DS75454J-8 or DS75454N-8

Pin 4 is in electrical contact with the case Order Number DS55451H or DS75451H

Fin 4 is in electrical contact with the case.
Order Number
DS55452H or DS75452H

com. Pin 4 is in electrical consist with the case Order Number 52H DS55453H or DS75453H See NS Package H08C

Pin 4 is in electrical contact with the case
Order Number
DS55454H or DS75454H

absolute maximum ratings	S (Note 1)	operating conditi	i ons (Note	7)	
Supply Voltage, (V _{CC}) (Note 2)	7.0V		MIN	MAX	UNITS
Input Voltage	5.5V				
Inter-emitter Voltage (Note 3)	5.5V	Supply Voltage,(VCC)			
V _{CC} -to-Substrate Voltage		D\$5545X	4.5	5.5	V
DS55450/DS75450	35∨	DS7545X	4.75	5.25	V
Collector-to-Substrate Voltage		Temperature, (T_{Δ})			
DS55450/DS75450	35∨	DS5545X	-55	+125	°C
Collector-Base Voltage		DS7545X	0	+70	°C
DS55450/DS75450	35∨				
Collector-Emitter Voltage (Note 4)					
DS55450/DS75450	30∨				
Emitter-Base Voltage					
DS55450/DS75450	5.0∨				
Output Voltage (Note 5)					
DS55451/DS75451, DS55452/DS75452,	30∨				
DS55453/DS75453, DS55454/DS75454					
Collector Current (Note 6)					
DS55450/DS75450	300 mA				
Output Current (Note 6)					
DS55451/DS75451, DS55452/DS75452,	300 mA				
DS55453/DS75453, DS55454/DS75454					
Continuous Total Dissipation	800 mW				
Storage Temperature Range	-65°C to +150°C				
Lead Temperature (Soldering, 10 seconds)	260°C				

electrical characteristics DS55450/DS75450 (Notes 8 and 9)

	PARAMETER		CONDITIONS		MIN	ТҮР	MAX	UNITS
TTL GATE	S							
V _{IH}	High Level Input Voltage	(Figure 1)			2			V
V _{1L}	Low Level Input Voltage	(Figure 2)					0.8	V
V,	Input Clamp Voltage	V _{CC} = Min, I ₁ = -12 m	A, (Figure 3)				-1.5	V
VOH	High Level Output Voltage		V, I _{OH} = -400μA, (Figur	e 2)	2.4	3.3		
Vol	Low Level Output Voltage	V _{CC} = Min, V _{IH} = 2V,	I _{OL} = 16 mA	D S5 5450		0.22	0.5	V
. 02		(Figure 1)		DS75450		0.22	0.4	V
I _I	Input Current at Maximum Input	V _{CC} = Max, V _I = 5.5V	(, (Figure 4)	Input A			1	mA
	Voltage			Input G			2	mA
I _{IH}	High Level Input Current	$V_{CC} = Max$, $V_{I} = 2.4$	(Figure 4)	Input A			40 B0	μΑ
				Input G				 '
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4\	I, (Figure 3)	Input A			-1.6 -3.2	mA mA
				Input G			-55	
los	Short Circuit Output Current	V _{CC} = Max, (Figure 5)			-1B			mA.
Іссн	Supply Current	$V_{CC} = Max$, $V_1 = 0V$, Outputs High, (Figure 6)				6	4	mA
Iccl	Supply Current	V _{CC} = Max, V _I = 5V,	V _{CC} = Max, V ₁ = 5V, Outputs Low, (Figure 6)				11	mΑ
OUTPUT	TRANSISTORS						,	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100\mu A, I_{E} = 0$			35			V
V _{(BR)CER}	Collector-Emitter Breakdown Voltage	$I_C = 100\mu A$, $R_{BE} = 500\Omega$			30			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 100μA, I _C = 0			5			V
h _{FE}	Static Forward Current Transfer			I _C = 100 mA	25			V
	Ratio		$I_{C} = 300 \text{ mA}$	I _C = 300 mA	30		<u> </u>	V
					10	<u> </u>	ļ	V V
		V _{CE} = 3V, (Note 11)		I _C = 300 mA	15 25	ļ	 -	
		, CE TI, III	DS75450, T _A = +25°C	I _C = 100 mA	30	 	<u> </u>	T V
				I _C = 100 mA	20	Ī		V
		•	DS75450, T _A = 0°C	I _C = 300 mA	25		<u> </u>	٧
V _{BE}	Base Emitter Voltage		DS55450	I _B = 10 mA, I _C = 100 mA		0.85	1.2	
50		(Note 11)	17505450	$I_B = 30 \text{ mA}, I_C = 300 \text{ mA}$		1.05	1.4	V
		(Note 11)	DS75450	I _B = 10 mA, I _C = 100 mA		0.85 1.05	1.2	\ \ \ \ \ \ \
				I _B = 30 mA, I _C = 300 mA	-	∔ -	+	T v
V _{CE(SAT)}			DS55450	I _B = 10 mA, I _C = 100 mA	 	0.25	0.5	+ v
	Voltage	(Note 11)		I _B = 30 mA, I _C = 300 mA	 	0.5	0.4	+ ·
		DS75450		I _B = 30 mA, I _C = 300 mA	-	0.5	0.7	T V

electrical characteristics (con't)

DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 (Notes 8 and 9)

	PARAMETER			CONDITIONS		MIN	TYP	MAX	UNITS
VIH	High-Level Input Voltage					2			V
V _{+L}	Low-Level Input Voltage	(Figure 7)						0.8	V
V _i	Input Clamp Voltage	V _{CC} ≃ Min,	I ₁ = -12 mA					-1.5	V
Voι	Low-Level Output Voltage				DS55451, DS55453		0.25	0.5	V
			V ₁₁ = 0.8V	1 _{OL} = 100 mA	DS75451, DS75453		0.25	0.4	V
			V _{1L} = 0.8V	1 200 A	DS55451, DS55453		0,5	0.8	V
		V _{CC} = Min,		I _{OL} = 300 mA	DS75451, DS75453		0.5	0.7	V
		(Figure 7)		1 - 100 m A	DS55452, DS55454		0.25	0.5	V
			V _{IH} = 2V	I _{OL} = 100 mA	DS75452, DS75454		0.25	0.4	V
			VIH - 2V	I _{O1} = 300 mA	DS55452, DS55454		0.5	8.0	V
				TOL SOUTHA	DS75452, DS75454		0.5	0.7	V
I_{OH}	High-Level Output Current				DS55451, DS55453			300	μΑ
		V _{CC} = Min,	A ^{OH} = 30A	V _{IH} 2V	DS75451, DS75453			100	μΑ
		(Figure 7)	V _{OH} = 30V	V ₁₁ = 0.8V	DS55452, DS55454			300	μΑ
				V _{IL} - 0.80	DS75452, DS75454			100	μΑ
I _L	Input Current at Maximum Input Voltage	V _{CC} = Max,	V ₁ = 5.5V, (F	igure 9)	-			1	mΑ
L _H	High-Level Input Current	V _{CC} = Max,	V, = 2.4V, (F	igure 9)				40	μА
I _{1L}	Low-Level Input Current	V _{CC} = Max,	V ₁ = 0.4V, /F	igure 8)			-1	-1.6	mA
I _{CCH}	Supply Current, Outputs High		V ₁ = 5V		DS55451/DS75451	-	7	11	mA
		V _{CC} = Max,	V1 = 0V		DS55452/DS75452		11	14	mA
		(Figure 10)	V ₁ = 5V		DS55453/DS75453		8	11	mA
			V = 0V		DS55454/DS75454		13	17	mA
Icci	Supply Current, Outputs Low		V ₁ = 0V		DS55451/DS75451	-	52	65	mΑ
		V _{CC} ≈ Max,	V, = 5V		DS55452/DS75452		56	71	mA
		(Figure 10)	V ₁ = 0V		DS55453/DS75453		54	68	mA
			V ₁ = 5V		DS55454/DS75454		61	79	mA

switching characteristics

DS55450/DS75450 ($V_{CC} = 5V, T_A = 25^{\circ}C$)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-To High Level Output	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			12	22	ns
		OL 13 pr	Combined, (Figure 14)		20	30	ns
t _{PHL}	Propagation Delay Time,		$R_L = 400\Omega$, TTL Gates, (Figure 12)		8	15	ns
	High-To Low Level Output	C _L = 15 pF	$R_L = 50\Omega$, $I_C \approx 200$ mA, Gates and Transistors Combined, (Figure 14)		20	30	ns
t _{TLH}	Transition Time, Low-To-High Level Output	C _L = 15 pF, R _L (Figure 14)	= 50 Ω , I $_{\rm C} \approx$ 200 mA, Gates and Transistors Combined,		7	12	ns
t _{THL}	Transition Time, High-To-Low Level Output	C _L = 15 pF, R _L (Figure 14)	= 50 $\Omega_{\rm r}$ I $_{\rm C} \approx 200$ mA, Gates and Transistors Combined,		9	15	ns
V _{OH}	High-Level Output Voltage After Switching	V _S = 20V, I _C ≈	300 mA, R _{BE} = 500Ω, (Figure 15)	V _s -6.5			m∨
t _D	Delay Time		$I_{1(1)} = 20 \text{ mA}, I_B = -40 \text{ mA}, V_{BE(OFF)} = 1V,$ = 50Ω , (Figure 13), (Note 12)		8	15	ns
t _R	Rise Time		$t_{1(1)} = 20 \text{ mA}$, $t_B = -40 \text{ mA}$, $V_{BE(OFF)} = -1V$, = 50Ω , (Figure 13), (Note 12)		12	20	ns
t _S	Storage Time		$s_{(1)} = 20 \text{ mA}, \ l_B = -40 \text{ mA}, \ V_{BE(OFF)} = -1V,$ = 50Ω , (Figure 13), (Note 12)		7	15	ns
t _F	Fall Time		$t_{S(1)} = 20 \text{ mA}, \ t_B = -40 \text{ mA}, \ V_{BE(OFF)} = -1V,$ = 50 Ω , (Figure 13), (Note 12)		6	15	ns

switching characteristics (con't)

DS55451/DS75451, DS55452/DS75452, DS55453/DS75453, DS55454/DS75454 ($V_{CC} = 5V$, $T_A = 25^{\circ}C$)

PARAMETER		CONDITIC	CONDITIONS			MAX	UNITS
t _{PLH}	Propagation Delay Time, Low To High		DS55451 DS75451		18	25	ns
PLH	Level Output	C ₁ 15 pF, R ₁ 50Ω,	DS55452 DS75452		26	35	ns
		I _O ≈ 200 mA (Figure 14)	DS55453 DS75453		18	25	ns
			DS55454 DS75454		27	35	ns
tpHL	Propagation Delay Time, High-To Low		DS55451 DS75451		18	25	ns
THE	Level Output C	C ₁ = 15 pF R ₁ = 50Ω, I _D ≈ 200 mA (Figure 14)	DS55452 DS75452		24	35	ns
			DS55453 DS75453		16	25	ns
		_	DS55454 DS75454		24	35	ns
t _{TLH}	Transition Time, Low-To High Level Output	C _L -15 pF R ₂ 50Ω, I _O	≈ 200 mA (Figure 14)		5	8	ns
t _{THL}	Transition Time, High To Low Level Output	C_L = 15 pF, R_L = 50 Ω , I_Q \approx 200 mA (Figure 14)			7	12	ns
V _{он}	High-Level Output Voltage After Switching	V _S = 20V I _D ≈ 300 mA, f	Figure 15)	V _s -6.5			mV

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

- Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.
- Note 3: The voltage between two emitters of a multiple-emitter transistor.
- Note 4: Value applies when the base-emitter resistance (RBE) is equal to or less than 500Ω .
- Note 5: The maximum voltage which should be applied to any output when it is in the "OFF" state.
- Note 6: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
- Note 7: For the DS55450/DS75450 only, the substrate (pin 8) must always be at the most-negative device voltage for proper operation.

 Note 8: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS55450 series and across the
- Note 8: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS55450 series and across the 0° C to $+70^{\circ}$ C range for the DS75450 series. All typicals are given for $V_{CC} = +5V$ and $T_{A} = 25^{\circ}$ C.
- Note 9: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
- Note 10: Only one output at a time should be shorted.
- Note 11: These parameters must be measured using pulse techniques, $t_W = 300\mu s$, duty cycle $\leq 2\%$.
- Note 12: Applies to output transistors only.

schematic diagrams

schematic diagrams (con't)

truth tables (H = high level, L = low level)

DS55451/DS75451

Α	В	Y
L	L	L (ON State)
L	Н	L (ON State)
Н	L	L (ON State)
Н	Н	H (OFF State)

DS55452/DS75452

Α	В	Y
L	L	H (OFF State)
L	Н	H (OFF State)
Н	L	H (OFF State)
Н	Н	L (ON State)

DS55453/DS75453

Α	В	Y
L	L	L (ON State)
L	Н	H (OFF State)
Н	L	H (OFF State)
Н	Н	H (OFF State)

DS55454/DS75454

Α	В	Υ
L	L	H (OFF State)
L	Н	L (ON State)
Н	L	L (ON State)
Н	Н	L (ON State)

dc test circuits

FIGURE 1. VIH, VOL

FIGURE 2. VIL, VOH

FIGURE 3. VI, IIL

FIGURE 4. 11, 11H

FIGURE 5. IOS

Both sates ere tested simultaneously

FIGURE 6. ICCH, ICCL

dc test circuits (con't)

	INPUT	OTHER	OUTPUT			
CIRCUIT	UNDER TEST	INPUT	APPLY	MEASURE		
DS54451	V _{IH} V _{IL}	V _{IH} V _{CC}	20 P	I _{ОН} V _{OL}		
DS54452	V _{IH} V _{IL}	V _{IH} V _{CC}	l _{oL} V _{oH}	V _{OL} I _{OH}		
DS54453	V _{IH} V _{IL}	Gnd V _{IL}	V _{OH}	I _{OH} V _{OL}		
DS54454	V _{IH} V _{IL}	Gnd V _{IL}	I _{OL} V _{OH}	V _{OL} I _{OH}		

FIGURE 7. VIH, VIL, IOH, VOL

FIGURE 8. VI, IIL

FIGURE 9. II, IIH

FIGURE 10. ICCH, ICCL for AND, NAND Circuits

FIGURE 11. I_{CCH}, I_{CCL} for OR, NOR Circuits

ac test circuits and switching time waveforms

Note 1. The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUT}\approx 50\%$

FIGURE 12. Propagation Delay Times, Each Gate (DS55450/DS75450 Dnly)

Note 1. The pulse generator has the following characteristics, duty cycle \leq 1%, $Z_{OUT}\approx50\Omega.$ Note 2: $|C_U|$ includes grobe and μg capacitance

FIGURE 13. Switching Times, Each Transistor (DS55450/DS75450 Dnly)

ac test circuits and switching time waveforms (con't)

FIGURE 14. Switching Times of Complete Drivers

FIGURE 15. Latch-Up Test of Complete Drivers

typical performance characteristics

FIGURE 16. DS55450/DS75450 TTL Gate High-Level Output Voltage vs High-Level Output Current

FIGURE 17. DS55450/DS75450 Transistor Static Forward Current Transfer Ratio vs Collector Current

typical performance characteristics (con't)

FIGURE 18. DS55450/DS75450 Transistor Base-Emitter Voltage vs Collector Current

FIGURE 19. Transistor Collector-Emitter Saturation Voltage vs Collector Current

typical applications

FIGURE 20. Gated Comparator

FIGURE 21, 500 mA Sink

FIGURE 22. Floating Switch

FIGURE 23. Square-Wave Generator

typical applications (con't)

FIGURE 24. Core Memory Driver

FIGURE 25. Dual TTL-to-MOS Driver

FIGURE 26, Dual MOS-to-TTL Driver

typical applications (con't)

FIGURE 27. Balanced Line Driver

FIGURE 28. Dual Lamp or Relay Driver

FIGURE 29. Complementary Driver

typical applications (con't)

FIGURE 32. Logic Signal Comparator

FIGURE 33. In-Phase Detector

FIGURE 34, Multifunction Logic-Signal Comparator

FIGURE 35. Alarm Detector

National Semiconductor

Peripheral/Power Drivers

DS55460/DS75460 series dual peripheral drivers general description

The DS55460/DS75460 series of dual peripheral drivers are functionally interchangeable with DS55450/DS75450 series peripheral drivers, but are designed for use in systems that require higher breakdown voltages than DS55450/DS75450 series can provide at the expense of slightly slower switching speeds. Typical applications include power drivers, logic buffers, lamp drivers, relay drivers, MOS drivers, line drivers and memory drivers.

The DS55460 and DS75460 are unique general-purpose devices each featuring two standard 54/74 series TTL gates and two uncommitted, high current, high voltage, NPN transistors. These devices offer the system designer the flexibility of tailoring the circuit to the application.

The DS55461/DS75461, DS55462/DS75462, DS55463/DS75463 and DS55464/DS75464 are dual peripheral AND, NAND, OR and NOR drivers, respectively, (positive logic) with the output of the logic gates internally connected to the bases of the NPN output transistors.

features

- 300 mA output current capability
- High voltage outputs
- No output latch-up at 30V
- Medium speed switching
- Circuit flexibility for varied applications and choice of logic function
- TTL or LS compatible diode-clamped inputs
- Standard supply voltages

connection diagrams (Dual-In-Line and Metal Can Packages)

Drder Number DS55460J, DS75460J, or DS75460N See NS Package J14A or N14A

Drder Number DS55461J-8, DS75461J-8 or DS75461N-8

Drder Number DS55462J-8, DS75462J-8 or DS75462N-8

DS55462J.8, Drder Number DS55463J.8, DS75462N-8 DS75463J.8 or DS75463N-8 See NS Package J08A or N08A

Drder Number DS55464J-8, DS75464J-8 or DS75464N-8

TOP VIEW
Pin 4 is in electrical contact with the case
Drder Number
DS55461H or DS75461H

GNO
TOP VIEW
Pin 4 is in electrical contact with the case
Order Number
DS55462H or DS75462H

OND Dry Vicew Pig 4 is in electrical contact with the case Drder Number DS55463H or DS75463H

TOP VIEW
Pind is in electrical contact with the lase
Order Number
DS55464H or DS75464H

absolute maximum ratir	igs (Note 1)	operating conditions (Note 7)				
			MIN	MAX	UNITS	
Supply Voltage (Note 2)	7V	Supply Voltage (V _{CC})				
Input Voltage	5.5V	DS5546X	4.5	5.5	V	
Inter-emitter Voltage (Note 3)	5.5V	DS7546X	4.75	5.25	V	
V _{CC} -to-Substrate Voltage DS55460/DS75460	40V	Temperature (T _A) DS5546X	55	+125	°C	
Collector-to-Substrate Voltage					°C	
DS55460/DS75460	40V	DS7546X	0	+70	C	
Collector-Base Voltage						
DS55460/DS75460	40V					
Collector-Emitter Voltage						
DS55460/DS75460 (Note 4)	40V					
DS55460/DS75460 (Note 5)	25V					
Emitter-Base Voltage						
DS55460/DS75460	5V					
Output Voltage (Note 6)						
DS55461/DS75461, DS55462/DS75462 DS55463/DS75463, DS55464/DS75464 Collector Current (Note 7)						
DS55460/DS75460	300 mA					
Output Current (Note 7)	200					
DS55461/DS75461, DS55462/DS75462 DS55463/DS75463, DS55464/DS75464						
Continuous Total Dissipation	800 mW					
Storage Temperature Range	-65° C to +150° C					
Lead Temperature (Soldering, 10 seconds)	260°C					

electrical characteristics

D\$55460/D\$75460 (Notes 8 and 9)

P/	PARAMETER CONDITIONS				MIN	TYP	MAX	UNIT
TTL GATE	S							
V _{IH}	High Level Input Voltage	(Figure 1)			2			V
V _{IL}	Low Level Input Voltage	(Figure 2)					0.8	٧
V,	Input Clamp Voltage	V _{CC} = Min, I _I = -12	2 mA, (Figure 3)			-1.2	-1.5	V
Voн	High Level Output Voltage	V _{CC} = Min, V _{IL} = 0	0.8V, I _{OH} = -400µA, (Fig	jure 2)	2.4	3.3		٧
Vol	Low Level Dutput Voltage	V _{CC} = Min, V _{IH} = 2V, I _{OL} = 16 mA,	DS55460			0.25	0.5	V
		(Figure 1)	DS75460			0.25	0.4	V
l _i	Input Current at Maximum	V _{CC} = Max, V _I =	Input A				1	mA
	Input Voltage	5.5V, (Figure 4)	Input G				2	mA
I _{IH}	High Level Input Current	V _{CC} = Max, V _I =	Input A				40	μΑ
		2.4V, (Figure 4)	Input G				80	μΑ
1 _{1L}	Low Level Input Current	V _{CC} = Max, V _I =					-1.6	mA
		0.4V, (Figure 3)	0.4V, (Figure 3) Input G				-3.2	mA
los	Short Circuit Output Current	V _{CC} = Max, (Note 1	0), (Figure 5)		-18	-35	-55	mA
Іссн	Supply Current	V _{CC} = Max, V _I = 0V	/, Outputs High, (Figure 6	5)		2.8	4	mA
IccL	Supply Current	V _{CC} = Max, V _I = 5\	, Outputs Low, (Figure 6	3)		7	11	mA
OUTPUT T	TRANSISTORS							
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100\mu A, I_E = 0$			40			٧
V _{(BR)CER}	Collector-Emitter Breakdown	I _C = 100μA, R _{BE} = 1	500Ω		40			٧
V _{(BR)CEO}	Voltage	I _C = 10 mA, I _B = 0			25			٧
V _{(BR)EBO}	Ernitter-Base Breakdown Voltage	I _E = 100μA, I _C = 0			5			٧
h _{FE}	Static Forward Current		DS55460, T _A = 25°C	I _C = 100 mA	25			
	Transfer Ratio	i L	DS55460, I _A = 25 C	I _C = 300 mA	30			
			DS55460, T _A =-55°C	I _C = 100 mA	10			
		V _{CE} = 3V,		1 _C = 300 mA	15			
		(Note 12)	DS75460, T _A =25°C	I _C = 100 mA	25			
		i -		I _C = 300 mA	30			
		. 1	DS75460, TA = 0°C	I _C = 100 mA	20		i 1	

electrical characteristics (con't)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V _{BE}	Base Emitter Voltage			I _B = 10 mA, I _C = 100 mA		0.85	1.2	٧
			DS55460	I _B = 30 mA, I _C = 300 mA		1	1.4	V
		(Note 12)		I _B = 10 mA, I _C = 100 mA		0.85	1	V
			DS75460	I _B = 30 mA, I _C = 300 mA		1	1.2	٧
V _{CE(SAT)}	Collector-Emitter Saturation Voltage			I _B = 10 mA, I _C = 100 mA		0.25	0.5	٧
	Voltage		DS55460	I _B = 30 mA, I _C = 300 mA		0.45	0.8	٧
		(Note 12)	DS75460	I _B = 10 mA, I _C = 100 mA		0.25	0.4	V
			2375400	I _B = 30 mA, I _C = 300 mA		0.45	0.7	v

switching characteristics

DS55460/DS75460 $V_{CC} = 5V, T_A = 25^{\circ}C$

	PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS	
t _{PLH}	Propagation Delay Time, Low- To High Level Output	C _L = 15 pF	$\rm R_L$ = 400 Ω , TTL Gates Only, (Figure 12) $\rm R_L$ = 50 Ω , I _C \approx 200 mA, Gates and Transistors Combined, (Figure 14)		22 45	65	ns
tpHL	Propagation Delay Time, High- To Low Level Output	C _L = 15 pF	$\rm R_L$ = 400 Ω , TTL Gates Only, (Figure 12) $\rm R_L$ = 50 Ω , $\rm I_C \approx 200$ mA, Gates and Transistors Combined, (Figure 14)		35	50	ns ns
t _{TLH}	Transition Time, Low To High Level Output	C _L = 15 pF, R _L Combined, (Fig.	= 50Ω , I _C ≈ 200 mA, Gates and Transistors ure 14)		10	20	กร
t _{THL}	Transition Time, High To-Low Level Output		C_L = 15 pF, R_L = 50 Ω , I_C ≈ 200 mA, Gates and Transistors Combined, (Figure 14)		10	20	ns
V _{OH}	High Level Output Voltage After Switching	$V_{\rm S}$ = 30V, $I_{\rm C} \approx$ 300 mA, $R_{\rm BE}$ = 500 Ω , (Figure 15)		V _S -10			mV
t _d	Delay Time	$I_C = 200 \text{ mA}, \ I_{B(1)} = 20 \text{ mA}, \ I_{B(2)} = -40 \text{ mA}, \ V_{BE(OFF)} = -1V, \ C_L = 15 \text{ pF}, \ R_L = 50\Omega, \ (Note 13), \ (Figure 13)$			10		nş
t _r	Rise Time		I_C = 200 mA, $I_{B(1)}$ = 20 mA, $I_{B(2)}$ = -40 mA, $V_{BE(OFF)}$ = -1V, C_L = 15 pF, R_L = 50 Ω . (Note 13),		16		nş
t _s	Storage Time	I_C = 200 mA, $I_{B(1)}$ = 20 mA, $I_{B(2)}$ = -40 mA, $V_{BE(QFF)}$ = -1V, C_L = 15 pF, R_L = 50 Ω , (Note 13), (Figure 13)			23		ns
t _f	Fall Time	$\begin{split} &I_C = 200 \text{ mA}, \ I_{B(1)} = 20 \text{ mA}, \ I_{B(2)} = -40 \text{ mA}, \\ &V_{BE(OFF)} = -1V, \ C_L = 15 \text{ pF}, \ R_L = 50\Omega, \ (\text{Note 13}), \\ &\textit{(Figure 13)} \end{split}$			14		ns

electrical characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 (Notes 8 and 9)

PARAMETER		CONDITIONS			MIN	TYP	MAX	UN
V _{IH}	High Level Input Voltage	(Figure 7)			2	L		<u> </u>
VIL	Low Level Input Voltage	(Figure 7)				ļ	8.0	
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -12 r	mA			-1.2	-1.5	
VoL	Low Level Output Voltage		DODE ACT NO ORNA	I _{OL} = 100 mA		0.15	0.5	
			DS55461, V _{IL} = 0.8V	1 _{OL} = 300 mA		0.36	0.8	
			DS55462, V _{IH} =2V	1 _{OL} = 100 mA		0.16	0.5	
		İ	0300402, V _{IH} -2V	I _{OL} = 300 mA		0.35	0.8	
			DS55463, V _{IL} =0.8V	I _{OL} = 100 mA		0.18	0.5	
			. 10	I _{OL} = 300 mA		0.39	0.8	
		N - M - (5) 7(DS55464, V _{IH} =2V	I _{OL} = 100 mA		0.17	0.5	
		V _{CC} = Min,(Figure 7)		I _{OL} = 300 mA		0.38	0.8	-
		i	DS75461, V _{IL} =0.8V	I _{OL} = 100 mA		0.15	0.4	
				I _{OL} = 100 mA	 	0.36	0.7	
			DS75462, V _{IH} ≃2V	I _{OL} = 300 mA	-	0.16	0.7	
				I _{OL} = 100 mA	 	0.18	0.4	
			DS75463, V _{IL} =0.8V	I _{OL} = 300 mA	 	0.39	0.7	<u> </u>
			-025404	I _{OL} = 100 mA		0.17	0.4	
		DS75464, V _{IH} =2V	t _{OL} = 300 mA		0.38	0.7		
Іон	High Level Output Current			DS55461,				
u.	•		V _{IH} = 2V	DS55463			300	ļ
				DS75461,			400	
		V _{CC} = Min, V _{OH} =		DS75463			100	,
		35V, (Figure 7)	V = 0.8V	DS55462,			300	Ι,
				DS55464			300	
			DS75462, DS75464				100	,
		ļ		ļ		<u> </u>		
1,	Input Current at Maximum Input Voltage	V _{CC} = Max, V ₁ = 5.5V	V, (Figure 9)				1	n
I _{IH}	High Level Input Current	V _{CC} = Max, V ₁ = 2.41	V, (Figure 9)				40	,
IIL	Low Level Input Current	V _{CC} = Max, V _I = 0.41	V, (Figure 8)			-1	-1.6	n
Іссн	Supply Current			DS55461/				
			.,	DS75461,				
			V ₁ = 5V	DS55463/		8	11	n
		V _{CC} = Max, Outputs		DS75463				
		High, (Figure 11)		DS55462/		13	17	n
		, mg., 1. iga.c , , ,	V, = 0V	DS75462		ļ	· · ·	
			<u>'</u>	DS55464/		14	19	n
		<u></u>		DS75464	ļ			
ICCL	Supply Current			DS55461/		61	76	,
			V ₁ = 0V	DS75461				
				DS55463/		63	76	n
		V _{CC} = Max, Outputs	<u> </u>	DS75463	 	 		
		Low, (Figure 11)		DS55462/ DS75462		65	76	п
			V _I = 5V		 	 	-	ļ
		I	DS55464/ DS75464		1	72	85	l n

switching characteristics

DS55461/DS75461, DS55462/DS75462, DS55463/DS75463, DS55464/DS75464 $V_{CC} = 5V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIONS			TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-To-High Level Output	$I_{\Omega} \approx 200 \text{ mA}, \ C_{L} = 15 \text{ pF}, \ R_{L} = 50\Omega,$	DS55461/ DS75461, DS55463/ DS75463		45	55	ns
		(Figure 14)	DS55462 DS75462, DS55464 DS75464		50	65	ns
t _{PHL} Propagation Delay Time, High-To-Low Level Output	$I_{\Omega} \approx 200 \text{mA}$, $C_{L} = 15 \text{pF}$, $R_{L} = 50 \Omega$,	DS55461/ DS75461, DS55463/ DS75463		30	40	ns	
	(Figure 14)	DS55462/ DS75462, DS55464/ DS75464		40	50	ns	
tTLH			DS55461/ DS75461		8	20	ns
	High Level Output	$I_{\rm O} \approx 200$ mA, $C_{\rm L}$ = 15 pF, $R_{\rm L}$ = 50 Ω , (Figure 14)	DS55462 DS75462		12	25	ns
			DS55463, DS75463		8	25	ns
			DS55464/ DS75464		12	20	ns
t _{THL}	Transition Time, High-To-		DS55461/ DS75461		10	20	ns
Low Level Output	Low Level Output	$I_{\odot} \approx 200 \text{ mA}, \ C_{\perp} = 15 \text{ pF}, \ R_{\perp} = 50\Omega,$ (Figure 14)	DS55462/ DS75462, DS55464/ DS75464		15	20	ns
			DS55463/ DS75463		10	25	ns
V _{OH}	High-Level Output Voltage After Switching	$V_S = 30V$, $I_O \approx 300$ mA, (Figure 15)		V _s -10			mV

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Voltage values are with respect to network ground terminal unless otherwise specified.

Note 3: This is the voltage between two emitters of a multiple-emitter transistor.

Note 4: This value applies when the base-emitter resistance (RBE) is equal to or less than 500 Ω . Note 5: This value applies between 0 and 10 mA collector current when the base-emitter diode is open circuited.

Note 6: This is the maximum voltage which should be applied to any output when it is in the "OFF" state. Note 7: Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time inter-

val must fall within the continuous dissipation rating. Note 8: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS55460 series and across the 0°C

to $+70^{\circ}$ C range for the DS75460 series. All typicals are given for V_{CC} = +5V and T_A = 25° C. Note 9: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All

values shown as max or min on absolute value basis. Note 10: Only one output at a time should be shorted.

Note 11: For the DS55460/DS75460 only, the substrate (pin 8) must always be at the most negative device voltage for proper operation.

Note 12: These parameters must be measured using pulse techniques. tw = $300\mu s$, duty < 2%.

Note 13: Applies to output transistors only.

schematic diagrams

DS55460/DS75460

DS55462/DS75462

DS55463/DS75463

Vcc

Resistor values shown are nonmal.

truth tables (H = high level, L = low level)

DS55461/DS75461

Α	В	Y
L	L	L (ON State)
L	н	L (ON State)
H	L	L (ON State)
н	H	H (CFF State)

DS55462/DS75462

Α	В	Υ
L	L	H (OFF State)
L	н	H (OFF State)
Н	L	H (OFF State)
Н	Н	L (ON State)

DS55463/DS75463

Α	В	Y
L	L	L (ON State)
L	Н	H (OFF State)
Н	L	H (OFF State)
Н	н	H (OFF State)

DS55464/DS75464

Α	В	Y
L	L	H (OFF State)
L	Н	L (ON State)
Н	L	L (ON State)
н	н	L (ON State)

dc test circuits

Both moute are tested assultaneous

Fach input is tested superately

FIGURE 1. VIH, VOL

FIGURE 3. VI, IIL

FIGURE 4. IJ, IJH

FIGURE 2. VIL, VOH

FIGURE 5. IOS

FIGURE 6. ICCH, ICCL

	INPUT	OTHER	0	UTPUT
CIRCUIT	UNDER TEST	INPUT	APPLY	MEASURE
DS55461	V _{IH} V _{IL}	V _{IH} V _{CC}	V _{OH}	I _{ОН} V _{OL}
DS55462	V _{IH} V _{IL}	V _{IH} V _{CC}	I _{OL} V _{OH}	V _{OL}
DS55463	V _I H V _I L	Gnd V _{IL}	V _{OH} I _{OL}	I _{OH} V _{OL}
DS55464	V _{1H} V _{1L}	Gnd V _{IL}	1 ₀ L V _{ОН}	V _{OL} Іон

Note 1. Eech input is tested separately
Note 2: When testing DSS463/0075463 and DS75464, input not order test to grounded.
For all other credits in a 4 5 V

FIGURE 8. VI, IIL

Each input is tested separately

FIGURE 7. VIH, VIL, IOH, VOL

FIGURE 9. II, IIH

FIGURE 10. I_{CCH}, I_{CCL} for AND, NAND Circuits

FIGURE 11. ICCH, ICCL for OR, NOR Circuits

switching characteristics

Note 1. The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUY}\approx 50\Omega$. Note 2: C, include probe end jig capacitance.

FIGURE 12. Propagation Delay Times, Each Gate (DS55460 and DS75460 Only)

Nota 1: The pulse generator has the following characteristics: duty cycle \leq 1%, $Z_{OUT}\approx50\Omega$. Note 2: C_L includes probe and jig capacitance

FIGURE 13. Switching Times, Each Transistor (DS55460 and DS75460 Only)

FIGURE 14. Switching Times of Complete Drivers

Note 1. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_{OUT} = 50\%$ Note 2. When testing DS5646 or DS75460, connect output Y to transistor base with a 500Ω resistor from there to ground the subtract terminal.

FIGURE 15. Latch-Up Test of Complete Drivers

Section 4 Level Translators/Buffers

TEMPERA	TURE RANGE	DESCRIPTION	PAGE
-55°C to +125°C	0° C to +70 $^{\circ}$ C	DESCRIPTION	NUMBER
DS1630	DS3630	Hex CMOS Compatible Buffer	4-1
DS7800	DS8800	Dual Voltage Level Translator	4-4
DS7810	DS8810	Quad 2-Input TTL-to-MOS Gate	4-7
DS7811	DS8811	Quad 2-Input TTL-to-MOS Gate	4-7
DS7812	D\$8812	Hex TTL-to-MOS Inverter	4-7
DS78L12	DS88L12	Hex TTL-to-MOS Inverter	4-10
DS7819	DS8819	Quad 2-Input TTL-to-MOS Gate	4-12
MM54C901	MM74C901	Hex Inverting TTL 8uffer	9-18
MM54C902	MM74C902	Hex Non-Inverting TTL Buffer	9-18
MM54C903	MM74C903	Hex Inverting PMOS 8uffer	9-18
MM54C904	MM74C904	Hex Non-Inverting PMOS 8uffer	9-18
MM54C906	MM74C906	Hex Open Drain N-Channel Buffer	9-22
MM54C907	MM74C907	Hex Open Drain P-Channel 8uffer	9-22

LEVEL TRANSLATORS/BUFFERS

T. Olai	High	001+0101+0404-101-1-101-100		DEVICE	DEVICE NUMBER
INLO	00100	OUITOI CHARACIERISTICS	LOGIC FONCTION	0°C to +70°C	-55°C to +125°C
CMOS	CMOS	50 ns Prop. Delay at 500 pF	Hex Buffer	DS3630	DS1630
TTL	PMOS	Open-Collector -30V to 30V	Dual 2-Input Gate	DS8800	DS7800
TTL	MOS	Open-Collector 0.4V to 14V	Quad 2-Input Gate	DS8810	DS7810
TTL	MOS	Open-Collector 0.4V to 14V	Quad 2-Input Gate	DS8811	DS7811
TTL	MOS	Open-Collector 0.4V to 14V	Hex Inverter	DS8812	DS7812
TTL	MOS	Active Pull-Up 0.4V to 14V	Hex Inverter	DS88L12	
TTL	MOS	Open-Collector 0.4V to 14V	Quad 2-Input Gate	DS8819	DS7819
CMOS	TTL	Active Pull-Up 0.4V @ 2.6 mA	Hex Inverter	MM74C901	MM54C901
CMOS	TTL	Active Pull-Up 0.4V @ 3.2 mA	Hex Buffer	MM74C902	MM54C902
CMOS	PMOS	Active Pull-Up 0V to 15V	Hex Inverter	MM74C903	MM54C903
CMOS	PMOS	Active Pull-Up 0V to 15V	Hex Buffer	MM74C904	MM54C904
CMOS	SOWN	Open Drain 0V to 15V	Hex Buffer	MM74C906	MM54C906
CMOS	PMOS	Open Drain VCc to Vcc - 15V	Hex Buffer	MM74C907	MM54C907

National Semiconductor

Level Translators/Buffers

DS1630/DS3630 hex CMOS compatible buffer

general description

The DS1630/DS3630 is a high current buffer intended for use with CMOS circuits interfacing with peripherals requiring high drive currents. The DS1630/DS3630 features low quiescent power consumption (typically $50\mu W$) as well as high-speed driving of capacitive loads such as large MOS memories. The design of the DS1630/DS3630 is such that $V_{\rm CC}$ current spikes commonly found in standard CMOS circuits cannot occur, thereby, reducing the total transient and average power when operating at high frequencies.

features

- High-speed capacitive driver
- Wide supply voltage range
- Input/output may interface to TTL
- Input/output CMOS compatibility
- No internal transient V_{CC} current spikes
- 50µW typical standby power
- Fan out of 10 standard TTŁ loads

equivalent schematic and connection diagrams

Order Number DS1630J, DS3630J or DS3630N See NS Package J14A or N14A

typical applications

CMQS to TTL Interface

CMOS To Transmission Line Interface

CMOS To CMOS Interface

LED Driver

			MIN	MAX	UNITS
Supply Voltage	16V	Supply Voltage (V _{CC})	3	15	V

operating conditions

	*******	WAX	ONLIS
Supply Voltage (Vcc)	3	15	V
Temperature (T _A) DS1630	-55	+125	°c
DS3630	0	+70	°C
		Temperature (T _A) DS1630 -55	Supply Voltage (V _{CC}) 3 15 Temperature (T _A) DS1630 -55 +125

electrical characteristics (Notes 2 and 3)

absolute maximum ratings (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{INH} Logical "1" Input Current	V - V 1400:4	DS1630		90	200	μΑ
	$V_{IN} = V_{CC}$, $I_{OUT} = -400\mu$ A	DS3630	1	90	200	μΑ
	$V_{IN} = V_{CC} - 2.0V$, $I_{OUT} = 16 \text{ mA}$	DS1630	1	0.5	3.2	mA
	VIN = VCC 2.0V, 10UT = 101IIA	DS3630		0.5	1.5	mA
I _{INL} Logical "0" Input Current	V = 0.4V 1 = 10 = 1	DS1630		-0.15	-1	mA
	$V_{IN} = 0.4V$, $I_{OUT} = 16 \text{ mA}$	DS3630		V _{CC} -150	-800	μА
V _{OH} Logical "1" Output Voltage	V = V 400m2	DS1630	V _{CC} -1	V _{CC} -0.75		V
	$V_{IN} = V_{CC}$, $I_{OUT} = -400\mu A$	DS3630	V _{cc} -0.9	V _{CC} -0.75		V
	$V_{IN} = V_{CC} - 0.4V$, $I_{OUT} = 16 \text{ mA}$	DS1630	V _{CC} -2.5	V _{CC} -2.0		V
	VIN - VCC 0.4V, 1007 - 10111A	DS3630	V _{CC} -2.5	V _{CC} -2.0		V
V _{OL} Logical "0" Output Voltage	V = 0V / = 400···	DS1630		0.75	1	V
	$V_{IN} = 0V$, $I_{OUT} = 400\mu A$	DS3630		0.75	0.9	V
	V = 0V = 16 mA	DS1630		0.95	1.3	V
	$V_{IN} = 0V$, $I_{OUT} = 16 \text{ mA}$	DS3630		0.95	1.3	V
	V = 0.4V 1 = 16 mA	DS1630		1.2	1.6	V
	$V_{IN} = 0.4V$, $I_{OUT} = 16 \text{ mA}$	DS3630		1.2	1.5	V

switching characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0} Propagation Delay to a Logical "0"	C _L = 50 pF		30	45	nş
	C _L = 250 pF		40	60	ns
	C _L = 500 pF		50	75	ns
t _{pd1} Propagation Delay to a Logical "1"	C _L = 50 pF		15	25	ns
	C _L = 250 pF		35	50	ns
1	C _L = 500 pF		50	75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ}C$ to $+125^{\circ}C$ temperature range for the DS1630 and across the $0^{\circ}C$ to $+70^{\circ}C$ range for the DS3630. All typicals are given for $V_{CC} \approx 5.0V$ and $T_{A} = 25^{\circ}C$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical performance characteristics

LOAO CAPACITANCE (pF)

TEMPERATURE (°C)

 $V_{CC}(V)$

ac test circuit and switching time waveforms

Pulse Generator characteristics: PRR = 1.0 MHz, PW = 500 ns, t, = t_i < 10 ns $V_{\rm IN}$ = 0 to $V_{\rm CC}$

4-3

Level Translators/Buffers

DS7800/DS8800 dual voltage level translator

general description

The DS7800/DS8800 are dual voltage translators designed for interfacing between conventional TTL or DTL voltage levels and those levels associated with high impedance junction or MOS FET-type devices. The design allows the user a wide latitude in his selection of power supply voltages, thus providing custom control of the output swing. The translator is especially useful in analog switching; and since low power dissipation occurs in the "off" state, minimum system power is required.

features

- 31 volt (max) output swing
- 1 mW power dissipation in normal state
- Standard 5V power supply
- Temperature range: DS7800 DS8800

-55°C to +125°C 0°C to +70°C

Compatible with all MOS devices

schematic and connection diagrams

Metal Can Package

Order Number DS7800H or DS8800H See NS Package H10C

typical applications

4-Channel Analog Switch

Bipolar to MOS Interfacing

absolute maximum rating	gs (Note 1)	operating condit	ions		
			MIN	MAX	UNITS
V _{CC} Supply Voltage V2 Supply Voltage V3 Supply Voltage	7.0V -30V 30V	Supply Voltage (V _{CC}) DS7800 DS8800	4.5 4.75	5.5 5.25	V V
V3-V2 Voltage Differential Input Voltage Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	40V 5.5V 65° C to +150° C 300° C	Temperature (T _A) DS7800 DS8800	-55 0	+125 +70	°C °C

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIO	ONS	MIN	TYP (NOTE 6)	MAX	UNITS
VIH	Logical ''1'' Input Voltage	V _{CC} = Min		2.0			V
V _{IL}	Logical "0" Input Voltage	V _{CC} = Min	-			0.8	V
I _{IH}	Logical "1" Input Current		V _{IN} = 2.4V			5	μΑ
'!H	Logica	V _{CC} = Max	V _{IN} = 5.5V			1	mA
I _{IL}	Logical "0" Input Current	V _{CC} = Max, V _{IN} = 0.4V			-0.2	-0.4	mA
lor	Output Sink Current	$V_{CC} = Min, V_{IN} = 2V,$	DS7800	1.6	Ţ		mA
OL.	Output S S	$V_{CC} = Min, V_{IN} = 2V,$ DS780 V3 Open DS880 $V_{CC} = Max, V_{IN} = 0.8V$ (Notes 4	DS8800	2.3			mA
Гон	Output Leakage Current	V _{CC} = Max, V _{IN} = 0.8V	(Notes 4 and 7)			10	μΑ
Ro	Output Collector Resistor	T _A = 25°C		11.5	16.0	20.0	kΩ
VoL	Logical "0" Output Voltage	V _{CC} = Min, V _{IN} = 2.0V	(Note 7)			V ₂ + 2.0	V
(CC(MAX)	Power Supply Current Output "ON"	V _{CC} = Max, V _{IN} = 4.5V	/ (Note 5)		0,85	1.6	mA
CC(MIN)	Power Supply Current Output "OFF"	V _{CC} = Max, V _{IN} = 0V (I	Note 5)		0.22	0.41	mA

switching characteristics T_A = 25°C, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Transition Time to Logical "0" Output	T _A = 25°C, C = 15 pF (Note 8)	25	70	125	ns
t _{pd1}	Transition Time to Logical	T _A = 25°C, C = 15 pF (Note 9)	25	62	125	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the --55°C to +125°C temperature range for the DS7800 and across the 0°C to +70°C range for the DS8800.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Current measured is drawn from V₃ supply. Note 5: Current measured is drawn from V_{CC} supply.

Note 6: All typical values are measured at $T_A = 25^{\circ}$ C with $V_{CC} = 5.0$ V, $V_2 = -22$ V, $V_3 = +8$ V.

Note 7: Specification applies for all allowable values of $\mbox{\rm V}_2$ and $\mbox{\rm V}_3.$

Note 8: Measured from 1.5V on input to 50% level on output. Note 9: Measured from 1.5V on input to logic "0" voltage, plus 1V.

theory of operation

The two input diodes perform the AND function on TTL or DTL input voltage levels. When at least one input voltage is a logical $^{\prime\prime}0^{\prime\prime}$, current from V_{CC} (nominally 5.0V) passes through R_1 and out the input(s) which is at the low voltage. Qther than small leakage currents, this current drawn from V_{CC} through the 20 $k\Omega$ resistor is the only source of power dissipation in the logical $^{\prime\prime}1^{\prime\prime}$ output state.

When both inputs are at logical "1" levels, current passes through R_1 and diverts to transistor Q_1 , turning it on and thus pulling current through R_2 . Current is then supplied to the PNP transistor, Q_2 . The voltage losses caused by current through Q_1 , D_3 , and Q_2 necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the inputs must be raised to a voltage level which is one diode potential lower than node P. Since these levels are exactly the same as those experienced with conventional TTL and DTL, the interfacing with these types of circuits is achieved.

Transistor Q_2 provides "constant current switching" to the output due to the common base connection of Q_2 . When at least one input is at the logical "0" level, no current is delivered to Q_2 ; so that its collector supplies essentially zero current to the output stage. But when both inputs are raised to a logical "1" level current is supplied to Q_2 .

selecting power supply voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V_2 is shown on the X axis. It must be between -25V and -8V. The allowable range for power supply V_3 is governed by supply V_2 . With a value chosen for V_2 , V_3 may be selected as any value along a vertical line passing through the V_2 value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5V should be maintained for adequate signal swing.

Since this current is relatively constant, the collector of Ω_2 acts as a constant current source for the output stage. Logic inversion is performed since logical "1" input voltages cause current to be supplied to Ω_2 and to Ω_3 . And when Ω_3 turns on the output voltage drops to the logical "0" level.

The reason for the PNP current source, Q_2 , is so that the output stage can be driven from a high impedance. This allows voltage V_2 to be adjusted in accordance with the application. Negative voltages to -25V can be applied to V_2 . Since the output will neither source nor sink large amounts of current, the output voltage range is almost exclusively dependent upon the values selected for V_2 and V_3 .

Maximum leakage current through the output transistor O_3 is specified at $10~\mu A$ under worst-case voltage between V_2 and V_3 . This will result in a logical "1" output voltage which is 0.2V below V_3 . Likewise the clamping action of diodes D_4 , D_5 , and D_6 , prevents the logical "0" output voltage from falling lower than 2V above V_3 , thus establishing the output voltage swing at typically 2 volts less than the voltage separation between V_2 and V_3 .

switching time waveforms

Level Translators/Buffers

DS7810/DS8810 quad 2-input TTL-MOS interface gate DS7811/DS8811 quad 2-input TTL-MOS interface gate DS7812/DS8812 hex TTL-MOS inverter

general description

These Series 54/74 compatible gates are high output voltage versions of the DM5401/DM7401 (\$N5401/SN7401), DM5403/DM7403 (\$N5403/SN7403), and DM5405/DM7405 (\$N5405/SN7405). Their open-collector outputs may be "pulled-up" to +14 volts in the logical "1" state thus providing guaranteed interface between TTL and MOS logic levels.

In addition the devices may be used in applications where it is desirable to drive low current relays or lamps that require up to 14 volts.

schematic and connection diagrams

DS7810/DS8810, DS7811/DS8811

or DS8810N See NS Package J14A or N14A

Order Number DS7812J, DS8812J, DS7812W or DS8812N See NS Package J14A, N14A or W14A

Dual-In-Line Package

Order Number DS7811J, DS8811J, DS7811W or DS8811N See NS Package J14A, N14A or W14A

absolute maximum ratings	(Note 1)	operating condi	itions		
			MIN	MAX	UNITS
Vcc	7V	Supply Voltage (VCC)			
Input Voltage	5. 5 V	DS78XX	4.5	5.5	V
Output Voltage Storage Temperature Range -65°	14V °C to +150°C	DS88XX	4.75	5.25	V
Lead Temperature (Soldering, 10 seconds)	300°C	Temperature (TA)			
		DS78XX	-55	+125	°C
		DS88XX	0	+70	°C

electrical characteristics (Notes 2 and 3)

_	PARAMETER	CC	ONDITIONS	MIN	TYP	MAX	UNITS
VCLAMP	Input Diode Clamp Voltage	V _{CC} = 5.0V, T	_A = 25°C, I _{IN} = -12 mA			-1.5	V
VIH	Logical "1" Input Voltage	V _{CC} = Min		2.0			V
VIL	Logical "0" Input Voltage	V _{CC} = Min				0.8	V
I _{OH}	Logical "1" Output Current	V _{CC} = Min,	V _{IN} = 0.8V			250	μΑ
		V _{OUT} = 10V	V _{IN} = 0.0V			40	μΑ
IOL	Logical "0" Output Current	V _{CC} = Min, V _I	_N = 2.0V, V _{OUT} = 0.4V	16			mA
VoH	Logical "1" Output 8reakdown Voltage	V _{CC} = Min, V _i	_N = 0V, I _{OUT} = 1 mA	14			V
V _{oL}	Logical "0" Output Voltage	V _{CC} = Min, V _I	_N = 2.0V, I _{OUT} = 16 mA			0.4	V
I _{tH}	Łogical "1" Input Current	V _{CC} = Max	V _{1N} = 2.4V			40	μΑ
		V _{CC} - Wax	V _{IN} = 5.5V			1	mA
I _{IL}	Logical "0" Input Current	V _{CC} = Max, V	_{IN} = 0.4V	·		-1.6	mA
I _{CC(MAX)}	Logical "0" Supply Current (Each Gate)	V _{CC} = Max, V _I	N = 5.0V		3.0	5.1	mA
I _{CC(MIN)}	Logical "1" Supply Current (Each Gate)	V _{CC} = Max, V	_N = 0V		1.0	1.8	mA

switching characteristics T_A = 25°C, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay Time to a Logical "O"	$V_{CC} = 5.0V, T_A = 25^{\circ}C,$ $C_{OUT} = 15 \text{ pF}, R_L = 1k$	4	12	18	ns
t _{pd1}	Propagation Delay Time to a Logical "1"	$V_{CC} = 5.0V, T_A = 25^{\circ}C,$ $C_{OUT} = 15 \text{ pF}, R_L = 1 \text{k}$	18	29	45	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7810, DS7811 and DS7812 and across the 0°C to +70°C range for the DS7810, DS7811 and DS7812.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis,

typical applications

ac test circuit and switching time waveforms

Level Translators/Buffers

DS78L12/DS88L12 hex TTL-MOS inverter/interface gate

general description

The DS78L12/DS88L12 is a low power TTL to MOS hex inverter element. The outputs may be "pulled up" to +14V in the logical "1" state, thus providing guaranteed interface between TTL and MOS logic levels. The gate may also be operated

with V_{CC} levels up to +14V without resistive pull-ups at the outputs and still providing a guaranteed logical "1" level of $V_{CC}=2.2V$ with an output current of $^{-}200\mu A$.

schematic and connection diagrams

Dual-In-Line Package

Order Number DS78L12J, DS88L12J Order Number DS88L12N Order Number DS78L12W See NS Package J14A, N14A or W14A

typical applications

TTL Interface to MOS ROM
Without Resistive Pull-Up

TTL Interface to MOS ROM With Resistive Pull-Up

ac test circuits

Figure 1 Figure 2

switching time waveforms

absolute maximum rat	ings (Note 1)	operating condi	itions		
			MIN	MAX	UNITS
Supply Voltage Input Voltage Output Voltage	15V 5 5V 15V	Supply Voltage (V _{CC}) DS78L12 DS88L12	4.5 4.75	5.5 5.25	V
Storage Temperature Range Lead Temperature (Soldering, 10 sec)	–65°C to +150°C 300°C	Temperature (T _A) DS78L12 DS88L12	-55 0	125 70	°C °C

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	Logical "1" Input Voltage	V _{CC} = 14.0V		2.0	1.3		V
ΥН	Logical 1 mper voltage	V _{CC} = Min		2.0	1.3		V
VIL	Logical "0" Input Voltage	V _{CC} = 14.0V			1.3	0.7	V
V 1L	Logical O mpar vertage	V _{CC} = Min			1.3	0.7	V
 V _{он}	Logical "1" Output Voltage		$V_{CC} = 14.0 \text{V}, I_{OUT} = -200 \mu \text{A}$	11.8	12.0		V
∨он	Logical 1 Obtpot Voltage	V _{1N} = 0.7V	$V_{CC} = 14.0 \text{V}, I_{OUT} = -200 \mu \text{A}$ $V_{CC} = \text{Min}, I_{OUT} = 200 \mu \text{A}$	14.5	15.0		
			= Min, I _{OUT} = -5.0μA (Note 6)				V
Vol	Logical "0" Output Voltage	2.014	V _{CC} = 14.0V, I _{OUT} = 12 mA		0.5	1.0	V
•01	2-3	V _{IN} = 2.0V	V _{CC} = Min, I _{OUT} = 3.6 mA		0.2	0.4	V
I _{IH}	Logical "1" Input Current		V _{CC} = 14.0V		<1	20	μΑ
· IH	203:02: 1	V _{IN} = 2.4V	V _{CC} = Max	II	<1	10	μΑ
		V _{IN} = 5.5V	V _{CC} = 14.0V		<1	100	μΑ
		V IN = 5.5 V	V _{CC} = Max		<1	100	μΑ
I _{IL}	Logical "0" Input Current	- 0.41/	V _{CC} = 14.0V		-320	-500	μA
		V _{IN} = 0.4V	V _{CC} = Max		-100	-180	μΑ
I _{sc}	Output Short Circuit Current	V _{OUT} = 0V	V _{CC} = 14.0V	-10	-25	-50	mA
'SC		(Note 4)	V _{CC} = Max	-3	-8	-15	mA
Іссн	Supply Current - Logical "1"		V _{CC} = 14.0V		0.32	0.50	mA
'CCH	(Each Inverter)	V _{IN} = 0V	V _{CC} = Max		0.11	0.16	mA
	Supply Current - Logical "0"		V _{CC} = 14.0V		1.0	1.5	mA
ICCL	(Each Inverter)	V _{IN} = 5.25V	V _{CC} = Max		0.3	0.5	mA

switching characteristics T_A = 25°C, nominal power supplies unless otherwise noted

	PARAMETER		CONDITIO	ONS	MIN	ТҮР	MAX	UNITS
			V _{CC} = 5.0V	(Figure 2)		27	45	ns ns
t _{pd0}	Propagation Delay to a Logical "0" from Input to Output	T _A ≈ 25°C	V _{CC} = 14.0V	(Figure 1)		11	20	ns
			V _{CC} = 5.0V	(Figure 2),(Note 5)		79	100	ns
t _{pd1}	Propagation Delay to a Logical "1" from Input to Output	T _A = 25°C	V _{CC} = 14.0V	(Figure 1)		34	55	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safet of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS78L12 and across the 0°C to +70°C range for the DS88L12

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: tpd1 for V_{CC} = 5.0V is dependent upon the resistance and capacitance used.

Note 6: $V_{OL} = V_{CC} - 1.1V$ for the DS88L12 and $V_{CC} - 1.4V$ for the DS78L12.

Level Translators/Buffers

DS7819/DS8819 quad 2-input TTL-MOS AND gate

general description

The DS7819/DS8819 is the high output voltage version of the SN5409. Its open-collector outputs may be "pulled-up" to 14V in the logical "1"

state thus providing guaranteed interface between TTL and MOS logic levels.

schematic and connection diagrams

Dual-In-Line Package

Order Number DS7819J or DS8819J Order Number DS8819N Order Number DS7819W See NS Package J14A, N14A or W14A

operating conditions absolute maximum ratings (Note 1) UNITS MAX MIN Supply Voltage (VCC) Supply Voltage DS7819 4.5 5.5 5.5V Input Voltage ٧ 4.75 5.25 DS8819 5.5V Output Voltage Storage Temperature Range −65°C to 150°C Temperature (TA) 300°C -55 +125 Lead Temperature (Soldering, 10 sec) DS7819 70 DS8819

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{iH}	Logical "1" Input Voltage	V _{CC} = Min		2.0			V
VIL	Logical "O" Input Voltage	V _{CC} = Min	-			8.0	V
I _{OH}	Logical "1" Output Current		V _{IN} = 2.0V, V _{OUT} = 10V	_		40.0	μΑ
юн	Logical	V _{CC} = Min	$V_{1N} = 2.0V, V_{OUT} = 10V$ $V_{1N} = 4.5V, V_{OUT} = 14V$			1.0	mA
VoL	Logical "0" Output Voltage	V _{CC} = Min, V	/ _{IN} = 0.8V, I _{OUT} = 16 mA			0.4	V
I _{IH}	Logical "1" Input Current		V _{1N} = 2.4V			40.0	μΑ
чн	Logical	V _{CC} = Max	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$			1.0	mΑ
I _{IL}	Logical "0" Input Current	V _{CC} = Max,	V _{IN} = 0.4V			-1.6	mA
Іссн	Logical "1" Supply Current	V _{CC} = Max,	V _{IN} = 5V		11.0	21.0	mA
Iccl	Logical "0" Supply Current	V _{CC} = Max,	V _{IN} = 0V		20.0	33.0	mA
VCI	Input Clamp Voltage	V _{CC} = 5.0V,	T _A = 25°C, I _{IN} = -12 mA			-1.5	V

switching characteristics $T_A = 25^{\circ} C$, nominal power supplies unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
t _{pd0}	Propagation Delay to a Logical "0"	V _{CC} = 5.0V, T _A = 25°C		16.0	24.0	ns
t _{pd1}	Propagation Delay to a Logical "1"	$V_{CC} = 5.0V, T_A = 25^{\circ}C$		16.0	32.0	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics"

Temperature Hange" they are not meant to imply that the devices should be operated at these shifts. The device operation is provided conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7819 and across the 0°C to

+70°C range for the DS8819.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Section 5

5

Display Drivers

TEMPER/ -55°C to +125°C	ATURE RANGE 0°C to +70°C	DESCRIPTION	PAGE NUMBER
75 C to +125 C	DS8646		5·1
_		Low Voltage, 6-Digit LED Driver	5.3
_	DS8647	Low Voltage, 9-Segment LED Driver (InV)	5-3
-	DS8648 DS8654	Low Voltage, 9-Segment LED Driver 8-Output Display Driver	5.5
-	DS8656	Print Head Diode Array	5.5
-	DS8658	Low Voltage, 4-Digit LED Driver	5-9
-	DS8659	Low Voltage, 4-Digit LED Driver	5.11
- DC7CC4	DS8659 DS8664		5·13
DS7664	DS8665	14-Digit Decoder/Driver 14-Digit Decoder/Driver (High Drive)	5·16
-	DS8666	14-Digit Decoder/Driver (POS Systems)	5-19
=		Dual Digit, 8CD-to-7-Segment LED Decoder/Driver	5-22
-	DS8669	The state of the s	5·25
	DS8692	8-Output, 350 mA, Transistor Array	5·25
_	DS8693	Printing Calculator Solenoid Driver	5·25
-	DS8694	Printing Calculator Solenoid Driver with Clock	5-32
DS7856	DS8856	8CD-to-7-Segment LED Driver, Common Anode	5-32
-	DS8857	BCD to-7 Segment LED Driver, Common Cathode	5-32
DS7858	DS8858	BCD-to 7-Segment LED Driver, Common Cathode	
-	DS8859	Serial Input Hex Latch LED Driver (High Level)	5-36
-	DS8861	MOS, LED 5-Segment Driver	5.39
=1	DS8863	MOS, LED 8-Digit Driver	5-39
	DS8867	8-Segment LED Constant Current Driver	5.42
-	DS8868	12-Digit LED Decoder/Driver	5.44
-	DS8869	Serial Input, Hex Latch LED Driver (Low Level)	5.36
-	DS8870	Hex LED Digit Driver	5.46
	DS8871	8-Digit LED Driver	5.48
-	DS8872	9-Digit LED Driver	5.48
-	DS8873	9-Digit LED Driver, Low Battery Indicator	5-48
-	DS8874	9-Digit, Shift Input, LED Driver	5.50
-	DS8877	6-Digit LED Driver	5-52
DS7880	DS8880	Beckman/Panaplex 7-Segment Decoder/Driver	5-54
-	DS8881	16-Digit Vacuum Fluorescent Grid Driver	5.57
=	DS8884A	Beckman/Panaplex 7-Segment Decoder/Driver	5.61
	DS8885	MOS to High Voltage Cathode 8uffer	5.63
-	DS8887	8-Digit High Voltage Anode Driver	5-65
DS7889	DS8889	8-Segment High Voltage Cathode Driver	5.65
DS7891	DS8891	6-Digit High Voltage Anode Driver	5-69
-	DS8892	Hex LED Programmable Current LED Driver	5-71
DS7895	DS8895	Ouad LED Segment Driver	5.73
DS7897	DS8897	8 Digit High Voltage Anode Driver (Low Level)	5.65
-	DS8920	DS8872 in 20-Pin Package	5.48
-	DS8963	18V DS8863	5.39
	DS8968	12-Digit LED Driver	5.76
-	DS8973	9-Digit LED Driver, 5.5V, V _{CC}	5-78
-	DS8974	9-Digit LED Driver, 7 5V, VCC	5.78
-	DS8975	9-Digit LED Driver with Low Battery Indicator	5.78
-	DS8976	9-Digit LED Driver, 9.5V, VCC	5-78
-	DS8977	7-Digit Version of DS8873	5-48
	DS8979	DS8648 in 20-Pin Package	5-3
-1	DS8980	Seckman Decoder/Driver/Latch (High Level)	5-81
	DS8981	Beckman Decoder/Driver/Latch (Low Level)	5-81
-	DS75491	Ouad Segment Driver	5⋅85
-1	DS75492	Hex Digit Driver	5-85
DS55493	DS75493	Programmable Quad Segment Driver	5.88
DS55494	DS75494	Saturating Hex Digit Driver	5.90

	eS/OI	IO/Segment	, >	X	XAM		
Drivers/	Sink*	(mA) Source		(2)	Comments	Device	Device Number
rackage	(Common Anode)	(Common Cathode)	Input	Supply		0°C to +70°C	–55°C to +125°C
4		17	10	10	Constant current DS75493	DS8895	DS7895
		30	10	10	Programmable constant current	DS75493	DS55493
	20	20	15	10		DS75491	
2	20	20	15	10		DS8861	
9	40		5.5	7	Programmable output, active high latch	DS8859	
	40		5.7	7	Programmable output, active low latch	DS8869	
7		9	5.5	7.0	BCD input	DS8856	DS7856
		20	5.5	7.0	BCD input	DS8858	DS7858
		09	5.5	7.0	BCD input, internal current limit	DS8857	
		18	10	7	Constant current output	DS8867	
œ		20	36	36		DS8654	
14	25		9.9	7	BCD input, dual-display driver	DS8669	
Drivers/		Io /Digit (mA)	>	VMAX (V)		Device	Device Number
Package	Sink	Source			Comments		
	(Common Cathode)	(Common Anode)	Input	Supply		0°C to +70°C	-55°C to +125°C
4		20				DS75491	
	20			10	DS75492 pinout, 4.5V to 9V systems	DS8877	
	150		10	10	Enable control	DS75494	DS55494
	200		8.8	8.8	DS75494 pinout, programmable ICC	DS8892	
	250		15	10		DS75492	
9	350		15	10	DS75492 pinout, Darlington output	DS8870	
7	40		11	=	9V low battery indicator	DS8977	
	40		11	Ξ		DS8871	
	350		25	25	Open-collector saturating outputs	DS8692	
_∞	200		15	10		DS8863	
	200		23	18		DS8963	
		50	36	36		10000	

S	
Sel	
Φ	
쏠	
ਠ	
3	
G	
Guide	
P	
-	

	کی ق	io /Digit (mA)	VMAX (V)	XA		Devic	Device Number
Drivers/ Package	Sink (Common	Source (Common	Input	Supply	Comments	0°C to +70°C	-55°C to +125°C
	Cathode)	Anode)	7.	11		DS8872	
6	40		= ;	- ;	Of air markage markage DS8872	DS8920	
	40		=	= :	ZO-DITI package Version Doors	020000	
	40		=	=	Low battery indicator	030073	
	50		10	10	Serial shift register input	DS8874	
	100		10	10	3-cell operation—low battery indicator	DS8973	
	100		01	10	4-cell operation-low battery indicator	DS8974	
	100		10	10	No low battery indicator	DS8975	
	100		10	10	6-cell operation—low battery indicator	DS8976	
	100		10	10	20-pin package version-DS8975	DS8978	
	400		9.5	45	Serial input	DS3654	
) (8)		300	9	4 line code input, low battery indicator	DS8868	
,	3		µA typ				
	200		300	9.5	4 line code input	B968SQ	
			typ			-	
			()	,	74-04 (1900) - 100	DS8664	
14	80		10	2	Un-board osc., 4 line code liiput, low battery		
		13	10	01	On-board osc., 4 line code input	DS8865	
		2	2 (: \$	thington of their o	DS8666	
	80	13	0	01	6 sink, 6 source outputs		
			<u>3</u>	IOS WALCH L	CMUS WAICH LED DISPLAT DRIVERS		
		IO MAX		VMAX		Devic	Device Number
Davice S/		(mA)			Comments	0°C to +70°C	-55°C to +125°C
	Sink	Source	Input	Aiddne			
Segment Drivers	vers						
7		10			Constant current output	DS8659	
O		10			Inverting output	DS8647	
6		10			Non-inverting output	DS8648	
Digit Drivers							
-	001		1,5	2		DS8658	
י ע	001	_	1,5	2		DS8646	
2	2			_	_		

GAS DISCHARGE DISPLAY DRIVERS

Device	Drivers/ Package	0	Device Number	
Туре		Comments	0°C to +70°C	-55°C to +125°C
Cathode drivers	7	8CD to 7-segment	DS8880	DS7880
	7	8CD to 7-segment with comma and DP	DS8884A	
	7	MOS to high voltage cathode buffer	DS8885	DS7885
	7 + DP	8CD to 7-segment with latch	DS8980	
	7 + DP	DS8980 except active low enable	DS8981	
	8	Active high inputs	DS8889	DS7889
Anode drivers	6	Active low inputs	DS8891	DS7891
	8	Active high inputs	DS8887	
	8	Active low inputs	DS8897	

VACUUM FLUORESCENT DISPLAY DRIVERS

Device Drivers/		0	Devic	Device Number	
Туре	Package	Comments	0°C to +70°C	-55°C to +125°C	
Ground driver (segments)	8	7-segment plus DP	DS8654		
Anode driver	8		DS8654		
(digit)	16	4 line BCD input	DS8881		

PRINTER DRIVERS

Device Type	Drivers/	Description	Devic	Device Number	
	Package		0°C to +70°C	-55°C to +125°C	
Mechanical printer		Relay driver	DS3680		
		10 hammer serial input driver	DS3654		
		Seiko model 310 print head,	DS8692,		
		interface set	DS8693,		
			DS8694		
Thermal printer		8-digit driver	DS8654		
		Diode matrix	DS8656		
		9-segment driver	DS8978		

DS8646 low voltage 6-digit LED driver

general description

The DS8646 is a 6-digit LED display driver designed specifically for electronic watches. Its inputs interface directly with CMOS watch circuits such as the MM5882, and its outputs sink typically 100 mA from a common cathode LED watch display.

The DS8646 is supplied in dice form.

features

- Direct interface with CMOS watch circuits
- Grouped inputs and outputs
- Low voltage operation
- Packaged devices available for evaluation

schematic diagram

connection diagram and chip pad layout

See NS Package N14A

Note 1: All dimensions in millinches.

Note 2: Die size 33 mils x 51 mils.

Note 3: Pads 4.0 mils square clear area.

absolute maximum ratings

Applied Voltage

$$V_{IN} = 1.5V$$

 $V_{OUT} = 5V$

electrical characteristics (Note 1)

 $2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 2.9 \text{V}; -5^{\circ} \text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ} \text{C},$ unless otherwise specified.

	PARAMETER	CONDITION	MIN	TYP	MAX	UNITS	
LiH	Input "ON" Current	V _{IN} = 1.0V, I _{OUT} = 56 mA	0.84	4.5		mA	
IIL	Input "OFF" Current	V _{IN} = 0.2V, V _{OUT} = 5.0V		-0.01	-20	μΑ	
VoL	Output "ON" Voltage	I _{OL} = 56 mA, I _{IN} = 840μA			0.40	V	
		I _{OL} = 84 mA, I _{IN} = 1.3 mA			0.55	V	
I _{CEX}	Output Leakage Current (6 Outputs Tied Together)	V _{IN} = 0.2V, V _{OUT} = 5V		0.07	1.0	μΑ	
IOL	Output Sink Current	V _{OL} = 0.55V, I _{IN} = 1.3 mA	84	100		mA	

Note 1: All references to V_{CC} apply on a system basis since the DS8646 has no V_{CC} connection.

DS8647, DS8648, DS8979 low voltage 9-segment LED drivers

general description

The DS8647 and DS8648 are 9-segment LED display drivers specifically designed for electronic watches. Their inputs interface directly with CMOS watch circuits and their outputs provide a constant current drive for common cathode LED watch displays. External resistors are not required. The DS8647 is an inverting driver, and the DS8648 is a non-inverting driver. Both circuits are supplied in dice form. The DS8979 is the DS8648 in a 20-pin package.

features

- DS8647 is an inverting driver
- DS8648 and DS8979 are non-inverting drivers
- Direct interface with CMOS watch circuit
- Internally set constant current drive
- Grouped inputs and outputs
- Packaged devices available for evaluation
- Low voltage operation

schematic diagrams

connection diagram and chip pad layout

Dual-In-Line Package

Order Number DS8647N, DS8648N or DS8979N See NS Package N22A

Note 1: All dimensions in millinches

Note 2: Die size 56 mils x 87 mils.

Note 3: Pad 4.1 mils square clear area.

Supply Voltage

Storage Temperature Range

Lead Temperature (Soldering, 10 seconds)

absolute maximum ratings (Note 1)

5V -65° C to +150° C 300° C

operating conditions

Supply Voltage (V_{CC})
Temperature (T_A)

MIN MAX 2.4 2.9

+70

0

UNITS

v °c

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DS8647			,			
ViH	Logical "1" Input Voltage		V _{CC} -0.4V			V
VIL	Logical "0" Input Voltage				V _{CC} -19	٧
HL	Input Current	$V_{CC} = Max$, $V_{IN} = V_{CC} - 2V$		-230	-300	μΑ
Чн	Input "OFF" Current	V _{CC} = Max, V _{IN} = V _{CC}		0	200	nA
IOFF	Output Leakage	V _{CC} = Max, V _{IN} = V _{CC} , V _{OUT} = 0V		-0.01	-10	μΑ
lout	Output Current	V _{CC} = 2.7V, V _{IN} = 0.5V, V _{OUT} = 2.15V	-7	-10	-14	mA
ICC(ON)	Supply Current (Only One Output "ON")	V _{CC} = 2.7V, V _{IN} = 0.5V, V _{OUT} = 2.15V		12.0	17	mA
ICC(OFF)	Supply Current	V _{CC} = Max, V _{IN} = V _{CC} , V _{OUT} = Open		0.03	1	μΑ
lout	Output Current Match	V _{CC} = 2.7V, V _{IN} = 0.5V, V _{OUT} = 2.15V			IOUT5±1	mA
DS8648, D	S8979		<u> </u>		<u> </u>	
V _{IH}	Logical "1" Input Voltage		1.9			٧
VIL	Logical ''0'' Input Voltage				0.4	٧
ΉΗ	Input Current	V _{CC} = Max, V _{IN} = 2V		40	150	μΑ
HL	Input "OFF" Current	V _{CC} = Max, V _{IN} = 0 V		0	-200	nA
OFF	Output Leakage	V _{CC} = Max, V _{IN} = 0V, V _{OUT} = 0V		-0.01	-10	μΑ
IOUT Output Current		V _{CC} = 2.7V, V _{IN} = 2V, V _{OUT} = 2.15V	-7	-10	-14	mA
ICC(ON)	Supply Current (Only Orie Output "ON")	$V_{CC} = 2.7V$, $V_{IN} = 2V$, $V_{OUT} = 2.15V$		12	17	mA
ICC(OFF)	Supply Current	V _{CC} = Max, V _{IN} = 0V, V _{OUT} = Open		0.03	1	μΑ
lout	Output Current Match	V _{CC} = 2.7V, V _{IN} = 2V, V _{OUT} = 2.15V			IOUT5±1	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS8647, DS8648 and DS8979. All typicals are given for $V_{CC} = 2.7V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

DS8654 8-output display driver (LED, VF, thermal printer) DS8656 diode matrix

general description

DS8654 is an 8-digit driver with emitter/follower outputs. It can source up to 50 mA at a low impedance, and operates with a constant internal drive current over a wide range of power supply-from 4.5V to 33V. The DS8654 can be used to drive electrical or mechanical, multiplexed or unmultiplexed display systems. It can be used as a segment driver for common cathode displays with external current limiting resistors or can drive incandescent or fluorescent displays directly, both digits (anodes) and segments (grids). It will be necessary to run the device at a lower duty cycle, to keep the maximum package dc power dissipation less than 600 mW while operating all 8 outputs at high supply voltage and large source current. The inputs are MOS compatible and eliminate the need for level shifting since inputs are referenced to the most negative supply of system.

system description

The DS8654 and DS8656 are specifically designed to operate a thermal printing head for calculator or other

uses. In this application the same segment in each digit is selected at the same time, reducing the overall time for a complete print cycle. The DS8654 is an 8-digit driver. With a 15-digit print head, two of the DS8654 are required.

The DS8656 diode arrays are used to prevent "sneak" currents in the resistive print head. In a 15-digit print head with one alphanumeric digit there are 119 resistor segments requiring 119 diodes. For ease of assembly, the DS8656 is configured in four groups of three common cathode diodes in each group. In the system, ten parts of DS8656 are required.

The whole system is designed to operate from a +19V supply for the print head and an 8-cell nickle-cadmium battery supplying 8V to $-11.6\mathrm{V}$ for the rest of the electronics. The 8-segment drive transistors require $\mathrm{LV}_{\mathrm{CER}}$'s of 33V min, B of > 100 at I $_{\mathrm{C}}$ = 500 mA, and $\mathrm{V}_{\mathrm{SAT}} < 1.0\mathrm{V}$ at 800 mA with 15 mA drive.

connection diagrams

Dual-In-Line Package

Order Number DS8656N See NS Package N16A

absolute maximum ratings DS8654 (Note 1) operating conditions DS8654 MIN MAX UNITS Supply Voltage 36V Supply Voltage (V_{CC}) 4.5 33 Input Voltage Temperature (TA) +70 Output Voltage $V_{CC} - 36V$ Storage Temperature Range -65°C to +150°C Maximum Package Power 600 mW Lead Temperature (Soldering, 10 seconds) 300°C

electrical characteristics DS8654 (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I _{IH}	Logical "1" Input Current	V _{CC} = Max, V _{IN} = 6.5V		390	500	μΑ
IIL	Logical "0" Input Current	V _{CC} = Max, V _{IN} = 0.4V		13	40	μΑ
I _{OH}	Logical "1" Output Current	V _{OUT} = V _{CC} - 33V		0.01	-100	μА
V _{OL}	Logical "O" Output Voltage	$V_{CC} = Max$, $I_{IN} = 500\mu A$, $I_{OH} = -50 \text{ mA}$		V _{cc} -1.8	V _{cc} -2.5	V
I _{CC(OFF)}	Supply Current	V _{CC} = Max, V _{IN} = V _{OUT} = Gnd	72.72	0.01	1.0	mA
I _{CC(ON)}	Supply Current (All Outputs "ON")	$V_{CC} = Max$, $V_{IN} = 6.5V$, $I_{OUT} = 0 \text{ mA}$		7.5	10	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS8654. All typicals are given for $V_{CC} = 30V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

electrical characteristics DS8656 ($T_A = 0^{\circ}C$ to +70°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VR	Peak Inverse Voltage	I _R ≈ 0.1 mA	35			V
V _F	Forward Voltage	I _F ≈ 50 mA			1.5	
t _r	Reverse Recov. Time	$I_F = 50 \text{ mA to } I_R = 0.1 \text{ mA at } V_R = 30 \text{V}$			1.0	μs

schematic diagram

typical applications

LED Display-0 mA to 50 mA Peak Segment Current

typical applications (con't)

LED Display-50 mA to 100 mA Peak Segment Current

NPUTS OS8654 ORID ORID ORID ORID ORID OS8654 AC ACATHODE FILAMENT FILAMENT ORID OS8654 OS8654 OUGHT INPUTS

DS8658 low voltage 4-digit LED driver

general description

The DS8658 is a 4-digit LED display driver designed specifically for electronic watches. Its inputs interface directly with CMOS watch circuits such as the MM5829, and its outputs sink typically 100 mA from a common cathode LED watch display.

The DS8658 is supplied in dice form. Plastic DIP parts are available for device evaluation.

features

- Direct interface with CMOS watch circuits
- Grouped inputs and outputs
- Low voltage operation
- Packaged devices available for evaluation

schematic diagram

connection diagram and chip pad layout

Order Number DS8658N See NS Package N14A

Note 2: Die size 33 mils x 36 mils.

Note 3: Pads 4.0 mils square clear area

absolute maximum ratings

Applied Voltage

electrical characteristics (Note 1)

2.7V \leq V_CC \leq 2.9V; $-5^{\circ}C \leq$ T_{A} \leq +70°C, unless otherwise specified.

PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
I _{tH}	Input 'ON" Current	V _{IN} = 1.1V, I _{OUT} = 56 mA	0.84	6		mA
I _{IL}	Input "OFF" Current	V _{IN} = 0.2V, V _{OUT} = 5V		-0.01	-20	μА
Vol	Output "ON" Voltage	I _{OL} = 56 mA, I _{IN} = 840μA, V _{CC} = 2.4V			0.40	V
		I_{OL} = 84 mA, I_{IN} = 1.3 mA, V_{CC} = 2.7V			0.55	V
I _{CEX}	Output Leakage Current (4 Outputs Tied Together)	V _{IN} = 0.2V, V _{OUT} = 5V		0.07	1.0	μΑ
IoL	Output Sink Current	V _{OL} = 0.55V, I _{IN} = 1.3 mA	84	100		mA

Note 1: All references to $V_{\hbox{\scriptsize CC}}$ apply on a system basis since the DS8658 has no $V_{\hbox{\scriptsize CC}}$ connection.

DS8659 low voltage 7-segment LED driver

general description

The DS8659 is a 7-segment LED display driver specifically designed for electronic watches. Inputs interface directly with CMOS watch circuits such as the MM5829 and outputs provide a constant current drive for common cathode LED watch displays. The DS8659 provides 10 mA output current drive typically, thus no external resistors are needed.

The circuit is supplied in dice form. Plastic DIP parts are available for device evaluation.

features

- Direct interface with CMOS watch circuit
- Internally set constant current drive
- Grouped inputs and outputs
- Packaged devices available for evaluation
- Low voltage operation

schematic diagram

connection diagram and chip pad layout

Dual-In-Line Package OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 15 14 13 12 11 10

Order Number DS8659N See NS Package N18A

Note 1: All dimensions in millinches.

Note 2: Die size 51 mils x 69 mils.

Note 3: Pads 4.5 mils square clear typically.

absolute maximum ratings (Note 1)

Maximum Applied Voltage Minimum Applied Voltage

 $V_{CC} = -0.3V$

electrical characteristics (Notes 2 and 3)

 $2.4 \text{V} \leq \text{V}_{CC} \leq 2.9 \text{V}; -5^{\circ}\text{C} \leq \text{T}_{A} \leq \pm 70^{\circ}\text{C}, \text{ unless otherwise specified.}$

	PARAMETER	CONDITION	ıs	MIN	TYP	MAX	UNITS
Тін	Input Current	V _{IN} = 0.8V, V _{CC} = 2.7V			-150	-300	μΑ
HL	Input OFF Current	V _{IN} = V _{CC} - 0.2V	$V_{IN} = V_{CC} - 0.2V$			-200	nA
ICEX	Output OFF Current	V _{IN} = 2.9V, V _{CC} = 3.5V, V _{OUT} = 1.3V			0.06	2	μΑ
ТОН	Output ON Current	V _{IN} = 0.5, V _{CC} = 2.4, V _C	V _{IN} = 0.5, V _{CC} = 2.4, V _{OUT} = 2.15				mA
		V 05 V 015	V _{CC} = 2.7	-7	10		mA
		V _{IN} = 0.5, V _{OUT} = 2.15	V _{CC} = 2.7 V _{CC} = 2.4	-4.5			mA
ICC	Supply Current	V _{CC} = 2.7V, V _{IN} = 0.5V, One Input—Output Pair O			12	15	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -5° C to +70° C range for the DS8659. All typical values are for $T_A = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

National Semiconductor

Display Drivers

DS7664/DS8664 14-digit decoder/driver with low battery indicator

general description

The DS7664/DS8664 circuit is a 14-digit decoder/driver with an 80 mA sink capability. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. The enable input permits interdigit blanking of the decoded outputs. An open-collector output oscillator is provided for system timing (two passive external components are required). A low-battery indicator is provided at the "C" input with a nominal trip point of 3.25V at 25°C.

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation
- Low-battery indicator accuracy provides consistent low-battery indication

logic and connection diagrams

absolute maximum rating	JS (Note 1)	operating condit	ions		
			MIN	MAX	UNITS
Supply Voltage	10V	Supply Voltage (VCC)			
Input Voltage	±10V	DS8664	2.9	9.5	V
Input Current	±1.5 mA	D\$7664	3.5	9.5	V
Output Voltage Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	10V -65°C to +150°C 300°C	Temperature (T _A) DSB664 DS7664	0 -55	+70 +125	°c °c

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIO	NS	MIN	TYP	MAX	UN
V _{IH}	Logical "1" Input Voltage Decoder Inputs	V _{CC} = Max, V _{ENABLE} = 4.9V	I _{IN} = 260μA I _{IN} = 1400μA	0.50		1.50	
V _{IH}	Enable Input	V _{CC} = Max, I _{ENABLE} = 260μA,	1 27	3.0	4.2	5.1	<u> </u>
ΊΗ	Logical "1" Input Current Decoder Inputs	V _{CC} = Max, V _{ENABLE} = 4.9V	<u> </u>	260			
<u>пн</u>	Enable Input	V _{CC} = Max		260			
VIL	Logical "0" Input Voltage	$V_{CC} = Max, V_{ENABLE} = 4.9V,$ $I_{II} = 25\mu A$	A _{IN} ,B _{IN} ,D _{IN}			0.30 0.50	
lir.	Logical "0" Input Current	V _{CC} = Max, V _{ENABLE} = 4.9V				25	
Voн	C Input (Low-Battery Output)	$V_{CC} = 3.1V, T_A = 25^{\circ}C$ $I_{IN} = 300\mu A$ $I_{IN} = 400\mu A$		4.9	7.3 10.0		
VOL	C Input (Low-Battery Output)	V _{CC} = 3.4V, I _{LN} = 1300μA, T _A = 25°C		0.5	1.0	3.0	\vdash
ЮН	Logical "1" Output Current Except Pin R	V _{CC} = Max, V _{OH} = 10.0V, V _{ENABLE} = 4.9V V _{BC} = 0.6V				50	
los	Output Short Circuit Current Pin R Only	V _{CC} = Max, V _{RC} = 0.6V		-0.15	−0.2B	-0.45	, r
VOL	Logical "0" Output Voltage Digit Outputs	V _{CC} = Min, I _{OL} = B0 mA, V _{ENA}	BLE = 4.9V		0.35	0.55	
VOL(OSC)	Oscillator Output	V _{CC} = Min, I _{OL} = 6 mA, V _{RC} = 1	1.5V		0.20	0.55	
VOL	Pin R	V _{CC} = Min, I _{OL} = 60μA, V _{RC} = 1	1.5V		0.10	0.25	
¹ CC	Supply Current-Enabled	V _{CC} = Max, V _{ENABLE} = 4.9V			15.0	22.0	,
^I CC	Supply Current-Disabled	V _{CC} = Max, V _{ENABLE} = 1.0V	V _{CC} = Max, V _{ENABLE} = 1.0V		6.0	12.0	,
fosc	Oscillator Frequency	R _T = 35k ±2%, C _T = 100 pF ±5%	V _{CC} = Min to 4.5V	300	350	400	k
		$R_T = 33k \pm 2\%$, $C_T = 100 pF \pm 5\%$	$V_{CC} = 7.9V$ to Max	320	360	400	k
D.C.	Duty Cycle (tpWH/ τ)	R _T = 35k ±2%, C _T = 100 pF ±5%		0.46	0.56	0.66	
		$R_T = 33k \pm 2\%$, $C_T = 100 pF \pm 5\%$	$V_{CC} = 7.9V$ to Max	0.46	0.56	0.66	1

switching characteristics $V_{CC} = 4.0V$, $T_A = 25^{\circ}C$ unless otherwise specified.

PARAMETER		CONDITIONS		TYP	МАХ	UNITS
^t pd1 ^{or t} pd0	Propagation Delay From A, B, C, D Inputs to Digit Outputs	R _{1N} = B.2k, V _{ENABLE} JACK = 10V, R _L = 100Ω, C _L = 50 pF			500	ns
t _{pd0}	Propagation Delay to a Logical "0" From Enable Input to Digit Outputs	R_{IN} = 8.2k, R_L = 100 Ω , C_L = 50 pF	30	В0	200	ns
^t pd1	Propagation Delay to a Logical "1" From Enable Input to Digit Outputs	$R_{1N} = B.2k$, $R_{L^{\bullet}} = 100\Omega$, $C_{L} = 50 pF$	100	250	500	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7664 and across the 0° C to $+70^{\circ}$ C range for the DS8664; all typical values are given for $V_{CC} \approx 4.0V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

8.4V

ac test circuits and switching time waveforms

Note: Input voltage rise and fall times are 120 ns from 10% to 90% points.

truth table

A _{IN}	B _{IN}	CIN	D _{IN}	DIG. OUT ON
0	0	0	0	NONE
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9
0	1	0	1	10
1	1	0	1	11
0	0	1	1	12
1	0	1	1	13
0	1	1	1	14
1	1	1	1	NONE

DS8665 14-digit decoder/driver (hi-drive)

general description

The DS8665 circuit is a 14-digit decoder/driver with 13 mA nominal source current capable of driving external grounded-emitter transistor bases. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. An enable input is provided to allow for inter-digit blanking of the decoded outputs. An open-collector output oscillator is provided for system timing (two passive external components are required).

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation

logic and connection diagrams

5

absolute maximum ratings (Note 1)

operating conditions

Supply Voltage Input Voltage Input Current Output Voltage Storage Temperature Range	10V ±10V ±1.5 mA 10V -65°C to +150°C	Supply Voltage (V_{CC}) Temperature (T_A)	MIN 7.9 0	MAX 9.5 +70	UNITS V °C
Storage Temperature Range	-65°C to +150°C				
Lead Temperature (Soldering, 10 seconds)	300° C				

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITION	s	MIN	TYP	MAX	UNITS
V _{IH}	Logical "1" Input Voltage Decoder Inputs	V _{CC} = Max, V _{ENABLE} = 6.7V	I _{IN} = 390μΑ I _{IN} = 1400μΑ	0.50		1 50	
V _{IH}	Enable Input	V _{CC} = Max, I _{ENABLE} = 140µA	V _{CC} = Max, I _{ENABLE} = 140µA		6_3	7.0	V
I _{IH}	Logical "1" Input Current Decoder Inputs	V _{CC} = Max, V _{ENABLE} = 6.7V		390			μΑ
I _{IH}	Enable Input	V _{CC} = Max		140			μΑ
V _{IL}	Logical "O" Input Voltage	V _{CC} = Max, V _{ENABLE} ₹ 6 7V, I _{IL} = 25µA				0.30	V
I _{IL}	Logical "O" Input Current	V _{CC} = Max, V _{ENABLE} = 6.7V				25	μΑ
I _{OH(OSC)}	Oscillator Output	V _{CC} = Max, V _{OH} 10.0V, V _{BC} = 0.6V				50	μΑ
Гон	Logical "1" Output Current Digit Outputs	$V_{CC} = Max, V_{OH} = 100V, V_{ENABLE} = 6.7V$		7.0	-13.0	- 20 0	mA
Ios	Output Short Circuit Current (Pin R Only)	V _{CC} = Max, V _{Rd} - 0 6V		-0 15	-0.30	-0.45	mA
V _{OL}	Logical ''0'' Output Voltage Digit Outputs	V _{CC} = Max. I _{OL} = 40µA, V _{ENAB}	3LE = 6.7V			0 40	٧
V _{OL(OSC)}	Oscillator Output	V _{CC} = Min, I _O = 6 mA, V _{RC} =	1.5V		0.20	0.50	V
Vot	P.n R	V _{CC} = M·n, I _O = 60μA, V _{RC} =	1.5V		0 10	0 20	V
Icc	Supply CurrentErabled	V _{CC} = Max, V _{ENABLE} = 6.7V, V	/ _{OH} = 1.00V		26.0	35.0	mA
Icc	Supply CurrentDisabled	V _{CC} = Max, V _{ENABLE} = 1 0V			5.0	7.0	mA
fosc	Oscillator Frequency	$R_{T} = 33 \text{ k} \pm 2^{\circ}$, $C_{T} = 100 \text{ pF} \pm 5\%$ $V_{CC} = M_{ID}$ $V_{CC} = M_{AX}$		320	360	400	kHz
D.C	Duty Cycle (t _{PWH} 17)	$R_T = 33k \pm 2\%$, $C_T = 100 pF \pm 5\%$	V _{CC} = Min V _{CC} = Max	0.46	0 56	0.66	

switching characteristics $V_{CC} = 8.4 V$, $T_A = 25^{\circ} C$ unless otherwise specified

****	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1} or t _{pd0}	Propagation Delay From A, B, C, D Inputs to Digit Outputs	$R_{IN} = 8 2k$, $V_{ENABLE JACK} = 10V$, $C_L = 50 pF$			500	ns
t _{pd0}	Propagation Delay to a Logical "0" From Enable input to Digit Outputs	$R_{IN} = 8.2k, C_L = 50 pF$		200	300	ns
t _{pd1}	Propagation Delay to a Logical "1" From Enable Input to Digit Outputs	R _{IN} = 8 2k, C _L = 50 pF		10	50	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range for the DS8665; all typicals are given for V_{CC} = 8.4V and T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuits and switching time waveforms

Note: Input rise and fall times are 120 ns between 10% and 90% points.

truth table

A _{IN}	B _{IN}	C _{IN}	OiN	DIG. OUT ON
0	0	0	0	NONE
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9
0	1	0	1	10
1	1	0	1	11
0	0	1	1	12
1 -	0	1	1	13
0	1	1	1	14
1	1	1	1	NONE

DS8666 14-digit decoder/driver (P.O.S.)

general description

The DS8666 circuit is a 14-digit decoder/driver. Six outputs have an 80 mA sink capability, and eight of the outputs have a 13 mA nominal source drive capability to drive external grounded-emitter transistor bases. The circuit has current threshold inputs, and is designed to be driven by P-channel MOS. An enable input is provided to allow for inter-digit blanking of the decoded outputs. An open-collector output oscillator is provided for system timing (two passive external components are required).

features

- Oscillator frequency accuracy allows maximum system speed
- Inter-digit blanking with the enable input provides ghost-free display operation

logic and connection diagrams

absolute maximum ratings (Note 1)

operating conditions

Supply 'Voltage	10V		MIN	MAX	UNITS
Input Voltage	10∨	Supply Voltage (VCC)	7.9	9.5	V
Input Current	±1,5 mA	- 00			
Output Voltage	10V	Temperature (T _A)	0	+70	°C
Storage Temperature Range	- 65 C to +150° C				
Lead Temperature (Soldering, 10 seconds)	300° C				

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
VIH	Logical "1" Input Voltage Decoder Inputs	VCC = Max, VENABLE = 6 7V	I _{IN} = 390 μA	U.50		1.50	\
VIH	Enable Input	VCC = Max, IENABLE = 140 μΑ		5.0	6.3	7.0	\
ΊΗ	Logical "1" Input Current Decoder Inputs	VCC = Max, VENABLE = 6.7V		390			μA
hн	Enable Input	V _{CC} = Max		140			μΑ
VIL	Logical ''0'' Input Voltage	V _{CC} = Max, V _{ENABLE} = 6.7V,	I _{IL} = 25 μA			0.30	\
^I IL	Logical "O" Input Current	VCC = Max, VENABLE = 6.7V				25	μΑ
OH(OSC)	Oscillator Output	VCC = Max, VOH = 10.0V, VRC	= 0.6V			50	μΑ
Юн	Digit 1 - 8 Outputs	VCC = Max, VOH = 1 00V, VEN	ABLE = 6.7V	-7.0	13.0	-20.0	m.A
Іон	Logical "1" Output Current Digit 9–14 Outputs	V _{CC} = Max, V _{OH} = 10.0V, V _{EN}	IABLE = 6.7V			50	μA
los	Athtput Short-Circuit Current Pin R Chly	V _{CC} = Max, V _{RC} = 0 6V		£ 1E	0 30	-0.45	m.A
Vol.(osc)	Oscillator Output	VCC TMin, IOL - 6 mi. VRC -	15√			0.50	V
Vŋ _i	Locical "0" Output Voltage Lugit 1 - 8 Outputs Digit 9-14 Outputs Pin B	VCC - Min, VENABLE - 6.7V			0.35 0.10	0.40 0.50 0.20	V
		mente como destinadoras delegación delegación con este establista delegación de place de la productiva de la co	V _{RC} = 1.5V				
lcc	Supply Current - Enabled	VCC = Max, VENABLE = 6.7V, (Sourcing Output "ON")	V _{OH} = 1.00V,		26.0	35 0	mA
lcc	Supply Current - Disabled	VCC = Max, VENABLE = 1-0V			5.0	7.0	m.A
fosc	Oscillator Frequency	R _T = 33k ±2%, C _T = 100 pF ±5°	V _{CC} = Min V _{CC} = Max	320	360	400	kHz
D.C	Duty Cycle (tpWH/τ)	R _T = 33k +2%, C _T = 100 pF ±5%	VCC = Max	0.46	0.56	0.66	

switching characteristics V_{CC} = 8.4V, T_A = 25°C

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
^t pd() ^{or} t _{pd(1}	Propagation Delay From A, B, C, D Inputs to Digit Outputs	RIN = 8.2k. VENABLE JACK = 10V CL = 50 pF			500	ns
t _{od} ,	Propagation Delay From Enable Input to Digit	P _{1N} = 8.2k, C _ξ = 50 μF			500	ns
	Outputs		i	i		

Note 1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be go cannot

Note 2: Unless otherwise specified min/max limits apply across the 0°C to $\pm70^{\circ}$ C for the DSR666. All typicals are given for V_{CC} = 8.4V and T_{A} = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuits and switching time waveforms

Note. Input rise and fail times are 120 ns between 10% and 90% points

truth table

AIN	BIN	CIN	DIN	DIG OUT ON
0	0	0	0	NONE
1	0	Ú	υ	1
0	1	0	0	2
1	1	0	0	3
0	U	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	U	7
0	0	0	1	8
1	0	0	1	G G
0	1	0	1	10
1	1	0	1	11
0	u	1	1	1.2
. 1	Ú	1		13
0	1	1		14
1	1	1	1	NONE

DS8669 2-Digit BCD to 7-Segment Decoder/Driver

General Description

The DS8669 is a 2-digit BCD to 7-segment decoder/driver for use with common anode LED displays. The DS8669 drives 2 7-segment LED displays without multiplexing. Outputs are open-collector, and capable of sinking 25 mA/segment. Applications consist of TV and CB channel displays.

Features

- Direct 7-segment drive
- 25 mA/segment current sink capability
- Low power requirement—16 mA typ
- Very low input currents—2 µA typ
- Input clamp diodes to both VCC and ground
- No multiplexing oscillator noise

Logic and Connection Diagrams

Dual-In-Line Package

TDP VIEW

Order Number DS8669N See NS Package N24A

Absolute Maximum Ratings (Note 1)

Operating Conditions

			WIIN	WAX	UNITS
Supply Voltage	7V	Supply Voltage (VCC)	4.5	6.0	V
Input Current	20 mA	Temperature (TA)	0	+70	°C
Output Voltage	12∨				
Storage Temperature Range	–65°C to +150°C				
Lead Temperature (Soldering, 10 seconds)	300°C				

Electrical Characteristics V_{CC} = 5.25V, T_A = 25°C unless otherwise specified (Note 2)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Logical "1" Input Voltage		2.0		V _{CC} +0.6	V
	Logical ''0'' Input Voltage		-0.3		0.8	V
	Logical "1" Output Leakage Current Logical "0" Output Voltage Logical "1" Input Current Logical "0" Input Current	$V_{OUT} = 10V$ $I_{OL} = 25 \text{ mA}$ $V_{IN} = V_{CC}$ $V_{IN} = 0V$		0.4 2.0 -0.1	50 0.8 10 -10	μΑ V μΑ μΑ
	Supply Current Input Clamp Voltage	All Outputs Low I _{IN} = 10 mA I _{IN} = -10 mA		16	25 V _{CC} +1.5V -1.5	mA V V
^t pd0	Propagation Delay to a Logical "0" From Any Input to Any Output				10	μs
^t pd1	Propagation Delay to a Logical "1" From Any Input to Any Output				10	μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics"

provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to +70°C range for the DS8669. All typicals are given for $V_{CC} = 5.25V$

and $T_A = 25^{\circ}$ C. **Note 3:** All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

IN	PUTI	EVE	LS						SEG	MENT	OUT	PUTS							
ĐΝ	CN	BN	ΑN	a1	b1	c1	d1	e1	f1	g1	a2	52	¢2	d2	e2	f2	g2	DISPLAY 1	DISPLAY 2
0	0	0	0	0	0	0	0	0	0	1	0	Ü	U	Ū	U	0	7	[]	17
0	Ú	0	1	1	0	0	1	1	1	1	1	0	0	1	1	1	1	/	/
0	U	1	0	0	0	1	0	0	j	Ú	G	0	1	0	0	1	0	; <u> </u>	, <u>=</u> 7
0	O	7	1	0	0	U	O	1	1	0	C.	0	Û	0	1	1	0	<u> </u>	<i>Ξ</i> <i>Ξ</i>
0	1	0	0	1	0	0	1	1	0	0	1	О	0	1	1	Ū	d)	/_/	<i>'-j</i>
0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	Ò	5	5
0	1	1	0	0	1	0	0	0	0	0	0	1	6)	0	0	0	O	15	15
0	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	7	7
1	Ų	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0		∄
1	Ō	0	1	0	0	0	0	1	0	0	0	0	O	0	1	0	0	<u> </u>	9
1	Ð	1	0	0	1	1	0	0	0	1	1	0	0	1	O	0	0		
1	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	<i>1</i> -7	1_1
1	1	0	O	0	0	1	1	0	0	0	1	1	1	0	0	0	1	<i>F</i> ′	L
1	1	0	1	0	1	1	0	O	0	0	0	1	1	1	0	0	0	E	/=
1	1	ī	()	1	1	1	1	1	1	O	1	1	1	1	1	!	ر.		
1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	(Blank)	(Rlank)

[&]quot;0" = Segment ON

Display Segment Notation

AC Test Circuit

Switching Time Waveforms

^{1&}quot; = Segment (IFF

DS8692, DS8693, DS8694 Printing Calculator Interface Set

General Description

Two DS8692 IC's and one each of the DS8693 and DS8694 provide the complete interface necessary between the MM5787 calculator chip and the Seiko Model 310 printing head. The DS8692 is an array of eight common emitter output transistors each papable of sinking 350 mA, with open collector saturating outputs. The DS8693 contains the interface rouge for the color solenoid driver, motor driver, and Accustom character select solenoid drivers. The DS8694 contains the interface logic for 8-column solenoid drivers plus the clock oscillator and timing signal buffer. The color and character select solenoid latch outputs of both are

constant current outputs supplying the base current for the DSS692 arrays. These outputs also feature active pull-down. The motor drive latch output is an open collector capable of sinking 20 mA

Features

- Provides complete interface parkage for printing calculators with minimum number of packages and minimum number of external components
- 350 mA sink capability

Connection Diagrams

Order Number DS8692N See NS Package N22A

Dual-In Line Package

Dual In-Line Package

Order Number DS8693N See NS Package N22A

Order Number DS8694N See NS Package N24A

Absolute Maximum Ratings DS8692-Transistor Array (Note 1)

Collector to Base Voltage	25V	Power Dissipation ($T_A = 25^{\circ}C$)	650 mW
Collector to Emitter Voltage	25 V	Operating Junction Temperature	150°C max
Collector to Emitter Voltage (Note 4)	15V	Operating Temperature Range	0°C to +70°C
Emitter to Base Voltage	6V	Storage Temperature Range	-65°C to +150°C
Collector Current (Continuous)	0.4A	Lead Temperature (Soldering, 10 seconds)	300° C

Electrical Characteristics DS8692 (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VCEO	Collector to Emitter Breakdown Voltage	I _C = 500 μA, I _B = 0	15			V
VCES	Collector to Emitter Breakdown Voltage	I _C = 1 mA, V _{BE} = 0	25			V
V _{CBO}	Collector to Base Breakdown Voltage	I _C = 1 mA, I _E = 0	25			V
VCE(SAT)	Collector to Emitter Saturation Voltage	I _C = 350 mA, I _B = 7.0 mA, (Note 7)		0.6	1.0	V
V _{BE} (SAT)	Base to Emitter Saturation Voltage	Ic = 350 mA, Ig = 7.0 mA, (Note 7)		0.B	1.05	V

Absolute Maximum Ratings DS8693 (Note 1)

Operating Conditions DS8693

			MIN	MAX	UNITS
Supply Voltage	12V	Supply Voltage (VCC)	8.5	11.0	V
Input Voltage	12V				_
Output Voltage		Temperature (T _A)	0	+70	°C
All Pins Except Pin 13	12V				
Pin 13	19V				
Storage Temperature Range	-65°C to +150°C				

300° C

Electrical Characteristics DS8693 (Notes 2 and 3)

Lead Temperature (Soldering, 10 seconds)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
COLUMN D	RIVERS		•			
IIN	Input Current	V _{IN} = 2.7V	50			μΑ
		V _{IN} = 9.5V	<u> </u>		250	μΑ
VOL	Output OFF Voltage	V _{CC} = Min, V _{IN} = 2.7V, V _{CLOCK} = 3.5V, I _{OUT} = 1 mA			0.4	V
ЮН	Output ON Current	V _{CC} = Min, V _{IN} = 7.0V, V _{CLOCK} = 3.5V, V _{OUT} = 1.0V	7		-17	mA
IOS	Output Short Circuit Current	ut Short Circuit Current $V_{CC} = Max, V_{IN} = 2.7V, V_{CLOCK} = 3.5V, V_{OUT} = 0V$			-1.2	mA
CLOCK INP	UT		· · · · · · · · · · · · · · · · · · ·	L	<u> </u>	
IIN	Input Current	V _{IN} = 3.5V			300	μΑ
		V _{IN} = 1.6V	50			μΑ
VIH	Logical ''1" Input High Voltage		3.5			V
VIL	Logical "0" Input Low Voltage				1.6	V
MOTOR DR	IVER	•			1	
IN(PRINT)	Input Current	V _{IN} = 2.3V	50			μΑ
		V _{IN} = 9.5V			250	μΑ
IIL(STOP)	Input Low Current (Stop)	V _{CC} = Min, V _{IN(STOP)} = 0.4V, (Stop Switch Closed)			-700	μΑ
VIH(STOP)	Input High Voltage (Stop)	V _{CC} = Max, I _{IN} (STOP) = -10 μA, (Stop Switch Open)			2.5	V
VOL	Output Low Voltage	VCC = Min, VPRINT = 7V, IOUT = 15 mA			0.5	V

55

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
MOTOR DR	IVER (Continued)	-				
lox	Output Leakage Current	V _{CC} = Max, V _{PRINT} = 2.3V, V _{STOP} = 0.8V, V _{OUT} = 15V			100	μΑ
TIH(STOP)	Logical "1" Input High Current				-10	μА
COLOR DR	IVER					
IIN	Input Current	V _{IN} = 3.5V			300	μΑ
		V _{IN} = 1.7V	50			μΑ
VOL	Output OFF Voltage	V _{CC} = Min, V _{IN} = 1.7V, I _{OUT} = 1 mA			0.4	V
Юн	Output ON Current	V _{CC} = M _{IN} , V _{IN} = 3.5V, V _{OUT} = 1.0V	-8		-18	mA

Absolute Maximum Ratings DS8694 (Note 1)		Operating Conditions DS8694					
			MIN	MAX	UNITS		
Supply Voltage	12V	Supply Voltage (V _{CC})	8.5	11.0	V		
Input Voltage All Pins Except Pin 15 Pin 15 Output Voltage Storage Temperature Range Lead Temperature (Soldering 10 seconds)	12V 19V 12V –65°C to +150°C 300°C	Temperature (T _A)	0	+70	°C		

VCC = Max, VCOLUMN IN/VPRINT = 0V.

VCOLOR = 0V, VCLOCK = 3.5V

Electrical Characteristics DS8694 (Notes 2 and 3)

Stand-by Supply Current,

(Note 6)

ICC(SB)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
COLUMN E	DRIVER					
IIN	Input Current	V _{IN} = 2.7V			50	μΑ
		V _{IN} = 9.5V			250	μΑ
VOL	Output OFF Voltage	$V_{CC} = M_{IR}, V_{IN} = 2.7V, V_{CLOCK} = 3.5V,$ $I_{OUT} = 1 \text{ mA}$			0.4	V
ЮН	Output ON Current	V _{CC} = Min, V _{IN} = 7.0V, V _{CLOCK} = 3.5V, V _{OUT} = 1.0V	-7		-17	mA
IOS	Output Short-Circuit Current	V _{CC} = Max, V _{IN} = 2.7V, V _{CLOCK} = 3.5V, V _{OUT} = 0V			-1.2	mA
CLOCK IN	PUT					
IIN	Input Current	V _{IN} = 3.5V			300	μА
-114		V _{IN} = 2.7V	50			μА
Чн	Logical "1" Input High Voltage		3.5			
11L	Logical "0" Input Low Voltage				1.6	V
TIMING BU	JFFER					
IIN	Input Current	V _{IN} = 2V			-50	μΑ
		V _{1N} = 17V			880	μΑ
VOL	Output Low Voltage	I _{OUT} = 50 μA, V _{IN} = 10V			0.5	v
VOH	Output High Voltage	I _{OUT} = -50 μA, V _{IN} = 7V	V _{CC} 1.0			v
OSCILLAT	OR					
fosc	Frequency	$V_{CC} = Max$, R = 18k, C = 0.0015 μ Fd, (Note 5)	85	100	115	kH;
VOL	Output Low Voltage	V _{CC} = M _I n, I _{OUT} = 50 μA			0.5	V
Vон	Output High Voltage	I _{OUT} = -50 μA	V _{CC} -1.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
d	Duty Cycle	V _{CC} = Max	40	50	60	%
Vosc	Osc. V _{CC} Turn ON Voltage		6.0	7.7	8.5	
ICC(SB)	Stand-by Supply Current	V _{CC} = Max, V _{COLUMN IN} / V _{PRINT} = 0V, I _{CLOCK} = 300 μA			55	mA

Switching Characteristics DS8694

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$ (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
COLUMN DRIV	VERS (OS8693, OS8694) (Figure 3)					
PWCOLUMN	Column In Pulse Width		1.1			μs
PWCLOCK	Clack Pulse Width		10			μs
t _d	Delay of Column In Pulse After Clock Transitions to Low State for Output to Latch		0.1			μs
^t PD0	Propagation Delay to a Logical "0" From Clock to Column Out Output	Column In = 0V			10.0	μs
tPD1	Propagation Delay to a Logical "1" From Clock to Column Output	Column In = 7V			1300	μs
tPD0	Propagation Delay to a Logical "O" From Column In to Column Out	Clock = 7V			10	μs
^t PD1	Propagation Delay to a Logical "1" From Column In to Column Out	Clock = 7V			1300	μs
COLOR DRIVE	R (DS8693) (Figure 4)				<u> </u>	L
^t PD0	Propagation Delay to a Logical "O" From Color In to Color Out				10.0	μs
^t PD1	Propagation Delay to a Logical "1" From Color In to Color Out				10.0	μs
MOTOR DRIVE	ER (D\$8693) (Figure 6)			L		
PWPRINT	Print Signal Pulse Width		1			μs
PWSTOP	Stop Signal Pulse Width		1			μs
PWCLOCK	Clock Pulse Width		1			μs
^t PD0	Propagation Delay to a Logical "O" From Print to Motor Drive Out				10	μs
^t PD1	Propagation Delay to a Logical "1" From Motor Stop (High-to- Low Transition) to Motor Drive Out	Print = 0V, Clock = 7.0V			10	μs
TIMING SIGNA	L BUFFER (DS8694) (Figure 5)	<u> </u>		<u> </u>		
PWTIMING	Timing Signal Pulse Width		1	1000		ms
t _r	Rise Time	CLOAD = 35 pF			500	ns
tf	Fall Time	CLOAD = 35 pF			500	ns
tPD0	Propagation Delay to a Logical "0" From Timing In to Timing Out				10	μs
tPD1	Propagation Delay to a Logical "1" From Timing In to Timing Out				10	μs
CLOCK OSCILL	ATOR (D\$8694) (Figure 7)		1	L		
fosc	Oscillator Frequency	(Note 5)	85	100	115	kHz
d	Duty Cycle		40	50	60	%
	Rise Time	CLOAD = 70 pF			500	ns
t _r						

Note 1 - "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS8692, DS8693, DS8694. All typicals are given for V_{CC} = 10V and T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute basis.

Note 4: Ratings refer to a high current point where collector-emitter voltage is lowest.

Note 5: Oscillator frequency is determined by external R between "Osc R" and "Osc C" and external C from "Osc C" to ground, $2k > R > 20\kappa$.

Note 6: Column outputs operate on approximately 1/16 duty cycle in normal operation.

Note 7: Measured with one output on at a time.

System Connection Diagram

Logic and Timing Diagrams

Switching Time Waveforms

FIGURE 6. DS8693 Motor Drive Latch

FIGURE 7. DS8694 Oscillator Diagram

DS7856/DS8856, DS8857, DS7858/DS8858 BCD-to-7-segment LED drivers general description

This series of 7-segment display drivers fulfills a wide variety of requirements for most active high (common cathode) Light Emitting Diodes (LEDs). Each device fully decodes a 4-bit BCD input into a number from 0 through 9 in the standard 7-segment display format and BCD numbers above 9 into unique patterns that verify operation. All circuits operate off of a single 5.0V supply.

The DS7856/DS8856 has active-high, passive pullup outputs which provide a typical source current of 6.0 mA at an output voltage of 1.7V. The applications are the same as for the DM5448/ DM7448 except that more design freedom is allowed with higher source current levels. This circuit was designed to drive the MAN-4 or equivalent type display directly without the use of external current limit resistors, and replaces the MSD101.

The DS8857 has active-high outputs and is designed to be used with common cathode LED's in the multiplex mode. It provides a typical source current of 50 mA at an output voltage of 2.3V.

In addition, with the use of an external current limit resistor per segment, this circuit can be used in higher current non-multiplex LED applications. It replaces the MSD102.

The DS7858/DS8858 has active high outputs with source current adjustable with the use of external current limit resistors, one per segment. This feature allows extreme flexibility in source current value selection for either multiplex or non-multiplex common cathode LED drive applications. It allows the system designer freedom to tailor the drive current for his particular applications.

features

- Lamp-test input
- Leading/trailing zero suppression (RBI and RBO)
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and LS compatible
- Input clamping diodes

connection diagram

Order Number DS7856J, DS8856J, DS8857J, DS7858J, DS8858J See NS Package J16A

Order Number DS8856N or DS8858N See NS Package N16A

Order Number DS7856W or DS7858W See NS Package W16A

output display

absolute maximum ra	tings (Note 1)	operating conditions					
			MIN	MAX	UNITS		
Supply Voltage	7 OV	Supply Voltage (VCC)					
Input Voltage	5,5 V	DS7856, DS7858	4.5	5.5	V		
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	-65°C to ±150°C 300°C	DS8856, DS8857 DS8858	4.75	5 25	V		
Power Dissipation	600 mW	Temperature (T _A)					
•		DS7856, DS7858	-55	+125	-C		
		D\$8856, D\$8857 D\$8858	0	+70	С		
		Output Voltage					
		All Circuits		5 5	V		
		Output Sink Current (per	Segment)				
		DS7856, DS8856		6 4	mA		
		Output Source Current (p	er Segment)				
		D\$8857		60	mA		
		D\$7858, D\$8858		50	mA		

electrical characteristics (Note 2) The following is applicable to all parts.

	PARAMETER	CONDITIONS	3		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage				2.0			V
V _{IL}	Logical "0" Input Voltage						0.B	V
VoH	Logical ''1'' Output Voltage	V _{CC} = Min, I _{QUT} = -200μA, BI/RBO Node			2.4	3.7		V
Vol	Logical "0" Output Voltage	V _{CC} = Min, I _{IN} = 8.0 mA, BI/RBO Node				0.3	0.4	V
I _{IH}	Logical "1" Input Current	M. M. Frank BI/BI	$V_{1N} = 2.4V$				40	μΑ
		V _{CC} = Max, Except BI/RI	30 Node	V _{IN} = 5.5V			1.0	mA
IIL	Logical "0" Input Current	1/ AA 1/ O 41/	Excep	t BI/RBO Node			-1.6	mA
		$V_{CC} = Max, V_{IN} = 0.4V$	$V_{CC} = Max, V_{IN} = 0.4V$ BI/RB0				-4 2	mA
I _{SC}	Output Short Circuit Current	V _{CC} = Max, BI, RBO Node					-4.0	mA
V _{CD}	Input Clamp Voltage	V _{CC} = 5.0V, T _A = 25°C, I	ι _N = -12 ι	mA			-1.5	V

output characteristics and supply current

DS7856/DS8856 (Note 2)

	PARAMETER	COND	ITIONS	MIN	TYP	MAX	UNITS
VoL	Logical ''0'' Ουτρυτ Vol:age Outputs a through g	V _{CC} = Min, I	1 _{OUT} = 6.4 mA		0.25	0.4	V
loL	Logical "1" Load Current Available, Outputs a through g	V _{CC} = 5.0V, V _{OUT} = 1.7V		* 4.7	-6.0	-7.5	mA
I _{SC}	Output Short Circuit Current Outputs a through g	V _{CC} = Max, (Note 3)			12	-15	mA
1 _{CC}	Supply Current		DS7856		90	120	mA
00		V _{CC} = Max	DSB856		90	130	mΑ

output characteristics and supply current (con't)

DS8857, DS7858/DS8858 (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
loL	Logical "1" Load Current Available, Outputs a through g	V _{CC} = 5.0V, V _{OUT} = 2.3V, DS8857		-40		60	mA
V _{OH}	Logical "1" Output Voltage,	$V_{CC} = 5.0V$, $I_{OUT} = -50$ mA, (Note 4)	D\$7858	2.7	3.2		V
_	Outputs a through g	VCC = 3.0V, IOUT = 30 IIIA, (Note 4)	D\$8858	2.9	3.2		V
lcc	Supply Current	V _{CC} = Max				60	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the $^{-}55^{\circ}C$ to $^{+}125^{\circ}C$ temperature range for DS856, and DS7858 and across the ^{0}C to $^{+}70^{\circ}C$ range for DS8856, DS8857 and DS8858. All typicals are given for $^{\vee}V_{CC} = 5.0V$ and $^{\vee}T_{A} = ^{\vee}25^{\circ}C$.

Note 3: Care must be taken in not shorting the outputs to ground while they are in the "1" state because excessive current flow would result from the Darlington upper stages.

Note 4: Special care must be tken in the use of the DS7858 ceramic (J) and the DS8858 plastic (N) DIP's with regard to not exceeding the maximum operating junction temperature of the devices. The maximum junction temperature of the DS7858J is 175°C and must be derated based on a thermal resistance of 90°C/watt, junction to ambient. The maximum junction temperature for the DS8858N is 150°C and must be derated based on a thermal resistance of 120°C/watt junction to ambient.

truth table

			INP	UTS				OUTPUTS							
DECIMAL OR FUNCTION	LT	RBI	D	С	В	А	BI/RBO	a	ь	с	d	e	f	g	NOTE
0	1	1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	1	×	0	0	0	1	1	0	1	1	0	0	0	0	1
2	1	×	0	0	1	0	1	1	1	0	1	1	0	1	
3	1	X	0	0	1	1	1	1	1	1	1	0	0	1	
4	1	×	0	1	0	0	1	0	1	1	0	0	1	-1	
5	1	×	0	1	0	1	1	1	0	1	1	0	1	1	
6	1	×	0	1	1	0	1	0	0	1	1	1	1	1	
7	1	×	0	1	1	1	1	1	1	1	0	0	0	0	
8	1	×	1	0	0	0	1	1	1	1	1	1	1	1	
9	1	×	1	0	0	1	1	1	1	1	0	0	1	1	
10	1	×	1	0	1	0	1	0	0	0	1	1	0	1	
11	1	×	1	0	1	1	1	0	0	1	1	0	0	1	
12	1	×	1	1	0	0	1	0	1	0	0	0	1	1	
13	1	х	1	1	0	1	1	1	0	0	1	0	1	1	
14	1	×	1	1	1	0	1	0	0	0	1	1	1	1	
15	1	×	1	1	1	1	1	0	0	0	0	0	0	0	
B1	Х	×	Х	×	×	×	0	0	0	0	0	0	0	0	2
RBI	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3
LT	0	×	×	×	×	×	1	1	1	1	1	1	1	1	4

Note 1: BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input (BI) must be open or held at a logical "1" when output functions 0–15 are desired, and the ripple-blanking input (RBI) must be open or at a logical "1" if blanking of a decimal 0 is not desired. X = input may be high or low.

Note 2: When a logical "0" is applied directly to the blanking input (forced condition) all segment outputs go to a logical "1" regardless of the state of any other input condition.

Note 3: When the ripple-blanking input (RBI) and inputs A, B, C and D are at logical "0," with the lamp test input at logical "1," all segment outputs go to a logical "1" and the ripple-blanking output (RBO) goes to a logical "0" (response condition).

Note 4: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a logical "1," and a logical "0" is applied to the lamp-test input, all segment outputs go to a logical "0."

output stage schematics

DS8859, DS8869 open collector hex latch LED drivers

general description

The DS8859, DS8869 are TTL compatible open collector hex latch LED drivers with programmable current sink outputs. The current sinks are nominally set at 20 mA but may be adjusted by external resistors for any value between 0—40 mA. Each device contains six latches which may be set by input data terminals. An active low strobe common to all six latches enables the data input terminals. The DS8859 current sink outputs are switched on by entering a high level into the latches and the DS8869 current sink outputs are switched on by entering a low level into the latches.

The devices are available in either a molded or cavity package. In order not to damage the devices there is a limit placed on the power dissipation allowable for each package type. This information is shown in the graph included in this data sheet.

features

- Built-in latch
- Programmable output current
- TTL compatible inputs
- 40 mA output sink

logic diagram

output circuit

connection diagram

TOP VIEW Order Number DS8859J, DS8869J or DS8859N, DS8869N See NS Package J16A or N16A

truth table

COMMON STROBE	INPUT DATA	DS8859 OUTPUT (t + 1)	DS8869 OUTPUT (t + 1)		
0	0	OFF	ON		
0	1	ON	OFF		
1	X	OUTPUT (t)	OUTPUT (t)		

absolute maximum ra	tings (Note 1)	operating conditions					
			MIN	MAX	UNITS		
Supply Voltage	7V	Supply Voltage, VCC	4.75	5.25	V		
Input Voltage	5.5V	Temperature, T _A	0	+70	°C		
Output Voltage	5 5 V	remperatore, rg	Ü	.,.	-		
Storage Temperature Range	−65°C to +150°C						
Lead Temperature (Soldering, 10 seconds)	300°C						

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage	V _{CC} - Min		2 0			V
I _{IH}	Logical "1" Input Current	V _{CC} = Max, V _{IN} - 2 4V				40	μΑ
VIL	Logical "0" Input Voltage	V _{CC} = Min				0.8	V
Lit	Logical "0" Input Current	V _{CC} Max, V _{IN} 0.4V			1.0	16	mA
Vcc	Input Clamp Voltage	I _{IN} = -12 mA			1 1	1.5	V
Гон	Logical "1" Output Current	V _{CC} - Min, V _I , 0.8V V _{DH} = 5.5V, V _{IH} = 2.0V				250	μΑ
VoL	Logical "0" Output Voltage	$V_{CC} = Min, V_{AC} = 0.8 \text{V}, I_{AC} = 16 \text{ mA},$ $V_{AC} = 2V V_{ACC} + V_{CCM} + 1$		0.4			V
ICC	Supply Current	V _{CC} Max, Current Sources "OFF," (See Truth Table) (Note 4)				50	mA
I _{SINK}	Output Current	V _{CC} +5.0V V _O = 2.0V,	VIADJ = VCCMIN	40			mA
		T _A = 25 C, (Note 4)	I _{ADJ} = Open	12	20	26	mΑ

switching characteristics $T_A = 25^{\circ}C$, nominal power supplies unless otherwise noted

PARAMETER		CONDITIONS			TYP	MAX	UNITS
todo	Propagation Delay to a Logical "0"	V _{CC} - 5.0V, T _H 25 C C _{CU1} = 15 pF,	Data to Output			36	ns
puo		R_ = 390Ω, (Note 5)	Strobe to Output			50	ns
t _{od1}	Propagation Delay to a Logical "1"	$V_{CC} = 5.0V T_{m} = 25 C, C_{UUT} = 15 pF,$	Data to Output			150	ns
,,,,,		R_ = 390Ω, (Note 5)	Strope to Output			150	กร

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range. All typicals are given for VCC = 5.0V and TA = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: See graphs for changes in I_{SINK} versus changes in temperature and V_{CC} .

Note 5: Cour includes device output capacitance of approximately 8.5 pF and wiring capacitance

typical performance characteristics

I SINK adjustment circuit

IADJ may be programmed by a voltage source or by resistors.

FIGURE 1.

DS8861 MOS-to-LED 5-segment driver DS8863 MOS-to-LED 8-digit driver DS8963 MOS-to-LED 8-digit driver

general description

The DS8861, DS8863 and DS8963 are designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays.

The DS8861 is a 5-segment driver capable of sinking or sourcing up to 50 mA from each driver.

The DS8863 is an 8-digit driver. Each driver is capable of sinking up to $500\ mA$.

The DS8963 is identical to the DS8863 except it is intended for operation at up to 18V.

features

- 50 mA source or sink capability per driver, DS8861
- 500 mA sink capability per driver, DS8863, DS8963
- MOS compatibility (low input current)
- Low standby power
- High gain Darlington circuits

schematic and connection diagrams

Order Numbers DS8861N, DS8863N or DS8963N See NS Package N18A

absolute maximum ratings

	DS8861	D\$8863	DS8963
Input Voltage Range (Note 1)	$-5V$ to $V_{\rm SS}$	−5V to V _{SS}	5V to V _{ss}
Collector (Output) Voltage (Note 2)	10V	10V	18V
Collector (Output)-to-Input Voltage	10V	10V	18V
Emitter-to-Ground Voltage ($V_1 \ge 5V$)	10V		
Emitter-to-Input Voltage	5V		
Voltage at V _{SS} Terminal With Respect to	10V	1014	101/
Any Other Device Terminal	100	10V	18V
Collector (Output) Current			
Each Collector (Output)	50 mA	500 mA	500 mA
All Collectors (Output)	200 mA	600 mA	600 mA
Continuous Total Dissipation	800 mW	800 mW	800 mW
Operating Temperature Range	0 C to +70°C	0°C to +70°C	0° C to $+70^{\circ}$ C
Storage Temperature Range	-65°C to +150°C	65°C to +150°C	-65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C	300°C	300°C

electrical characteristics

DS8861 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

	PARAMETER	CONDITIONS			TYP	MAX	UNITS
V _{CEON}	"ON" State Collector Emitter Voltage	Input = 8V through 1	$k\Omega$, $V_E = 5V$, $T_A = 25^{\circ}$		0.9	1.2	V
		I _C = 50 mA				1.5	V
I_{COFF}	"OFF" State Collector Current	V _C = 10V, V _E = 0	I _{1N} = 40μA			100	μΑ
		V _C = 10V, V _E = 0	$V_{1N} = 0.7V$			100	μΑ
I_1	Input Current at Maximum Input Voltage	V _{IN} = 10V, V _E = 0, I	_C = 20 mA		2.2	3.3	mA
I _E	Emitter Reverse Current	V _{IN} = 0, V _E = 5V, I _C	= 0			100	μΑ
I _{SS}	Current Into V _{SS} Terminal					1	mA

DS8863/DS8963 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted)

	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Vol	Low Level Output Voltage	$V_{IN} = 7V$, $I_{OUT} = 500 \text{ mA}$					1.5	V
		V _{IN} = /V, I _{OU}	T = 500 mA				1.6	V
I _{OH}	High Level Output Current	10)/*	I _{IN} = 40μA				250	μΑ
		$V_{OH} = 10V^{*}$ $\frac{I_{IN} = 40\mu A}{V_{IN} = 0.5V}$				250	μΑ	
I_i	Input Current at Maximum Input Voltage	V _{IN} = 10V, I _O	_L = 20 mA				2	mA
Iss	Current Into V _{SS} Terminal						1	mA

^{*18}V for the DS8963

switching characteristics

DS8861 ($V_{SS} = 7.5V, T_A = 25^{\circ}C$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output (Collector)	$V_{IH} = 4.5V, V_E = 0$		100		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output (Collector)	$R_L = 200\Omega$, $C_L = 15 pF$		20		ns

DS8863/DS8963 $(V_{SS} = 7.5V, T_A = 25^{\circ}C)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	V _{IH} = 8V, R _L = 21Ω,		300		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	C _L = 15 pF		30		าร

Note 1: The input is the only device terminal which may be negative with respect to ground

Note 2: Voltage values are with respect to network ground terminal unless otherwise noted

ac test circuits and waveforms

NOTE 1. THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS: Z $_{0+1}$ = 50°: PRR = 100 KHz, t $_{w_i}$ = 1.3 NOTE 2. C $_{i+1}$ INCLUDES PROSE AND JIG CAPACITANCE

National Semiconductor

Display Drivers

DS8867 8-segment constant current driver

general description

The DS8867 is an 8-segment driver designed to be driven from MOS circuits operating at 8V $\pm 10\%$ minimum V_{SS} supply and will supply 14 mA typically to an LED display. The output current is insensitive to V_{CC} variations,

features

- Internal current control—no external resistors
- 100% efficient, no standby power
- Operates in three and four cell battery systems
- Inputs and outputs grouped for easy PC layout

schematic and connection diagrams

Order Number DS8667N See NS Package N18A

typical application

Typical 3 Cell Scientific Calculator Circuit

absolute maximum	ratings (Note 1)	operating conditions						
Supply Voltage	7V		MIN	MAX	UNITS			
Input Voltage	10V	Supply Voltage, VCC	3.3	6.0	v			
Output Voltage Storage Temperature Bange	10V –65°C to +150°C	Temperature, TA	0	+70	°c			

300°C

electrical characteristics (Note 2)

Lead Temperature (Soldering, 10 seconds)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Iriput Voltage	V _{CC} = Min, V	OH = 2.3V, I _{IH} = 500μA		4.9	5.4	V
I _{IE}	Logical "0" Input Current	V _{CC} = Max, V	OL = 1.8V, V _{IL} = 2.0V		0.1	10	μΑ
Гон	Logical "1" Output Current	V _{CC} = Min, V	OH = 2 3V, I _{1H} = 500 μA	-8	-14	-18	mA
IOL	Logical "O" Output Current	V _{CC} = Max, V	OL = 1 0V, V _{IL} = 1.3V		-0.5	-10	μΑ
I _{CC OFF}	Supply Current) (= M	All $V_{OL} = 1.0V$, $V_{IL} = 1.3V$, (Standby)		4	50	μΑ
CC ON		V _{CC} = Max	All V _{OH} = 2.3V, V _{IH} = 7.8V		112	150	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C

DS8868 12-digit decoder/driver

general description

The DS8868 is a 12-digit decoder/driver designed to drive LED displays like the NSA5101 from the MM5758 calculator chip or equivalent which supplies a 4-line coded input (see truth table). It is designed to operate from a 3 cell battery (3.3V to 4.5V) and features a low battery indicator. The DS8868 can sink up to 80 mA min on each output. For applications requiring more output drive, use the DS8968.

features

- Direct interface with MM5758 calculator
- Low battery indicator
- 80 mA sink capability
- Low voltage operation

connection diagram

Dual-In-Line Package

Order Number DS8868N See NS Package N18A

equivalent schematic

truth table

	INP	JTS							OUTPUT	rs*					**
INA	INB	INc	IND	01	02	03	04	05	06	07	08	09	010	011	012
L	L	L	Н	L	-	Ĭ				1					
н	L	L	Ł	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L	}	l	ì	1	1	i	}	1	i	1
н	Н	L	L			L]								
L	H	Н	L				L	ĺ							1
Н	L	н	н			l		L			1	ļ		1	Ī
L	н	L	н			l			L		1	ĺ			
н	L	н	L			i	1			L					
Н	н	L	н						ł		L				
Н	н] н	L						1			L			
н	н	Н	н	1							l		L		Į
L	L	Н	н					l]	L	1
L	н	н	н					ļ	l		i	l	Į	l	lι

^{*}A blank implies an H

operating conditions absolute maximum ratings (Note 1) UNITS MIN MAX Supply Voltage, V_{CC} 3.3 4.5 ٧ Supply Voltage 10 mA Input Current °C Temperature, TA +70 qv/ Output Voltage -65 to +150°C

300°C

electrical characteristics (Notes 2 and 3)

Storage Temperature Range

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	TER CONDITIONS		TYP	MAX	UNITS
I _{IH}	Logical "1" nput Current	V_{CC} = Min, Selected Output $V_{OL} \le 0.4V$		300	450	μΑ
VILV	Low Voltage Indicator (Measured on Pin 15)	$V_{CC} = 3.1V$, $T_A = 25^{\circ}C$, $I_{INC} = I_{IND} = 450\mu A$	2.8			>
IIL	Logical "0" input Current	V_{CC} = Min, Selected Output $I_{OM} \le 50 \mu A$	100	300		μΑ
I _{OH}	Logical "1" Output Current	V _{CC} = Max, V _{OH} = 6.3V, All Outputs "OFF"			100	μΑ
VoL	Logical "0" Output Voltage	V _{CC} = Min, 1 _{OL} = 80 mA			0.5	V
Icc	Supply Current "OFF"	V _{CC} = Max, All Outputs "OFF", V _{OH} = 5V			8.0	mA
Icc	Supply Current "ON"	V _{CC} = Max, One Output Selected			13.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Conditions" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2. Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range. All typicals are given for V_{CC} = 4.0V and T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical application

Typical 3-Cell Scientific Calculator Circuit

DS8870 hex LED digit driver

general description

The DS8870 is an interface circuit designed to be used in conjunction with MOS integrated circuits and commoncathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digit-scan method of LED drive.

features

- Sink capability per driver—350 mA
- MOS compatibility (low input current)
- Low standby power
- High-gain Darlington circuits

schematic and connection diagrams

DS8870 (Each Driver)

Dual-In-Line Package

Order Number DS8870J or DS8870N See NS Package J14A or N14A

absolute maximum ratings (Note 1)

Input Voltage Range (Note 4)

Storage Temperature Range

Lead Temperature (Soldering, 10 seconds)

Collector Output Voltage	10V
Collector Output to Input Voltage	10V
Voltage at V _{SS} Terminal with Respect to	
Any Other Device Terminal	10V
Collector Output Current	
Each Collector Output	350 mA
All Collector Outputs	600 mA
Continuous Total Dissipation	800 mW
Operating Temperature Range	0°C to +70°C

electrical characteristics ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to +70°C) (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OL}	Low Level Output Voltage	Input = 6.5V through 1 k Ω , I _{OUT} = 350 mA, T _A = 25 $^{\circ}$ C		1.2	1.4	V
V _{OL}	Low Level Output Voltage	Input = 6.5V through 1 k Ω , I _{OUT} = 350 mA			1.6	٧
loh	High Level Output Current	$V_{OH} = 10V, I_{IN} = 40\mu A$			200	μΑ
Іон	High Level Output Current	$V_{OH} = 10V, V_{IN} = 0.5V$			200	μΑ
1,	Input Current at Maximum Input Voltage	V _{IN} = 10V, I _{OL} = 20 mA		2.2	3.3	mA
lee	Current Into Vss Terminal				1	mA

-5V to V_{SS}

-65°C to +150°C

switching characteristics ($V_{SS} = 7.5V$, $T_A = 25^{\circ}C$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	V _{IH} = 7.5V, R _L = 39Ω, C _L = 15 pF		300		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$V_{IH} = 7.5V, R_{L} = 39\Omega,$ $C_{L} = 15 pF$		30		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C temperature range.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All

Note 4: The input is the only device terminal which may be negative with respect to ground.

DS8871, DS8872, DS8873, DS8920, DS8977 saturating LED cathode drivers

general description

The DS8871, DS8872, DS8873, DS8920 and DS8977 are bipolar integrated circuits designed to interface between MOS calculator circuits and common cathode LED displays operating in the multiplexed mode with a digit current of up to 40 mA. The DS8871 is an 8-digit driver; the DS8920 and the DS8872 are 9-digit drivers; and the DS8873 is a 9-digit driver with a built-in battery condition indicator that turns on the digit 9 decimal point when the battery voltage drops to 6.5V (typical). The DS8977 is a 7-digit version of the DS8873. In a typical calculator system operating on a 9V battery, the low battery indicator comes on as a warning that

the battery should be replaced. But the calculator (MM5737 or equivalent) will still function properly for awhile. The DS8920 is identical to the DS8872 in a 20-pin package.

features

- Single saturating transistor output
- Low battery indicator
- MOS compatible inputs
- Inputs and outputs clustered for easy wiring
- Drivers consume no standby power

schematic diagram

connection diagrams (Dual-In-Line Packages, Top Views)

Order Number DS8871N See NS Package N18A

operating conditions absolute maximum ratings (Note 1) MAX UNITS 9.5 ٧ 40 V_{CC1} = 11V Supply Voltage, VCC1 Supply Voltage $V_{CC2} = 11V$ 4.0 9.5 V Supply Voltage (Note 4) Supply Voltage, VCC2 (Note 4) 11V Input Voltage °c +70 Temperature, TA 8V Output Voltage -65°C to +125°C Storage Temperature Range 300°C Lead Temperature (Soldering, 10 seconds)

electrical characteristics (Notes 2 and 3)

·- ··	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IIL	Logical "O" Input Current	V _{IN} = 0.4V		28	45	μΑ
I _{IH}	Logical "1" Input Current	V _{IN} = 4.5V		1.7	2.5	mA
V _{OL}	Logical "0" Output Voltage	V _{IN} = 3.2V, I _{OL} = 40 mA		0.35	0.5	V
lOL	Logical "0" Output Current	V _{IN} = 3.2V, V _{OL} = 0.5V	40			mA
CEX	Output Leakage Current	V _{OH} = 6V, I _{IN} = 25 μA			40	μΑ
IDP(ON)	Decimal Point Output Current	$V_{CC2} = 6.25V$, $V_{DP} = 2.5V$, $V_{IN9} = 3.2V$, (Note 4)	-5.0	-7.0		mA
IDP(OFF)	Decimal Point Output Current	V _{CC2} = 7V, V _{IN9} = 3.2V, V _{DP} = 1V, (Note 4)		-1	-100	μΑ
ICC1	Supply Current, VCC1	V _{CC1} = 6.5V, V _{IN} = 0V		1	100	μΑ
ICC2	Supply Current, VCC2	V _{CC2} = 11.3V, V _{IN9} = 4.5V, (Note 4)		0.9	1.2	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Applies to DS8873 only.

typical applications

DS8874 9-digit shift input LED digit driver

general description

The DS8874 is a 9-digit LED driver which incorporates a shift register input decoding circuit and a low battery indicator. The outputs will sink 50 mA at less than 0.5V drop when sequentially selected. The DS8874 outputs are collectors pulled up to V_{CC} with internal 20k resistors. When the V_{CC} supply falls below 6.5V typical on the DS8874, pin 13 will supply segment current at digit 9 time to indicate a low battery condition. This pin is generally connected to the decimal point segment on the display so that when a low battery condition exists, the left-most decimal point lights up. The digit driver

is intended to be used with the MM5784N 5-function, 9-digit accumulating memory calculator circuit, or any other circuit which supplies the 9-digit information in a similar serial format.

features

- 50 mA digit sink
- Low battery indicator
- Minimum number of connections
- MOS compatible inputs

connection diagram

Dual-In-Line Package

Order Number DS8874J or DS8874N See NS Package J14A or N14A

equivalent schematic

typical application

Typical Application of the DS8874 Digit Driver with the MM5784 5-Function Calculator Circuit, NSA1298 9-Digit LED Display and a 9V Battery

absolute maximum ratings (Note 1) operating conditions MIN UNITS MΔX 2 mA Supply Voltage (VCC) 6.0 9.5 Input Current Supply Voltage 10V +70 °C Temperature (T_A) Input Voltage Vcc

10V

−65° C to +150° C 300° C

electrical characteristics

Lead Temperature (Soldering, 10 seconds)

Output Voltage

Storage Temperature Range

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage	V _{CC} = Max	3.0			٧
ЧН	Logical "1" Input Current	V _{CC} = Max, V _{IN} = 6.5V	0.35	0.6	1.0	mA
VIL	Logical "0" Input Voltage	V _{CC} = Max			0.8	V
IIL	Logical "0" Input Current	V _{CC} = Max, V _{1N} = 0.8V		0.05	0.1	mA
VCCL	Decimal Point ON	V _{DP} = 2.3V, I _{DP} = -4 mA, Output 9 = V _{OL}			6.0	V
Vссн	Decimal Point OF=	$V_{DP} = 1V$, $I_{DP} = -10 \mu A$, Output $9 = V_{OL}$	7.0	6.5		V
Vон	Logical "1" Output Voltage	V _{CC} = Max, Output Not Selected	9.0			V
VOL	Logical "0" Output Voltage	V _{CC} = Min, Output Selected, I _{O1} = 50 mA			0.5	V
lOL	Logical "0" Output Current	V _{CC} = Min, Output Selected, V _{OL} = 0.5V	50			mA
Icc	Supply Current	VCC = Max, One Output Selected		6.2	9.0	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to +70°C range. All typicals are given for T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

timing diagram (Upper Level More Positive)

DS8877 6-digit LED driver

general description

The DS8877 is a 6-digit LED driver designed as a pinfor-pin replacement for the DS75492 in applications where digit current is in the 5 to 50 mA range. Since the outputs saturate to less than 0.6V, the DS8877 will work on lower battery voltages than most digit drivers. The DS8877 draws no standby power.

features

- No standby power
- No supply connection
- Operates in 4.5V,6V or 9V systems
- Pin-for-pin replacement for DS75492 in low current applications

logic and connection diagrams

Order Number DS8877N See NS Package N14A

absolute maximum ratings (Note 1)

Input Voltage

Operating Temperature Range

Lead Temperature (Soldering, 10 seconds)

None Required Supply Voltage

10V Output Voltage

0 to +70°C

10V

 -65° C to $+150^{\circ}$ C Storage Temperature Range 300°C

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	Logical "1" Input Voltage		5.0			V
I _{IH}	Logical "1" Input Current	V _{IH} = 5.0V			1.2	mA
V _{IL}	Logical "O" Input Voltage				0.35	V
I _L	Logical "()" Input Current	V _{IL} = 0.35V	1		20	μΑ
CEX	Logical "1" Output Current	$V_{C} = 8.0V, V_{IN} = 0.35V$			100	μΑ
Vol	Logical "()" Output Voltage	$I_{OL} = 35 \text{ mA}, V_{IN} = 5.0V$			0.5	V
lou	Logical "0" Output Current	$V_{OL} = 0.5V, V_{IN} = 5.0V$	35	50		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range. All typicals are given for $T_{A}=25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical application

DS7880/DS8880 high voltage 7-segment decoder/driver (for driving Panaplex II[™] and Sperry/Beckman displays) general description

The DS7880/DS8880 is custom designed to decode four lines of BCD and drive a gas-filled seven-segment display tube.

Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sinks have a voltage compliance from 3V to at least 80V; typically the output current varies 1% for output voltage changes of 3 to 50V. Each bit line of the decoder switches a current sink on or off as prescribed by the input code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or multiplex operation. The output current is adjusted by connecting an external program resistor

 (R_p) from V_{CC} to the Program input in accordance with the programming curve. The circuit design provides a one-to-one correlation between program input current and b-segment output current.

The Blanking Input provides unconditional blanking of any output display, while the Ripple Blanking pins allow simple leading or trailing-zero blanking.

features

- Current sink outputs
- Adjustable output current 0/2 to 1.5 mA
- High output breakdown voltage 110V typ
- Suitable for multiplex operation
- Blanking and Ripple Blanking provisions
- Low fan-in and low power

logic and connection diagrams

Order Number DS7880J or DS8880J Order Number DS8880N See NS Package J16A or N16A

absolute maximum rat	ings (Note 1)	operating c	ıs		
Vcc	7 V	Consider Malanca (Ma	MIN	MAX	UNITS
Input Voltage (Except BI) Input Voltage (BI) Segment Output Voltage	6V VCC 80V	Supply Voltage (Vo DS7880 DS8880	4 5 4 75	5 5 5 25	V
Power Dissipation	600 mW	Temperature (TA)			
Transient Segment Output Current (Note 4		DS7880	-55	+125	C
Storage Temperature Range Lead Temperature (Soldering, 10 sec)	65 C to 150 C 300 C	D\$8880	0	• 70	С

electrical characteristics (Notes 2 and 3)

	PARAMETER	COND	ITIONS	MIN	TYP	MAX	UNITS
V _{DH}	Logical "1" Input Voltage	V _{CC} = Min		2.0			V
VIL	Logical "0" Input Voltage	V _{CC} = Min				0.8	٧
VoH	Logical "1" Output Voltage	V _{CC} = Min, I _{OUT} = -200μ	A, RBO	2.4	3.7		٧
Vol	Logical "0" Output Voltage	V _{CC} = Min, I _{CUT} = 8 mA,	RBO		0.13	0.4	V
LiH	Logical "1" Input Current	V _{CC} = Max, Except BI	V _{IN} = 2.4V		2	15	μΑ
		V _{CC} = IVIAX, Except BI	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$		4	400	μΑ
I _{IL}	Logical "0" Input Current	$V_{CC} = Max, V_{10} = 0.4V$	Except 81		-300	-600	μΑ
		VCC - Wax, VIN - U.4V	81		-1.2	-2.0	mA
Icc	Power Supply Current	V _{CC} = Max, R _P = 2 2k, At	Inputs = 0V		27	43	mA
V _{CD}	Input Diode Clamp Voltage	V _{CC} = Max, T _A = 25 C, I _H	_N = -12 mA		0.9	-1.5	٧
A10	SEGMENT OUTPUTS		Outputs a, f, and g	0.84	0.93	1.02	
	"ON" Current Ratio	All Outputs = 50V,	Output c	1.12	1.25	1.38	
		I _{OUT} b = Ref	Output d	0.90	1 00	1.10	
			Output e	0 99	1 10	1.21	
I _{b ON}	Output b "ON" Current	V _{CC} = 5V, V _{OUT} b = 50V,	R _P = 18.1k	0.15	0.20	0.25	mA
		All Other Outputs $> 5V$,	$R_P = 7.03k$	0.45	0 50	0.55	mA
		$T_{\Delta} = 25^{\circ}C$	R _P = 3 40k	0.90	1 00	1.10	mA
		1 _A = 25 C	R _P = 2 20k	1.35	1.50	1.65	mA
V_{SAT}	Output Saturation Voltage	V _{CC} = M _{IN} , R _P = 1k±5%, I	_{OUT} b = 2 mA, (Note 5)		8.0	2.5	٧
ICEX	Output Leakage Current	V _{OUT} = 75V B1 - 0V, R _P	- 2.2k		0 003	3	μΑ
V _{BR}	Output Breakdown Voltage	I _{OUT} = 250μA, BI = 0V, R	R _P = 2.2k	80	110		V
t _{pd}	Propagation Delays						
	BCD Input to Segment Output				0.4	10	μs
	81 to Segment Output	V _{CC} = 5V, T _A = 25 C			0.4	10	μς
	R8I to S∉gment Output	V _{CC} = 5V, T _A = 25 C			0.7	10	μs
	RBI to R8O				0.4	10	μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to +125°C temperature range for the DS7880 and across the 0° C to +70°C range for the DS8880. All typical values are for TA = 25°C and VCC = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in dc applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

Note 5: For saturation mode the segment output currents are externally limited and ratioed.

typical performance characteristics

typical application

truth table

	DECIMAL OR FUNCTION	RBI [†]	D	С	В	Α	BI/RBO	a	b	С	d	е	f	g	DISPLAY
	0	1	0	0	0	0	1	0	0	0	0	0	0	1	[]
1	1	×	0	0	0	1	1	1	0	0	1	1	1	1	/
	2	×	0	0	1	0	1	0	0	1	0	0	1	0	<u> </u>
	3	×	0	0	1	1	1	0	0	0	0	1	1	0	<i>⊒</i> ∃
	4	×	0	1	0	0	1	1	0	0	1	1	0	0	<i>'</i> /
	5	×	0	1	0	1	1	0	1	0	0	1	0	0	5
1	6	×	0	1	1	0	1	0	1	0	0	0	0	0	5
1	7	×	0	1	1	1	1	0	0	0	1	1	1	1	_/
	8	×	1	0	0	0	1	0	0	0	0	0	0	0	\exists
	9	×	1	0	0	1	1	0	0	0	0	1	0	0	3
ĺ	10	×	1	0	1	0	1	0	0	0	1	0	0	0	<i>;</i> -;
	11	×	1	0	1 '	1	1	1	1	0	0	0	0	0	<i>\</i>
1	12	×	1	1	0	0	1	0	1	1	0	0	0	1	
	13	×	1	1	0	1	1	1	0	0	0	0	1	0	i de la
	14	×	1	1	1	0	1	0	1	1	0	0	0	0	<u>E</u>
	15	×	1	1	1	1	1	0	1	1	1	0	0	0	<i>F</i>
	BI*	×	×	×	×	×	0*	1	1	1	1	1	1	1	
	RBI	0	0	0	0	0	0	1	1	1	1	1	1	1	

$$e \frac{1}{d} \int_{c}^{d} b SEGMENT$$

$$e \int_{d}^{d} \int_{c}^{b} IDENTIFICATION$$

*BI/RBO used as input only

[†]X = Don't care

DS8881 vacuum fluorescent display driver

general description

The DS8881 vacuum fluorescent display driver will drive 16-digit grids of a vacuum fluorescent display. The decode inputs select one of the sixteen outputs to be pulled high. The device contains an oscillator for supplying clock signals to the MOS circuit, the filament bias zener and 50 k Ω pull-down resistors for each grid. Outputs will source up to 7 mA. The DS8881 is designed for 9V operation. If the enable input is pulled low, all outputs are disabled.

features

- Oscillator frequency accuracy and stability allows maximum system speed
- Interdigit blanking with the enable input provides ghost-free display operation
- 50 kΩ pull-down resistors for each grid
- 7V filament bias zener

connection diagram

Dual-In-Line Package

Order Number DS8881N See NS Package N28A

truth table All outputs not shown high are off (low)

	- 11	NPUTS									D	IGIT C	UTPU	TS						
€N	D	С	В	Α	D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
н	L	L	L	L	Н															
н	L	L	L	н		Н														
н	L	L	Н	L			Н													
н	L	L	Н	Н				Н												
н	L	Н	L	L					н											
н	L	Н	L	Н						Н										
н	L	н	н	L							Н									
н	L	н	Н	Н								Н								
н	н	L	L	L									Н							
н	н	L	L	Н	ļ									Н						
Н	Н	L	Н	L											Н					
н	Н	L	Н	Н	Ì											н				
н	Н	Н	L	L	l												Н			
Н	Н	н	L	Н	İ													Н		
Н	Н	н	Н	L	ł														Н	
н	Н	Н	Н	Н	ĺ															Н
L	×	×	×	×	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

absolute maximum rati	ngs (Note 1)	operating condi	tions		
			MIN	MAX	UNITS
Supply Voltage (VSS - VBB)	38V	Supply Voltage			
Input Current	10 mA	V _{SS}	5.0	9.5	V
Output Current	−20 mA	V _{BB}	Gnd	-26	V
Storage Temperature Range	-65°C to +150°C	Temperature (T _A)	0	+70	°C
Lead Temperature (Soldering, 10 seconds) 300°C				

electrical characteristics (Notes 2 and 3)

	PARAMETER		CC	ONDITIONS		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage)/ M	Enable	I _{IN} = 260 μA				5.1	٧
		V _{SS} = Max	A, B, C, D	IIN = 1400 μA				1.5	٧
ПН	Logical "1" Input Current	V _{SS} = Max	Enable A, B,	C, D				260	μΑ
VIL	Logical "0" Input Voltage	./ 14	Enable					1.0	V
		V _{SS} = Max	A, B, C, D					0.3	V
IIL	Logical "O" Input Current	Vss = Max	Enable	VIN = 0V	_			-1.0	μА
		VSS - IVIAX	A, B, C, D	VIN = VIL(MAX)	25			μΑ
Vон	Logical "1" Output Voltage	Digit Output	, I _{OH} = -7 mA			V _{SS} -2.5			V
ЮН	Logical "1" Output Current	V _{SS} = Max, (Osc. Output, V _F	RC = 0.6V, VOH =	10V			50	μА
los	Output Short-Circuit Current	V _{SS} = M _{in} , P	en R, V _{RC} = 0.6	5V, V _R = 0V		150		-450	μА
ROUT	Output Pull-Down Resistor	V _{SS} = Mın, D	igit Output			30	50	B5	kΩ
VOL	Logical "0" Output Voltage	Vss = Min	Osc.	V 1 CV	IOL = 6 mA			0.5	V
		V SS ~ WIIII	Pin R	V _{RC} = 1.6V	IOL = 60 μA			02	V
		V _{SS} = Max	Digit Output	VENABLE = 1V	I _{OL} = 10 μA			V _{BB} +1.4	٧
ISS	Supply Current	V _{SS} = 9.5V	IOH = 0	VENABLE = 5.1	V		9.0	~12.5	mA
		VSS - 9.5V	IOH - 0	VENABLE = 1V			5.0	-9.0	mA
IBB	Supply Current	V _{SS} = 9.5V,	$I_B = 0,$ $I_{IN} = 300 \mu\text{A},$	VENABLE = 1V			-0.B	-1.5	mA
		100 200	(Note 4)	VENABLE = 5.1	v		-3.0	-5.0	mA
VΒ	Filament Bias Voltage	B = 10 mA				V _{BB} +6 4	∨ _{BB} +6.9	V _{BB} +7.4	V

switching characteristics TA = 25°C unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logical "C" From Enable Input to Digit Output				1	μς
tpd0	Propagation Delay to a Logical "0" A, B, C, D to Digit Output	D' . 4710 0' - 50-5 V			1	μs
tpd1	Propagation Delay to a Logical "1" From Enable Input to Digit Output	$R'_{L} = 4.7 \text{ k}\Omega$, $C'_{L} = 50 \text{ pF}$, $V_{BB} = -23V$, $V_{SS} = 8V$			300	ns
^t pd1	Propagation Delay to a Logical "1" From A, B, C, D to Digit Output				500	ns
†FALL	Oscillator Output Transition Time From 1 to 0	V _{SS} = 9.5V, R _L = 6k to V _{SS} , C _L = 25 pF			50	ns
fosc	Oscillator Frequency	$7V < V_{SS} < 9.5V$, R_{T} = 27 k Ω ,±2%, R_{L} = 1.3k,	320	360	400	kHz
dc	Oscillator Duty Cycle	C _T = 100 pF ±5%, C _L = 50 pF	46	56	66	%

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C for the DSBBB1. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Approximately 50% of input current on pins 4, 5, 6, 7 is shunted to V_{BB} . If minimum I_{BB} is desired, then I_{IN} should be minimized by using resistors in series with the inputs.

switching time waveforms

 $(t_r = t_f = 10 \text{ ns from 10\% to 90\% of input})$

input-output schematics PUTPUT PUTPUT PRO INPUT PRO

typical application

National Semiconductor

Display Drivers

DS8884A high voltage cathode decoder/driver (for driving Panaplex II[™]and Sperry/Beckman displays)

general description

The DS8884A is designed to decode four lines of BCD input and drive seven-segment digits of gas-filled readout displays.

All outputs consist of switchable and programable current sinks which provide constant current to the tube cathodes, even with high tube anode supply tolerance. Output currents may be varied over the 0.2 to 1.2 mA range for multiplex operation. The output current is adjusted by connecting an external program resistor ($R_{\rm P}$) from $V_{\rm CC}$ to the program input in accordance with the programming curve. Unused outputs must be tied to $V_{\rm CC}$.

features

- Usable with AC or DC input coupling
- Current sink outputs
- High output breakdown voltage
- Low input load current
- Intended for multiplex operation.
- Input pullups increase noise immunity
- Comma/d.pt. drive

logic and connection diagrams

Order Number DS8884AN See NS Package N18A

absolute maximum ratings (Note 1)

operating conditions

V _{CC}	7V		MIN	MAX	UNITS
Input Voltage (Note 4)	Vcc				
Segment Output Voltage	807	Supply Voltage (V _{CC})	4.75	5.25	V
Power Dissipation	600 mW	Temperature (TA)	0	+70	°C
Transient Segment Output Current (Note 5)	50 mA				
Storage Temperature Range	-65° C to +150° C				

electrical characteristics ($0^{\circ}C \le T_A \le 70^{\circ}C$ - Unless otherwise noted) (Notes 2 and 3)

	PARAMETER	CONDITION	S	MIN	MAX	UNITS
V _{IH}	Logical "1" Input Voltage	V _{CC} = 4.75V		2.0		V
VIL	Logical "0" Input Voltage	V _{CC} = 4.75V			1.0	V
I _{tH}	Logical "1" Input Current	$V_{CC} = 5.25V, V_{IN} = 2.4V$			15	μΑ
IIL	Logical "0" Input Current	V _{CC} = 5.25V, V _{IN} = 0.4V		-	-250	μΑ
Icc	Power Supply Current	V _{CC} = 5.25V, R _P = 2.8k, All	Inputs = 5V		40	mA
V _{I+}	Positive Input Clamp Voltage	V _{CC} = 4.75V, I _{IN} = 1 mA		5.0		V
V _I	Negative Input Clamp Voltage	V _{CC} = 5V, I _{IN} = -12 mA, T _A	= 25°C		-1.5	V
	SEGMENT OUTPUTS					
△I ₀	"ON" Current Ratio	All Outputs = 50V, I _{OUT} b =	Ref., All Outputs	0.9	1.1	
$I_{b\ ON}$	Output b "ON" Current		R _P = 18.1k	0.15	0.25	mA
		$V_{CC} = 5V, V_{OUT} b = 50V,$	$R_P = 7.03k$	0.45	0.55	mA
		$T_A = 25^{\circ}C$	$R_P = 3.40k$	0.90	1.10	mA
			$R_P = 2.80k$	1.08	1.32	mA
I _{CE} ×	Output Leakage Current	V _{OUT} = 75V			5	μΑ
V _{BR}	Output Breakdown Voltage	Ι _{ΟUT} = 250μΑ		80		V
t _{pd}	Propagation Delay of Any Input to Segment Output	V _{CC} = 5V, T _A = 25°C			10	μς

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C temperature range for the DS8884A. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC} = 5V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: This limit can be higher for a current limiting voltage source.

Note 5: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in dc applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

truth table

N. ANKING PROC.

typical performance characteristics (see DS7880 data sheet)

PANS

typical application

^{*}Decimal point and comma can be displayed with or without any numeral

DS8885 MOS to high voltage cathode buffer

general discription

The DS8885 interfaces MOS calculator or counterlatch-decoder-driver circuits directly to 7-segment, high-voltage, gas-filled displays. The six inputs A, B, D, E, F, G are decoded to drive the 7-segment of the tube.

Each output constitutes a switchable, adjustable current source which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sources have a voltage compliance from 3V to at least 80V. Each current source is ratioed to the b-output current as required for even illumination of all segments. Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or

multiplex operation. The output current is adjusted by connecting a program resistor (R_P) from V_{CC} to the program input

features

- Current source outputs
- Adjustable output currents 0 2 to 1 5 mA
- High output breakdown voltage 80V min
- Suitable for multiplex operation
- Low fan-in and low power
- Blanking via program input
- Also drives overrange, polarity, decimal point cathodes

connection diagram

Dual-In-Line Package

TOP VIEW

Order Number DS8885J or DS8885N See NS Package J16A or N16A

truth tables

	Α	В	D	Ε	F	G	DISPLAY
	1	1	1	1	1	0	./7
	0	1	0	0	0	0	- /
	1	1	1	1	0	1	<u>_</u>
	1	1	1	0	0	1	
	0	1	0	0	1	1	1-1
Ì	1	0	1	0	1	1	5
	1	0	1	1	1	1	15
	1	1	0	0	0	0	
	1	1	1	1	1	1	3
	1	1	1	0	1	1	9
	0	0	1	1	1	1	
	1	1	0	0	1	1	- 7
	1	1	0	1	1	1	H
	0	1	0	1	1	1	/-/
	0	1	1	1	1	0	
	0	0	0	0	0	1	-
	0	0	0	0	0	0	

INPUT*	DUTPUT*
0	1 (QFF)
1	0 (ON)

*Positive Logic

typical applications

Push-Pull MOS Output

absolute maximum ratings (Note 1) operating conditions Vcc 7 V MIN MAX UNITS Input Voltage Supply Voltage (VCC) 4.75 5.25 Segment Output Voltage 80V Temperature (TA) °c 0 +70 Power Dissipation 600 mW Transient Segment Output Current (Note 4) 50 mA

-65° C to +150° C

300°C

electrical characteristics (Notes 2 and 3)

Storage Temperature Range

Lead Temperature (Soldering, 10 seconds)

	PARAMETER		CONDITION	ONS	MIN	TYP	MAX	UNITS
V_{IH}	Logical "1" Input Voltage	V _{CC} = Min		2.0			V	
V_{IL}	Logical "0" Input Voltage	V _{CC} = Min				0.8	V	
I _{IH}	Logical "1" Input Current	$V_{CC} = Max$ $V_{1N} = 2.4V$ $V_{1N} = 5.5V$			2	15 400	μΑ	
I _{IL}	Logical "0" Input Current	$V_{IN} = 9.3V$ $V_{CC} = Max, V_{IN} = 0.4V$				-300	-600	μА
I _{cc}	Power Supply Current	V _{CC} = Max, All In	nputs = 0V,	R _P = 2.2k		22	31	mA
V ₁	Input Diode Clamp Voltage	$V_{CC} = 5V$, $I_{IN} = -12$ mA, $T_A = 25^{\circ}$ C				-0.9	-1.5	V
SEGM	ENT OUTPUTS							
10	"ON" Current Ratio		Out	puts a, f, and g	0.84	0.93	1.02	
		All Outputs = 50\	V, Out	/, Output c		1.25	1.38	
		I _{OUT} b = Ref.	Out	put d	0.90	1.00	1.10	
			Out	put e	0.99	1.10	1.21	
I _{b ON}	Output b "ON" Current			R _P = 18.1k	0.15	0.20	0.25	mA
		$V_{CC} = 5V, V_{OUT} b = 50V,$		$R_P = 7.03k$	0.45	0.50	0.55	mA
		$T_A = 25^{\circ}C$		R _P = 3.40k	0.90	1.00	1.10	mA
				$R_P = 2.20k$	1.35	1.50	1.65	mA
V_{SAT}	Output Saturation Voltage	V _{CC} = Min, I _{OUT}	b = 2 mA,	R _P = 1k ±5%, (Note 5)		0.8	2.5	V
Icex	Output Leakage Current	V _{OUT} = 75V, V _{IN}	, = 0.8V, R	s = 1k		0.003	3	μΑ
V _{8R}	Output Breakdown Voltage	Ι _{ΟυΤ} = 250μΑ, V	_{IN} = 0.8V		80	110		V
t _{pd}	Propagation Delay of Input to Segment Output	V _{CC} = 5V, T _A = 2	25°C			0.4	10	μς

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless atherwise specified min/max limits apply across the 0° C to +70°C range for the DS8885. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC} = 5$ V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in dc applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode drive in multiplex applications.

On Currents vs Temperature

Note 5: For saturation mode the segment output currents are externally limited and ratioed,

typical performance characteristics

D\$8887 8-digit high voltage anode driver (active-high inputs)

D\$7889/D\$8889 8-segment high voltage cathode driver (active-high inputs)

DS7897/DS8897 8-digit high voltage anode driver (active-low inputs)

general description

The DS8887 and DS7897/DS8897 are designed to drive the individual anodes of a 7-segment (cathodes) high-voltage gas discharge panel in a time multiplexed fashion.

When driven with appropriate input signals, the driver will switch voltage and impedance levels at the anode. This will allow or prevent ionization of gas around selected cathode in order to form a numeric display. This main application is to interface with MOS outputs (fully-decoded) and the anodes of a gas-discharge panel, since the devices can source up to 16 mA at a low impedance and can tolerate more than 55V in the "OFF" state.

DS7889/DS8889 is capable of driving 8 segments of a high-voltage display tube with a constant

output sink current, which can be adjusted by external program resistor, $R_{\rm P}.$ The program current is half that of output "ON" current. In the "OFF" state the outputs can tolerate more than 80V. The ratio of "ON" output currents is within $\pm 10\%.$ Inputs have negative clamp diodes. Active high input logic. The main application of the device is to interface MOS circuits to high-voltage displays. Unused outputs should have corresponding inputs connected to $V_{\rm EE}$.

features

- Versatile circuits for a wide range of display applications
- High breakdown voltages
- Low power dissipation

connection diagrams (dual-in-line packages)

DS8887, DS7897/DS8897

Order Number DS7897J, DS8887J, DS8887N, DS8897J or DS8897N See NS Package J18A or N18A

DS7889/DS8889

Order Number DS7889J, DS8889J or DS8889N See NS Package J18A or N18A

absolute maximum ratings (Note 1)

operating conditions

			MIN	MAX	UNITS
Supply Voltage (V _{CC} - V _{8IAS}) (Note 2) DS8887, DS7897/DS8897	-60V	Supply Voltage (V _{CC} - V _{BIAS}) DS8887, DS7897/DS8897	-40	-60	V
Package Power DS7889/DS8889	600 mW	Temperature (T _A) DS7889, DS7897	55	+125	°.C
Input Voltage DS8887, DS7897/DS8897 DS7899/DS8889 (Note 3)	−20V 35V	DS8897, DS8889, DS8897	0	+70	°C
Output Voltage DS8887, DS7897/DS8897	–65∨				
DS7889/DS8889 Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	85V -65°C to +150°C 300°C				
, , , , , , , , , , , , , , , , , ,	300 0				

electrical characteristics (Notes 2, 3 and 4)

D\$8887, D\$	PARAMETER 8897	<u> </u>	CONDITIONS		MIN	TYP	MAX	UNI
V _{IH}	Logical "1" Input Voltage	V _{OUT} = -1.4V, I _O	= -16 mA	DS8887	-2.0	·		Γ.
VIL	Logical "0" Input Voltage	V _{OUT} = -60V, I _O			2.0		-5.5	-
I _{IH}	Logical "1" Input Current				200		-5.5	⊢
		V _{OUT} = -1.4V, I ₀			-300			μ
I _{IL}	Logical "0" Input Current	V _{OUT} = -60V, I _O		S8897			-10	μ
I _I	Input Current		V _{IN} = -1.0V			335	550	μ
			= -6.0V			-0.2	-25	μ
			= -12V		-0.10		−0.65	m
			DS8897, V _{IN} = -12V		-0.45		-1.5	m
V _{OUT OFF}	Output "OFF" Voltage	I _{OUT} = -100μA, I	IN = 0μA		-60	-77		
OUT OFF	Output "OFF" Current	V _{OUT} = -55V, I _{IN}	_J = 0μA			-0.03	-5.0	μ
V _{OUT ON}	Output "ON" Voltage	I _{OUT} = −16 mA	$V_{1N} = -2.0$	/, DS8887		-1.0	-1.4	
		10UT = -16 MA	I _{1N} = -300	A, DS8897		-	-1.4	
BIAS	V _{BIAS} Current		V _{IN} = -1.0	/, DS8887, (Note 5)		-2.2	-4.0	m
		I _{OUT} = -16 mA, V _{BIAS} = -60V	I _{IN} = -300μA, D\$8897, (One Driver Only)				-100	μ
DS7889/DS8	Input Current	V _{IN} = 6.0V			150	250	350	
IL.	Logical "0" Input Current	Ι _{ΟυΤ} = 5.0μΑ, V _O	= 75\/			230	7.0	
IH.	Logical "1" Input Current	I _{OUT} = 1.4 mA, I _I		- FO) /			7.0	μ
<u>и</u>)T = 50V	80			μ
	Input Clamp Voltage	$I_{1N} = -1.0 \text{ mA}, T_{A}$				−0.68	−0.85	
У он	Output Breakdown Voltage	I _{OUT} = 100μA, I _{IN}	_γ = 0μA		80			
CEX	Output Leakage Current	V _{OUT} = 75V, →0.1	$I \text{ mA} \leq I_{IN} \leq 7$.	0μΑ		0.02	5.0	μ
	Prog. Input Voltage	I _{IP} = 150μA			1.8	2.3		
PROG	L. S par voltage					4.0	4.5	
PROG		I _{IP} = 850μA						
	Logical "O" Output Current	I _{IP} = 850μΑ	1 - 150// 2	DS7889	210	300	390	μ
			I _{IP} = 150μΑ	DS7889 DS8889	210 240	300 300	390 360	
		V _{OUT} = 50V,		DS8889 DS7889				μ
		V = 50V	$I_{IP} = 150 \mu A$ $I_{IP} = 400 \mu A$	D\$8889 D\$7889 D\$8889	240 660 680	300	360	μ μ
		V _{OUT} = 50V,		DS8889 DS7889 DS8889 DS7889	240 660 680 1.45	300 800	360 940	μ μ
PROG		V _{OUT} = 50V,	I _{IP} = 400μA	D\$8889 D\$7889 D\$8889	240 660 680	300 800 800	360 940 920	μ, μ, μ, μ, m,

switching characteristics TA = 25°C unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DS888	7					
t _{ON}	Propagation Delay from Input to Output "ON"	(See ac Test Circuit and Switching Time Waveforms)			5.0	μς
t _{RISE}	Propagation Delay from Input to Output "ON"	(See ac Test Circuit and Switching Time Waveforms)			1.0	μς
DS788	9/D\$8889					
t _{pd0}	Propagation Delay to a Logical "O" from Input to Output	R _P = 6.0k to 6.0V, R _{OUT} = 1.0k to 6.0V		37	100	ns
t _{pd1}	Propagation Delay to a Logical "1" from Input to Output	Input Ramp Rate ≤ 15 ns, Freq = 1.0 MHz dc = 50%, Amplitude = 6.0V		92	200	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All voltage shown for DS8887, DS7897/DS8897 W.R.T. V_{CC} = 0V. All currents into device pins shown as positive, out of device pins as negative. All values shown as max or min on absolute basis.

Note 3: All voltages for DS7889/DS8889 with respect to VFF = 0V.

Note 4: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7889 and across the 0°C to +70°C range for the DS8887, DS8889 and DS8897. All typicals are given for T_A = 25°C.

Note 5: Supply currents specified for any one input = -1.0V. All other inputs = -5.5V and selected output having 16 mA load.

typical application

Note 1 All outputs of both cathode and anode driver have loads as shown for output a and digit 1 Note 2 Use DS8887 for active-high inputs and DS8897 for active-low inputs

Note 2 Use DS8887 for active-high inputs and DS8897 for active low inputs

typical performance characteristics

ac test circuit and switching time waveforms

logic diagrams DS8887 DS7889/DS8889 ONE OF EIGHT DRIVERS SHOWN DS7897/DS8897

DS7891/DS8891 high voltage anode drivers (active low inputs)

general description

The DS7891/DS8891 is a 6 digit anode driver intended for use with seven segment, common anode, high voltage, gas discharge display panels operating in a multiplexed mode. The driver switches voltage and impedance levels at the display's anode allowing or preventing ionization of gas around selected cathodes, forming a numeric display. The devices acts as a buffer between MOS outputs (fully decoded) and the anodes of a gas-discharge panel, and it can source up to 16 mA at a low impedance and can stand off more than 55V in the off state.

features

- High breakdown voltage
- Low power dissipation
- Easy interface to clock and calculator circuits

schematic and connection diagrams

typical application

Order Number DS7891J, DS8891J or DS8891N See NS Package J14A or N14A

absolute maximum rati	operating conditions					
Supply Voltage (VCC - VBIAS)	- 6 0∨		MIN	MAX	UNITS	
Input Voltage	–00√ –20V	Supply Voltage, $V_{CC} - V_{BIAS}$	-45	-55	V	
Output Voltage	-65V	Temperature, TA				
Storage Temperature Range	−65°C to +150°C	DS8891	0	+70	°C	
Lead Temperature (Soldering, 10 seconds)	300°C	DS7891	55	+125	°C	

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IIN	Input Current	V _{BIAS} = Min, V _{IN} = -12V	-0.6		-1.5	mA
I _{IH}	Logical "1" Input Current	V _{BIAS} = Min, V _{OL} = -2.0V	-300			μΑ
IIL	Logical "O" Input Current	$V_{BIAS} = Min, V_{OUT} = -60V, I_{OUT} = -100\mu A$			-10	μΑ
Іон	Logical "1" Output Current	$V_{BIAS} = Max, I_{IN} = 0\mu A, V_{OH} = -55V$			-5	μΑ
VoL	Logical "0" Output Voltage	$I_{OL} = -16 \text{ mA}, I_{IH} = -300 \mu \text{A}$			-2.0	V
V _{BD}	Output Breakdown Voltage	$V_{BIAS} = Max, I_{IN} = 0\mu A, I_{OUT} = -100\mu A$	-60			V
IBIAS	Supply Current (Substrate)	V_{BIAS} = Max, I_{IH} = -300 μ A, I_{OL} = -16 mA, (One Driver Only)			-100	μΑ

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7891 and across the 0°C to +70°C range for the DS8891.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to $V_{CC} = 0V$, unless otherwise noted. All values shown as max or min on absolute value basis.

DS8892 programmable hex LED digit driver

general description

The DS8892 is a hex LED digit driver similar to the DS75494, except that the DS8892 is programmable. The DS8892 will sink up to 200 mA per output, and the open collector outputs withstand a minimum of 8.8V in the off state. The main application of the DS8892 is to interface between MOS circuits and common cathode LED displays in systems where low battery drain is important. The DS8892, through the use of a single external resistor, allows the base drive to the output transistors to be programmed to the desired amount, thus saving battery current.

features

- Presettable current drain
- 200 mA sink capability
- MOS compatible inputs
- Low voltage operation

schematic and connection diagrams

ONE OF SIX DRIVER SHOWN

Order Number DS8892N See NS Package N16A

typical application

absolute maximum ratings (Note 1)

electrical characteristics (Notes 2 and 3) V_{DD} = 0V

	PARAMETER		MIN	TYP	MAX	UNITS	
l _{IL}	Logical "0" Input Current	V _{SS} = 8.8V, F	11 = 300Ω, I _{OUT} = 400μA	50			μΑ
I _{IH}	Logical "1" Input Current	V_{SS} = 8.8V, R_{1N} = 45 Ω , I_{R} = 6 mA, I_{OUT} = 80 mA				2.7	mA
VR	Logical "0" Phase-Splitter Voltage	V _{SS} = 6.0V, F I _{OUT} = 80 mA	0.9		1.4	٧	
I _{OH}	Logical ''1'' Output Current	V _{SS} = 8.8V, I V _{OUT} = 8.5V			400	μΑ	
VoL	Logical ''0'' Output Voltage		$V_{SS} = 3.0V$, $I_{R} = 2 \text{ mA}$, $I_{OUT} = 25 \text{ mA}$			0.35	٧
			$V_{SS} = 3.8V$, $I_{R} = 5.7 \text{ mA}$, $I_{OUT} = 50 \text{ mA}$			0.35	٧
		$R_{IN} = 140\Omega$	V _{SS} = 4.5V, I _R = 7.7 mA, I _{OUT} = 100 mA			0.40	٧
			$V_{SS} = 6.0V$, $I_{R} = 12 \text{ mA}$, $I_{OUT} = 200 \text{ mA}$			0.50	V

switching characteristics $T_A = 25^{\circ}C$, nominal power supplies unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{P(ON)}	Propagation Delay to a Logical "0"	(See AC Test Circuit), V _{SS} = 6.0V			800	ns
t _{P(OFF)}	Propagation Delay to a Logical "1"	(See AC Test Circuit), V _{SS} = 6.0V			1.2	μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: V_{SS} is an external system supply, used as shown in the dc test circuit ($V_{DD} = 0V$).

Note 3: All currents into device pins shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted. All values shown as maximum or minimum on absolute value basis.

ac test circuit

dc test circuit

switching time waveforms

DS7895/DS8895 quad LED segment driver

general description

The DS7895/DS8895 is a quad LED segment driver designed to interface between MOS IC's and LED displays. It provides a relatively constant output current -typically 17 mA-independent of the supply voltage. The DS8895 is similar to the DS75493 except on the DS8895 the output current is internally set-no external components are required for current limiting. Blanking can be achieved by taking the Chip Enable (CE) to a logic "1" level.

features

- Internally set output current
- Low voltage operation
- MOS compatible inputs
- Low standby power
- Blanking capability

schematic and connection diagrams

absolute maximum r	atings (Note 1)	operating cond	litions		
Supply Voltage Input Voltage	10V 10V	Supply Voltage, VCC	MIN	MAX	UNITS
Output Voltage Storage Temperature Range	V _{CC} 65°C to +150°C	Vcc	3.2	8.8	V V
Lead Temperature (Soldering, 10 secon	ds) 300°C	Vss Temperature, Тд	6.5	8.8	V
		DS8895	0	+70	°C
		DS7895	-55	+125	°C

electrical characteristics (Notes 2 and 3)

	PARAMETER	CON	DITIO	ONS (See Figure 1)		MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage	V _{CC} = 3.2V, V _{SS}	= 8.8\	/, I _{IN} = 2.0 mA, V _C	_{UT} = 1.75V	6.5			V
VIHCE	Chip Enable	V _{CC} = 3.2V, V _{SS}	= 8.8\	/, I _{IN} = 1.0 mA, V _C	UT = 0V	3.5			V
I _{IH}	Logical "1" Input Current	$V_{CC} = 3.2V, V_{SS}$ $V_{OUT} = 1.75V$	= 8.8\	J, V _{IN} = 8.8V, R =	0.1k,			2.0	mA
VIL	Logical "0" Input Voltage	V _{CC} = 8.8V, V _{SS}	- 8.8	/, V _{OUT} = 0V, I _{IN}	= 0.1 mA			1.3	V
VILCE	Chip Enable	V _{CC} = 8.8V, V _{SS}	= 8.8\	/, V _{OUT} = 1.75V, F	R = 0.1k			1.0	V
OUT MIN	Output Current	$V_{CC} = 3.2V, V_{SS} = 6.5V, V_{OUT} = 2.15V,$ $R = 1k, T_A = 25^{\circ}C$				12.5	16.5		mA
lout MAX	Output Current	V_{CC} = 8.8V, V_{SS} = 8.8V, V_{OUT} = 1.75V, R = 0.1k, T_A = 25°C					18.5	22	mA
I _{OUT TYP}	Output Current	V _{CC} = 3.6V, V _{SS} = 7.2V, V _{OUT} = 2.0V, DS7895		15.5	17	18.5	mA		
		$T_A = 25^{\circ}C, R = 50$	$T_A = 25^{\circ}C$, R = 500 Ω DS8895		14.5	17	19.5	mA	
lour	Output Current	V _{CC} = 3.6V, V _{SS}	= 7.2\	/, V _{OUT} = 2.0V,	DS7895	10.5		23.0	mA
		$R_L = 500\Omega$, Full	Tempe	erature Range	DS8895	13.5		20.5	mA
I _{OUT OFF}	Output Current	V _{CC} = 8.8V,		V _{SS} = 8.8V, R = 1	00k			100	μΑ
		V _{OUT} = 0V, (All Drivers "OFF	1	$V_{SS} = 6.5V, R = 0$ $R_{CE} = 1k$).1k,			200	μА
I _{SS}	Supply Current	l ic	0.0	1.0V, V _{SS} = 8.8V ts Open)				8	mA
Icc	Supply Current	V _{IN} = 6.5V	'cc = 3	3.2V V _{SS} = 8.8V,	DS7895			5	mA
			_{'оит} =	= 1.75V	DS8895			4	mA
t _{pd OFF}	Propagation Delay to a Logical "0" from Input to Output	t _r = t _f = 10 ns, (See <i>Figures 2 and 3</i>)				170	300	ns	
t _{pd ON}	Propagation Delay to a Logical "1" from Input to Output	t _r = t _f = 10 ns, (See <i>Figures 2 and 3</i>)				11	100	ns	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7895 and across the 0° C to $+70^{\circ}$ C range for the DS8895. All typicals are given for V_{CC} = 5.0V and T_{A} = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as maximum or minimum on absolute value basis,

truth table

CE	VIN	lout
0	1	ON
0	0	OFF
1	Х	OFF

X = Don't care

FIGURE 1.

ac test circuit and switching time waveforms

FIGURE 2.

FIGURE 3.

DS8968 12-Digit Decoder/Driver(Modification)

General Description

The DS8968 is a 12-digit decoder/driver designed to drive LED displays like the NSA5101 from the MM5758 calculator chip or equivalent which supplies a 4-line coded input (see truth table). It is designed to operate from 4.5V to 9.5V.

The DS8968 can sink up to 200 mA min on each output.

Features

- Direct interface with MM5758 calculator
- Pin compatible with DS8868
- 200 mA sink capability
- Low voltage operation

Connection Diagram

Dual-In-Line Package

Order Number DS8968J or DS8968N See NS Package J18A or N18A

Equivalent Schematic

Truth Table

	INPL	TS						(OUTPUT	S*					
INA	INB	INC	IND	01	02	03	04	O5	06	07	08	O9	010	011	012
L	L	L	н	I.											
н	L	L	L		L										
н	Н	L	L			L									
L	н	н	L				L		ŀ		l	İ			1
н	L	н	Н	, ,		}	J	L			l				
L	н	L	Н						L	[f		ĺ	ĺ	ĺ
н	L	н	L							L					
Н	н	L	Н					l			Ł		ļ		
н	н	н	L								ŀ	L			
н	Н	н	н					İ	1				L		
L	L	н	н										l	L	
L	н	н	н			l		ĺ					<u> </u>	l	L

^{*}A blank implies an H

Absolute Maximum R	latings (Note 1)	Operating Conditions							
			MIN	MAX	UNITS				
Supply Voltage	10V	Supply Voltage, V _{CC}	4.5	9.5	V				
Input Current Output Voltage	10 mA 9V	Temperature, T_A	0	+70	°c				
Storage Temperature Range	−65 to +150°C								

300°C

Electrical Characteristics

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
liH.	Logical "1" iput Current	V _{CC} = Min, Selected Output V _{OL} ≤ 0.4V		300	450	μА
l(L	Logical "0" Input Current	V_{CC} = Min, Selected Output $I_{OH} \le 50 \mu A$	100	300	1	μА
ЮН	Logical "1" Output Current	V _{CC} = Max, V _{OH} = 7.0V, All Outputs "OFF"			100	μА
VOL	Logical "0" Output Voltage	V _{CC} = Min, I _{OL} = 200 mA		0.6	0.9	V
Icc	Supply Current "ON"	V _{CC} = Max, One Output Selected	1	17	35	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Conditions" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range. All typicals are given for V_{CC} = 5V and T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Typical Application

Typical 3-Cell Scientific Calculator Circuit

Display Drivers

DS8973, DS8974, DS8975, DS8976, DS8978 9-digit LED drivers

general description

The DS8973, DS8974 and DS8976 are 9-digit drivers designed to operate from 3-cell (DS8973) or 4-cell (DS8974) or 6-cell (DS8976) battery supplies. Each driver will sink 100 mA to less than 0.7V when driven by only 0.1 mA. Each input is blocked by diodes so that the input can be driven below ground with virtually no current drain. This is especially important in calculator systems employing a dc-to-dc converter on the negative side of the battery. If the converter were on the positive side of the battery, the converter would have to handle all of the display current, as well as the MOS calculator chip current. But if it is on the negative side, it only has to handle the MOS current. The DS8973 and DS8974

are designed for the more efficient operating mode. The DS8975 is identical to the DS8973, DS8974 and DS8976 but does not specify the low battery indicator. DS8978 is identical to the DS8975 but is in a 20-pin package without low battery pins.

features

- Nine complete digit drivers
- Built-in low battery indicator
- High current outputs—100 mA
- Choice of 3 or 4-cell operation
- Straight through pin out for easy board layout

equivalent circuit diagrams

Typical Drivar Circuit

INPUT O DUTPUT

Typical D.P. Out Circuit

connection diagram

DS8975N or DS8976N

Sae NS Package N22A

DUTPUTS VCC1 V8 9 8 7 6 5 4 3 2 10 19 18 17 16 15 14 13 12 11 11 2 3 4 5 6 7 8 9 10 SINPUTS TOP VIEW

Dual-In-Line Package

Order Numbar DS8978N See NS Package N20A

mΑ

1.2

			MIN	MAX	UNITS
Supply Voltage	10V	Supply Voltage (VB)			
Input Voltage	10V	DS8973	3.0	5.5	V
Output Voltage	10∨	DS8974	3.0	7.5	V
Storage Temperature Range	-65°C to +150°C	D\$8976	3.0	9.5	V
Lead Temperature (Soldering, 10 seconds)	300°C	Supply Voltage (VCC1)	3.0	9.5	V
		Temperature (TA)	0	+70	°C

operating conditions

electrical characteristics

Pin 21 (High Battery Supply)

ΙB

absolute maximum ratings (Note 1)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VIΗ	Logical "1" Input Voltage	V _{CC} = Max	V _{CC} = Max				V
¹iн	Logical "1" Input Current	V _{CC} = Max, V _{IH} = 3.9V				0.3	mA
VIL	Logical "O" Input Voltage	V _{CC} = Max				0.5	V
IIL	Logical "O" Input Current	V _{CC} = Max, V _{IL} = 0.5V			40	μΑ	
VBH	High Battery Threshold	V_{OT} (Pin 1) = 1V, $I_{OT} < -50\mu A$,	DS8973	3.6			V
. 611		$T_A = 25^{\circ}C$, V_{IH} (Pin 2) = 3.9V	DS8974	4.8		I	V
			DS8976	7.3			٧
VBL	Low Battery Threshold	V_{OT} (Pin 1) = 2.1V, $I_{OT} \ge -6$ mA,	DS8973			3.2	V
· BC		$T_A = 25^{\circ}C$, V_{1H} (Pin 2) = 3.9V	DS8974			4.2	V
			DS8976			6.5	V
CEX	Logical "1" Output Current	V _{CC} = Min, V _{OH} = 9.5V, V _{IL} = 0.5V				50	μΑ
VOL	Logical "0" Output Voltage	VCC = Min, IOL = 100 mA, VIH = 3.9V				0.7	V
ICC1	Supply Current	VCC = Max, One Input "ON"				6	m A

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operations.

VCC = Max, VB = Max

Note 2: Unless otherwise specified, min/max limits apply across the 0°C to +70°C range. All typicals are given for T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical applications

FIGURE 1. 6V Programmable Statistical Calculator

FIGURE 2. Complete Calculator Schematic For 3-Cell System

Display Drivers

National Semiconductor

DS8980, DS8981 High Voltage 7-Segment Latches/Decoders/Drivers

General Description

The DS8980, DS8981 circuits are current-programmable segment-ratioed, 7-segment gas discharge tube display decoder/drivers with input latches. The devices also contain a 25 mA high-voltage saturating switch output with an input latch. All outputs may be unconditionally blanked by use of the blanking input. The devices will operate with a VCC range of from 4.75V to 15.00V, and the current programming is independent of the V., voltage The inputs are TTL/LS/MOS compatible. The input fall-through latches are enabled by a high logic level at the ENB/ST8 input for the DS8980, and by a low logic level for the DS8981.

Features

- Current sink outputs
- Adjustable output current
- High output breakdown voltage
- Suitable for multiplex operation
- 8lanking provision
- Low fan-in and low power
- Fall-through latch design
- TTL LS and MOS compatible
- VCC range of 4.75V to 15V

Logic Diagram

Absolute Maximum Ratings (Note 1)

Operating Conditions

Supply Voltage 18V
Input Voltage VCC
Output Voltage 80V
Storage Temperature Range -65°C to +150°C
Power Dissipation (Note 4) 650 mW
Lead Temperature (Soldering, 10 seconds) 300°C

 $\begin{array}{c|cccc} & & \textbf{MIN} & \textbf{MAX} & \textbf{UNITS} \\ \text{Supply Voltage (V}_{CC}) & & 4.75 & 15.00 & V \\ \text{Temperature (T}_{A}) & & 0 & +70 & ^{\circ}C \end{array}$

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
VIН	Logical "1" Input Voltage	V _{CC} = Min	2.0			V
IIH	Logical "1" Input Current	V _{CC} = Max, V _{IN} = 15.00V			1	μΑ
VIL	Logical "O" Input Voltage	V _{CC} = Min			0.8	V
IIL	Logical "0" Input Current	V _{CC} = Max, V _{IN} = 0.4V			50	μΔ
I _{ILDIS}	Logical ''0" Input Current, Inputs Disabled A, 8, C, D, DP Inputs	V _{CC} = Max, V _{IN} = 0.4V EN8/STB = 0V, DS8980 EN8/STB = 3V, DS8981			-1	μА
VCD	Input Clamp Voltage	V _{CC} = Min, I _{IN} = -12 mA			-1.5	V
8VCEX	Output Breakdown Voltage	V_{CC} = Min, 81 = 0V, I_{OUT} = 250 μ A, (Note 5)	80			V
ГОН	Logical "1" Output Current	V _{CC} = Min, V _{OUT} = 75V, BI = 0V			3	μΑ
IRANGE(b)	Programming Current Range	$V_{CC} = Min-Max$, $T_A = 25^{\circ}C$	0.10		4.00	m⊅
ГОВ	Output b on Current Compliance	V_{CC} = Min-Max, V_{OUT} = 50V, R_p = 7.03 k Ω	0.40		0.60	mA
IOB	Output b on Current Compliance	V_{CC} = 5V, T_A = 25°C, V_{OUT} = 50V, R_p = 18.1 k Ω	0.18		0.22	mA
IOB	Output b on Current Compliance	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, $V_{OUT} = 50V$, $R_p = 7.03 \text{ k}\Omega$	0.45		0.55	mA
IOB	Output b on Current Compliance	V_{CC} = 5V, TA = 25°C, V_{OUT} = 50V, R_p = 2.20 k Ω	1.30		1.70	m.A
108	Output b on Current Compliance	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, $V_{OUT} = 50V$, $R_p = 1.05 \text{ k}\Omega$	2.70		3.30	m.A
k _a ,k _f ,k _g	Outputs a, f and g on Current Ratio	V _{CC} = Min—Max, Output b on Current = Reference	0.84	0.93	1.02	
k _c	Output c on Current Ratio	V _{CC} = Min-Max, Output b on Current = Reference	1.12	1.25	1.38	
k _d	Output d on Current Ratio	V _{CC} = Min-Max, Output b on Current = Reference	0.90	1.00	1.10	
k _e	Output e on Current Ratio	V _{CC} = Min-Max, Output b on Current = Reference	0.99	1.10	1.21	
VSAT	Output Saturation Voltage (Except DP Output)	$V_{CC} = Min$, $I_p = -2.0 \text{ mA}$, $I_{OUT} = k_x \cdot 4 \text{ mA}$			4.0	V
V _{SATDP}	Output Saturation Voltage (@ DP Output)	V _{CC} = Min, I _{OUT} = 25 mA			3.0	V
Icc	Supply Current	A, 8, C, BI Inputs = 0V, D, DP Inputs = 5V, Latches Enabled, R _D = 1.06k, V _{OUT} = 5V				
		Vcc = 5V	1		16	 mA
		V _{CC} = Max	1		20	m _A

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpD0 or tpD1	Propagation Delay From Input A,	R _P = 3.3k, R _L = 1k		ļ	10.0	μs
	B, C, D, DP or BI to Any Output					
tSET-UP(Min)	Minimum Set Up Time From Input				1.0	μs
	A, B, C, D or DP to ENB/STB Input					
tHOLD(Min)	Hold Time to Input A, B, C, D				1.0	μs
	cr DP from ENB/STB Input		ı			

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Minimum Enable Pulse Width

¹W(Min)

Note 2: Unless otherwise specified min/max limits apply across the 0° C to +70° C range for the DS8980, DS8981. All typicals are given for V_{CC} = 5V and T_A = 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Power dissipated in the package must be held to 650 mW or less on a DC basis. Since most of the power dissipation is due to output currents, duty cycle limiting via the use of the blanking input can provide the necessary power dissipation limiting. In order to provide minimal thermal cycling effects to both die and package, a blanking frequency of more than 1 kHz is recommended.

Note 5: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in DC applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.

Truth Table

DECIMAL			INP	UT						DUT	PU T				DISPLAY
FUNCTION	DP	D	С	В	Α	Ві	а	b	c	d	е	f	9	DP	DISPLAT
0	Х	0	0	0	0	1	0	0	0	0	0	0	1	×	17
1	×	0	0	0	1	1	1	0	0	1	1	1	1	×	1
2	×	0	0	1	0	1	0	0	1	0	0	1	0	×	₽
3	×	0	0	1	1	1	0	0	0	0	1	1	0	×	
4	×	0	1	0	0	1	1	0	0	1	1	0	0	×	4
5	×	0	1	0	1	1	0	1	0	0	1	0	0	×	5
6	×	0	1	1	0	1	0	1	0	0	0	0	0	×	5
7	×	0	1	1	1	1	0	0	0	1	1	1	1	×	7
8	×	1	0	0	0	1	0	0	0	0	0	0	0	×	
9	×	1	0	0	1	1	0	0	0	0	1	0	0	×	9
10	×	1	0	1	0	1	1	1	1	1	1	1	1	×	
11	×	1	0	1	1	1	1	1	1	1	1	1	1	×	
12	×	1	1	0	0	1	1	1	1	1	1	1	1	×	
13	х	1	1	0	1	1	1	1	1	1	1	1	1	×	
14	×	1	1	1	0	1	1	1	1	1	1	1	1	×	
15	×	1	1	1	1	1	7	1	1	1	1	1	1	×	
ВІ	×	×	×	×	×	0	1	1	1	1	1	1	1	1	
DP	1	×	×	×	×	1	×	×	×	×	×	×	х	0	
DP	0	Х	Х	Х	Х	1	Х	×	X	Х	Х	Х	×	1	

Display Drivers

D\$75491 MOS-to-LED quad segment driver D\$75492 MOS-to-LED hex digit driver

general description

The DS75491 and DS75492 are interface circuits designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digit-scan method of LED drive.

features

- 50 mA source or sink capability per driver (DS75491)
- 250 mA sink capability per driver (DS75492)
- MOS compatability (low input current)
- Low standby power
- High-gain Darlington circuits

schematic and connection diagrams

DS75491 (each driver)

DS75492 (each driver)

DS75491 Dual-In-Line Package

DS75492 Dual-In-Line Package

Order Number DS75491N or DS75492N See NS Package N14A

		. •	
ahcolute	maximum	ratings	/Note 1)
ubstrate	IIIGAIIIIGIII	i a ti i i g 3	(INOTE I)

	DS75491	DS75492
Input Voltage Range (Note 4)	-5V to V _{SS}	−5V to V _{SS}
Collector Output Voltage (Note 5)	10∨	1 0 V
Collector Output to Input Voltage	10∨	1 0 V
Emitter to Ground Voltage ($V_1 \ge 5V$)	10V	
Emitter to Input Voltage	5V	
Voltage at V _{SS} Terminal With Respect to Any Other Device Terminal	10V	10V
Collector Output Current		
Each Collector Output	50 mA	250 mA
All Collector Outputs	200 mA	600 mA
Continuous Total Dissipation	600 mW	6 00 mW
Operating Temperature Range	0°C to +70°C	0°C to +70°C
Storage Temperature Range	−65°C to +150°C	−65°C to +150°C
Lead Temperature (Soldering, 10 sec)	300°C	300°C

electrical characteristics

DS75491 ($V_{SS} = 10V$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted) (Notes 2 and 3)

	PARAMETER		CONOITIONS	MIN	TYP	MAX	UNITS
V _{CE ON}	"ON" State Collector Emitter Voltage	Input = 8.5V	through 1 k Ω , $T_A = 25^{\circ}C$		0.9	1.2	V
		V _E = 5V, I _C	= 50 mA			1.5	V
I _{C OFF}	"OFF" State Collector Current	V _C = 10V,	I _{IN} = 40μA			100	μΑ
		V _E = 0V	V _{IN} = 0.7V			100	μΑ
I ₁	Input Current at Maximum Input Voltage	V _{IN} = 10V, \	V _E = 0, I _C = 20 mA		2.2	3.3	mA
I _E	Emitter Reverse Current	V _{IN} = 0, V _E	= 5V, I _C = 0			100	μΑ
I _{SS}	Current Into V _{SS} Terminal					1	mA

DS75492 $(V_{SS} = 10V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C \text{ unless otherwise noted})$ (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
VoL	Low Level Output Voltage	Input = 6.5V t	through 1 k Ω , $T_A = 25^{\circ}C$		0.9	1.2	V
		I _{OUT} = 250 m	Α			1.5	V
I _{OH}	High Level Output Current	V = 10V	l _{+N} = 40μA			200	μΑ
		V _{OH} = 10V	V _{IN} = 0.5V			200	μΑ
I_{L}	Input Current at Maximum Iriput Voltage	V _{IN} = 10V, I _O	oL = 20 mA		2.2	3.3	mA
Iss	Current Into V _{SS} Terminal					1	mA

switching characteristics

DS75491 ($V_{SS} = 7.5V, T_A = 25^{\circ}C$)

	PARAMETER	CONOITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High Level Output (Collector)	$V_{IH} = 4.5 V, V_{E} = 0,$		100		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output (Collector)	$R_L = 200\Omega$, $C_L = 15 pF$		20		ns

D\$75492 ($V_{SS} = 7.5V, T_A = 25^{\circ}C$)

	PARAMETER	CONDITIONS	MIN	ŢΥP	MAX	UNITS
t _{PLH}	Propagation Delay Time Low-to-High Level Output	$V_{IH} = 7.5V, R_{L} = 39\Omega,$		300		ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	C _L = 15 pF		30		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range for the DS75491 and DS75492.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The input is the only device terminal which may be negative with respect to ground.

Note 5: Voltage values are with respect to network ground terminal unless otherwise noted.

ac test circuits and switching time waveforms

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50Ω , PRR = 100 kHz, t_W = $1\mu s$.

Display Drivers

DS55493/DS75493 quad LED segment driver

general description

The DS55493/DS75493 is a quad LED segment driver. It is designed to interface between MOS IC's and LED's. An external resistor is required for each segment to drive the output current which is approximately equal to $0.7V/R_{\rm L}$ and is relatively constant, independent of supply variations. Blanking can be achieved by taking the chip enable (CE) to a logical "1" level.

features

- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Output current regulation
- Quad high gain circuits

schematic and connection diagrams

Order Number DS55493J, DS75493J or DS75493N See NS Package J16A or N16A

typical application

truth table

CE	V _{IN}	Іоит
0	1	ON
0	0	OFF
1	×	OFF

X = Don't care

absolute maximum ratings (Note 1) operating conditions MIN MAX UNITS Supply Voltage 10V Supply Voltage Input Voltage 10V Vcc 3.2 8.8 Output Voltage Vcc v_{SS} 6.5 ٧ 8.8 Storage Temperature Range +65°C to +150°C Temperature, TA °C Lead Temperature (Soldering, 10 seconds) 300°C DS75493 +70 °C Output Current (IOUT) -25 mA DS55493 --55 +125

electrical characteristics $(V_{ss} \ge V_{CC})$ $T_A = 25^{\circ}C$ (Notes 2 and 3)

	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
I _{IN}	Input Current	V _{SS} = Max, V _{IN} = 8.8V, V	CC = Open, V _{CE} = 0V			3.2	mA
		I _{OUT} = R _{SET} @ 0V, V _{CE} =	I _{OUT} = R _{SET} @ 0V, V _{CE} = 8.8V			3.6	mA
I _{CE}	Chip Enable Input Current	V _{CC} = Max, V _{SS} = Max, V _{CE} = 8.8V, All Other Pins to Gnd				2.1	mA
lour	Output Current	t _{OUT} @ 2.15V, R _L = 50Ω	V_{CC} = Min, V_{SS} = 6.5V, I_{CE} = 80 μ A, V_{IN} = 6.5V Through 1.0 kΩ	-8	-13		mA
			V _{CE} = 0V, V _{IN} = 8.8V		-16	-20	mA
lou	Output Leakage Current	I _{OUT} = R _{SET} @ 0V,	V_{CC} = Min, V_{CE} = $0V$ V_{IN} = $8.8V$ Through $100 \text{ k}\Omega$			- 100	μΑ
		Measure Current to Gnd, V _{SS} = 8.8V	V _{CE} = 6.5V Through 1.0 kΩ, V _{IN} = 8.8V			-200	μΑ
Icc	Supply Current, V _{CC}	V _{CC} = Max, V _{SS} = Max, A	II Other Pins to Gnd			40	μΑ
Iss	Supply Current	V _{CC} = 0V, All Other Pins t	o Gnd		1	40	μΑ
		V _{CC} = M ₁ n, V _{SS} = 8.8V	I_{OUT} @ 2.15V, V_{CE} = 8.8V Through 100 k Ω , R_{L} = 50 Ω		0.5	1.5	mA
			I _{OUT} = Open, R _{SET} = Open, V _{CE} = 0V			1.4	mA

switching characteristics $T_A = 25^{\circ}C$, nominal power supplies unless otherwise noted

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd(OFF)}	Propagation Delay to a Logical "0" From Input to Output	(See AC Test Circuit)		170	300	ns
t _{pd(DN)}	Propagation Delay to a Logical "1" From Input to Output	(See AC Test Circuit)		11	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS75493 and across the -55°C to +125°C range

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS75493 and across the -55°C to +125°C range for the DS55493.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit

switching time waveforms

Display Drivers

DS55494/DS75494 hex digit driver

general description

The DS55494/DS75494 is a hex digit driver designed to interface between most MOS devices and common cathodes configured LED's with a low output voltage at high operating currents. The enable input disables all the outputs when taken high.

features

- 150 mA sink capability
- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Low voltage saturating outputs
- Hex high gain circuits

schematic and connection diagrams

Dual-In-Line Package

Order Number DS55494J, DS75494J or DS75494N See NS Package J16A or N16A

truth table

ENABLE	VIN	V _{OUT}
0	0	1
0	1	0
1	×	1

X = don't care

operating conditions absolute maximum ratings (Note 1) UNITS MIN MAX Supply Voltage 10 V Input Voltage 10V 8.8 Supply Voltage, VCC 3.2 10V Output Voltage -65°C to +150°C Temperature, TA Storage Temperature Range +70 °C DS75494 300°C Lead Temperature (Soldering, 10 seconds) °C D\$55494 -5**5** +125

electrical characteristics (Notes 2 and 3)

	PARAMETER			CONDITIONS			MIN	TYP	MAX	UNITS
I _{IH}	Logical "1" In put Current			V _{CE} = 8.8V	through 100k				2.0	mA
		V _{CC} = Min, V	_{IN} = 8.8V	V _{CE} = 8.8V					2.7	mA
I _{IL}	Logical "0" Imput Current	V _{CC} = Max, V	_{IN} = -5.5V						-20	μΑ
I _{OH}	Logical "1" Output Current		V _{IN} = 8.8V through 100k, V _{CE} = 0V					400	μΑ	
-011		V _{CC} = Max, V	V _{IN} = 8.8V, V _{CE} = 6.5V through 1.0k					400	μΑ	
Vol	Logical "0" Output Voltage	V _{CC} = Min, I _C	oL = 150 mA, V _{IN} = 6.5V through 1.0k, DS75494			0.25	0.35	V		
.02		V _{CE} = 8.8V tl			DS55494		0.25	0.4	V	
Icc	Supply Current					DS75494			8.0	mA
·CC			One Driver	"ON", V _{IN} =	8.8V	D\$55494			10.0	mA
				. OND	V _{CE} = 6.5V	through 1.0k			100	μΑ
		V _{CC} = Max	All Other F	Pins to GND	V _{IN} = 8.8V	through 100k			100	μA
			All Other F	Pins to GND					40	μΑ
toff	Output "OFF" Time	C _L = 20 pF, F	R _L = 24Ω, V _C	_C = 4.0V, See	ac Test Circuit	s		0.04	1.2	μs
ton	Output "ON" Time	C ₁ = 20 pF, f	$R_L = 24\Omega$, V_C	c = 4.0V, See	ac Test Circuit	s		13	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS75494 and across the -55°C to +125°C range

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

ac test circuit and switching time waveforms

Section 6

MOS Memory Interface Circuits

TEMPERAT	URE RANGE	DESCRIPTION	PAGE
-55°C to +125°C	0° C to +70 $^{\circ}$ C	DESCRIPTION	NUMBER
DS0025	DS0025C	2-Phase PMOS Clock Driver	6-1
DS0026	DS0026C	2-Phase PMOS Clock Driver	6-4
DS0056	DS0056C	2-Phase PMOS Clock Driver	6-4
DS1605, 06, 07, 38	DS3605, 06, 07, 08	Hex MOS Sense Amps/MOS-to-TTL Converters	6-11
_	DS3625	Pin-for-Pin Replacement for 8T25	6-16
DS1628	DS3628	Octal TRI-STATE® MOS Driver	6-20
DS1640, 70	DS3640, 70	Ouad MOS TRI-SHARE TM Port Drivers	6-23
DS1642, 72	DS3642, 72	Dual Bootstrapped TTL-to-MOS Clock Driver	6-26
-	DS3643, 73	Decoded Ouad MOS Clock Drivers	6-29
DS1644, 74	DS3644, 74	Ouad TTL-to-MOS Clock Drivers	6-32
DS1645, 75	DS3645, 75	Hex TRI-STATE® TTL-to-MOS Latch/Drivers	6-35
DS1646, 76	DS3646, 76	6-Bit TRI-STATE® TTL-to-MOS Refresh Counter/Driver	6-40
DS1647, 77, 147, 177	DS3647, 77, 147, 177	Quad TRI-STATE® I/O Registers	6-45
DS1648, 78	DS3648, 78	TRI-STATE® TTL-to-MOS Multiplexer/Driver	6-51
DS1649, 79	DS3649, 79	Hex TRI-STATE® TTL-to-MOS Driver	6-56
DS1651, 53	DS3651, 53	Ouad High Speed MOS Sense Amplifiers	6-59
DS1671	DS3671	Dual Bootstrapped 2-Phase PMOS Clock Driver	6-65
DS16149, 179	DS36149, 179	Hex MOS Drivers	6-69
_	DS3245C	Ouad MOS Clock Driver	6-73
DS7802, 06	DS8802, 06	MOS-to-TTL Level Converters	6-16
-	DS75322	Dual TTL-to-MOS Driver (Fail-Safe)	6-76
-	DS3622	Dual TTL-to-MOS Driver (Fail-Safe)	6-76
_	DS75361	Dual TTL-to-MOS Driver	6-79
_	DS75362	Dual TTL-to-MOS Driver	6-84
-	DS75364	Dual TTL-to-MOS Driver	6-89
_	DS75365	Quad TTL-to-MOS Driver	6-93

4k & 16k N-CHANNEL MOS MEMORY INTERFACE CIRCUITS

Page No.	Device Number and Name	5V Clock Drivers	12V Clock Drivers	4k RAM Address Drivers	16k RAM Address Drivers	Data I/O	Timin & Contro Driver
6-23	DS3628 Octal TRI-STATE® MOS Driver	•		Billion	•		•
6-26	DS3640, DS3670 Quad TRI-SHARE® Port Driver						•
6-29	DS3642, DS3672 Dual 8ootstrapped MOS Clock Driver		•				
6-3 2	DS3643, DS3673 Ouad Decoded MOS Clock Driver		•				
6-35	DS3644, DS3674 (3235, MC3460) Quad MOS Clock Driver		•				
6-76	DS3245 Quad MOS Clock Driver		•				
6-38	DS3645, DS3675 Hex TRI-STATE MOS Driver Latch	į		•			
6-43	DS3646, DS3676 6-Bit TRI-STATE MOS Refresh Counter/Driver			•			
6-48	DS3647, DS3677, DS36147, DS36177 Quad TRI-STATE MOS Memory I/O Register					•	
6-54	DS3648, DS3678 TRI-STATE MOS Multiplexer/Driver	•		•	•		•
6-59	DS3649, DS3679 Hex TRI-STATE MOS Driver	•		•			•
6-72	DS36149, DS36179 Hex MOS Driver	•		•			•
6-79	DS75322, DS3622 Dual TTL-to-MOS Driver		•				
6-82	DS75361 Dual TTL-to-MOS Driver		•				
6-87	DS75362 Dual TTL-to-MOS Driver	!	•				
6-92	DS75364 Dual TTL-to-MOS Driver		•				
6-96	DS75365 Quad TTL-to-MOS Driver		•				
8-40	DP83048 8-Bit 8idirectional Transceiver					•	
8-12	DP8216, DP8226 4-Bit Bidirectional Transceiver					•	
2-24	DS8T26, DS8T28 Ouad TRI-STATE 8us Driver					•	
8-5	DP8212 8-Bit Input/Output Port					•	

P-CHANNEL MOS INTERFACE CIRCUITS

		TEMPE	PAGE NO.		
FUNCTION	CHARACTERISTICS	0°C to +70°C	-55°C to +125°C	PAGE NO.	
Clock Driver	Dual, 30V, Drive 1000 pF @ 1 MHz	DS0025C	DS0025	6-1	
Clock Driver	Dual, 20V, Drive 1000 pF @ 5 MHz	DS0026C	DS0026	6-7	
Clock Driver	Same as DS0026, May Use Pull-Up Resistor	DS0056C	DS0056	6-7	
Clock Driver	Same as DS0026, May Be Bootstrapped	DS3671	DS1671	6-68	
Current Sense Amplifier	Hex, Non-Inverting, TRI-STATE® Output	DS3605			
Current Sense Amplifier	Hex, Inverting, TRI-STATE Output	D\$3606			
Current Sense Amplifier	Hex, Non-Inverting, TRI-STATE Input and	DS3607		6-14	
	Output			l l	
Current Sense Amplifier	Hex, Inverting, TRI-STATE Input and	D\$3608			
	Output)	
Current Sense Amplifier	Dual Latching, TRI-STATE Output	DS8802	DS7802	6-19	
Current Sense Amplifier	Dual Latching, TRI-STATE Output	DS8806	D\$7806	6-19	
Differential Sense Amplifier	Quad TRI-STATE ±7 mV Sensitivity	DS3651	DS1651	6-62	
Differential Sense Amplifier	Quad Open-Collector ±7 mV Sensitivity	DS3653	DS1653	6-62	

Note. Refer to Application Note 76 for additional information on clock drivers.

Memory Support Circuits

National Semiconductor Memory Application February 1978

National offers a selection of memory support circuits to facilitate the interface of memory components in systems architecture. The memory support circuits were developed specifically to accommodate the addressing, clocking, data I/O, and control signals associated with memory systems application as shown in figure 1. Additional circuits are available to interface with data bus structured computers and microprocessors. For additional information contact National's Interface Product Marketing Manager.

FEATURES OF THE TTL LEVEL MOS DRIVERS

Figure 2 compares the switching response of the DS3628 with a 74S TTL gate. Two features can be observed from the switching waveforms: 1) the DS3628 is as fast as the 74S TTL driving TTL loads, and 2) the output high level (V_{OH}) of the DS3628 is higher than that of the 74S TTI

In a memory system composed of MOS RAMs the load is capacitive and not resistive. Figure 3 compares the switching response of the DS3628 with a 74S TTL gate driving capacitive loads of 50 pF, 150 pF, and 300 pF. The switching waveforms show that the fall

time of the DS3628 is as fast as or faster than those of the 74S TTL, but most obvious is the rise time of the DS3628 — much faster than that of the 74S TTL. In addition, the 74S has an objectionable glitch in its rise time. The output high (V_{OH}) level of the DS3628 is higher driving capacitance due to a bootstrap effect in the circuit.

The switching response of the circuits interfacing with a memory array is important since any delay subtracts from the overall memory access time. The switching response driving a capacitive load is more important; as an example, the address drivers might be expected to drive 420 pF in a memory containing 64 MOS RAMs with 5 pF input capacitance each plus 100 pF of board capacitance. The same is typical of clock signals, select signals, and read/write signals.

The input logic levels of MOS RAMs are generally higher than TTL gate levels (typically 400 mV higher). Therefore, the higher output high level (V_{OH}) of the DS3628 is preferable for noise immunity and switching overdrive.

The features of the DS3628 are typical of the other TTL level memory support circuits shown in the Selection Guide

Figure 1. Memory System Block Diagram

DAMPING RINGING OF CLOCK SIGNALS

Ringing of clock signals in a system where the logic fan-out is less than 10 is not generally a big problem, but with higher fan-out the increased capacitive load associated with even a small amount of wiring inductance is a problem. When the capacitance is small the switching currents are small, but as the load increases the increased current through the inductance makes the effect of the inductance increase.

To reduce the associated ringing on the clock signals a resistor may be placed in series with the output of the clock driver to critically dampen the signal response. Many of the memory support circuits are available with this resistor in the output, such as the DS3649 which

has a 15Ω dampening resistor, or the DS3679 which is functionally the same without a dampening resistor.

FALL-THROUGH LATCH

In many memory applications a holding register is required either for address or data I/O. Most commercially available registers have an objectionable propagation delay since the circuit's response is the sum of many gate delays. The address and data I/O paths are critical to the memory system access time and a faster register is preferred. The memory support circuits provide a selection of faster latches. These circuits are the DS3645/75 and the DS3647/77/147/177 series. These registers are faster since the latch function is in parallel instead of series with the signal path.

Figure 2. Switching Response with TTL Load

National National Semiconductor **MOS Memory Interface Circuits**

DS0025/DS0025C two phase MOS clock driver

general description

The DS0025/DS0025C is monolithic, low cost, two phase MOS clock driver that is designed to be driven by TTL/DTL line drivers or buffers such as the DM932, DS8830 or DM7440. Two input coupling capacitors are used to perform the level shift from TTL/DTL to MOS logic levels. Optimum performance in turn-off delay and fall time are obtained when the output pulse is logically controlled by the input. However, output pulse widths may be set by selection of the input capacitors eliminating the need for tight input pulse control.

features

- 8-lead TO-5 or 8-lead dual-in-line package
- High Output Voltage Swings-up to 30V
- High Output Current Drive Capability-up to 1.5A
- Rep Rate: 1.0 MHz into > 1000 pF
- Driven by DM932, DS8830, DM7440 (SN7440)
- "Zero" Quiescent Power

connection diagrams

Metal Can Package

TOP VIEW Order Number DS0025H or DS0025CH See NS Package H08C

Dual In-Line Package N.C. 1 8 N C INPUT A 2 7 OUTPUT A 6 v-5 OUTPUT B TOP VIEW

Order Number DS0025CN-8 See NS Package N08A

typical application

timing diagram

ac test circuit

absolute maximum ratings (Note 1)

(V ⁺ – V) Voltage Differential	30V
Input Current	100 mA
Peak Output Current	1.5A
Storage Temperature	-65 C to +150 C
Operating Temperature DS0025	-55 C to +125 C
DS0025C	0°C to +85°C
Lead Temperature (Soldering, 10 sec)	300 0

electrical characteristics (Notes 2 and 3) See test circuit.

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
tdON	Turn-On Delay Time	$C_{IN} = 0.001\mu F, R_{IN} = 0\Omega, C_L = 0.001\mu F$			15	30	ns
t _{RISE}	Rise Time	$C_{1N} = 0.001 \mu F, R_{1N} = 0\Omega, C_L = 0.001 \mu F$			25	50	ns
t _{d OFF}	Turri-Off Delay Time	$C_{IN} = 0.001 \mu F$, $R_{IN} = 0\Omega$, C (Note 4)	L = 0.001μF,		30	60	ns
tFALL	Fall Time	$C_{1N} = 0.001 \mu F$, $R_{1N} = 0\Omega$,	(Note 4)	60	90	120	ns
		$C_L = 0.001 \mu F$	(Note 5)	100	150	250	ns
PW	Pulse Width (50% to 50%)	$C_{IN} = 0.001 \mu F$, $R_{IN} = 0\Omega$, $C_L = 0.001 \mu F$ (Note 5)			500		ns
V _{O+}	Positive Output Voltage Swing	V _{IN} = 0V, I _{OUT} = -1 mA		V ⁺ −1.0	V ⁺ −0.7V		٧
Vo-	Negative Output Voltage Swing	I _{IN} = 10 mA, I _{OUT} = 1 mA			V +0.7V	V ⁻ +1.5V	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS0025 and across the 0°C to +70°C range for the DS0025C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Parameter values apply for clock pulse width determined by input pulse width.

Note 5: Parameter values for input pulse width greater than output clock pulse width.

typical performance

6

applications information

Circuit Operation

Input current forced into the base of Q_1 through the coupling capacitor C_{IN} causes Q_1 to be driven into saturation, swinging the output to $V^- + V_{CE}(sat) + V_{Diode}$.

When the input current has decayed, or has been switched, such that Ω_1 turns off, Ω_2 receives base drive through R_2 , turning Q_2 on. This supplies current to the load and the output swings positive to $V^+ = V_{\rm BE}$.

It may be noted that Q_1 must switch off before Q_2 begins to supply current, hence high internal transients currents from V^- to V^+ cannot occur.

FIGURE 1. DS0025 Schematic (One-Half Circuit)

Fan-Out Calculation

The drive capability of the DS0025 is a function of system requirements, i.e. speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.

The following equations cover the necessary cal-

culations to enable the fan-out to be calculated for any system condition.

Transient Current

The maximum peak output current of the DS0025 is given as 1.5A. Average transient current required from the driver can be calculated from:

$$I = \frac{C_L (V^+ - V^-)}{t_r}$$
 (1)

Typical rise times into 1000 pF load is 25 ns For $V^* - V^- = 20V$, I = 0.8A.

Transient Output Power

The average transient power (P_{ac}) dissipated, is equal to the energy needed to charge and discharge the output capacitive load (C_L) multiplied by the frequency of operation (f).

$$P_{AC} = C_L \times (V^+ - V^-)^2 \times f$$
 (2)

For $V^+ - V^- = 20V$, f = 1.0 MHz, $C_L = 1000$ pF, $P_{AC} = 400$ mW.

Internal Power

"0" State Negligible (<3 mW)
"1" State

$$P_{int} = \frac{(V^+ - V^-)^2}{R_2} \times Duty Cycle$$
 (3)

$$= 80 \text{ mW for V}^{\dagger} - \text{V}^{-} = 20 \text{V}$$
. DC = 20%

Package Power Dissipation

Total average power = transient output power + internal power

example calculation

How many MM506 shift registers can be driven by a D50025CN driver at 1 MHz using a clock pulse width of 200 ns, rise time 30–50 ns and 16V amplitude over the temperature range 0-70°C?

Power Dissipation:

At 70°C the DS0025CN can dissipate 870 mW when soldered into printed circuit board.

Transient Peak Current Limitation:

From equation (1), it can be seen that at 16V and $30\,$ ns, the maximum load that can be driven is limited to $2800\,$ pF.

Average Internal Power:

Equation (3), gives an average power of 50 mW at 16V and a 20% duty cycle.

For one-half of the DS0025C, 870 mW \div 2 can be dissipated.

435 mW = 50 mW + transient output power

385 mW = transient output power

Using equation (2) at 16V, 1 MHz and 350 mW, each half of the DS0025CN can drive a 1367 pF load. This is less than the load imposed by the transient current limitation of equation (1) and so a maximum load of 1367 pF would prevail.

From the data sheet for the MM506, the average clock pulse load is 80 pF. Therefore the number of devices driven is 1367/80 or 17 registers.

National Semiconductor

MOS Memory Interface Circuits

DS0026, DS0056 5 MHz two phase MOS clock drivers general description

DS0026/DS0056 are low cost monolithic high speed two phase MOS clock drivers and interface circuits. Unique circuit design provides both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. They may be driven from standard 54/74 series and 54S/74S series gates and flip-flops or from drivers such as the DS8830 or DM7440. The DS0026 and DS0056 are intended for applications in which the output pulse width is logically controlled; i.e., the output pulse width is equal to the input pulse width.

The DS0026/DS0056 are designed to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon-gate shift registers, a single device can drive over 10k bits at 5 MHz. Six devices provide input address and precharge drive for a 8k by 16-bit 1103 RAM memory system. Information on the correct usage of the DS0026 in these as well as other systems is included in the application note AN-76A.

The DS0026 and DS0056 are identical except each driver in the DS0056 is provided with a V_{BB} connection to supply a higher voltage to the output stage. This aids

in pulling up the output when it is in the high state. An external resistor tied between these extra pins and a supply higher than V+ will cause the output to pull up to $(V^+ - 0.1V)$ in the off state.

For DS0056 applications, it is required that an external resistor be used to prevent damage to the device when the driver switches low. A typical V_{BB} connection is shown on the next page.

These devices are available in 8-lead TO-5, one watt copper lead frame 8-pin mini-DIP, and one and a half watt ceramic DIP, and TO-8 packages.

features

- Fast rise and fall times—20 ns with 1000 pF load
- High output swing-20V
- High output current drive-±1.5 amps
- TTL/DTL compatible inputs
- High rep rate-5 to 10 MHz depending on power dissipation
- Low power consumption in MOS "0" state-2 mW
- Drives to 0.4V of GND for RAM address drive

connection diagrams (Top Views)

Note: Pin 4 connected to case Order Number DS0056H or DS0056CH See NS Package H08C See NS Package J08A or N08A

Oual-In-Line Package

OUT B

DUT A V+

Drder Number DS0026G or DS00260G See NS Package H12C

TO-8 Package

Order Number OS0056G or DS0056CG See NS Package H12C

absolute maximum ratings (Note 1)

V⁺ - V⁻ Differential Voltage Input Current

Peak Output Current

100 mA Input Voltage (V_{IN} - V⁻) 5.5V

1.5A

22V

Operating Temperature Range DS0026, DS0056 DS0026C, DS0056C

-55°C to +125°C 0°C to +70°C -65°C to +150°C

300°C

Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS MIN		MIN	TYP	MAX	UNITS
V _{IH}	Logic "1" Input Voltage	V- = 0V		2	1.5		V
I _{IH}	Logic "1" Input Current	V _{IN} - V ⁻ = 2.4V			10	15	mA
V _{IL}	Logic "0" Input Voltage	V- = 0V		0.6	0.4	V	
IIL	Logic "0" Input Current	V _{IN} - V ⁻ = 0V			-3	-10	μΑ
V _{OL}	Logic "1" Output Voltage	V _{IN} - V ⁻ = 2.4V			V ⁻ +0.7	V"+1.0	V
V _{он}	Logic "0" Output Voltage	$V_{1N} - V^{-} = 0.4V, \ V_{BB} \ge V^{+} + 1.0V$	DS0026 DS0056	V ⁺ -1.0 V ⁺ -0.3	V ⁺ -0.7 V ⁺ -0.1		V V
I _{CC(ON)}	"ON" Supply Current	V ⁺ - V ⁻ = 20V V _{IN} - V ⁻ = 2.4V	DS0026		30	40	mA
		(Note 6) (one side on)	DS0056		12	30	mA
I _{CC(OFF)}	"OFF" Supply Current	V ⁺ - V ⁻ = 20V,	70°C		10	100	μΑ
·CC(GFF)	·	$V_{1N} - V^{-} = 0V$	125°C		10	500	μΑ

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
ton	Turn-on Delay	(Figure 1)		5	7.5	12	ns
ON		(Figure 2)			11		ns
t _{OFF} Turr	Turn-off Delay	(Figure 1)			12	15	ns
		(Figure 2)			13		ns
t,	Rise Time	(Figure 1),	C _L = 500 pF		15	18	ns
•		(Note 5)	C _L = 1000 pF		20	35	ns
		(Figure 2),	C _L = 500 pF		30	40	ns
		(Note 5)	C _L = 1000 pF		36	50	ns
t _f	Fall Time	(Figure 1),	C _L = 500 pF		12	16	ns
,		(Note 5)	C _L = 1000 pF		17	25	ns
		(Figure 2),	C _L = 500 pF		28	35	ns
		(Note 5)	C _L = 1000 pF		31	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: These specifications apply for V + V = 10V to 20V, CL = 1000 pF, over the temperature range of -55°C to +125°C for the DS0026, DS0056 and 0°C to +70°C for the DS0026C, DS0056C.

Note 3: All curren's into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: All typical values for the TA = 25°C.

Note 5: Rise and fall time are given for MOS logic levels; i.e., rise time is transition from logic "0" to logic "1" which is voltage fall.

Note 6: IBB for DS0056 is approximately $(V_{BB} - V^{-})/1 \text{ k}\Omega$ (for one side) when output is low.

Note 7: The high current transient (es high as 1.5A) through the resistance of the external interconnecting V lead during the output transition from the high stete to the low stete can appear es negative feedback to the input. If the external interconnecting lead from the driving circuit to V is electrically long, or has significant do resistance, it can subtract from the switching response.

typical V_{BB} connection

typical performance characteristics

ac test circuits and switching time waveforms

FIGURE 2.

typical applications

Driver (Positive Supply Only) DS0026CN

DC Coupled RAM Memory Address or Precharge

application hints

DRIVING THE MM5262 WITH THE DS0056 CLOCK DRIVER

The clock signals for the MM5262 have three requirements which have the potential of generating problems for the user. These requirements, high speed, large voltage swing and large capacitive loads, combine to provide ample opportunity for inductive ringing on clock lines, coupling clock signals to other clocks and/or inputs and outputs and generating noise on the power supplies. All of these problems have the potential of causing the memory system to malfunction. Recognizing the source and potential of these problems early in the design of a memory system is the most critical step. The object here is to point out the source of these problems and give a quantitative feel for their magnitude.

Line ringing comes from the fact that at a high enough frequency any line must be considered as a transmission. In the with distributed inductance and capacitance. To see how much ringing can be tolerated we must examine the clock voltage specification. Figure 6 shows the clock

FIGURE 6. Clock Waveform

specification, in diagram form, with idealized ringing sketched in. The ringing of the clock about the V_{SS} level is particularly critical. If the $V_{SS}=1\ V_{OH}$ is not maintained, at all times, the information stored in the memory could be altered. Referring to Figure 1, if the threshold voltage of a transistor were =1.3V, the clock going to $V_{SS}=1$ would mean that all the devices, whose gates are tied to that clock, would be only 300 mV from turning on. The internal circuitry needs this noise margin and from the functional description of the RAM it is easy to see that turning a clock on at the wrong time can have disastrous results.

Controlling the clock ringing is particulary difficult because of the relative magnitude of the allowable ringing, compared to the magnitude of the transition. In this case it is 1V out of 20V or only 5%. Ringing can be controlled by damping the clock driver and minimizing the line inductance.

Damping the clock driver by placing a resistance in series with its output is effective, but there is a limit since it also slows down the rise and fall time of the clock signal. Because the typical clock driver can be much faster than the worst case driver, the damping resistor serves the useful function of limiting the minimum rise and fall time. This is very important because the faster the rise and fall times, the worse the ringing problem becomes. The size of the damping resistor varies because it is dependent on the details of the actual application. It must be determined empirically. In practice a resistance of 10 ohms to 20 ohms is usually optimum.

Limiting the inductance of the clock lines can be accomplished by minimizing their length and by laying out the lines such that the return current is closely coupled to the clock lines. When minimizing the length of clock lines it is important to minimize the distance from the clock driver output to the furthest point being driven. Because of this, memory boards are usually designed with clock drivers in the center of the memory array, rather than on one side, reducing the maximum distance by a factor of 2.

Using multilayer printed circuit boards with clock lines sandwiched between the $V_{\rm DD}$ and $V_{\rm SS}$ power plains minimizes the inductance of the clock lines. It also serves the function of preventing the clocks from coupling noise into input and output lines. Unfortunately multilayer printed circuit boards are more expensive than two sided boards. The user must make the decision as to the necessity of multilayer boards. Suffice it to say here, that reliable memory boards can be designed using two sided printed circuit boards.

The recommended clock driver for use with the MM4262/MM5262 is the DS0056/DS0056C dual clock driver. This device is designed specifically for use with dynamic circuits using a substrate, V_{BB}, supply. Typically it will drive a 1000 pF load with 20 ns rise and fall times. Figure 7 shows a schematic of a single driver.

FIGURE 7. Schematic of 1/2 DS0056

In the case of the MM5262, V^+ is a +5V and V_{BB} is +8.5V. V_{BB} should be connected to the V_{BB} pin shown in *Figure 7* through a 1 k Ω resistor. This allows transistor Q4 to saturate, pulling the output to within a $V_{CE(SAT)}$ of the V^+ supply. This is critical because as was shown before, the $V_{SS}-1.0V$ clock level must not be exceeded at any time. Without the V_{BB} pull up on the base of Q4 the output at best will be 0.6V below the V^+ supply and can be 1V below the V^+ supply reducing the noise margin or this line to zero.

application hints (cont')

Because of the amount of current that the clock driver must supply to its capacitive load, the distribution of power to the clock driver must be considered. *Figure 8* gives the idealized voltage and current waveforms for a clock driver driving a 1000 pF capacitor with 20 ns rise and fall time.

FIGURE 8. Clock Waveforms (Voltage and Current)

As can be seen the current is significant. This current flows in the $V_{\rm DD}$ and $V_{\rm SS}$ power lines. Any significant inductance in the lines will produce large voltage transients on the power supplies, A bypass capacitor, as close as possible to the clock driver, is helpful in minimizing this problem. This typass is most effective when connected between the $V_{\rm SS}$ and $V_{\rm DD}$ supplies. A bypass capacitor for each DS0056 is recommended. The size of the bypass capacitor depends on the amount of capacitance being driven. Using a low inductance capacitor, such as a ceramic or silver mica, is most effective. Another helpful technique is to run the $V_{\rm DD}$ and $V_{\rm SS}$ lines, to the clock driver, adjacent to each other. This tends to reduce the lines inductance and therefore the magnitude of the voltage transients.

While discussing the clock driver, it should be pointed out that the DS0056 is a relatively low input impedance device. It is possible to couple current noise into the input without seeing a significant voltage. Since this noise is difficult to detect with an oscilloscope it is often overlooked.

Lastly, the clock lines must be considered as noise generators. Figure 9 shows a clock coupled through a parasitic coupling capacitor, $C_{\rm C}$, to eight data input lines being driven by a 7404. A parasitic lumped line

inductance, L, is also shown. Let us assume, for the sake of argument, that $C_{\rm C}$ is 1 pF and that the rise time of the clock is high enough to completely isolate the clock transient from the 7404 because of the inductance, L.

FIGURE 9. Clock Coupling

With a clock transition of 20V the magnitude of the voltage generated across \mathbf{C}_{\perp} is:

$$V = 20V \times \frac{C_C}{C_L + C_C} = 20V \times \left(\frac{1}{56 + 1}\right) = 0.35V$$

This has been a hypothetical example to emphasize that with 20V low rise/fall time transitions, parasitic elements can not be neglected. In this example, 1 pF of parasitic capacitance could cause system malfunction, because a 7404 without a pull up resistor has typically only 0.3V of noise margin in the "1" state at 25°C. Of course it is stretching things to assume that the inductance, L, completely isolates the clock transient from the 7404. However, it does point out the need to minimize inductance in input/output as well as clock lines.

The output is current, so it is more meaningful to examine the current that is coupled through a 1 pF parasitic capacitance. The current would be:

$$I = C_C \times \frac{\Delta V}{\Delta t} = \frac{1 \times 10^{-12} \times 20}{20 \times 10^{-9}} = 1 \text{ mA}$$

This exceeds the total output current swing so it is obviously significant.

Clock coupling to inputs and outputs can be minimized by using multilayer printed circuit boards, as mentioned previously, physically isolating clock lines and/or running clock lines at right angles to input/output lines. All of these techniques tend to minimize parasitic coupling capacitance from the clocks to the signals in question.

In considering clock coupling it is also important to have a detailed knowledge of the functional characteristics of the device being used. As an example, for the MM5262, coupling noise from the $\phi 2$ clock to the address lines is of no particular consequence. On the other hand the address inputs will be sensitive to noise coupled from $\phi 1$ clock.

MOS Memory Interface Circuits

DS3605, DS3606, DS3607, DS3608 hex TRI-STATE $^{\circledR}$ MOS sense amplifiers (MOS to TTL converters)

general description

The DS3605 series are programmable hex MOS sense amplifiers featuring high speed direct MOS sense capability with high impedance states to allow use of a common bus line. The DS3605 and DS3606 have TRI-STATE outputs. The DS3607 and DS3608 have both TRI-STATE inputs and outputs. High impedance states are controlled by an enable input.

Input current threshold (the level at which the output changes state) is determined by the current at the programming pin. The current threshold is $100\mu A$ with the programming pin grounded and $250\mu A$ with the pin unconnected. The threshold can be set from $100\mu A$ to $300\mu A$ by connecting a resistor from the pin to ground, and set above $300\mu A$ by connecting a resistor from the pin to the positive supply.

Outputs are high current drivers capable of sinking 50 mA in the low state and sourcing 5 mA in the high state.

features

- Non-inverting inputs (DS3605, DS3607)
- Inverting inputs (DS3606, DS3608)
- No external components required (direct MOS sensing)
- Programmable input thresholds
- Current sensing-100µA minimum
- 50 mA drive capability
- TRI-STATE control
- Single 5V supply
- 15 ns typical propagation delay (DS3605)

connection diagram

Dual-In-Line Package Vcc DISABLE IN₆ 0UT₆ IN₅ 0UT₅ IN₄ DUT₄ I.I. 15 14 13 12 11 10 9 Interest IN₁ 0UT, IN₂ 0UT₂ IN₃ DUT₃ GND TOP VIEW

ordering information

ORDER NUMBERS	PACKAGE		
DS3605J, DS3606J, DS3607J, DS3608J	Cavity DIP (J)		
DS3605N, DS3606N, DS3607N, DS3608N	Molded DIP (N)		

See NS Package J16A or N16A

typical application

PACE Interface

DS3608 shown as an interface between the PACE microprocessor and TTL data bus and I/O bus.

absolute maximum rati	um ratings (Note 1) operating conditions				
			MIN	MAX	UNITS
Supply Voltage Input Voltage Output Voltage	7V 5.5V 5.5V	Supply Voltage, V _{CC} DS3605/DS3606, DS3607/DS3608	4.75	5.25	٧
Input Drive Current per Input Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	25 mA -65° C to 150° C 300° C	Temperature, T _A DS3605/DS3606, DS3607/DS3608	0	+70	°C

electrical characteristics (Notes 2 and 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{IH} Logical "1" Input Voltage Disable	V _{CC} = Min		2			V
I _{IH} Logical "1" Input Current Disable	V _{CC} = Max, V	_{IN} = 2.4V			40	μΑ
V _{IL} Logical "0" Input Voltage Disable	V _{CC} = Min				0.8	V
I _{IL} Logical "0" Input Current Disable	V _{IN} = 0.4V				-1.6	mA
V _{CD} Input Clamp Voltage Disable	V _{CC} = Min, I _{II}	_N = -12 mA		-1	−1.5V	V
V _{OH} Logical "1" Output Voltage	V _{CC} = Min, I _O	_{UT} = -5 mA	2.4			V
IOS Output Short Circuit Current	V _{CC} = Max, V	OUT = 0V (Note 4)	-20	-50	-90	mA
V _{OL} Logical "0" Output Voltage	V _{CC} = Min, I _O	_{UT} = 50 mA		0.3	0.4	V
I _{OL} Logical "0" Output Current	V _{CC} = Min, V _c	oL = 0.4	50			mA
IOUT TRI-STATE Output Current	V _{CC} = Max, 0.	$4V \le V_{OUT} \le 2.4V$	-40		40	μΑ
I _{IN} TRI-STATE Input Current	V _{CC} = Max, 0.	$4V \le V_{IN} \le 5V$	-40		40	μΑ
I _{TH} Input Threshold Current	V _{CC} = 5V, T _A	= 25° C, $I_P = 0\mu$ A = 25° C, $I_P = 1$ mA	100	250	400	μΑ
	$V_{CC} = 5V, T_A$	= 25°C, I _P = 1 mA	1000	1250	1500	μΑ
I _{MAX} Maximum Input Driver Per Input	V _{CC} = Max			15	8	mA
I _{CC} Supply Current			` _			
	V _{CC} = Max	DS3605	<u> </u>	80	115	mA_
		DS3606/DS3607	 	90	130	mA_
		DS3608	1	80	115	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS3605, DS3606, DS3607 and DS3608. All typicals are given for V_{CC} = 5.0V and T_{A} = 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Dnly one output at a time should be shorted.

switching characteristics Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V

PARAMETER CONDI		ONS	MIN	TYP	MAX	UNITS
t _{PDC} Propagation Delay		DS3605		15	22	ns
	$C_L = 50 pF, R_L = 80 \Omega,$	DS3606		26	39	ns
	$C_L = 50 \text{ pF}, R_L = 80\Omega,$ $I_P = 750\mu\text{A}, I_{IN} = 2 \text{ mA}$	DS3607		24	35	ns
		DS3608		20	30	ns
t _{PD1} Propagation Delay		DS3605		15	22	ns
	C _L = 50 ρF, R _L = 80Ω,	DS3606		19	29	ns
	$C_L = 50 \text{ pF}, R_L = 80\Omega,$ $I_P = 750\mu\text{A}, I_{IN} = 2 \text{ mA}$	DS3607		19	29	ns
		DS3608		14	21	ns
toH TRI-STATE Delays (Input/Output)		D\$3605		18	32	ns
3.7	$C_1 = 5 pF$, $R_1 = 80\Omega$,	DS3606		18	32	ns
	$C_{L} = 5 \text{ pF}, R_{L} - 80\Omega,$ $I_{P} = 750\mu\text{A}, I_{IN} = 2 \text{ mA}$	DS3607		20	35	ns
		DS3608		20	35	ns
t _{1H} TRI-STATE Delays (Input/Output)		DS3605		8	14	ns
	C _L = 5 pF, R _L = 80Ω,	DS3606		8	14	ns
	$C_L = 5 \text{ pF}, R_L = 80\Omega,$ $I_P = 750\mu\text{A}, I_{IN} = 2 \text{ mA}$	DS3607		10	18	ns
		DS3608		10	18	ns
ten. TRI-STATE Delays (Input/Output)		DS3605		22	40	ns
	$C_L = 50 pF, R_t = 80\Omega,$	DS3606		20	35	ns
	$I_P = 750\mu A$, $I_{1N} = 2 \text{ mA}$	DS3607		45	80	ns
		DS3608		45	80	ns
t _{H1} . TRI-STATE Delays (Input/Output)		DS3605		25	45	ns
	$C_L = 50 \text{ pF}, R_L = 80\Omega,$	D\$3606		26	45	ns
	$C_L = 50 \text{ pF}, R_L = 80\Omega,$ $I_P = 750\mu\text{A}, I_{1N} = 2 \text{ mA}$	D\$3607		35	60	ns
		DS3608		35	60	ns

^{*}Data valid only after this delay.

truth tables

DS3605 (Note 1)

I _{IN}	DIS	ОИТ
X	Н	Hi∙Z
>I _T	L	н
<i<sub>T</i<sub>	L	L

DS3607 (Note 1)

I _{IN}	DIS	OUT
X	Η	Hı-Z
>I _T	L	L
<i<sub>T</i<sub>	L	н

Note 1: Non-inverting inputs Note 2: Inverting inputs

DS3606 (Note 2)

I _{IN}	DIS	оит
X	н	Hı·Z
>+	Ł	L
<i<sub>T</i<sub>	L	Н

DS3608 (Note 2)

ļ _{IN}	DIS	оит
×	н	Hi-Z
>1⊤	L	н
<i<sub>T</i<sub>	L	L

typical performance characteristics

ac test circuit

switching time waveforms

equivalent circuit

Note 1: On the OS3605 and OS3606, the disable is only connected to the output stage. On the OS3607 and OS3608, it is connected to both the input and output.

Note 2: Diode D3 is used in the OS3607 and OS3668 only. In the OS3605 and OS3606, the emitter of Q4 is connected directly to ground.

National M Semiconductor **MOS Memory Interface Circuits**

DS3625, DS7802/DS8802, DS7806/DS8806 dual high speed TRI-STATE® MOS to TTL level converters

general description

The DS3625, DS7802/DS8802, DS7806/DS8806 are high speed MOS to TTL level converters. These circuits act as an interface level converter between MOS and TTL logic devices. It consists of two 1-input converters with common strobe input to inhibit "0" entry when strobe is high. It allows parallel entry when strobe is low and the internal latch is preset by the common preset input, TRI-STATE output logic is implemented in this circuit to facilitate high speed time sharing of decoderdrivers, fast random-access (or sequential) memory arrays, etc.

features

- Very low output impedance high drive ability
- High impedance output state which allows many outputs to be connected to a common bus line
- Average power dissipation 110 mW per con-
- DS3625 is pin-for-pin replacement for the Signetics 8T25

DS3625

logic and connection diagrams

Order Number DS7802J, DS8802J or DS8802N See NS Package J16A or N16A

STRORE OUTPUT B OUTPUT A PRESET DISABLE DS7806/DS8806 SNO INPILE B GND GNO TOP VIEW

Dual-In-Line Package

Order Number DS7806J, DS8806J, DS8806N or DS7806W See NS Package J14A, N14A or W14A

Dual-In-Line Package

Order Number DS3625N See NS Package NO8A

absolute maximum i	operating conditions				
			MIN	MAX	UNITS
Supply Voltage	7 0∨	Supply Voltage (V _{CC})			
Input Voltage	5 5 V	DS7802, DS7806 DS8802, DS8806, DS3625	4.5 4.75	5 5 5 25	V
Output Voltage	5.5V	Temperature (T _A)			
Storage Temperature Range	-65°C to 150°C	DS7802, DS7806	-55	+125	C
Lead Temperature (Soldering, 10 se	econds) 300 C	D\$8802, D\$8806, D\$3625	0	+70	C

electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS	
I _{INA} , I _{INB}	Logical "1" Input Current		DS7802, DS7806		500			μΑ
THAT ING		V _{CC} = Min		D\$3625	400			μΑ
INA, INB	Logical "0" Input Current	V _{CC} = Min	1000				200	μА
V _{IH}	Logical "1" Input Voltage	Strobe, Prese	t, Disable, V _{CC} =	Min	2.0			V
V _{IL}	Logical "0" Input Voltage	Strobe, Prese	t, Disable, V _{CC} =	Min			0.8	V
V _{OH}	Logical "1" Output Voltage			DS7802, DS7806	2.4			
- OH		V _{CC} = Min, I _{OUT} = -1.5 mA DS3625		DS3625	2.8			V
V _{oL}	Logical "0" Output Voltage	V _{CC} = Min, I _{OUT} = 16 mA				0.4	V	
1 _O TRI-STATE Output Current		DS7802,	V _O = 2.4V			40	μΑ	
	1	DS7806	V _O = 0.4V			-40	μΑ	
		V _{CC} = Max	Descar	V _O = 3.9V			100	μΑ
			DS3625	V _O = 0V			-100	μΑ
I _{iH}	Logical "1" Input Current		V _{IN} = 2.4V				40	μΑ
. 114		V _{CC} = Max	$V_{CC} = Max$ $V_{IN} = 2.4V$ $V_{IN} = 5.5V$				1.0	mA
IIL	Logical "0" Input Current	V _{CC} = Max,	V _{IN} = 0.4V				-1,5	mA
I _{cc}	Supply Current	$V_{CC} = Max, V_{ N D SABLE} = 2V, V_{ N STROBE}$ and $V_{ N PRESET} = 0V$				40	mA	
V _{CD}	Input Clamp Voltage	V _{CC} = Min, I _{IN} = -12 mA				-1.6	V	
I _{sc}	Output Short Circuit Current		\\ - 0\\	DS7802, DS7806	-20		-70	mA
50		V _{CC} = Max, (Note 4)	v ₀ - uv,	DS8802, DS8806	-18	<u> </u>	-70	mA
		(Note 4)		DS3625	-20	ì	-70	mA

switching characteristics

	PARAMETER	CONDITIONS		TYP	MAX	UNITS
t _{ds} Propagation Delay to a Logical "0" From Strobe to Output				17	25	ns
t _{dp}	Propagation Delay to a Logical "1" From Preset to Output (DS7802, DS7806)	V_{CC} = 5.0V (See Waveforms), T_A = 25°C		22	32	ns
t _{1H}	Delay From Disable Input to High Impedance State (From Logical "1" Level)	$V_{CC} = 5.0V$ (See ac Test Circuit), $T_A = 25^{\circ}C$		7.0	11	ns
t _{oH}	Delay From Disable Input to High Impedance State (From Logical "0" Level)	V _{CC} = 5.0V (See ac Test Circuit), T _A = 25°C		17	25	ns
t _{H1}	Delay From Disable Input to Logical "1" Level (From High Impedance State)	V _{CC} = 5 0V (See ac Test Circuit), T _A = 25°C		9.0	14	ns
t _{H0}	Delay From Disable Input to Logical "0" Level (From High Impedance State)	V _{CC} = 5.0V (See ac Test Circuit), T _A = 25°C		13.5	16	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Nota 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS7802, DS7806 and across the 0°C to $+70^{\circ}$ C range for the DS8802, DS8806. All typicals are given for V_{CC} = 5.0V, T_A = 25°C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one cutput at a time should be shorted.

typical input circuit

truth table

IN A OR B	ST	Р	D	QA OR QB
0	1	1	0	1
1	1	1	0	1
0	0	1	0	0
1	0	1	0	1
×	X	X	1	Hi-Z

X = Don't care

ac test circuits

	SWITCH S ₁	SWITCH S2	CL
t _{dp}	Closed	Closed	50 pF
tos	Closed	Closed	50 pF
t _{OH}	Closed	Closed	*5 pF
t _{1H}	Closed	Closed	*5 pF
t _{H0}	Closed	Open	50 pF
t _{H1}	Open	Closed	50 pF

^{*}Jig capacitance

(a)

Test Circuit 20

switching time waveforms

tH0

MOS Memory Interface Circuits

DS1628/DS3628 Octal TRI-STATE® MOS Drivers

General Description

The DS1628/DS3628 are octal Schottky memory drivers with TRI-STATE® outputs designed to drive high capacitive loads associated with MOS memory systems. The drivers' output (VOH) is specified at 3.4 V to provide additional noise immunity required by MOS inputs. A PNP input structure is employed to minimize input currents. The circuit employs Schottky-clamped transistors for high speed. A NOR gate of two inputs, DIS1 and DIS2, controls the TRI-STATE mode.

Features

- High speed capabilities
 typ 5 ns driving 50 pF & 8 ns driving 500 pF
- TRI-STATE outputs
- High VOH (3.4 V min)
- High density
 - eight drivers and two disable controls for TRI-STATE in a 20-pin package
- PNP inputs reduce DC loading on bus lines
- Glitch-free power up/down

Schematic and Connection Diagrams

Order Number DS1628J, DS3628J, DS3628N See NS Package J20A or N20A

Truth Table

Disabl	e Input	i	
DIS 1	DIS 2	Input	Output
Н	н	Х	Z
Н	X	×	z
Х	Н	×	Z
L	L	Н	L
L	L	L	н

- H = high level
- L = low level
- X = don't care
- Z = high impedance (off)

Typical Application

Absolute Maximum Ratin	gs (Note 1)	Operating Conditions					
Supply Voltage	7.0V		MIN	MAX	UNITS		
Logical "1" Input Voltage	7.0V	Supply Voltage (VCC)	4.5	5.5	V		
Logical "O" Input Vollage Storage Temperature Flange	–1.5V -65°C to +150 C	Temperature (T _A)					
Power Dissipation*	03 0 10 1 130 0	D\$1628	55	+125	°C		
Cavity Package	1160 mW	DS3628	0	+70	°C		
Molded Package	1000 mW 300 C	*Derate cavity package at 80° package at 90° C/W above 70°		/U C; dera	te molaea		
Lead Temperature (So dering, 10 seconds)	300 C	package at 90 C/W above 70	C				

Electrical Characteristics (Notes 2 and 3)

	PARAMETER		CONDITION	S	MIN	TYP	MAX	UNITS
V _{IN(1)}	Logical "1" Input Voltage				20			٧
V _{IN} (0)	Logical "0" Input Voltage						0.8	V
¹ 1N(1)	Logical "1" Input Current	V _{CC} = 55V	V _{IN} = 5-5 V			0.1	40	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 5.5 V	V _{IN} - 05V		-	- 180	-400	μА
VCLAMP	Input Clamp Voltage	V _{CC} = 4,5 V	I _{IN} = -18mA		1	-0.7	-1 2	>
	Logical "1" Output Voltage			DS1628	3.4	4.3		V
VOH	(No Load)	V _{CC} = 4.5V	$I_{OH} = -10\mu A$	DS3628	3 5	4.3		V
	Logical "0" Output Voltage			DS1628		0.25	0.4	V
VOL	(No Load)	V _{CC} = 4.5 V	10L - 10μA	DS3628		0 25	0.35	٧
	Logical "1" Output Voltage	4.534	10	DS1628	2.5	3 9		V
VOH	(With Load)	V _{CC} = 45V	I _{OH} = -1.0mA	DS3628	2.7	3 9		٧
v _{oL}	Logical "0" Output Voltage (With Load)	V _{CC} = 4.5 V	IOL 20mA	DS1628 DS3628		0.35	0.5	V
IID	Logical "1" Drive Current	V _{CC} = 4.5 V	V _{OUT} = 0V	(Note 6)		-150		mA
IOD	Logical "O" Drive Current	V _{CC} = 4.5 V	V _{OUT} = 4.5 V	(Note 6)		150		mA
Hi∙Z	TRI-STATE Output Current	V _{OUT} = 0.4\	/ to 2.4 V DIS1	or DIS2 = 2 0 V	-40	0.1	40	μА
			One DIS Input = All other Inputs	3.0 V X, Outputs at Hi-Z		90	120	mA
¹ CC	Power Supply Current	V _{CC} = 5.5 V	DIS1, DIS2 ÷ 0\ Outputs on	, others = 3 V		70	100	mA
			All Inputs = 0 V	Outputs off		25	50	mA

Switching Characteristics (V_{CC} = 5V, T_A = 25°C) (Note 6)

	PARAMETER	cc	MIN	TYP	MAX	UNITS	
		(= 4)	C _L = 50pF		4.0	5.0	ns
ts+-	Storage Delay Negative Edge	(Figure 1)	C _L = 500pF		6.5	8.0	ns
		/F 1)	C _L = 50 pF		4.2	5.0	ns
ts-+	Storage Delay Positive Edge	(Figure 1)	C _L = 500pF		6.5	8.0	ns
		(5, 1)	C _L = 50pF		4.2	6.0	ns
tF	Fall Time	(Figure 1)	C _L = 500pF		19	22	ns
		(Figure 1)	C _L = 50pF		5.2	7.0	ns
^t R	Rise Time	(Figure 17	C _L = 500pF		20	24	ns
tZL.	Delay from Disable Input to Logical "0" Level (from High Impedance State)	C _L = 50pF to GND	R _L = $2k\Omega$ to V _{CC} (Figure 2)		19	25	ns
tZH	Delay from Disable Input to Logical "1" Level (from High Impedance State)	CL = 50pF to GND	$R_L = 2k\Omega$ to GND (Figure 2)		13	20	ns
tLZ	Delay from Disable Input to High Impedance State (from Logical ''0'' Level)	CL = 50pF to GND	R _L = 400Ω to V _{CC} (Figure 3)		18	25	ns
tHZ	Delay from Disable Input to High Impedance State (from Logical "1" Level)	CL = 50pF to GND	R _L = 400Ω to GND (Figure 3)		8.5	15	ns

AC Test Circuits and Switching Time Waveforms

FIGURE 1

FIGURE 2

*ANY ONE OF EIGHT OUTPUTS

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1628 and across the 0° C to $+70^{\circ}$ C range for the DS3628. All typical values are for T_A = 25° C and V_{CC} = 5 V.

Note 3: All currents into device pins shown as positive; all currents out of device pins shown as negative; all voltages references to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$ and PRR ≤ 1 MHz. Rise and fall times between 10% and 90% points ≤ 5 ns.

Note 5: Ci includes probe and jig capacitance.

Note 6: When measuring output drive current and switching response for the DS1628 and DS3628 a 15 Ω resistor should be placed in series with each output.

National Semiconductor

MOS Memory Interface Circuits

DS1640/DS3640, DS1670/DS3670 quad MOS TRI-SHARE[™] port drivers general description

The DS1640/DS3640 and DS1670/DS3670 are quad MOS TRI-SHARE port drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input current, allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay.

The DS1640/DS3640 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1670/DS3670 has a direct, low impedance output source for use with or without an external resistor.

The DS1640/DS1670 has two address inputs which decode to one-of-four-high outputs. Provisions are made

for address expansion. For example, two packages may be used to implement a three-input, eight-output decoder. Also included is a refresh control, read/write, and strobe input. These functions are required by the MM5270 4k TRI-SHARE MOS RAM.

features

- TRI-SHARE port driver for MM5270 RAM
- TTL/DTL compatible inputs
- PNP inputs minimize loading
- Capacitance-driving outputs
- Built-in damping resistor (DS1640/DS3640)

logic and connection diagrams

Order Number DS1640J, DS3640J, DS3640N, DS1670J, DS3670J or DS3670N See NS Package J14A or N14A

schematic diagram

absolute maximum ratings (Note 1) Supply Voltage, V_{CC} 7V Logical "1" Input Voltage 7V Logical "0" Input Voltage -1.5V Storage Temperature Range -65° C to +150° C

Power Dissipation* Cavity Package

1160 mW Molded Package 1000 mW Lead Temperature (Soldering, 10 seconds)

operating conditions

package at 90° C/W above 70° C.

MIN MAX UNITS Supply Voltage (V_{CC}) 4.5 5.5 V Temperature (TA) DS1640, DS1670 +125 °C -55 DS3640, DS3670 +70 °C

*Derate cavity package at 80°C/W above 70°C; derate molded

electrical characteristics (Notes 2 and 3)

	PARAMETER	<u> </u>	CONDITION	IS	MIN	TYP	MAX	UNIT
V _{IN(1)}	Logical "1" Input Voltage				2.0			\
VIN(0)	Logical "0" Input Voltage						0.8	,
I _{IN(1)}	Logical "1" Input Current		Expansion			0.1	40	μ
		V _{CC} = 5.5V,	Address Disable			0.2	80	μ.
		$V_{IN} = 5.5V$	Address A, Add	Iress B		0.3	120	μ
		V (0.5 V	Refresh, Expan Read/Write	sion, Strobe		0.4	160	μ,
I _{IN(0)}	Logical "O" Input Current	Expansion				-50	-250	μ,
		V _{CC} = 5.5V,	Address Disable			-100	-500	μ
		$V_{IN} = 0.5V$	Address A, Add	Iress B		-150	-750	μ
		V \(\text{O} \text{.3 V}	Refresh, Expan Read/Write	sion, Strobe		-0.2	-1.0	m
VCLAMP	Input Clamp Voltage	V _C C = 4.5V, I _{IN} = -18 mA			-0.75	-1.2		
Vон	Logical "1" Output Voltage (No Load)	VCC = 4 bV IQU = -10 uA F		DS1640, DS1670 DS3640, DS3670	3.4	4 3		
VOL	Logical "0" Output Voltage			DS1640, DS1670			0.40	
·OL	(No Load)	VCC = 4.5V,	IOL = 10 μA	DS3640, DS3670		0.25 0.25	0.40 0.35	
Voн	Logical "1" Output Voltage			DS1640	2,4		0.55	
· OH	(With Load)			DS1670	2.5	3.5 3.5		-
	,	$V_{CC} = 4.5V$	$I_{OH} = -1.0 \text{ mA}$	DS3640	2.6	3.5		
	,			DS3670	2.7	3.5		
VOL	Logical "0" Output Voltage			DS1640		0.6	1.1	,
	(With Load)			DS1670		0.4	0.5	
		V _{CC} = 4.5V,	IOF = 50 mM	DS3640		0.6	1.0	,
				DS3670		0.4	0.5	,
IID	Logical "1" Drive Current	V _{CC} = 4.5V,	VOUT = 0V, (No	te 4)		-250		m
lop	Logical "O" Drive Current	VCC = 4.5V,	V _{CC} = 4.5V, V _{OUT} = 4.5V, (Note 4)			150		m
lcc	Power Supply Current	Vc0 = 5.5V	Expansion = 0V All Other Input			60	85	m
		VCC = 5.5V All Inputs = 3V			45	75	m	

 $300^{\circ}\,\text{C}$

switching characteristics (V_{CC} = 5V, T_A = 25°C) (Note 4)

	PARAMETER	CONE	OITIONS	MIN	TYP	MAX	UNITS
tS+	Storage Delay Negative Edge	(Figure 1)	CL = 50 pF		10	14	ns
	Address Inputs, Expan		CL = 250 pF		15	20	ns
tS+	Storage Delay Positive Edge	(Figure 1)	C _L = 50 pF		10	14	ns
	Address Inputs, Expan	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C _L = 250 pF		15	20	ns
ts+_	Storage Delay Negative Edge	(Figure 1)	C _L = 50 pF		7	11	ns
	Ref, Read/Write, Strobe, Expan	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C _L = 250 pF		11	15	ns
ts-+	Storage Delay Positive Edge	(Figure 1)	C _L = 50 pF		8	12	ns
	Ref, Read/Write, Strobe, Expan	(rigare r)	CL = 250 pF		12	16	ns
tF	Fall Time	(Figure 1)	CL = 50 pF		6	9	ns
		17.79472 17	C _L = 250 pF		15	25	ns
tR	Rise Time	(Figure 1)	Cլ = 50 pF		8	11	ns
		i, igure //	C _L = 250 pF		25	35	ns

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS1640 and DS1670 and across the 0° C to +70° C range for the DS3640 and DS3670. All typical values are for T_A = 25° C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1670 and DS3670 a 15 Ω resistor should be placed in series with each output. This resistor is internal to the DS1640/DS3640, and need not be added.

truth table

ADD A	ADD B	ADD DSBL	EXPAN	EXPAN	RFSH	Ř/W	sтв	DUT A · B	DUT Ā·B	DUT A · B	ĐƯT A · B
0	0	0	0	1	0	*	•	1	0	0	0
0	1	0	0	1	0	*		0	1	0	0
1	0	0	0	1	0	*		0	0	1	0
1	1	0	0	1	0	•		0	0	0	1
0	0	1	0	1	0	*		1	1	1	1
×	х	Х	1	×	Х	×	×	0	0	0	0
×	×	х	×	0	Х	×	×	0	0	0	0
×	×	Х	х	×	1	×	×	0	0	0	0
×	×	х :	x	х	×	1	1	0	0	0	0

X = Don't Care; * = read/write and strobe not both high at same time.

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: $Z_{OUT} = 50~\Omega$ and PRR $\leq 1~MHz$, Rise and fall times between 10% and 90% points

Note 2: CL includes probe and jig capacitance.

FIGURE 1

typical application

The DS3640/DS3670 driver is intended for use in driving the TRI-SHARE port of the MM5270 4k MOS RAM. Its address inputs facilitate decoding, and its direct controls simplify the refresh cycle.

^{*}Internal on DS1640 and DS3640

MOS Memory Interface Circuits

DS1642/DS3642, DS1672/DS3672 dual bootstrapped TTL to MOS clock drivers

general description

The DS1672 is a dual bipolar-to-MOS clock driver designed to provide high output current and voltage capabilities necessary for driving high capacitance (up to 500 pF) MOS memory systems. The circuit needs only one power supply, (12V typical). This feature greatly reduces high stand-by power levels and at the same time simplifies system deisgn.

The circuit also features output bootstrapping, eliminating the need for an additional supply to provide a higher voltage to the output stage. The function is accomplished by connecting a small value capacitor (typically 200 pF) from the output to the bootstrap pin on each driver.

The circuit has Schottky-clamped transistor logic for minimum propagation delay. Typical stand-by power (output low) is 48 mW per driver. A fail-safe condition is provided in the circuit, so if the input is opened the output assumes the logic "0" state.

The DS1642/DS3642 has a 10 Ω resistor in series with each output to dampen transients caused by the fast-switching output. The DS1672/DS3672 has a direct low impedance output for use with or without an external resistor.

features

- High output voltage capability
- 13.2V
- TTL/LS compatible inputs
- High speed operation
- Bootstrapping eliminates extra supplies—reduces power
- Low stand-by power

48 mW/driver

Built-in 10 Ω damping resistor (DS1642/DS3642)

schematic and connection diagrams

Metal Can Package

Order Number DS1642H, DS1672H, DS3642H or DS3672H See NS Package H08C

Dual-In-Line Package

Order Number DS1642J-8, DS1672J-8, DS3642J-8, DS3672J-8, DS3642N-8 or DS3672N-8 See NS Package J08A or N08A

absolute maximum ratio	ngs (Note 1)	operating conditi	ons		
Supply Voltage	15V		MIN	MAX	UNITS
Bootstrap-V _{CC} Differential	15V	Supply Voltage (VCC)			
Bootstrap Pin Voltage	30V	DS1642, DS1672	10.8	13.2	V
Input Voltage	5.5V	DS3642, DS3672	11.4	12.6	V
Input Current	10 mA	·			
Output Voltage	-1.0V to +15V	Bootstrap-V _{CC} Differential Voltage (V _B -V _{CC})			
Storage Temperature Range	−65° C	DS1642, DS1672	10.8	13.2	V
Power Dissipation*	1160 mW	DS3642, DS3672	11.4	12.6	V
Cavity Package Molded Package	890 mW	Temperature (T _A)			
Metal Can	525 mW	D\$1642, D\$1672	-55	+125	°C
Lead Temperature (Soldering, 10 seconds)	300° C	D\$3642, D\$3672	0	+70	°C

^{*}Derate cavity package at 80° C/W above 70° C; derate molded package at 90° C/W above 70° C; derate metal can package at 200° C/W above 70° C.

dc electrical characteristics (Notes 2 and 3)

DS1642, DS1672 V_{CC} = 12V ±10%, -55°C \leq TA \leq +125°C, unless otherwise noted.

DS3642, DS3672 $V_{CC} = 12V \pm 5\%$, $0^{\circ}C < T_{A} < +70^{\circ}C$, unless otherwise noted.

	PARAMETER	CONDITIO	NS	MIN	TYP	MAX	UNITS
I ₁ T	Logical "1" Input Current			200	0		μΑ
VIL	Logical "0" Input Voltage					0.8	V
Чн	Logical "1" Input Current	V _{IN} = 2.4V	√ _{IN} = 2.4∨		0.9	1.5	mA
	(Note 5)	V _{IN} = 5.5V			4	5.5	mA
IIL	Logical "0" Input Current	V _{IN} = 0V		_	-240	-400	μΑ
VCD	Input Clamp Voltage	I _{IN} = -5 mA	I _{IN} = -5 mA		− 0.9	-1.5	V
۷он	Logical "1" Output Voltage	$V_B \ge V_{CC} + 2V$, $I_{OUT} = -400 \mu$	A		V _{CC} -0.5	V _{CC} -0.8	V
VOL	Logical "0" Output Voltage	IOUT = 5 mA, Bootstrap Pin (VB) Open, (Note 6)		0.3	0.5	V
R ₈	8ootstrap Resistor				3.0		kΩ
ICC(1	Supply Current	VIN = 0V, (Both Drivers "OFF"),	Bootstrap Pin (VB) Open		0.5	2.0	mA
,		Outputs Open	$V_B = V_{CC} + 7V$		-4.2	-6.0	mA
¹ B(1)	8ootstrap Current	(Both Drivers), VIN = 0V, VB = V	′CC + 7V		4.2	6.0	mA
ICC(0) Supply Current	V _{IN} = 2.4V, Bootstrap Pin (V _B) Open	(8oth Drivers "ON") Outputs Open		8.0	12	mA

switching characteristics (Note 4) (V_{CC} = 12V, T_A = 25°C) (Figures 1 and 2)

	PARAMETER	CONE	DITIONS	MIN	TYP	MAX	UNITS
ts+_	Storage Delay Negative Edge	2 400	CL = 50 pF		8	12	ns
	$R_D = 10 \Omega$	C _L = 500 pF		13	1B	ns	
ts-+	Storage Delay Positive Edge	0.0	C _L = 50 pF		В	12	ns
		$R_D = 10 \Omega$	C _L = 500 pF		13	1B	ns
tF	Fall Time		C _L = 50 pF		6	9	ns
		$R_D = 10 \Omega$	CL = 500 pF		15	22	ns
tR	Rise Time		CL = 50 pF		6	9	ns
		$R_D = 10 \Omega$	C _L = 500 pF		15	22	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1642, DS1672 and across the 0°C to $+70^{\circ}$ C range for the DS3642, DS3672. All typicals are given for $V_{CC} = 12V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1672 and DS3672, a 10 Ω resistor should be placed in series with each output. This resistor is internal to the DS1642/DS3642 and need not be added.

Note 5: The value of I_{|H} and I_{|L} given is intended to be a measure of input impedance and does not reflect the input threshold.

Note 6: VOI also applies to the fail-safe condition when the input is open.

ac test circuit

*Internal on DS1642/DS3642

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, 50% Duty Cycle, Z_{OUT} = 50Ω , t_{R} = $t_{F} \le 10$ ns.

Note 2: C₁ includes probe and jig capacitance.

Note 3: The high current transient (as high as 0.5A) through the resistance of the external interconnecting ground lead during the output transition from the high state to the low state can appear as negative feedback to the input. If the external interconnecting load from the driving circuit to ground is electrically long, or has significant dc resistance, it can subtract from the switching response.

FIGURE 1

switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $t_R \leq 10$ ns, $t_F \leq 10$ ns, $t_{OUT} = 50\Omega$. Note 2: C_L includes probe and jig capacitance.

FIGURE 2

node voltage waveforms

Note 1: The fall time has an exponential decay with the following time constant: $t_B = C_B \ R_B$. The typical value for R_B can be found in the table of electrical characteristics.

typical applications

DS3672 Operating with Extra Supply to Enhance Output Voltage Level

DS3672 in Non-Bootstrap Application with Single Supply—When Output High Level is Non-Critical.

DS3672 Bootstrap Mode of Application with Capacitively Coupled Input and Negative Supply

National Semiconductor

MOS Memory Interface Circuits

DS3643, DS3673 decoded quad MOS clock drivers general description

The DS3643 and DS3673 are quad bipolar-to-MOS decoder/clock drivers with TTL/DTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N-channel MOS memory systems.

The device features full decoding of input address lines from two inputs to one of four outputs. Also featured is the capability of expanding to three inputs to one of eight outputs with the use of the Expansion and Expansion inputs. Also included are clock and refresh inputs.

The circuit was designed for driving large capacitive loads at high speeds and uses Schottky-clamped transistors. PNP transistors are used on all inputs, thereby minimizing input loading.

The DS3643 has a 10 Ω damping resistor in series with each output to dampen transients caused by the fast

switching output, while the DS3673 has a direct, low impedance output, for use with or without an external resistor.

features

- TTL/LS compatible inputs
- Operates from standard bipolar and MOS supplies
- PNP inputs minimize input loading
- Full logic decoding for either two inputs to one of four outputs or three inputs to one of eight outputs
- High voltage/current outputs
- Input and output clamping diodes
- Control logic optimized for use with MOS memory systems
- Built-in damping resistors (DS3643)

logic and connection diagrams

Order Number DS3643J, DS3673J, DS3643N or DS3673N See NS Package J14A or N14A

truth table

		INPUTS				OUTPUTS				
CLOCK	REFRESH	EXPANSION	EXPANSION	A ₂	Α1	OUT 1	OUT 2	OUT 3	OUT 4	
1	×	×	×	×	×	0	0	0	0	
0	1	×	×	×	×	1	1	1	1	
0	0	1	0	0	0	1	0	0	0	
0	0	1	0	0	1 -	0	1	0	Ð	
0	0	1	0	1	0	0	0	1	0	
0	0	. 1	0	1	1	0	0	0	1	
0	0	1	1	×	×	0	0	0	0	
0	0	0	1	×	×	0	0	0	0	
0	0	0	0	×	×	0	0	0	0	

X = don't care state

absolute maximum rating	gs (Note 1)	operating condit	ions		
Supply Voltage			MIN	MAX	UNITS
V _{CC1}	7 V	Supply Voltage, VCC			
V _{CC2}	13V	VCC1	4.75	5.25	V
V _{CC3}	16V	VCC2	11.4	12.6	V
Input Voltage	−1.0V to 7V	VCC3	V _{CC2}	15.75	V
Output Voltage	-1.0V to 16V	Temperature, T _A	0	+70	°c
Storage Temperature Range	-65°C to +150°C	remperature, rA	Ü	.,,	Ü
Power Dissipation* (PD)		*Derate cavity package at 8	30°C/W above 7	0°C; derate	e molded
Cavity Package	1160 mW	package at 90°C/W above 7			
Molded Package	1000 mW	· · ·			
Lead Temperature (Soldering, 10 seconds)	300°C				

electrical characteristics

 $T_{A} = 0^{\circ} C$ to $+70^{\circ} C$, $V_{CC1} = 5 V \pm 5\%$, $V_{CC2} = 12 V \pm 5\%$, $V_{CC3} = V_{CC2} + (3 V \pm 5\%)$ unless otherwise noted. (Notes 2 and 3)

	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage			2			٧
VIL	Logical "0" Input Voltage					0.8	V
Ιн	Logical "1" Input Current	V F. E.V	Refresh, Exp.		0.01	10	μΑ
		V _{IN} = 5.5V	A1, A2, Clock, Exp.		0.04	40	μΑ
IIL	Logical "0" Input Current	V 0.4V	Refresh, Exp.		-40	-250	μΑ
		$V_{1N} = 0.4V$	A1, A2, Clock, Exp.		-0.16	-1.0	mA
VCD	Input Clamp Voltage	I _I = −12 m A			-0.8	-1.5	٧
Voн	Logical "1" Output Voltage	I _{OH} = -1 mA, V _{IL} = 0.8	V	V _{CC2} -0.5	V _{CC2} -0.2		V
VoL	Logical "0" Output Voltage	IOL = 5 mA, VIH = 2V			0.3	0.5	V
Voc	Output Clamp Voltage	I _{OC} = 5 mA, V _{IL} = 0.8V			V _{CC2} +0.8	V _{CC2} +1.5	V
Іссн	Supply Current Outputs High	Refresh = 5V,	V _{CC1} = 5.25V		26	45	mA
	ICC2	All Other Inputs = 0V	V _{CC2} = 12.6V		-2	-4	mA
	lcc3		V _{CC3} = 15.75V		2	5	mA
ICCL	Supply Currents Outputs Low ICC1	All 1 51/	V _{CC1} = 5.25V		30	55	m A
	CC2	All Inputs = 5V	V _{CC2} = 12.6V			3	m A
	lcc3		V _{CC3} = 15.75V		15	25	mA

switching characteristics $V_{CC1} = 5V$, $V_{CC2} = 12V$, $V_{CC3} = 15V$, $T_A = 25^{\circ}C$, (Note 4)

	PARAMETER	C	ONDITIONS	MIN	TYP	MAX	UNITS
ts+_	Storage Delay Negative-Edge from	B 10.0	C _L = 100 pF		8	11	ns
	A1, A2, Clock, Exp. to Out 1	R _D = 10 Ω	CL = 400 pF		13	16.5	ns
ts_+	Storage Delay Positive-Edge from	R _D = 10 Ω	C _L = 100 pF		9.5	12	ns
	A1, A2, Clock, Exp. to Out 1	MD = 10.75	C _L = 400 pF		13	16.5	ns
ts+_	Storage Delay Negative-Edge from	R _D = 10 Ω	CL = 100 pF		14.5	18	ns
	Refresh, Exp. to Out 1	MD - 10.75	C _L = 400 pF		17.5	21	ns
ts_+	Storage Delay Positve-Edge from	R _D = 10 Ω	C _L = 100 pF		15	18	ns
	Refresh, Exp. to Out 1	ND - 10 32	CL = 400 pF		18	21	ns
^t R	Output Rise Time	RD = 10 Ω	CL = 100 pF		9	16	ns
		10 10 12	C _L = 400 pF		15	22	ns
tF	Output Fall Time	R _D = 10 Ω	C _L = 100 pF		11	18	ns
		110 1032	CL = 400 pF	T	20	27	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to +70°C range for the DS3673. All typicals are given for $V_{CC1} = 5.0V$, $V_{CC2} = 12V$, $V_{CC3} = 15V$, and $T_A = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: For ac measurements, a 10 Ω resistor must be placed in series with the output of the DS3673. This resistor is internal to the DS3643, however, and need not be added.

schematic diagram

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $t_R \le 10$ ns, $t_F \le 10$ ns, $Z_{OUT} = 50 \Omega$.

Note 2: CL includes probe and jig capacitance.

typical application

MOS Memory Interface Circuits

DS1644/DS3644, DS1674/DS3674 quad TTL to MOS clock drivers general description

The DS1644/DS3644 and DS1674/DS3674 are quad bipolar-to-MOS clock drivers with TTL/DTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N-channel MOS memory systems.

The device features two common enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive loads at high speeds and uses Schottky-clamped transistors. PNP transistors are used on all inputs thereby minimizing input loading.

The circuit may be connected to provide a 12V clock output amplitude as required by 4k RAMs or a 5V clock output amplitude as required by 16k RAMs.

The DS1644/DS3644 contains a 10Ω resistor in series with each output to dampen the transients caused by the fast-switching output, while the DS1674/DS3674

has a direct, low impedance output for use with or without an external damping resistor.

features

- TTL/LS compatible inputs
- 12V clock or 5V clock driver
- Operates from standard bipolar and MOS supplies
- PNP inputs minimize loading
- High voltage/current outputs
- Input and output clamping diodes
- Control logic optimized for use with MOS memory systems
- Pin and function compatible with MC3460 and 3235
- Built-in damping resistors (DS1644/DS3644)

schematic and connection diagrams

absolute maximum ratii	nys (Note I)	operating condit			
Supply Voltage VCC1 VCC2 VCC3 Input Voltage Output Voltage Storage Temperature Range Power Dissipation* Cavity Package Molded Package	7V 13.5V 16V 1.0V to +7V 1.0V to +16V -65°C to +150 C	Supply Voltage VCC1	4.5 4.75 4.5 4.75 VCC2 VCC2	5.5 5.25 13.2 12.6 16.5 15.75	V V V V V
electrical characteristics 5V operation, (VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = 5V, Volume 10, VCC1 = VCC2 = VCC1 = VCC2 = VCC1 = VC1 = VC1 = VC1 = VC1 = VC1 = VC1 = VC1 = VC1 = V	cca = 12V): 12V opera	Temperature, T _A DS1644, DS1674 DS3674 *Derate cavity package at 80° package at 90° C/W above 70° ation. {VCC1 = 5V, VCC2 = 12V	-55 0 C/W above 7 C.	CC2 + (3	∨ ±10%

	PARAMETER	CONDITIO	ONS	MIN	TYP	MAX	UNITS
VIH	Logical "1" Input Voltage			2			V
VIL	Logical "0" Input Voltage					0.8	V
лн Пн	Logical "1" Input Current		Select Inputs		0.01	10	μΑ
.111	Logical	V _{IN} = 5.5V	All Other Inputs		0.04	40	μΑ
I _{IL}	Logical "0" Input Current		Select Inputs		-40	-250	μΑ
'IL	Logical	$V_{1N} = 0.4V$	All Other Inputs		− 0.16	-1.0	mA
V _{CD}	Input Clamp Voltage	I _I = -12 mA			-0.8	-1.5	V
Vон	Logical "1" Output Voltage	I _{OH} = -1 mA, V _{IL} = 0.8V		V _{CC2} -0.5	V _{CC2} -0.2		V
VOL	Logical "D" Output Voltage	I _{OL} = 5 mA, V _{IH} = 2.0V			0.3	0.5	V
Voc	Output Clamp Voltage	I _{OC} = 5 mA, V _{IL} = 0.8V			V _{CC2} +0.8	V _{CC2} +1.5	V
Іссн	Supply Current Output High		VCC1 = Max		18	27	mA
	CC2	All Inputs VIN = 0V			~2	-4	mA
	ICC3	Outputs Open	12V Operation		2	4	mA
	ICC2		5V Operation		-8	-16	mA
	ICC3		3V Operation		8	16	mA
CCL	Supply Currents Outputs Low				0.5	40	mA
	1cc1	All Inputs V _{IN} = 5V	V _{CC1} = 5.25V	 	25	40	
	ICC2	Outputs Open	V _{CC2} = 12.6V		10	3	mA mA
	¹cc3	Catpata Open	V _{CC3} = 15.75V		16	25	mA

	PARAMETER	CON	OITIONS	WIN	TYP	MAX	UNITS
t _{s+}	Storage Delay Negative Edge		CL = 100 pF		8	11	ns
·s+	Otorago sana, regardo	$R_D = 10 \Omega$	C _L = 400 pF	-	12	16	ns
	Storage Delay Positive Edge		C _L = 100 pF		10	13	ns
t _{s-+}	Storage Sola, Feeting	$R_D = 10 \Omega$	C _L = 400 pF		13	16	ns
t _F	Fall Time		C ₁ = 100 pF		9	16	ns
LE Faii Tittie	F 811 11111-	$R_D = 10 \Omega$	C _L = 400 pF	 	17	24	ns
tR	Rise Time		C _L = 100 pF		8	12	ns
чH	11130 1111 0	$R_D = 10 \Omega$	C _L = 400 pF		13	19	ns
tpd0	Propagation Delay to a		C _L = 100 pF		17	27	ns
чрао	Logical "0"	$R_D = 10 \Omega$	C _L = 400 pF		29	40	ns
tpd1	Propagation Delay to a		C _L = 100 pF		18	25	ns
·pa i	Logical "1"	$R_D = 10 \Omega$	C _L = 400 pF		26	35	ns

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1644, DS1674 and across the 0° C to $+70^{\circ}$ C range for the DS3644, DS3674. All typicals are given for T_A = 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: For AC measurements, a 10Ω resistor must be placed in series with the output of the DS1674/DS3674. This resistor is internal to the DS1644/DS3644 and need not be added.

ac test circuits and switching time waveforms

FIGURE 1. 12V Operation

FIGURE 2. 12V Operation

FIGURE 4. 5V Operation

Note 1: The pulse generator has the following characteristics. PPR = 1 MHz, $t_R \leq$ 10 ns, Z_{OUT} = 50 Ω . Note 2: C_L includes probe and jig capacitance.

truth table

		INPUT			
ENABLE 1	ENABLE 2	SELECT INPUT	CLOCK INPUT	REFRESH INPUT	ООТРОТ
1	×	х	х	×	0
X	1	х	х	×	0
X	Х	X	1	×	0
х	Х	1	X	1	0
0	0	0	0	×	1
0	0	X	0	0	1

MOS Memory Interface Circuits

DS1645/DS3645, DS1675/DS3675 hex TRI-STATE $^{\odot}$ TTL to MOS latches/drivers general description

The DS1645/DS3645 and DS1675/DS3675 are hex MOS latches/drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are used to reduce input currents, allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TRI-STATE® outputs which allow bus operation.

The DS1645/DS3645 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1675/DS3675 has a direct, low impedance output for use with or without an external resistor.

The circuit employs a fall-through-latch which captures the data in parallel with the output, thereby eliminating the delay normally encountered in other latch circuits. The DS1645/DS3645 and DS1675/DS3675 may be used for input address lines or input/output data lines of a MOS memory system.

features

- 'TTL/-LS compatible inputs
- PNP inputs minimize loading
- Capacitance-driving outputs
- TRI-STATE outputs
- Built-in damping resistor (DS1645/DS3645)

logic and connection diagrams

Order Number DS1645J, DS1675J, DS3645J, DS3675J, DS3645N or DS3675N See NS Package J16A or N16A

truth table

INPUT ENABLE	OUTPUT DISABLE	DATA	OUTPUT	OPERATION
1	0	1	. 0	Data Feed-Through
1	0	0	1	Data Feed-Through
0	0	×	a	Latched to Data Present when Enable Went Low
×	1	×	Hi-Z	High Impedance Output

6-35

X = Don't care Hi-Z = TRI-STATE mode

absolute maximum ratings (Note 1)

operating conditions

			MIIN	MAX	UNITS
Supply Voltage, V _{CC}	7V	Supply Voltage (VCC)	4.5	5.5	V
Logical "1" Input Voltage Logical "0" Input Voltage	7V −1.5V	Temperature (TA)			
Storage Temperature Range	-65° C to 150° C	DS1645, DS1675	−55	+125	°C
Power Dissipation* (PD)	00 0 10 100 0	DS3645, DS3675	0	+70	°C
Cavity Package	1160 mW	*Derate cavity package at 80	°C/W above 7	'0°C: derat	e molded
Molded Package	1000 mW	package at 90° C/W above 70		o o, derai	e moided

300° C

electrical characteristics (Notes 2 and 3)

Lead Temperature (Soldering, 10 seconds)

	PARAMETER		CONDITION	IS	MIN	TYP	MAX	UNITS
V _{IN(1)}	Logical "1" Input Voltage				2.0			V
V _{IN(0)}	Logical "0" Input Voltage						0.8	V
¹ IN(1)	Logical "1" Input Current	V _{IN} = 5.5V	Enable Inputs			0.1	40	μА
		V _{CC} = 5.5V	Data Inputs			0.2	80	μΑ
I _{IN} (0)	Logical "0" Input Current	V _{IN} = 0.5V	Enable Inputs			-50	-250	μА
		V _{CC} = 5.5V	Data Inputs			-100	-500	μΑ
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V,	I _{IN} = -18 mA			-0.75	-1.2	V
VOH	Logical "1" Output Voltage	Vo 4 EV	Ι _{ΟΗ} = -10 μΑ	DS1645, DS1675	2.7	3.6		V
	(No Load)	VCC - 4.5V,	μΑ	DS3645, DS3675	2.8	3.6		V
v_{OL}	Logical "0" Output Voltage	V _{CC} = 4.5V,	Jan = 10 A	DS1645, DS1675		0.25	0.4	V
	(No Load)	VCC - 4.5V,	ΙΟΕ = 10 μΑ	DS3645, DS3675		0.25	0.35	V
Vон	Logical "1" Output Voltage			DS1645	2.4	3.5		V
	(With Load)	Vcc = 4 5V	I _{OH} = -1.0 mA	DS1675	2.5	3.5		V
		, ,,	TOH -1.0 MA	DS3645	2.6	3.5		V
				DS3675	2.7	3.5		V
VOL	Logical "0" Output Voltage	ļ }		DS1645		0.6	1.1	V
	(With Load)	V _{CC} = 4.5V,	loμ = 20 mΔ	DS1675		0.4	0.5	V
		100 1.50,	IOL ZOTIA	DS3645		0.6	1.0	V
***************************************				DS3675		0.4	0.5	٧
IID	Logical "1" Drive Current	V _{CC} = 4.5V,	V _{OUT} = 0V, (No	te 4)		-250		mA
lop	Logical "O" Drive Current	V _{CC} = 4.5V,	V _{OUT} = 4.5V, (N	lote 4)		150		mA
l _{HZ}	TRI-STATE Output Current	V _{OUT} = 0.4\	to 2.4V, Output	Disable = 2.0V	-40		40	μΑ
ICC	Power Supply Current		Output Disable All Other Inputs	- '		60	100	mA
		V _{CC} = 5.5V	Input Enable = : All Other Inputs			40	80	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1645 and DS1675 and across the 0° C to $+70^{\circ}$ C range for the DS3645 and DS3675. All typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1675 and DS3675 a 15 ohm resistor should be placed in series with each output. This resistor is internal to the DS1645/DS3645, and need not be added.

switching characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, unless otherwise noted. (Note 4)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{S+} _	Storage Delay Negative Edge	(Figure 1)	C _L = 50 pF C _L = 500 pF		4.5 8	7 12	ns ns
ts_+	Storage Delay Positive Edge	(Figure 1)	C _L = 50 pF C _L = 500 pF		6 9	8 13	ns ns
tF	Fall Time	(Figure 1)	C _L = 50 pF C _L = 500 pF		5 21	8 35	ns ns
^t R	Rise Time	(Figure 1)	C _L = 50 pF C _L = 500 pF		6 22	9 35	ns ns
^t SET-UP	Set-Up Time on Data Input Before Input Enables Goes Low			10	0		ns
tHOLD	Hold Time on Data Input After Input Enable Goes Low			15	5		ns
tW	Minimum Width of Enable Pulse to Latch Data			20	5		ns
^t ZL	Delay from Disable Input to Logical "O" Level (from High Impedance State)	CL = 50 pF	F, R _L = 2 k Ω to V _{CC} , (Figure 2)		10	15	ns
[†] ZH	Delay from Disable Input to Logical "1" Level (from High Impedance State)	CL = 50 pF	F, R _L = $2 \text{ k}\Omega$ to Ground, (Figure 2)		10	15	ns
[†] LZ	Delay from Disable Input to High Impedance State (from Logical "O" Level)	CL = 50 pF	F, R _L = 400Ω to V _{CC} , (Figure 3)		16	25	ns
tHZ	Delay from Disable Input to High Impedance State (from Logical ''1'' Level)	C _L = 50 pF	F, $R_L = 400\Omega$ to Ground, (Figure 3)		16	25	ns

schematic diagram

ac test circuits and switching time waveforms

PULSE
GENERATOR
(NOTE 1)

VIN
OUT
*RO
CL
(NOTE 2)

ts+-, ts-+, tR, tF

Note 1: The pulse generator has the following characteristics: Z $_{OUT}$ = 50 Ω and PRR \leq 1 MHz, Rise and fall times between 10% and 90% points \leq 5 ns.

Note 2: CL includes probe and jig capacitance.

FIGURE 1

tzL

*Internal on DS1645 and DS3645

FIGURE 2

ac test circuits and switching time waveforms (Continued)

*Internal on DS1645 and DS3645

FIGURE 3

operating waveforms

*When the Input Enable makes a positive transition the output will be indeterminate for a short duration.
The positive transition of the Input Enable normally occurs during a don't-care timing state at the output.

typical applications

The DS3645 and DS3675 latch/driver has TRI-STATE outputs, which allows the outputs to be tied with those of another TRI-STATE driver, such as the DS3646 and

DS3676 refresh counter. The DS3645 and DS3675 can be disabled while the alternate driver controls the address lines into the memory system.

MOS Memory Interface Circuits

DS1646/DS3646, DS1676/DS3676 6-Bit TRI-STATE® TTL-to-MOS Refresh Counter/Driver

General Description

The DS1646/DS3646 and DS1676/DS3676 are 6-bit refresh counters with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TRI STATE® outputs allow it to be used on common data buses.

The DS1646/DS3646 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast switching output circuit. The DS1676/DS3676 has a direct, low impedance output, for use with or without an external resistor.

The counter uses as its input the RAM clock signal, and with each clock input, it advances the count by one, generating a new refresh address. It also contains an initialize input to preset counter outputs to logic "0".

Uncommitted pins in the package are used for a 2-input NAND gate and an inverter gate, both of which have capacitive drive outputs.

Features

- 4k RAM dynamic refresh counter
- TRI-STATE outputs
- TTL/LS compatible inputs
- PNP inputs minimize loading
- Capacitance-driver outputs (500 pF)
- Built-in damping resistor (DS1646, DS3676)
- Extra gates provided
- Initialize input clears counters
- Positive edge clock

Connection Diagram

Dual-In-Line Package

Order Number DS1646J, DS1676J, DS3646J, DS3676J, DS3646N, DS3676N, DS1646W or DS1676W See NS Package J16A, N16A or W16A

Logic Diagram

Absolute Maximum	Ratings (Note 1)	Operating Condi	tions		
Supply Voltage	7V		MIN	MAX	UNITS
Logical "1" Input Voltage Logical "0" Input Voltage	7∨ -1.5V	Supply Voltage (V_{CC}) Temperature (T_{Δ})	4.5	5.5	V
Storage Temperature Range Power Dissipation* Cavity Package	−65°C to +150°C 1160 mW	DS1646, DS1676 DS3646, DS3676	-55 0	+125 +70	°C °C
Molded Package	1000 mW				

300°C

Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics (Notes 2 and 3)

	PARAMETER	CONDITION	NS :	MIN	TYP	MAX	UNITS
V _{IN(1)}	Logic ''1'' Input Voltage		-773	2.0			٧
V _{IN(0)}	Logic "0" Input Voltage					0.8	٧
¹ IN(1)	Logic "1" Input Voltage	V _{CC} = 5.5V, V _{IN} = 5.5V	-		0.1	40	μΔ
¹ IN(0)	Logic "0" Input Voltage	V _{CC} = 5.5V, V _{IN} = 0.5V	,		-50	-250	μΔ
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V, I _{IN} = -18 mA	· · · · · · · · · · · · · · · · · · ·		-0.75	-1.2	V
Vон	Logic: "1" Output Voltage (D, A · B)	V _{CC} = 4.5V, I _{OH} = -1 mA		2.5	3.5		V
VoL	Logic "0" Output Voltage $(\overline{D}, \overline{A \cdot B})$	V _{CC} = 4.5V, I _{OL} = 20 mA		·	0.4	0.5	٧
V	Logic "1" Output Voltage	Vcc = 4.5V, IoH = -10 μA	DS1646, DS1676	2.7	3.6		٧
Voн	(No Load),Outputs 1-6	VCC = 4.5 V, 10H = -10 μA	DS3646, DS3676	2.8	3.6		٧
\/	Logic "0" Output Voltage	\\\(15\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DS1646, DS1676		0.25	0.4	٧
VoL	(No Load), Outputs 1-6	$V_{CC} = 4.5V, I_{OL} = 10 \mu A$	DS3646, DS3676		0.25	0.35	V
			DS1646	2.4	3.5		٧
Vон	Logic: "1" Output Voltage	V _{CC} = 4.5V, _{OH} = -1 mA	DS1676	2.5	3.5	٧	
VOH	(With Load), Outputs 1–6	VCC = 4.5V, TOH = =1 IIIA	DS3646	2.6	3.5		V
			DS3676	2.7	0.1 -50 -0.75 3.5 0.4 3.6 3.6 0.25 3.5 3.5 3.5 3.5 3.5 0.4 0.6 0.4 -250 150		٧
			DS1646		0.6	1.1	V
VoL	Logic "0" Output Voltage	V _{CC} = 4.5V, I _{OL} = 20 mA	DS1676		0.4	0.5	V
* OL	(With Load), Outputs 1–6	1.50, 102 25 1112	DS3646		0.6	40 -250 -1.2 0.5 0.4 0.35	\ \
		1	DS3676		0.4	0.5	V
IID	Logic "1" Drive Current, Outputs 1–6	VCC = 4.5V, VOUT = 0V, (No	ote 4)		-250		m⊅
lop	Logic "0" Drive Current, Outputs 1–6	V _{CC} = 4.5V, V _{OUT} = 4.5V, (r	Note 4)		150		mA
los	Output Short-Circuit Current (D, A · B)	V _{CC} = 5.5V, V _{OUT} = 0V, (No	ote 5)	-60		-170	mΑ
lHI-Z	TRI STATE Output Current, Outputs 1–6	V _{OUT} = 0.4V to 2.4V, Output	t Enable = 0V	-40		40	μΔ
¹cc	Power Supply	1			75	100	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteeed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

^{*}Derate cavity package at 80° C/W above 70° C; derate molded package at 90° C/W above 70° C.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to +125°C temperature range for the DS1646 and DS1676 and across the 0°C to +70°C range for the DS3646 and DS3676. All typical values are for T_A = 25°C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1676 and DS3676, a 15Ω resistor should be placed in series with each output. This resistor is internal to the DS1646/DS3646 and need not be added.

Note 5: Not more than one output should be shorted at a time.

Switching Characteristics ($V_{CC} = 5V$, $T_A = 25^{\circ}C$) (Note 4)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ts1	Storage Delay Clock Edge to Out 1	$R_D = 15\Omega$, $C_L = 500 \text{ pF}$, (Figures 1 and 2)	ts+ ts-+		17 38	22 54	ns
ts2	Storage Delay Clock Edge to Out 2	$R_D = 15\Omega$, $C_L = 500 pF$, (Figures 1 and 2)	ts ts-+		27 45	40	ns
tS3	Storage Delay Clock Edge to Out 3	$R_D = 15\Omega$, $C_L = 500 pF$, (Figures 1 and 2)	ts+ ts-+		39 56	58 86	ns
tS4	Storage Delay Clock Edge to Out 4	$R_D = 15\Omega$, $C_L = 500 pF$, (Figures 1 and 2)	ts+- ts-+		52 70	76 100	ns
t _{S5}	Storage Delay Clock Edge to Out 5	$R_D = 15\Omega$, $C_L = 500 \text{ pF}$, (Figures 1 and 2)	t _{S+-} t _{S-+}		62 80	93 120	ns
^t S6	Storage Delay Clock Edge to Out 6	$R_D = 15\Omega$, $C_L = 500 \text{ pF}$, (Figures 1 and 2)	t _{S+-}		75 90	110 140	ns
^t SI	Storage Delay Initialize Input to Outputs 1–6	R_D = 15 Ω , (Figures 2 and 3)	C _L = 50 pF C _L = 500 pF		25 28	38 42	ns
t _r	Rise Time, Outputs 1–6	$R_D = 15\Omega$, (Figures 1 and 2)	C _L = 50 pF C _L = 500 pF		4 18	7 27	ns
tf	Fall Time, Outputs 16	R_D = 15 Ω , (Figures 1 and 2)	C _L = 50 pF C _L = 500 pF		5 25	8 38	ns
^t ZL	Delay from Enable Input to Logic ''O'' Level	R _L = 2k, C _L = 50 pF, (<i>Figur</i>	e 6)		11	17	ns
^t ZH	Delay from Enable Input to Logic ''1'' Level	RL = 2k, CL = 50 pF, (Figure	e 6)		25	38	ns
tLZ	Delay from Enable Input to High Impedance State	$R_L = 400\Omega$, $C_L = 50 pF$, (Fig.	gure 7)		15	23	ns
tHZ	Delay from Enable Input to High Impedance State	R _L = 400Ω, C _L = 50 pF, (<i>Figure 7</i>)			10	15	ns
^t PHL	Propagation Delay Time High- to-Low Level Outputs \overline{D} and $\overline{A \cdot B}$	R _L = 280Ω, C _L = 15 pF, (Figures 4 and 5)			9	12	ns
tPHL	Propagation Delay Time High- to-Low Level Outputs \overline{D} and $\overline{A \cdot 8}$	$R_L = 280\Omega$, $C_L = 50 \text{ pF}$, (Fig.	gures 4 and 5)		10		ns
tPLH	Propagation Delay Time Low-to-High Level Outputs \overline{D} and $\overline{A\cdot 8}$	$R_L = 280\Omega$, $C_L = 15 pF$, (Fig.	gures 4 and 5)		5	8	ns
tPLH	Propagation Delay Time Low- to-High Level Outputs D and A·8	R_L = 280 Ω , C_L = 50 pF, (Figures 4 and 5)			6		ns

Truth Table

INITIALIZE	OUTPUT ENABLE	CLK	OUT 1	OUT 2	OUT 3	OUT 4	OUT 5	OUT 6
1	1	X	0	0	0	0	0	0
×	0	×	Hi-Ż	Hi-Z	Hi-Z	Hi-Ż	Hi-Z	Hi-Z
0	1	×*	Active	Active	Active	Active	Active	Active

^{*}Counter is advanced one count on the positive edge of the CLK input

Typical Application

The DS1646/DS3646 and DS1676/DS3676 have TRI-STATE cutputs which can be tied to the outputs of another TRI-STATE driver. The refresh counter can control the address lines into a memory array during a short refresh cycle, and then return to the high-impedance state to allow the primary driver to control the address lines.

AC Test Circuits and Switching Time Waveforms

FIGURE 1

FIGURE 2

FIGURE 4

FIGURE 5

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 6(c)

FIGURE 7(c)

^{*}Internal on DS1646 and DS3646

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50 Ω and PRR = 1 MHz, Rise and Fall times between 10% and 90% points \leq 5 ns.

Note 2: C_L includes probe and jig capacitance.

Note 3: All diodes are 1N916 or 1N3064.

National Semiconductor

MOS Memory Interface Circuits

DS1647/DS3647, DS1677/DS3677, DS16147/DS36147, DS16177/DS36177 quad $\texttt{TRI-STATE}^{\circledcirc}$ MOS memory I/O registers

general description

The DS1647/DS3647 series are 4-bit I/O buffer registers intended for use in MOS memory systems. The circuits employ a fall-through latch for data storage. This method of latching captures the data in parallel with the output, thus eliminating the delays encountered in other designs. The circuits use Schottky-clamped transistor logic for minimum propagation delay and employ PNP input transistors-so that input currents are low, allowing large fan-out to these circuits needed in a memory system.

Two pins per bit are provided, and data transfer is bidirectional so that the register can handle both input and output data. The direction of data flow is controlled through the input enables. The latch control, when taken low, will cause the register to hold the data present at that time and display it at the outputs. Data can be latched into the register independent of the output disables or EXPANSION input. Either or both of the outputs may be taken to the high-impedance state with the output disables. The EXPANSION pin disables both outputs to facilitate multiplexing with other I/O registers on the same data lines.

The "B" port outputs in the DS16147/DS36147 and DS16177/DS36177 are open collectors, and in the

DS1647/DS3647 and DS1677/DS3677 they are TRI-STATE. The "B" port outputs are also designed for use in bus organized data transmission systems and can sink 80 mA and source -5.2 mA. The "A" port outputs in all four types are TRI-STATE.

Data going from port "A" to port "B" is inverted in the DS1647/DS3647 and DS16147/DS36147 and is not inverted in the DS1677/DS3677 and DS16177/DS36177. Data going from port "B" to port "A" is inverted in all four types.

features

- PNP inputs minimize loading
- Fall-through latch design
- Propagation delay of only 15 ns
- TRI-STATE outputs
- EXPANSION control
- Bi-directional data flow
- TTL/LS compatible
- Transmission line driver output

logic and connection diagrams

Order Number DS1647J, DS3647J, DS1677J, DS3677J, DS16147J, DS36147J, DS16177J, DS36177J, DS3647N, DS36177N, DS36147N or DS36177N
See NS Package J16A or N16A

^{*}Inverting DS1647/DS3647 and DS16147/DS36147 only

absolute maximum rating	operating conditions					
Supply Voltage	7∨		MIN	MAX	UNITS	
Input Voltage Storage Temperature Range	−1.5V to +7V −65°C to +150°C	Supply Voltage (V_{CC}) Temperature (T_{Δ})	4.5	5.5	V	
Power Dissipation (P _D) Ceramic Package Molded Package	1160 mW 1000 mW	DS1647, DS1677, DS16147, DS16177	-5 5	+125	°C	
Lead Temperature (Soldering, 10 seconds)	300°C	DS3647, DS3677, DS36147, DS36177	0	+70	°C	
*Derate ceramic package at 80°C/W above	70° C; derate molded					

electrical characteristics (Notes 2 and 3)

package at 90°C/W above 70°C.

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VIN(1)	Logic "1" Input Voltage			2.0			V
VIN(0)	Logic "0" Input Voltage					0.8	V
IN(1)	Logic "1" Input Current		Latch, Disable Inputs		0.1	40	μΑ
		V _{CC} = 5.5V, V _{IN} = 5.5V	Expansion		0.2	80	μΑ
		ACC - 2.24 , AIM ~ 2.24	A Ports, B Ports		0.2	100	μΑ
			Enable Inputs		0.4	200	μΑ
¹ IN(0)	Logic "O" Input Current		Latch, Disable Inputs		-25	-250	μΑ
		V _{CC} = 5.5V, V _{IN} = 0.5V	Expansion		-50	-500	μΑ
		VCC - 5.5V, VIN - 0.5V	A Ports, B Ports		-50	500	μΑ
			Enable, Inputs		-0.1	-1.25	mA
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V, I _{IN} = -18 mA			-0.6	-1.2	V
V _{OL(A)}	Logic "0" Output Voltage A Ports	V _{CC} = 4.5V, I _{OL} = 20 mA			0.4	0.5	٧
VOL(B)	Logic "0" Output Voltage	151	I _{OL} = 30 mA		0.3	0.4	V
	B Ports	V _{CC} = 4.5V	I _{OL} = 50 mA		0.4	0.5	٧
Voh(A)	Logic "1" Output Voltage	I _{OH} = -1 mA	V _{CC} = 5V	3.0	3.4		V
	A Ports	IOH = -1 mA	V _{CC} = 4.5V	2.5	3.4		V
VOH(B)	Logic "1" Output Voltage		V _{CC} = 5V	2.9	3.3		V
	B Ports	I _{OH} = -5.2 mA, (Note 4)	V _{CC} = 4.5V	2.4	3.3		V
Ios(A)	Output Short-Circuit Current A Port	V _{CC} = 4.5V to 5.5V, V _{OUT} = 0V, (Note 5)		- 30	-50	-100	mA
IOS(B)	Output Short-Circuit Current B Port	V _{CC} = 4.5V to 5.5V, V _{OUT} = 0V, (Notes 4 and 5)		30	-60	-100	mA
1CC	Power Supply Current	Exp = 3V, A Ports = 0V,	DS1647, DS16147		100	110	mA
		B Ports Open, All Other Pins = 0V	DS3647, DS36147		100	140	mA
		Enable A, Latch = 3V, A Ports =	DS1647, DS16147		70	80	mA
		0V, 8 Ports Open, All Other Pins = 0V	DS3647, DS36147		70	105	mA
		Exp = 3V, A Ports = 0V,	DS1677, DS16177		105	115	mA
		B Ports Open, All Other Pins = 0V	DS3677, DS36177		105	145	mA
	l	Enable A, Latch, A Ports = 3V,	DS1677, DS16177		75	85	mA
		B Ports Open, All Other Pins = 0V	D\$3677, D\$36177		75	110	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1647, DS16147, DS16177 and across the 0° C to $+70^{\circ}$ C range for the DS3647, DS3617, DS36147, DS36177. All typicals are given for $V_{CC} = 5V$ and $T_{A} = 25^{\circ}$ C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

Note 4: Not applicable to DS16147/DS36147 or DS16177/DS36177.

Note 5: Only one output at a time should be shorted.

switching characteristics (V_{CC} = 5V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DATA	TRANSFER B PORT TO A PORT, A			1 _=	, <u> </u>	
t _{pd} 0	Propagation Delay to a Logic "O"	$C_L = 50 \text{ pF}, R_L = 280 \Omega,$ (Figures 1 and 4)		7.5	15	ns
tpd1	Propagation Delay to a Logic "1"	$C_L = 50 \text{ pF}, R_L = 280 \Omega,$ (Figures 1 and 4)		6.0	12	ns
A POR	T CONTROL FROM OUTPUT DISAB	BLE A INPUT, ALL DEVICES		<u> </u>		
tLZ	Delay to High Impedance from	(Figures 1 and 5)		13	20	ns
	Logic ''0''					
tHZ	Delay to High Impedance from Logic "1"	(Figures 1 and 6)		14	20	ns
^t ZL	Delay to Logic ''0'' from High Impedance	(Figures 1 and 7)		10	15	ns
^t ZH	Delay to Logic '''' from High	(Figures 1 and 8)		25	35	ns
DATA	TRANSFER A PORT TO B PORT, D	S1647/DS3647				
t _{pd} 0	Propagation Delay to a Logic "0"	$C_L = 50 \text{ pF}, R_L = 100 \Omega,$ (Figures 2 and 4)		6.5	12	ns
t _{pd1}	Propagation Delay to a Logic "1"	C_L = 50 pF, R_L = 100 Ω , (Figures 2 and 4)		8.0	15	ns
DATA	TRANSFER A PORT TO B PORT, D	S1677/DS3677				
^t pd0	Propagation Delay to a Logic "0"	$C_L = 50 \text{ pF}, R_L = 100 \Omega,$ (Figures 2 and 4)		12.5	20	ns
t _{pd1}	Propagation Delay to a Logic "1"	C_L = 50 pF, R_L = 100 Ω , (Figures 2 and 4)		8.5	15	ns
DATA	TRANSFER A PORT TO B PORT DS	S16147/DS36147				
tpd0	Propagation Delay to a Logic "0"	C _L = 50 pF, (Figures 3 and 4)		18	25	ns
tpd1	Propagation Delay to a Logic "1"	C ₁ = 50 pF, (Figures 3 and 4)	1	7.0	15	ns
	TRANSFER A PORT TO B PORT, D	S16177/DS36177	<u> </u>			
t _{pd} 0	Propagation Delay to a Logic "0"	C _L = 50 pF, (Figures 3 and 4)		13.5	21	ns
tpd1	Propagation Delay to a Logic "1"	C _L ≈ 50 pF, (Figures 3 and 4)		18	25	ns
	T CONTROL FROM OUTPUT DISAL		S1677/DS3	677	<u> </u>	<u> </u>
tLZ	Delay to High Impedance from Logic. "O"	(Figures 2 and 5)		15	25	ns
^t HZ	Delay to High Impedance from Logic "1"	(Figures 2 and 6)		14	20	ns
[†] ZL	Delay to Logic "0" from High Impedance	(Figures 2 and 7)		10	16	ns
^t ZH	Delay to Logic "1" from High	(Figures 2 and 8)		25	35	ns
B POF	T CONTROL FROM OUTPUT DISA	BLE B INPUT, DS16147/DS36147,	DS16177/	DS36177		
tLZ	Delay to High Impedance from Log c "0"	(Figures 3 and 5)		15	25	ns
tZL	Delay to Logic "0" from High Impedance	(Figures 3 and 7)		11	17	ns
LATC	H SET UP AND HOLD TIMES, ALL I	DEVICES				
	P Set-Up Time of Data Input Before Laten Goes Low		10	0		ns
	O Hold Time of Data Input After		0	1		ns

product description

OEVICE NUMBER	B PORT TO A PORT FUNCTION	A PORT TO B PORT FUNCTION	A PORT OUTPUTS	B PORT OUTPUTS
DS1647/DS3647	Inverting	Inverting	TRI-STATE	TRI-STATE
DS1677/DS3677	nverting	Non-Inverting	TRI-STATE	TRI-STATE
DS16147/DS36147	Inverting	Inverting	TRI-STATE	Open-Collector
DS16177/DS36177	Inverting	Non-Inverting	TRI-STATE	Open Collector

truth table

INPUT E	NABLES	LATCH	ООТРОТ	DISABLES		A PORTS	B PORTS B1-B4	B PORTS B1-B4	
Α	В	LAICH	Α	В	EXPANSION	A1-A4 ALL DEVICES	DS1647, DS16147 DS3647, DS36147	DS1677, DS16177 DS3677, DS36177	COMMENTS
1	0	1	0	0	0	Hı-Z	Ā	А	Data in on A, output to B
0	1	1	0	0	0	B	Hı-Z	Hı-Z	Data in on B, output to A
1	0	0	0	0	0	Hı-Z	Ā	A	Data stored which is present when latch goes low
0	1	0	0	0	0	В	Hı-Z	Hı-Z	Data stored which is present when latch goes low
1	0	х	0	1	0	Hi-Z	Hı∙Z	Hi-Z	Both A and B in Hi-Z state, Data In on A, may be latched
0	1	х	1	0	0	Hı-Z	Hı-Z	Hı-Z	Both A and B in Hi-Z state, Data In on B, may be latched
×	×	x	×	х	1	Hı-Z	Hı-Z	Hı-Z	Both A and B in Hi-Z state

ac test circuits

FIGURE 1. A Port Load, All Circuits

FIGURE 2. B Port Load, DS3647, OS3677

FIGURE 3. B Port Load, DS36147, DS36177

Note 1: CL includes probe and jig capacitance.

operating waveforms

*When the Input Enable makes a negative transition, the output will be indeterminate for a short duration. The negative transition of the Input Enable normally occurs during a don't-care timing state at the output.

switching time waveforms

tLZ

Input Characteristics: f = 1 MHz, t_R = $t_F \le 5$ ns (10% to 90% points), duty cycle = 50%, Z_{OUT} = 50 Ω

FIGURE 4

tHZ

schematic diagram

Note. Data pins A1—A4 and B1—B4 consist of an input and an output tied together.

typical applications

The diagram below shows how the DS3677 can be used as a register capable of multiplexing data lines.

National Semiconductor

MOS Memory Interface Circuits

DS1648/DS3648, DS1678/DS3678 TRI-STATE® TTL to MOS multiplexers/drivers

general description

The DS1648/DS3648 and DS1678/DS3678 are quad 2-input multiplexers with TRI-STATE outputs designed to drive the large capacitive loads (up to 500 pF) associated with MOS memory systems. A PNP input structure is employed to minimize input currents so that driver loading in large memory systems is reduced. The circuit employs Schottky-clamped transistors for high speed and TRI-STATE outputs for bus operation.

The DS1648/DS3648 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast-switching output. The DS1678/DS3678 has a direct,

low impedance output for use with or without an external resistor.

features

- TRI-STATE outputs interface directly with system bus
- Schottky-clamped for better ac performance
- PNP inputs to minimize input loading
- LS and TTL compatible
- High-speed capacitive load drivers
- Built-in damping resistor (DS1648/DS3648 only)

logic and connection diagrams

Dual-In-Line Package

Order Number DS1648J, DS3648J, DS1678J, DS3678J, DS3648N or DS3678N See NS Package J16A or N16A

schematic diagram

absolute maximum ratin	gs (Note 1)	operating condit	ions		
Supply Voltage	7 V		MIN	MAX	UNITS
Logical "1" Input Voltage Logical "0" Input Voltage	7V ~1.5V	Supply Voltage (VCC)	4.5	5.5	V
Storage Temperature Range Power Dissipation*	-65° C to +150° C	Temperature (TA) DS1648, DS1678	-5 5	+125	°C
Cavity Package	1160 mW	DS3648, DS3678	0	+70	°C
Molded Package Lead Temperature (Soldering, 10 seconds)	1000 mW 300°C	*Derate cavity package at 8 package at 90°C/W above 7		70°C; dera	te molded

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VIN(1)	Logical "1" Input Voltage				2.0			V
VIN(0)	Logical "0" Input Voltage		7				0.8	V
¹ IN(1)	Logical "1" Input Current	V _{CC} = 5.5V,	V _{IN} = 5.5V			0.1	40	μΑ
¹ IN(0)	Logical "0" Input Current	V _{CC} = 5.5∨,	V _{IN} = 0.5V			-50	-250	μА
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V,	I _{IN} = -18 mA	· · · · · · · · · · · · · · · · · · ·		-0.75	-1.2	V
Vон	Logical "1" Output Voltage	4.51/	10	DS1648/DS1678	2.7	3.6		V
	(No Load)	VCC = 4.5V,	$I_{OH} = -10 \mu\text{A}$	D\$3648/D\$3678	2.8	3.6		V
VOL	Logical "0" Output Voltage	V 4 EV	ΙΟΙ = 10 μΑ	DS1648/DS1678		0.25	0.4	V
	(No Load)	VCC - 4.5V,	10Γ - 10 μΑ	DS3648/DS3678		0.25	0.35	V
Vон	Logical "1" Output Voltage			DS1648	2.4	3.5		V
	(With Load)	V 4 5V	1	DS1678	2.5	3.5		V
		VCC = 4.5V, IOH = =1.0 IIIA		D\$3648	2.6	3.5		V
				DS3678	2.7	3.5		V
v_{OL}	Logical "0" Output Voltage			DS1648		0.6	1.1	\
	(With Load)	V _{CC} = 4.5V, I _{OL} = 20 mA DS1678		DS1678		0.4	0.5	\ \
				DS3648		0.6	1.0	\ \
				DS3678		0.4	0.5	\
¹ 1D	Logical "1" Drive Current	V _{CC} = 4.5V,	VOUT = 0V, (Note	4)		-250		m.A
I _{OD}	Logical "0" Drive Current	V _{CC} = 4.5V,	V _{OUT} = 4.5V, (Not	e 4)		150		m.A
I _{Hi-Z}	TRI-STATE Output Current	V _{OUT} = 0.4	V to 2.4V, Output Co	ontrol = 2.0V	-40		40	μA
lcc	Power Supply Current	V _{CC} = 5.5V	Output Control = 3\ All Other Inputs at (42	60	m/
			All Inputs at 0V			20	32	m/

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1648 and DS1678 and across the 0°C to $+70^{\circ}$ C range for the DS3648 and DS3678. All typical values are for T_A = 25° C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1678 and DS3678 a 15 Ω resistor should be placed in series with each output. This resistor is internal to the DS1648/DS3648 and need not be added.

switching characteristics ($V_{CC} = 5V$, $T_A = 25^{\circ}C$) (Note 4)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ts+-	Storage Delay Negative Edge	(Figure 1)	C _L = 50 pF C _L = 500 pF		5 9	7 12	ns ns
tS-+	Storage Delay Positive Edge	(Figure 1)	C _L = 50 pF C _L = 500 pF		6 9	8 13	ns ns
tF	Fall Time	(Figure 1)	C _L = 50 pF C _L = 500 pF		5 22	8 35	ns ns
tR	Rise Time	(Figure 1)	C _L = 50 pF C _L = 500 pF		6 22	9 35	ns ns
^t ZL	Delay from Output Control Input to Logical "O" Level (from High Impedance State)	C_L = 50 pF, R_L = 2 k Ω to V_{CC} , (Figure 2)			10	15	ns
^t ZH	Delay from Output Control Input to Logical "1" Level (from High Impedance State)	C_L = 50 pF, R_L = 2 k Ω to Gnd, (Figure 2)			8	15	ns
tLZ	Delay from Output Control Input to High Impedance State (from Logical "0" Level)	C_L = 50 pF, R_L = 400 Ω to V_{CC} , (Figure 3)		į	15	25	ns
tHZ	Delay from Output Control Input to High Impedance State (from Logical "1" Level)	C _L = 50 pF (Figure 3)	F, R _L = 400 Ω to Gnd,		10	25	ns
t _{S+}	Propagation Delay to Logical "0" Transition When Select Selects A	C _L = 50 pF	, (Figure 1)		12	15	ns
t _{S-+}	Propagation Delay to Logical "1" Transition When Select Selects A	C _L = 50 pf	F, (Figure 1)		14	17	ns
ts+-	Propagation Delay to Logical "0" Transition When Select Selects B	C _L = 50 pF	, (Figure 1)		16	20	ns
ts-+	Propagation Delay to Logical "1" Transition When Select Selects B	C _L = 50 pl	-, (Figure 1)		14	20	ns

ac test circuits and switching time waveforms

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50 Ω and PRR \leq 1 MHz. Rise and fall times between 10% and 90% points FIGURE 1

Note 2: CL includes probe and jig capacitance.

*Internal on DS1648 and DS3648

PULSE GENERATOR (NOTE 1)

tZL PULSE GENERATOR (NOTE 1)

FIGURE 2

ac test circuits and switching time waveforms (Continued)

^{*}Internal on DS1648 and DS3648

FIGURE 3

truth table

OUTPUT	INPL			
CONTROL	SELECT	А	В	OUTPUTS
H	Х	х	×	Hi-Z
L	L	L	Х	н
Ŀ	L	н	Х	L
L	Н	X	L	н
L	н	Х	Н	L

H = High level

typical applications

Addressing 16k RAM ROW ADDRESS DS1648/ DS164

L = Low level

X = Don't care

Hi-Z = TRI-STATE mode

typical applications (Continued)

Refreshing Using TRI-STATE Counter

2:1 Multiplexing of RAM Outputs

MOS Memory Interface Circuits

DS1649/DS3649, DS1679/DS3679 hex TRI-STATE $^{\otimes}$ TTL to MOS drivers general description

The DS1649/DS3649 and DS1679/DS3679 are Hex TRI-STATE MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TRI-STATE outputs for bus operation.

The DS1649/DS3649 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast-switching output. The DS1679/DS3679 has a direct low

impedance output for use with or without an external resistor

features

- High speed capabilities
 - Typ 9 ns driving 50 pF
 - Typ 30 ns driving 500 pF
- TRI-STATE outputs for data bussing
- Built-in 15 Ω damping resistor (DS1649/DS3649)
- Same pin-out as DM8096 and DM74366

schematic diagram

truth table

DISABL	E INPUT	INPUT	OUTPUT
DIS 1	DIS 2	INPUT	UUIPUI
0	0	0	1
0	0	1	0
0	1	×	Hi∙Z
1	0	×	Hi-Z
1	1	×	Hi-Z

X = Don't care Hi-Z = TRI-STATE mode

*DS1649/DS3649 only Connection diagram

Dual-In-Line Package VCC 01S2 IN 6 DUT 8 IN 5 OUT 5 IN 4 DUT 4 116 15 14 13 12 11 10 8 OIS 1 IN 1 OUT 1 IN 2 OUT 2 IN 3 DUT 3 GND TOP VIEW

Order Number DS1649J, DS3649J, DS1679J, DS3679J, DS3649N, DS3679N, DS1649W, or DS1679W See NS Package J16A, N16A or W16A

typical application

operating conditions absolute maximum ratings (Note 1) UNITS Supply Voltage Logical "1" Input Voltage Logical "0" Input Voltage 7.0V MIN MAX 7.0V 4.5 5.5 Supply Voltage (VCC) -1.5V Temperature (TA) –65°C to +150°C Storage Temperature Range °C DS1649, DS1679 -55 +125 Power Dissipation* +70 °C DS3649, DS3679 0 1160 mW Cavity Package *Derate cavity package at 80° C/W above 70° C; derate molded 1000 mW Molded Package package at 90° C/W above 70° C. 300° C Lead Temperature (Soldering, 10 seconds)

electrical characteristics (Note 2 and 3)

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VIN(1)	Logical "1" Input Voltage				2.0			V
VIN(0)	Logical "O" Input Voltage						0.8	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 5.5V	V _{IN} = 5.5V			0.1	40	μА
IN(0)	Logical "O" Input Current	V _{CC} = 5.5V	V _{IN} = 0.5V			-50	-250	μA
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V	I _{IN} = -18 mA			-0.75	-1.2	V
Voн	Logica "1" Output Voltage	V 4 EV	ιομ = -10 μΑ	DS1649/DS1679	2.7	3.6		V
	(No Load)	V _{CC} = 4.5V	ΙΟΗ ΙΟ μΑ	DS3649/DS3679	2.8	3.6		V
VOL	Logica "0" Output Voltage	., 450	101	DS1649/DS1679		0.25	0.4	
02	(No Load)	V _{CC} = 4.5V	1 _{OL} = 10 μA	DS3649/DS3679		0.25	0.35	V
Voн	Logical "1" Output Voltage			DS1649	2.4	3.5		V
- 011	(With Load)			DS1679	2.5	3.5		
		VCC = 4.5V	l _{OH} = −1.0 mA	DS3649	2.6	3.5		v
				DS3679	2.7	3.5		v
VOL	Logical "0" Output Voltage			DS1649		0.6	1.1	V
OL	(With _oad)			DS1679		0.4	0.5	V
		VCC = 4.5V	I _{OL} = 20 mA	DS3649		0.6	1.0	v
				DS3679		0.4	0.5	V
ID	Logical "1" Drive Current	V _{CC} = 4.5V	V _{OUT} = 0V (Note 4)			-250		rnA
lOD	Logical "0" Drive Current	V _{CC} = 4.5V	V _{OUT} = 4.5V (Note 4)			150		rnA
Hi-Z	TRI-STATE Output	V _{OUT} = 0.4V DIS1 or DIS2		Provide Artist	-40		40	ΔL
ICC	Power Supply Current		One DIS Input = All Other Inputs			42	75	rnA
		V _{CC} = 5.5V	All Inputs = 0V			11	20	rnA

switching characteristics (V_{CC} = 5V, T_A = 25°C) (Note 4)

	PARAMETER	co	CONDITIONS		TYP	MAX	UNITS
S+	Storage Delay Negative Edge	(Figure 1)	C _L = 50 pF C _L = 500 pF		4.5 7.5	7	ns
S-+	Storage Delay Position Edge	(7)	C _L = 50 pF		5	8	rs
-		(Figure 1)	C _L = 500 pF		8	13	rs
F	Fall Time	(Figure 1)	C _L = 50 pF		5	8	r·s
		in igare in	C _L = 500 pF		22	35	r \$
R	Rise Time	(Figure 1)	C _L = 50 pF		6	9	rs
		(rigule 1)	C _L = 500 pF		21	35	ris
ZL	Delay from Disable Input to Logical "0" Level (from High Impedance State)	C _L = 50 pF to Gnd	$R_L = 2 k\Omega$ to V_{CC} (Figure 2)		10	15	ris
tzH	Delay from Disable Input to Logical "1" Level (from High Impedance State)	CL = 50 pF to Gnd	$R_L = 2 k\Omega$ to Gnd (Figure 2)		8	15	
LZ	Delay from Disable Input to High Impedance State (from Logical "O" Level)	C _L = 50 pF to Gnd	$R_L = 400 \Omega$ to V_{CC} (Figure 3)		15	25	
HZ	Delay from Disable Input to High Impedance State (from Logical "1" Level)	CL = 50 pF to Gnd	$R_L = 400 \Omega$ to Gnd (Figure 3)		10	25	rıs

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1649 and DS1679 and across the 0° C to $+70^{\circ}$ C range for the DS3649 and DS3679. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC} = 5V_{CC}$

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: When measuring output drive current and switching response for the DS1679 and DS3679 a 15 Ω resistor should be placed in series with each output. This resistor is internal to the DS1649/DS3649 and need not be added.

ac test circuits and switching time waveforms

FIGURE 1

^tZL

FIGURE 2

FIGURE 3

Note 1: The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$ and PRR ≤ 1 MHz. Rise and fall times between 10% and 90% points ≤ 5 ns.

Note 2: CL includes probe and jig capacitance.

^{*}Internal on DS1649 and DS3649

National Semiconductor

DS1651/DS3651, DS1653/DS3653 Quad High Speed MOS Sense Amplifiers

General Description

The DS1651/DS3651 and DS1653/DS3653 are TTL compatible high speed circuits intended for sensing in a broad range of MOS memory system applications. Switching speeds have been enhanced over conventional sense amplifiers by application of Schottky technology, and TRI STATE ⁹ strobing is incorporated, offering a high impedance output state for bused organization.

The DS1651/DS3651 has active pull-up outputs, and the DS1653/DS3653 offers open collector outputs providing implied "AND" operations.

Features

- High speed
- TTL compatible
- Input sensitivity ±7 mV
- TRI-STATE outputs for high speed buses

MOS Memory Interface Circuits

- Standard supply voltages ±5V
- Pin and function compatible with MC3430 and MC3432

Connection Diagram

Dual-In-Line Package

Order Number DS1651J, DS1653J, DS3651J, DS3653J, DS3651N or DS3653N See NS Package J16A or N16A

Truth Table

		DUT	PUT
INPUT	STROBE	D\$3651	D\$3653
V _{1D} > 7 mV	L	Н	Open
$T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	Н	Open	Open
$-7 \text{ mV} \le \text{V}_{\text{ID}} \le +7 \text{ mV}$	L	X	Х
$T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	Н	Open	Open
$V_{1D} \le -7 \text{ mV}$	L	L	L
$T_A = 0^{\circ}C$ to $+70^{\circ}C$	н	Open	Open

- L = Low logic state
- H = High logic state
- Open = TRI-STATE
- X = Indeterminate state

Typical Applications

A Typical MOS Memory Sensing Application for a 4k word by 4-bit memory arrangement employing 1103 type memory devices

Note. Only 4 devices are required for a 4k word by 16-bit memory system.

Absolute Maximum Ratir	ngs	Operating Conditi	ions		
(Note 1)			MIN	MAX	UNITS
Power Supply Voltages VCC VEE	+7 V _{DC} -7 V _{DC}	Supply Voltage (V _{CC}) DS1651, DS1653 DS3651, DS3653	4.5 4.75	5.5 5.25	V _{DC}
Differential-Mode Input Signal Voltage Range, VIDR Common-Mode Input Voltage Range, VICR Strobe Input Voltage, VI(S)	±6 V _{DC} ±5 V _{DC} 5.5 V _{DC}	Supply Voltage (VEE)	–4.5 –4.75	-5.5 -5.25	V _{DC}
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	65°C to +150°C 300°C	DS1651, DS1653 DS3651, DS3653	-55 0	+125 +70	°C °C
		Output Load Current, (IOL)		16	mA
		Differential-Mode Input Voltage Range, V _{IDR}	5.0	+5.0	V _{DC}
		Common-Mode Input Voltage Range (V _{ICR})	-3.0	+3.0	V _{DC}
		Input Voltage Range (Any Input to GND), (V _{IR})	-5.0	+3.0	V _{DC}

Electrical Characteristics

 $V_{CC} = 5 \ V_{DC}, V_{EE} = -5 \ V_{DC}, Min \leq T_{\bm{A}} \leq Max, unless \ otherwise \ noted \qquad (Notes \ 2 \ and \ 3)$

	PARAMETER		CONDITIO	NS	MIN	TYP	MAX	UNIT
VIS	Input Sensitivity, (Note 5) (Common-Mode Voltage Range = $-3V \le V_{IN} \le 3V$)	Min≤VCC≤ Min≥VEE≥	_			_	±7.0	m√
VIO	Input Offset Voltage					2		m١
1IB	Input Bias Current	V _{CC} = Max,	VEE = Max				20	μ.
ΙίΟ	Input Offset Current					0.5		μА
V _{IL(S)}	Strobe Input Voltage (Low State)						0.8	\
VIH(S)	Strobe Input Voltage (High State)				2			,
I _{IL} (S)	Strobe Current (Low State)	V _{CC} = Max,	VEE = Max, VII	N = 0.4V			-1.6	m
I _{IH} (S)	Strobe Current (High State)		V _{IN} = 2.4V V _{IN} = V _{CC}	DS3651, DS3653			40 1	μ, m,
		VEE = Max	V _{IN} = 2.4V V _{IN} = V _{CC}	DS1651, DS1653			100	μ, m,
Vон	Output Voltage (High State)	V _{CC} = Min, V _{EE} = Min	I _O = -400 μ A	DS1651/DS3651	2.4			,
VOL	Output Voltage (Low State)	V _{CC} = Min,	IO = 16 mA	DS3651, DS3653			0.45	,
		VEE = Min	10 10 1112	DS1651, DS1653			0.50	
ICEX	Output Leakage Current	V _{CC} = Min, V _{EE} = Min	VO = Max	DS1653/DS3653			250	μ
los	Output Current Short Circuit	V _{CC} = Max, (Note 4)	VEE = Max,	DS1651/DS3651	-18		-70	m
OFF	Output Disable Leakage Current	Voo = May 1	Vee - May	DS3651			40	μ,
		V _{CC} = Max, V _{EE} = Max		DS1651			100	μΑ
Icc	High Logic Level Supply Current	VCC = Max,	VEE = Max			45	60	m
!EE	High Logic Level Supply Current	V _{CC} = Max,	VEE = Max			-17	-30	m

Switching Characteristics

 $V_{CC} = 5 V_{DC}$, $V_{EE} = -5 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted.

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
	High-to-Low Logic Level Propagation	F V - V - VF' 21	DS1651/ DS3651		23	45	ns
^t PHL(D)	Delay Time (Differential Inputs)	5 mV + V _{IS} , (Figure 3)	DS1653/ DS3653		22	50	ns
	Low-to-High Logic Level Propagation	5 77 77 75 21	DS1651/ DS3651		22	55	ns
tPLH(D)	Delay Time (Differential Inputs)	5 mV + V _{IS} , (Figure 3)	DS1653/ DS3653		24	65	ns
tPOH(S)	TRI STATE to High Logic Level Propagation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		16	21	ns
tPHO(S)	High Logic Level to TRI-STATE Propagation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		7	18	ns
tPOL(S)	TRI-STATE to Low Logic Level Propagation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		19	27	ns
tPLO(S)	Low Logic Level to TRI-STATE Propagation Delay Time (Strobe)	(Figure 1)	DS1651/ DS3651		14	29	ns
tPHL(S)	High-to-Low Logic Level Propagation Delay Time (Strobe)	(Figure 2)	DS1653/ DS3653		16	25	ns
tPLH(S)	Low-to-High Logic Level Propagation Delay Time (Strobe)	(Figure 2)	DS1653/ DS3653		13	25	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS3651, DS3653 and across the -55°C to +125°C range for the DS1651, DS1653. All typical values are for T_A = 25°C, V_{CC} = 5V and V_{EE} = -5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: A parameter which is of primary concern when designing with sense amplifiers is, what is the minimum differential input voltage required at the sense amplifier input terminals to guarantee a given output logic state. This parameter is commonly referred to as threshold voltage. It is well known that design considerations of threshold voltage are plagued by input offset currents, bias currents, network source resistances, and voltage gain. As a design convenience, the DS1651, DS1653 and DS3651, DS3653 are specified to a parameter called input sensitivity (V_{1S}). This parameter takes into consideration input offset currents and bias currents, and guarantees a minimum input differential voltage to cause a given output logic state with respect to a maximum source impedance of 200Ω at each input.

AC Test Circuits and Switching Time Waveforms

Note. Output of channel B shown under test, other channels are tested similarly.

	V1	V2	S 1	S2	cL
tPLO(S)	100 m∨	GND	Closed	Closed	15 pF
tPOL(S)	100 mV	GND	Closed	Open	50 pF
tPHO(S)	GND	100 mV	Closed	Closed	15 pF
tPOH(S)	GND	100 mV	Open	Closed	50 pF

C₁ includes jig and probe capacitance.

 $E_{\mbox{\scriptsize IN}}$ waveform characteristics $~t_{\mbox{\scriptsize TLH}}$ and $t_{\mbox{\scriptsize THL}} \leq 10$ ns measured 10%~ to 90%

PRR = 1 MHz

Duty cycle = 50%

 ϵ_0

VOL

FIGURE 1. Strobe Propagation Delay tpLO(S), tpOL(S), tpHL(S) and tpOH(S)

Note. Output of channel B shown under test, other channels are tested similarly.

Note. E $_{IN}$ waveform characteristics: t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90% PRR = 1 MHz, duty cycle = 500 ns

FIGURE 2. Strobe Propagation Delay tpLH(S) and tpHL(S)

Note. Output of channel B shown under test, other channels are tested similarly. S1 at "A" for DS1653/DS3653, C_L = 15 pF total for DS1653/DS3653 S1 at "B" for DS1651/DS3651, C_L = 50 pF total for DS1651/DS3651

 E_{IN} waveform characteristics: t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90% PRR = 1 MHz, duty cycle = 500 ns

FIGURE 3. Differential Input Propagation Delay tpLH(D) and tpHL(D)

Schematic Diagrams

DS1653/DS3653

Typical Applications (Continued)

4-Bit Parallel A/D Converter

Conversion time ≈ 50 ns

Level Detector with Hysteresis

Transfer Characteristics and Equations for Level Detector with Hysteresis

$$V_{HIGH} = V_{REF} + \frac{R2 \left(V_{O(MAX)} - V_{REF}\right)}{R1 + R2}$$

$$V_{LOW} = V_{REF} + \frac{R2 [V_{O(M|N)} - V_{REF}]}{R1 + R2}$$

Hysteresis Loop (V_H)

$$V_{H} = V_{HIGH} - V_{LOW} = \frac{R2}{R1 + R2} \left\{ V_{O(MAX)} - V_{O(MIN)} \right\}$$

MOS Memory Interface Circuits

DS1671/DS3671 bootstrapped two phase MOS clock driver

general description

The DS1671/DS3671 is a high speed dual MOS clock driver and interface circuit. Unique circuit design provides both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. It may be driven from standard 54/74 and 54S/74S series gates and flip-flops or from drivers such as the DS8830 or DM7440. The circuit can be used in both P-channel and N-channel MOS memory system drive applications.

The DS1671/DS3671 is intended to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon gate shift registers, a single device can drive over 10k bits at 5 MHz. Six devices provide input address and precharge drive for an 8k by 16-bit 1103 RAIM memory system.

Each driver uses output bootstrapping to provide a higher voltage to the output stage, thus eliminating the need for an additional V_{DD} supply. The bootstrapping function is accomplished by connecting a small value capacitor (typically 200 pF) from each output to each drivers bootstrap node.

features

- Fast rise and fall times-20 ns with 1000 pF load
- High output swing-20V
- High output current drive—±1.5A
- TTL/LS compatible inputs
- High rep rate-5 to 10 MHz depending on power dissipation
- Low power consumption in MOS "0" state-2 mW
- Swings to 0.4V of GND for RAM address drive

connection diagrams

Metal Can Packege

Order Number DS1671H or DS3671H See NS Peckage H08C

Dual-In-Line Peckage

Order Number DS1671J-8, DS3671J-8 or DS3671N-8 See NS Package J08A or N08A

typical applications

DS3671 Operating with Extra Supply to Inhance Output Voltage Level

Bootstrap Clock Driver Driven from e TTL Gate

absolute maximum ratings (Note 1)

V ⁺ − V ⁻ Differential	22V
V _B - V ⁻ Differential	40V
V _B - V ⁺ Differential	20V
Input Voltage (VIN - V-)	5.5V
Input Current	100 mA
Peak Output Current	1.5A
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C
D D: : .: */D \	

Power Dissipation* (P_D)

Ceramic Package 1160 mW

Molded Package 890 mW

Metal Can 525 mW

operating conditions

	MIN	MAX	UNITS
Supply Voltage			
V ⁺ - V ⁻ Differential		20	V
V _B - V ⁻ Differential		40	V
$V_B - V^+$ Differential		20	V
Operating Temperature Range			
D\$3671	0	+70	°C
DS1671	-55	+125	°C

* Derate ceramic package at 80° C/W above 70° C; derate molded package at 90° C/W above 70° C; derate metal can package at 200° C/W above 70° C.

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{IH}	Logical "1" Input Voltage	V- = 0 V		2.0	1.5		V
I _{1H}	Logical "1" Input Current	V _{IN} - V ⁻ = 2.4V			10	15	mA
VIL	Logical "0" Input Voltage	V ⁻ = 0V			0.6	0.4	V
Lit	Logical "0" Input Current	V _{IN} - V ⁻ ≈ 0V			-3	-10	μΑ
V _{OH}	Logical "1" Output Voltage	$V_B \ge V^+ + 1.0V, V_{IN} - V^- + 0.4V,$ $I_O = 0 \text{ mA}$	DS3671 DS1671	V ⁺ -1.0 V ⁺ -1.2	V ⁺ 0.75 V ⁺ 0 ₁ 75		V
VoL	Logical "0" Output Voltage	$V_{IN} - V^- = 2.4V$, $I_O = 0 \text{ mA}$			V0.6	V ⁻ +1.0	V
R ₈	Bootstrap Control Resistor			1.1	2.0	3.3	kΩ
I _{CC(ON)}	Supply Current One Side "ON"	$V^{+} - V^{-} = 20V, V_{IN} - V^{-} = 2.4V,$ $V_{g} = V^{+} \text{ (One Side Only)}$			30	40	mA
I _{CC(OFF)}	Supply Current "OFF"	$V^{+} - V^{-} = 20V, V_{1N} V^{-} = 0V$	D\$3671		10	100	μА
			DS1671]	50	500	μΑ

switching characteristics TA = 25°C, V+ = 20V, V- = 0V

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd0}	Propagation Delay to a Logical "O"	$R_D = 10\Omega$,	C _L = 1000 pF		7.5	15	ns
t _{pd 1}	Propagation Delay to a Logical "1"	$R_D = 10\Omega$,	. C _L = 1000 pF		12	15	ns
t _r	Rise Time	B = 100	C _L = 500 pF		25	35	ns
		HD = 1071	C _L = 500 pF C _L = 1000 pF		31	40	ns
t _f	Fall Time	3 400	C _L = 500 pF		30	40	ns
		$R_D = 10\Omega$	C _L = 1000 pF		38	50	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DS1671 and across the 0° C to $+70^{\circ}$ C range for the DS3671. All typicals at 25° C.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

typical performance characteristics

typical performance characteristics (con't)

Output Pulse Width When

CIN - INPUT CAPACITANCE (pF)

ac test circuit and switching time waveforms

node voltage waveforms

Note 2. The high current transvert (as high as 1.5A) through the resistance of the external mitreconnecting V^{*} lead during the output transition from the high state to the low state cannegare as nighter fedbacks to the noval of the external microconnecting lead from the dron external current to V^{*} is electrically long, or has significant DC resistance, it can subtract from the syntching resource.

typical applications (con't)

DS3671 Connected as DS0026 with Equivalent Characteristics

schematic diagram (One Driver)

MOS Memory Interface Circuits

DS16149/DS36149, DS16179/DS36179 hex MOS drivers

general description

The DS16149/DS36149 and DS16179/DS36179 are Hex MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and a disable control that places the outputs in the logic "1" state (see truth table). This is especially useful in MOS RAM applications where a set of address lines has to be in the logic "1" state during refresh.

The DS1649/DS3649 has a 15 Ω resistor in series with the outputs to dampen transients caused by the fast-

switching output. The DS1679/DS3679 has a direct low impedance output for use with or without an external resistor.

features

- High speed capabilities
 - Typ 9 ns driving 50 pF
 - Typ 29 ns driving 500 pF
- TRI-STATE outputs for data bussing
- Built-in 15 Ω damping resistor (DS16149/DS36149)
- Same pin-out as DM8096 and DM74366

schematic diagram

connection diagram

Dual-In-Line Package VCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 16 15 14 13 12 11 10 9 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4 UCC 0IS2 IN6 0UT6 IN5 0UT5 IN4 0UT4

Order Number DS16149J, DS36149J, DS16179J, DS36179J, DS36149N, DS36179N, DS16149W or DS16179W See NS Package J16A, N16A or W16A

truth table

	DISABL	EINPUT	INPUT	OUTPUT
	DIS 1	DIS 2	INFO	001101
	0	0	0	1
į	0	0	1	0
	0	1	×	1
	1	0	×	1
	1	1	X	1

X = Don't care

absolute maximum ratio	operating condit	ions			
Supply Voltage	7.0∨		MIN	MAX	UNITS
Logical "1" Input Voltage	7.0V	Supply Voltage (VCC)	4.5	5.5	V
Logical "0" Input Voltage	-1.5V	Supply voltage (VCC)	4.5	5.5	٧
Storage Temperature Range	-65° C to +150° C	Temperature (TA)			
Power Dissipation*		DS16149, DS16179	~55	+125	°C
Cavity Package	1160 mW	DS36149, DS36179	0	+70	°C
Molded Package	1000 mW	*Derate cavity package at 80	°C/M above	70°C: deret	a molded
Lead Temperature (Soldering, 10 seconds)	300° C	package at 90° C/W above 70°		, o o, derai	ic infolded

dc electrical characteristics (Notes 2 and 3)

	PARAMETER	1	CONDITION	s	MIN	TYP	MAX	UNITS
V _{IN(1)}	Logical "1" Input Voltage				2.0			V
VIN(0)	Logical "0" Input Voltage		_				0.8	V
¹ IN(1)	Logical "1" Input Current	V _{CC} = 5.5V	V _{IN} = 5.5V			0 1	40	μА
¹ IN(0)	Logical "0" Input Current	V _{CC} = 5.5V	V _{IN} = 0.5V			-50	-250	μА
VCLAMP	Input Clamp Voltage	V _{CC} = 4.5V	I _{IN} = -18 mA			-0.75	-1.2	V
Voн	Logical "1" Output Voltage)/=== 4 E)/	10.4	DS16149/DS16179	3.4	4.3		V
	(No Load)	VCC = 4.5V	$I_{OH} = -10 \mu A$	DS36149/DS36179	3.5	4.3		V
VOL	Logical "0" Output Voltage	V00 : 4 EV	I _{OL} = 10 μA	DS16149/DS16179		0.25	0.4	V
	(No Load)	VCC - 4.5V	ΙΟΕ = 10 μΑ	DS36149/DS36179		0.25	0.35	V
VOH	Logical "1" Output Voltage			DS16149	2.4	3.5		V
	(With Load)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I _{OH} = -1.0 mA	DS16179	2.5	3.5		V
		VCC ~ 4.5V		DS36149	2.6	3.5		V
				DS36179	2.7	3.5		V
VOL	Logical "0" Output Voltage	**		DS16149		0.6	1.1	V
	(With Load)	V _{CC} = 4.5V		DS16179		0.4	0.5	V
		VCC - 4.5V	10 F = 50 mA	DS36149		0.6	1.0	
				DS36179		0.4	0.5	V
ID	Logical "1" Drive Current	V _{CC} = 4.5V	V _{OUT} = 0V, (N	ote 4)		-250		mA
IOD	Logical "0" Drive Current	V _{CC} = 4.5V	V _{OUT} = 4.5V,	(Note 4)		150		mA
Icc	Power Supply Current	V _{CC} = 5.5V	Disable Inputs =			33	60	mA
		ACC = 2.2A	All Inputs = 0V			14	20	mA

switching characteristics ($V_{CC} = 5V$, $T_A = 25^{\circ}C$) (Note 4)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
tS+	Storage Delay Negative Edge	(Figure 1)	C _L = 50 pF		4.5	7	ns
		(Figure 1)	C _L = 500 pF		7.5	12	ns
ts_+	Storage Delay Positive Edge	(Figure 1)	C _L = 50 pF		5	8	ns
		(rigure r)	C _L = 500 pF		8	13	ns
tF	Fall Time	(Figure 1)	C _L = 50 pF		5	8	ns
		(rigure r)	C _L = 500 pF		22	35	ns
tR	Rise Time	(Figure 1)	C _L = 50 pF		6	9	ns
		(rigure r)	C _L = 500 pF		26	35	ns
^t LH	Delay from Disable Input to Logical "1"	R _L = 2 kΩ t	to Gnd, CL = 50 pF, (Figure 2)		15	22	ns
tHL	Delay from Disable Input to Logical "0"	R _L = 2 kΩ 1	to V _{CC} , C _L = 50 pF, (<i>Figure 3</i>)		11	18	ns

notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS16149 and DS16179 and across the 0° C to +70° C range for the DS36149 and DS36179. All typical values are for T_A = 25° C and V_{CC} = 5V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

All values shown as max or min on absolute value basis. Note 4: When measuring output drive current and switching response for the DS16179 and DS36179 a 15 Ω resistor should be placed in series with each output. This resistor is internal to the DS16149/DS36149 and need not be added.

ac test circuits and switching time waveforms

FIGURE 3

Note 1: The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$ and PRR ≤ 1 MHz. Rise and fall times between 10% and 90% points

Note 2: CL includes probe and jig capacitance.

^{*}Internal on DS16149 and DS36149

typical application

MOS Memory Interface Circuits

DS3245 Quad MOS Clock Driver

General Description

The DS3245 is a quad bipolar-to-MOS clock driver with TTL/DTL compatible inputs. It is designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N-channel MOS memory systems.

Only 2 supplies, 5 VDC and 12 VDC, are required without compromising the usual high VOH specification obtained by circuits using a third supply.

The device features 2 common enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive loads at high speeds and uses Schottky-clamped transistors. PNP transistors are used on all inputs, thereby minimizing input loading.

Features

- TTL/LS compatible inputs
- Operates from 2 standard supplies: 5 VDC, 12 VDC
- Internal bootstrap circuit eliminates need for external PNP's
- PNP inputs minimize loading
- High voltage/current outputs
- Input and output clamping diodes
- Control logic optimized for use with MOS memory systems
- Pin and function equivalent to Intel 3245

Logic and Connection Diagrams

Dual-In-Line Package

Order Number DS3245J or DS3245N See NS Package J16A or N16A

Absolute Maximum Ratings (Note 1)

Temperature Under Bias	-10°C to +85°C
Storage Temperature	-65° C to $+150^{\circ}$ C
Supply Voltage, VCC	−0.5 to +7V
Supply Voltage, VDD	-0.5 to +14V
All Input Voltages	-1.0 to VDD
Outputs for Clock Driver	−1.0 to V _{DD} +1V
Power Dissipation at 25°C	2W

Electrical Characteristics T_A = 0°C to +75°C, V_{CC} = 5V ±5%, V_{DD} = 12V ±5%

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IFD	Select Input Load Current	Vr = 0.45V			-0.25	mA
IFE	Enable Input Load Current	VF = 0.45V			-1.0	mA
IRD	Select Input Leakage Current	V _R = 5V			10	μΑ
^I RE	Enable Input Leakage Current	V _R = 5V			40	μΑ
		IOL = 5 mA, V'4 = 2V			0.45	V
VOL	Output Low Voltage	וֹחִי –b mA	-1.0			V
	0	= 1 mA, V _{IL} 0.8V	V _{DD} -0.50			V
VOH	Output High Voltage	IOH = 5 mA			V _{DD} +1.0	٧
VIL	Input Low Voltage, All Inputs				0.8	V
VIH	Input High Voltage, All Inputs		2			V

Power Supply Current Drain

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
¹cc	Current from V _C C (Outputs High)	V _{CC} = 5.25V, V _{DD} = 12.6V		26	34	mA
lDD	Current from VDD (Outputs High)	V _{CC} = 5.25V, V _{DD} = 12.6V		23	30	mA
¹cc	Current from VCC (Outputs Low)	V _{CC} = 5.25V, V _{DD} = 12.6V		29	39	mA
IDD	Current from V _{DD} (Outputs Low)	V _{CC} = 5.25V, V _{DD} = 12.6V		13	19	mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Switching Characteristics $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 12V \pm 5\%$

	PARAMETER	CONDITIONS	MIN (Note 3)	TYP (Notes 4, 6)	MAX (Note 5)	UNITS
t_+	Input to Output Delay	RSERIES = 0	5	11		ns
^t DR	Delay Plus Rise Time	R _{SERIES} = 0		20	32	ns
t+_	Input to Output Delay	R _{SERIES} = 0	3	7		ns
^t DF	Delay Plus Fall Time	RSERIES = 0		18	32	ns
tΤ	Output Transition Time	RSERIES = 20Ω	10	17	25	ns
^t DR	Delay Plus Rise Time	R _{SERIES} = 20Ω		27	38	ns
tDF	Delay Plus Fall Time	R _{SERIES} = 20Ω		25	38	ns

Capacitance $T_A = 25^{\circ}C$ (Note 7)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CIN	Input Capacitance, 11, 12, 13, 14			5	8	pF
CIN	Input Capacitance, \overline{R} , \overline{C} , \overline{E} 1, \overline{E} 2			8	12	pF

Note 3: C_L = 150 pF

Note 4: C_L = 200 pF

These values represent a range of total stray plus clock capacitance for nine 4k RAMs.

Note 5: Ct = 250 pF

Note 6: Typical values are measured at 25°C.

Note 7: This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, VBIAS = 2V, VCC = 0V, and $T_A = 25^{\circ}C$.

AC Test Circuit and Switching Time Waveforms

Input pulse amplitudes: 3V Input pulse rise and fall times: 5 ns between 1V and 2V Measurement points: see waveforms

MOS Memory Interface Circuits

DS75322 Dual TTL-MOS Driver DS3622 Dual Fail-Safe TTL-MOS Driver

General Description

The DS75322 is a dual TTL-MOS high speed driver. The input structure of the device is TTL and DTL compatible. A common strobe input is provided for gating the outputs to the low state. The outputs provide high current and high voltage levels ideal for driving MOS circuits. The DS75322 specifically meets the requirements for driving N-channel RAMs where low power dissipation is desirable when the driver is in the low state.

The DS3622 provides output fail-safe protection. Powering down V_{CC1} activates the fail-safe circuit, forcing the outputs to the low state. The fail-safe feature eliminates output glitches that may occur in systems that power down V_{CC1} . Functionally, the DS3622 and the DS75322 are identical.

The DS75322, DS3622 require 2 external PNP transistors per package.

The DS75322, DS3622 are characterized for operation from 0° C to $+70^{\circ}$ C.

The DS75322 and the DS3622 are ideal for driving the UPD411D, MM5280 and the MM5270 4k RAMs.

Features

- Dual positive-logic and TTL-MOS driver
- TTL and LS compatible inputs
- High voltage/current outputs
- Operates from standard bipolar and MOS supplies
- High speed switching
- Input and output clamping diodes
- Separate driver address inputs with common strobe
- VOH and VOL compatible with 4k RAMs and other popular MOS RAMs
- No current (leakage only) when outputs are in low state (DS75322)
- Outputs forced to low state with loss of V_{CC1} (DS3622)

Connection Diagram

Dual-In-Line Package

Positive Logic Y = AE Recommended PNP Transistors 2N5910, 2N5771

TOP VIEW

Order Number DS75322J, DS3622J,
DS75322N or DS3622N
See NS Package J14A or N14A

Absolute Maximum Ratings (Note 1) Operating Conditions UNITS Supply Voltage MIN MAX -0.5 to 7V V_{CC1} Supply Voltage -0.5 to 15V V_{CC2} 4.75 5 25 V_{CC1} 5.5V Input Voltage 4.75 15 V_{CC2} Inter-Input Voltage (Note 4) 5.5V °C Operating Free-Air 70 -65°C to +150°C Storage Temperature Range Temperature (TA) Operating Free-Air Temperature Range 0° C to $+70^{\circ}$ C Power Oissipation (PO)

1160 mW

1000 mW

300°C

Electrical Characteristics (Notes 2 and 3)

Cavity Package Molded Package

Lead Temperature (Soldering, 10 seconds)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VIH	High Level Input Voltage			2.0			V
VIL	Low Level Input Voltage					0.8	V
Voн	High Level Output Voltage	V _{IH} = 2V, I _{OH} = -400 μA		V _{CC2} -0.5	V _{CC2} -0.25		V
VOL	Low Level Output Voltage	V _{CC2} = 11.4V, V _{IN} = 0.8V, I _{OL} = 10 mA			0.23	0.5	V
VOL(F.S.)	Low Level Output Voltage in Fail-Sai'e Mode (OS3622 Only)	V _{CC1} = 0V, V _{CC2} = 11.4V, I _{OL} = 1.6 mA, V _I = 2.4V				0.5	٧
Ц	Input Current at Maximum Input Voltage	V _{CC1} = 5 25V, V _{CC2} = 11.4V, V	√ı≈ 5.25V			1	nιA
чн	High Level Input Current	V _j = 2.4V A Inputs E Input				40 80	JιΑ
HL	Low Level Input Current	V _I = 0.4V A Inputs E Input			-1 -2	-1.6 -3.2	rı∆
CC1(L)	Supply Current from V _{CC1} , All Outputs Low	V _{CC1} = 5.25V, V _{CC2} = 12.6V, V _I = 0V. No Load	DS75322 OS3622		15.0 16.0	20 21	rıA
ICC2(L)	Supply Current from V _{CC2} , All Outputs Low	V _{CC1} = 4.75V, V _{CC2} = 12.6V, V ₁ = 0V, No Load	OS75322 OS3622		0.01	0.5 4	rn A
ICC1(H)	Supply Current from V _{CC1} , All Outputs High	V _{CC1} = 5.25V, V _{CC2} = 12.6V, V _I = 5V, No Load	DS75322 OS3622		24 25	34 35	rιA
CC2(H)	Supply Current from V _{CC2} , All Outputs High	V _{CC1} = 4.75V, V _{CC2} = 12.6V, OS7 V _I = 5V, No Load DS3			9.5 10	13 14	ınA
I _{CC2} (F.S.)	Supply Current from V _{CC2} In Fail-Safe Mode (DS3622 Only)	V _{CC1} = 0V, V _{CC2} = 12.6V, V _I = 5V, No Load			1	4	rn A

Switching Characteristics $V_{CC1} = 5V$, $V_{CC2} = 12V$, $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tDLH Delay Time, Low-to-High Level Output			14	21	ns
tDHL Delay Time, High-to-Low Levet Output			16	24	ns
tTLH Transition Time, Low-to-Hight Level Output			11	17	ns
tTHL Transition Time, High-to-Low Level Output	CL = 300 pF		13	20	ns
tPLH Propagation Delay Time, Low-to-High Level Output		12	25	38	ns
tPHL Propagation Oelay Time, High-to-Low Level Output	1	14	29	44	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All typicals are given for $V_{CC1} = 5V$, $V_{CC2} = 12V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted All values shown as max or min on absolute value basis.

Note 4: This rating applies between any 2 inputs of any one of the gates.

AC Test Circuit (Note 1)

Switching Time Waveforms

- Note 1: Recommended minimum load 200 pF.
- Note 2: The pulse generator has the following characteristics: PRR = 1 MHz, Z_{QUT} = 50 Ω , t_r = $t_f \le 10$ ns.
- Note 3: CL includes probe and jig capacitance.
- Note 4: Recommended external PNP transistors: 2N5771 (plastic), 2N5910 (plastic).

Typical Application

DS75322 Driving the MM5280 Memory-Only Four MM5280's Shown

Note. External PNP transistor should be located as close as possible to the DS75322.

Recommended minimum load: 200 pF

MOS Memory Interface Circuits

DS75361 dual TTL-to-MOS driver

general description

The DS75361 is a monolithic integrated dual TTL-to-MOS driver interface circuit. The device accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103 and MM5270 and MM5280

The DS75361 operates from standard TTL 5V supplies and the MOS V_{SS} supply in many applications. The device has been optimized for operation with V_{CC2} supply voltage from 16V to 20V; however, it is designed for use over a much wider range of V_{CC2} .

features

- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- V_{CC2} supply voltage variable over wide range to 24V
- Diode-clamped inputs
- TTL and LS compatible
- Operates from standard bipolar and MOS supplies
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

connection diagram

Dual-In-Line Package

Order Number DS75361J-8 or DS75361N-8 See NS Package J08A or N08A

absolute maximum ratings (Note 1) operating conditions UNITS MAX Supply Voltage Range of V_{CC1} (Note 1) -0.5V to 7V Supply Voltage (V_{CC1}) 4.75 5.25 Supply Voltage Range of V_{CC2} -0.5V to 25V Supply Voltage (VCC2) 4.75 24 ٧ Input Voltage 5.5V °c Operating Temperature (TA) +70 Inter-Input Voltage (Note 4) 5.5V -65°C to +150°C Storage Temperature Range Lead Temperature 1/16 Inch from Case for

300°C

200°C

electrical characteristics (Notes 2 and 3)

60 Seconds: J Package Lead Temperature 1/16 Inch from Case for 10 Seconds: N or P Package

	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
V _{IH}	High-Level Input Voltage			2			V
VIL	Low Level Input Voltage					0.8	V
V _t	Input Clamp Voltage	I ₁ = -12 mA				1.5	v
V _{OH}	High-Level Output Voltage	$V_{1L} = 0.8V, I_{OH}$ $V_{1L} = 0.8V, I_{OH}$		V _{CC2} -1 V _{CC2} -2.3	V _{CC2} -0.7 V _{CC2} -1.8		V
VoL	Low Level Output Voltage	V _{IH} = 2V, I _{OL} =			0.15	0.3	V
		$V_{CC2} = 15V$ to $I_{OL} = 40$ mA	24V, V _{IH} = 2V,		0.25	0.5	V
v _o	Output Clamp Voltage	V _I = 0V, I _{OH} =	20 mA			V _{CC2} +1.5	V
1,	Input Current at Maximum Input Voltage	V ₁ = 5.5V				1	mA
I _{IH}	High-Level Input Current	V ₁ = 2.4V	A Inputs			40	μΑ
			E Input			80	μΑ
ار	Low-Level Input Current	V ₁ = 0.4V	A Inputs E Input		1 2	-1.6 -3.2	m A m A
I _{CC1(H)}	Supply Current from V _{CC1} , Both Outputs High	V _{CC1} = 5.25V,	, V _{CC2} = 24V,		2	4	mA
I _{CC2(H)}	Supply Current from V _{CC2} , Both Outputs High	All Inputs at 0V	, No Load			0.5	mA
CC1(L)	Supply Current from V _{CC1} , Both Outputs Low	V _{CC1} = 5.25V, V _{CC2} = 24V, All Inputs at 5V, No Load			16	24	mA
I _{CC2(L)}	Supply Current from V _{CC2} , Both Outputs Low				7	11	mA
I _{CC2(S)}	Supply Current from V _{CC2} , Stand-by Condition	V _{CC1} = 0V, All Inputs at 5V	0.02			0.5	mA

switching characteristics (V_{CC1} = 5V, V_{CC2} = 20V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
toch	Delay Time, Low-to-High Level Output			11	20	ns
tonu	Delay Time, High-to-Low Level Output]		10	18	ns
t _{TLH}	Transition Time, Low-to-High Level Output	$C_L = 390 \text{ pF},$ $R_D = 10\Omega$ (Figure 1)		25	40	ns
t _{THL}	Transition Time, High-to-Low Level Output			21	35	ns
t _{PLH}	Propagation Delay Time, Low to-High Level Output]	10	36	55	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output		10	31	47	ns .

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75361. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC1} = 5V$ and $V_{CC2} = 20V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: This rating applies between the A input of either driver and the common E input.

typical performance characteristics

Propagation Oelay Time,

schematic diagram (1/2 shown)

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUT} \approx 50\Omega$. Note 2: C_L includes probe and jig capacitance.

FIGURE 1. Switching Times, Each Driver

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient

overshoot. The optimum value of the damping resistor to use depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

FIGURE 2. Interconnection of DS75361 Devices with 1103 RAM

FIGURE 3. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot in Certain DS75361 Applications

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75361 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75361 as a function of load capacitance and frequency. Average power dissipated by this driver can be broken into three components:

$$P_{T(AV)} = P_{DC(AV)} + P_{C(AV)} + P_{S(AV)}$$

where $P_{DC(AV)}$ is the steady-state power dissipation with the output high or low, $P_{C(AV)}$ is the power level during charging or discharging of the load capacitance, and $P_{S(AV)}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$\begin{split} P_{DC(AV)} &= \frac{p_L t_L + p_H t_H}{T} \\ P_{C(AV)} &\approx C \ V_C^2 \ f \\ P_{S(AV)} &= \frac{p_L + t_L + p_H t_H}{T} \end{split}$$

where the times are as defined in Figure 4.

 $p_{L},\,p_{H},\,p_{LH},$ and p_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75361 is so designed that P_S is a negligible portion of P_T in most applications. Except at very high frequencies, t_L + t_H >> t_{LH} + t_{HL} so that P_S can be

neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from both channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume both channels are operating identically with C = 200 pF, f = 2 MHz, $V_{\rm CC1}$ = 5V, $V_{\rm CC2}$ = 20V, and duty cycle = 60% outputs high (t_H/T = 0.6). Also, assume $V_{\rm OH}$ = 19.3V, $V_{\rm OL}$ = 0.1V, $P_{\rm S}$ is negligible, and that the current from $V_{\rm CC2}$ is negligible when the output is high.

On a per-channel basis using data sheet values:

$$P_{DC(AV)} = \left[(5V) \left(\frac{2 \text{ mA}}{2} \right) + (20V) \left(\frac{0 \text{ mA}}{2} \right) \right] (0.6) + \left[(5V) \left(\frac{16 \text{ mA}}{2} \right) + (20V) \left(\frac{7 \text{ mA}}{2} \right) \right] (0.4)$$

 $P_{DC(AV)} = 47 \text{ mW per channel}$

$$P_{C(AV)} \approx (200 \text{ pF}) (19.2V)^2 (2 \text{ MHz})$$

 $P_{C(AV)} \approx 148 \text{ mW per channel.}$

For the total device dissipation of the two channels:

$$P_{T(\Delta V)} \approx 2 (47 + 148)$$

 $P_{T(AV)} \approx 390 \text{ mW typical for total package.}$

FIGURE 4. Output Voltage Waveform

MOS Memory Interface Circuits

DS75362 dual TTL-to-MOS driver

general description

The DS75362 is a dual monolithic integrated TTL-to-MOS driver and interface circuit that accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels suitable for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103.

The DS75362 operates from the TTL 5V supply and the MOS V_{SS} and V_{BB} supplies in many applications. This device has been optimized for operation with V_{CC2} supply voltage from 16V to 20V, and with nominal V_{CC3} supply voltage from 3V to 4V higher than V_{CC2} . However, it is designed so as to be usable over a much wider range of V_{CC2} and V_{CC3} . In some applications the V_{CC3} power supply can be eliminated by connecting the V_{CC3} pin to the V_{CC2} pin.

features

- Dual positive-logic NAND TTL-to-MOS driver
- Versatile interface circuit for use between TTL and high-current, high-voltage systems
- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- V_{CC2} supply voltage variable over wide range to 24V maximum
- V_{CC3} supply voltage pin available
- V_{CC3} pin can be connected to V_{CC2} pin in some applications
- TTL and LS compatible diode-clamped inputs
- Operates from standard bipolar and MOS supply voltages
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

schematic and connection diagrams

Dual-In-Line Package

Order Number DS75362J-8 or DS75362N-8 See NS Package J08A or N08A

absolute maximum rati	operating conditions				
			MIN	MAX	UNITS
Supply Voltage Range of V _{CC1}	-0.5V to 7V	Supply Voltage (V _{CC1})	4.75	5.25	V
Supply Voltage Range of V _{CC2}	-0.5V to 25V	Supply Voltage (VCC2)	4.75	24	V
Supply Voltage Range of VCC3	-0.5V to 30V	Supply Voltage (V _{CC3})	V _{CC2}	28	V
Input Voltage	5.5V	Voltage Difference Between	0	10	V
Inter-Input Voltage (Note 4)	5.5V	Supply Voltages: VCC3-VCC2	•		
Storage Temperature Range	–65°C to 150°C	***			0 -
Lead Temperature (Soldering 10 seconds)	300°C	Operating Ambient Temperature	0	70	°c

Range (TA)

electrical characteristics (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VIH	High-Level Input Voltage		2			V
VIL	Low-Level Input Voltage				0.8	V
V _I	Input Clamp Voltage	I _I = -12 mA			-1.5	V
VoH	High-Level Output Voltage	$V_{CC3} = V_{CC2} + 3V$, $V_{IL} = 0.8V$, $I_{OH} = -100\mu A$	V _{CC2} -0.3	V _{CC2} -0.1		V
•		$V_{CC3} = V_{CC2} + 3V$, $V_{IL} = 0.8V$, $I_{OH} = -10 \text{ mA}$	V _{CC2} -1.2	V _{CC2} -0.9		V
		$V_{CC3} = V_{CC2}, V_{IL} = 0.8V, I_{OH} = -50\mu A$	V _{CC2} -1	V _{CC2} -0.7		V
		$V_{CC3} = V_{CC2}, V_{IL} = 0.8V, I_{OH} = -10 \text{ mA}$	V _{CC2} -2.3	V _{CC2} -1.8		V
VoL	Low-Level Output Voltage	V _{IH} = 2V, I _{QL} = 10 mA		0.15	0.3	V
		V_{CC3} = 15V to 28V, V_{IH} = 2V, I_{OL} = 40 mA		0.25	0.5	V
V _o	Output Clamp Voltage	V _I = 0V, I _{OH} = 20 mA			V _{CC2} +1.5	V
I ₁	Input Current at Maximum Input Voltage	V ₁ = 5.5V			1	mA
I _{IH}	High-Level Input Current	V ₁ = 2.4V			40	μΑ
ارر	Low-Level Input Current	V ₁ = 0.4V		-1	-1.6	mA
I _{CC1(H)}	Supply Current from V _{CC1} , All Outputs High			2	4	mA
I _{CC2(H)}	Supply Current from V _{CC2} ,	V _{CC1} = 5.25V, V _{CC2} = 24V,		-1.1	+0.25	mA
	All Outputs High	V _{CC3} = 28V, All Inputs at 0V, No Load		-1.1	-1.6	mA
I _{ССЗ(Н)}	Supply Current from V _{CC3} , All Outputs High			1.1	1.8	mA
I _{CC1(L)}	Supply Current from V_{CC1} , All Outputs Low			15	23.5	mA
I _{CC2(L)}	Supply Current from V _{CC2} , All Outputs Low	$V_{CC1} = 5.25V, V_{CC2} = 24V,$ $V_{CC3} = 28V, All Inputs at 5V, No Load$			1.5	mA
I _{CC3(L)}	Supply Current from V _{CC3} , All Outputs Low			8	12.5	mA
I _{CC2(H)}	Supply Current from V _{CC2} , All Outputs High	V _{CC1} = 5.25V, V _{CC2} = 24V,			0.25	mA
I _{CC3(H)}	Supply Current from V _{CC3} , All Outputs High	V _{CC3} = 24V, All Inputs at 0V, No Load			0.5	mA
I _{CC2(S)}	Supply Current from V _{CC2} , Stand-by Condition	V _{CC1} = 0V, V _{CC2} = 24V,			0.25	mA
I _{CC3(S)}	Supply Current from V _{CC3} , Stand-by Condition	V _{CC3} = 24V, All Inputs at 5V, No Load			0.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meent to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75362. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC1} = 5V$ and $V_{CC2} = 20V$ and $V_{CC3} = 24V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: This rating applies between any two inputs of any one of the gates.

switching characteristics (V_{CC1} = 5V, V_{CC2} = 20V, V_{CC3} = 24V, T_A = 25°C)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{DLH}	Delay Time, Low-to-High Level Output			11	20	ns
t _{DHL}	Delay Time, High-to-Low Level Output			10	18	ns
t _{TLH}	Transition Time, Low-to-High Level Output	$C_{L} = 200 pF,$ $R_{D} = 24 \Omega.$		20	33	ns
t _{THL}	Transition Time, High-to-Low Level Output	κ _D = 245 <i>ι</i> , (<i>Figure 1</i>)		20	33	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output		10	31	48	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output		10	30	46	ns

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUT}\approx50\Omega.$ Note 2: C_L includes probe and jig capacitance.

FIGURE 1. Switching Times, Each Driver

typical performance characteristics

6

typical performance characteristics (con't)

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 2).

FIGURE 2. Use of Damping Resistor to Reduce or Eliminate Output Transient Overshoot In Certain DS75362 Applications.

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75362 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75362 as a function of load capacitance and frequency. Average power dissipation by this driver can be broken into three components:

$$P_{T(AV)} = P_{DC(AV)} + P_{C(AV)} + P_{S(AV)}$$

where $P_{DC(AV)}$ is the steady-state power dissipation with the output high or low, $P_{C(AV)}$ is the power level during charging or discharging of the load capacitance, and $P_{S(AV)}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$\begin{split} P_{DC(AV)} &= \frac{p_L t_L^* + p_H t_H}{T} \\ P_{C(AV)} &\approx C \; V_C^2 \; f \\ \\ P_{S(AV)} &= \frac{p_{LH} t_{LH} + p_{HL} t_{HL}}{T} \end{split}$$

where the times are as defined in Figure 3.

FIGURE 3. Output Voltage Waveform

 $p_L,\,p_H,\,p_{LH},$ and p_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75362 is so designed that P_S is a negligible portion of P_T in most applications. Except at very high frequencies, $t_L + t_H >> t_{LH} + t_{HL}$ so that P_S can be neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from two channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume two channels are operating identically with C = 100 pF, f = 2 MHz, $V_{\text{CC1}} = 5\text{V}, V_{\text{CC2}} = 20\text{V}, V_{\text{CC3}} = 24\text{V}$ and duty cycle = 60% outputs high (t $_{\text{H}}/\text{T} = 0.6$). Also, assume $V_{\text{OH}} = 20\text{V}, V_{\text{OL}} = 0.1\text{V}, P_{\text{S}}$ is negligible, and that the current from V_{CC2} is negligible when the output is low.

On a per-channel basis using data sheet values:

$$P_{DC(AV)} = \left[(5V\left(\frac{4 \text{ mA}}{4}\right) + (20V) \left(\frac{-2.2 \text{ mA}}{4}\right) + (24V) \left(\frac{2.2 \text{ mA}}{4}\right) \right] + (24V) \left(\frac{31 \text{ mA}}{4}\right) + (24V) \left(\frac{31 \text{ mA}}{4}\right) + (24V) \left(\frac{16 \text{ mA}}{4}\right) \right] (0.4)$$

PDC(AV) = 58 mW per channel

$$P_{C(AV)} \approx (100 \text{ pF}) (19.9\text{V})^2 (2 \text{ MHz})$$

 $P_{C(\Delta V)} \approx 79$ mW per channel.

For the total device dissipation of the two channels

$$P_{T(AV)} \approx 2 (58 + 79)$$

 $P_{T(\Delta V)} \approx 274$ mW typical for total package.

National Semiconductor

MOS Memory Interface Circuits

DS75364 dual MOS clock driver

general description

The DS75364 is a dual MOS driver and interface circuit that operates with either current source or voltage source input signals. The device accepts signals from TTL levels or other logic systems and provides high current and high voltage output levels suitable for driving MOS circuits. It may be used to drive address, control and/or timing inputs for several types of MOS RAMs and MOS shift registers.

The DS75364 operates from standard MOS and bipolar supplies, and has been optimized for operation with V_{CC1} supply voltage from 12-20V positive with respect to V_{EE} , and with nominal V_{CC2} supply voltage from 3-4V more positive than V_{CC1} . However, it is designed so as to be useable over a much wider range of V_{CC1} and V_{CC2}. In some applications the V_{CC2} power supply can be eliminated by connecting the V_{CC2} pin to the V_{CC1} pin.

Inputs of the DS75364 are referenced to the VEE terminal and contain a series current limiting resistor. The device will operate with either positive input current signals or input voltage signals which are positive with respect to V_{EE} . In many applications the V_{EE} terminal is connected to the MOS V_{DD} supply of -12V to -15V with the inputs to be driven from TTL levels or other positive voltage levels. The required negative level shifting may be done with an external PNP transistor current source or by use of capacitive coupling and appropriate input voltage pulse characteristics.

The DS75364 is characterized for operation over the 0°C to +70°C temperature range.

features

- Versatile interface circuit for use between TTL levels and level shifted high current, high voltage systems
- Inputs may be level shifted by use of a current source or capacitive coupling or driven directly by a voltage
- Capable of driving high capacitance loads
- Compatible with many popular MOS RAMs and MOS shift registers
- V_{CC1} supply voltage variable over wide range to 22V maximum with respect to V_{EE}
- V_{CC2} pull-up supply voltage pin available
- Operates from standard bipolar and/or MOS supply voltages
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

connection diagram

Dual-In-Lina Package

Order Number DS75364J-8 or DS75364N-8 See NS Package J08A or N08A

absolute maximum rati	ngs (Note 1)	operating conditio	ns		
Supply Voltage Range of V _{CC1}	−0.5V to 22V	Supply Voltage	MIN	MAX	UNIT
Supply Voltage Range of V _{CC2}	−0.5V to 30V 15V	VCC1 VCC2	4.75	22 28	V
Most Positive Voltage at Any Input	0.5V	VCC2 Voltage Difference Between	V _{CC1}	28 10	V
with Respect to V _{CC2} Storage Temperature Range Lead Temperature (Soldering, 10 seconds)	-65°C to +150°C 300°C	Supply Voltages Input Voltage		V _{CC2}	
,,, , 0 30001103,	300 €	Temperature (T A)	0	70	°C

electrical characteristics (Notes 2, 3, 4 and 5)

	PARAMETER	CON	NDITIONS		MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage	Voltage Mode Inpu	t Logic Levels		5		10	V
VIL	Low Level Input Voltage	Voltage Mode Inpu	t Logic Levels				1	V
I _{tH}	High Level Input Current	Current Mode Inpu	t Logic Levels		8		15	mA
IIL	Low Level Input Current	Current Mode Inpu	t Logic Levels				0.7	m A
Voн	High Level Output Voltage			V ₁₁ = 1V	V _{CC1} -0.3	V _{CC1} -0.1		V
		V _{CC2} = V _{CC1} + 3V, (Note 4)	$I_{OH} = -100\mu A$	I _{IL} = 0.7 mA	V _{CC1} -0.3	V _{CC1} -0.1		v
		(Note 4)	10 mA	V ₁ = 1V	V _{CC1} -1.2	V _{CC1} -0.9		V
			TOH - TOMA	$I_{1L} = 0.7 \text{mA}$	V _{CC1} -1.2	V _{CC1} 0.9		V
			I _{OH} = -50μA	37 437	V _{CC1} -1	V _{CC1} -0.7		V
		V _{CC2} = V _{CC1} ,	TOH SOMA	$I_{IL} = 0.7 \text{ mA}$	V _{CC1} −1	V _{CC1} -0.7		V
		(Note 4)	I _{OH} = 10 mA	V _{IL} = 1V	V _{CC1} -2.3	V _{CC1} -1.8		V
			-OH -O III.	I _{IL} = 0.7 mA	V _{CC1} -2.3	V _{CC1} -1.8		V
VoL	Low Level Output Voltage	I _{OL} = 10 mA	V _{IH} = 5V			0.15	0.3	v
			I _{iH} = 8 mA			0.15	0.3	V
		$V_{CC2} = 15 \text{ to } 28V,$	V _{IH} = 5V			0.25	0.5	V
		I _{OL} = 40 mA	I _{IH} = B mA			0.25	0.5	V
V _o	Output Clamp Voltage	V ₁ = 0V, I _{OH} = 20 mA				V _{CC1} +1.5	V	
I ₁	Input Current at Maximum Input Voltage	V _{CC2} = 10V to 2BV, V _I = 10V			17	26	mA	
Vi	Input Voltage at Maximum Input Current	V _{CC2} = 13.5V to 28V, I _I = 15 mA			9	13.5	V	
I _{IH}	High Level Input Current	V ₁ = 5V				7	11	mA
VIH	High Level Input Voltage	I ₁ = 8 mA				5.5	8	V
I _{IL}	Low Level Input Current	V ₁ = 1V				1.1	1.6	mA
VIL	Low Level Input Voltage	I ₁ = 0.7 mA				0.7	1	
I _{CC1(H)}	Supply Current From V _{CC1} ,	V _{CC1} = 22V, V _{CC2}	= 26V,		-	-1,1	-1.6	mA
	8oth Outputs High	Both Inputs at 0V, I	No Load				0.25	mA
I _{CC2(H)}	Supply Current From V _{CC2} , Both Outputs High	V _{CC1} = 22V, V _{CC2} = 8oth Inputs at 0V, I				1.1	2	mA
I _{CC1(L)}	Supply Current From V _{CC1} , 8oth Outputs Low	V _{CC1} = 22V, V _{CC2} = Both Inputs at 7V, I				0.5	1	mA
I _{CC2(L)}	Supply Current From V _{CC2} , Both Outputs Low	V _{CC1} = 22V, V _{CC2} = Both Inputs at 7V, f				8	14	mA
I _{CC1(H)}	Supply Current From V _{CC1} , Both Outputs High	V _{CC1} = 22V, V _{CC2} = Both Inputs at 0V, N					0.25	mA
I _{СС2(Н)}	Supply Current From V _{CC2} , 8oth Outputs High	V _{CC1} = 22V, V _{CC2} = Both Inputs at 0V, N					0 5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75364. All typical values are for T_A = 25°C, V_{CC1} = 20V, V_{CC2} = 24V and V_{EE} = 0V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Many of these parameters are specified independently for either voltage source or current source external forcing functions at the inputs. Use the appropriate set of specifications for each application.

Note 5: All parameters are specified with VEE = 0V and for input voltage no more positive than VCC2-

switching characteristics $V_{CC1} = 20V$, $V_{EE} = 0V$, $T_A = 25^{\circ}C$

	PARAMETER	CONDITIO	VS	MIN	TYP	MAX	UNITS
t _{DLH}	Delay Time, Low-to-High Level Output	$C_L = 390 \text{ pF}, R_D = 10\Omega,$ (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		13 14		ns ns
t _{DHL}	Delay Time, High-to-Low Level Output	$C_L = 390 \text{ pF}, R_D = 10\Omega,$ (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		9		ns ns
t _{TLH}	Transition Time, Low-to-High Level Output	$C_L = 390 \text{ pF}, R_D = 10\Omega,$ (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		21		ns ns
^t THL	Transition Time, High-to-Low Level Output	C_L = 390 pF, R_D = 10 Ω , (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		19 18		ns ns
ФЦН	Propagation Delay Time, Low-to-High Level Output	$C_L = 390 \text{ pF}, R_D = 10\Omega,$ (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		34 35		ns ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$C_L = 390 \text{ pF}, R_D = 10\Omega,$ (Figure 1)	V _{CC2} = 24V V _{CC2} = 20V		28 28		ns ns

schematic diagram (1/2 shown)

ac test circuit and switching time waveforms

FIGURE 1. Switching Times, Each Driver

typical applications

FIGURE 2. MOS RAM Clock Driver System with PNP Transistor Current Source used to Level-Shift to Inputs of DS75364

FIGURE 3. MOS Shift Register Clock Driver Systam with Capacitive Coupling used to Lavel-Shift to Inputs of DS75364

application hints

Applications of the DS75364 used as an interface device in systems converting TTL signals to negative polarity MOS clock signals are shown in Figures 2 and 3. In both applications the DS75364 $V_{\rm EE}$ pin is connected to a negative MOS supply voltage. The $V_{\rm CC2}$ supply pin may be connected to the $V_{\rm CC1}$ pin as shown in Figure 3 or connected to a separate voltage more-positive than $V_{\rm CC1}$ as shown in Figure 2. The DS75364 may be used over a wide range of $V_{\rm CC1}$ and $V_{\rm CC2}$ supply voltages which are positive with respect to $V_{\rm EE}$. However, for proper operation the voltage at the inputs of the DS75364 should not be more positive than the voltage at $V_{\rm CC2}$.

Both applications shown require negative level shifting from positive voltage levels to the inputs of the DS75364 which are referenced to the V_{EE} terminal. A PNP transistor current source is used to level shift in

Figure 2. Resistor R sets the current and an opencollector TTL gate is used to switch the PNP transistor. Figure 3 shows capacitive coupling being used to level shift with the DS75361 TTL-to-MOS driver used as a low impedance voltage source driver. The value of coupling capacitor C depends on the frequency and characteristics of the signal applied to the capacitor.

The fast switching of the DS75364 may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10 and 30 ohms (Figure 4).

FIGURE 4. Use of Damping Resistor to Reduce or Eliminata Output Transient Overshoot in Certain DS75364 Applications

6

National Semiconductor

MOS Memory Interface Circuits

DS75365 quad TTL-to-MOS driver

general description

The DS75365 is a quad monolithic integrated TTL-to-MOS driver and interface circuit that accepts standard TTL and DTL input signals and provides high-current and high-voltage output levels suitable for driving MOS circuits. It is used to drive address, control, and timing inputs for several types of MOS RAMs including the 1103.

The DS75365 operates from the TTL 5V supply and the MOS V_{SS} and V_{BB} supplies in many applications. This device has been optimized for operation with V_{CC2} supply voltage from 16V to 20V, and with nominal V_{CC3} supply voltage from 3V to 4V higher than V_{CC2} . However, it is designed so as to be usable over a much wider range of V_{CC2} and V_{CC3} . In some applications the V_{CC3} power supply can be eliminated by connecting the V_{CC3} pin to the V_{CC2} pin.

features

- Quad positive-logic NAND TTL-to-MOS driver
- Versatile interface circuit for use between TTL and high-current, high-voltage systems

- Capable of driving high-capacitance loads
- Compatible with many popular MOS RAMs
- Interchangeable with Intel 3207
- V_{CC2} supply voltage variable over wide range to 24V maximum
- V_{CC3} supply voltage pin available
- V_{CC3} pin can be connected to V_{CC2} pin in some applications
- TTL and LS compatible diode-clamped inputs
- Operates from standard bipolar and MOS supply voltages
- Two common enable inputs per gate-pair
- High-speed switching
- Transient overdrive minimizes power dissipation
- Low standby power dissipation

schematic and connection diagrams

absolute maximum rati	ngs (Note 1)	operating condition	S		
Supply Voltage Range of V _{CC1}	-0.5V to 7V	Supply Voltage (V _{CC1})	MIN 4.75	MAX 5.25	UNITS V
Supply Voltage Range of V _{CC2}	-0.5V to 25V	Supply Voltage (V _{CC2})	4.75	24	V
Supply Voltage Range of V _{CC3}	-0.5V to 30V	Supply Voltage (VCC3)	V _{CC2}	28	V
Input Voltage Inter-Input Voltage (Note 4)	5.5V 5.5V	Voltage Difference Between Supply Voltages: VCC3-VCC2	0	10	V
Storage Temperature Range Lead Temperature (Soldering 10 seconds)	–65°C to 150°C 300°C	Operating Ambient Temperature Range (TA)	0	70	°c

electrical characteristics (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{IH}	High-Level Imput Voltage			2			V
VIL	Low-Level Input Voltage					0.8	V
V _I	Input Clamp Voltage	I ₁ = -12 mA				-1.5	v
VoH	High-Level Output Voltage	V _{CC3} = V _{CC2} +3	$3V, V_{1L} = 0.8V, I_{OH} = -100\mu A$	V _{CC2} -0.3	V _{CC2} -0.1		v
			3V, V _{IL} = 0.8V, I _{OH} = -10 mA		V _{CC2} -0.9		V
		V _{CC3} = V _{CC2} , \	/ _{IL} = 0.8V, I _{OH} = -50μA	V _{CC2} -1	V _{CC2} -0.7		V
- contri		V _{CC3} = V _{CC2} , \	/ _{IL} = 0.8V, I _{OH} = -10 mA	V _{CC2} -2.3	V _{CC2} -1.8		V
V_{OL}	Low-Level Output Voltage	V _{IH} = 2V, I _{OL} :	= 10 mA		0.15	0.3	V
		V _{CC3} = 15V to	28V, V _{IH} = 2V, I _{OL} = 40 mA		0.25	0.5	V
Vo	Output Clamp Voltage	V _I = 0V, I _{OH} =	20 mA			V _{CC2} +1.5	V
I ₁	Input Current at Maximum Input Voltage	V ₁ = 5.5V				1	mA
I _{IH}	High-Level Input Current		A Inputs		†	40	μΑ
		V ₁ = 2.4V	E1 and E2 Inputs			80	μΑ
I _I L	Low-Level Input Current	V ₁ = 0.4V	A Inputs		1	-1.6	mA
			E1 and E2 Inputs		2	-3.2	mA
I _{CC1(H)}	Supply Current from V _{CC1} , All Outputs High				4	8	mA
I _{CC2(H)}	Supply Current from V _{CC2} ,	V _{CC1} = 5.25V,	V _{CC2} = 24V,		~2.2	+0.25	mA
	All Outputs High	V _{CC3} = 28V, AI	I Inputs at OV, No Load		-2.2	-3.2	mA
I _{CC3(H)}	Supply Current from V _{CC3} , All Outputs High				2.2	3.5	mA
I _{CC1(L)}	Supply Current from V _{CC1} , All Outputs Low				31	47	mA
I _{CC2(L)}	Supply Current from V _{CC2} , All Outputs Low	V _{CC1} = 5.25V, V _{CC3} = 28V, AI	V _{CC2} = 24V, I Inputs at 5V, No Load			3	mA
I _{CC3(L)}	Supply Current from V _{CC3} , All Outputs Low				16	25	mA
I _{CC2(H)}	Supply Current from V _{CC2} , All Outputs High	V _{CC1} = 5.25V, V _{CC2} = 24V, V _{CC3} = 24V, All Inputs at 0V, No Load				0.25	mA
I _{CC3(H)}	Supply Current from V _{CC3} , All Outputs High					0.5	mA
I _{CC2(S)}	Supply Current from V _{CC2} , Stand-by Condition	V _{CC1} = 0V, V _{CC}	_{C2} = 24V,			0.25	mА
I _{CC3(S)}	Supply Current from V _{CC3} , Stand-by Condition	V _{CC3} = 24V, All Inputs at 5V, No Load				0.5	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0° C to $+70^{\circ}$ C range for the DS75365. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC1} = 5V$ and $V_{CC2} = 20V$ and $V_{CC3} = 24V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: This rating applies between any two inputs of any one of the gates.

switching characteristics (V_{CC1} = 5V, V_{CC2} = 20V, V_{CC3} = 24V, T_A = 25°C)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{DLH}	Delay Time, Low-to-High Level Output			11	20	ns
tont	Delay Time, High-to-Low Level Output			10	18	ns
t _{TLH}	Transition Time, Low-to-High Level Output	C _L = 200 pF,		20	33	ns
t _{THL}	Transition Time, High-to-Low Level Output	$R_D = 24\Omega$, (Figure 1)		20	33	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output		10	31	48	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output		10	30	46	ns

ac test circuit and switching time waveforms

Note 1: The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{OUY}\approx 50\Omega$. Note 2* C_L includes probe and μg capacitance.

FIGURE 1. Switching Times, Each Driver

typical performance characteristics

typical performance characteristics (con't)

typical applications

The fast switching speeds of this device may produce undesirable output transient overshoot because of load or wiring inductance. A small series damping resistor may be used to reduce or eliminate this output transient

overshoot. The optimum value of the damping resistor depends on the specific load characteristics and switching speed. A typical value would be between 10Ω and 30Ω (Figure 3).

7

typical applications (con't)

FIGURE 2. Interconnection of DS75365 Davices
With 1103-Type Silicon-Gata MOS RAM

FIGURE 3. Use of Damping Rasistor to Reduca or Eliminate Output Transiant Ovarshoot In Certain DS75365 Applications

thermal information

POWER DISSIPATION PRECAUTIONS

Significant power may be dissipated in the DS75365 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. The total dissipation curve shows the power dissipated in a typical DS75365 as a function of load capacitance and frequency. Average power dissipation by this driver can be broken into three components:

$$P_{\mathsf{T}(\mathsf{AV})} = P_{\mathsf{DC}(\mathsf{AV})} + P_{\mathsf{C}(\mathsf{AV})} + P_{\mathsf{S}(\mathsf{AV})}$$

where $P_{\mathrm{DC}(\mathrm{AV})}$ is the steady-state power dissipation with the output high or low, $P_{\mathrm{C}(\mathrm{AV})}$ is the power level during charging or discharging of the load capacitance, and $P_{\mathrm{S}(\mathrm{AV})}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are:

$$P_{DC(AV)} = \frac{p_L t_L + p_H t_H}{T}$$

$$P_{C(AV)} \approx C V_C^2 f$$

$$P_{S(AV)} = \frac{p_{LH}t_{LH} + p_{HL}t_{HL}}{T}$$

where the times are as defined in Figure 4.

 $p_L,\,p_H,\,p_{LH},$ and p_{HL} are the respective instantaneous levels of power dissipation and C is load capacitance.

The DS75365 is so designed that P_S is a negligible portion of P_T in most applications. Except at very high frequencies, t_L + t_H >> t_{LH} + t_{HL} so that P_S can be

neglected. The total dissipation curve for no load demonstrates this point. The power dissipation contributions from all four channels are then added together to obtain total device power.

The following example illustrates this power calculation technique. Assume all four channels are operating identically with C = 100 pF, f = 2 MHz, $V_{\rm CC1}$ = 5V, $V_{\rm CC2}$ = 20V, $V_{\rm CC3}$ = 24V and duty cycle = 60% outputs high (t_H/T = 0.6). Also, assume $V_{\rm OH}$ = 20V, $V_{\rm OL}$ = 0.1V, $P_{\rm S}$ is negligible, and that the current from $V_{\rm CC2}$ is negligible when the output is low.

On a per-channel basis using data sheet values:

$$P_{DC(AV)} = \left[(5V \left(\frac{4 \text{ mA}}{4} \right) + (20V) \left(\frac{-2.2 \text{ mA}}{4} \right) + (24V) \left(\frac{2.2 \text{ mA}}{4} \right) \right] (0.6) + \left[(5V) \left(\frac{31 \text{ mA}}{4} \right) + (24V) \left(\frac{16 \text{ mA}}{4} \right) \right] (0.4)$$

PDC(AV) = 58 mW per channel

$$P_{C(AV)} \approx (100 \text{ pF}) (19.9 \text{V})^2 (2 \text{ MHz})$$

 $P_{C(\Delta V)} \approx 79$ mW per channel.

For the total device dissipation of the four channels:

$$P_{T(\Delta V)} \approx 4 (58 + 79)$$

 $P_{T(AV)} \approx 548$ mW typical for total package.

FIGURE 4. Output Voltage Waveform

Section 7 Magnetic Memory Interface Circuits

TEMPERATURE RANGE -55°C to +125°C 0°C to +70°C		DESCRIPTION	PAGE
		DESCRIPTION	NUMBER
DS5520	DS7520	Dual Core Memory Sense Amplifier	7-1
DS5522	DS7522	Dual Core Memory Sense Amplifier	7-6
DS5524	DS7524	Dual Core Memory Sense Amplifier	7-8
DS5528	DS7528	Dual Core Memory Sense Amplifier	7-10
DS5534	DS7534	Dual Core Memory Sense Amplifier	7-12
DS5538	DS7538	Dual Core Memory Sense Amplifier	7-14
erene	DS75324	Memory Driver with Decoded Inputs	7-20
DS55325	DS75325	Memory Driver	7-26

MAGNETIC MEMORY INTERFACE CIRCUITS

DEVICE FUNCTION	LOCIO FUNDTIONI	TEMPERATURE		
DEVICE FUNCTION	LOGIC FUNCTION	0°C to +70°C	−55°C to +125°C	
Sense Amplifier	Dual Gated with Complementary Outputs or Latch	DS7520	DS5520	
Sense Amplifier	Dual Gated, Open-Collector Outputs	DS7522	DS5522	
Sense Amplifier	Dual Channel, May be Wire-OR	DS7524	DS5524	
Sense Amplifier	Same as DS7524 with Test Points	DS7528	DS5528	
Sense Amplifier	Same as DS7524 with Open-Collector Outputs	DS7534	DS5534	
Sense Amplifier	Same as DS7534 with Test Points	DS7538	DS5538	
Core Driver	Dual Decoded 400 mA Sink and Source Drivers	DS75324		
Core Driver	Dual 600 mA Sink and Source Drivers	DS75325	DS55325	

Note. Comparators such as the LM711 and line receivers such as the DS75107 also may be used as sense amplifiers. Peripheral drivers such as the DS75450 also may be used as core drivers.

Magnetic Memory Interface Circuits

DS5520/DS7520 series dual core memory sense amplifiers

general description

The devices in this series of dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTL/TTL compatible. All devices of the series have identical preamplifier configurations, while various logic connections are provided to suit the specific application.

The DS5520/DS7520 has output latch capability and provides sense, strobe, and memory function for two sense lines. The DS5522/DS7522 contains a single open collector output which may be used to expand the number of inputs of the DS5520/DS7520, or to drive an external Memory Data Register (MDR). Intended for small memories, the two channels of the DS5524/DS7524 are independent with two separate outputs. The DS5534/DS7534 is similar to the DS5524/ DS7524 but has uncommitted, wire-ORable outputs. The DS5528/DS7528 has the same logic configuration of the DS5524/DS7524 and in addition provides separate low impedance Test Points at each preamplifier output. A similar device having uncommitted, wire-ORable outputs is the DS5538/DS7538.

features

- High speed
- Guaranteed narrow threshold uncertainty over temperature
- Adjustable input threshold voltage
- Fast overload recovery times
- Two amplifiers per package
- Molded or cavity dual-in-line package
- Six logic configurations

Because these devices are duals that contain an internal regulator, care must be exercised in testing to insure that while one half is being tested, the other inputs must be grounded or connected to a signal that is within the input range of the device.

absolute maximum ratings

Supply Voltage	±7V
Differential or Reference Input Voltage	±5V
Logic Input Voltage	5.5V
Operating Temperature Range	
DS55XX	-55°C to +125°C
DS75XX	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

typical application

Expanded Small Memory System

DS5520/DS7520

electrical characteristics

DS5520: The following apply for $-55^{\circ}C \le T_A \le +125^{\circ}C$ DS7520: The following apply for $0^{\circ}C \le T_A \le +70^{\circ}C$

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V _{TH}	Differential Input Threshold Voltage	V _{CC} = ±5V, (Note 4)	V _{REF} = 15 mV V _{REF} = 40 mV		11 36	15 40	19 44	mV mV
I _{BIAS}	Differential and Reference Input Bias Current	V _{CC} = ±5.25V,		DS5520 DS7520		30	100 75	μA μA
los	Differential Input Offset Current	V _{CC} = ±5.25V,	V _{DIFF} = 0V, V _{IN} = 0	0V		0.5		μΑ
V _{IH}	Logical "1" Input Voltage				2			V
I _{IH}	Logical "1" Input Current Strobe, Gate Inputs	V _{CC} = ±5.25V	V _{IN} = 2.4V V _{IN} = 5.5V			5	40 1	μA mA
VIL	Logical "0" Input Voltage						0.8	V
IIL	Logical "0" Input Current, Strobe, Gate Inputs	$V_{CC} = \pm 5.25V$,	$V_{!N} = 0.4V$			-1	-1.6	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA					-1.5	V
V _{OH}	Logical "1" Output Voltage	$V_{CC} = \pm 4.75V$,	I _O = -400 μA		2.4	3.9		V
I _{sc}	Output Short Circuit Current	$V_{CC} = \pm 5.25V_{c}$	· - 0\/	O Output	-3	-4	-5	mA
		V _{CC} - ±5.25V,	v _o - 0v	O Output	-2.1	-2.8	-3.5	mA
VoL	Logical "0" Output Voltage	$V_{CC} = \pm 4.75V$,	I _O = 16 mA			0.25	0.4	٧
I _{CEX}	Output Leakage Current	V _O = 5.25V					250	μА
I _{CC+}	V ⁺ Supply Current	V _{CC} = ±5.25V				21	35	rnA
I _{cc} _	V - Supply Current	V _{CC} = ±5.25V				-13	-18	rnA

Note 1: For 0°C ≤ T_A ≤ +70°C operation, electrical characteristics for DS5520 are guaranteed the same as DS7520.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have \geq 100 pF capacitor connected to ground.

Note 4: For minimum V_{TH} , logic output is < 0.4V at 16 mA. For maximum V_{TH} logic output is > 2.4V at -400μ A.

DS5520/DS7520

switching characteristics

 $V^{+} = 5.0V$, $V^{-} = -5.0V$, $T_{A} = 25^{\circ}C$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to		Q Qutput		20	40	ns
	Logical "1"	V _{REF} = 20 mV, ac Test Circuit 1	Q Output		36	56	ns
t _{pd0}	Differential Input to	v 20 4 7 40 4 4 1	O Output		28	50	ns
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Logical "0"	V _{REF} = 20 mA, ac Test Circuit 1	Q Output		28	55	ns
t _{pd1}	Strobe Input to	W = 20 and an Toro Conside 1	Q Qutput		10	30	ns
	Logical "1"	V _{REF} = 20 mA, ac Test Circuit 1	Q Output		33	53	ns
t _{pd0}	Strobe Input to	V = 20 = A == T== Commit 1	O Output		20	40	ns
	Logical "0"	V _{REF} = 20 mA, ac Test Circuit 1	O Output		16	55	ns
t _{pd1}	Gate O Input to		O Output		12	32	ns
	Logical "1"	V _{REF} = 20 mV, ac Test Circuit 2	Q Qutput		17	20	ns
t _{pd0}	Gate Q Input to	V _{REE} = 20 mV, ac Test Circuit 2	Q Qutput		6	26	ns
•	Logical "0"	VREF - 20 MV, ac Test Circuit 2	Q Output		19	30	ns
t _{pd1}	Gate O Input to Logical "1"	V _{REF} = 20 mV, ac Test Circuit 2,	Q Qutput		12	32	ns
t _{pd0}	Gate O Input to Logical "O"	V _{REF} = 20 mV, ac Test Circuit 2,	O Output		6	20	ns
t _{DR}	Differential Input Overload Recovery Time	V _{REF} = 20 mV, ac Test Circuit 2			10	30	ns
t _{CMR}	Common-Mode Input Overload Recovery Time	V _{REF} = 20 mV, ac Test Circuit 2			5	25	ns
tcy	Minimum Cycle Time	V _{REF} = 20 mV, ac Test Circuit 2			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse			±2.5		v

Note 1: For $0^{\circ}C \le T_{A} \le +70^{\circ}C$ operation, electrical characteristics for DS5520 are guaranteed the same as DS7520.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have \geq 100 pF capacitor connected to ground.

Note 4: For minimum V_{TH} , logic output is < 0.4V at 16 mA. For maximum V_{TH} logic output is > 2.4V at -400 μ A.

DS5520/DS7520

schematic diagram

connection diagram

Dual-In-Line Package

Order Numbar DS5520J, DS7520J or DS7520N See NS Package J16A or N16A

voltage waveforms (1)

AC test circuit (2)

voltage waveforms (2)

- 1. Pulse generator characteristics:

 Zour * 58Q, t, * t, = 15 ±5 n, PRR = 1 MHz
 2. Propagation delaye:

 A = Gate Q input to logical "0" output Q
 8 = Gate Q input to logical "0" output Q
 C Gate Q input to logical "1" output Q
 Q = Gate Q input to logical "0" output Q
 E = Gate Q input to logical "0" output Q
 F = Gate Q input to logical "1" output Q

DS5522/DS7522

electrical characteristics

DS5522: The following apply for –55°C \leq T $_{A}$ \leq +125°C DS7522: The following apply for 0°C \leq T $_{A}$ \leq +70°C

	PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
V _{TH}	Differential Input Threshold	$V_{CC} = \pm 5V$,	V _{REF} = 15 m		11	15	19	mV
	Voltage	(Note 4)	V _{REF} = 40 m	V	36	40	44	mV
IBIAS	Differential and Reference	$V_{CC} = \pm 5.25 V_{c}$	V = 0V	DS5522		30	100	μΑ
	Input Bias Current	V _{CC} - ±5.25V	, 410 - 04	DS7522		30	75	μΑ
los	Differential Input Offset Current	V _{CC} = ±5.25V,	$V_{Diff} = 0V, V_{t}$	_N = 0V		0.5		μА
VIH	Logical "1" Input Voltage				2			V
I _{IH}	Logical "1 ' Input Current	V _{CC} = ±5.25V	$V_{IN} = 2.4V$ $V_{IN} = 5.5V$			5	40	μА
	Strobe, Gate Inputs	V _{CC} = ±5,25V	V _{IN} = 5.5V				1	mA
VIL	Logical "0" Input Voltage						0.8	V
I _{IL}	Logical "O" Input Current Strobe, Gate Inputs	V _{CC} = ±5.25V	, V _{IN} = 0.4V			-1	-1.6	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA					-1.5	V
VoH	Logical "1" Output Voltage	$V_{CC} = \pm 4.75V$, 1 _O = - 400 μA		2.4	3.9		V
Isc	Output Short Circuit Current	V _{CC} = ±5.25V	, V _O = 0V		-2.1	-2.8	-3.5	mA
Vol	Logical "O" Output Voltage	$V_{CC} = \pm 4.75V$, I _O = 16 mA			0.25	0.4	V
I _{CEX}	Output Leakage Current	V _O = 5.25V					250	μА
I _{cc+}	V ⁺ Supply Current	$V_{CC} = \pm 5.25V$				23	36	mA
I _{CC} _	V Supply Current	V _{CC} = ±5.25V				-13	-18	mA

switching characteristics The following apply for $T_A = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = -5.0V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to Logical "1" Output	AC Test Circuit		26		ns
t _{pd1}	Strobe Input to Logical "1" Output	AC Test Circuit		22		ns
t _{pd1}	Gate Input to Logical "1" Output	V _{CC} = ±5.0V, AC Test Circuit		4		ns
t _{pd0}	Differential Input to Logical "O" Output	AC Test Circuit		21	45	ns
t _{pd0}	Strobe Input to Logical "O" Output	AC Test Circuit		12	40	ns
t _{pd0}	Gate Input to Logical "O" Output	AC Test Circuit		15	25	ns
t _{DR}	Differential Input Overload Recovery Time			10		ns
t _{CMR}	Common-Mode Input Overload Recovery Time			5		ns
t _{CY}	Minimum Cycle Time			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse		±2.5		V

Note 1: For $0^{\circ}C \le T_{A} \le +70^{\circ}C$ operation, electrical characteristics for DS5522 are guaranteed the same as DS7522.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have \geq 100 pF capacitor connected to ground.

Note 4: For min V_{TH} , logic output is > 2.4 V at $-400\mu A$. For max V_{TH} , logic output is < 0.4 V at 16 mA.

DS5522/DS7522

schematic diagram

connection diagram

Drder Number DS5522J, DS7522J, DS7523J DS7522N or DS5522W See NS Package J16A, N16A or W16A

AC test circuit

voltage waveforms

- 1. One strobe is grounded when the other side is being tested.
 2. Pulse generator characteristics:
 2. Qu. + 500; 1, e 1, e 15 ± 5 ns, PRR = 1 MHz
 3. Propagation delays:
 A = Differential input to logical "0" output
 B = Differential input to logical "0" output
 C = Strobe input to logical "0" output
 D = Strobe input to logical "1" output
 E = Gats input to logical "1" output
 F = Gats input to logical "0" output
 F = Gats input to logical "0" output

DS5524/DS7524

electrical characteristics

DS5524: The following apply for $-55^{\circ}C \le T_A \le +125^{\circ}C$ DS7524: The following apply for $0^{\circ}C \le T_A \le +70^{\circ}C$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
Differential Input Threshold	V _{CC} = ±5V,	V _{REF} = 15 r	mV	11	15	19	mV ,
Voltage	(Note 4)	V _{REF} = 40 r	mV	36	40	44	m∨
Differential and Reference	V = +5.25\	/ \/ = 0\/	DS5524		30	100	μΑ
Input 8 ias Current	V _{CC} - ±5.25V	, VIN - 0V	DS7524		30	75	μΑ
Differential Input Offset Current	V _{CC} = ±5.25V	', V _{D1FF} = 0V, V	/ _{IN} = 0V		0.5		μА
Logical "1" Input Voltage				2			٧
Logical "1 ' Input Current	V = +5 25\	V _{IN} = 2.4V			5	40	μΑ
Strobe, Gate Inputs	VCC5.25 v	V _{IN} = 5.5V				1	mA
Logical "0" Input Voltage						0.8	V
Logical "0" Input Current Strobe, Gate Inputs	V _{CC} = ±5.25V	', V _{IN} = 0.4V			1	-1.6	mA
Input Clamp Voltage	I _{IN} = -12 mA					-1.5	٧
Logical "1" Output Voltage	V _{CC} = ±4.75V	$I_0 = -400 \mu\text{A}$		2.4	3.9		V
Output Short Circuit Current	V _{CC} = ±5.25V	/, V _O = 0V		-2.1	-2.8	-3.5	mA
Logical "0" Output Voltage	V _{CC} = ±4.75V	, I _O = 16 mA			0.25	0.4	V
V ⁺ Supply Current	V _{CC} = ±5.25V				29	40	mA
V ⁻ Supply Current	V _{CC} = ±5.25V	,			-13	-18	mA
	Differential Input Threshold Voltage Differential and Reference Input 8ias Current Differential Input Offset Current Logical "1" Input Voltage Logical "1" Input Current Strobe, Gate Inputs Logical "0" Input Voltage Logical "0" Input Current Strobe, Gate Inputs Input Clamp Voltage Logical "1" Output Voltage Output Short Circuit Current Logical "0" Output Voltage V† Supply Current	Differential Input Threshold Voc = $\pm 5V$, (Note 4) Differential and Reference Input Bias Current Differential Input Offset Current Logical "1" Input Voltage Logical "1" Input Current Strobe, Gate Inputs Logical "0" Input Voltage Logical "0" Input Current Strobe, Gate Inputs Input Clamp Voltage Logical "1" Output Voltage Logical "0" Input Current Strobe, Gate Inputs Input Clamp Voltage Logical "1" Output Voltage Logical "1" Output Voltage Vcc = $\pm 4.75V$ Output Short Circuit Current Vcc = $\pm 5.25V$	Differential Input Threshold Voc = $\pm 5V$, (Note 4) Value = $\pm 5V$, (Note 4) Differential and Reference Input 8ias Current Differential Input Offset Current Logical "1" Input Voltage Logical "0" Input Voltage Logical "0" Input Voltage Logical "0" Input Current Strobe, Gate Inputs Input Clamp Voltage Logical "1" Output Voltage Logical "1" Output Voltage Logical "1" Output Voltage Logical "1" Output Voltage Vcc = $\pm 5.25V$, $V_{IN} = 0.4V$ Vin = $5.5V$ Vin = $5.5V$ Vin = $5.5V$ Vin = $5.5V$ Uni = $5.5V$ Vin = $5.5V$ Logical "1" Output Voltage Output Short Circuit Current Vcc = $5.25V$, $V_{IN} = 0.4V$ Logical "1" Output Voltage Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$ Vcc = $5.25V$, $V_{IN} = 0.4V$	Differential Input Threshold Voltage $V_{CC} = \pm 5V$, $V_{REF} = 15 \text{mV}$ Voltage $V_{OC} = \pm 5.25V$, $V_{NEF} = 40 \text{mV}$ Differential and Reference Input Bias Current $V_{CC} = \pm 5.25V$, $V_{IN} = 0V$ Differential Input Offset $V_{CC} = \pm 5.25V$, $V_{DIFF} = 0V$, $V_{IN} = 0V$ Logical "1" Input Voltage $V_{CC} = \pm 5.25V$ Logical "0" Input Voltage $V_{CC} = \pm 5.25V$ Logical "0" Input Current Strobe, Gate Inputs $V_{CC} = \pm 5.25V$, $V_{IN} = 0.4V$ Input Clamp Voltage $V_{CC} = \pm 5.25V$, $V_{IN} = 0.4V$ Input Clamp Voltage $V_{CC} = \pm 4.75V$, $V_{CC} =$	Differential Input Threshold Voltage $V_{CC} = \pm 5V$, $V_{REF} = 15 \text{mV}$ $V_{REF} = 40$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

switching characteristics The following apply for $T_A = 25^{\circ}C$, $V^{+} = 5.0V$, $V^{-} = -5.0V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to Logical "1" Output	AC Test Circuit		20	40	ns
t _{pd1}	Strobe Input to Logical "1" Output	AC Test Circuit		10	30	ns
t _{pd0}	Differential Input to Logical "O" Output	V _{CC} = ±5.0V, AC Test Circuit		28	45	ns
t _{pd0}	Strobe Input to Logical "O" Output	AC Test Circuit		20	40	ns
t _{DR}	Differential Input Overload Recovery Time			10	30	ns
t _{CMR}	Common-Mode Input Overload Recovery Time			5	25	ns
tcy	Minimum Cycle Time			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse		±2.5		V

Note 1: For $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ operation, electrical characteristics for DS5524 are guaranteed the same as DS7524.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have \geq 100 pF capacitor connected to ground.

Note 4: For min V_{TH} , logic output is < 0.4 V at 16 mA. For max V_{TH} , logic output is > 2.4 V at $-400 \mu A$.

DS5524/DS7524

schematic diagram

connection diagram

Order Number DS5524J, DS7524J or DS7524N See NS Package J16A or N16A

AC test circuit

voltage waveforms

DS5528/DS7528

electrical characteristics

DS5528: The following apply for $-55^{\circ}C \le T_A \le +125^{\circ}C$ DS7528: The following apply for $0^{\circ}C \le T_A \le +70^{\circ}C$

	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
V _{TH}	Differential Input Threshold	$V_{CC} = \pm 5V$,	V _{REF} = 15 m		11	15 40	19	mV mV
	Voltage	(Note 5)	V _{REF} = 40 m	1V	36	40	44	m v
IBIAS	Differential and Reference	$V_{CC} = \pm 5.25 V_{c}$	V = 0V	DS5528		30	100	μΑ
	Input Bias Current	VCC -3.20V,	VIN OV	DS7528		30	75	μΑ
los	Differential Input Offset Current	$V_{CC} = \pm 5.25V$,	V _{DIFF} = 0V, V	1N = 0V		0.5		μΑ
V _{IH}	Logical ''1'' Input Voltage				2			V
l _{iH}	Logical "1 ' Input Current	15.0514	V _{IN} = 2.4V			5	40	μΑ
	Strobe, Gate Inputs	$V_{CC} = \pm 5.25V$	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$	7			1	mA
VIL	Logical "0" Input Voltage						0.8	V
l _{IL}	Logical "0" Input Current Strobe, Gate Inputs	$V_{CC} = \pm 5.25V$,	V _{1N} = 0.4V			-1	-1.6	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA					-1.5	V
V _{OH}	Logical "1" Output Voltage	$V_{CC} = \pm 4.75V$	I _O = -400 μA		2.4	3.9		V
I _{sc}	Output Short Circuit Current	$V_{CC} = \pm 5.25V$,	V _O = 0V		-2.1	2.8	-3.5	mA
Vol	Logical "0" Output Voltage	$V_{CC} = \pm 4.75 V_{c}$	I _O = 16 mA			0.25	0.4	V
I _{cc+}	V ⁺ Supply Current	V _{CC} = ±5.25V				29	40	mA
Icc	V - Supply Current	V _{CC} = ±5.25V				13	-18	mA

switching characteristics The following apply for $T_A = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = -5.0V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to Logical "1" Output	AC Test Circuit		20	40	ns
t _{pd1}	Strobe Input to Logical "1" Output	AC Test Circuit		10	30	ns
t _{pd0}	Differential Input to Logical "O" Output	V _{CC} = ±5.0V, AC Test Circuit		28	45	ns
t _{pd0}	Strobe Input to Logical "O" Output	AC Test Circuit		20	40	ns
t _{DB}	Differential Input Overload Recovery Time			10	30	ns
t _{CMR}	Common-Mode Input Overload Recovery Time			5	25	ns
t _{CY}	Minimum Cycle Time			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse		+2 5		V

Note 1: For $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ operation, electrical characteristics for DS5528 are guaranteed the same as DS7528.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have ≥ 100 pF capacitor connected to ground.

Note 4:Each test point to have \leq 15 pF capacitive load to ground.

Note 5: For min V_{TH}, logic output is < 0.4V at 16 mA. For max V_{TH}, logic output is > 2.4V at -400μ A.

DS5528/DS7528

schematic diagram

connection diagram

Dual-In-Line Package

Order Number DS5528J, DS7528J or DS7528N See NS Package J16A or N16A

AC test circuit

voltage waveforms

DS5534/DS7534

electrical characteristics

DS5534: The following apply for $-55^{\circ}C \le T_A \le +125^{\circ}C$ DS7534: The following apply for $0^{\circ}C \le T_A \le +70^{\circ}C$

	PARAMETER		CONDITIONS	j	MIN	TYP	MAX	UNITS
V _{TH}	Differential Input Threshold	V _{CC} = ±5V,	V _{REF} = 15 m		11	15	19	mV
	Voltage	(Note 4)	V _{REF} = 40 m	.V	36	40	44	m∨
IBIAS	Differential and Reference	V _{CC} = ±5.25V,	V = 0V	DS5534		30	100	μΑ
	Input Bias Current	1 *66 ==:==:,	*1N 0:	DS7534		30	75	μΑ
los	Differential Input Offset Current	$V_{CC} = \pm 5.25 V,$	V _{DIFF} = 0V, V ₁	_N = 0V		0.5		μΑ
ViH	Logical "1" Input Voltage				2			V
I _{IH}	Logical "1" Input Current	V _{CC} = ±5.25V	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$			5	40	μΑ
	Strobe, Gate Inputs	V _{CC} - ±3.23 +	V _{IN} = 5.5V			1	1	mA
VIL	Logical "0" Input Voltage						0.8	V
IIL	Logical "0" Input Current Strobe, Gate Inputs	V _{CC} = ±5.25V,	V _{IN} = 0.4V			-1	-1.6	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA					-1.5	V
VoL	Logical "0" Output Voltage	V _{CC} = ±4.75V,	I _O = 16 mA			0.25	0.4	V
I _{CEX}	Output Leakage Current	V _O = 5.25V			1		250	μΑ
lcc+	V ⁺ Supply Current	V _{CC} = ±5.25V				28	38	mA
I _{cc} _	V - Supply Current	V _{CC} = ±5.25V				-13	-18	mA

switching characteristics The following apply for $T_A = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = -5.0V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to Logical "1" Output	AC Test Circuit		24	44	ns
t _{pd1}	Strobe Input to Logical "1" Output	AC Test Circuit		16	36	ns
t _{pd0}	Differential Input to Logical "O" Output	V _{CC} = ±5.0V, AC Test Circuit		20	40	ns
t _{pd0}	Strobe Input to Logical "O" Output	AC Test Circuit		10	30	ns
t _{DR}	Differential Input Overload Recovery Time			10	30	ns
t _{CMR}	Common-Mode Input Overload Recovery Time			5	25	ns
tcy	Minimum Cycle Time			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse		±2.5		V

Note 1: For 0° C \leq T_A \leq +70 $^{\circ}$ C operation, electrical characteristics for DS5534 are guaranteed the same as DS7534.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have \geq 100 pF capacitor connected to ground.

Note 4: For min V_{TH} , logic output is $< 250\mu A$ at 5.25V. For max V_{TH} , logic output is < 0.4V at 20 mA.

DS5534/DS7534

schematic diagram

connection diagram

Order Number DS5534J, DS7534J or DS7534N See NS Package J16A or N16A

AC test circuit

voltage waveforms

DS5538/DS7538

electrical characteristics

DS5538: The following apply for $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ DS7538: The following apply for $0^{\circ}C \le T_{A} \le +70^{\circ}C$

	PARAMETER		CONDITIONS			TYP	MAX	UNITS
V _{TH}	Differential Input Threshold	V _{CC} = ±5V,			11	15	19	mV
	Voltage	(Note 5)	V _{REF} = 40 i	mV	36	40	44	mV
IBIAS	Differential and Reference	V _{CC} = ±5.25V	/	DS5538		30	100	μΑ
	Input Bias Current	V _{CC} = _5.25	, VIN - 00	DS7538		30	75	μΑ
los	Differential Input Offset Current	V _{CC} ≃ ±5.25V	, V _{DIFF} = 0V, \	/ _{IN} = 0V		0.5		μΑ
V _{IH}	Logical ''1'' Input Voltage				2			V
I _{IH}	Logical "1" Input Current	V _{CC} = ±5.25V	V _{IN} = 2.4V			5	40	μА
	Strobe, Gate Inputs	V _{CC} + 15.25V	$V_{1N} = 2.4V$ $V_{1N} = 5.5V$				1	mA
VIL	Logical "0" Input Voltage						0.8	V
I _{IL}	Logical "0" Input Current Strobe, Gate Inputs	V _{CC} = ±5,25V	/, V _{IN} = 0.4V			-1	-1.6	mA
V _{CD}	Input Clamp Voltage	I _{IN} = -12 mA					-1.5	V
Vol	Logical "0" Output Voltage	V _{CC} = ±4.75V	', I _O = 16 mA			0.25	0.4	V
I _{CEX}	Output Leakage Current	V _O - 5_25V					250	μΑ
I _{CC+}	V ⁺ Supply Current	V _{CC} = ±5,25V				28	38	mA
I _{CC} _	V Supply Current	V _{CC} = +5.25V	,			-13	-18	mA

switching characteristics The following apply for $T_A = 25^{\circ}C$, $V^+ = 5.0V$, $V^- = -5.0V$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Differential Input to Logical ''1'' Output	AC Test Circuit		24	45	ns
t _{pd1}	Strobe Input to Logical "1" Output	AC Test Circuit		16	40	ns
t _{pd0}	Differential Input to Logical "O" Output	V _{CC} = ±5.0V, AC Test Circuit		20	40	ns
t _{pd0}	Strobe Input to Logical "O" Output	AC Test Circuit		10	30	ns
t _{DR}	Differential Input Overload Recovery Time			10	30	ns
t _{CMR}	Common-Mode Input Overload Recovery Time			5	25	ns
tcy	Minimum Cycle Time			200		ns
V _{CM}	AC Common-Mode Input Firing Voltage	Pulse		±2.5		V

Note 1: For 0° C \leq TA \leq +70 $^{\circ}$ C operation, electrical characteristics for DS5538 are guaranteed the same as DS7538.

Note 2: Positive current is defined as current into the referenced pin.

Note 3: Pin 1 to have ≥ 100 pF capacitor connected to ground.

Note 4: Each test point to have ≤ 15 pF capacitive load to ground.

Note 5: For min V_{TH} , logic output is $\leq 250 \mu A$ at 5.25V. For max V_{TH} , logic output is $\leq 0.4 V$ at 20 mA.

DS5538/DS7538

schematic diagram

connection diagram

Order Number DS5538J, DS7538J or DS7538N See NS Package J16A or N16A

AC test circuit

voltage waveforms

guaranteed performance characteristics

typical performance characteristics

typical performance characteristics (cont.)

typical performance characteristics (cont.)

Oelays OS5520, OS7520 (GATE D TO D OUTPUT DELAYS) 27 SEE ACTEST CIRCUIT PROPAGATION DELAY (ns) 25 23 DELAY TO "O" DUTPUT 21 19 17 "1" OUTPUT -35 +5 +125 T_A (°C)

Gate to Output Propagation

typical applications

Large Memory System with Sectored Core Planes

typical applications (cont.)

Small Memory System

Large Memory System

Magnetic Memory Interface Circuits

DS75324 memory driver with decode inputs general description

The DS75324 is a monolithic memory driver which features two 400 mA (source/sink) switch pairs along with decoding capability from four address lines. Inputs B and C function as mode selection lines (source or sink) while lines A and D are used for switch-pair selection (output pair Y/Z or W/X).

features

- High voltage outputs
- Dual sink/source outputs
- Internal decoding and timing circuitry
- 400 mA output capability
- LS/TTL compatible
- Input clamping diodes

schematic and connection diagrams

Dual-In-Line Package

Order Number DS75324J See NS Package J16A

Dual-In-Lina Package

Order Number DS75324N See NS Package N14A

absolute maximum ratings (Note 1)

electrical characteristics ($V_{CC} = 14V$, $T_{C} = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted) (Notes 2 and 3)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN(1)}	Input Voltage Required to Insure Logical "1" At Any Input	(Figure 1)		3.5			V
V _{IN(0)}	Input Voltage Required to Insure Logical "0" At Any Input	(Figure 1)				0.8	v
I _{IN(1)}	Logical "1" Level Input Current	V _{IN} = 5V,	Address Input			200	μΑ
,		(Figure 1)	Timing Input			100	μΑ
1 _{1N(0)}	Logical "0" Level Input Current	V _{IN} = 0V,	Address Input			-6	mA
		(Figure 1)	Timing Input			-12	mA
V _{SAT}	Saturation Voltage	(5: 0)	Sink, $I_{SINK} \simeq 420$ mA, $R_L = 53\Omega$		0.75	0.85	٧
		(Figure 2)	Source, I _{SOURCE} ≃ -420 mA, R _L = 47 5Ω		0.75	0.85	V
loff	Output Reverse Current ("OFF" State)	V _{1N} = 0V.	(Figure 1)		125	200	μΑ
Icc	Supply Current	All Sources	and Sinks OFF, V _{IN} = 0V, (Figure 3)		12.5	15	_mA
		/F: 41	Either Sink Selected		30	40	mA
		(Figure 4)	Either Source Selected		25	35	mA
V _I	Input Clamp Voltage	I _{IN} = -12 n	nA, T _A = 25°C			-1.5	V

switching characteristics (V_{CC} = 14V, T_C = 25°C)

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
t _{pd1}	Propagation Delay Time to		Sink Output, $R_L = 53\Omega$, (Figure 6)			110	ns
C _L = 20;		C _L = 20 pF	Source Output, $R_{L1} = 53\Omega$, $R_{L2} = 500\Omega$, (Figure 5)			90	ns
t _{pd0}	Propagation Delay Time to	0 00 5	Sink Output, $R_L = 53\Omega$, (Figure 6)			40	ns
	·	C _L = 20 pF	Source Output, $R_{L1} = 53\Omega$, $R_{L2} = 500\Omega$, (Figure 5)			50	ns
t _s	Sink Storage Time					70	ns

Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C temperature range for the DS75324.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating

Note 4: Voltage values are with respect to network ground terminal.

Note 5: Input signals must be zero or positive with respect to network ground terminal.

truth table

	INPUTS					OUTPUTS				
A	DD	RES	ss	ΤI	MI	NG	SINK	sou	RCES	SINK
Α	В	С	D	E	F	G	w	х	Υ	z
0	0	1	1	1	1	1	ON	OFF	OFF	OFF
0	1	0	1	1	1	1	OFF	ON	OFF	OFF
1	1	0	0	1	1	1	OFF	OFF	ON	OFF
1	0	1	0	1	1	1	OFF	OFF	OFF	ON
Х	х	X	х	0	Х	X	OFF	OFF	OFF.	OFF
Х	х	X	х	X	0	Х	OFF	OFF	OFF	OFF
х	Х	Х	Х	х	Х	0	OFF	OFF	OFF	OFF

test circuits and switching time waveforms

Note 1: Check VIN (1) AND VIN (8) PER TRUTH TABLE

Note 2. Measure I_{IN(0)} per test table

Note 3. When measuring $I_{\mathrm{IN}(1)}$, all other inputs are at GND. Each input is tested separately

TEST TABLE FOR IIN(0)

APPLY 3.5V	GROUND	TEST
B, C, E, F, and G	A and D	A
B, C, E, F, and G	A and D	D
A, D, E, F, and G	B and C	В
A, D, E, F, and G	B and C	С
A, B, C, D, F, and G	E	E
A, B, C, D, E, and G	F	F
A, B, C, D, E, and F	G	G

FIGURE 1. $V_{IN(0)}$, $V_{IN(1)}$, $I_{IN(0)}$, $I_{IN(1)}$, and I_{OFF}

test circuits and switching time waveforms (con't)

Note. This parameter must be measured using pulse techniques to = 500 ns, duty cycle \pm 1%:

FIGURE 2. V(SAT)

FIGURE 3. ICC (All Outputs "OFF")

test circuits and switching time waveforms (con't)

Note 1. GND A and 8. apply +3.5V to C and D, and measure I_{CC} (output W is on) Note 2 GND B and D apply +3.5V to A and C, and measure I_{CC} (output Z is on).

Note 3 GND A and C, apply +3.5V to B and D, and measure I_{CC} (output X is on).

Note 4. GND C and D, apply +3.5V to B and B, and measure I_{CC} (output X is on).

FIGURE 4. ICC (One Output "ON")

Note 1. The input waveform is supplied by a generator with the following characteristics: $I_{\rm c}=I_{\rm c}=10$ ms, duty cycle $\leq 1\%$, and $Z_{\rm OUY}=50$:). Note 2. When measuring dialy times at output X, apply +5V to input D, and GND A. When measuring delay times at output Y apply +5V to input A, and GND D.

Note 3 C_L includes probe and µg capacitance. Note 4: Unless otherwise noted all resistors are 0.5W.

FIGURE 5. Source-Output Switching Times

test circuits and switching time waveforms (con't)

Note 1. The input waveform is supplied by a generator with the following characteristics, $t_{\rm c}=t_{\rm t}=10$ ns, duty cycle $\geq 1\%$, $Z_{\rm OUT}\approx50\Omega$. Note 2: When measuring delay times at output $W_{\rm c}$ apply +5V to input $D_{\rm c}$ and $D_{\rm c}$ D_{\rm

Note 3° C_L includes probe and jig capacitance.

FIGURE 6. Sink-Output Switching Times

Magnetic Memory Interface Circuits

DS55325/DS75325 memory drivers general description

The DS55325 and DS75325 are monolithic memory drivers which feature high current outputs as well as internal decoding of logic inputs. These circuits are designed for use with magnetic memories.

The circuit contains two 600 mA sink-switch pairs and two 600 mA source-switch pairs. Inputs A and B determine source selection while the source strobe (S_1) allows the selected source turn on. In the same manner, inputs C and D determine sink selection while the sink strobe (S_2) allows the selected sink turn on.

Sink-output collectors feature an internal pull-up resistor in parallel with a clamping diode connected to V_{CC2} . This protects the outputs from voltage surges associated with switching inductive loads.

The source stage features Node R which allows extreme flexibility in source current selection by controlling the amount of base drive to each source transistor. This method of setting the base drive brings the power associated with the resistor outside the package thereby allowing the circuit to

operate at higher source currents for a given junction temperature. If this method of source current setting is not desired, then Nodes R and $R_{\rm INT}$ can be shorted externally activating an internal resistor connected from $V_{\rm CC2}$ to Node R. This provides adequate base drive for source currents up to 375 mA with $V_{\rm CC2}$ – 15V or 600 mA with $V_{\rm CC2}$ – 24V.

The DS55325 operates over the fully military temperature range of -55° C to $+125^{\circ}$ C, while the DS5325 operates from 0° C to $+70^{\circ}$ C.

features

- 600 mA output capability
- 24V output capability
- Dual sink and dual source outputs
- Fast switching times
- Source base drive externally adjustable
- Input clamping diodes
- LSITTL compatible

schematic and connection diagrams

Dual-In-Line Package

Order Number DS55325J, DS75325J, DS75325N or DS55325W See NS Package J14A, N14A or W14A

truth table

ADI	DRES	SINF	UTS	STROBE INPUTS		OUTPUTS			
sou	RCE	SINK		SOURCE	SINK	SOURCE SIN		ıĸ.	
А	в	С	D	\$1	\$2	w	x	٧	Z
L	Ħ	×	×	Ĺ	+	ON	OFF	OFF	OFF
н	L	х	X	L	н	OFF	ON	OFF	OFF
х	×	L	н	н	L	OFF	OFF	ON	OFF
х	×	н	L	н	L	OFF	OFF	OFF	ON
x	×	×	×	н	н	OFF	OFF	OFF	OFF
н	н	н	н	×	×	OFF	OFF	OFF	OFF

H = high level, L = low level, X = irrelevant

NOTE. Not more than one output is to be on at any one time.

absolute maximum ratings (Note 1)		operating condi	tions		
			MIN	MAX	UNITS
Supply Voltage V _{CC1} (Note 5)	7V	Temperature (T_A)			
Supply Voltage VCC2 (Note 5)	25V	DS55325	−55	+125	°C
Input Voltage (Any Address or Strobe Input)	5.5∨	DS75325	0	+70	°C
Power Dissipation	600 mW				
Storage Temperature Bange	-65°C to +150°C				

300° C

electrical characteristics (Notes 2 and 3)

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIO	ONS		MIN	TYP	MAX	UNITS
V _{IH}	High Level Input Voltage	(Figures 1 and 2)		2			V	
V _{IL}	Low Level Input Voltage	(Figures 3 and 4)		ĺ			0.8	V
V _I	Input Clamp Voltage	V _{CC1} = 4 5V, V _{CC2} = 24V, I _{II} T _A = 25°C, (Figure 5)	_N = −12 mA.			-1_3	-1.7	٧
l _{OFF}	Source Collectors Terminal		DS55325				500	μΑ
<i>.</i> ,	"OFF" State Current	V _{CC1} = 4 5V, V _{CC2} = 24V,	Full Range	DS75325			200	μΑ
		(Figure 1)	T _A = 25°C	DS55325		3	150	μΑ
			1 _A - 25 C	DS75325		3	200	μΑ
√он	High Level Sink Output Voltage	V _{CC1} = 4.5V, V _{CC2} = 24V, I _O	UT = 0, (Fig.	ure 2)	19	23		٧
V _{SA} ⊤	Saturation Voltage Source Outputs	$V_{CC1} = 4.5V, V_{CC2} = 15V,$ $R_1 = 24\Omega,$	Full Range				0.9	V
	Outputs	I _{SOUBCE} ≈ −600 mA,		DS55325		0.43	0.7	V
		(Figure 3), (Notes 4 and 6)	T _A = 25°C	DS75325		0.43	0.75	V
V _{SAT}	Saturation Voltage Sink Outputs	$V_{CC1} = 4.5V, V_{CC2} = 15V,$ $R_1 = 24\Omega.$	Full Range				0.9	٧
		$I_{SINK} \approx 600 \text{ mA}$, (Figure 4), (Notes 4 and 6)		DS55325		0.43	0.7	V
			T _A = 25 ^C	DS75325		0.43	0.75	V
1	Input Current at Maximum	V _{CC1} = 5.5V, V _{CC2} = 24V,	Address Inp	uts			1	mA
	Input Voltage	V ₁ = 5.5V, <i>(Figure 5)</i>	Strobe Inpu	ıts			2	mA
 І _{зн}	High Level Input Current	V _{CC1} = 5.5V, V _{CC2} = 24V,	Address Inc	uts		3	40	μΑ
		V ₁ = 2.4V, (Figure 5)	Strobe Inpu	its		6	80	μА
l _{IL}	Low Level Input Current	V _{CC1} = 55V V _{CC2} = 24V,	Address Inp	outs		-1	-1.6	mA
		V ₁ = 0.4V, (Figure 5)	Strobe Inpu	its		-2	-3.2	mA
I _{CC OFF}	Supply Current, All Sources and	V _{CC1} = 5 5V, V _{CC2} = 24V,	V _{CC1}			14	22	mA
	Sinks "OFF"	$T_A = 25^{\circ}C$, (Figure 6)	V _{CC2}			7.5	20	mA
lcc1	Supply Current From V _{CC1} , Either Sink "ON"	$V_{CC1} = 5.5V$, $V_{CC2} = 24V$, $I_{SINK} = 50 \text{ mA}$, $T_A = 25^{\circ}\text{C}$, (Figure 7)		۸,		55	70	mA
I _{CC2}	Supply Current From V _{CC2} , Either Source "ON"	$V_{CC1} = 5.5V, V_{CC2} = 24V, I_S$ $T_A = 25^{\circ}C, (Figure 8)$	SOURCE = -50	0 mA,		32	50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS55325 and across the 0°C to +70°C range for the DS75325. All typical values are at T_A = 25°C.

+70 C range for the DS/3325. All typical values are at 14 - 23 G.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: Voltage values are with respect to network ground terminal.

Note 6: These parameters must be measured using pulse techniques. tw = $200\mu s$, duty cycle $\leq 2\%$.

switching characteristics ($V_{CC1} = 5V$, $T_A = 25^{\circ}C$)

	PARAMETER	COM	NDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Propagation Delay Time, Low-to-High	V _{CC2} = 15V, R _L = 24Ω,	Source Collectors		25	50	ns
	Level Output	C _L = 25 pF, (Figure 9)	Sink Outputs		20	45	ns
t _{PHL}	Propagation Delay Time, High-to-Low	V_{CC2} = 15V, R_L = 24 Ω ,	Source Collectors		25	50	ns
	Level Output	C _L = 25 pF, (Figure 9)	Sink Outputs		20	45	ns
t _{TLH}	Transition Time, Low-to-High Level Output	0 - 25 - 5	Source Outputs, $V_{CC2} = 20V$, $R_{\perp} = 1 \text{ k}\Omega$, (Figure 10)		55		ns
		C _L = 25 pF	Sink Outputs, $V_{CC2} = 15V$, $R_{\perp} = 24\Omega$, (Figure 9)		7	15	ns
t _{THL}	Transition Time, High-to-Low Level Output	C ₁ = 25 pF	Source Outputs, $V_{CC2} = 20V$, $R_L = 1 \text{ k}\Omega$, (Figure 10)		7		ns
		GL - 29 pr	Sink Outputs, $V_{CC2} = 15V$, $R_L = 24\Omega$, (Figure 9)		9	20	ns
ts	Storage Time, Sink Outputs	V _{CC2} = 15V, R _L = 24Ω, C	= 25 pF, (Figure 9)		15	30	ns

dc test circuits

FIGURE 1. IOFF

\$2 2V 4 5 V GND OPEN VOH 2V 4 5V GND Vон OPEN OPEN 2V GND 4.5V OPEN 4 5V GND V_{OH}

FIGURE 2. VIH and VOH

dc test circuits(con't)

TEST TABLE

1	Α	В	S1	w	×
ļ	0.8V	4.5V	0.8∨	GND	OPEN
Ì	4.5V	0.8∨	087	OPEN	GND

FIGURE 3. VIL and Source VSAT

TEST TABLE

1	С	D	S2	Υ	Z
	0.8V	4.5V	0.8V	RL	OPEN
ļ	4.5V	0.8V	0.8V	OPEN	RL

FIGURE 4. VIL and Sink VSAT

կ, կн

APPLY V _I = 5.5V MEASURE I _I	GROUND	APPLY 5.5V
APPLY V _I = 2.4V	GNOOND	AITE1 3.50
MEASURE IN		
Α	S1	B, C, S2, D
S1	A, B	C, S2, D
8	S1	A, C, S2, D
С	\$2	A, S1, B, D
S2	C, D	A, \$1, B
D	S2	A, S1, B, C

TEST TABLES

APPLY V _I = 0.4V,	T
MEASURE IIL	APPLY 5.5V
APPLY I ₁ = -10 mA,	7 AFFET 5.54
MEASURE VI	İ
Α	S1, B, C, S2, D
S1	A, B, C, S2, D
В	A, S1, C, S2, D
С	A, S1, B, S2, D
S2	A, S1, B, C, D
D	A, S1, B, C, S2

FIGURE 5. VI, II, IIH, and IIL

dc test circuits(con't)

FIGURE 6. ICC1(OFF) and ICC2(OFF)

GND FIGURE 7. 1_{CC1}, Either Sink On

OPEN I(SINK)

GND

5V GND GND

FIGURE 8. ICC2, Either Source On

dc test circuits(con't)

Note 1. The pulse generator has the following characteristics: Z_{OUT} = 50%, duty cycle $\leq 1\%$

Note 2: \boldsymbol{C}_L includes probe and μg capacitance

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
		A and S1	B, C D and S2
telH and teHL	Source collectors	B and S1	A C D and S2
tpLH, tpHL.	Sink output Y	C and S2	A, B D and S1
ttlH, ttHL, and t _s	Sink output Z	D and S2	A_B, C and S1

FIGURE 9. Switching Times

Note 2: C_L includes probe and µg capacitance

TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
	Source output W	A and S1	B, C, D, and S2
t _{TLH} and t _{THL}	Source output X	B and S1	A, C, D, and S2

FIGURE 10. Transition Times of Source Outputs

applications

External Resistor Calculation

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one DS75325 delivers load current (I_{\perp}). The sink-output transistor of another DS75325 sinks this current

The value of the external pull-up resistor $\{R_{ext}\}$ for a particular memory application may be determined using the following equation:

$$R_{ext} = \frac{16 \left[V_{CC2(min)} - V_S - 2.2 \right]}{I_L - 1.6 \left[V_{CC2(min)} - V_S - 2.9 \right]}$$
 (1)

where: R_{ext} is in $k\Omega$,

 $V_{CC2\{min\}}$ is the lowest expected value of V_{CC2} in volts, V_S is the source output voltage in volts with respect to ground, I_L is in mA.

The power dissipated in resistor R_{ext} during the load current pulse duration is calculated using Equation 2.

$$P_{Rext} \approx \frac{I_L}{16} \left[V_{CC2(min)} - V_S - 2 \right]$$
 (2)

where: PRext is in mW.

After solving for R_{ext} , the magnitude of the source collector current $\{I_{\text{CS}}\}$ is determined from Equation 3.

$$I_{CS} \approx 0.94 I_L$$
 (3)

where: I_{CS} is in mA.

As an example, let $V_{CC2\{min\}} = 20V$ and $V_L = 3V$ while I_L of 500 mA flows. Using Equation 1:

$$R_{\text{ext}} = \frac{16 (20 - 3 - 2.2)}{500 - 1.6 (20 - 3 - 2.9)} = 0.5 \text{ k}\Omega$$

and from Equation 2:

$$P_{Rext} \approx \frac{500}{16} [20 - 3 - 2] \approx 470 \text{ mW}$$

The amount of the memory system current source (I $_{CS}$) from Equation 3 is:

$$I_{CS} \approx 0.94 \text{ (500)} \approx 470 \text{ mA}$$

In this example the regulated source-output transistor base current through the external pull-up resistor (R_{ext}) and the source gate is approximately 30 mA. This current and I_{CS} comprise I_{L} .

Note 1. For clerity, partial logic dragrams of two OS55325's are shown. Note 2: Source and sink shown are in different packages

FIGURE 11. Typical Application Data

Section 8 Microprocessor Support Circuits

URE RANGE	DESCRIPTION		
0° C to +70 $^{\circ}$ C	DESCRIPTION	NUMBER	
DP4201	Clock Generator	8-1	
DP8212	8-Bit Input/Output Port	8-5	
DP8216, 26	4-Bit Bidirectional Bus Transceiver	8-12	
DP8224	Clock Generator and Driver	8-17	
DP822B, 3B	System Controller and Bus Driver	8-23	
DP8300	PACE Bidirectional Transceiver Element (PACE BTE/8)	8-28	
DP8302, 05	PACE System Timing Element (PACE STE)	8-35	
DP8304B	B-Bit TRI-STATE® Bidirectional Transceiver	B-40	
DP8350	Programmable CRT Controllers	B-45	
	0°C to +70°C DP4201 DP8212 DP8216, 26 DP8224 DP822B, 3B DP8300 DP8302, 05 DP8304B	DESCRIPTION O°C to +70°C DP4201 Clock Generator DP8212 B-Bit Input/Output Port DP8216, 26 DP8224 Clock Generator and Driver DP822B, 3B System Controller and Bus Driver DP8300 PACE Bidirectional Transceiver Element (PACE BTE/8) DP8302, 05 PACE System Timing Element (PACE STE) DP8304B B-Bit TRI-STATE® Bidirectional Transceiver	

MICROPROCESSOR SUPPORT CIRCUITS

DESCRIPTION	4004	DAGE	GENERAL	0000	PART	NUMBER
DESCRIPTION	4004	PACE	PURPOSE	8080	0°C to +70°C	-55°C to +125°C
Series 40 Clock Generator	•				DP4201	
8-Bit I/O Port			•	•	DP8212	DP8212M
4-8it Parallel Receiver/Driver			•	•	DP8216,	DP8216M,
			1		DP8226	DP8226M
Clock Generator/Driver				•	DP8224	
System Controller/Bus Driver				•	DP8228,	DP8228M,
			ļ	[:	DP8238	DP8238M
PACE 8-Bit Parallel Receiver/Driver		•			DP8300	
8-8it 48 mA 8us Driver			•		DP83048	DP7304B
PACE Clock Generator Driver		•			DP8305	
CRT Controller		•	•	•	DP8350	
Octal D-Type Latch			•		MM74C373	MM54C373
Octal D-Type Flip-Flop		ĺ	•		MM74C374	MM54C374
16-Key Encoder		ļ	•		MM74C922	MM54C922
20-Key Encoder			•		MM54C923	MM54C923
Octal Transparent D Latch			•		SN74LS373	SN54LS373
Octal Edge-Triggered D Flip-Flop]	•		SN74LS374	SN54LS374

Microprocessor Support Circuits

DP4201 clock generator

general description

The DP4201 Clock Generator is designed for 4004 micro-computer series family applications, and satisfies clock signal requirements MCS-40TM and FIPS (4-Bit Integrated Processing System) micro-computer devices. An externally crystal controlled oscillator is required for generation of TTL and MOS level clock signals. Power "ON" or external reset may be accomplished with the DP4201. A single step feature also exists.

features

- Satisfies clock requirements for FIPS and MCS-40
- Crystal controlled oscillator
- MOS and TTL level clock outputs
- Power "ON" and external reset control
- Operative frequency from dc to 6 MHz

block diagram

connection diagram

absolute maximum ratings (Note 1)

recommended operating conditions

 $V_{CC} - V_{DD}$ dc Supply Voltage V_{CC} - Gnd dc Supply Voltage V_{IN} Input Voltage T_A Operating Temperature Range

15 V_{DC} 5 V_{DC} V_{DD} to V_{CC} 0°C to +70°C

electrical characteristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} - V_{DD} = 15V \pm 5\%$, Gnd = $V_{CC} - 5V \pm 5\%$

PARAMETER		PARAMETER CONDITIONS		TYP	MAX	UNITS
ICC	Supply Current (Measurement in VCC Pin)	Static Operation, Pin 6, Pin 9 = V _{CC} , Pin 12, Pin 10 = V _{DD} , Pin 7 = V _{CC}			300	μΑ
	·	Dynamic Operation, 5.185 MHz Crystal, $C_L = 20 \text{ pF}, \phi_1 \text{ and } \phi_2$			25	mA
[‡] L1	Input Leakage Current	V _I L = V _{DD} , All Inputs Except X1, X2, N. Open, N. Closed			1	μΑ
VIH	Input High Voltage	All Inputs Except X1, X2, Reset	V _{CC} -1.5		V _{CC} +0.5	٧
VIL	Input Low Voltage	All Inputs Except X1, X2, Reset	V _{DD}		V _{CC} -13	V
Vон	Output High Voltage	Capacitive Load Only	V _{CC} -1.5		Vcc	V
VoL	Output Low Voltage	Capacitive Load Only	V _{DD}		V _{CC} -13.4	V
Vон	ϕ_{1T},ϕ_{2T} , Output High Voltage	I _{OH} = -400μA	V _{CC} -0.75			V
VOL	ϕ_{1T} , ϕ_{2T} Output Low Voltage	I _{OL} = 1.6 mA			Gnd+0.5	V
loL	φ ₁ , φ ₂ Sink Current	$V_{OUT} = V_{CC}$, Pulse Width $\leq 1 \mu s$	400			mA
Iон	ϕ_1 , ϕ_2 Source Current	V _{OUT} = V _{DD}	180			mA
loL	φ ₁ Τ, φ ₂ Τ Sink Current	VOUT = VCC	15			mA
ЮН	φ ₁ Τ, φ ₂ Τ Source Current	V _{OUT} = V _{DD}	8			mA
lor	Reset Sink Current	VOUT = VCC	6			mA
ЮН	Reset Source Current	V _{OUT} = V _{DD}	6			mA
lOL	Stop Sink Current	Vou T = Vcc	1			mA
lон	Stop Source Current	V _{OUT} = V _{DD}	1			mA
٧ıL	Reset Input Low Voltage		V _{DD}		V _{CC} -11	V
۷ін	Reset Input High Voltage		V _{CC} -6.5		V _{CC} +0.5	V
R _I	Pull-Up Resistance on N. Open, N. Closed	V _{IN} = V _{DD}	20		120	kΩ
CiN	Input Capacitance	All Inputs Except X1, X2		5		рF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

switching characteristics

T_A = 0°C to +70°C, V_{CC} - V_{DD} = 15V \pm 5%, Gnd = V_{CC} - 5V \pm 5%, 1.35 ns \leq t_{CV} \leq 2 μ s

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{cy}	Clock Period	Mode = VCC		tXTAL×7		ns
$^{ extsf{t}}_{\phi}$ PW	Clock Pulse Width	Mode = VCC	(2/7)t _{cy} -10	(2/7)t _C	(2/7)t _{cy} +10	ns
t _φ D1	Clock Delay From ϕ_1 to ϕ_2	Mode = VCC	(2/7)t _{cy} -10	(2/7)t _{cy}	(2/7)t _{cy} +10	ns
$t_{\phi D2}$	Clock Delay From ϕ_2 to ϕ_1	Mode = VCC	(1/7)t _{cy} -10	(1/7)t _{cy}	(1/7)t _{cy} +10	ns
tcy	Clock Period	Mode = V _{DD}		tXTAL×8		ns
t_{ϕ} PW	Clock Pulse Width	Mode = V _{DD}	(1/4)t _{cy} -10	(1/4)t _{cy}	(1/4)t _{cy} +10	ns
t _{φD1}	Clock Delay From ϕ_1 to ϕ_2	Mode = V _{DD}	(1/4)t _{cy} -10	(1/4)t _{cy}	(1/4)t _{cy} +10	ns
t _φ D2	Clock Delay From ϕ_2 to ϕ_1	Mode = V _{DD}	(1/4)t _{cy} -10	(1/4)t _{cy}	(1/4)t _{cy} +10	ns
t _{φD3}	TTL Clock to MOS Clock Skew		0	20	40	ns
$t_{\phi r}, t_{\phi f}$	Clock Rise and Fall Time	$C_L = 300 \text{ pF} = \phi_1, \phi_2$ $C_L = 50 \text{ pF} = \phi_{1T}, \phi_{2T}$		25	50	ns
tD	Delay From ACK to Stop	CL = 20 pF		60	500	ns

pin description

Pin No.	Designation	Description of Function	Pin No.	Designation	Description of Function
1	GND	Circuit ground potential. This pin can be left floating for low power application. MOS clock	9	N. CLOSED	Input of single step circuitry to which normally closed contact of SPDT switch is connected.
		output will be operative. TTL clock outputs will not.	10	ACK	Acknowledge input to single step circuitry normally con-
2	<i>Φ</i> 1Τ	Phase 1. TTL level clock output. Positive true.			nected to stop acknowledge output of 4004.
3	ϕ_2	Phase 2. MOS level clock output.	11	STOP	Stop output of single step cir-
4	V_{DD}	Main power supply pin. $V_{DD} = V_{CC} - 15V \pm 5\%$.		cuitry normally connected to stop input of 4004. A SPDT	
5	MODE Counter mode control pin. Determines whether counter				toggle switch may be inserted in this line for RUN/HALT control.
		divides basic frequency by 8 or 7. Mode = V _{CC} ; ÷7 Mode = V _{DD} ; ÷8	12	RESET IN	Input to which RC network is connected to provide power on reset timing.
6	N. OPEN	Input of single step circuitry to	13	RESET OUT	This signal is active low.
		which normally open contact of	14	<i>φ</i> 1	Phase 1 MOS level clock output.
7	X1	SPDT switch is connected. External crystal connection.	15	Vcc	Circuit reference potential— most positive supply voltage.
•	~ 1	This pin may be driven by an external frequency source. X2 should be left unconnected.	16	Ф2 Τ	Phase 2. TTL level clock output. Positive true.
8	X2	External crystal connection			

switching time waveforms

Microprocessor Support Circuits

DP8212/DP8212M 8-Bit Input/Output Port

general description

The DP8212/DP8212M is an 8-bit input/output port contained in a standard 24-pin dual-in-line package. The device, which is fabricated using Schottky 8ipolar technology, is part of National Semiconductor's N8080 microcomputer family. The DP8212/DP8212M can be used to implement latches, gated buffers, or multiplexers. Thus, all of the major peripheral and input/output functions of a microcomputer system can be implemented with this device.

The DP8212/DP8212M includes an 8-bit latch with TRI-STATE® output buffers, and device selection and control logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor.

features

- · 8-8it Data Latch and Buffer
- Service Request Flip-flop for Generation and Control of Interrupts
- 0.25mA Input Load Current
- TRI-STATE TTL Output Drive Capability
- Outputs Sink 15mA
- Asynchronous Latch Clear
- 3.65V Output for Direct Interface to INS8080A
- Reduces System Package Count by Replacing Buffers, Latches, and Multiplexers in Microcomputer Systems

absolute maximum ratings

operating conditions

			MIN	MAX	UNITS
orage Temperature	–65°C to +160°C	Supply Voltage (V _{CC})			
Output or Supply Voltages	−0.5V to +7V	DP8212M	4.50	5.50	v_{DC}
Input Voltages	-1.0V to 5.5V	DP8212	4.75	5.25	v_{DC}
tput Currents	125 mA	Operating Temperature (TA)			
		DP8212M	-55	+125	°C
		DP8212	0	+75	°C
	orage Temperature Output or Supply Voltages Input Voltages tput Currents	Output or Supply Voltages -0.5V to +7V Input Voltages -1.0V to 5.5V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	orage Temperature −65° C to +160° C Supply Voltage (V _{CC}) Output or Supply Voltages −0.5V to +7V DP8212M 4.50 Input Voltages −1.0V to 5.5V DP8212 4.75 tput Currents 125 mA Operating Temperature (T _A) DP8212M −55	orage Temperature -65° C to +160° C Supply Voltage (V _{CC}) Output or Supply Voltages -0.5V to +7V DP8212M 4.50 5.50 Input Voltages -1.0V to 5.5V DP8212 4.75 5.25 tput Currents 125 mA Operating Temperature (T _A) DP8212M -55 +125

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under dc electrical characteristics.

electrical characteristics (Min \leq TA \leq Max, Min \leq VCC \leq Max, unless otherwise noted)

SYMBOL	PARAMETER	CONDITIO	ONS	MIN	TYP	MAX	UNITS
۱۴	Input Load Current, STB, DS2, CLR, DI1-DI8 Inputs	V _F = 0.45V				-0.25	mA
lF	Input Load Current, MD Input	V _F = 0.45V				-0.75	mA
lF	Input Load Current, DS1 Input	V _F = 0.45V		7		-1.0	mA
IR	Input Leakage Current STB, DS2, CLR, DI ₁ —DI ₈ Inputs	VR = VCC Max				10	μΑ
I _R	Input Leakage Current, MD Input	V _R = V _{CC} Max				30	μΑ
IR	Input Leakage Current, DS1 Input	V _R = V _{CC} Max				40	μΑ
VC	Input Forward Voltage Clamp	IC = -5 mA				-1	V
VIL	Input "Low" Voltage		DP8212M			0.80	V
			DP8212			0.85	٧
VIH	Input "High" Voltage	-	1	2.0			V
VOL	Output "Low" Voltage	IOL = 10 mA	DP8212M			0.45	٧
		I _{OL} = 15 mA	DP8212			0.45	V
Voн	Output "High" Voltage	I _{OH} = -0.5 mA	DP8212M	3.40	4.0		V
		IOH = -1.0 mA	D P 8212	3.65	4.0		٧
Isc	Short-Circuit Output Current	V _O = 0V, V _{CC} = 5	5V	-15		-75	mA
IIOI	Output Leakage Current, High Impedance State	V _O = 0.45V/V _{CC}	Max			20	μΑ
ICC	Power Supply Current		DP8212M		90	145	mA
			DP8212		90	130	mA

capacitance*

F = 1MHz, $V_{BIAS} = 2.5V$, $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CIN	DS1, MD Input Capacitance		9	12	pF
CIN	DS2, CLR, STB, DI ₁ -DI ₈ Input Capacitance		5	9	pF
COUT DO1DO8 Output Capacitance			8	12	pF

^{*} This parameter is sampled and not 100% tested.

switching characteristics

 $(Min \le T_A \le Max, Min \le V_{CC} \le Max)$

0)///	DADAMETED	DP8212M		212M	DP8	8212	UNITS
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
tpW	Pulse Width		40		30		ns
tPD	Data to Output Delay	(Note 5)		30		30	ns
tWE	Write Enable to Output Delay	(Note 5)		50		40	ns
tSET	Data Set-Up Time		20		15		ns
tH	Data Hold Time		30		20		ns
tR	Reset to Output Delay	(Note 5)		55		40	ns
ts	Set to Output Delay	(Note 5)		35		30	ns
tE	Output Enable/Disable Time	(Note 6)		50		45	ns
tC	Clear to Output Delay	(Note 5)		65		55	ns

switching conditions

Conditions of Test:

- 1. Input Pulse Amplitude = 2.5 V.
- 2. Input Rise and Fall Times = 5ns.
- Between 1V and 2V Measurements made at 1.5V with 15mA & 30pF Test Load.
- 4. CL includes jig and probe capacitance.
- 5. CL = 30 pF.
- 6. CL = 30 pF except for DP8212M tE(DISABLE) CL = 5 pF

Test Load

Alternate Test Load (Refer to Timing Diagram)

timing diagram

002 5

003 8

004 10

5 012

Logic Table A

STB	MD	(DS ₁ ·DS ₂)	DATA OUT EQUALS
0	0	, э	TRI-STATE
1	0	0	TRI-STATE
0	1	0	DATA LATCH
1	1	0	DATA LATCH
0	0	1	DATA LATCH
1	0	1	DATA IN
0	1	1	DATA IN
11	1	1	DATA IN

CLR Tresets data latch to the output low state

The data latch clock is level sensitive, a low level clock latches the data.

Logic Table B

CLR	(DS1.DS2)	STB	a,	INT	
0 RESET	0	0	0	1	
1	0	0	0	1	_
1	0	_	1	0	
1	1 RESET	0	0	0	_
1	0	0	0	1	

^{*}Internal Service Request flip-flop.

functional pin definitions

The following describes the function of all the DP8212/DP8212M input/output pins. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Device Select (\overline{DS_1}, DS_2): When $\overline{DS_1}$ is low and DS_2 is high, the device is selected. The output buffers are enabled

and the service request flip-flop is asynchronously reset (cleared) when the device is selected

(cleared) when the device is selected. **Mode (MD):** When high (output mode), the output buffers are enabled and the source of the data latch clock input is the device selection logic (DS $_1 \cdot$ DS $_2$). When low (input mode), the state of the output buffers is determined by the device selection logic (DS $_1 \cdot$ DS $_2$) and the source of the data latch clock input is the strobe (STB) input.

functional pin definitions (cont'd.)

Strobe (STB): Used as data latch clock input when the mode (MD) input is low (input mode). Also used to synchronously set the service request flip-flop, which is negative edge triggered.

Data In (DI₁ – DI₈): Eight-bit data input to the data latch, which consists of eight D-type flip-flops. Incorporating a level sensitive clock while the data latch clock input is high, the Q output of each flip-flop follows the data input. When the clock input returns low, the data latch stores the data input. The clock input high overrides the clear (\overline{CLR}) input data latch reset.

Clear (CLR): When low, asynchronously resets (clears) the data latch and the service request flip-flop. The service request flip-flop is in the non-interrupting state when reset.

OUTPUT SIGNALS

Interrupt (INT): Goes low (interrupting state) when either the service request flip-flop is synchronously set by the strobe (STB) input or the device is selected.

Data Out (DO₁ – DO₈): Eight-bit data output of data buffers, which are TRI-STATE, non-inverting stages. These buffers have a common control line that either enables the buffers to transmit the data from the data latch outputs or disables the buffers by placing them in the high-impedance state

connection diagram

Order Number DP8212J, DP8212N or DP8212MJ See NS Package J24A or N24A

applications in microcomputer systems

applications in microcomputer systems (cont')

Interrupt Instruction Port

Output Port (with Hand-Shaking)

INS8080A Status Latch

Microprocessor Support Circuits

DP8216/DP8216M, DP8226/DP8226M 4-Bit Bidirectional Bus Transceivers

General Description

The DP8216/DP8216M and DP8226/DP8226M are 4-bit bidirectional bus drivers for use in bus oriented applications. The non-inverting DP8216/DP8216M and inverting DP8226/DP8226M drivers are provided for flexibility in system design.

Each buffered line of the four-bit driver consists of two separate buffers that are TRI-STATE® to achieve direct bus interface and bidirectional capability. On one side of the driver the output of one buffer and the input of another are tied together (DB); this side is used to interface to the system side components such as memories, I/O, etc., because its interface is TTL compatible and it has high drive (50 mA). On the other side of the driver the inputs and outputs are separated to provide maximum flexibility. Of course, they can be tied together so that the driver can be used to buffer a true bidirectional bus. The DO outputs on this side of the driver have a special high voltage output drive capability so that direct interface to the 8080 type CPUs is achieved with an adequate amount of noise immunity.

The CS input is a device enable. When it is "high" the output drivers are all forced to their high-impedance state. When it is a "low" the device is enabled and the direction of the data flow is determined by the DIEN input.

The DIEN input controls the direction of data flow, which is accomplished by forcing one of the pair of buffers into its high-impedance state and allowing the other to transmit its data. A simple two-gate circuit is used for this function.

Features

- Data bus buffer driver for 8080 type CPUs
- Low input load current 0.25 mA maximum
- High output drive capability for driving system data bus - 50 mA at 0.5 V
- Power up-down protection
- DP8216/DP8216M have non-inverting outputs
- DP8226/DP8226M have inverting outputs
- Output high voltage compatible with direct interface to MOS
- TRI-STATE outputs
- Advanced Schottky processing
- Available in military and commercial temperature ranges

Logic and Connection Diagrams

Absolute Maximum Ratings	(Note 1)			Operating Condition	ons		
	Min	Max	Units		Min	Max	Units
All Output and Supply Voltages	-0.5	+7.0	V	Supply Voltage, V _{CC}			
All Input Voltages	-1.0	+ 5 .5	V	DP8216M, DP8226M	4.5	5.5	V
Output Currents		125	mΑ	DP8216, DP8226	4.75	5.25	V
Lead Temperature (soldering, 10 seconds)		+300	°C	Temperature, TA DP8216M, DP8226M	-55	+125	°C
Storage Temperature	-65	+150	°C	DP8216, DP8226	0	+70	°C
Power Dissipation*							
Cavity Package		1160	mW				
Molded Package		1000	mW				

^{*}Derate Cavity Package at 80° C/W above 70° C; derate Molded Package at 90° C/W above 70° C.

Electrical Characteristics DP8216, DP8226 $V_{CC} = 5 V \pm 5\%$ (Notes 2, 3, and 4)

	Parameter			Limits		
Symbol	Description	Conditions	Min	Тур	Max	Units
DRIVE	RS					
VIL	Input Low Voltage				0.95	V
VIН	Input High Voltage		2			V
ΙF	Input Load Current	V _F = 0.45 V		-0.03	-0.25	mA
IR	Input Leakage Current	V _R = 5.25 V			10	μΑ
Vс	Input Clamp Voltage	I _C = -5 mA			-1.2	V
VOL1	Output Low Voltage	I _{OL} = 25 mA		0.3	0.45	V
VOL2	Output Low Voltage	DP8216 IOL = 55 mA DP8226 IOL = 50 mA		0.5	0.6	V
VOH	Output High Voltage	I _{OH} = -10mA	2.4	3.0		V
Isc	Output Short Circuit Current	V _{CC} = 5.0 V	-30	-75	-120	mA
lol	Output Leakage Current TRI-STATE	V _O = 0.45 V/5.5 V	 		100	μΑ
RECEIV		<u></u> -		1		
VIL	Input Low Voltage				0.95	V
VIH	Input High Voltage		2			V
۱۴	Input Load Current	VF = 0.45 V	·	-0.08	-0.25	mA
VC	Input Clamp Voltage	I _C = -5 mA			-1.2	V
VOL	Output Low Voltage	I _{OL} = 15 mA		0.3	0.45	V
VOH 1	Output High Voltage	IOH = -1 mA	3.65	4.0		V
Isc	Output Short Circuit Current	V _O ≈ 0 V	-15	-35	-65	mA
lol	Output Leakage Current TRI-STATE	V _O = 0.45 V/5.5 V			20	μΑ
CONTR	OL INPUTS (CS, DIEN)					
VIL	Input Low Voltage				0.95	V
VIH	Input High Voltage		2			V
lF	Input Load Current	VF = 0.45 V		-0.15	-0.5	mA
IR	Input Leakage Current	V _R = 5.25 V	_		20	μΑ
^I CC	Power Supply Current DP8216 DP8226			95 85	130 120	mA mA

Electrical Characteristics DP8216M, DP8226M V_{CC} = 5V ±10% (Notes 2, 3 and 4)

Parameter		-			Limits	
Symbol	Description	Conditions	Min	Тур	Max	Unit
DRIVE	RS					
VIL	Input Low Voltage DP8216M DP8226M				0.95 0.90	\
V_{IH}	Input High Voltage		2			\
ΙF	Input Load Current	V _F = 0.45 V		-0.08	-0.25	m/
IR	Input Leakage Current	V _R = 5.5 V			40	μ
٧c	Input Clamp Voltage	1 _C = -5 mA			-1.2	,
V _{OL1}	Output Low Voltage	I _{OL} = 25 mA		0.3	0.45	\
VOL2	Output Low Voltage	IOL = 45 mA		0.5	0.6	V
VOH	Output High Voltage	IOH = -5 mA	2.4	3.0		\
ISC	Output Short Circuit Current	V _{CC} = 5.0 V	-30	-75	-120	m/
1101	Output Leakage Current TRI-STATE	V _O = 0.45 V/5.5 V			100	μ
RECEI	VERS					_
VIL	Input Low Voltage DP8216M DP8226M				0.95 0.9	
VIH	Input High Voltage		2			,
lF	Input Load Current	V _F = 0.45 V		-0.08	-0.25	m/
VC	Input Clamp Voltage	IC = -5 mA			-1.2	,
VOL	Output Low Voltage	1 _{OL} = 15 mA		0.3	0.45	,
V _{OH1}	Output High Voltage	IOH = -0.5 mA	3.4	3.8		,
V _{OH2}	Output High Voltage	I _{OH} = -2 mA	2.4			,
ISC	Output Short Circuit Current	V _{CC} = 5.0 V	-15	-35	-65	m
lol	Output Leakage Current TRI-STATE	V _O = 0.45 V/5.5 V			20	μ
CONTR	ROL INPUTS (CS, DIEN)					
VIL	Input Low Voltage DP8216M DP8226M				0.95 0.9	
VIH	Input High Voltage		2			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ΙF	Input Load Current	V _F = 0.45 V		-0.15	-0.5	m/
IR	Input Leakage Current	V _R = 5.5 V			80	μ
ICC	Power Supply Current DP8216M DP8226M			95 85	130 120	m/

Switching Characteristics (Notes 2, 3, and 4)

	Parameter		Limits			
Symbol	Description	Conditions	Min	Тур	Max	Units
DP8216	6M, DP8226M, V _{CC} = 5V ±10%					
tPD 1	Input to Output Delay, DO Outputs	$C_L = 30 \text{ pF}, R_1 = 300 \Omega,$ $R_2 = 600 \Omega$		15	25	ns
tPD 2	Input to Output Delay, DB Outputs DP8216M DP8226M	$C_L = 300 pF, R_1 = 90 \Omega,$ $R_2 = 180 \Omega$		19 16	33 25	n: n:
tE	Output Enable Time DP8216M DP8226M	DO Outputs: $C_L = 30 \text{pF}$, $R_1 = 300 \Omega/10 \text{k}\Omega$, $R_2 = 600 \Omega/1 \text{k}\Omega$ DB Outputs: $C_L = 300 \text{pF}$, $R_1 = 90 \Omega/10 \text{k}\Omega$, $R_2 = 180 \Omega/1 \text{k}\Omega$		42 36	75 62	n: n:
tD	Output Disable Time DP8216M DP8226M	DO Outputs: $C_L = 5 pF$, $R_1 = 300 \Omega/10 k\Omega$, $R_2 = 600 \Omega/1 k\Omega$ D8 Outputs: $C_L = 5 pF$, $R_1 = 90 \Omega/10 k\Omega$, $R_2 = 180 \Omega/1 k\Omega$		16 16	40 38	n:
DP8216	6, DP8226 V _{CC} = 5.0 V ± 5%					
tPD 1	Input to Output Delay, DO Outputs	$C_L = 30 \text{ pF}, R_1 = 300 \Omega,$ $R_2 = 600 \Omega$		15	25	n:
tPD2	Input to Output Delay, D8 Outputs DP8216 DP8226	$C_L = 300 \text{ pF}, R_2 = 90 \Omega,$ $R_2 = 180 \Omega$		20 16	30 25	n n
tE	Output Enable Time DP8216 DP8226	DO Outputs: $C_L = 30 pF$, $R_1 = 300 \Omega/10 k\Omega$, $R_2 = 600 \Omega/1 k\Omega$ DB Outputs: $C_L = 300 pF$, $R_1 = 90 \Omega/10 k\Omega$, $R_2 = 180 \Omega/1 k\Omega$		45 35	65 54	n n
tp	Output Disable Time	DO Outputs: $C_L = 5 pF$, $R_1 = 300 \Omega/10 k\Omega$, $R_2 = 600 \Omega/1 k\Omega$ DB Outputs: $C_L = 5 pF$, $R_1 = 90 \Omega/10 k\Omega$, $R_2 = 180 \Omega/1 k\Omega$		20	35	n

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DP8216M and DP8226M and across the 0° C to $+70^{\circ}$ C temperature range for the DP8216 and DP8226. All typical values are given for $V_{CC} = 5 \text{ V}$ and $T_{A} = 25^{\circ}$ C. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Test Conditions

Test Load Circuit

Input pulse amplitude of $2.5\,V$. Input rise and fall times of $5.0\,ns$ between $1.0\,V$ and $2.0\,V$. Output loading is $5.0\,mA$ and $10\,pF$. Speed measurements are made at $1.5\,V$ levels.

Switching Time Waveforms

Capacitance TA = 25°C

Symbol	Parameter	Min.	Тур.	Max.	Unit
CIN	Input Capacitance		4	6	рF
COUT	Output Capacitance DO Outputs DB Outputs		6 13	10 18	pF pF

Note: This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, VBIAS = 2.5 V, VCC = 5.0 V, and T_A = 25° C.

Microprocessor Support Circuits

DP8224 Clock Generator and Driver

general description

The DP8224 is a clock generator/driver contained in a standard, 16-pin dual-in-line package. The chip, which is fabricated using Schottky Bipolar technology, generates clocks and timing for National Semiconductor's N8080 microcomputer family.

Included in the DP8224 is an oscillator circuit that is controlled by an external crystal, which is selected by the designer to meet a variety of system speed requirements. Also included in the chip are circuits that provide: a status strobe for the DP8228 or DP8238 system controllers, power-on reset for the INS8080A microprocessor, and synchronization of the READY input to the INS8080A.

features

- Crystal-Controlled Oscillator for Stable System Operation
- Single Chip Clock Generator and Driver for INS 8080A Microprocessor
- Provides Status Strobe for DP8228 or DP8238 System Controllers
- Provides Power-On Reset for INS8080A Microprocessor
- Synchronizes READY Input to INS8080A Microprocessor
- Provides Oscillator Output for Synchronization of External Circuits
- Reduces System Component Count

N8080A microcomputer family block diagram

absolute maximum ra	tings (Note 2)	operating condit	ions		
			MIN	MAX	UNITS
Supply Voltage		Supply Voltage			
Vcc	7V	V _{CC}	4.75	5.25	V
V _{DD}	15V	VDD	11.4	12.6	V
Input Voltage	-1V to +5.5V	Temperature (T _A)	0	+70	°C
Storage Temperature Range	65°C to +150°C		•		

300°C

electrical characteristics (Note 3)

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1F	Input Current Loading	V _F = 0.45V			-0.25	mA
¹ R	Input Leakage Current	V _R = 5.25V			10	μΑ
v _c	Input Forward Clamp Voltage	I _C = -5 mA				V
VIL	Input "Low" Voltage	V _{CC} = 5V			0.8	V
VIH	Input "High" Voltage	RESIN Input	2.6			V
		All Other Inputs	2.0			V
V _{IH} -V _{IL}	RESIN Input Hysteresis	V _{CC} = 5V	0.25			V
VOL	Output "Low" Voltage					
	$(\phi 1, \phi 2)$, Ready, Reset, STSTB	I _{OL} = 2.5 mA			0.45	V
	Osc., φ2 (TTL)	I _{OL} = 10 mA			0.45	V
	Osc., φ2 (TTL)	IOL = 15 mA			0.45	V
Vон	Output "High" Voltage					
	φ1, φ2	I _{OH} = -100 μA	9.4			V
	Ready, Reset	I _{OH} = -100 μA	3.6			V
	Osc., φ2 (TTL), STSTB	l _{OH} = -1 mA	2.4			V
I _{SC}	Output Short-Circuit Current (All Low Voltage Outputs Only), (Note 1)	V _O = 0V, V _{CC} = 5V	-10		-60	mA
1cc	Power Supply Current				115	mA
IDD	Power Supply Current				12	mA

Note 1: Caution $-\phi 1$ and $\phi 2$ output drivers do not have short circuit protection.

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 3: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DP8224. All typical values are for TA = 25°C. V_{CC} = 5V, and V_{DD} = 12V.

crystal requirements*

Load Capacitance

0.005% at 0°C to +70°C Tolerance Resonance

Fundamental** 20 pF to 30 pF Equivalent Resistance Power Dissipation (Min) 75Ω to 20Ω 4 mW

^{*}It is good design practice to ground the case of the crystal

^{**}With tank circuit, use 3rd overtone mode

switching	characteristics	(Note 3)
-----------	-----------------	----------

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
^t φ1	φ1 Pulse Width		$\frac{2t_{CY}}{9}-20$			ns
t _Ø 2	φ2 Pulse Width	C _L = 20 pF to 50 pF o2 TTL, C _L = 30 pF, R1 = 300Ω, R2 = 600Ω	$\frac{5t_{CY}}{9} - 35$			ns
tD1	φ1 to φ2 Delay	0 00 5 50 5	0			ns
t _{D2}	φ2 to φ1 Delay	C[= 20 pr to 50 pr	$\frac{2t_{CY}}{9} - 14$			ns
t _{D3}	φ1 to φ2 Delay		2t _C Y 9		$\frac{2t_{CY}}{9} + 20$	ns
tr	∮1 and ∮2 Rise Time				20	ns
tf	φ1 and φ2 Fall Time				20	ns
tD¢2	φ2 to φ2 (TTL) Delay	o2 TTL, C_L = 30 pF, R1 = 300Ω, R2 = 600Ω	-5		15	ns
t _{DSS}	φ2 to STSTB Delay		$\frac{6tCY}{9} - 30$		6tCY 9	ns
tpW	STSTB Pulse Width	STSTB. CL = 15 pF	tCY - 15			ns
†DRS	RDYIN Set-Up Time to Status Strobe	$R1 = 2 k\Omega, R2 = 4 k\Omega$	$50 - \frac{4t_{CY}}{9}$			ns
t _{DRH}	RDYIN Hold Time After STSTB		4t _C Y 9			ns
tDR	READY or RESET to d2 Delay		$\frac{4t_{CY}}{9}-25$			ns
tCLK	CLK Period			tCY 9		ns
	Maximum Oscillating Frequency		27			MHz
CIN	Input Capacitance				8	pF

test circuit

VOLTAGE MEASUREMENT POINTS: ϕ 1, ϕ 2 Logic "0" = 1.0V, Logic "1" = 8.0V. All other signals measured at 1.5V.

switching characteristics (For $t_{CY} = 488.28 \text{ ns}$)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tφ1	φ1 Pulse Width		89			ns
tφ2	φ2 Pulse Width		236			ns
tD1	Delay φ1 to φ2		0			ns
tD2	Delay ϕ 2 to ϕ 1		95			ns
tD3	Delay ϕ 1 to ϕ 2 Leading Edges		109		129	ns
t _r	Output Rise Time	ϕ 1 and ϕ 2 Loaded to CL = 20 to 50 pF			20	ns
tf	Output Fall Time	Ready & Reset Loaded to 2 mA/10 pF			20	ns
tDSS	φ2 to STST8 Delay	All Measurements Referenced to 1.5V	296		326	ns
tD∳2	φ2 to φ2 (TTL) Delay	unless Specified Otherwise	-5		15	ns
tpW	Status Strobe Pulse Width		40			ns
tDRS	RDYIN Set-Up Time to STST8		-167			ns
^t DRH	RDYIN Hold Time after STST8		217			ns
tDR	READY or RESET to φ2 Delay		192			ns
fMAX	Oscillator Frequency				18.432	MHz

functional pin definitions

The following describes the function of all of the DP8224 input/output pins. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Crystal Connections (XTAL 1 and XTAL 2): Two inputs that connect an external crystal to the oscillator circuit of the DP8224. Normally, a fundamental mode crystal is used to determine the basic operating frequency of the oscillator. However, overtone mode crystals may also be used. The crystal frequency is 9 times the desired microprocessor speed (that is, crystal frequency equals 1/tCy x 9). When the crystal frequency is above 10 MHz, a selected capacitor (3 to 10 pF) may have to be connected in series with the crystal to produce the exact desired frequency. Figure A.

Tank: Allows the use of overtone mode crystals with the oscillator circuit. When an overtone mode crystal is used, the tank input connects to a parallel LC network that is ac coupled to ground. The formula for determining the resonant frequency of this LC network is as follows:

 $=\frac{1}{2\pi\sqrt{LC}}$

Synchronizing (SYNC) Signal: When high, indicates the beginning of a new machine cycle. The INS8080A microprocessor outputs a status word (which describes the current machine cycle) onto its data bus during the first state (SYNC interval) of each machine cycle.

Reset In (RESIN): Provides an automatic system reset and start-up upon application of power as follows. The RESIN input, which is obtained from the junction of an external RC network that is connected between V_{CC} and ground, is routed to an internal Schmitt Trigger circuit. This circuit converts the slow transition of the power supply rise into a sharp, clean edge when its input reaches a predetermined value. When this occurs, an internal D-type flip-flop is synchronously reset, thereby providing the RESET output signal discussed below.

For manual system reset, a momentary contact switch that provides a low (ground) when closed is also connected to the RESIN input.

Ready In (RDYIN): An asynchronous READY signal that is re-clocked by a D-type flip-flop of the DP8224 to provide the synchronous READY output discussed below.

+5 Volts: V_{CC} supply. +12 Volts: V_{DD} supply. Ground: 0 volt reference.

OUTPUT SIGNALS

Oscillator (OSC): A buffered oscillator signal that can be used for external timing purposes.

 ϕ_1 and ϕ_2 Clocks: Two non-TTL compatible clock phases that provide nonoverlapping timing references for internal storage elements and logic circuits of the INS8080A microprocessor. The two clock phases are produced by an internal clock generator that consists of a divide-by-nine counter and the associated decode gating logic. Figure B.

 ϕ_2 (TTL) Clock: A TTL ϕ_2 clock phase that can be used for external timing purposes.

Status Strobe (\$\overline{STSTB}\$): Activated (low) at the start of each new machine cycle. The \$\overline{STST8}\$ signal is generated by gating a high-level SYNC input with the ϕ_{1A} timing signal from the internal clock generator of the DP8224. The \$\overline{STSTB}\$ signal is used to clock status information into the status latch of the DP8228 system controller and bus driver.

Reset: When the RESET signal is activated, the content of the program counter of the INS8080A is cleared. After RESET, the program will start at location 0 in memory.

Ready: The READY signal indicates to the INS8080A that valid memory or input data is available. This signal is used to synchronize the INS8080A with slower memory or input/output devices.

logic diagram and connection diagram (Top View)

Figure A. DP8224 Connection Diagram

National Semiconductor

Microprocessor Support Circuits

DP8228/DP8228M, DP8238/DP8238M System Controller and Bus Driver

general description

The DP8228/DP8228M, DP8238/DP8238M are system controller/bus drivers contained in a standard, 28-pin dual-in-line package. The chip, which is fabricated using Schottky Bipolar technology, generates all the read and write control signals required to directly interface the memory and input/output components of National Semiconductor's INS8080A microcomputer family. The chip also provides drive and isolation for the bidirectional data bus of the INS8080A microprocessor. Data bus isolation enables the use of slower memory and input/output components in a system, and provides for enhanced system noise immunity.

A user-selected single-level interrupt vector (RST 7) is provided by the device for use in the interrupt structure of small systems that need only one basic vector. No additional components (such as an interrupt instruction port) are required to use the single interrupt vector in these systems. The devices also generate an Interrupt Acknowledge (INTA) control signal for each byte of a multibyte CALL instruction when an interrupt is

acknowledged by the INSB080A. This feature permits the use of a multilevel priority interrupt structure in large, interrupt-driven systems.

features

- Single Chip System Controller and Bus Driver for INS8080A Microcomputer Systems
- Allows Use of Multibyte CALL Instructions for Interrupt Acknowledge
- Provides User-Selected Single-Level Interrupt Vector (RST 7)
- Provides Isolation for Data Bus
- Supports A Wide Variety of System Bus Structures
- Reduces System Component Count
- DP8238/DP8238M Provides Advanced Input/Output Write and Memory Write Control Signals for Large System Timing Control

N8080A microcomputer family block diagram

absolute maximum ra	atings	operating condition	ns		
			MIN	MAX	UNITS
Storage Temperature	-65° C to +150° C	Supply Voltage (VCC)			
Supply Voltage, V _{CC}	-0.5V to +7V	DP8228M, DP8238M	4.50	5.50	v_{DC}
Input Voltage	-1.5V to +7V	DP8228, DP8238	4.75	5.25	VDC
Output Current	100 mA	Operating Temperature (TA)			
		DP8228M, DP8238M	-55	+125	°C
		DP8228, DP8238	0	+70	°C

Note: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC electrical characteristics.

electrical characteristics

(Min \leq TA \leq Max, Min \leq VCC \leq Max, unless otherwise noted)

	PARAMETER	CONDITI	ONS	MIN	TYP (Note 1)	MAX	UNITS
Vc	Input Clamp Voltage, All Inputs	V _{CC} = Min, I _C = −5 mA			0.6	-1.0	V
lF	Input Load Current	V _{CC} = Max					
	STST8	VF = 0.45V for DP8228,D	P8238			500	μΑ
	D2 and D6	V _F = 0.40V for DP8228M,	DP8238M			750	μΑ
	D0, D1, D4, D5 and D7					250	μΑ
	All Other Inputs					250	μА
IR	Input Leakage Current	VCC = Max, VR = VCC				- 00	
	D80-D87					20	μΑ
	All Other Inputs					100	μΑ
∨тн	Input Threshold Voltage, All Inputs	V _{CC} = 5V		8.0		2.0	V
Icc	Power Supply Current	VCC = Max	DP8228, DP8238		160	190	mA
		ACC - IAIGX	DP8228M, DP8238M		160	210	mA
VOL	Output Low Voltage						
	D0-D7	VCC = Min, IQ1 = 2 mA	DP8228M, DP8238M			0.50	V
		ACC = MIII, IO L - 5 IMA	DP8228, DP8238			0.45	V
	All Other Outputs	Vcc = Min, Io1 = 10 mA	DP8228M, DP8238M			0.50	V
		VCC- WIIII, IOL - IO IIIA	DP8228, DP8238			0.45	V
Voн	Output High Voltage						
	D0-D7	V _{CC} = Min, I _{OH} = -10 μA	DP8228, DP8238	3.3	3.8		V
		ΔCC = MIII, IOH = = 10 HA	DP8228M, DP8238M	3.6	3.8		V
	All Other Outputs	V _{CC} ≈ Min, I _{OH} = −1 mA		2.4	3.8		V
los	Short Circuit Current, All Outputs	V _{CC} = 5V, V _O = 0V		15		90	mA
IO(OFF)	OFF State Output Current	VCC = Max, VO = VCC				100	μΑ
	All Control Outputs	V _{CC} = Max, V _O = 0.45V				-100	μΑ
INT	INTA Current	(See Test Conditions, Figure	: 3)			5	mA

Note 1: Typical values are for $T_A = 25^{\circ}C$ and typical supply voltages.

capacitance

 $V_{BIAS} = 2.5V$, $V_{CC} = 5.0V$, $T_{A} = 25^{\circ}C$, f = 1 MHz.

	PARAMETER	MIN	TYP (Note 1)	MAX	UNITS
CIN	Input Capacitance		8	12	pF
COUT	Output Capacitance Control Signals		7	15	pF
1/0	I/O Capacitance (D or D8)		8	15	pF

This parameter is periodically sampled and not 100% tested.

switching characteristics

 $(Min \leq V_{CC} \leq Max,\, Min \leq T_{A} \leq Max)$

PARAMETER		CONDITIONS	DP82 DP82	•		228, 238	UNITS
			MIN	MAX	MIN	MAX	
tPW	Width of Status Strobe		25		22		ns
tss	Set·Up Time, Status Inputs D0–D7		8		8		ns
tSH	Hold Time, Status Inputs D0–D7		5		5		ns
^t DC	Delay from STST8 to Any Control Signal	(Figure 2)	20	75	20	60	ns
tRR	Delay from DBIN to Control Outputs	(Figure 2)		30		30	ns
tRE	Delay from DBIN to Enable/ Disable 8080 8us	(Figure 1)		45		45	ns
^t RD	Delay from System Bus to 8080 Bus during Read	(Figure 1)		45		30	ns
twR	Delay from WR to Control Outputs	(Figure 2)	5	60	5	45	ns
tWE	Delay to Enable System Bus DB0-DB7 after STSTB	(Figure 2)		30		30	ns
tWD	Delay from 8080 Bus D0-D7 to System 8us D80D87 during Write	(Figure 2)	5	40	5	40	ns
tE	Delay from System Bus Enable to System 8us D80D87	(Figure 2)		30		30	ns
tHD	HLDA to Read Status Outputs	(Figure 2)		25		25	ns
tDS	Set-Up Time, System Bus Inputs to HLDA		10		10		ns
^t DH	Hold Time, System Bus Inputs to HLDA		20		20		ns

test conditions

FIGURE 1. Test Load

FIGURE 2. Test Load

FIGURE 3. INTA Test Circuit (For RST 7)

timing diagram

VOLTAGE MEASUREMENT POINTS: D₀ × D₇ (when outputs) Logic "0" ≈ 0.8 V, Logic "1" = 3.0 V. All other signals measured at 1.5 V. *Advanced 1/OW MEMW for 8238 only.

functional pin definitions

The following describes the function of all of the DP8228/DP8228M, DP8238/DP8238M pinouts. Some of these descriptions reference internal circuits.

INPUT SIGNALS

Status Strobe (STSTB): Activated (low) at the start of each new machine cycle. The STSTB input is used to store a status word (refer to chart) from the INS8080A microprocessor into the internal status latch of the DP8228, DP8238. The status word is latched when the STSTB returns to the high state. The INS8080A outputs this status word onto its data bus during the first state (SYNC interval) of each machine cycle.

Data Bus In (DBIN): When high, indicates that the INS8080A data bus is in the input mode. The DBIN signal is used to gate data from memory or an input/output device onto the data bus.

Write (\overline{WR}): When low, indicates that the data on the INS8080A data bus are stable for WRITE memory or output operation.

Hold Acknowledge (HLDA): When high, indicates that the INS8080A data and address buses will go to their high impedance state. When in the data bus read mode, DBIN input in the high state, a high HLDA input will latch the data bus information into the driver circuits and gate off the applicable control signal I/OR, MEMR, or INTA (return to the output high state).

Bus Enable (BUSEN): Asynchronous DMA input to the internal gating array. When low, normal operation of the internal bidirectional bus driver and gating array occurs. When high, the bus driver and gating array are driven to their high impedance state.

V_{CC} Supply: +5 volts.

Ground: 0 volt reference.

OUTPUT SIGNALS

Memory Read (MEMR): When low, signals data to be loaded in from memory. The MEMR signal is generated by strobing in status word 1, 2, or 4. (Refer to status word chart.)

Memory Write (MEMW): When low, signals data to be stored in memory. The MEMW signal is generated for the DP8238 by strobing in status word 3 or 5. (Refer to status word chart.) For the DP8228, the MEMW signal is generated by gating a low-level WR input with the strobed in status word 3 or 5.

Input/Output Read (I/OR): When low, signals data to be loaded in from an addressed input/output device. The I/OR signal is generated by strobing in status word 6.

Input/Output Write (I/OW): When low, signals data to be transferred to an addressed input/output device. The I/OW signal for the DP8238 is generated by strobing in status word 7. For the DP8228 the I/OW signal is generated by gating in a low-level WR input with the strobed in status word 7.

Interrupt Acknowledge (INTA): When low, indicates that an interrupt has been acknowledged by the INS8080A microprocessor. The INTA signal is generated by strobing in status word 8 or 10.

Single Level Interrupt (RST 7): When the $\overline{\text{INTA}}$ output is tied to 12 V through a 1 k Ω resistor, strobing in status word 8 or 10 will cause the CPU data bus outputs, when active, to go to the high state.

INPUT/OUTPUT SIGNALS

CPU Data (D₇-D₀) Bus: This bus comprises eight TRI-STATE input/output lines that connect to the INS8080A microprocessor. The bus provides bidirec-

functional pin definitions (con'd.)

tional communication between the CPU, memory, and input/output devices for instructions and data transfers. A status word (which describes the current machine cycle) is also outputted on this data bus during the first microcycle of each machine cycle (SYNC = logic 1).

System Data (DB₇ - DB₀) Bus: This bus comprises eight TRI-STATE input/output lines that connect to the memory and input/output components of the system. The internal bidirectional bus driver isolates the DB₇ - DB₀ Data Bus from the D₇ - D₀ Data Bus.

Status Word Chart

	Status					Data I	Bus Bit				Control
Machine Cycle	Word	,	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Signal
Instruction Fetch	1		1	0	1	0	0	0	1	0	MEMR
Memory Read	2		1	0	0	0	0	0	1	0	MEMR
Memory Write	3		0	0	0	0	0	0	0	0	MEMW
Stack Read	4		1	0	0	0	0	1	1 1	0	MEMR
Stack Write	5		0	0	0	0	0	1	0	0	MEMW
Input Read	6		0	1	0	0	0	0	, 1	0	I/OR
Output Write	7	1	0	0	0	1	0	0	0	0	ī/OW
Interrupt Acknowledge	8		0	0	1	0	0	0	1	1	INTA
Halt Acknowledge	9		1	0	0	0	1	0	1	0	(none)
Interrupt Acknowledge While Halt	10	ŀ	0	0	1	0	1	0	1	1	INTA

block diagram and connection diagram

Order Number DP8228J, DP8228MJ, DP8228N, DP8238J, DP8238MJ or DP8238N See NS Package J28A or N28A

National Semiconductor

Microprocessor Support Circuits

DP8300 PACE bidirectional transceiver element (PACE BTE/8)

general description

The DP8300 is an 8-bit TRI-STATE[®] MOS/TTL bus transceiver element specifically intended for application in PACE microprocessor-based systems. Its electrical characteristics and control flexibility make the BTE/8 attractive in other applications requiring the translation of MOS current outputs to high fan-out TTL levels.

Two BTE/8 devices provide complete system buffering for all 16-bit address and data input/output between the PACE CPU and all system memory and peripheral interfaces.

In the driving mode, the MOS sense amplifiers convert the MOS current outputs of the PACE CPU to a fan-out 30 (50 mA) TTL system bus. [This characteristic makes the BTE/8 an ideal buffer (driving mode only) for the PACE system timing and control bus consisting of the address data strobe (NADS), input data strobe (IDS), output data strobe (ODS) and the four output control flags (F11, F12, F13, F14).]

In the receiving mode the BTE accepts bus data through high impedance input buffers and applies the TTL signals to the PACE I/O pins.

A third mode allows both the MOS and TTL bus to be placed in the TRI-STATE (high impedance) mode. This function facilitates direct memory access (DMA) over the TTL system bus.

A latched chip enable allows the use of multiplexed address/data lines to drive CE 1 and CE 2*, selecting the BTE/8 for an input cycle. The latching function may be eliminated by connecting the strobe to ground.

features

- High TTL fan-out eliminates additional buffering requirements
- Low system data bus loading for minimum input drive
- TRI-STATE data ports and chip enables maximize application flexibility
- 8-bit parallel data flow reduces system package count
- Pin-outs are compatible with hybrid version and simplify system interconnections and layout
- Latched chip enable simplifies transmit/receive control
- High voltage output high level (V_{CC} 1.1V) on TTI bus

block diagram

Signal* = N Signal = Signal = Low Active Signal

connection diagram

Order Number DP8300N See NS Package N24A

logic diagram

truth table

	t _n			t _n + 1
CE 1	CE 2*	STR*	WBO*	TRANSCEIVER MODE
Х	×	Х	0	Receiving MOS Bus and Driving TTL Bus
×	×	1	1	Mode t _n See Note 1
0	0	0	1	TRI-STATE Mode
0	1	0	1	TRI-STATE Mode
1	0	0	1	Receiving TTL Bus and Driving MOS Bus
1	1	0	1 1	TRI STATE Mode

Note 1. On the positive-edge transition of STR* logic conditions present on CE 1 and CE 2* at the time of transition will be latched internally. The transceiver will either be in the TRI-STATE or receiving mode.

absolute maximum rating]S (Note 1)	recommended ope	erating	condit	ions
Supply Voltage	7V		MIN	MAX	UNITS
Input Voltage (All Inputs Except MBI/O Input Output Voltage	ut Active) 5.5V 5.5V	Supply Voltage (V _{CC})	4.75	5.25	V
MOS Bus Input Current	±10 mA	Temperature (T _A)	0	+70	°C
Storage Temperature	-65°C to +150°C				

300°C

Lead Temperature (Soldering, 10 seconds)

	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
TTL BUS P	ORT (BDI/O 00-07)		· · · · · · · · · · · · · · · · · · ·				
VIH	Logical "1" Input Voltage			2.0			V
VIL	Logical "0" Input Voltage					0.8	V
VOH	Logical "1" Output Voltage	WBD* = 0.8V,	IOH = -1 mA	V _{CC} -1.1	V _{CC} -0.8		V
		MB1/O = 0.5 mA	IOH = -5.2 mA	2.4	3.7		V
VOL	Logical "0" Output Voltage	WBD* = 0.8V,	I _{OL} = 20 mA		0.25	0.4	>
		MBI/O = 100μA	IOL = 50 mA		0.4	0.5	
los	Output Short Circuit Current	WBD* = 0.8V, ME VOUT = 0V, VCC	BI/O = 0.5 mA, = 5.25V, (Note 4)	-10	-35	-75	mA
IIH	Logical "1" Input Current	WBD* = 2V, V1H	= 2.4V			80	μΑ
Ц	Input Current at Maximum Input Voltage	WBD* = 2V, V _{1H} V _{CC} = 5.25V	= 5.5V,			1	mA
կլ	Logical "0" Input Current	WBD* = 2V, VIL	= 0.4V		-10	-250	μΑ
VCLAMP	Input Clamp Voltage	WBD* = 2V, IN	= −12 mA		-0.2	-1.5	V
lod	Output/Input Bus Disable Current	WBD* = STR* = 2 to 4V, V _{CC} = 5.29	2V, BDI/O = 0.4V	-80		80	μΑ
MOS BUS P	ORT (MBI/O 00-07)				·		
10	Logical "0" Input Current	WBD* = 0.8V, I _O $V_{OL} \le 0.5V$, (No		-5.0		0.10	mA
11	Logical "1" Input Current	í	H(TTL) = -1 mA, V , (Notes 5 and 6)	0.50		5.0	mA
v _O	Logical ''0" Input Voltage	WBD* = 0.8V, I_{O} V _{OL} \leq 0.5V	L(TTL) = 50 mA,			0.8	V
V ₁	Logical "1" Input Voltage	WBD* = 0.8V, I_O VOH \geq VCC - 1.	H(TTL) = -1 mA, 1V	2.0	1.5		٧
Vон	Logical "1" Output Voltage	WBD* = CE1 = BI IOH(MOS) = -1 r STR* = 0.8V		2.4	3.3		٧
VOL	Logical "0" Output Voltage	WBD* = CE1 = 2\ 5 mA, CE2* = STF			0.28	0.5	٧
los	Output Short Circuit Current	WBD* = CE1 = BI V _{CC} = 5.25V, V _C STR* = CE2* = 0	OUT = 0V,	-7	-15	-45	mA
VCLAMP	Input Clamp Voltage	I _{IN} = -12 mA				-1.5	٧
IOD	Output/Input Bus Disable Current	MBI/O = 0.4V to	4V, V _{CC} = 5.25V	-80		80	μΑ
CONTROL	INPUTS (WBD*, CE1, CE2*, STR*)	·		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·		
VIH	Logical "1" Input Voltage			2.0	T T		V
VIL	Logical "0" Input Voltage					0.8	V
1 _{1H}	Logical "1" Input Current	V _{IN} = 2.4V				20	μΑ
11	Input Current at Maximum Input Voltage	V _{IN} = 5.5V				1.0	mA

electrical characteristics (Continued) (Notes 2 and 3)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
CONTROL								
IIL	Logical "0" Input Current	V _{IN} = 0.4V		-250	-400	μΑ		
VCLAMP	Input Clamp Voltage	I _{IN} = -12 mA		−0.B5	-1.5	V		
POWER SU	JPPLY CURRENT							
Icc	Power Supply Current	V _{CC} = 5.25V		70	110	mA		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the 0° C to +70° C temperature range and the 4.75V to 5.25V power supply range. All typicals are given for V_{CC} = 5V and T_A = 25° C.

Note 3: All currents into device pins are shown as positive, out of device pins are negative. All voltages are referenced to ground unless otherwise noted.

Note 4: Only one output at a time should be shorted.

Note 5: The MBI/O Input Characteristic Graph illustrates this parameter and defines the regions of guaranteed logical "0" and logical "1" outputs. See equivalent input structure for clarification. When the MBI/O input is loaded with a high impedance source (open), the TTL output will be in the logic "0" state.

Note 6: The maximum MOS bus positive input current specification is intended to define the upper limit on guaranteed input clamp operation. At higher input currents (up to the absolute maximum rating) clamp operation is not guaranteed but TTL bus logic state is valid and no device damage will occur.

Note 7: In most applications the MOS bus data lines are higher impedance and more sensitive to noise coupling than TTL bus lines. Conservative design practice would dictate routing MOS bus lines away from high speed, low impedance TTL lines and MOS clock lines or providing a ground shield when they are adjacent.

switching characteristics $V_{CC} = 5V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$

							_
	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DATA TR	ANSFER SPECIFICATIONS						
Receiving	Mode (BDI/O Bus to MBI/O Bus)	WBD* = 3V, CL = 15 pF,	t _{pd0}		17	40	ns
		R _L = 1 k Ω , (Figures 4 and 6)	^t pd1		20	40	ns
	Driving Mode (MBI/O Bus to	WBD* = CE1 = 0V,	tpd0		40	60	ns
	BDI/O Bus)	STR* = CE2* = 3V,	t _{pd1}		40	60	ns
		$C_L = 50 \text{ pF}, R_L = 100 \Omega,$					
		(Figures 3 and 5)				L	<u></u>
TRANSCE	IVER MODE SPECIFICATIONS						
Select Bus	1444						
tDS	Chip Enable Data Set-Up	(Figure 1)		45	23		ns
^t DH	Chip Enable Data Hold	(Figure 1)		0			ns
tES	Set-Up	(Figure 1)		0			ns
TTL Data	Bus (BDI/O 00-07)						
tBD OD	Bus Data Output Disable	C_L = 5 pF, R_L = 100 Ω , (Figure	re 1)	5	20	50	ns
^t BD OE	Bus Data Output Enable	CL = 50 pF, RL = 100 Ω, (Figu	ure 1)		25	80	ns
tBD IE	Bus Data Input Enable	(Figure 1)			30		ns
tBD ID	Bus Data Input Disable	(Figure 1)			30		ns
MOS Data	Bus (MBI/O 00-07)						
tMB OD	MOS Bus Output Disable	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$, (Figure	re 1)	15	50	100	ns
^t MB OE	MOS Bus Output Enable	$C_L = 15 pF$, $R_L = 1 k\Omega$, (Figure	re 1)		50	100	ns
tMB ID	MOS Bus Input Disable	(Figure 1)			55		ns
tMB IE	MOS Bus Input Enable	(Figure 1)			20		ns
Select Bus						<u> </u>	
tCLR	Clear Previous Chip Enable	(Figure 2)			25	50	ns

switching time waveforms and ac test circuits

FIGURE 1

FIGURE 2

*This input network simulates the actual drive characteristic of the PACE outputs FIGURE 5, MBI/O to BOI/O ac Loads

FIGURE 6. BOI/O to MBI/O ac Loads

Note 1: Freq = 1 MHz, duty cycle = 50%, $t_{\mbox{\scriptsize R}}$ = $t_{\mbox{\scriptsize F}} \leq$ 10 ns (refer to Figures 5 and 6) .

Note 2: All capacitance values include probe and jig capacitance (refer to Figures 5 and 6).

typical performance characteristics

OUTPUT VOLTAGE (V)

MOS BUS

HIGH LEVEL DUTPUT CURRENT (mA)

MOS BUS

*See Note 7 under electrical characteristics

TTL CLK

CNOV

TCLK* 8

LCK*

C2

typical applications (Continued)

Multiplexed TTL System Bus*

^{*}See Note 7 under electrical characteristics

Microprocessor Support Circuits

DP8302, DP8305 PACE system timing element (PACE STE)

general description

The PACE STE provides an oscillator, CPU clock driver, and TTL system clocks in a single 16-pin DIP. The STE is intended specifically for application in PACE microprocessor-based systems.

An external crystal provides frequency control. True and complemented non-overlapping clock outputs are generated at one-half the oscillator frequency. Non-overlap intervals may be controlled with a single external capacitor. Series damping resistors are provided on the MOS (CPU) clock outputs (CLK, NCLK).

TTL level system clock outputs are also provided to facilitate the synchronizing of system operations.

DP8302 is used with 2.6667 MHz crystal, and DP8305 is used with $4.0\,\mathrm{MHz}$ crystal.

features

- Internal Oscillator Driven Directly from External Crystal, Minimizing Package Count
- External Oscillator Input Maximizes Application Flexibility
- TTL System Clocks Simplify Interfaces and Facilitate Synchronization of System Operations
- MOS Clock Outputs, No External MOS Clock Drivers Required
- High Voltage Output High Level (V_{CC} 1.1 V) on TTL System Clocks

block and connection diagrams

Figure 1.

operating conditions absolute maximum ratings [1] Min. Max. Units (V_{GG}) -15.0 V 4.75 5.25 ٧ Supply Voltage (V_{CC}) -11.40 -12.6 ν (V_{GG}) Storage Temperature -65°C to +150°C °c +70 Temperature

Lead Temperature (soldering, 10 seconds) 300°C

Parameter	Cond	itions	Min.	Typ.	Max.	Units
OUTPUT SPECIFICATIONS:						
T CLK, T CLK* (TTL Clocks)						
V _{OH} Logic "1" Output Voltage	V _{CC} = 4.75 V	$I_{OH} = -1 mA$	3.65	4.25		٧
V _{OL} Logic "0" Output Voltage	V _{CC} = 4.75 V	I _{OL} = 32 mA		0.25	0.4	V
IOS Output Short Circuit Current	(Note 4), V _{CC} =	5.25 V, V _O = 0	- 10	-33	-55	mA
CK, NCK, CLK, NCLK						
V _{OH} Logic "1" Output Voltage	I _{OH} = -100μA		V _{CC} - 0.9	V _{CC} - 0.5		V
N. 1	V _{CC} = 4.75 V	I _{OL} = 100 μA		V _{GG} + 0.1	V _{GG} + 0.25	V
VOL Logic "0" Output Voltage	V _{GG} = -11.4 V	I _{OL} = 5 mA		$V_{GG} + 0.2$	V _{GG} + 0.5	V
INPUT SPECIFICATIONS:						
EXTC						
V _{IH} Logic "1" Input Voltage			2.0			٧
1	V _{CC} = 5.25 V	V _{IN} = 2.4 \/			40	μΑ
I _{IH} Logic "1" Input Current	V _{CC} = 5.25 V	V _{IN} = 5.5 V			1.0	m.A
V _{IL} Logic "0" Input Voltage					0.8	
I _{IL} Logic "0" Input Current	V _{CC} = 5.25 V	$V_{1L} = 0.4 V$		-0.9	-1.6	m.A
V _{CLAMP} Input Clamp Diode	V _{CC} = 4.75 V	I _{1L} = -12 mA		-0.8	-1.5	\
POWER SUPPLY CURRENT						
Icc Supply Current from V _{CC}	V _{CC} = 5.25 V			20	30	m <i>P</i>
I _{GG} Supply Current from V _{GG}	V _{GG} = -12.6 V			-40	-55	mA

switching characteristics

Crystal frequency at 2.6667 MHz for DP8302 or 4 MHz for DP8305, T_A = 0°C to +70°C, V_{CC} - V_{GG} = +17 V ± 5%.

			l	imits		Units	Test
Symbol	Parameter		Min.	Тур.	Max.	Onits	Conditions
		at 2.6667 MHz C _{NOV} = 60 pF	5	12		ns	See Note 5
NOV1, [†] NOV2	Non-Overlap Time	at 4.0 MHz C _{NOV} = 40 pF	5	10		ns	300 110 10 3
	MOS Clocks Pulse Width (NCLK, CLK, NCK, CK)	at 2.6667MHz C _{NOV} = 60 pF	300	320		ns	See Note 5
tpw	MUS Clocks Pulse Width (NCLK, CLK, NCK, CK	at 4.0 MHz C _{NOV} = 40 pF	205	213 ns	ns	0.0	
t _R	MOS Clocks Rise Time (NCLK, CLK, NCK, CK)				40	ns	See Note 5
tr	MOS Clocks Fall Time (NCLK, CLK, NCK, CK)		1		40	ns	See Note 5
tPH1, tPH2	TTL Clocks to MOS Clocks High Level Delay		-40		40	ns	See Note 5
tpL1, tpL2	TTL Clocks to MOS Clocks Low Level Delay		-5		80	ns	See Note 5
t _{TD1} , t _{TD2}	TTL Clock to TTL Clock Delay		-25		25	ns	See Note 5
t _{START}	Time Delay from Last Power Applied to MOS Clo	ocks Stabilized			100	ms	See Figure 7

- 1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
- 2. Unless otherwise specified, min/max limits apply across the 0°C to +70°C temperature range and V_{CC} = 4.75 V to 5.25 V, V_{GG} = −11.4 V to -12.6 V power supply range. All typicals are given for V_{CC} = 5.0 V, V_{GG} = -12 V, and T_A = +25° \tilde{C}
- 3. All currents into device pins are shown as positive; currents out of device pins are shown as negative. All voltages are references to ground unless otherwise noted.
- 4. Only one output at a time should be shorted.
- 5. The test conditions for measuring AC parameters are shown in Figure 3, with $C_1 = C_2 = 60 \, \text{pF}$, $C_{NOV} = 60 \, \text{pF}$ at 2.6667 MHz and 40 pF at 4.0 MHz. Load conditions for MOS clocks and TTL clocks are shown in Figures 4 and 5. Including probe and jig capacitance, CL1 = 20 pF to 80 pF, and CL2 = 40 pF.

recommended crystal specifications

- AT-cut crystal
- $\bullet~2.6667\,\text{MHz}\,\pm\,0.1\%$, or 4.0 MHz $\pm\,0.1\%$, fundamental mode
- 5 mW maximum
- 150 Ω maximum series resistance

functional description

OSCILLATOR

The oscillator incorporates a low-power inverter biased in the linear region utilizing an internal feedback network. An external crystal is connected between pins X1 and X2 to provide frequency control. EXTC must be grounded for this operating mode. The circuit board traces connecting the crystal to pins X1 and X2 should be as short as possible and should be physically isolated from all high energy, level switching signal traces, particularly the CPU MOS clock lines.

When an external oscillator is to be used in place of the internal crystal oscillator, pin X1 must be tied to V_{GG} and pin X2 must be left open. Then, EXTC may be used as a TTL input for the external oscillator.

DIVIDE AND SQUARING CIRCUIT

A flip-flop is used to provide a square wave clock signal by dividing the buffered oscillator output by two. The outputs of this circuit are buffered to provide TTL system clock signals which lead the MOS level clock outputs.

NON-OVERLAP CIRCUIT

The Divider output drives a cross-coupled latch containing a delay in the feedback path which insures non-overlapping MOS clock signals. The delay in the feedback path can be increased by connecting a capacitor between pins LCK and LCK*. The effect of the capacitor on increasing the non-overlap interval is shown in the Typical Characteristics section. (Figure 6)

MOS CLOCK DRIVER

The MOS Clock Driver produces output voltage swings from the +5 V supply to the -12 V supply. CLK and NCLK outputs contain a 25 Ω series damping resistor, a typically optimum value for circuit board layouts with clock interconnect lines of less than two inches.

Undamped MOS clock outputs, CK and NCK, are also available in the event other values of series damping resistors are desired.

It is recommended that 0.1 μ F high frequency capacitors be provided from V_{CC} to ground and from V_{GG} to ground immediately adjacent to the STE.

timing diagram

TIMES FOR NCLK, NCK, CLK, AND CK MEASURED AT 10% AND 90%

Figure 2.

test conditions DP8302 OR DP8205 NCLK, CLK OR NCK, CK LOAD (ONLY A PAIR AT A TIME IS TESTEO) OUTPUT UNGER TEST TCLK*, TCLK LOAD СК NC Vcc 14 X 1 CLK 13 X2 NCLK OUTPUT UNGER TEST 12 2.6667 MHz OR 4 0 MHz V66 RL = 390 12 11 TCLK NCK 寸20 to 80 pF 10 TCLK LCK GND LCK* CNOV C₁ = C₂ = 60 pF C_{NOV} = 60 pF AT 2.6667 MHz, 40 pF AT 4 0 MHz,* * ALL CAPACITORS ARE ±5%. Figure 3. Figure 4. Figure 5. typical characteristics TYPICAL NON-OVERLAP TIME VS. tSTART - TIME OFLAY FROM LAST POWER APPLIED TO MOS CLOCKS STABILIZEO. NON-OVERLAP CAPACITOR Vcc = 5 V 70 VGG = -12 V 60 CL1 = 80pF TA = 25° NON-OVERLAP TIME VCC 50 90% 30 (SII) AON NCLK, CLK, NCK, OR CK 100 125 150 175 200 CNOV (pf) NON-OVERLAP CAPACITANCE Figure 6. Figure 7. typical applications DP8300 8TE PACE STR* CE 2* CE 1 INITIALIZE 1/0 PORT 1/0 PORT I/O PORT I/C PORT

typical connection diagram

Microprocessor Support Circuits

DP7304B/DP8304B 8-Bit TRI-STATE® Bidirectional Transceiver

General Description

The DP7304B/DP8304B are 8-bit TRI-STATE® Schottky transceivers. They provide bidirectional drive for busoriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16 mA drive capability on the A ports and 48 mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

Transmit/Receive inputs determine the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a TRI-STATE condition.

The output high voltage (V_{OH}) is specified at V_{CC} – 1.15 V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Features

- 8-Bit Bidirectional Data Flow Reduced System Package Count
- Bidirectional TRI-STATE Inputs/Outputs Interface with Bus-Oriented Systems
- PNP Inputs Reduce Input Loading
- Output High Voltage Interfaces with TTL, MOS, and CMOS
- 48 mA/300 pF Bus Drive Capability
- Pinouts Simplify System Interconnections
- Transmit/Receive and Chip Disable Simplify Control Logic

See NS Package J20A or N20A

- Compact 20-Pin Dual-In-Line Package
- Low ICC Power (8 mA per bidirectional bit)

Logic and Connection Diagrams

Logic Table

Inputs		Resulting Conditions		
Chip Disable	Transmit/Receive	A Port	B Port	
0	0	OUT	IN	
0	1	IN	OUT	
1	×	TRI-STATE	TRI-STATE	

X = Don't Care

Absolute Maximum I	Ratings (Note 1)	Recommended Operating Condit					
Supply Voltage Input Voltage	7 V 5.5 V	Supply Voltage (VCC)	Min	Max	Units		
Output Voltage Storage Temperature Lead Temperature (soldering, 1	5.5 V -65° C to +150° C (0 seconds) 300° C	DP7304B DP83048	4.5 4.75	5.5 5.25	V V		
Power Dissipation Cavity Package (J) Molded Package (N)	730 mW at 125°C 600 mW at 70°C	Temperature (T _A) DP73048 DP83048	-55 0	125 70	°C °C		

Electrical Characteristics (Notes 2 and 3)

	Parameter	Condition		Min	Тур	Max	Units
A D / A		Condition		TVIII.	ТУР	IVIAA	Onits
A Port (A		001 7/5 001					
VIH	Logical "1" Input Voltage	CD = 0.8V, T/R = 2.0V		2.0			V
VIL	Logical "0" Input Voltage	CD = $0.8V$, $T/\bar{R} = 2.0V$				0.8	V
			DP73048			0.7	V
∨он	Logical "1" Output Voltage	$CD = 0.8V, T/\bar{R} = 0.8V,$	IOH = -0.4 mA	V _{CC} -1.15	V _{CC} -0.7		V
			IOH = -3 mA	2.7	3.95		V
VOL	Logical "0" Output Voltage	CD = T/R = 0.8V I _{OL} =	16 mA (83048)		0.35	0.5	V
			8 mA (both)		0.3	0.4	V
los	Output Short Circuit Current	CD = 0.8 V, $T/\bar{R} = 0.8 V$, $V_{CC} = max$, Note 4	v _O = 0 v,	-10	-38	-75	mA
ЧН	Logical "1" Input Current	CD = 0.8V, T/R = 2.0V,	VIH = 2.7V		0.1	80	μΑ
Ц	Input Current at Maximum Input Voltage	CD = 2.0 V, V _{CC} = max,	VIH = 5.25V			1	mA
IIL	Logical "0" Input Current	CD = 0.8V, T/R = 2.0V	, V _{IL} = 0.4 V		-70	-200	μΑ
VCLAMP	Input Clamp Voltage	CD = 2.0 V, IN = -12 m	A		-0.7	-1.5	V
lop	Output/Input	CD = 2.0V	V _{IN} = 0.4 V			-200	μΑ
	TRI-STATE Current		V _{IN} = 4.0 V			80	μΑ
8 Port (8	0-87)						
VIН	Logical "1" Input Voltage	CD = 0.8V, T/R = 0.8V		2.0			٧
VIL	Logical "0" Input Voltage	CD = 0.8V, T/R = 0.8V	DP83048			0.8	V
			DP73048			0.7	V
Voн	Logical "1" Output Voltage	CD = 0.8V, T/R = 2.0V	I _{OH} = -0.4 mA	V _{CC} -1.15	V _{CC} -0.8		٧
			IOH = -5 mA	2.7	3.9		V
			IOH = -10 mA	2.4	3.6		V
VoL	Logical "0" Output Voltage	CD = 0.8V, T/R = 2.0V			0.3	0.4	V
OL.			I _{OL} = 48 mA		0.4	0.5	V
los	Output Short Circuit Current	$CD = 0.8 \text{ V}, T/\tilde{R} = 2.0 \text{ V}$ $V_{CC} = \text{max}, \text{Note 4}$		-25	-50	-150	mA
ЦН	Logical "1" Input Current	CD = 0.8V, T/R = 0.8V	, VIH = 2.7V		0.1	80	μΑ
l ₁	Input Current at Maximum Input Voltage	CD = 2.0 V, V _{CC} = max,				1	mA
JIL	Logical "0" Input Current	$CD = 0.8V, T/\tilde{R} = 0.8V$, V _{1L} = 0.4V		-70	-200	μΑ
	Input Clamp Voltage	CD = 2.0 V, I _{JN} = -12 m	ıA		-0.7	- 1.5	V
IOD	Output/Input	CD = 2.0 V	V _{IN} = 0.4 V			-200	μΑ
-	TRI-STATE Current		V _{IN} = 4.0 V			+200	μΑ

Electrical Characteristics (cont'd.) (Notes 2 and 3) Parameter Conditions Min Тур Max Units Control Inputs CD, T/R ۷ін Logical "1" Input Voltage 2.0 VIL Logical "0" Input Voltage 0.8 V_{IH} = 2.7 V ۱н Logical "1" Input Current 0.5 20 μΑ Input Current at VCC = max, VIH = 5.25V 1.0 mΑ Maximum Input Voltage Logical "0" Input Current $V_{IL} = 0.4 V$ T/R -0.1 -0.25 HL mΑ CD -0.25 -0.5 mΑ VCLAMP Input Clamp Voltage IIN = -12 mA-0.8 -1.5 ٧ **Power Supply Current** Icc **Power Supply Current** $CD = 2.0V, V_{IN} = 0.4V, V_{CC} = max$ 60 100 mΑ

 $CD = V_{|NA} = 0.4 V$, T/R = 2 V, $V_{CC} = max$

80

130

mΑ

Switching Characteristics $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	Parameter	Conditions	Min	Тур	Max	Units
A Port Da	ata/Mode Specifications					
tPDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4 V, T/R = 0.4 V (figure A), R1 = 1k, R2 = 5k, C1 = 30 pF		14	18	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4 V, T/R = 0.4 V (figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		13	18	ns
^t PLZA	Propagation Delay from a Logical "0" to TRI-STATE from CD to A Port	B0 to B7 = 0.4 V, T/R = 0.4 V (figure C) S3 = 1, R5 = 1k, C4 = 15 pF		11	15	ns
^t PHZA	Propagation Delay from a Logical "1" to TRI-STATE from CD to A Port	B0 to B7 = 2.4V, T/R = 0.4V (figure C) S3 = 0, R5 = 1k, C4 = 15 pF		8	15	ns
^t PZLA	Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port	B0 to B7 = 0.4 V, T/R = 0.4 V (figure C) S3 = 1, R5 \approx 1k, C4 = 30 pF		27	35	ns
^t PZHA	Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port	B0 to B7 = 2.4 V, T/R = 0.4 V (figure C) S3 = 0, R5 = 5k, C4 = 30 pF		19	25	ns
B Port Da	ata/Mode Specifications					
^t PDHLB	Propagation Delay to a Logical "0" from A Port to B Port	CD = 0.4V, T/R = 2.4V (figure A) R1 = 100Ω , R2 = 1k, C1 = 300 pF R1 = 667Ω , R2 = 5k , C1 = 45 pF		18 11	23 18	ns ns
^t PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4 V, T/R = 2.4 V (figure A) R1 = 100Ω , R2 = 1k, C1 = 300pF R1 = 667Ω , R2 = 5k, C1 = 45pF		16 11	23 1B	ns ns
tPLZB	Propagation Delay from a Logical "0" to TRI-STATE from CD to B Port	A0 to A7 = 0.4 V, T/R = 2.4 V (figure C) S3 = 1, R5 = 1k, C4 = 15 pF		13	1B	ns
tPHZB	Propagation Delay from a Logical "1" to TRI-STATE from CD to B Port	A0 to A7 = 2.4 V, T/R = 2.4 V (figure C) S3 = 0, R5 = 1k, C4 = 15 pF		В	15	ns
^t PZLB	Propagation Delay from TRI-STATE to a Logical "0" from CD to B Port	A0 to A7 = 0.4 V, T/R = 2.4 V (figure C) S3 = 1, R5 = 100Ω , C4 = $300 pF$ S3 = 1, R5 = 667Ω , C4 = $45 pF$		32 16	40 22	ns ns
tPZHB	Propagation Delay from TRI-STATE to a Logical "1" from CD to B Port	A0 to A7 = 2.4V, T/R = 2.4V (figure C) S3 = 0, R5 = 1k, C4 = 300 pF S3 = 0, R5 = 5k, C4 = 45 pF		26 14	35 22	ns ns

Switching Characteristics (cont'd.) $V_{CC} = 5 \text{ V, TA} = 25^{\circ}\text{C}$

	Parameter	Conditions	Min	Тур	Max	Units		
Transmit/Receive Mode Specifications								
[†] PHZR	Propagation Delay from a Logical "1" to TRI-STATE from T/R to A Port	CD = 0.4 V (figure B) S1 = 1, R4 = 100Ω , C3 = $300 pF$ S2 = 0, R3 = $1k$, C2 = $15 pF$		7	12	ns		
^t PLZR	Propagation Delay from a Logical "0" to TRI-STATE from T/R to A Port	CD = 0.4 V (figure B) S1 = 0, R4 = 1k, C3 = 300 pF S2 = 1, R3 = 1k, C2 = 15 pF		10	14	ns		
^t PHZT	Propagation Delay from a Logical "1" to TRI-STATE from T/R to B Port	CD = 0.4V (figure B) S1 = 0, R4 = 1k, C3 = 15 pF S2 = 1, R3 = 5k, C2 = 30 pF		16	22	ns		
^t PLZT	Propagation Delay from a Logical ''0'' to TRI-STATE from T/R to B Port	CD = 0.4 V (figure B) S1 = 1, R4 = 1k, C3 = 15 pF S2 = 0, R3 = 1k, C2 = 30 pF		17	22	ns		
^t PRL	Propagation Delay from Transmit Mode to a Logical "0," T/R to A Port	tPRL = tPHZT + tPDHLA		25	40	ns		
^t PRH	Propagation Delay from Transmit Mode to a Logical "1," T/R to A Port	tPRH = tPLZT + tPDLHA		30	40	ns		
^t PTL	Propagation Delay from Receive Mode to a Logical "0," T/R to B Port	tPTL = tPHZR + tPDHLB		25	35	ns		
^t PTH	Propagation Delay from Receive Mode to a Logical "1," T/R to B Port	tPTH = tPLZR + tPDLHB		26	35	ns		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Switching Time Waveforms and AC Test Circuits

NOTE: C1 INCLUDES TEST FIXTURE CAPACITANCE.

FIGURE A. Propagation Dalay from A Port to B Port or from B Port to A Port

Switching Time Waveforms and AC Test Circuits (cont'd.)

FIGURE B. Propagation Delay from T/R to A Port or B Port

FIGURE C. Propagation Delay to/from TRI-STATE® from CD to A Port or B Port

National Semiconductor

Microprocessor Support Circuits

DP8350 Series Programmable CRT Controllers

General Description

The DP8350 Series of CRT Controllers are single-chip bipolar (1^2L technology) circuits in a 40-pin package. They are designed to be dedicated CRT display refresh circuits.

The CRT Controller (CRTC) provides an internal dot rate crystal controlled oscillator for ease of system design. For systems where a dot rate clock is already provided, an external clock input may be used by the CRTC. In either case system synchronization is made possible with the use of the buffered Dot Rate Clock Output.

The DP8350 Series has 11 character generation related timing outputs. These outputs are compatible for systems with or without line buffers, using character ROMS, or DM8678-type latch/ROM/shift register circuits.

12 bits (4k) of bidirectional TRI-STATE[®] character memory addresses are provided by the CRTC for direct interface to character memory.

Three on-chip registers provide for external loading of the row starting address, cursor address, and top-of-page address.

A complete set of video outputs is available including cursor enable, programmable vertical blanking, programmable horizontal sync, and programmable vertical sync.

The DP8350 Series CRTC provides for a wide range of programmability using internal mask programmable ROMs:

- Character Field (both number of dots/character and number of scan lines/character)
- Characters per Row
- Character Rows per Video Frame

The CRTC also provides system sync and program inputs including 50/60 Hz control, system clear, external character/line rate clock, and character generator program.

The DP8350 Series operates on a single +5 V power supply. Outputs and inputs are TTL compatible.

Features

- Internal crystal controlled dot rate oscillator
- External dot rate clock input
- Buffered dot rate clock output
- Timing pulses for character generation
- Character memory address outputs (12 bits)
- Internal cursor address register
- Internal row starting address register
- Top-of-page address register (for scrolling)
- Programmable horizontal and vertical sync outputs
- Programmable cursor enable output
- Programmable vertical blanking output
- 50/60 Hz refresh rate
- Programmable characters/row (5 to 110)
- Programmable character field size (up to 16 dots x 16 scan line field size)
- Programmable character rows/frame (1 to 64)
- Single +5 V power supply
- Inputs and outputs TTL compatible
- · Ease of system design/application

DP8350 Series Connection Diagram

NC - NO CONNECTION

DP8350 Block Diagram

Functional Pin Description

CHARACTER GENERATION/TIMING OUTPUTS

The CRTC provides 11 interface timing outputs for line buffers, character generator ROM, DM8678-type latch/ROM/shift register combination character generators, and system status timing. All outputs are TTL compatible and directly interface to popular system circuits, including:

- DM8678 Series Character Generators
- MCM6570 Series Character ROM
- DM74166 Dot Shift Register
- MK1007P, 33571/2, 2532 80-8it Shift Registers (Line 8uffers)

Dot Rate Clock: This output is buffered for use in system synchronization and interface to dot shift register. Positive edge clock at crystal oscillator frequency.

Load Video Shift Register: Buffered output at character rate frequency. Used for direct interface to dot shift register. This output is active only during video time and therefore performs both the horizontal and vertical blanking functions. Low level active.

Latch Character Generator Address: Buffered output at character rate frequency. Active at all times. Positive edge clock.

Line Buffer Clock: This output directly interfaces to line buffers. Output operates at character rate. Negative edge clock. Not active during horizontal blanking. The number of clocks per scan line is equivalent to the number of video characters per row.

Line Rate Clock: Line rate frequency output for use with DM8678-type character generator.

Line Counter Outputs (LC₀ to LC₃): 8uffered outputs at line rate frequency for use with character ROMs without internal line counter. These outputs are also useful for system decode of present line position in character row. Outputs clock in sync with Line Rate Clock at start of horizontal blanking. Outputs are always active.

Clear Line Counter: Row rate clock — occurs in sync with Line Rate Clock during horizontal blanking between last line of any row and first line of a new row. This output is always active and is a negative edge clock — direct interface to the DM8678.

Line Buffer Recirculate Enable: This output interfaces to a line buffer and becomes inactive (logic "0" state) during the last line or the first line of a character row, depending on the state of the character generator program input. A low level on this output indicates (in line buffer applications) the time during which the line buffer is loaded with the next row of character codes.

Table 1. Character Generetor Progrem Truth Table

Character Generator Program Input	Recirculate Enable Output Low Level and New Row Address at Address Outputs
″0″	Last line of character row
″1″	First line of character row

The pulse appears at the start of horizontal blanking prior to when the memory address bus must be transferred to the CRTC, then returns to the high state at the next horizontal blanking interval.

MEMORY ADDRESS OUTPUTS/INPUTS AND REGISTERS

CRT Character Address Outputs (TRI-STATE) — A₀ to A₁₁: 12 bits of bidirectional CRT character address counter outputs are provided by the CRTC. These outputs directly interface to the system RAM memory address bus.

Within a scan line the counter is pre-set to the address contained within the Row Start Register (RSR) three character times before the start of video time. The counter is then advanced sequentially at character rate to the max video character address plus 1 for the present scan line. This address is then held during the horizontal blanking interval up to three character times before video start for the next scan line. At this point the counter is again pre-set to the contents of the RSR and the above sequence is repeated. This sequence provides scan line address repetition for every scan line of a character location within a row. Row-to-row start address modifications are accomplished by updating the contents of the RSR.

During vertical blanking the address counter operation is modified by stopping the pre-set load of the contents of the RSR into the address counter, thereby allowing the address outputs to free run during vertical blanking. This allows minimum access time to the CRTC when the CRTC address counter outputs are being used for dynamic RAM refresh.

RAM Address Enable Input: At all times the status of the address counter outputs is controlled externally by the Enable Input. Logic "1" = TRI-STATE, Logic "0" = Active.

Internal Top-of-Page, Row Start, and Cursor Registers: Control pins are provided for loading the top-of-page, row start, and cursor address into three 12-bit CRTC registers from the bidirectional memory address pins.

The Top-of-Page Register (TOPR) holds the address of the first character of the first video row. This register allows display scroll with the CRTC without the use of external memory address adders. If the TOPR is not loaded after a system clear its contents will be zero and the address outputs will be sequential from zero at the top-of-page.

The Cursor Register (CR) holds the present address of the cursor and is cleared to zero after a system clear. Once the TOPR and CR registers have been loaded they need not be accessed again until modification of their contents is required. These registers may be loaded at any time, but to cause minimum display distortion it is recommended that they be loaded only during blanking intervals.

The Row Start Register (RSR) is the working register for the CRTC address counter. It determines the first video character address on a scan line to scan line basis.

Modification of this register after the start of video in a scan line will modify the address counter outputs at the start of video on the next scan line. (See address output description.) If the RSR is never externally loaded, the CRTC address outputs will be sequential on a row-to-row basis from the TOPR contents at the start of the video page. With external loading, row-to-row non-sequential operation of the CRTC address outputs is possible, thus row-to-row edit capability. When used in this mode the RSR should be loaded after the start of video time of the last scan line of the previous row. A load to the RSR during vertical blanking will also load the TOPR.

Table 2. Register Load Truth Table

Register Select A	Register Select B	Register Load Input	Register Access
0	О	0	No Select
0	1	0	Top-of-Page
1	0	0	Row Start*
1	1	0	Cursor
X	X	1	No Select

^{*}During vertical blanking a load to this register will also load the top-of-page register

VIDEO RELATED OUTPUTS

Horizontal Sync: This output provides the necessary line (scan) rate sync to either three-terminal or composite sync monitors. The pulse is programmable in position and width at character time increments. This output may also be programmed to have RS-170 compatible serration pulses during the vertical sync interval. The active logic state of this output is also programmable.

Vertical Sync: This output provides the necessary frame rate sync consistent with either three-terminal or composite type monitors. The pulse is programmable in position and width at line (scan) time increments. The active logic state of this output is also programmable.

Cursor Enable: When a match with the CRTC cursor address register and address counter occurs a pulse will appear at this output at that video character time (character field width) for every line in that row. This output may also be programmed to appear on only one line of a character row. With the character generator program pin in a logic "0" position the cursor enable output will not be valid on the last line of a character row for that row. Like the Load Video Shift Register Output, this output is not active during horizontal or vertical blanking. High level active output.

CRT SYSTEM CONTROL FUNCTIONS

50/60 Hz Control Input: This input controls the CRT system refresh rate. The CRTC may also be programmed for refresh rates other than 50 and 60 Hz.

50/60 Hz Control	Refresh Rate		
1	60 Hz (f ₁)		
0	50 Hz (f ₀)		

Vertical Blanking Output: This output becomes active (logic "1") at the start of vertical blanking and may be programmed to stop at the end of any line of the character row before the start of the first video row. This output is useful for flag applications to other elements in the CRT system. Its active level is also programmable.

System Clear Input: This input when low sets and holds the CRTC at the start of vertical blanking for system sync and test. It also clears to zero the cursor and topof-page registers. The input has hysteresis and may be connected to a resistor to VCC and a capacitor to ground to provide power-up system clear.

Character Generator Program Input: This input modifies both the position of the recirculate enable output low level and the time at which the address outputs change to a new row address. It is intended to provide optimum use of the CRTC with character generator/ROMs programmed with or without active video on the first or last line of a character row. (See Recirculate Enable for truth table.)

External Character/Line Rate Clock: This input is intended to aid testing of the CRTC and is not meant to be used as an active input in a CRT system. When this input is left open it is guaranteed not to interfere with normal operation.

Crystal Inputs X1 and X2: The oscillator is controlled by an external, parallel resonant crystal connected between the X1 and X2 pins. Normally, a fundamental mode crystal is used to determine the operating frequency of the oscillator; however, overtone mode crystals may be used.

Crystal Specifications (parallel resonant):

•
Type AT-Cut Crystal
Tolerance 0.005% at 25°C
Stability 0.01% from 0° C to $+70^{\circ}$ C
Resonance Fundamental (parallel)
Maximum Series Resistance Dependent on
frequency
(for 10.92 MHz, 50 Ω)
Load Capacitance

Connection Diagram

If the DP8350 series is clocked at dot rate by a system clock, pin 22 (X1 input) should be clocked directly using a Schottky series circuit. Pin 21 (X2 input) may be left open.

Timing Waveforms

Figure 1. Dot/Character Rate Timing

*THE POSITION OF THE START AND STOP POINTS OF THE HORIZONTAL SYNC PULSE ARE PROGRAMMABLE BY CHARACTER TIME – WITHIN ONE CHARACTER TIME THE POINTS WILL HAVE THE 1014 TIME RELATIONSHIP.

Figure 2. Character/Line Rate Timing

Timing Waveforms (cont'd.)

Note 1: The load video shift register output is not active during vertical or horizontal blanking (remains in the logic "1" state during these intervals.

Note 2: The horizontal sync output start and stop point positions are user-programmable at character width intervals.

Note 3: The position of the recirculate enable output logic "0" level is dependent on the state of the character generator program input (CGPI). With CGPI = "0," recirculate enable occurs on the max line of a character row (solid line) and the address counter outputs roll over to the new row address at point A. With CGPI = "1," recirculate enable occurs on the first line of a character row (dashed line) and the address counter outputs roll over to the new row address at point B.

Note 4: The address counter outputs clock to the address of the last character of a video row plus 1. This address is then held during the horizontal blanking interval until video minus three character times. At this point the outputs are modified to the contents of the Row Start Register (RSR), With no external loading of the RSR the contents will be either the character address of the first character in the present row or the character address of the first character of the next video row (depending on the state of the Character Generator Program input) which will be sequential from the last character address of the last row. If the RSR was loaded, then the address outputs will be modified to the contents of the register.

Figure 3. Character/Line Rate Functional Diagram

Timing Waveforms (cont'd.)

Note 1: One full row before start of video the line counter is set to zero state — this provides line counter synchronization in cases where the number of lines in vertical blanking are not even multiples of the number of lines per row.

Note 2: The stop point of vertical blanking is programmable at line intervals within the last character row before start of video.

Note 3: The Vertical Sync Output start and stop points are programmable at line rate increments.

Figure 4. Line/Frame Rate Functional Diagram

Test Load Circuits

	Absolute Maximum Ra	tings (Note 1)	Operating Condition	s		
	Supply Voltage, VCC	7.0 V		Min	Max	Units
	Input Voltage Output Voltage	-1 V to +5.5 V 5.5 V	V _{CC} , Supply Voltage	4.75	5.25	V
1	Storage Temperature Range	-65°C to +150°C	TA, Ambient Temperature	0	+70	°C
ŀ	Lead Temperature (soldering, 10 s	econds) 300°C				

Electrical Characteristics $V_{CC} = 5 V \pm 5\%$, $T_A = 0^{\circ} C$ to $+70^{\circ} C$ (Notes 2 and 3)

	Parameter	Conditions	Min	Тур	Max	Units
VIH	Logic "1" Input Voltage (System Clear)		2.6			V
	(All Other Inputs Except X1, X2)		2.0			V
VIL	Logic ''0'' Input Voltage (System Clear)				0.8	v
	(All Other Inputs Except X1, X2)				0.8	V
VIH-VIL	System Clear Input Hysteresis			0.4		V
V _{clamp}	Input Clamp Voltage (All Inputs Except X1, X2, & Char/Line Rate Clock)	I _{IN} = -12 mA		-0.8		٧
ΊΗ	Logic "1" Input Current					
	(Address Outputs)	Enable Input = 0 V, V _{CC} = 5.25 V, V _R = 5.25 V		10		μΑ
	(All Other Inputs Except X1, X2)	$V_{CC} = 5.25 V, V_{R} = 5.25 V$		2		μΑ
IIL	Input Current (Address Outputs)	Enable Input = 0 V, VCC = 5.25 V, V IN = 0.5 V		-20		μΑ
	(All Other Inputs Except X1, X2)	V _{CC} = 5.25 V, V _{IN} = 0.5 V		-20		μА
Voн	Logic "1" Output Voltage	I _{OH} = -100μA	3.2	4.1		V
		IOH = -1 mA	2.5	3.3		V
VOL	Logic "0" Output Voltage	IOL = 5mA		0.35	0.5	V
los	Output Short Circuit Current	V _{CC} = 5 V, V _{OUT} = 0 V, (Note 4)	 -i	-40		mA
ICC	Power Supply Current	V _{CC} = 5.25 V		170		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the 0° C to $+70^{\circ}$ C temperature range and the 4.75 V to 5.25 V power supply range. All typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5.0$ V.

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.

Note 4: Only one output at a time should be shorted.

ns

	Parameter	Conditions	Min	Тур	Max	Unit
^t D1	Dot Clock to Load Video Shift Register Negative Edge	$C_L = 50 pF, R_L = 1 k\Omega,$ Load Circuit 1		5		ns
t _{D2}	Dot Clock to Load Video Shift Register Positive Edge	$C_L = 50 pF, R_L = 1 k\Omega,$ Load Circuit 1		11		ns
D3	Dot Clock to Latch Character Generator Positive Edge	$C_L = 50 pF, R_L = 1 k\Omega,$ Load Circuit 1		11		ns
tD4	Dot Clock to Latch Character Generator Negative Edge	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		4		ns
D5	Dot Clock to Line Buffer Clock Negative Edge	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		20		ns
PW1	Line Buffer Clock Pulse Width	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		N (DT)*		ns
tD6	Dot Clock to Cursor Enable Output Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		25		ns
t _{D7}	Dot Clock to Valid Address Output	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1	i	20		ns
t _{DB}	Latch Character Generator to Line Rate Clock Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		300+2DT		ns
tD9	Latch Character Generator to Clear Line Counter Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		400+2DT		ns
^t D10	Line Rate Clock to Line Counter Output Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		180		ns
^t D11	Line Rate Clock to Line Buffer Recirculate Enable Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		200		ns
[†] D12	Line Rate Clock to Vertical Blanking Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		200		ns
t _{D13}	Line Rate Clock to Vertical Sync Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		200		ns
t _{D14}	Latch Character Generator to Horizontal Sync Transition	$C_L = 50 pF$, $R_L = 1 k\Omega$, Load Circuit 1		100		ns
tSI	Register Select/Memory Address Setup Time Prior to Register Load Negative Edge			100		ns
tHI	Register Select Memory Hold Time After Register Load Positive Edge			0		ns
tPW2	Register Load Pulse Width			150		ns
fMAXdot	Maximum Dot Rate Frequency			25		MH
fMAXchar	Maximum Character Rate Frequency			2.5		MH
tLZ, tHZ	Delay from Enable Input to High Impedance State from	C _L = 15 pF, Load Circuit 2		25		ns

Note 1: Unless otherwise specified, all AC measurements are referenced to the 1.5 V level of the input to 1.5 V of the output.

Note 2: When external clock inputs are used, the input characteristics are $Z_{OUT} = 50 \Omega$ and $t_R \le 10 \, \text{ns}$, $t_F \le 10 \, \text{ns}$.

Logic "0" and Logic "1"

High Impedance State

tZL, tZH

Delay from Enable Input to Logic "0" and Logic "1" from CL = 15 pF, Load Circuit 2

25

^{*&}quot;DT" is defined as the duration (in ns) of one full cycle of the Dot Rate Clock (Item 20 of the ROM Program Table). "N" denotes the number of DTs per definition in Item 24 of the ROM Program Table.

DP8350 Series Option Program Table (Notes 1, 2, and 3)

Item No.	Parameter		Value			
1	Character (Font Size)	Dots per Character				
2		Scan Lines per Character		, , , , , , , , , , , , , , , , , , , ,		
3	Character Field (Block Size)	Dots per Character				
4		Scan Lines per Character				
5	Number of Video Characters per Row					
6	Number of Video Character Rows per Frame					
7	Number of Video Scan Lines (Item 4 x Item 6)					
8	Frame Refresh Rate (Hz) (two frequencies allowed) f1 = f0 =					
9	Delay after/before Vertical Blank start to start of Vertical Sync (+/- Number of Scan Lines)					
10	Vertical Sync Width (Number					
11	Delay after Vertical Blank start to start of Video (Number of Scan Lines)					
12	Total Scan Lines per Frame (Item 7 + Item 11 = Item 13 ÷ Item 8)					
13	Horizontal Scan Frequency (Line Rate) (kHz) Item 8 x Item 12)					
14	Number of Character Times per Scan Line					
15	Character Clock Rate (MHz) Item 13 x Item 14)					
16	Character Time (ns) (1 ÷ Item 15)					
17	Delay after/before Horizontal Blank start to Horizontal Sync Start (+/- Character Times)					
18	Horizontal Sync Width (Character Times)					
19	Dot Frequency (MHz) (Item 3 x Item 15)					
20	Dot Time (ns) (1 ÷ Item 19)					
21	Vertical Blanking Stop before start of Video (Number of Scan Lines) (Range = Item 4 - 1 line to 0 lines)					
22	Cursor Enable on all Scan Line	es of a Row? (Yes or No) If not, which Line?				
23	Does the Horizontal Sync Puls	e have Serrations during Vertical Sync? (Yes or No)				
24	Width of Line Buffer Clock log (Number of Dot Time increme	Width of Line Buffer Clock logic "0" state within a Character Time (Number of Dot Time increments)				
25	Serration Pulse Width, if used	Serration Pulse Width, if used (Character Times)				
26	Horizontal Sync Pulse Active state logic level (1 or 0)					
27	Vertical Sync Pulse Active state logic level (1 or 0)					
28	Vertical Blanking Pulse Active state logic level (1 or 0)					

Note 1: If the Cursor Enable, Item 22, is active on only one line of a character row, then Item 21 must be either "1" or "0" unless it is the same as the line selected for Cursor Enable.

Note 2: Item 24 x Item 20 should be > 250 ns.

Note 3: Item 11 must be greater than Item 4 + 1.

DP8350 Series Option Program Table

DP8350 Option: 80 Characters x 24 Rows, 5 x 7 Character Font, 7 x 10 Character Field

item No.	Parameter		Value		
1		Dots per Character	5		
2	Character (Font Size)	Scan Lines per Character	7		
3		Dots per Character		7	
4	Character Field (Block Size)	Scan Lines per Character	10		
5	Number of Video Characters p	per Row	80		
6	Number of Video Character Rows per Frame		24		
7	Number of Video Scan Lines (Item 4 x Item 6)		240		
В	Frame Refresh Rate (Hz) (two	o frequencies allowed)	f1 = 60 Hz f0 = 50 Hz		
9	Delay after/before Vertical BI	ank start to start of Vertical Sync (+/- Number of Scan Lines)	4	30	
10	Vertical Sync Width (Number	of Scan Lines)	10	10	
11	Delay after Vertical Blank sta	rt to start of Video (Number of Scan Lines)	20 72		
12	Total Scan Lines per Frame (Item 7 + Item 11 = Item 13 ÷ Item B)		260	260 312	
13	Horizontal Scan Frequency (Line Rate) (kHz) Item B x Item 12)		15.6 kHz		
14	Number of Character Times per Scan Line		100		
15	Character Clock Rate (MHz) Item 13 x Item 14)		1.56 MHz		
16	Character Time (ns) (1 ÷ Item 15)		641 ns		
17	Delay after/before Horizontal Blank start to Horizontal Sync Start (+/- Character Times)		0		
1B	Horizontal Sync Width (Character Times)		43		
19	Dot Frequency (MHz) (Item 3 x Item 15)		10.920 MHz		
20	Dot Time (ns) (1 ÷ Item 19)		91.6 ns		
21	Vertical Blanking Stop before (Range = Item 4 - 1 line to 0	Vertical Blanking Stop before start of Video (Number of Scan Lines)		1	
22	Cursor Enable on all Scan Lines of a Row? (Yes or No) If not, which Line?		Yes		
23	Does the Horizontal Sync Pulse have Serrations during Vertical Sync? (Yes or No)		No		
24	Width of Line Buffer Clock Id (Number of Dot Time increm	ogic "0" state within a Character Time lents)	4		
25	Serration Pulse Width, if used (Character Times)		_		
26	Horizontal Sync Pulse Active state logic level (1 or 0)		1		
27	Vertical Sync Pulse Active state logic level (1 or 0)			0	
28	Vertical Blanking Pulse Activ	re state logic level (1 or 0)	1		

FULL/HALF ROW CONTROL (PIN 5)

Device pin 5 converts the DPB350 programmed display from 80 characters by 24 rows to B0 characters by 12 rows.

Full/Half Row (Pin 5) Logic Stete	Display Size
1	80 by 24
0	80 by 12

With pin 5 in logic "0" state, the 12 character rows are equally spaced vertically on the CRT. Each row is spaced by one full row of blanked video.

Also in this mode the address counter outputs address the same memory space for two rows — the video row and the blanked row. Thus one half of the CRT memory space is addressed with pin 5 in logic "0" state as compared to pin 5 in logic "1" state.

Figure 6. System Diagram Using a Line Buffer

Figure 7. System Diagram with no Line Buffer

Note 1: If the Cursor Enable, Item 22, is active on only one line of a character row, then Item 21 must be either "1" or "0" unless it is the same as the line selected for Cursor Enable.

Note 2: Item 24 x Item 20 should be > 250 ns.

Note 3: Item 11 must be greater than Item 4 + 1.

Section 9 Applicable TTL and CMOS Logic Circuits

TEMPERAT	URE RANGE 0°C to +70°C	DESCRIPTION	PAGE NUMBER	
DM54LS373, 374	DM74LS373, 374	Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops	9-1	
DM54S240, 241, 940, 941	DM74S240, 241, 940 941	Octal TRI-STATE® Buffers/Line Drivers/Line Receivers	9-5	
MM54C373	MM74C373	TRI-STATE® Octal D-Type Latch	9-12	
MM54C374	MM74C374	TRI-STATE® Octal D-Type Flip-Flop	9-12	
MM54C901	MM74C901	Hex Inverting TTL 8uffer	9-18	
MM54C902	MM74C902	Hex Non-Inverting TTL Buffer	9-18	
MM54C903	MM74C903	Hex Inverting PMOS Buffer	9-18	
MM54C904	MM74C904	Hex Non-Inverting PMOS Buffer	9-18	
MM54C906	MM74C906	Hex Open Drain N-Channel Buffers	9-22	
MM54C907	MM74C907	Hex Open Drain P-Channel Buffers	9-22	
	MM74C908	Dual CMO\$ 30 V Driver	9-25	
	MM74C918	Dual CMOS 30V Driver	9-25	
MM54C922	MM74C922	16 Key Encoder	9-30	
MM54C923	MM74C923	20 Key Encoder	9-30	
MM78C29	MM88C29	Quad Single-Ended Line Driver	9-35	
MM78C30	MM88C30	Dual Differential Line Driver	9-35	

Additional information on products listed in this section should be addressed to the local sales office, distributor of your choice, or the respective CMOS or TTL logic marketing managers.

DM54LS373/DM74LS373, DM54LS374/DM74LS374 Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole TRI-STATE® outputs designed specifically for driving highly-capacitive or relatively low impedance loads. The high impedance TRI-STATE and increased high logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 8 latches of the DM54LS373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

The 8 flip-flops of the DM54LS374/DM74LS374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the 8 outputs in either a normal logic state (high or low logic levels) or a high impedance state. In the high impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- TRI-STATE bus driving outputs
- Full parallel access for loading
- Buffered control inputs
- PNP inputs reduce DC loading on data lines

DM54LS374/DM74LS374

Connection Diagrams and Truth Tables

Order Number DM54LS373J, DM74LS373J, DM54LS373N or DM74LS373N See NS Package J20A or N20A

ENABLE G	D	OUTPUT
Н	Н	Н
н	<u> </u> L	L
L	x	Ω0

Order Number DM54LS374J, DM74LS374J, DM54LS374N or DM74LS374N See NS Package J20A or N20A

CLOCK	D	OUTPUT
1	H	H
1	L	L
L	×	00

When output control is high, the output is disabled to high impedance state; however, sequential operation of these devices are not affected.

Absolute Maximum Ratings

Supply Voltage (Note 1)	7V
Input Voltage	7∨
OFF-State Output Voltage	7V
Operating Temperature Range	
DM54LS373, DM54LS374	-55°C to +125°C
DM74LS373, DM74LS374	0° C to +70° C
Storage Temperature Range	-65° C to +150° C

Recommended Operating Conditions

necommenaca op	Cialii	.9 00	ilaidoii.	
	MIN	MAX	UNITS	
Supply Voltage (VCC)				
DM54LS373, DM54LS374	4.5	5.5	V	
DM74LS373, DM74LS374	4.75	5.25	V	
High Level Output Voltage (VOH)		5.5	V	
High Level Output Current (IOH)				
DM54LS373, DM54LS374		-1	mA	
DM74LS373, DM74LS374		-2.6	mA	
Width of Clock/Enable Pulse (t _W)				
High	15		ns	
Low	15		ns	
Data Set-Up Time (tSU)				
DM54LS373/DM74LS373	0↓		ns	
DM54LS374/DM74LS374	20↑		ns	
Data Hold Time (tH)				
DM54LS373/DM74LS373	15↓		ns	
DM54LS374/DM74LS374	5↑		ns	
Temperature (T _A)				
DM54LS373, DM54LS374	55	+125	°C	
DM74LS373, DM74LS374	0	+70	°C	

The arrow indicates the transition of the clock/enable input used for reference: \uparrow for the low-to-high transition; \downarrow for the high-to-low transition.

Electrical Characteristics Over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER CONDITION		NDITIONS	DM54LS373 DM54LS374			DM74LS373, DM74LS374			UNITS	
	PARAMETER	(Note 2)		MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS
VIH	High Level Input Voltage			2			2			V
VIL	Low Level Input Voltage					0.7			0.8	V
ViK	Input Clamp Voltage	V _{CC} = Min, t _I = -18 mA				-1.5			-15	V
Vон	High Level Output Voltage	V _{CC} = Min, V _{IH} = 2V, V I _{CH} = Max	V _I L = V _I L(MAX),	2.4	3,4		2.4	3.1		٧
VOL	Low Level Output Voltage	V _{CC} = Min, V _{IH} = 2V,	I _{OL} = 12 mA		0.25	0.4		0,25	0.4	V
		VIL = VIL(MAX)	I _{OL} = 24 mA					0.35	0.5	V
lоzн	OFF State Output Current, High Level Voltage Applied	V _{CC} = Max, V _{1H} = 2V,	V _{CC} = Max, V _{1H} = 2V, V _O = 2.7V			20			20	μΑ
OZL	OFF State Output Current, Low Leve! Voltage Applied	V _{CC} = Max, V _{IH} = 2V,	V _O = 0.4V			-20			-20	μΑ
1 ₁	Input Current at Maximum Input Voltage	V _{CC} = Max, V _I = 7V				0.1			0.1	mA
Ιн	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20			20	μΑ
IIL.	Low Level Input Current	V _{CC} = Max, V _I = 0.4V				-0.4			-0.4	mA
los	Short Circuit Output Current (Note 4)	V _{CC} = Max		-30		-130	- 30		-130	mA
Icc	Supply Current	V _{CC} = Max, Output	DM54LS373/DM74LS373		24	40		24	40	mA
		Control at 4.5V	DM54LS374/DM74LS374		27	45		27	45	mA

	PARAMETER	FROM	то	CONDITIONS		M54LS37 M74LS3			M54LS37 M74LS37		UNITS
	FAMANIETEN	INPUT	OUTPUT		MIN	TYP	MAX	MIN	TYP	MAX	
fMAX	Maximum Clock Frequency							35	50		MHz
PLH	Propagation Delay Time, Low-to-High Level Output	Data	Any O			12	18				ns
PHL	Propagation Delay Time, High-to-Low Level Output	Data	Any O			12	18				ns
tPLH	Propagation Delay Time, Low-to-High Level Output	Clock or Enable	Any O	C _L = 45 pF, R _L = 667 Ω , (Notes 5 and 6)		20	30		16	28	ns
PHL	Propagation Delay Time, High-to-Low Level Output	Clock or Enable	Any O			18	30		22	34	ns
tPZH	Output Enable Time to High Level	Output Control	Any O			15	28		16	28	ns
tPZL	Output Enable Time to Low Level	Output Control	Any O			22	36		22	28	ns
^t PHZ	Output Disable Time from High Level	Output Control	Any O	C _L = 5 pF, R _L = 667Ω,		12	20		10	18	ns
tPLZ	Output Disable Time from Low Level	Output Control	Any O	(Note 6)		15	25		14	24	ns

- Note 1: Voltage values are with respect to network ground terminal
- Note 2 For conditions shown as min or max, use the appropriate value specified under recommended operating conditions.
- Note 3: All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.
- Note 4: Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
- Note 5: Maximum clock frequency is tested with all outputs loaded
- Note 6: See load circuits and waveforms.

Logic Diagrams

DM54LS374/DM74LS374 Positive-Edge-Triggered Flip-Flops

Schematic Diagrams

DM54LS373/DM74LS373

Equivalent of Data Inputs

INPUT

Equivalent of Output Control Clock Inputs

Typical of All Outputs

VCC

OUTPUT

DM54S240/DM74S240, DM54S241/DM74S241, DM54S940/DM74S940, DM54S941/DM74S941 Octal TRI-STATE® Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed specifically to improve both the performance and PC board density of TRI-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs to restore Schottky TTL levels completely, and can be used to drive terminated lines down to 133Ω .

Features

- High performance Schottky TTL line drivers and/or receivers in a high density 20-pin package
- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins

Connection Diagrams

DM54S240/DM74S240

 $1Y = 1\overline{A}$ when $1\overline{G}$ is low $2Y = 2\overline{A}$ when $2\overline{G}$ is low

When $1\overline{G}$ is high, 1Y outputs are at a high impedance When $2\overline{G}$ is high, 2Y outputs are at a high impedance

Order Number DM54S240J, DM74S240J or DM74S240N See NS Package J20A or N20A

DM54S940/DM74S940

1Y = $1\overline{A}$ when $1\overline{G}$ and $2\overline{G}$ are low

 $2Y = 2\overline{A}$ when $1\overline{G}$ and $2\overline{G}$ are low When either $1\overline{G}$ or $2\overline{G}$ is high, all outputs are a high impedance

Order Number DM54S940J, DM74S940J or DM74S940N See NS Package J20A or N20A

DM54S241/DM74S241

1Y = 1A when 1G is low

2Y = 2A when 2G is high When $1\overline{G}$ is high, 1Y outputs are at a high impedance When $2\overline{G}$ is low 2Y outputs are at a high impedance

Order Number DM54S241J, DM74S241J or DM74S241N See NS Package J20A or N20A

DM54S941/DM74S941

1Y = 1A when $1\overline{G}$ and $2\overline{G}$ are low

 $2Y=2A \text{ when } 1\overrightarrow{G} \text{ and } 2\overrightarrow{G} \text{ are low}$ When either $1\overrightarrow{G}$ or $2\overrightarrow{G}$ is high, all outputs are at a high impedance

Order Number DM54S941J, DM74S941J or DM74S941N See NS Package J20A or N20A Cavity Package

Molded Package

Lead Temperature (Soldering, 10 seconds)

case to free-air R_{OCA}, of not more than 40°C/W.

Typical Characteristics		Recommended Op	eratin	g Cor	ndition
			MIN	MAX	UNITS
■ Fanout IOL (Sink Current) DM54S941 DM74S941	48 mA	Supply Voltage (V _{CC}) DM54S240, DM54S241, DM54S940, DM54S941	4.5	5.5	V
IOH (Source Current) DM54S941	64 mA - 12 mA	DM74S240, DM74S241 DM74S940, DM74S941	4.75	5.25	V
DM 54S941 Typical propagation delay times Data to Output	−15 mA	Temperature (T _A) (Note 4) DM54S240, DM54S241, DM54S940, DM54S941	-55	+125	°C
DM54S240/DM74S240, DM54S940/D (inverting) DM54S241/DM74S241, DM54S940/D	4.5 ns	DM74S240, DM74S241 DM74S940, DM74S941	0	+70	°C
(non-inverting) Enable to output	6 ns 9 ns	High Level Output Current (I _{OH}) DM54S240, DM54S241, DM54S940, DM54S941		-12	mA
Absolute Maximum Rati	ngs	DM74S240, DM74S241, DM74S940, DM74S941		-15	mA
(Notes 1, 2 and 3)		Low Level Output Current (IOL)			
Supply Voltage Logical ''1'' Input Voltage	7∨ –7∨	DM54S240, DM54S241, DM54S940, DM54S941		48	mA
Logical "O" Input Voltage Storage Temperature Range Power Dissipation	-1.5V -65° C to +150° C	DM74S240, DM74S241, DM74S940, DM74S941		64	mA

Electrical Characteristics Over recommended operating free-air temperature range (Notes 2 and 3)

1160 mW

1000 mW

300° C

	PARAMETER	CONDITIONS	DM54S240/DM74S240, DM54S940/DM74S940			DM54S DM54S	UNITS		
			MIN	TYP	MAX	MIN	TYP	MAX	
VIH	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.8			0.8	V
Vik	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA			-1.2			-1.2	V
	Hysteresis (V _{T+} - V _T _)	V _{CC} = Min	0.2	0.4		0.2	0.4		V
Vон	High Level Output Voltage	V _{CC} = Min, V _{IL} = 0 .8V, I _{OH} = -3 mA	2.4	3.4		2.4	3.4		٧
		V _{CC} = Min, V _{IL} = 0.5V, I _{OH} = Max	2			2			V
VOL	Low Level Output Voltage	V _{CC} = Min, I _{OL} = Max			0.55			0.55	V
lozh	OFF State Output Current, High Level Voltage Applied	V _{CC} = Max, V _{1H} = 2V, V _{1L} = 0.8V, V _O = 2.4V			50			50	μА
lozL	OFF-State Output Current, Low Level Voltage Applied	$V_{CC} = Max$, $V_{IH} = 2V$, $V_{IL} = 0.8V$, $V_{O} = 0.5V$			50			-50	μΑ
Ч	Input Current at Maximum Input Voltage	V _{CC} = Max, V ₁ = 5.5V			1			1	mA
ΉΗ	High Level Input Current, Any Input	V _{CC} = Max, V _{IH} = 2.7V			50			50	μΑ
IIL	Low Level Input Current Any A	V _{CC} = Max, V _{IL} = 0.5V			400			-400	μΑ
	Any G				2			-2	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" are interested as a condition of the

provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DM54S240, DM54S241, DM54S940 and DS54S941, and across the 0° C to $+70^{\circ}$ C range for the DM74S240, DM74S241, DM74S940 and DM74S941. All typical values are for $T_{A} = 25^{\circ}$ C and $V_{CC} = 5$ V.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: A DM54S241J, DM74S941J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from

Electrical Characteristics (Continued) Over recommended operating free-air temperature range (Notes 2 and 3)

PARAMETER		CONDITIONS		DM54S240/DM74S240, DM54S940/DM74S940			DM54S241/DM74S241, DM54S941/DM74S941			UNITS
	Anameren			MIN	TYP	MAX	MIN	TYP	MAX	
los	Short Circuit Output Current (Note 5)	V _{CC} = Max		-50		-225	-50		-225	mA
lcc	Supply Current Total, Outputs High		DM54S240, DM54S241, DM54S940, DM54S941		80	123		95	147	mA
			DM74S240, DM74S241, DM74S940, DM74S941		80	135		95	160	m A
	Total, Outputs Low	V _{CC} = Max,	DM54S240, DM54S241, DM54S940, DM54S941		100	145		120	170	mA
		Outputs Open	DM74S240, DM74S241, DM74S940, DM74S941		100	150		1 20	180	mA
	Outputs at Hi-Z		DM54S240, DM54S241, DM54S940, DM54S941		100	145		120	170	mA
			DM74S240, DM74S241,		100	150		120	180	mA

Note 5: Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

Switching Characteristics V_{CC} = 5V, T_A = 25°C

	PARAMETER	CONDITIONS DM74		S24 0	DM74	S241	DM74	IS940	DM74	\$941	UNITS
	TANAMETEN		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
t P LH	Propagation Delay Time, Low-to-High Level Output		4.5	7	6	9	6		7		ns
^t PHL	Propagation Delay Time, High-to Low Level Output		4.5	7	6	9	6		7		ns
†ZL	Output Enable Time to Low Level	$C_L = 50 \text{ pF}, R_L = 90\Omega, \text{ (Note 6)}$	10	15	10	15	15		13		ns
^t ZH	Output Enable Time to High Level		6.5	10	8	12	10		10		ns
tLZ	Output Disable Time From Low Level	C _L = 5 pF, R _L = 90Ω	10	15	10	15	12		8		ns
tHZ	Output Disable Time From		6	9	6	9	,		5		ns

DM54S240/ DM54S241/ DM54S940/

Truth Tables

DM54S240/DM74S240 SIDE 1 OR SIDE 2

SIDE TON SIDE 2									
G	INPUT A	DUTPUT Y							
0	0	1							
0	1	0							
1	×	Z							

DM54S241/DM74S241 SIDE 1

IT DUTBUT

1Ğ	INPUT 1A	DUTPUT 1Y
0	0	0
0	1	1
1	×	2

SIDE 2

2G	INPUT 2A	OUTPU 2Y
1	0	0
1	1	1
0	×	Z

DM54S940/DM74S940, DM54S941/DM74S941

DISABLE	INPUTS	INDIT	DUTPUT	
1Ĝ	2Ġ			
0	0	0	1	
0	0	1	0	
0	1	×	z	
1	0	×	Z	
1	1	×	Z	

[&]quot;1" = High, "0" =Low, X = Don't care, Z = High Impedance

AC Test Circuits and Switching Time Waveforms DM54S240/DM74S240, DM54S940/DM74S940

FIGURE 1. Propagation Delay from A Input to Y Output

FIGURE 2. Propagation Delay from TRI-STATE® to High or Low Level

FIGURE 3. Propagation Delay to TRI-STATE from High or Low Level

Note 1: The pulse generator has the following characteristics: Z_{OUT} = 50Ω and PRR ≤ 1MHz. Rise and fall times between 10% and 90% points ≤ 2.5 ns.

Note 2: C_L includes probe and jig capacitance.

Note 3: All diodes are 1N916 or 1N3064.

AC Test Circuits and Switching Time Waveforms DM54S241/DM74S241

FIGURE 4. Propagation Delay from A Input to Y Output

FIGURE 5. Propagation Delay from TRI-STATE to High or Low Level

FIGURE 6. Propagation Delay to TRI-STATE from High or Low Level

Note 1: The pulse generator has the following characteristics: $Z_{OUT} = 50\Omega$ and PRR ≤ 1 MHz. Rise and fall times between 10% and 90% points ≤ 2.5 ns.

Note 2: C_L includes probe and jig capacitance. Note 3: All diodes are 1N916 or 1N3064.

AC Test Circuits and Switching Time Waveforms DM54S941/DM74S941

FIGURE 7. Propagation Delay from A Input to Y Output

FIGURE 8. Propagation Delay from TRI-STATE to High or Low Level

FIGURE 9. Propagation Delay to TRI-STATE from High or Low Level

Note 1: The pulse generator has the following characteristics: $Z_{OUT} = 50\Omega$ and PRR ≤ 1 MHz, Rise and fall times between 10% and 90% points ≤ 2.5 ns.

Note 2: CL includes probe and jig capacitance.

Note 3: All diodes are 1N916 or 1N3064

(Used as system AND/OR memory bus driver. 4-bit organization can be applied to handle binary or BCD.)

DM54S240/DM74S240, DM54S940/DM74S940

DM54S241/DM74S241

DM54S941/DM74S941

H - Receive bus 2, drive bus 1

MM54C373/MM74C373 TRI-STATE® Octal D-Type Latch MM54C374/MM74C374 TRI-STATE® Octal D-Type Flip-Flop

General Description

The MM54C373/MM74C373, MM54C374/MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with TRI-STATE® outputs. These outputs have been specially designed to drive highly capacitive loads, such as one might find when driving a bus, and to have a fan-out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM54C373/MM74C373 is an B-bit latch. When LATCH ENABLE is high the Q outputs will follow the D inputs. When LATCH ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again.

The MM54C374/MM74C374 is an 8-bit, D-type, positiveedge triggered flip-flop. Data at the D inputs, meeting the set-up and hold time requirements, is transferred to the O outputs on positive-going transitions of the CLOCK input.

Both the MM54C373/MM74C373 and the MM54C374/ MM74C374 are being assembled in 20-pin dual-in-line packages with 0.300" pin centers.

Features

Wide supply voltage range

3.0V to 15V

High poise immunity

0.45 V_{CC} typ

Low power consumption

TTL compatibility

fan-out of 1 driving

standard TTL

Bus driving capability

TRI-STATE outputs

Eight storage elements in one package

Single CLOCK/LATCH ENABLE and OUTPUT **DISABLE** control inputs

■ 20-pin dual-in-line package with 0.300" centers takes half the board space of a 24-pin package

Connection Diagrams

Dual-In-Line Package

Dual-In-Line Package

C

Absolute Maximum Ratings (Note 1)

Voltage at Any Pin - 0.3V to V_{CC} + 0.3V

Operating Temperature Range MM54C373, MM54C374

−55°C to +125°C

MM74C373, MM74C374 Storage Temperature Range -40°C to +85°C -65°C to +150°C Package Dissipation

Operating V_{CC} Range
Absolute Maximum V_{CC}
Lead Temperature (Soldering, 10 seconds)

500 mW 3V to 15V 18V

18V 300°C

Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted.

Lieut dei Gradia dei G						
	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
смоs то	CMOS		1			
VIN(1)	Logical ''1'' Input Voltage	V _{CC} = 5V V _{CC} = 10V	3.5 8.0			V V
VIN(0)	Logical ''0'' Input Voltage	V _{CC} = 5V V _{CC} = 10V			1.5 2.0	V V
VOUT(1)	Logical ''1'' Output Voltage	$V_{CC} = 5V$, $I_{O} = -10 \mu A$ $V_{CC} = 10V$, $I_{O} = -10 \mu A$	4.5 9.0			V
VOUT(0)	Logical ''0'' Output Vo tage	V _{CC} = 5V, 1 _O = 10 μA V _{CC} = 10V, 1 _O = 10 μA			0.5 1.0	v v
¹ IN(1)	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
 IN(0)	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005	ı 1	μΑ
loz	TRI-STATE Leakage Current	V _{CC} = 15V, V _O = 15V V _{CC} = 15V, V _O = 0V	-1.0	0.005 -0.005	1.0	μA μA
Icc	Supply Current	V _{CC} = 15V]	0.05	300	μΑ
CMOS/LP	TTL INTERFACE					
VIN(1)	Logical ''1'' Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V	V _{CC} -1.5 V _{CC} -1.5			V V
VIN(0)	Logical ''0'' Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V			0.8 0.8	v v
VOUT(1)	Logical "1" Output Voltage	54C, V _{CC} = 4.5V, I _O =360 μA 74C, V _{CC} = 4.75V, I _O =360 μA	V _{CC} =0.4 V _{CC} =0.4			V V
	!	54C, V _{CC} = 4 5V, I _O = -1.6 mA 74C, V _{CC} = 4 75V, I _O = -1.6 mA	2.4			V V
V _{OUT(0)}	Logical "0" Output Voltage	54C, V _{CC} = 4.5V, I _O = 1.6 mA 74C, V _{CC} = 4.75V, I _O = 1.6 mA			0.4 0.4	V V
OUTPUT	DRIVE		<u></u>			
ISOURCE	Output Source Current	V _{CC} = 5V, V _{OUT} = 0V, T _A = 25°C, (Note 4)	-12.0	-24		mA
ISOURCE	Output Source Current	V _{CC} = 10V, V _{OUT} = 0V, T _A = 25°C, (Note 4)	-24.0	-48		mA
ISINK	Output Sink Current (N-Channel)	V _{CC} = 5V, V _{OUT} = V _{CC} , T _A = 25°C, (Note 4)	6.0	12		mA.
ISINK	Output Sink Current (N-Channel)	V _{CC} = 10V, V _{OUT} = V _{CC} , T _A = 25°C, (Note 4)	24 0	48		mA

Switching Characteristics $T_A = 25^{\circ}C$, $C_L = 50$ pF, $t_r = t_f = 20$ ns, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpd1, tpd0	Propagation Delay, LATCH ENABLE	V _{CC} = 5V, C _L = 50 pF		165	330	ns
	to Output	V _{CC} = 10V, C _L = 50 pF	1	70	140	ns
	MM54C373, MM74C373	V _{CC} = 5V, C _L = 150 pF		195	390	ns
		V _{CC} = 10V, C _L = 150 pF	- 1	85	170	ns

Switching Characteristics (Continued) $T_A = 25^{\circ}C$, $C_L = 50$ pF, $t_r = t_f = 20$ ns, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
^t pd1, ^t pd0	Propagation Delay Data In to Output MM54C373, MM74C373	LATCH ENABLE = VCC VCC = 5V, CL = 50 pF VCC = 10V, CL = 50 pF VCC = 5V, CL = 150 pF VCC = 10V, CL = 150 pF		155 70 185 B5	310 140 370 170	ns ns ns
^t pd1, ^t pd0	Propagation Delay CLOCK to Output MM54C374/MM74C374	V _{CC} = 5V, C _L = 50 pF V _{CC} = 10V, C _L = 50 pF V _{CC} = 5V, C _L = 150 pF V _{CC} = 10V, C _L = 150 pF		150 65 180 B0	300 130 360 160	ns ns ns
tset-up	Minimum Set-Up Time Data In to CLOCK/LATCH ENABLE	tHOLD = 0 ns VCC = 5V VCC = 10V		70 35	140 70	ns ns
tpWH	Minimum LATCH ENABLE Pulse Width MM54C373, MM74C373	V _{CC} = 5V V _{CC} = 10V		75 55	150 110	ns ns
tpwH, tpwL	Minimum CLOCK Pulse Width MM54C374, MM74C374	V _{CC} = 5V V _{CC} = 10V		70 50	140 100	ns ns
fMAX	Maximum LATCH ENABLE Frequency MM54C373, MM74C373	V _{CC} = 5V V _{CC} = 10V		6.7 9.0	3.3 4.5	MHz MHz
fMAX	Maximum CLOCK Frequency MM54C374, MM74C374	V _{CC} = 5V V _{CC} = 10V		7.0 10.0	3.5 5.0	MHz MHz
^t 1H, ^t 0H	Propagation Delay OUTPUT DISABLE to High Impedance State (From a Logic Level)	$R_L = 10k$, $C_L = 5 pF$ $V_{CC} = 5V$ $V_{CC} = 10V$		105 60	210 120	ns ns
^t H1, ^t H0	Propagation Delay OUTPUT DISABLE to Logic Level (From High Impedance State)	$R_L = 10k$, $C_L = 50 pF$ $V_{CC} = 5V$ $V_{CC} = 10V$		105 45	210 90	ns ns
ଫHL⁄ ጥLH	Transition Time	V _{CC} = 5V, C _L = 50 pF V _{CC} = 10V, C _L = 50 pF V _{CC} = 5V, C _L = 150 pF V _{CC} = 10V, C _L = 150 pF		65 35 110 70	130 70 220 140	ns ns ns
t _r , t _f	Maximum LATCH ENABLE Rise and Fall Time MM54C373, MM74C373	V _{CC} = 5V V _{CC} = 10V		NA NA		μs μs
t _r , t _f	Maximum CLOCK Rise and Fall Time MM54C374, MM74C374	V _{CC} = 5V V _{CC} = 10V	15 5	>2000 >2000		μs μs
C _{CLK} , C _{LE}	Input Capacitance	CLOCK/LE Input		7.5	10	pF
COD	Input Capacitance	OUTPUT DISABLE Input,(Note 2)		7.5	10	pF
CIN	Input Capacitance	Any Other Input, (Note 2)		5.0	7.5	pF
Соит	Output Capacitance	High Impedance State, (Note 2)		10	15	pF
C _{PD}	Power Dissipation Capacitance MM54C373, MM74C373	Per Package, (Note 3)		200		pF
C _{PD}	Power Dissipation Capacitance MM54C374, MM74C374	Per Package, (Note 3)		250		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: Cpp determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

Note 4: These are peak output current capabilities. Continuous output current is rated at 12 mA max.

Typical Performance Characteristics TA = 25°C

MM54C373/MM74C373
Propagation Delay, LATCH
ENABLE to Output vs Load
Capacitance

MM54C373/MM74C373 Propagation Delay, Data In to Output vs Load Capacitance

MM54C374/MM74C374 Propagation Delay, CLOCK to Output vs Load Capacitance

MM54C373/MM74C373, MM54C374/MM74C374

Change in Propagation Delay per pF of Load Capacitance (\(\Delta\text{tpD}/\text{pF}\)) vs Power Supply Voltage

MM54C373/MM74C373, MM54C374/MM74C374 Output Sink Current vs VOUT

MM54C373/MM74C373, MM54C374/MM74C374 Output Source Current vs V_{CC} - V_{OUT}

Truth Tables

MM54C373/MM74C373

OUTPUT DISABLE	LATCH ENABLE	D	0
L	Н	Н	н
L	н	L	L
L	L	×	a
н	×	×	Hi-Z

MM54C374/MM74C374

OUTPUT DISABLE	СГОСК	D	0
L		н	н
L		L	L
L	L	×	a
L	н	×	Q
н	×	×	Hi-Z

L = low logic level

H = high logic level X = irrelevant

= low to high logic level transition Q = preexisting output level

Hi-Z = high impedance output state

Typical Applications

Data Bus Interfacing Element

Simple, Latching, Octal, LED Indicator Driver with Blanking For Use As Data Display, Bus Monitor, µP Front Panel Display, Etc.

MM54C374/MM74C374 (1 of 8 Flip-Flops)

TRI-STATE® Test Circuits and Timing Diagrams

Switching Time Waveforms

MM54C374/MM74C374

MM54C901/MM74C901 hex inverting TTL buffer MM54C902/MM74C902 hex non-inverting TTL buffer MM54C903/MM74C903 hex inverting PMOS buffer MM54C904/MM74C904 hex non-inverting PMOS buffer

general description

These hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced V_{CC} supply.

features

■ Wide supply voltage range

3.0V to 15V

■ Guaranteed noise margin

1.0V

■ High noise immunity

0.45 V_{CC} typ

TTL compatibility

fan out of 2 driving standard TTL

connection and logic diagrams

MM54C901/MM74C901 MM54C903/MM74C903

Dual-In-Line Package

Order Number MM54C901J, MM74C901N, MM54C903J or MM74C903N See NS Package J14A or N14A

MM54C901/MM74C901
CMOS to TTL Inverting Buffer

MM54C902/MM74C902 CMOS to TTL Buffer

MM54C902/MM74C902 MM54C904/MM74C904 Dual-In-Line Package

Order Number MM54C902J, MM74C902N, MM54C904J or MM74C904N See NS Package J14A or N14A

MM54C903/MM74C903
PMOS to TTL or CMOS Inverting Buffer

MM54C904/MM74C904 PMOS to TTL or CMOS Buffer

absolute	maximum	ratings	(Note 1)
----------	---------	---------	----------

 $\begin{array}{lll} \text{MM54C903/MM74C903} & \text{$V_{\rm CC}$-17V to $V_{\rm CC}$+0.3V$} \\ \text{MM54C904/MM74C904} & \text{$V_{\rm CC}$=17V to $V_{\rm CC}$+0.3V$} \end{array}$

 Operating Temperature Range

 MM54C901, MM54C902, MM54C903, MM54C904 -55°C to +125°C

 MM74C901, MM74C902, MM74C903, MM74C904 -40 °C to +85 °C

 Storage Temperature Range
 -65°C to +150°C

 $\begin{array}{lll} \mbox{Package Dissipation} & 500 \ \mbox{mW} \\ \mbox{Operating V}_{\mbox{CC}} \ \mbox{Range} & 3.0V \ \mbox{to 15V} \\ \end{array}$

Operating V_{CC} Range 3.0V to 15V Absolute Maximum V_{CC} 18V Lead Temperature (Soldering, 10 seconds) 300°C

electrical characteristics

Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNI
CMOS TO CMOS					
Logical "1" Input Voltage (V _{INstri})	V _{CC} - 5 0V V _{CC} - 10V	3.5 8.0			,
Logical "0" Input Voltage (V _{INIO)})	V _{CC} = 5 0V V _{CC} = 10V			1 5 2.0	\
Logical "1" Output Voltage ($V_{O\cup T+11}$)	$V_{CC} = 5.0V, I_{O} = -10\mu A$ $V_{CC} = 10V, I_{O} = -10\mu A$	4.5 9.0			\
Logical "0" Output Voltage (Vout o l	V _{CC} 5 0V, I _O = +10μA V _{CC} 10V I _O +10μA			0.5 1.0	,
Logical "1" Input Current (I _{IN+1+})	V _{CC} 15V V _{IN} = 15V		0.005	1.0	μΑ
Logical "0" Input Current (I _{IN(0)})	V _{CC} 15V V _{IN} 0V	1 0	0 005		μΔ
Supply Current (I _{CC})	V _{CC} - 15V		0.05	15	μΑ
TTL TO CMOS			,		-l
Logical "1" Input Voltage (V _{IN-1i})	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V	V _{CC} 15 V _{CC} -15			\
Logical "0" Input Voltage (V _{IN+Or})	54C V _{CC} 45V /4C V _{CC} - 4/5V			0.8	\
CMOS TO TTL					1
Logical "1" Input Voltage (V _{IN(1)}) MM54C901 MM54C903 MM54C902 MM54C904 MM74C901, MM74C903 MM74C902 MM74C904	V _{CC} 45V V _{CC} 45V V _{CC} = 475 V _{CC} 475	40 V _{CC} -15 4/25 V _{CC} 15			V
Logical "0" Input Voltage (V _{IN-101}) MM54C901 MM54C903 MM54C902 MV54C904 MM74C901 MV74C903 MM74C902 MV74C904	V _{CC} - 4 5V V _{CC} - 4 5V V _{CC} - 4 75 V _{CC} 4 75			1 0 1 5 1 0 1 5	V V
Logical *1 Output Voltage (VOUT(1))	54C, V _{CC} = 4 5V, I _O = 800μA 74C V _{CC} = 4.75V, I _O = 800μA	2 4 2 4			V
Logical "0" Output Voltage (V _{OUT:0})) MM54C901 MM54C903 MM54C902 MV54C904 MM74C901 MM74C903 MM74C902, MM74C904	V _{CC} = 4 5V, I _O = 2.6 mA V _{CC} = 4 5V, I _O = 3.2 mA V _{CC} = 4 75V, I _O = 2.6 mA V _{CC} - 4 75V, I _O = 3.2 mA			0 4 0 4 0.4 0.4	V V
OUTPUT DRIVE (MM54C901/MM74C901	, MM54C903/MM74C903) (See 54C/74C	Family Charact	eristics Oata S	heet)	
Output Source Current (I _{SOURCE}) (P-Channel)	V _{CC} = 5 0V, V _{OUT} = 0V T _A = 25°C, V _{IN} = 0V	-5.0			m/
Output Source Current (I _{SOURCE}) (P Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C, V_{ N} = 0V$	- 20			m.A
Output Sink Current (I _{SINK}) (N-Channel)	$V_{CC} = 5.0V, V_{OUT} - V_{CC}$ $T_A = 25^{\circ}C, V_{IN} = V_{CC}$	9			m.A
Output Sink Current (I _{SINK}) (N-Channel)	$V_{CC} = 5.0V, V_{OUT} = 0.4V$ $T_{A} = 25^{\circ}C, V_{IN} = V_{CC}$	3 8			mΔ

electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
OUTPUT DRIVE (MM54C902/MM74C9	OUTPUT DRIVE (MM54C902/MM74C902, MM54C904/MM74C904 (See 54C/74C Family Characteristics Data Sheet)						
Output Source Current (I _{SOURCE}) (P Channel)	$V_{CC} = 5.0V, V_{OUT} = 0V$ $T_A = 25^{\circ}C, V_{IN} = V_{CC}$	-5 0			mA		
Output Source Current (I _{SOURCE}) (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C, V_{N} = V_{CC}$	-20			mA		
Output Sink Current (I _{SINK}) (N-Channel)	$V_{CC} = 5 \text{ OV}, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C, V_{IN} = 0V$	9			mA		
Output Sink Current (I_{SINK}) (N-Channel)	$V_{CC} = 5 \text{ OV}, V_{OUT} = 0 \text{ 4V}$ $T_A = 25^{\circ}\text{C}, V_{1N} = 0\text{V}$	38			mA		

switching characteristics $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
MM54C901/MM74C901, MM54C903/MM74C903					
Input Capacitance (C _{IN})	Any Input (Note 2)		14		pF
Power Dissipation Capacity (C_{pd})	(Note 3) Per Buffer		30		pF
Propagation Delay Time to a Logical "1" $(t_{\rm pd(1)})$	V _{CC} = 5.0V V _{CC} = 10V		38 22	70 30	ns ns
Propagation Delay Time to a Logical "0" $(t_{\rm pd(0)})$	V _{CC} = 5.0V V _{CC} = 10V		21 13	35 20	ns ns
MM54C902/MM74C902, MM54C904/MM74C904					
Input Capacitance (C _{IN})	Any Input (Note 2)		50		pF
Power Dissipation Capacity (C_{pd})	(Note 3) Per Buffei		50		pF
Propagation Delay Time to a Logical "1" $(t_{pd\{1\}})$	V _{CC} = 5.0V V _{CC} = 10V		57 27	90 40	ns ns
Propagation Delay Time to a Logical "0" $(t_{\mu : d(0)})$	V _{CC} = 5.0V V _{CC} = 10V		54 25	90 40	ns ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: Cpp determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

typical applications

CMOS to TTL or CMOS at a Lower V_{CC}

ac test circuit and switching time waveforms

0—14€ 0 × ...

Note. Delays measured with input $t_{\rm c}$, $t_{\rm f} = 20$ ns

CMOS to CMOS

typical performance characteristics

Typical Propagation Delay to a Logical "0" for the MM54C901/ MM74C901 and MM54C903/ MM74C903

Typical Propagation Delay to a Logical "0" for the MM54C902/ MM74C902 and MM54C904/ MM74C904

Typical Propagation Delay to a Logical "1" for the MM54C901/ MM74C901 and MM54C903/ MM74C903

Typical Propagation Delay to a Logical "1" for the MM54C902/ MM74C902 and MM54C904/ MM74C904

MM54C906/MM74C906 hex open drain N-channel buffers MM54C907/MM74C907 hex open drain P-channel buffers

general description

These buffers employ monolithic CMOS technology in achieving open drain outputs. The MM54C906/MM74C906 consists of six inverters driving six N-channel devices; and the MM54C907/MM74C907 consists of six inverters driving six P-channel devices. The open drain feature of these buffers makes level shifting or wire AND and wire OR functions by just the addition of pull-up or pull-down resistors. All inputs are protected from static discharge by diode clamps to $V_{\rm CC}$ and to

features

Wide supply voltage range

3.0V to 15V

Guaranteed noise margin

1.0V

High noise immunity

0.45 V_{CC} typ

■ High current sourcing and sinking open drain outputs

connection diagram

See NS Package J14A or N14A

logic diagrams

absolute maximum ra	atings (Note 1)
Voltage at Any Input Pin	-0 3V to V _{CC} + 0.3V
Voltage at Any Output Pin	10 10 10 10.51
MM54C906/MM74C906	-0.3V to +18V
MM54C907/MM74C907	V_{CC} = 18V to V_{CC} + 0.3V
Operating Temperature Range	- 60
MM54C906/MM54C907	-55°C to +125°C
MM74C906/MM74C907	-40 C to +85 C
Storage Temperature Range	-65°C to +150°C
Package Dissipation	500 mW
Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (Soldering, 10 seconds)	300°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS				L	1
Logical "1" Input Voltage (V _{IN+1)})	V _{CC} = 5.0V V _{CC} = 10V	3.5 8.0			V
Logical ''0'' Input Voltage ($V_{IN(0)}$)	V _{CC} = 5.0V V _{CC} = 10V			1.5 2 0	v v
Logical "1" Input Current (I _{IN(1)})	V _{CC} = 15V, V _{IN} = 15V		0.005	1 0	μΑ
Logical "0" Input Current ($I_{IN(0)}$)	V _{CC} = 15V, V _{IN} - 0V	-10	0 005		μΑ
Supply Current (I _{CC})	V _{CC} = 15V, Output Open		0.05	15	μΑ
Output Leakage MM54C906	$V_{CC} = 4.5V, V_{IN} = V_{CC} - 1.5$ $V_{CC} = 4.5V, V_{OLT} = 18V$		0.005	5	μА
MM74C906	$V_{CC} = 4.75V, V_{IN} = V_{CC} = 1.5$ $V_{CC} = 4.75V, V_{OUT} = 18V$		0 005	5	μΑ
MM54C907	$V_{CC} = 4.5V$, $V_{1N} = 1.0V + 0.1 V_{CC}$ $V_{CC} = 4.5V$, $V_{OUT} = V_{CC} - 18V$		0.005	5	μА
MM74C907	$V_{CC} = 4.75V$, $V_{1N} = 1.0V + 0.1 V_{CC}$ $V_{CC} = 4.75V$, $V_{OUT} = V_{CC}$ 18V		0.005	5	μΑ
CMOS/LPTTL INTERFACE					
Logical "1" Input Voltage (V _{IN(1)})	54C, V _{CC} = 4 5V 74C, V _{CC} = 4.75V	V _{CC} -1 5 V _{CC} 1,5			V
Logical "0" Input Voltage (V _{IN(0)})	54C, V _{CC} = 4 5V 74C, V _{CC} = 4.75V			0.8 0.8	V
OUTPUT DRIVE CURRENT					
MM54C906	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1 4.2	8 12		mA mA
MM74C906	$ \begin{array}{c} V_{CC} = 4.75 V, \ V_{IN} = 1.0 V + 0.1 \ V_{CC} \\ V_{CC} = 4.75 V, \ V_{OUT} = 0.5 V \\ V_{CC} = 4.75 V, \ V_{OUT} = 1.0 V \\ \end{array} $	2.1 4.2	8 12		mA mA
MM54C907	$ \begin{vmatrix} V_{\text{CC}} = 4.5 \text{V}, & V_{\text{IN}} = V_{\text{CC}} - 1.5 \\ V_{\text{CC}} = 4.5 \text{V}, & V_{\text{OUT}} = V_{\text{CC}} - 0.5 \text{V} \\ V_{\text{CC}} = 4.5 \text{V}, & V_{\text{OUT}} = V_{\text{CC}} - 1.0 \text{V} \end{vmatrix} $	-1.05 -2.1	-1.5 -3.0		mA mA
MM74C907	$ \begin{vmatrix} V_{\text{CC}} = 4.75\text{V}, \ V_{\text{IN}} = V_{\text{CC}} - 1.5 \\ V_{\text{CC}} = 4.75\text{V}, \ V_{\text{OUT}} = V_{\text{CC}} - 0.5\text{V} \\ V_{\text{CC}} = 4.75\text{V}, \ V_{\text{OUT}} = V_{\text{CC}} - 1.0\text{V} \end{vmatrix} $	-1.05 -2 1	-1.5 -3.0		mA mA
MM54C906/MM74C906	$V_{CC} = 10V$, $V_{IN} = 2.0V$ $V_{CC} = 10V$, $V_{OUT} = 0.5V$ $V_{CC} = 10V$, $V_{OUT} = 1.0V$	4.2 8.4	-20 -30		mA mA
MM54C907/MM74C907	$V_{CC} = 10V$, $V_{IN} = 8.0V$ $V_{CC} = 10V$, $V_{OUT} = 9.5V$	-2 1	-4.0		mA

switching characteristics T_A = 25°C, C_L = 50 pF, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logical "0" (t _{pd0})					
MM54C906/MM74C906	V _{CC} = 5V, R = 10k V _{CC} = 10V, R = 10k			150 75	ns ns
MM54C907/MM74C907	V _{CC} = 5V, (Note 4) V _{CC} = 10V, (Note 4)			150 + 0.7 RC 75 + 0.7 RC	ns ns
Propagation Delay to a Logical "1" (tpd1)					
MM54C906/MM74C906	V _{CC} = 5V, (Note 4) V _{CC} = 10V (Note 4)			150 + 0.7 RC 75 + 0.7 RC	ns ns
MM54C907/MM74C907	$V_{CC} = 5V$, R = 10k $V_{CC} = 10V$, R = 10k			150 75	ns ns
Input Capacity (CIN)	(Note 2)		5		pF
Output Capacity (COUT)	(Note 2)		20	1	рF
Power Dissipation Capacity (Cpd)	(Note 3) Per Buffer		30		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guranteed by periodic testing.

Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90. (Assumes outputs are open.)

Note 4: "C" used in calculating propagation includes output load capacity (CL) plus device output capacity (COUT).

typical applications

Wire OR Gate

Note: Can be extended to more than 2 inputs

Wire AND Gate

Note. Can be extended to more than 2 inputs.

CMOS or TTL to PMOS Interface

CMOS or TTL to CMOS at a Higher VCC

MM74C908, MM74C918 dual CMOS 30 volt driver

general description

The MM74C908 and MM74C918 are general purpose dual high voltage drivers, each capable of sourcing a minimum of 250 mA at V_{OUT} = V_{CC} - 3V, and T_{\perp} = +65°C.

The MM74C908 and MM74C918 consist of two CMOS NAND gates driving an emitter follower darlington output to achieve high current drive and high voltage capabilities. In the "OFF" state the outputs can withstand a maximum of -30V across the device. These

CMOS drivers are useful in interfacing normal CMOS voltage levels to driving relays, regulators, lamps, etc.

features

■ Wide supply voltage range	3V to 18V
■ High noise immunity	0.45 V _{CC} (typ)
■ Low output "ON" resistance	8Ω (typ)
■ High voltage	-30V
■ High current	250 mA

TOP VIEW
Order Number MM74C908N
See NS Package N08A

Order Number MM74C918N See NS Package N14A

absolute maximum ratings (Note 1)

Voltage at Any Input Pin -0.3V to V_{CC} +0.3V Voltage at Any Output Pin 32V Operating Temperature Range MM74C908, MM74C918 -40° C to $+85^{\circ}$ C Operating V_{CC} Range 3V to 18V

Absolute Maximum V_{CC} 500 mA

ISOURCE Storage Temperature Range -65°C to +150°C

Lead Temperature (Soldering, 10 seconds) 300°C Package Dissipation Refer to Maximum Power Dissipation vs

Ambient Temperature Graph

electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

19V

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS			l	I	<u> </u>
Logical "1" Input Voltage (V _{IN(1)})	V _{CC} = 5V V _{CC} = 10V	3,5 8			v v
Logical "0" Input Voltage (V _{IN(0)})	V _{CC} = 5V V _{CC} = 10V			1.5 2	v v
Logical "1" Input Current $(I_{IN(1)})$	V _{CC} = 15V, V _{IN} = 15V		0.005	1	μА
Logical "0" Input Current (I _{IN (0)})	V _{CC} = 15V, V _{IN} = 0V	-1	-0 005		μΑ
Supply Current (I _{CC})	V _{CC} = 15V, Outputs Open Circuit		0.05	15	μΑ
Output "OFF" Voltage	$V_{IN} = V_{CC}$, $I_{OUT} = -200\mu A$	į .		30	V
CMOS/LPTTL INTERFACE			-		
Logical "1" Input Voltage (V _(N-/1)) MM74C908, MM74C918	V _{CC} = 4.75V	V _{CC} 1.5			V
Logical "0" Input Voltage (V _{IN '0)}) MM74C908, MM74C918	V _{CC} = 4 75V			0.8	V
OUTPUT DRIVE					
Output Voltage (V _{OUT})	$ \begin{vmatrix} I_{\rm OUT} = -300 \text{ mA, V}_{\rm CC} \geq 5\text{V, T}_1 = 25^{\circ}\text{C} \\ I_{\rm OUT} = -250 \text{ mA, V}_{\rm CC} \geq 5\text{V, T}_1 = 65^{\circ}\text{C} \\ I_{\rm OUT} = -175 \text{ mA, V}_{\rm CC} \geq 5\text{V, T}_1 = 150^{\circ}\text{C} \\ \end{vmatrix} $	V _{CC} -2 7 V _{CC} -30 V _{CC} -315	V _{CC} =1.8 V _{CC} =1.9 V _{CC} =2.0		V V V
Output Resistance (R _{ON})	$ \begin{vmatrix} I_{OUT} = 300 \text{ mA}, V_{CC} \ge 5V, T_j = 25^{\circ}\text{C} \\ I_{OUT} = 250 \text{ mA}, V_{CC} \ge 5V, T_j = 65^{\circ}\text{C} \\ I_{OUT} = -175 \text{ mA}, V_{CC} \ge 5V, T_j = 150^{\circ}\text{C} \end{vmatrix} $		6 7_5 10	9 12 18	Ω Ω
Output Resistance Temperature Coefficient			0.55	0.80	%/°C
Thermal Resistance ($\theta_{\rm JA}$) MM74C908 MM74C918	(Note 3) (Note 3)		100 45	110 55	°C/W °C/W

switching characteristics

PARAMETER	PARAMETER CONDITIONS					
Propagation Delay to a Logic "1" (t _{pd1})	$V_{CC} = 5V$, $R_L = 50\Omega$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ $V_{CC} = 10V$, $R_L = 50\Omega$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$		150 65	300 120	ns ns	
Propagation Delay to a Logic "0" (tpdg)	$V_{CC} = 5V$, $R_L = 50\Omega$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ $V_{CC} = 10V$, $R_L = 50\Omega$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$	÷	2 4	10 20	μs μs	
Input Capacitance (C _{IN})	(Note 2)		5.0		pF	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: θ_{iA} measured in free air with device soldered into printed circuit board.

typical performance characteristics

ac test circuit

switching time waveforms

power considerations

Calculating Output "ON" Resistance (R $_{L}>18\Omega$)

The output "ON" resistance, R_{ON} , is a function of the junction temperature, $T_{\rm L}$, and is given by:

$$R_{ON} = 9 (T_{\bar{1}} - 25) (0.008) + 9$$
 (1)

and T_i is given by:

$$T_{I} = T_{A} + P_{DAV} \theta_{IA}, \tag{2}$$

where T_A = ambient temperature, θ_{jA} = thermal resistance, and P_{DAV} is the average power dissipated within the device. P_{DAV} consists of normal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, A and B. P_D is given by:

$$P_{D} = I_{OA}^{2} R_{ON} + I_{OB}^{2} R_{ON},$$
 (3)

where Io is the output current, given by:

$$I_{O} = \frac{V_{CC} - V_{L}}{R_{ON} + R_{L}} \tag{4}$$

V_L is the load voltage.

The average power dissipation, $\mathbf{P}_{\text{DAV}},$ is a function of the duty cycle:

$$P_{DAV} = I_{OA}^{2} R_{ON} (Duty Cycle_{A}) +$$

$$I_{OB}^{2} R_{ON} (Duty Cycle_{B})$$
(5)

where the duty cycle is the % time in the current source state. Substituting equations (1) and (5) into (2) yields:

$$T_{j} = T_{A} + \theta_{jA} [9 (T_{j} - 25) (0.008) + 9]$$
 (6)
 $[I_{OA}^{2} (Duty Cycle_{A}) + I_{OB}^{2} (Duty Cycle_{B})]$

simplifying:

$$\mathsf{T_1} = \frac{\mathsf{T_A} + 7.2 \; \theta_{\mathsf{1A}} \; [\mathsf{I_{OA}}^2 \; (\mathsf{Duty} \; \mathsf{Cycle_A}) + \mathsf{I_{OB}}^2 \; (\mathsf{Duty} \; \mathsf{Cycle_B})]}{1 - 0.072 \; \theta_{\mathsf{1A}} \; [\mathsf{I_{OA}}^2 \; (\mathsf{Duty} \; \mathsf{Cycle_A}) + \mathsf{I_{OB}}^2 \; (\mathsf{Duty} \; \mathsf{Cycle_B})]}$$

(6b)

Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.

For example, let $V_{CC} = 15V$, $R_{LA} = 100\Omega$, $R_{LB} = 100\Omega$, $V_{L} = 0V$, $T_{A} = 25^{\circ}C$, $\theta_{|A} = 110^{\circ}C/W$, Duty Cycle_A = 50%, Duty Cycle_B = 75%.

Assuming $R_{ON} = 11\Omega$, then:

$$I_{OA} = \frac{V_{CC} - V_L}{R_{ON} + R_{LA}} = \frac{15}{11 + 100} = 135.1 \text{ mA},$$

$$I_{OB} = \frac{V_{CC} - V_L}{R_{ON} + R_{LB}} = 135.1 \text{ mA}$$

and
$$T_{i} = \frac{T_{A} + 7.2}{1 - 0.072} \frac{\theta_{iA}}{\theta_{iA}} \frac{\left(I_{OA}^{2} \left(\text{Duty Cycle}_{A}\right) + I_{OB}^{2} \left(\text{Duty Cycle}_{B}\right)\right]}{\left(I_{OA}^{2} \left(\text{Duty Cycle}_{A}\right) + I_{OB}^{2} \left(\text{Duty Cycle}_{B}\right)\right]}$$

$$T_{j} = \frac{25 + (7.2) (110) [(0.1351)^{2} (0.5) + (0.1351)^{2} (0.75)]}{1 \cdot (0.072) (110) [(0.1351)^{2} (0.5) + (0.1351)^{2} (0.75)]}$$

T, = 52.6°C

and
$$R_{ON} = 9 (T_J - 25) (0.008) + 9 = 9 (52.6 - 25) (0.008) + 9 = 11 \Omega$$

APPLICATIONS

Like most other drivers, the MM74C908, MM74C918 can be used to drive relays, lamps, speakers, etc. These are shown in Figure 12. (To suppress transient spikes at turn-off, a diode as shown as Figure 12a is recommended at the relay coil or any other inductive load.)

However, the MM74C908, MM74C918 offers a unique CMOS feature that is not available in drivers from other logic families-extremely low standby power. At VCC =

15V, power dissipation per package is typically 750 nW when the outputs are not drawing current. Thus, the drivers can be sitting out on line (a telephone line, for example) drawing essentially zero current until activated-an ideal feature for many applications.

The dual feature and the NAND function of the driver design can also be used to advantage as shown in the following applications:

FIGURE 12a. Relay Driver

MM54C922/MM74C922 16 key encoder MM54C923/MM74C923 20 key encoder

general description

These CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have onchip pull-up devices which permit switches with up to 50 kΩ on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two key roll over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The TRI-STATE® outputs

provide for easy expansion and bus operation and are LPTTL compatible.

features

- 50 kΩ maximum switch on resistance
- On or off chip clock
- On chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- TRI-STATE outputs LPTTL compatible
- Wide supply range

3V to 15V

■ Low power consumption

connection diagrams

Dual-In-Line Package

Order Number MM54C922J or MM74C922N See NS Package J18A or N18A

Dual-In-Line Package

Order Number MM54C923J or MM74C923N See NS Package J20A or N20A

absolute maximum ratings

Voltage at Any Pin $V_{CC} = 0.3 \mbox{V to } V_{CC} + 0.3 \mbox{V}$ Operating Temperature Range

MM54C922, MM54C923 55°C to +125' C
MM74C922, MM74C923 -40°C to +85°C
Storage Temperature Range 65°C to +150°C

Package Dissipation
Operating V_{CC} Range
V_{CC}
Lead Temperature (Soldering, 10 seconds)

500 mW 3V to 15V 18V 300°C

electrical characteristics Minimax limits apply across temperature range unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS T	O CMOS			,		•
V _{T+}	Positive-Going Threshold Voltage at Osc and KBM Inputs	$V_{CC} = 5V$, $I_{1N} \ge 0.7 \text{ mA}$	3 6	3.6	4.3	٧
	Osc and Kibin Inputs	$V_{CC} = 10V$, $t_{IN} \ge 1.4 \text{ mA}$ $V_{CC} = 15V$, $t_{IN} \ge 2.1 \text{ mA}$	9	6 8 10	8.6 12 9	\ \ \ \ \
٧ _٢	Negative-Going Threshold Voltage at	$V_{CC} = 5V$, $I_{IN} \ge 0.7 \text{ mA}$	0 7	1 4	2	V
	Osc and KBM Inputs	V_{CC} = 10V, $I_{IN} \ge 1.4 \text{ mA}$	1.4	3.2	4	V
		V _{CC} = 15V, I _{IN} ≥ 2 1 mA	2 1	5	6	V
VIN(1)	Logical "1" Input Voltage, Except	V _{CC} = 5V,	3 5	4.5		V
	Osc and KBM Inputs	V _{CC} = 10V,	8	9		٧
		V _{CC} = 15V,	12.5	13 5		V
/IN(0)	Logical "0" Input Voltage, Except	VCC = 5V.		0.5	1,5	V
	Osc and KBM Inputs	V _{CC} = 10V,		1	2	V
	Paus Bull Ha Courses to MA MO MO	V _{CC} = 15V,		1.5	25	٧.
р	Row Pull-Up Current at Y1, Y2, Y3, Y4 and Y5 Inputs	V _{CC} = 5V, V _{IN} = 0.1 V _{CC}	1	-2	-5 30	μΑ
	, 4 and 10 inputs	V _{CC} = 10V V _{CC} = 15V		-10 22	−20 −45	μA μA
OUT	Logical "1" Output Voltage	$V_{CC} = 5V$, $I_{O} = -10\mu A$,		73	
001(1	, Logica. 1 Output voitage	$V_{CC} = 10V, I_{O} = -10\mu A$	4.5 9			\ \ \
		V _{CC} - 15V, I _O = -10μA	13 5	1		ľ
OLITIO	Logical "0" Output Voltage	V _{CC} - 5V, I _O = 10μA		ļ	0.5	v
00110	,	$V_{CC} = 10V$, $I_{O} = 10\mu A$			1	v
		V _{CC} = 15V, I _O = 10μA			1 5	v
Ron	Column "ON" Resistance at	$V_{CC} = 5V, V_{O} = 0.5V$		500	1400	Ω
OII	X1, X2, X3 and X4 Outputs	$V_{CC} = 10V$, $V_{O} = 1V$		300	700	Ω
		V _{CC} = 15V, V _O = 1 5V		200	50 0	Ω
cc	Supply Current	V _{CC} = 5V, Osc at 0 V	[0 55	1.1	mA
		V _{CC} = 10V		1_1	1.9	mA
		V _{CC} = 15V		1 7	2.6	mA
IN(1)	Logical "1" Input Current at Output Enable	V _{CC} = 15V, V _{IN} = 15V		0 005	1.0	μΑ
IN(0)	Logical "0" Input Current at Output Enable	V _{CC} = 15V, V _{IN} - 0V	1_0	-0 005		μА
MOS/LI	PTTL INTERFACE		·			
IN(1)	Logical "1" Input Voltage, Except	54C, V _{CC} = 4 5V	V _{CC} 1.5			٧
	Osc and KBM Inputs	74C, V _{CC} = 4 75V	V _{CC} -15			٧
¹ N(0)	Logical "0" Input Voltage, Except	54C, V _{CC} = 4,5V		ł	0.8	V
	Osc and KBM Inputs	74C, V _{CC} = 4.75V		ļ	8.0	V
OUT(1)	Logical ''1'' Output Voltage	54C, V _{CC} = 4.5V, I _O = -360µA	2.4			٧
		74C, $V_{CC} = 4.75V$, $I_{O} = -360\mu A$	2 4			٧
OUT(0)	Logical "0" Output Voltage	54C, V _{CC} = 4.5V, I _O = -360μA			0.4	V
		74C, $V_{CC} = 4.75V$, $I_{C} = -360\mu A$			0.4	V

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS						
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)												
ISOURC	CE Output Source Current (P-Channel)	V _{CC} = 5V, V _{OUT} = 0V, T _A = 25°C	-1.75	-3.3		mA						
SOURC	CE Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V,$ $T_{A} = 25^{\circ}C$	-8	-15		mA						
^I SINK	Output Sink Current (N-Channel)	$V_{CC} = 5V$, $V_{OUT} = V_{CC}$, $T_A = 25^{\circ}C$	1.75	3.6		mA						
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$, $T_{A} = 25^{\circ}C$	8	16		mA						

switching characteristics TA = 25°C

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
^t pd0 ^{,t} pd1	1	C _L = 50 pF, (Figure 1)				
	Logical "0" or Logical "1"	V _{CC} = 5V	1	60	150	ns
	from D.A	V _{CC} = 10V	1	35	80	ns
		V _{CC} = 15V		25	60	ns
t0H,t1H	Propagation Delay Time from	R _L = 10k, C _L = 5 pF, (Figure 2)		'		
	Logical "0" or Logical "1"	V _{CC} = 5V R _L = 10k		80	200	ns
	into High Impedance State	V _{CC} = 10V C _L = 10 pF		65	150	ns
		V _{CC} = 15V	}	50	110	ns
tH0,tH1	Propagation Delay Time from	R _L = 10k, C _L = 50 pF, (Figure 2)	1	'	1	Ì
	High Impedance State to a	V _{CC} = 5V R _L = 10k		100	250	ns
	Logical "0" or Logical "1"	V _{CC} = 10V C _L = 50 pF		55	125	ns
		V _{CC} = 15V		40	90	ns
CIN	Input Capacitance	Any Input, (Note 2)		5	7.5	pF
COUT	TRI-STATE Output Capacitance	Any Output, (Note 2)	1	10		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

switching time waveforms

 $T1 \simeq T2 \approx RC$, $T3 \approx 0.7~RC$ where $R \simeq 10k$ and C is external capacitor at KBM input.

FIGURE 2

DATA AVAILABLE OSC EXT C OR CLOCK ON THE STATE COUNTER ACTIVE LOW OUTPUTS SWITCH OSTA AVAILABLE OSTA AVAILABLE OSTA AVAILABLE OSTA AVAILABLE OSTA AVAILABLE OUTPUT ENT C OUTPUT ENT C OUTPUT ENT C OUTPUT SWITCH OUTPUT SWI

truth table

KEY ARRAY

SWITCH POSITION	0 Y1,X1	1 Y1,X2	2 Y1,X3	3 Y1,X4	4 Y2,X1	5 Y2,X2	6 Y2,X3	7 Y2,X4	8 Y3,X1	9 Y3,X2	10 Y3,X3	11 Y3,X4	12 Y4,X1	13 Y4,X2	14 Y4,X3	15 Y4,X4	16 Y5*,X1	17 Y5*,X2	18 Y5*,X3	19 Y5*,X4
D A	n	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
тв	0	ė.	1	1	o.	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
AC	l n	n	ó	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0 D	ő	o	o o	0	0	o	0	0	1	1	1	1	1	1	1	1	0	0	0	0
U E*	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

^{*}Omit for MM54C922/MM74C922

typical performance characteristics

typical performance characteristics (con't)

typical applications

Synchronous Handshake (MM74C922)

Synchronous Data Entry Onto Bus (MM74C922)

Outputs are enabled when valid entry is made and go into TRI-STATE when key is released.

Asynchronous Data Entry Onto Bus (MM74C922)

Outputs are in TRI-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to TRI-STATE.

Note 3: The keyboard may be synchronously scanned by omitting the capacitor at osc, and driving osc, directly if the system clock rate is lower than 10 kHz.

MM78C29/MM88C29 quad single ended line driver MM78C30/MM88C30 dual differential line driver

general description

The MM78C30/MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to V_{CC} in the input protection circuitry allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a V_{CC} voltage greater than the V_{CC} voltage of the MM78C30 line driver. The differential output of the MM78C30/MM88C30 eliminates ground-loop errors.

The MM78C29/MM88C29 is a non-inverting single-wire transmission line driver with a similar input protection circuit. And since the output ON resistance is a low 20Ω

typ, the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.

features

Wide supply voltage range

3.0V to 15V

High noise immunity

0 45 V_{CC} typ

■ Low output ON resistance

20Ω typ

absolute maximum	ratings (Note 1)
Voltage at Any Pin	-0.3V to +16V
Operating Temperature Range	
MM78C29/MM78C30	-55°C to +125°C

 $\begin{array}{ccc} \text{MM88C29/MM88C30} & -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ \text{Storage Temperature Range} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Package Dissipation} & 500 \text{ mW} \\ \text{Operating V}_{\text{CC}} \text{ Range} & 3.0 \text{V to} 15 \text{V} \\ \end{array}$

 Absolute Maximum V_{CC}
 18V

 Average Current at V_{CC} and Ground
 100 mA

 Average Current at Output
 50 mA

 MM78C30/MM88C30
 50 mA

 MM78C29/MM88C29
 25 mA

 Maximum Junction Temperature, T₁
 150°C

 Lead Temperature (Soldering, 10 seconds)
 300°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS				0	
Logical "1" Input Voltage (V _{IN(1)})	V _{CC} = 5.0V V _{CC} = 10V	3.5 8.0			V
Logical ''0'' Input Voltage $\{V_{1N(0)}\}$	$V_{CC} = 5.0V$ $V_{CC} \approx 10V$			1.5 2.0	V V
Logical "1" Input Current (I _{IN(1)})	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
Logical "0" Input Current (I _{IN(0)})	$V_{CC} = 15V$, $V_{\dagger N} = 0V$	1.0	-0.005		μA
Supply Current (I _{CC})	V _{CC} = 15V		0.05	100	μ A
OUTPUT DRIVE					
Output Source Current M M 78C29/MM78C30	$V_{OUT} = V_{CC} - 1.6V,$ $V_{CC} \ge 4.5V, T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$	-57 -32	-80 -50		mA mA
MM88C29/MM88C30	$V_{OUT} = V_{CC} - 1.6V,$ $V_{CC} \ge 4.75V, T_{J} = 25^{\circ} C$ $T_{J} = 85^{\circ} C$	-47 -32	-80 -60		mA mA
MM78C29/MM88C29 MM78C30/MM88C30 Output Sink Current	$V_{OUT} = V_{CC} - 0.8V$ $V_{CC} \ge 4.5V$	-2	-20		mA
MM78C29/MM78C30	$V_{OUT} = 0.4V, V_{CC} = 4.50V$ $T_{j} = 25^{\circ}C$ $T_{j} = 125^{\circ}C$	11 8	20 14		mA mA
	$V_{OUT} = 0.4V, V_{CC} = 10V$ $T_{j} = 25^{\circ}C$ $T_{j} = 125^{\circ}C$	22	40 28		mA mA
MM88C29/MM88C30	$V_{OUT} = 0.4V, V_{CC} = 4.75V$ $T_1 = 25^{\circ}C$ $T_1 = 85^{\circ}C$	95	22 18		mA mA
	$V_{OUT} = 0.4 V, V_{CC} = 10 V$ $T_{j} = 25^{\circ} C$ $T_{j} = 85^{\circ} C$	19 15.5	40 33		mA mA
Output Source Resistance MM78C29 ⁷ MM78C30	$V_{OUT} = V_{CC} = 1.6V,$ $V_{CC} \ge 4.5V, T_1 = 25^{\circ}C$ $T_1 = 125^{\circ}C$		20 32	28 50	$\Omega \Omega$
MM88C29/MM88C30	$V_{OUT} = V_{CC}$ 1.6V, $V_{CC} \ge 4.75V$, $T_{j} = 25^{\circ}C$ $T_{j} = 85^{\circ}C$		20 27	34 50	Ω

°C/W

150

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Sink Resistance					
MM78C29/MM78C30	$V_{OUT} = 0.4V, V_{CC} = 4.5V$		_		
	T, = 25°C		20	36	Ω
	T _j = 125 °C		28	50	Ω
	$V_{OUT} = 0.4V, V_{CC} = 10V$				
	T, = 25°C	1	10	18	Ω
	T ₁ = 125°C		14	25	Ω
	'				
MM88C29/MM88C30	$V_{OUT} = 0.4V, V_{CC} = 4.75V$	1			
	T ₁ = 25°C		18	41	Ω
	T, = 85°C		22	50	Ω
	$V_{OUT} = 0.4V, V_{CC} = 10V$	}	ŀ		
	T ₁ = 25°C		10	21	Ω
	T = 85°C		12	26	Ω
Output Resistance Temperature					
Coefficient					
Source		1	0.55	1	%/°C
Sink			0.40		%/°C
SHIK		1	0.70		/0// 0
Thermal Resistance, θ_{jA}					
MM78C29/MM78C30			100		°C/W
(D-Package)					

switching characteristics $T_A = 25^{\circ}C$, $C_L = 50 pF$

MM88C29/MM88C30

(N-Package)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical "1" or "0" (tpd)	(See Figure 2)				
MM78C29/MM88C29	V _{CC} = 5V		80	200	ns
WIW178C29/WIW188C29		i		1	
	V _{CC} = 10V		35	100	ns
MM78C30/MM88C30	V _{CC} = 5∨		110	350	ns
	V _{CC} = 10V		50	150	ns
Power Dissipation Capacitance (C _{PD})					
MM78C29/MM88C29	(Note 3)		150		рF
MM78C30/MM88C30	(Note 3)		200		pF
Input Capacitance (C _{IN})					
MM78C29/MM88C29	(Note 2)		5.0		рF
MM78C30/MM88C30	(Note 2)		5.0		pF
Differential Propagation Delay Time	$R_1 = 100\Omega$, $C_1 = 5000 \text{ pF}$			Į	
to Logical "1" or "0"	(See Figure 1)			1	
MM78C30/MM88C30	V _{CC} = 5V	1	1	400	ns
14147 0 0307 141110 0 0 0 0	$V_{CC} = 10V$			150	1
	VCC - 10 V		1	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CpD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

typical performance characteristics

ac test circuits

FIGURE 1.

FIGURE 2.

typical applications

Digital Data Transmission

Typical Data Rate vs Transmission Line Length

Note 1. The transmission line used was #22 gauge unshielded twisted pair

(40k termination)

Note 2: The curves generated assume that both drivers are driving equal lines, and that the maximum power is 500 mW/package

Section 10

Application Notes

10

			i
			l
			l
			ļ
			1
			ļ

Summary of Electrical Characteristics of Some Well Known Digital Interface **Standards**

National Semiconductor May 1978

FORWARD

Not the least of the problems associated with the design or use of data processing equipment is the problem of providing for or, actually, interconnecting the differing types and models of equipment to form specific processing systems.

The magnitude of the problem becomes apparent when one realizes that every aspect of the electrical, mechanical and architectural format must be specified. The most common of the basic decisions confronting the engineer

- Type of logic (negative or positive)
- Threshold levels
- Noise immunity
- Form of transmission
 - Balanced/unbalanced, terminated/unterminated
 - Unidirectional/bidirectional, simplex/multiplexed
- Type of transmission line
- Connector type and pin out
- Bit or byte oriented
- Baud rate

If each make and/or model of equipment presented a unique interface at its I/O ports, "interface" engineering would become a major expenditure associated with the use of data processing equipment.

Fortunately, this is not the case as various interested or cognizant groups have analyzed specific recurring interface areas and recommended "official" standards around which common I/O ports could be structured. Also, the I/O specifications of some equipment with widespread popularity such as the IBM 360/370 computer and DEC minicomputer have become "defacto"

standards because of the desire to provide/use equipment which interconnect to them.

Compliance with either the "official" or "defacto" standards on the part of equipment manufacturers is voluntary. However, it is obvious that much can be gained and little lost by providing equipment that offers either the "official" or "defacto" standard I/O ports.

As can be imagined, the entire subject of interface in data processing systems is complicated and confusing, particularly to those not intimately involved in the dayto-day aspects of interface engineering or management. However, at the component level the questions simplify to knowing what standards apply and what circuits or components are available to meet the standards.

This application note summarizes the important electrical characteristics of the most commonly accepted interface standards and offers recommendations on how to use National Semiconductor integrated circuits to meet those standards.

1.0 INTRODUCTION

The interface standards covered in this application note are listed in Table I. The body of the text expands upon the scope and application of each listed standard and summarizes important electrical parameters.

Table II summarizes the National Semiconductor IC's applicable to each standard.

TABLE I. COMMON LINE DRIVER/RECEIVER INTERFACE STANDARDS SUMMARY

INTERFACE AREA	APPLICATION	STANDARD	ORIGIN	COMMENTS
Data Communications Equip-	U.S.A. Industrial	RS232C	EIA	Unbalanced, Short Lines
ment (DCE*) to Data Terminal		RS422	EIA	Balanced, Long Lines
Equipment (DTE)		RS423	EIA	Unbalanced, RS232 Up-
		RS449	EIA	Grade System Standard Coverin Use of RS422, RS423
	International	CCITT Vol. VIII	International	Similar to RS232
		V. 24	Telephone	
		CCITT No. 97	and Telegraph	Similar to RS423
		X. 26	Consultative	
		CCITT No. 97 X. 27	Committee	Similar to RS422
	U.S.A. Military	MIL-STD-188C	D.O.D.	Unbalanced, Short Lines
		MIL-STD-188-114	D.O.D.	Similar to RS422, RS423
		MIL-STD-1397 (NTDS-Slow)	Navy	42k bits/sec
		MIL-STD-1397 (NTDSFast)	Navy	250k bits/sec
	U.S. Government,	FED-STD-1020	GSA	Identical to RS423
	Non-Military	FED-STD-1030	GSA	Identical to RS422
Computer to Peripheral	IBM 360/370	System 360/370 Channel I/O	IBM	Unbalanced 8us
	DEC Mini-Computer	DEC Unibus [®]	DEC	Unbalanced Bus
Instrument to	Nuclear Instru-	CAMAC	NIM	DTL/TTL
Computer	mentation	(IEEE std. 583-1975)	(AEC)	Logic Levels
	Laboratory Instru-	488	IEEE	Unbalanced Bus
Microprocessor to Interface Devices	Microprocessor Circuits	Microbus TM	National Semiconductor	Short Line; 8-Bit Parallel Digital Transmission
Facsimile Equipment to DTE	Facsimile Transmission	RS357	EIA	Incorporates RS232
Automatic Calling Equipment to DTE	Impulse Dialing and Multi-Tone Keying	R\$366	EIA	Incorporates RS232
Numerically Controlled Equipment to DTE	Numerically Controlled Equipment	RS408	EIA	Short Lines (<4 Ft.)

^{*}Changed to "Data Circuit--Terminating Equipment"

[®]Registered trademark of Digital Equipment Corp.

STANDARD		PART N		
DESIGNATION	LINE DRIVER 0°C TO +70°C			RECEIVER
U.S. Industrial Standa		-55 C 10 +125 C	0°С ТО +70°С	−55°C TO +125°C
RS232C	Ţ	N . A . II . I	D04400 (4)	
H5232C	DS1488 DS75150	Not Applicable Not Applicable	DS1489 (A) DS75154	Not Applicable Not Applicable
RS357	See RS232C	Not Applicable	D373134	Not Applicable
RS366	See RS232C			
RS408	DS75453	DS55454	DS7820A	DS7820A
	DS75454	DS55454	DS75115	DS55115
RS422	DS3691	DS1691	DS88LS120	DS78LS120
	DS26LS31	DS26LS31M	DS26LS32	DS26LS32M
	DS3487		DS3486	
			DS26LS33	D030000
			DS88C20	DS78C20
			DS88C120	DS78C120
RS423	DS3691	DS1691	DS88LS120	DS78LS120
	DS3692	DS1692	DS88C20	DS78C20
			DS88C120	DS78C120
RS449	See RS422, RS423			
IEEE 488	DP8304B	DP73048	DP8304B	DP73048
	Transceiver	Transceiver	Transceiver	Transceiver
CAMAC	See RS232C, RS42	2, RS423 or IEEE 488		
I8M 360/370	DS75123	Not Applicable	DS75124	Not Applicable
I/O Port				
DEC Unibus®	DS36147	DS16147	DS8640	DS7640
	DS8641	DS7641	DS8641	DS7641
	Transceiver	Transceiver	Transceiver	Transceiver
Microbus TM	DS3628	DS1628		
	DP8228	DP8228M		
	DP8216	DP8216M		
	DP8212	DP8212M		
	DP8304B		DP8304B	
	Transceiver		Transceiver	
Government Standard	ls	. Allis		
MIL-STD-188C	DS3691	DS1691	DS88LS120	DS78LS120
MIL-STD-188-114	DS3691	DS1691	DS88LS120	DS78LS120
FED-STD-1020	See RS423			
FED-STD-1030	See RS422			
MIL-STD-1397 (NTDS-Slow)	Use Discrete Compo	onents and/or Comparators		
MIL-STD-1397 (NTDS-Fast)	Use Discrete Compo	onents and/or Comparators		

[®]Registered trademark of Digital Equipment Corp.

TABLE II. LINE DRIVER/RECEIVER INTEGRATED CIRCUIT SELECTION GUIDE FOR DIGITAL INTERFACE STANDARDS (Continued)

074400400	PART NUMBER					
STANDARD	LINE	DRIVER	LINE	RECEIVER		
DESIGNATION	0°C TO +70°C	−55°C TO +125°C	0°C TO +70°C	−55°C TO +125°C		
International Standard	Is (CCITT)	•				
1969 White Book Vol. VIII, V. 24	See RS232C					
Circular No. 97, X. 26	See RS422					
Circular No. 97, X. 27	See RS423					

2.0 DATA TERMINAL EQUIPMENT (DTE) TO DATA COMMUNICATIONS EQUIPMENT (DCE) INTER-**FACE STANDARDS**

2.1 Application

The DTE/DCE standards cover the electrical, mechanical and functional interface between/ among terminals (i.e., teletypewriters, CRTs, etc.) and communications equipment (i.e., modems, cryptographic sets, etc.).

2.2 U.S. Industrial DTE/DCE Standards

2.2.1 EIA RS232C

The oldest and most widely known DTE/ DCE standard. It provides for one-way/ non-reversible, single-ended (unbalanced), non-terminated line, serial digital data transmission.

FIGURE 1, EIA RS232C Application

Important features are:

- Positive logic (±5V min to ±15V max)
- b) Fault protection
- Slew-rate control
- 50 feet recommended cable length and 20k bits per second data signaling rate.

2.2.2 EIA R\$422, R\$423

In a move to upgrade system capabilities by utilizing state-of-the-art devices and technology the EIA, in 1975, introduced 2 new specifications covering:

- 1) Single-ended data transmission at modulation rates up to kilobaud* (RS423)
- 2) Balanced data transmission at modulation rates up to 10 megabaud (RS422).

2,2,2,1 RS423

RS423 closely resembles RS232C in that it, too, specifies one-way/ non-reversible, single-ended, data transmission lines. Key differences between RS423 and RS232C are:

RS423

4V to 6V Logical "1" -4V to -6V Logical "0" 100k Baud at 40 Feet Balanced Receiver, Referred

to Driver Ground, Permitting Ground Potential Difference Between Driver and Receiver

RS232

5V to 15V Logical "1" -5V to -25V Logical "0" 20k Baud at 50 Feet

Unbalanced Receiver

FIGURE 2. EIA RS423 Application

Modulation rate = reciprocal of minimum pulsewidth (i.e., 20 ms pulse = 50 baud)

TABLE III, E	A RS232C SPECIFICATION	N SUMMARY

PARAMETER		CONDITIONS		EIA R\$2320	2	UNITS
TABAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Voн	Driver Output Voltage Open				25	V
VOL	Circuit		-25			V
Vон	Driver Output Voltage Loaded	$3 \text{ k}\Omega \leq R_{\text{L}} \leq 7 \text{ k}\Omega$	5		15	V
VOL	Output		-15		-5	V
RO	Driver Output Resistance Power OFF	$-2V \le V_{O} \le 2V$			300	Ω
los	Driver Output Short-Circuit		-500		500	mA
	Current					
	Driver Output Slew Rate					
	All Interchange Circuits				30	V/μs
	Control Circuits	,	6			V/ms
	Rate and Timing Circuits		6			V/ms
		% of Unit Interval	4			%
R_{IN}	Receiver Input Resistance	$3V \le V_{IN} \le 25V$	3000		7000	Ω
	Receiver Open Circuit Input		-2		2	V
	Bias Voltage					
	Receiver Input Threshold					
	Output = MARK		-3			V
	Output = SPACE				3	V

TABLE IV. EIA RS423 SPECIFICATION SUMMARY

	DADAMETED	CONDITIONS		EIA RS423	3	UNITO
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
$\frac{v_0}{\overline{v_0}}$	Driver Unloaded Output Voltage		4		6	V
VO			-4		-6	V
$\frac{V_T}{V_T}$	Driver Loaded Output Voltage	R _L = 450Ω	3.6			V
V_{T}			-3.6			V
R_S	Driver Output Resistance				50	7.5
IOS	Driver Output Short-Circuit	VO = 0V			±150	mA
	Current					
	Driver Output Rise and Fall	Baud Rate \leq 1k Baud			300	μ s
	Time	Baud Rate≥ 1k Baud			30	% Unit
						Interval
lox	Driver Power OFF Current	VO = ±6V			±100	μΑ
V_{TH}	Receiver Sensitivity	$V_{CM} \le \pm 7V$			±200	mV
V_{CM}	Receiver Common-Mode Range				±10	V
R _{IN}	Receiver Input Resistance		4000			Ω
	Receiver Common-Mode Input			U	±3	V
	Offset					

2.2.2.2 RS422

RS422 provides for balanced data transmission with unidirectional/non-reversible, terminated or non-terminated transmission lines. Important features are:

- a) ±2V to ±6V driver output
- b) 0.4V differential output matching
- c) ±200 mV receiver input sensi
 - tivity

d) 10M baud modulation rate

2.3 International Standards

2.3.1 CCITT 1969 White Book Vol. VIII, V. 24. This standard is identical to RS232C.

2.3.2 CCITT circular No. 97 Com SPA/13, X, 26, This standard is similar to RS422

 ± 300 mV vs ± 200 mV for RS422.

- X. 26. This standard is similar to RS422 with the exception that the receiver sensitivity at the specified maximum common-mode voltage (±7V) shall be
- 2.3.3 CCITT circular No. 97 Com SPA/13, X. 27. This standard is similar to RS423 with 2 exceptions:
 - The receiver sensitivity is as specified in paragraph X. 26, and
 - b) The driver output voltage is specified at a load resistance of 3.9 k Ω .

FIGURE 3. EIA RS422 Application

TABLE V. EIA RS422 SPECIFICATION SUMMARY

		CONDITIONS		EIA RS422		UNITS	
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
Vo	Driver Unloaded Output Voltage				6	V	
$\overline{V_O}$					-6	\ \ \	
√T	Driver Loaded Output Voltage	R _T = 100Ω	2			V	
VΤ			-2			V	
Rs	Driver Output Resistance	Per Output			50	Ω	
los	Driver Output Short-Circuit	VO = 0V			150	mA	
	Current						
	Driver Output Rise Time				10	% Unit	
						Interval	
lox	Driver Power OFF Current	$-0.25V \le V_O \le 6V$			±100	μА	
VTH	Receiver Sensitivity	V _{CM} = ±7V			200	mV	
VCM	Receiver Common-Mode Voltage		-10		10	V	
	Receiver Input Offset		+3			V	

2.4 U.S. Military Standards

2.4.1 MIL-STD-188C (Low Level)

The military equivalent to RS232C is MIL-STD-188C. Devices intended for

RS232C can be applied to MIL-STD-188C by use of external wave shaping components on the driver end and input resistance and threshold tailoring on the receiver end.

FIGURE 4. MIL-STD-188C Application

TABLE VI. MIL-STD-188C SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	MIL-STD-188C LOW LEVEL LIMITS			UNITS	
			MIN TYP		MAX		
V _{OL}	Driver Output Voltage Open Circuit	(Note 1)	5 -7	-	7 -5	V V	
RO	Driver Output Resistance Power ON	$I_{OUT} \le 10 \text{ mA}$			100	Ω	
Ios	Driver Output Short-Circuit Current		-100	•	100	mA	
	Driver Output Slew Rate All Interchange Circuits Control Circuits Rate and Timing Circuits	(Note 2)	5		15	% IU	
RIN	Receiver Input Resistance	Mod Rate ≤ 200k Baud	6			Ω	
	Receiver Input Threshold Output = MARK Output = SPACE	(Note 3)	-100		100	μA μA	

Note 1: Ripple $\leq\!0.5\%, V_{OH}, V_{OL}$ matched to within 10% of each other

Note 2: Waveshaping required on driver output such that the signal rise or fall time is 5% to 15% of the unit interval at the applicable modulation rate.

Note 3: Balance between marking and spacing (threshold) currents actually required shall be within 10% of each other.

FIGURE 5. MIL-STD-188-114 (Balanced) Application

10

2.4.2 MIL-STD-188-114 Balanced

This standard is similar to RS422 with the exception that the driver offset voltage level is limited to $\pm 0.4 \text{V}$ vs $\pm 3 \text{V}$ allowed in RS422.

2.4.3 MIL-STD-188-114 Unbalanced.

This standard is similar to RS423 with the exception that loaded circuit driver output voltage at R_L = 450 Ω must be 90% of the open circuit output voltage vs $\pm 2V$ at R_S = 100Ω for RS422.

2.4.4 MIL-STD-1397 (Slow and Fast)

2.5 U.S. Government (non-military) standards FED-STD-1020 and 1030 are identical without exception to EIA RS423 and RS422, respectively.

3.0 COMPUTER TO PERIPHERAL INTERFACE STANDARDS

To date, the only standards dealing with the interface between processors and other equipment are the "defacto" standards in the form of specifications issued by IBM and DEC covering the models 360/370 I/O ports and the Unibus®, respectively.

3.1 IBM specification GA-22-6974-0 covers the electrical characteristics, the format of information and the control sequences of the data transmitted between 360/370's and up to 10 I/O ports.

The interface is an unbalanced bus using 95Ω, terminated, coax cables. Devices connected to the bus should feature short-circuit protection, hysteresis in the receivers, and open-emitter drivers. Careful attention should be paid to line lengths and quality in order to limit cable noise to less than 400 mV.

TABLE VII. MIL-STD-1397 SPECIFICATION SUMMARY

	PARAMETER	CONDITIONS		COMPARISON LIMITS (MIL-STD)		UNITS	
	FARAMETER	CONDITIONS	1397 (SLOW)	1397 (FAST)	UNITS		
	Data Transmission Rate		42	250	k Bits/Sec	Т	
VOH	Driver Output Voltage		± ₁.5	0	V		
VOL			-1 0 to -15.5	-3	V		
Іон	Driver Output Current		≥-4		mA		
lOL			1		mA		
R_S	Driver Power OFF Impedance		≥100		kΩ		
VIH	Receiver Input Voltage	Fail-Safe Open Circuit	≤4.5	≤-1.1	V		
VIL			≥-7.5	≥-1.9	V		

FIGURE 6. IBM 360/370 I/O Application

Registered trademark of Digital Equipment Corp.

	PARAMETER	CONDITIONS	lI	IBM 360/370		
	TANAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voн	Driver Output Voltage	IOH = 123 mA			7	V
۷он		I _{OH} = 30 μA			5.85	V
V_{OH}		I_{OH} = 59.3 mA	3.11			V
VOL		$I_{OL} = -240 \mu A$			0.15	V
VIH	Receiver Input Threshold				1.7	V
\vee_{IL}	Voltage		0.7			V
Ιιн	Receiver Input Current	$V_{IN} = 3.11V$			-0.42	mA
IIL		$V_{1N} = 0.15V$	0.24			mA
	Receiver Input Voltage					
	Range					
VIN	Power ON		-0.15		7	V
v_{IN}	Power OFF		-0.15		6	V
RIN	Receiver Input Impedance	$0.15 \text{V} \leq \text{V}_{\text{IN}} \leq 3.9 \text{V}$	7400			Ω
IIN	Receiver Input Current	$V_{IN} = 0.15V$	1		240	μΑ
z_{O}	CABLE Impedance		83		101	Ω
$R_{\mathbf{O}}$	CABLE Termination	$P_{D} \geq 390 \; mW$	90		100	Ω
	Line Length (Specified as				400	mV
	Noise on Signal and Ground Lines)					

FIGURE 7. DEC Unibus® Application

TABLE IX. DEC UNIBUS ® SPECIFICATION SUMMARY

PARAMETER		CONDITIONS	DEC UNIBUS [©]			
	FARAMETER	CONDITIONS	MIN TYP		MAX	UNITS
VOL	Driver Output Voltage	IOL = 50 mA			0.7	V
٧o		Absolute Maximum			7	V
VIH	Receiver Input Voltage		1.7			٧
VIL					1.3	V
Ιн	Receiver Input Current	V _{IN} = 4V			100	μΑ
l _{IL}		V _{IN} = 4V Power OFF			100	μΑ

3.2 DEC Unibus

Another example of an unofficial industry standard is the interface to a number of DEC minicomputers. This interface, configured as a 120Ω double-terminated data bus is given the

name Unibus⁽ⁱⁱ⁾. Devices connected to the bus should feature hysteresis in the receivers and open-collector driver outputs. Cable noise should be held to less than 600 mV.

[®]Registered trademark of Digital Equipment Corp

4.0 INSTRUMENTATION TO COMPUTER INTER-FACE STANDARDS

4.1 Introduction

The problem of linking instrumentation to processors to handle real-time test and measurement problems was largely a custom interface problem. Each combination of instruments demanded unique interfaces, thus inhibiting the wide spread usage of small processors to day-to-day test, measurement and control applications.

Two groups addressed the problem for specific environments. The results are:

 IEEE 488 bus standard based upon proposals made by HP, and The CAMAC system pioneered by the nuclear physics community.

4.2 IEEE 488

IEEE 488 covers the functional, mechanical and electrical interface between laboratory instrumentation (i.e., signal generators, DPM's, counters, etc.) and processors such as programmable calculators and minicomputers. Equipment with IEEE 488 I/O ports can be readily daisy chained in any combination of up to 15 equipments (including processor) spanning distances of up to 60 feet. 16 lines (3 handshake, 5 control and 8 data lines) are required.

FIGURE 8. IEEE 488 Application

TABLE X. IEEE 488 SPECIFICATION SUMMARY

PARAMETER		CONDITIONS		IEEE 488		
		CONDITIONS	MIN	TYP	MAX	UNITS
Voн	Driver Output Voltage	I _{OH} =5.2 mA	2.4			V
VOL		I _{OL} = 48 mA			0.4	V
	Driver Output Current					
loz	TRI-STATE®	V _O = 2.4V			±40	μ A
Іон	Open Collector	V _O = 5.25V			250	μΑ
VIH	Receiver Input Voltage	0.4V Hysteresis Recommended	2.0			V
VIL					0.8	V
Ιιн	Receiver Input Current	V _{IN} = 2.4V			40	μΑ
IIL		V _{IN} = 0.4V			-1.6	mA
	Receiver Clamp Current	V _{IN} = -1.5V			12	mA
RL1	Termination Resistor	V _{CC} = 5V (±5%)	2850		3150	
R _{L2}		V = Gnd	5 8 90		6510	

The CAMAC system is the result of efforts by those in the nuclear physics community to standardize the interface between laboratory instruments and computers before the introduction of IEEE 488.

It allows either serial or parallel interconnection of instruments via a "crate" controller.

The electrical requirements of the interfaces are compatible with DTL and TTL logic levels.

5.0 MICROPROCESSOR SYSTEMS INTERFACE STANDARDS

5.1 Microprocessor systems are bus organized systems with two types of bus requirements:

- Minimal system: for data transfer over short distances (usually on 1 PC board), and,
- Expanded system: for data transfer to extend the memory or computational capabilities of the system.

5.2 Minimal Systems and Microbus TM

MicrobusTM considers the interface between MOS/LSI microprocessors and interfacing devices in close physical proximity which communicate over 8-bit parallel unified bus systems. It specifies both the functional and electrical characteristics of the interface and is modeled after the 8060, 8080 and 8900 families of microprocessors as shown in *Figures 8, 9 and 10*.

The electrical characteristics of Microbus are shown in Table XI.

TABLE XI. MICROBUS ELECTRICAL SPECIFICATION SUMMARY

			RECEIVER			
PARAMETER		DRIVER	STANDARD HYSTERESIS (RECOMMENDED)		UNITS	
VOL	Output Voltage (At 1.6 mA)	≤0.4V				
Vон	(At ~100 μA)	≥2.4V				
VIL	Input Voltage		0.8	0.6	V	
VIH			2.0	2.0	V	
	Internal Capacitive Load at 25°C	15	10	10	pF	
tr	Rise Time (Maximum)	100			ns	
tf	Fall Time (Maximum)	100			ns	

FIGURE 9. 8060 SC/MP II System Model

10

FIGURE 10. 8080 System Model for the Basic Microbus Interface

FIGURE 11. 8900 System Model

5.3 Expanded Microprocessor System Interfaces

Since the outputs of most microprocessor devices are limited to a loading of one relative to a TTL load, expanded systems will require buffers on both their address and data lines.

To date, no formal standards exist which govern this interface. However, "defacto" standards are emerging in the form of the specifications for "recommended devices" which are mentioned in the data sheets and application notes for the widely sourced microprocessor devices. Here, the answer to the question of how to provide a "standard" interface is simplified to that of proper usage of recommended devices.

Table XII summarizes the important electrical characteristics of recommended bus drivers for expanded microprocessor systems.

6.0 OTHER INTERFACE STANDARDS

Some other commonly occurring interfaces which have become standardized are:

 a) Interface between facsimile terminals and voice frequency communications terminals,

- Interface between terminals and automatic calling equipment used for data communications, and
- Interface between numerically controlled equipment and data terminals.

6.1 EIA RS357

RS357 defines the electrical, functional and mechanical characteristics of the interface between analog facsimile equipment to be used for telephone data transmission and the data sets used for controlling/transmitting the data.

Figure 11 summarizes the functional and electrical characteristics of RS357.

6.2 EIA RS366

RS366 defines the electrical, functional and mechanical characteristics of the interface between automatic calling equipment for data communications and data terminal equipment.

The electrical characteristics are encompassed by RS232C

TABLE XII. RECOMMENDED SPECIFICATION OF BUS DRIVERS FOR EXPANDED MICROPROCESSOR SYSTEMS

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
VIH	Driver Input Voltage		2			V
VIL					0.8	V
v_{OH}	Driver Output Voltage	IOH = ~10 mA	2.4			v
VOL		IOL = 48 mA			0.5	V
tos	Short-Circuit Current	V _{CC} = 5.25V			-150	mA
CL	Bus Drive Capability		300			pF

FIGURE 12. Functional and Electrical Characteristics of RS357

6.3 EIA R\$408

RS408 recommends the standardization of the 2 interfaces shown in *Figure 13*.

The electrical characteristics of NCE to DTE interface are, in summary, those of conventional TTL drivers (series 7400) with:

 $V_{OL} \le 0.4V$ at I_{OL} = 48 mA $V_{OH} \ge 2.4V \text{ at } I_{OH} \le -1.2 \text{ mA, and}$ $C_L \le 2000 \text{ pF.}$

Short circuit protection should be provided.

FIGURE 13. EIA RS4D8 Interface Applications

Integrated Circuits for **Digital Data Transmission**

INTRODUCTION

It is frequently necessary to transmit digital data in a high-noise environment where ordinary integrated logic circuits cannot be used because they do not have sufficient noise immunity. One solution to this problem, of course, is to use highnoise-immunity logic. In many cases, this approach would require worst case logic swings of 30V, requiring high power supply voltages. Further, considerable power would be needed to transmit these voltage levels at high speed. This is especially true if the lines must be terminated to eliminate reflections, since practical transmission lines have a low characteristic impedance.

A much better solution is to convert the ground referred digital data at the transmission end into a differential signal and transmit this down a balanced, twisted-pair line. At the receiving end, any induced noise, or voltage due to ground-loop currents, appears equally on both ends of the twisted-pair line. Hence, a receiver which responds only to the differential signal from the line will reject the undesired signals even with moderate voltage swings from the transmitter.

Figure 1 illustrates this situation more clearly. When ground is used as a signal return as in Figure 1a, the voltage seen at the receiving end will be the output voltage of the transmitter plus any noise voltage induced in the signal line. Hence, the noise immunity of the transmitter-receiver combination must be equal to the maximum expected noise from both sources.

The differential transmission scheme diagrammed in Figure 1b solves this problem. Any ground noise or voltage induced on the transmission lines will appear equally on both inputs of the receiver. The receiver responds only to the differential signal coming out of the twisted-pair line and delivers a single-ended output signal referred to the ground

FIGURE 1. Comparing Differential and Single-Ended Data Transmission

at the receiving end. Therefore, extremely high noise immunities are not needed; and the transmitter and receiver can be operated from the same supplies as standard integrated logic circuits.

This article describes the operation and use of a line driver and line receiver for transmission systems using twisted-pair lines. The transmitter provides a buffered differential output from a DTL or TTL input signal. A four-input gate is included on the input so that the circuit can also perform logic. The receiver detects a zero crossing in the differential input voltage and can directly drive DTL or TTL integrated circuits at the receiving end. It also has strobe capability to blank out unwanted input signals. Both the transmitter and the receiver incorporate two independent units on a single silicon chip.

Figure 2 shows a schematic diagram of the line transmitter. The circuit has a marked resemblance to a standard TTL buffer. In fact, it is possible to use a standard dual buffer as a transmitter. However, the DS7830 incorporates additional features. For one, the output is current limited to protect the driver from accidental shorts in the transmission lines. Secondly, diodes on the output clamp severe voltage transients that may be induced into the transmission lines. Finally, the circuit has internal inversion to produce a differential output signal, reducing the skew between the outputs and making the output state independent of loading.

FIGURE 2. Schematic Diagram of the DS7830 Line Driver

As can be seen from the upper half of Figure 2, a quadruple-emitter input transistor, Q9, provides four logic inputs to the transmitter. This transistor drives the inverter stage formed by Q10 and Q11

to give a NAND output. A low state logic input on any of the emitters of Q9 will cause the base drive to be removed from Q10, since Q9 will be saturated by current from R8, holding the base of Q10 near ground. Hence, Q10 and Q11 will be turned off; and the output will be in a high state. When all the emitters of Q9 are at a one logic level, Q10 receives base drive from R8 through the forward biased collector-base junction of Q9. This saturates Q10 and also Q11, giving a low output state. The input voltage at which the transition occurs is equal to the sum of the emitter-base turn on voltages of Q10 and Q11 minus the saturation voltage of Q9. This is about 1.4V at 25°C.

A standard "totem-pole" arrangement is used on the output stage. When the output is switched to the high state, with Q10 and Q11 cut off, current is supplied to the load by Q13 and Q14 which are connected in a modified Darlington configuration. Because of the high compound current gain of these transistors, the output resistance is quite low and a large load current can be supplied. R10 is included across the emitter-base junction of Q13 both to drain off any collector-base leakage current in Q13 and to discharge the collector-base capacitance of Q13 when the output is switched to the low state. In the high state, the output level is approximately two diode drops below the positive supply, or roughly 3.6V at 25°C with a 5.0V supply.

With the output switched into the low state, Q10 saturates, holding the base of Q14 about one diode drop above ground. This cuts off Q13. Further, both the base current and the collector current of Q10 are driven into the base of Q11 saturating it and giving a low-state output of about 0.1V. The circuit is designed so that the base of Q11 is supplied 6 mA, so the collector can drive considerable load current before it is pulled out of saturation.

The primary purpose of R12 is to provide current to remove the stored charge in Q11 and charge its collector-base capacitance when the circuit is switched to the high state. Its value is also made enough less than R9 to prevent supply current transients which might otherwise occur* when the power supply is coming up to voltage.

^{*}J. Kalb, "Design Considerations for a TTL Gate "National Semiconductor TP-6, May, 1968.

The lower half of the transmitter in Figure 2 is identical to the upper, except that an inverter stage has been added. This is needed so that an input signal which drives the output of the upper half positive will drive the lower half negative, and vice versa, producing a differential output signal. Transistors Q2 and Q3 produce the inversion, Even though the current gain is not necessarily needed. the modified Darlington connection is used to produce the proper logic transition voltage on the input of the transmitter, Because of the low load capacitance that the inverter sees when it is completely within the integrated circuit, it is extremely fast, with a typical delay of 3 ns. This minimizes the skew between the outputs.

One of the schemes used when dual buffers are employed as a differential line driver is to obtain the NAND output in the normal fashion and provide the AND output by connecting the input of the second buffer to the NAND output. Using an internal inverter has some distinct advantages over this: for one, capacitive loads which slow down the response of the NAND output will not introduce a time skew between the two outputs; secondly, line transients on the NAND output will not cause an unwanted change of state on the AND output.

Clamp diodes, D1 through D4, are added on all inputs to clamp undershoot. This undershoot and ringing can occur in TTL systems because the rise and fall times are extremely short.

Qutput-current limiting is provided by adding a resistor and transistor to each of the complementary outputs. Referring again to Figure 2, when the current on the NAND output increases to a value where the voltage drop across R11 is sufficient to turn on Q12, the short circuit protection comes into effect. This happens because further increases in output current flow into the base of Q12 causing it to remove base drive from Q14 and, therefore, Q13. Any substantial increase in output current will then cause the output voltage to collapse to zero. Since the magnitude of the short circuit depends on the emitter base turn-on voltage of Q12, this current has a negative temperature coefficient. As the chip temperature increases from power dissipation, the available short circuit current is reduced. The current limiting also serves to control the current transient that occurs when the output is going through a transition with both Q11 and Q13 turned on.

The AND output is similarly protected by R6 and Q5, which limit the maximum output current to about 100 mA, preventing damage to the circuit from shorts between the outputs and ground.

The current limiting transistors also serve to increase the low state output current capability under severe transient conditions. For example, when the current into the NAND output becomes so high as to pull Q11 out of saturation, the output voltage will rise to two diode drops above ground. At this voltage, the collector-base junction of Q12 becomes forward biased and supplies additional base drive to Q11 through Q10 which is saturated. This minimizes any further increase in output voltage.

When either of the outputs are in the high state, they can drive a large current towards ground without a significant change in output voltage. However, noise induced on the transmission line which tries to drive the output positive will cut it off since it cannot sink current in this state. For this reason, D6 and D8 are included to clamp the output and keep it from being driven much above the supply voltage, as this could damage the circuit.

When the output is in a low state, it can sink a lot of current to clamp positive-going induced voltages on the transmission line. However, it cannot source enough current to eliminate negative-going transients so D5 and D7 are included to clamp those voltages to ground.

It is interesting to note that the voltage swing produced on one of the outputs when the clamp diodes go into conduction actually increases the diffferential noise immunity. For example with no induced common mode current, the low-state output will be a saturation voltage above ground while the high output will be two diode drops below the positive supply voltage. With positivegoing common mode noise on the line, the low output remains in saturation; and the high output is clamped at a diode drop above the positive supply. Hence, in this case, the common mode noise increases the differential swing by three diode drops.

FIGURE 3. High State Output Voltage as a Function of Output Current

Having explained the operation of the line driver, it is appropriate to look at the performance in more detail. Figure 3 shows the high-state output characteristics under load. Over the normal range of output currents, the output resistance is about 10Ω . With higher output currents, the short circuit protection is activated, causing the output voltage to drop to zero. As can be seen from the figure, the short-circuit current decreases at higher temperatures to minimize the possibility of overheating the integrated circuit.

FIGURE 4. Low-State Output Current as a Function of Output Current

Figure 4 is a similar graph of the low-state output characteristics. Here, the output resistance is about 5Ω with normal values of output current. With larger currents, the output transistor is pulled out of saturation; and the output voltage increases. This is most pronounced at -55°C where the transistor current gain is the lowest. However, when the output voltage rises about two diode drops above ground, the collector-base junction of the current-limit transistor becomes forward biased, providing additional base drive for the output transistor. This roughly doubles the current available for clamping positive common-mode transients on the twisted-pair line. It is interesting to note that even though the output level increases to about 2V under this condition, the differential noise immunity does not suffer because the high-state output also increases by about 3V with positive going common-mode transients.

It is clear from the figure that the low state output current is not effectively limited. Therefore, the device can be damaged by shorts between the output and the 5V supply. However, protection against shorts between outputs or from the outputs to ground is provided by limiting the highstate current.

The curves in Figures 3 and 4 demonstrate the performance of the line driver with large, capacitively-coupled common-mode transients, or under

FIGURE 5. Differential Output Voltage as a Function of Differential Output Current

gross overload conditions. Figure 5 shows the ability of the circuit to drive a differential load: that is, the transmission line. It can be seen that for output currents less than 35 mA, the output resistance is approximately 15 Ω . At both temperature extremes, the output falls off at high currents. At high temperatures, this is caused by current limiting of the high output state. At low temperatures, the falloff of current gain in the lowstate output transistor produces this result.

Load lines have been included on the figure to show the differential output with various load resistances. The output swing can be read off from the intersection of the output characteristic with the load line. The figure shows that the driver can easily handle load resistances greater than 100 Ω .

This is more than adequate for practical, twisted-pair lines,

Figure 6 shows the no load power dissipation, for one-half of the dual line driver, as a function of frequency. This information is important for two reasons. First, the increase in power dissipation at high frequencies must be added to the excess power dissipation caused by the load to determine the total package dissipation. Second, and more important, it is a measure of the "glitch" current which flows from the positive supply to ground through the output transistors when the circuit is going through a transition. If the output stage is

FIGURE 6. Power Dissipation as a Function of Switching Frequency

not properly designed, the current spikes in the power supplies can become quite large; and the power dissipation can increase by as much as a factor of five between 100 KHz and 10 MHz. The figure shows that, with no capacitive loading, the power increase with frequencies as high as 10 MHz is almost negligible. However, with large capacitive loads, more power is required.

The line receiver is designed to detect a zero crossing in the differential output of the line driver. Therefore, the propagation time of the driver is measured as the time difference between the application of a step input and the point where the differential output voltage crosses zero. A plot of the propagation time over temperature is shown in Figure 7. This delay is added directly to the propagation time of the transmission line and the delay of the line receiver to determine the total data-propagation time. However, in most cases, the delay of the driver is small, even by comparison to the uncertainties in the other delays.

FIGURE 7. Propagation Time as a Function of Temperature

To summarize the characteristics of the DS7830 line driver, the input interfaces directly with standard DTL or TTL circuits. It presents a load which is equivalent to a fan out of 3 to the circuit driving it, and it operates from the 5.0V, ±10% logic supplies. The output can drive low impedance lines down to 50Ω and capacitive loads up to $5000 \, \mathrm{pF}$. The time skew between the outputs is minimized to reduce radiation from the twisted-pair lines, and the circuit is designed to clamp common mode transients coupled into the line. Short circuit protection is also provided. The integrated circuit consists of two independent drivers fabricated on a 41 x 53 mil-square die using the standard TTL process. A photomicrograph of the chip is shown in Figure 8.

FIGURE 8, Photomicrograph of the DS7830 Dual Line Driver

As mentioned previously, the function of the line receiver is to convert the differential output signal of the line driver into a single ended, groundreferred signal to drive standard digital circuits on the receiving end. At the same time it must reject the common mode and induced noise on the transmission line.

Normally this would not be too difficult a task because of the large signal swings involved. However, it was considered important that the receiver operate from the +5V logic supply without requiring additional supply voltages, as do most other line receiver designs. This complicates the situation because the receiver must operate with ±15V input signals which are considerably greater than the operating supply voltage.

The large common mode range over which the circuit must work can be reduced with an attenuator on the input of the receiver. In this design, the input signal is attenuated by a factor of 30. Hence, the ±15V common mode voltage is reduced to ±0.5V, which can be handled easily by circuitry operating from a 5V supply. However, the differential input signal, which can go down as low as ±2.4V in the worst case, is also reduced to ±80 mV. Hence, it is necessary to employ a fairly accurate zero crossing detector in the receiver.

System requirements dictated that the threshold inaccuracy introduced by the zero crossing detector be less than 17 mV. In principle, this accuracy requirement should not pose insurmountable problems because it is a simple matter to make well matched parts in an integrated circuit.

Figure 9 shows a simplified schematic diagram of the circuit configuration used for the line receiver. The input signal is attenuated by the resistive dividers R1-R2 and R8-R3. This attenuated signal is fed into a balanced dc amplifier, operating in the common base configuration. This input amplifier, consisting of Q1 and Q2, removes the common mode component of the input signal. Further, it delivers an output signal at the collector of Q2 which is nearly equal in amplitude to the original differential input signal. This output signal is buffered by Q6 and drives an output amplifier, Q8. The output stage drives the logic load directly.

FIGURE 9. Simplified Schematic of the Line Receiver

An understanding of the circuit can be obtained by first considering the input stage. Assuming high current gains and neglecting the voltage drop across R3, the collector current of Q1 will be:

$$I_{C1} = \frac{V^{+} - V_{BE1} - V_{BE3} - V_{BE4}}{R11}.$$
 (1)

With equal emitter-base voltages for all transistors, this becomes:

$$I_{C1} = \frac{V^{+} - 3V_{BE}}{R11} \ . \tag{2}$$

The output voltage at the collector of Q2 will be:

$$V_{C2} = V^{+} - I_{C2}R12.$$
 (3)

When the differential input voltage to the receiver is zero, the voltages presented to the emitters of Q1 and Q2 will be equal. If Q1 and Q2 are matched devices, which is easy to arrange when they are fabricated close together on a single silicon chip, their collector currents will be equal with zero input voltage. Hence, the output voltage from Q2 can be determined by substituting (2) into (3)!

$$V_{C2} = V^{+} - \frac{R12}{R11} (V^{+} - 3V_{BE}).$$
 (4)

For R11 = R12, this becomes:

$$V_{C2} = 3V_{BE}$$

The voltage on the base of Q6 will likewise be $3V_{BE}$ when the output is on the verge of switching from a zero to a one state. A differential input signal which causes Q2 to conduct more heavily will then make the output go high, while an input signal in the opposite direction will cause the output to saturate.

It should be noted that the balance of the circuit is not affected by absolute values of components—only by how well they match. Nor is it affected by variations in the positive supply voltage, so it will perform well with standard logic supply voltages between 4.5V and 5.5V. In addition, component values are chosen so that the collector currents of Q4 and Q6 are equal. As a result, the base currents of Q4 and Q6 do not upset the balance of the input stage. This means that circuit performance is not greatly affected by production or temperature variations in transistor current gain.

A complete schematic of the line receiver, shown in Figure 10, shows several refinements of the basic circuit which are needed to secure proper

operation under all conditions. For one, the explanation of the simplified circuit ignores the fact that the collector current of Q1 will be affected by common mode voltage developed across R3. This can give a 0.5V threshold error at the extremes of the ±15V common mode range. To compensate for this, a separate divider, R9 and R10, is used to maintain a constant collector current in Q1 with varying common mode signals. With an increasing common mode voltage on the non-inverting input, the voltage on the emitter of Q1 will increase. Normally, this would cause the voltage across R11 to decrease, reducing the collector current of Q1. However, the increasing common mode signal also drives the top end of R11 through R9 and R10 so as to hold the voltage drop across R11 constant.

In addition to improving the common mode rejection, R9 also forces the output of the receiver into the high state when nothing is connected to the input lines. This means that the output will be in a pre-determined state when the transmission cables are disconnected.

A diode connected transistor, Q5, is also added in the complete circuit to provide strobe capability. With a logic zero on the strobe terminal, the out-

FIGURE 10. Complete Schematic of One Half of the DS7820 Line Receiver

The collector of $\Omega 2$ is brought out so that an external capacitor can be used to slow down the receiver to where it will not respond to fast noise spikes. This capacitor, which is connected between the response-time-control terminal and ground, does not give exactly-symmetrical delays. The delay for input signals which produce a positive-going output will be less than for input signals of opposite polarity. This happens because the impedance on the collector of $\Omega 2$ drops as $\Omega 6$ goes into saturation, reducing the effectiveness of the capacitor.

Another difference in the complete circuit is that the output stage is improved both to provide more gain and to reduce the output resistance in the high output state. This was accomplished by adding Q9 and Q10. When the output stage is operating in the linear region, that is, on the verge of switching to either the high or the low state, Q9 and Q10 form sort of an active collector load for Q8. The current through R15 is constant at approximately 2 mA as the output voltage changes through the active region. Hence, the percentage change in the collector current of Q8 due to the voltage change across R17 is made smaller by this pre-bias current; and the effective stage gain is increased.

With the output in the high state (Q8 cut off), the output resistance is equal to R15, as long as the load current is less than 2 mA. When the load current goes above this value, Q9 turns on; and the output resistance increases to 1.5K, the value of R17.

This particular output configuration gives a higher gain than either a standard DTL or TTL output stage. It can also drive enough current in the high state to make it compatible with TTL, yet outputs can be wire OR ed as with DTL.

Remaining details of the circuit are that Q7 is connected as an emitter follower to make the circuit even less sensitive to transistor current gains. R16 limits the base drive to Q7 with the output saturated, while R17 limits the base drive to the output transistor, Q8. A resistor, R7, which can be used to terminate the twisted-pair line is also included on the chip. It is not connected directly

across the inputs. Instead, one end is left open so that a capacitor can be inserted in series with the resistor. The capacitor significantly reduces the power dissipation in both the line transmitter and receiver, especially in low-duty-cycle applications, by terminating the line at high frequencies but blocking steady-state current flow in the terminating resistor.

Since line receivers are generally used repetitively in a system, the DS7820 has been designed with two independent receivers on a single silicon chip. The device is fabricated on a 41 x 49 mil-square die using the standard six mask planar-epitaxial process. The processing employed is identical to that used on TTL circuits, and the design does not impose any unusual demands on the processing. It is only required that various parts within the circuit match well, but this is easily accomplished in a monolithic integrated circuit without any special effort in manufacturing. A photomicrograph of the integrated circuit chip is shown in Figure 11.

FIGURE 11. Photomicrograph of the DS7820 Dual Line Receiver

The only components in the circuit which see voltages higher than standard logic circuits are the resistors used to attenuate the input signal. These resistors, R1, R7, R8 and R9, are diffused into a separate, floating, N-type isolation tub, so that the higher voltage is not seen by any of the transistors. For a ±15V input voltage range, the breakdown voltages required for the collector-isolation and collector-base diodes are only 15V and 19V, respectively. These breakdown voltages can be achieved readily with standard digital processing

The purpose of the foregoing was to provide some insight into circuit operation. A more exact mathematical analysis of the device is developed in Appendix A.

RECEIVER PERFORMANCE

The characteristics of the line receiver are described graphically in Figures 12 through 18. Figure 12 illustrates the effect of supply voltage variations on the threshold accuracy. The upper curve gives the differential input voltage required to hold the output at 2.5V while it is supplying $200\,\mu\text{A}$ to the digital load. The lower curve shows the differential input needed to hold the output at 0.4V while it sinks 3.5 mA from the digital load. This load corresponds to a worst case fanout of 2 with either DTL or TTL integrated circuits. The data shows that the threshold accuracy is only affected by $\pm 60 \, \text{mV}$ for a $\pm 10\%$ change in supply voltage. Proper operation can be secured over a wider range of supply voltages, although the error becomes excessive at voltages below 4V.

FIGURE 12. Differential Input Voltage Required for High or Low Output as a Function of Supply Voltage

Figure 13 is a similar plot for varying common mode input voltage. Again the differential input voltages are given for high and low states on the output with a worst case fanout of 2. With precisely matched components within the integrated circuit, the threshold voltage will not

FIGURE 13. Differential Input Voltage Required for High or Low Output as a Function of Common Mode Voltage

change with common mode voltage. The mismatches typically encountered give a threshold voltage change of $\pm 100~\text{mV}$ over a $\pm 20\text{V}$ common mode range. This change can have either a positive slope or a negative slope.

FIGURE 14. Voltage Transfer Function

The transfer function of the circuit is given in Figure 14. The loading is for a worst case fanout of 2. The digital load is not linear, and this is reflected as a non-linearity in the transfer function which occurs with the output around 1.5V. These transfer characteristics show that the only significant effect of temperature is a reduction in the positive swing at -55° C. However, the voltage available remains well above the 2.5V required by digital logic.

FIGURE 15. Response Time With and Without an External Delay Capacitor

Figure 15 gives the response time, or propagation delay, of the receiver. Normally, the delay through the circuit is about 40 ns. As shown, the delay can be increased, by the addition of a capacitor between the response-time terminal and ground, to make the device immune to fast noise spikes on the input. The delay will generally be longer for negative going outputs than for positive going outputs.

Under normal conditions, the power dissipated in the receiver is relatively low. However, with large common mode input voltages, dissipation increases markedly, as shown in Figure 16. This is of little consequence with common mode transients, but the increased dissipation must be taken into account when there is a dc difference between the grounds of the transmitter and the receiver. It is important to note that Figure 16 gives the dissipation for one half the dual receiver. The total package dissipation will be twice the values given when both sides are operated under identical conditions.

FIGURE 16. Internal Power Dissipation as a Function of Common Mode Input Voltage

Figure 17 shows that the power supply current also changes with common mode input voltage due to the current drawn out of or fed into the supply through R9. The supply current reaches a maximum with negative input voltages and can actually reverse with large positive input voltages. The figure also shows that the supply current with the output switched into the low state is about 3 mA higher than with a high output.

FIGURE 17. Power Supply Current as a Function of Common Mode Input Voltage

The variation of the internal termination resistance with temperature is illustrated in Figure 18. Taking into account the initial tolerance as well as the change with temperature, the termination resistance is by no means precise. Fortunately, in most cases, the termination resistance can vary appreciably without greatly affecting the characteristics of the transmission line. If the resistor tolerance is a problem, however, an external resistor can be used in place of the one provided within the integrated circuit.

FIGURE 18. Variation of Termination Resistance With Temperature

DATA TRANSMISSION

The interconnection of the DS7830 line driver with the DS7820 line receiver is shown in Figure 19. With the exception of the transmission line, the design is rather straightforward. Connections on the input of the driver and the output or strobe of the receiver follow standard design rules for DTL or TTL integrated logic circuits. The load presented by the driver inputs is equal to 3 standard digital loads, while the receiver can drive a worst-case fanout of 2. The load presented by the receiver strobe is equal to one standard load.

The purpose of C1 on the receiver is to provide do isolation of the termination resistor for the transmission line. This capacitor can both increase the differential noise immunity, by reducing attenuation on the line, and reduce power dissipation in both the transmitter and receiver. In some applications, C1 can be replaced with a short between Pins 1 and 2, which connects the internal termination resistor of the DS7820 directly across the line. C2 may be included, if necessary, to control the response time of the receiver, making it immune to noise spikes that may be coupled differentially into the transmission lines.

FIGURE 20. Transmission Line Response With Various Termination Resistances

The effect of termination mismatches on the transmission line is shown in Figure 20. The line was constructed of a twisted pair of No. 22 copper conductors with a characteristic impedance of approximately 170 Ω . The line length was about 150 ns and it was driven directly from a DS7830 line driver. The data shows that termination resistances which are a factor of two off the nominal value do not cause significant reflections on the line. The lower termination resistors do, however, increase the attenuation.

FIGURE 19. Interconnection of the Line Driver and Line Receiver

The effect of different values of dc isolation capacitors is illustrated in Figure 22. This shows that the RC time constant of the termination resistor/isolation capacitor combination should be 2 to 3 times the line delay. As before, this data was taker for a 150 ns long line. 150Ω +200 pF 150Ω +1100 pF DAD VOLTAGE (V) 150Ω +4000 pF

FIGURE 22. Response of Terminated Line With Different DC Isolation Capacitors

TIME (us)

In Figure 23, the influence of a varying ground voltage between the transmitter and the receiver is shown. The difference in the characteristics arises because the source resistance of the driver is not constant under all conditions. The high output of

Figure 21 gives the line-transmission characteristics with various termination resistances when a dc isolation capacitor is used. The line is identical to that used in the previous example. It can be seen that the transient response is nearly the same as a dc terminated line. The attenuation, on the other hand, is considerably lower, being the same as an unterminated line. An added advantage of using the isolation capacitor is that the dc signal current is blocked from the termination resistor which reduces the average power drain of the driver and the power dissipation in both the driver and receiver.

FIGURE 21. Line Response for Various Termination Resistances With a DC Isolation Capacitor

FIGURE 23. Line Response With Different Terminations and Common Mode Input Voltages

the transmitter looks like an open circuit to voltages reflected from the receiving end of the transmission line which try to drive it higher than its normal dc state. This condition exists until the voltage at the transmitting end becomes high enough to forward bias the clamp diode on the 5V supply. Much of the phenomena which does not follow simple transmission-line theory is caused by this. For example, with an unterminated line, the overshoot comes from the reflected signal charging the line capacitance to where the clamp diodes are forward biased. The overshoot then decays at a rate determined by the total line capacitance and the input resistance of the receiver.

When the ground on the receiver is 15V more negative than the ground at the transmitting end, the decay with an unterminated line is faster, as shown in Figure 23b. This occurs because there is more current from the input resistor of the receiver to discharge the line capacitance. With a terminated line, however, the transmission characteristics are the same as for equal ground voltages because the terminating resistor keeps the line from getting charged.

Figure 23c gives the transmission characteristics when the receiver ground is 15V more positive than the transmitter ground. When the line is not terminated, the differential voltage swing is increased because the high output of the driver will be pulled against the clamp diodes by the common mode input current of the receiver. With a dc isolation capacitor, the differential swing will reach this same value with a time constant determined by the isolation capacitor and the input resistance of the receiver. With a dc coupled termination, the characteristics are unchanged because the differential load current is large by comparison to the common mode current so that the output transistors of the driver are always conducting.

The low output of the driver can also be pulled below ground to where the lower clamp diode conducts, giving effects which are similar to those described for the high output. However, a current of about 9 mA is required to do this, so it does not happen under normal operating conditions.

To summarize, the best termination is an RC combination with a time constant approximately equal to 3 times the transmission-line delay. Even though its value is not precisely determined, the internal termination resistor of the integrated circuit can be used because the line characteristics are not greatly affected by the termination resistor.

The only place that an RC termination can cause problems is when the data transmission rate approaches the line delay and the attenuation down the line (terminated) is greater than 3 dB. This would correspond to more than 1000 ft. of twisted-pair cable with No. 22 copper conductors. Under these conditions, the noise margin can disappear with low-duty-cycle signals. If this is the case, it is best to operate the twisted-pair line without a termination to minimize transmission losses. Reflections should not be a problem as they will be absorbed by the line losses.

CONCLUSION

A method of transmitting digital information in high-noise environments has been described. The technique is a much more attractive solution than high-noise-immunity logic as it has lower power consumption, provides more noise rejection, operates from standard 5V supplies, and is fully compatible with almost all integrated logic circuits. An additional advantage is that the circuits can be fabricated with integrated circuit processes used for standard logic circuits.

LINE RECEIVER

Design Analysis

The purpose of this appendix is to derive mathematical expressions describing the operation of the line receiver. It will be shown that the performance of the circuit is not greatly affected by the absolute value of the components within the integrated circuit or by the supply voltage. Instead, it depends mostly on how well the various parts match

The analysis will assume that all the resistors are well matched in ratio and that the transistors are likewise matched, since this is easily accomplished over a broad temperature range with monolithic construction. However, the effects of component mismatching will be discussed where important. Further, large transistor current gains will be assumed, but it will be pointed out later that this is valid for current gains greater than about 10.

A schematic diagram of the DS7820 line receiver is shown in Figure A-1. Referring to this circuit, the collector current of the input transistor is given by

$$\begin{split} I_{C1} &= \frac{V^{+} - V_{BE1} - V_{BE3} - V_{BE4}}{R9 \ / \ R10 + R11 + R3 \ / \ R8} \\ &= \frac{R3}{R4 + 2R6 + R3} \ V_{BE1} - \frac{R3 \ / \ R11}{R8 + R3 \ / \ R1} \ V_{IN} \\ &= \frac{R9 \ / \ R10 + R11 + R3 \ / \ R8}{(V_{IN} - V^{+}) \ \frac{R10 \ / \ R11}{R9 + R10 \ / \ R11}} \\ &+ \frac{R9 \ / \ R10 + R11 + R3 \ / \ R8}{R9 \ / \ R10 + R11 + R3 \ / \ R8} \end{split} \tag{A.1}$$

where V_{IN} is the common mode input voltage and R_a//R_b denotes the parallel connection of the two resistors: In Equation (A. 1), R8 = R9, R3 = R10, R10 << R11, R9 >> R10, R3 << R11, R8>> R3

and
$$\frac{R3}{R4 + 2R6 + R3}$$
 <<3 so it can be reduced to $\frac{V^+ - 3V_{BE} - \frac{R10}{R9} V^+}{V^+ + R10 + R11 + R3}$ (A. 2)

which shows that the collector current of Q1 is not affected by the common mode voltage.

The output voltage on the collector of Q2 is

$$V_{C2} = V^{+} - I_{C2}R12$$
 (A. 3)

For zero differential input voltage, the collector currents of Q1 and Q2 will be equal so Equation (A. 3) becomes

$$V_{C2} = V^{+} - \frac{R12\left(V^{+} - 3V_{BE} - \frac{R10}{R9}V^{+}\right)}{R10 + R11 + R3}$$
. (A. 4)

It is desired that this voltage be 3V BE so that the output stage is just on the verge of switching with zero input. Forcing this condition and solving for R12 yields

R12 yields
R12 = (R10 + R11 + R3)
$$\frac{V^+ - 3V_{BE}}{V^+ - 3V_{BE} - \frac{R10}{R9}} \frac{V^+}{V^+}$$

(A.5)

FIGURE A-1. Schematic Diagram of One Half of the DS7820 Line Receiver

This shows that the optimum value of R12 is dependent on supply voltage. For a 5V supply it has a value of $4.7 k\Omega$. Substituting this and the other component values into (A. 4),

$$V_{C2} = 2.83V_{BE} + 0.081V^{+},$$
 (A. 6)

which shows that the voltage on the collector of Q2 will vary by about 80 mV for a 1V change in supply voltage.

The next step in the analysis is to obtain an expression for the voltage gain of the input stage.

FIGURE A-2. Equivalent Circuit Used to Calculate Input Stage Gain

An equivalent circuit of the input stage is given in Figure A-2. Noting that R6 = R7 = R8 and $R2 \cong 0.1$ (R6 + R7//R8), the change in the emitter current of Q1 for a change in input voltage is

$$\Delta I_{E2} = \frac{0.9 \text{ R2}}{\text{R1} (0.9 \text{ R2} + \text{R}_{E2})} \Delta V_{\text{IN}} . \tag{A. 7}$$

Hence, the change in output voltage will be

$$\Delta V_{OUT} = \alpha I_{E2}R12$$

$$= \frac{0.9 \,\alpha \,R2 \,R12}{R1 \,(0.9 \,R2 + R_{E2})} \,\Delta V_{IN} \,. \tag{A. 8}$$

Since $\alpha \cong 1$, the voltage gain is

$$A_{V1} = \frac{0.9 \text{ R2 R12}}{\text{R1 (0.9 R2 + R}_{E2})}$$
 (A. 9)

The emitter resistance of Q2 is given by

$$R_{E2} = \frac{kT}{qI_{C2}}$$
, (A. 10)

where

$$I_{C2} = \frac{V^{T} - 3V_{BE}}{R12}$$
 (A. 11)

 $I_{C2} = \frac{V^{+} - 3V_{BE}}{R12}$ $R_{E2} = \frac{kTR12}{q(V^{+} - 3V_{BE})}$

Therefore, at 25° C where $V_{BE} = 670 \text{ mV}$ and kT/q = 26 mV, the computed value for gain is 0.745. The gain is not greatly affected by temperature as the gain at -55°C where VBE = 810 mV and kT/q = 18 mV is 0.774, and the gain at $125^{\circ}C$ where $V_{BE} = 480 \text{ mV}$ and kT/q = 34 mV is 0.730.

With a voltage gain of 0.75, the results of Equation (A. 6) show that the input referred threshold voltage will change by 0.11V for a 1V change in supply voltage. With the standard ±10-percent supplies used for logic circuits, this means that the threshold voltage will change by less than ±60 mV.

Finally, the threshold error due to finite gain in the output stage can be considered. The collector current of Q7 from the bleeder resistor R14, is large by comparison to the base current of Q8, if Q8 has a reasonable current gain. Hence, the collector current of Q7 does not change appreciably when the output switches from a logic one to a logic zero. This is even more true for Q6, an emitter follower which drives Q7. Therefore, it is safe to presume that Q6 does not load the output of the first-stage amplifier, because of the compounded current gain of the three transistors, and that Q8 is driven from a low resistance source.

It follows that the gain of the output stage can be determined from the change in the emitter-base voltage of Q8 required to swing the output from a logic one state to a logic zero state. The expression

$$\Delta V_{BE} = \frac{kT}{q} \log_e \frac{I_{C1}}{I_{C2}}$$
 (A. 13)

describes the change in emitter-base voltage required to vary the collector current from one value, IC1, to a second, IC2. With the output of the receiver in the low state, the collector current

$$I_{OL} = \frac{V^{+} - V_{OL} - V_{BE9} - V_{BE10}}{R17} + \frac{V_{BE9}}{R15} - \frac{V_{BE8}}{R14} + \frac{V_{BE7}}{R13} + I_{SINK}, \quad (A. 14)$$

where V_{OL} is the low state output voltage and ISINK is the current load from the logic that the receiver is driving. Noting that R13 = 2R14 and figuring that all the emitter-base voltages are the same, this becomes

$$I_{OL} = \frac{V^{+} - V_{OL} - 2V_{BE}}{R17} + \frac{V_{BE}}{R15} - \frac{V_{BE}}{2R14} + I_{SINK}.$$
 (A. 15)

Similarly, with the output in the high state, the collector current of Q8 is

$$I_{OH} = \frac{V^+ - V_{OH} - V_{BE9} - V_{BE10}}{R17}$$

$$+\frac{V_{BE9}}{R15} - \frac{V_{BEB}}{R14}$$

$$+\frac{V_{BE7}}{R13}-I_{SOURCE}, \qquad (A. 16)$$

where VOH is the high-level output voltage and ISOURCE is the current needed to supply the input leakage of the digital circuits loading the comparator.

With the same conditions used in arriving at (A. 15), this becomes

$$I_{OH} = \frac{V^{+} - V_{OH} - 2V_{BE}}{R17} + \frac{V_{BE}}{R15}$$

$$-\frac{V_{BE}}{2B14} - I_{SOURCE}$$
 (A. 17)

From (A. 13) the change in the emitter-base voltage of Q8 in going from the high output level to the low output level is

$$\Delta V_{BE} = \frac{kT}{q} \log_e \frac{I_{OL}}{I_{OH}}$$
 (A. 18)

providing that Q8 is not quite in saturation, although it may be on the verge of saturation.

The change of input threshold voltage is then

$$\Delta V_{TH} = \frac{kT}{qA_{V1}} \log_e \frac{I_{OL}}{I_{OH}}$$
 (A. 19)

where A_{V1} is the input stage gain. With a worst case fanout of 2, where V_{OH} = 2.5V, V_{OL} = 0.4V, I_{SOURCE} = 40 μ A and I_{SINK} = 3.2 mA, the calculated change in threshold is 37 mV at 25°C, 24 mV at -55°C and 52 mV at 125°C.

The measured values of overall gain differ by about a factor of two from the calculated gain. This is not too surprising because a number of assumptions were made which introduce small errors, and all these errors lower the gain. It is also not too important because the gain is high enough where another factor of two reduction would not cause the circuit to stop working.

The main contributors to this discrepancy are the non-ideal behavior of the emitter-base voltage of Q8 due to current crowding under the emitter and the variation in the emitter base voltage of Q7 and Q8 with changes in collector-emitter voltage (hRE).

Although these parameters can vary considerably with different manufacturing methods, they are relatively fixed for a given process. The ΔV_{BE} errors introduced by these quantities, if known, can be added directly into Equation (A. 18) to give a more accurate gain expression.

The most stringent matching requirement in the receiver is the matching of the input stage divider resistors: R1 with R8 and R2 with R3. As little as 1% mismatch in one of these pairs can cause a threshold shift of 150 mV at the extremes of the ±15V common mode range. Because of this, it is necessary to make the resistors absolutely identical and locate them close together. In addition, since R1 and R8 do dissipate a reasonable amount of power, they have to be located to minimize the thermal gradient between them. To do this, R9 was located between R1 and R8 so that it would heat both of these resistors equally. There are not serious heating problems with R2 and R3; however, because of their low resistance value, it was necessary even to match the lengths of the aluminum interconnects, as the resistance of the aluminum is high enough to cause intolerable mismatches. Of secondary importance is the matching of Q1 and Q2 and the matching of ratios between R11 and R12. A 1 mV difference in the emitterbase voltages of Q1 and Q2 causes a 30 mV input offset voltage as does a 1% mismatch in the ratio of R11 to R12.

The circuit is indeed insensitive to transistor current gains as long as they are above 10. The collector currents of Q4 and Q6 are made equal so that their base currents load the collectors of Q1 and Q2 equally. Hence, the input threshold voltage is affected only by how well the current gains match. Low current gain in the output transistor, Q8, can cause a reduction in gain. But even with a current gain of 10, the error produced in the input threshold voltage is less than 50 mV.

Driving 7-Segment Gas Discharge Display Tubes with National Semiconductor Circuits

INTRODUCTION

Circuitry for driving high voltage cold cathode gas discharge 7-segment displays, such as Sperry Information Displays* and Burroughs Panaplex II, is greatly simplified by a complete line of monodithic integrated circuits from National Semiconductor. These products also make possible reduced cost of system implementation. They are: DS8880 high voltage cathode decoder/driver; DS8884A high voltage cathode decoder/driver; DS8885 MOS to high voltage cathode buffer; DS8889 low power cathode driver; DS8887 8-digit anode driver; DS8980, DS8981 latch/decoder/cathode drivers.

In addition to satisfying all the displays' parameter requirements, including high output breakdown voltage, these circuits have capability of programming segment current, and providing constant current sinking for the display segments. This feature alleviates the problem of achieving uniformity of brightness with unregulated display anode voltage. The National circuits can drive the displays directly.

Sperry Information Displays* and 8urroughs Panaplex II are used principally in calculators and digital instruments. These 7-segment, multi-digit displays form characters by passing controlled currents through the appropriate anode/segment combinations. The cathode in any digit will glow when a voltage greater than the ionization voltage is applied between it (the cathode) and the anode for that digit. In the multiplexed mode of operation, a digit position is selected by driving the anode for that digit with a positive voltage pulse. At the same time, the selected cathode segments are driven with a negative current pulse. This causes the potential between the anode and the selected cathodes to exceed the ionization level, causing a visible glow discharge.

Generally, these displays exhibit the following characteristics: low "on" current per segment—from $200\mu A$ (in DC mode) to 1.2 mA (in multiplex mode); high tube anode supply voltage—180V to 200V; and moderate ionization voltage—170V. Once the element fires, operating voltage drops to approximately 150V and light output becomes a direct function of current, which is controlled by current limiting or current regulating cathode circuits. Current regulation therefore is most desirable since brightness will then be constant for large anode voltage changes. Tube anode to cathode "off" voltage is approximately 100V; and maximum "off" cathode leakage is $3\mu A$ to $5\mu A$.

Correspondingly, specifications for the cathode driver must be complimentary, approximately as follows: A high "off" output breakdown voltage 80V minimum; typical "on" output voltage of 50V; maximum "on" output current of 1.5 mA per segment; and maximum "off" leakage current of 3µA to 5µA.

To allow operation without anode voltage regulation, the cathode driver must be able to sink a constant current in each output, with the output

(a) Cathode Driver Output Characteristic

FIGURE 1.

"on" voltage ranging from 5V to 50V (see Figure 1). The following is a brief description of the circuits now offered by National:

DS8880 High Voltage Cathode Decoder/Driver

The DS880 offers 7-segment outputs with high output breakdown voltage of 80V minimum; constant current-sink outputs; and programmable output current from 0.2 mA to 1.5 mA.

^{*}Now called Beckman Displays

Application

The circuit has a built-in BCD decoder and can interface directly to Sperry and Panaplex II displays, minimizing external components (Figure 2). The inputs can be driven by TTL or MOS outputs directly. It is optimized for use in systems with 5V supplies.

FIGURE 2. DC Operation From TTL

The DS8880 decoder/driver provides for unconditional as well as leading and trailing zero blanking. It utilizes negative input voltage clamp diodes. Typically, output current varies only 1% for output voltage changes of 3V to 50V. Operating power supply voltage is 5V. The device can be used for multiplexed or DC operation.

Available in 16-pin cavity DIP packages, the DS7880 is guaranteed over the full military operating temperature range of -55°C to +125°C; the DS8880 in molded DIP over the industrial range of 0°C to +70°C.

DS8980, DS8981

The DS8980, DS8981 offer 7-segment and decimal point outputs with high output breakdown voltage of 80V minimum, constant current, programmable from 0.1 mA to 4.0 mA and independent of the VCC voltage, latched 8CD inputs and decimal point input.

Application

The circuits have similar applications as DS8880. The devices will operate with a power supply

range of from 4.75V to 15.0V. The input fallthrough latches are enabled by a high logic level at the enable input for the DS8980, and by a low logic level for the DS8981.

Available in 18-pin molded dual-in-line packages, and guaranteed over the commercial range of 0°C to +70°C.

DS8884A High Voltage Cathode Decoder/Driver

The DS8884A offers 9-segment outputs with high output breakdown voltage of 80V minimum, constant current-sink outputs, programmable from 0.2 mA to 1.2 mA. It also offers input negative and positive voltage clamp diodes for DC restoring, and low input load current of -0.25 mA maximum

Application

DS8884A decodes four lines of BCD input and drives 7-segment digits of gas-filled displays. There are two separate inputs and two additional outputs for direct control of decimal point and comma cathodes. The inputs can be DC coupled to TTL (Figure 3) or MOS outputs (Figure 4), or ACcoupled to TTL or MOS outputs (Figure 5) using only a capacitor. This means the device is useful in applications where level shifting is required. It can be used in multiplexed operation, and is available in an 18-pin molded DIP package.

Other advantages of the DS8884A are: typical output current variation of 1% for output voltage changes of 3V to 50V; and operating power supply

FIGURE 3. Interfacing Directly With TTL Output

FIGURE 4. BCD Data Interfacing Directly With MOS Output

NOTE Capacitive coupling between the logic and the segment drivers may be used only when the segment drivers are rurned "OFF" during digit to digit transitions

FIGURE 5. Cathode BCD Data AC Coupled From MOS Output

voltage of 5V. Inputs have pull-up resistors to increase noise immunity in AC coupled applications.

The DS8884A is guaranteed over the 0° C to $+70^{\circ}$ C operating temperature range.

DS8885 MOS to High Voltage Cathode Buffer

The DS8885 features seven constant current-sink outputs; programmable output current of 0.2 mA to 1.5 mA; high output breakdown voltage of 80V minimum; and capability for blanking through program current input. It operates from a +5V supply.

Application

DS8885 is best suited for interfacing 7-segment fully decoded MOS chips to digit displays. It is also useful for driving polarity, overrange, and decimal point segments.

DS8885 has 6 inputs and 7 outputs. Output c is decoded internally; the other 6 outputs are directly controlled by the 6 corresponding inputs. A typical application of this device is interfacing between an MOS calculator chip with 7-segment decoded outputs (open-drain or push-pull) and Sperry/Panaplex 11 displays (Figure 6).

When the DS8885 is used to drive minus and plus (polarity) cathodes, overrange, and decimal points, output c should be tied to V_{CC} so it does not saturate (Figure 7). This leaves 6 inputs and 6 outputs related one-to-one. The inputs can be driven directly from TTL or MOS outputs.

*Output may be paralleled for cathodes requiring more current, providing the corresponding inputs are also paralleled

FIGURE 7. Polarity, Overrange, Decimal Point Driving

The DS8885 is available in 16-pin molded DIP package, and is guaranteed over the operating temperature range of 0° C to $+70^{\circ}$ C.

DS8889 Low Power Cathode Driver

The DS8889 requires no power supply since power is derived from program current. It offers extremely low standby power—only 1 mW internally. Features include programmable output currents 0.3 mA to 1.7 mA; 8 constant current-sink outputs; and input negative voltage clamp diodes for DC restoring. Outputs have 80V minimum breakdown voltage.

The device is suitable for multiplexed operation from fully decoded chips and is capable of driving decimal point segments simultaneously with numeric segments.

Application

The DS8889 has 8 inputs and 8 outputs, and interfaces directly between 7-segment decoded MOS outputs and numeric display tubes (Figures 8 and 9). It is optimized for use in systems with a limited number of power supplies.

FIGURE 6. Fully Decoded MOS Cathode Outputs

The program input is characterized in terms of input current, therefore any supply (greater than 5V) can provide proper operation by connecting a single resistor to the program pin from the supply.

The DS8889, guaranteed for the 0° C to $+70^{\circ}$ C operating temperature range, is offered in the 18-pin molded DIP.

DS8887 8-Digit Anode Driver

The DS8887 interfaces directly to MOS chips and operates from a -40V to -80V power supply.

The DS8887 can operate virtually any multiplex display system requiring more output performance from the MOS chip than is available (Figures 4, 6, 8 and 9). It has low input current and voltage swing requirements but can drive up to 16 mA, and exhibits -55V minimum output breakdown voltage.

The DS8887 is available in the 18-pin molded DIP package; and is guaranteed over the operating temperature range of 0°C to +70°C.

NOTE Capacitive coupling between the logic and the segment drivers may be used only when the segment drivers are turned "OFF" during digit to-digit transitions

FIGURE 8. Decoded Cathode Data AC Coupled From MOS Output

FIGURE 9. Decoded Cathode Data Direct Coupled From MOS Output

Transmission Line Characteristics

National Semiconductor Bill Fowler May 1974

INTRODUCTION

Digital systems generally require the transmission of digital signals to and from other elements of the system. The component wavelengths of the digital signals will usually be shorter than the electrical length of the cable used to connect the subsystems together and, therefore, the cables should be treated as a transmissions line. In addition, the digital signal is usually exposed to hostile electrical noise source which will require more noise immunity then required in the individual subsystems environment.

The requirements for transmission line techniques and noise immunity are recognized by the designers of subsystems and systems, but the solution used vary considerably. Two widely used example methods of the solution are shown in Figure 1. The two methods

> UNBALANCED METHOD DM7488 BALANCED METHOD CM 7820A FIGURE 1.

illustrated use unbalanced and balanced circuit techniques. This application note will delineate the characteristics of digital signals in transmission lines and characteristics of the line that effect the quality, and will compare the unbalanced and balanced circuits performance in digital systems.

NOISE

The cables used to transmit digital signals external to a subsystem and in route between the subsystem, are exposed to external electromagnetic noise caused by

switching transients from actuating devices of neighboring control systems. Also external to a specific subsystem, another subsystem may have a ground problem which will induce noise on the system, as indicated in Figure 2.

FIGURE 2. External Noise Sources

The signals in adjacent wires inside a cable may induce electromagnetic noise on other wires in the cable. The induced electromagnetic noise is worse when a line terminated at one end of the cable is near to a driver at the same end, as shown in Figure 3. Some noise may be

FIGURE 3. Internal Noise Sources

induced from relay circuits which have very large transient voltage swings compared to the digital signals in the same cable. Another source of induced noise is current in the common ground wire or wires in the cable.

DISTORTION

The objective is the transmission and recovery of digital intelligence between subsystems, and to this end, the characteristics of the data recovered must resemble the data transmitted. In *Figure 4* there is a difference in the pulse width of the data and timing signal transmitted, and the corresponding signal received. In addition there is a further difference in the signal when the data is "AND"ed with the timing signal. The distortion of the signal occurred in the transmission line and in the line driver and receiver.

FIGURE 4. Effect of Distortion

A primary cause of distortion is the effect the transmission line has on the rise time of the transmitted data. Figure 5 shows what happens to a voltage step from the driver as it travels down the line. The rise time of the signal increases as the signal travels down the line. This effect will tend to affect the timing of the recovered signal.

FIGURE 5. Signal Response at Receiver

FIGURE 6. Signal Rise Time

The rise time in a transmission line is not an exponential function but a complementary error function. The high frequency components of the step input are attenuated and delayed more than the low frequency components. This attenuation is inversely proportional to the frequency. Notice in *Figure 6* particularly that the signal takes much longer to reach its final dc value. This effect is more significant for fast risetimes.

The Duty Cycle of the transmitted signal also causes distortion. The effect is related to the signal rise time as shown in *Figure 7*. The signal doesn't reach one logic level before the signal changes to another level. If the signal has a 1/2 (50%) Duty Cycle and the threshold of the receiver is halfway between the logic levels, the distortion is small. But if the Duty Cycle is 1/8 as shown in the second case the signal is considerably distorted. In some cases, the signal may not reach the receiver threshold at all.

FIGURE 7. Signal Distortion Due to Duty Cycle

In the previous example, it was assumed that the threshold of the receiver was halfway between the ONE and ZERO logic levels. If the receiver threshold isn't halfway the receiver will contribute to the distortion of the recovered signal. As shown in *Figure 8*, the pulse time is lengthened or shortened, depending on the polarity of the signal at the receiver. This is due to the offset of the receiver threshold.

FIGURE 8. Slicing Level Distortion

UNBALANCED METHOD

Another source of distortion is caused by the IR losses in the wire. Figure 9 shows the IR losses that occur in a thousand feet of no. 22 AWG wire. Notice in this

example that the losses reduce the signal below the threshold of the receiver in the unbalanced method. Also that part of the IR drop in the ground wire is common to other circuits—this ground signal will appear as a source of noise to the other unbalanced line receivers in the system.

FIGURE 9. Unbalanced Method

Transmission lines don't necessarily have to be perfectly terminated at both ends, (as will be shown later) but the termination used in the unbalanced method will cause additional distortion. Figure 10 shows the signal on the transmission line at the driver and at the receiver. In this case the receiver was terminated in 120Ω , but the characteristic impedance of the line is much less. Notice that the wave forms have significant steps due to the incorrect termination of the line. The signal is subject to misinterpretation by the line receiver during the period of this signal transient because of the distortion caused by Duty Cycle and attenuation. In addition, the noise margin of the signal is reduced.

FIGURE 10. LM75451, DM7400 Line Voltage Waveforms

The signal waveforms on the transmission line can be estimated before hand by a reflection diagram. Figure 11 shows the reflection diagram of the rise time wave forms. The voltage versus current plot on left is used to predict the transient rise time of the signal shown on the right. The initial condition on the transmission line is an IR drop across the line termination. The first transient on the line traverses from this initial point to zero current. The path it follows corresponds to the characteristic impedance of the line. The second transient on the diagram is at the line termination. As shown, the signal reflects back and forth until it reaches its final dc value.

Figure 12 shows the reflection diagram of the fall time. Again the signal reflects back and forth between the line

termination until it reaches its final dc value. In both the rise and fall time diagrams, there are transient voltage and current signals that subtract from the particular signal and add to the system noise.

FIGURE 11, Line Reflection Diagram of Rise Time

FIGURE 12. Line Reflection Diagram of Fall Time

BALANCED METHOD

In the balanced method shown in Figure 13, the transient voltages and currents on the line are equal and

THE GROUND LODP CURRENT IS MUCH LESS THAN SIGNAL CURRENT

FIGURE 13. Cross Talk of Signals

opposite and cancel each others noise. Also unlike the unbalanced method, they generate very little ground noise. As a result, the balanced circuit doesn't contribute to the noise pollution of its environment.

The circuit used for a line receiver in the balanced method is a differential amplifier. Figure 14 shows a noise transient induced equally on line A and line B from line C. Because the signals on line A and B are equal, the signals are ignored by the differential line receiver.

Likewise for the same reason, the differential signals on line A and B from the driver will not induce transients on line C. Thus, the balanced method doesn't generate noise and also isn't susceptible to noise. On the other hand the unbalanced method is more sensitive to noise and also generates more noise.

FIGURE 14. Cross Talk of Signals

The characteristic impedance of the unbalanced transmission line is less than the impedance of the balanced transmission line. In the unbalanced method there is more capacitance and less inductance than in the balanced method. In the balance method the Reactance to adjacent wires is almost cancelled (see Figure 15). As a result a transmission line may have a 60Ω unbalanced impedance and a 90Ω balanced impedance. This means that the unbalanced method, which is more susceptible to 1R drop, must use a smaller value termination, which will further increase the IR drop in the line.

FIGURE 15. ZO Unbalanced < ZO Balanced

The impedance measurement of an unbalance and balance line must be made differently. The balanced impedance must be measured with a balanced signal, If there is any unbalance in the signal on the balanced line, there will be an unbalance reflection at the terminator. Therefore, the lines should also be terminated for unbalanced signals. Figure 16 shows the perfect termination configuration of a balanced transmission line. This termination method is primarily required for accurate impedance measurements.

FIGURE 16. Impedance Measurement

MEASURED PERFORMANCE

The unbalanced method circuit used in this application note up to this point is the unbalanced circuit shown in Figure 1. The termination of its transmission line was greater than the characteristic impedance of the unbalanced line and the circuit had considerable threshold offset. The measured performance of the unbalanced circuit wasn't comparable to the balanced method. Therefore, for the following comparison of unbalanced and balanced circuits, an improved termination shown in Figure 17 will be used. This circuit terminates the line in 60Ω and minimized the receiver threshold offset.

FIGURE 17, Improved Unbalanced Method

A plot of the Absolute Maximum Data Rate versus cable type is shown in Figure 18. The graph shows the different performances of the DM7820A line receiver and

FIGURE 18. Data Rate vs Cable Type

FIGURE 19. Data Rate vs Duty Cycle

FIGURE 20. Data Rate vs Line Termination

FIGURE 21. Data Rate vs Distorion of LM75452, DM7400

the DM7830 line driver circuits with a worse case 1/8 Duty Cycle in no. 22 AWG stranded wire cables. In a single twisted pair cable there is less reactance than in a cable having nine twisted pairs and in turn this cable has less reactance than shielded pairs. The line length is reduced in proportion to the increased line attenuation which is proportional to the line reactance. The plot shows that the reactance and attenuation has a significant effect on the cable length. Absolute Maximum Data Rate is defined as the Data Rate at which the output of the line receiver is starting to be degraded. The roll off of the performance above 20 mega baud is due to the circuit switching response limitation.

Figure 19 shows the reduction in Data Rate caused by Duty Cycle. It can be observed that the Absolute Maximum Duty Rate of 1/8 Duty Cycle is less than 1/2 Duty Cycle. The following performance curves will use 1/8 Duty Cycle since it is the worst case.

Absolute Maximum Duty Rate versus the Line Termination Resistance for two different lengths of cable is shown in *Figure 20*. It can be seen from the figure that the termination doesn't have to be perfect in the case of balanced circuits. It is better to have a termination resistor to minimize the extra transient signal reflecting between the ends of the line. The reason the Data Rate increases with increased Termination Resistance is that there is less IR drop in the cable.

The graphs in *Figure 21* shows the Data Rate versus the Line Length for various percentage of timing distortion using the unbalanced LM75452 and DM7400 circuits shown in *Figure 17*. The definition of Timing Distortion

FIGURE 22. Data Rate vs Distorion of DM7820A, DM7830

is the percentage difference in the pulse width of the data sent versus the data received.

Data Rate versus the Line Length for various percentage of timing distorition using the balanced DM7820A and DM7830 circuit is shown in *Figure 22*. The distortion of this method is improved over the unbalanced method, as was previously theorized.

The Absolute Maximum Data Rate versus Line Lengths shown in the previous two figures didn't include any induced signal noise. *Figure 23* shows the test configuration of the unbalanced circuits which was used to

FIGURE 23. Signal Cross Talk Experiment Using DM75452, DM7400

measure near end cross talk noise. In this configuration there are eight line drivers and one receiver at one end of the cable. The performance of the receiver measured in the presence of the driver noise is shown in *Figure 24*.

Figure 24 shows the Absolute Maximum Duty Rate of the unbalanced method versus line length and versus the number of line drivers corresponding to the test configuration delineated in Figure 23. In the noise measurement set-up there was a ground return for each signal wire. If there is only one ground return in the cable the performance is worse. The graph shows that the effective line length is drastically reduced as additional Near End Drivers are added. When this performance is compounded by timing distortion the performance is further reduced.

FIGURE 24. Data Rate vs Signal Cross Talk of LM75452, DM7400

Figure 25 shows the test configuration of the balanced circuit used to generate worst case Near End cross talk

FIGURE 25. Signal Cross Talk Experiment Using DM7830, DM7820A

noise similar to the unbalance performance shown in the previous figure. Unlike the unbalanced case, there was no measurable degradation of the circuits Data Rate or distortion.

CONCLUSION

National has a full line of both Balanced and Unbalanced Line Drivers and Receivers. Both circuit types work well when used within their limitations. This application note shows that the balanced method is preferable for long lines in noisy electrical evironments. On the other hand the unbalanced circuit works perfectly well with shorter lines and reduced data rates. It should be kept in mind that when you are spending \$500,000 for a CPU and \$75,000 for peripherals, it pays to investigate the best way to transmit data between them.

DEFINITION OF BAUD RATE

The data in this note was plotted versus Baud Rate. The minimum unit interval reflected the worse case conditions and also normalized the diagrams so that the diagrams were independent of duty cycle. If the duty cycle is 50% then the Baud Rate is twice the Bit Rate.

REFERENCES

IC's for Digital Data Transmission, Widlar and Kubinec, National Semiconductor Application Note AN-22.

Data Bus and Differential Line Drivers and Receivers, Richard Percival, National Semiconductor Application Nate AN-83.

RADC TR73-309, Experimental Analysis of the Transmission of Digital Signals over Twisted Pair Cable, Hendrickson and Evanowski, *Digital Communication Section Communications and Navigation Division*, Rome Air Development Center, Griffis Air Force Base, New York.

Fast Pulse Techniques, Thad Dreher, E-H Research Laboratories, Inc., *The Electronic Engineer*, Aug. 1969.

Transient Analysis of Coaxial Cables, Considering Skin Effects, Wigingtom and Nahmaj, *Proceedings of the IRE*, Feb. 1957.

Reflection and Crosstalk in Logic, Circuit Interconnections, John DeFalco, Honeywell, Inc., *IEEE Spectrum*, July 1970.

Simplify CRT Terminal Design with the DP8350

INTRODUCTION

This application note is a description of a "low cost" CRT data terminal card design, based upon National's CRT Controller (DP8350) and 8-bit N-channel microprocessor (SC/MP). The terminal has a minimum parts count and implements all TTY functions. Even with this minimum number of parts, the terminal provides some "smart" features by efficiently utilizing the available hardware. Screen scroll, RS-232C interface and adjustable baud-rate (up to 1200-baud) are featured on the card. Higher baud-rates are available on a word-by-word basis if the RS-232-handshake signal is used. The design also demonstrates use of 2 new microprocessor-interface parts: the Asynchronous Communications Element (ACE), for serial I/O; and the RAM Input/Output (RAM I/O), for keyboard scanning and scratch pad memory. A 2-kilobyte video RAM is implemented with four 1024 x 4-bit, static RAM chips (MM2114), and dot generation uses the DM8678 5 x 7 Character Generator.

The card is self-contained except for the CRT monitor and power supply. It holds a keyboard and monitor-interface circuitry. Monitors requiring separate video and sync signals (Ball Brothers), and those requiring composite video (Motorola) are accommodated.

System Architecture

Since system cost is typically somewhat proportional to parts count, arriving at a minimum parts count solution has been a goal throughout this design effort.

A full-blown CRT terminal is shown in *Figure 1* and its low cost counterpart in *Figure 2*. Address decoding details are omitted in both cases.

Removing overhead circuitry shown in *Figure 1*, and making use of the TRI-STATE[®] concept greatly facilitated the parts reduction effort.

Obviously, extreme time conflicts for communicating on the system busses are created because all essential parts require access. Let us investigate this problem a little further.

Because the CRT Controller does the CRT display refresh function, it must have access to a memory containing current data for display. This memory may be a shift register (octal, 80-bit line buffer in Figure 1) which is loaded at the first video line in a character row and then recirculated for the number of video lines in that character row. Using such a line buffer allows the microprocessor access to the system busses for more athan 90% of the video time (screen time). On the other hand, by removing the buffer, the refresh circuit needs direct memory access (DMA) during video display time.

However, with the bidirectional data buffer and the TRI-STATE address buffer in the system, the situation is not yet too serious. (We are only preventing the SC/MP microprocessor from updating video RAM data or using the scratch pad during character display time.) Instruction fetch (ROM) and keyboard scanning are

National Semiconductor Application Note 198 Helge H. Mortensen March 1978

still not affected. However, with the saving of the data buffer and the address buffer, a well-organized "time share" of the busses is required. How does this limited bus access affect the time-critical features such as scroll and high baud rate?

Scroli

Several scrolling methods may be implemented with the CRT Controller. The most straightforward is a rewrite of memory. This requires long processing time and bus access and is not feasible with the minimum hardware indicated in Figure 2. Sensing when the CRT is scanning character-row 24 and then loading a new "row start" requires additional overhead circuitry. An alternative approach is to load a new "top of page" address for each scroll and have the video RAM "wrapped-around" when it is accessed by the CRT!

In the latter approach, the processor only has to clear a row in video RAM and load a register in the CRT Controller to perform a total-screen scroll. The only problem remaining is handling the location of the scratch pad in the video RAM address space. By using the RAM I/O chip for a keyboard scanning and scratch pad RAM, the problem is solved. An additional feature for the software programmer is that the keyboard and RAM are addressable within the reach of one 8-bit index register.

Maximizing Communication Baud Rate

Assuming that the processor has bus access only during the vertical blanking period and the ACE interrupt service subroutine is executed in less than this time. only one received data word could be processed per frame! The processor's task is to transfer the word from ACE to scratch pad memory, check for terminal or system control functions, write into the proper locations in video RAM and check the keyboard for "Break" (BRK). A quick calculation reveals 60 bits/second as the maximum baud rate! To improve communication speed, the processor must have bus access during the video frame scan time. Three of the 10 scan lines making up a character row are blanked except during cursor time. Using these three lines (minimum decoding required) for processor bus access during video time allows us to communicate at 1200 baud.

Note that the baud rate is limited by the frame rate in the first approach; in the second approach, the limitation is the real time required to execute the service routine. The calculation is performed as follows. Estimated execution time for service routine with 100% availability of the bus is 2 ms. However, bus access is only granted during 3 video lines in each character row which is worth 192 μ s. In terms of video time, we need 10 character rows to finish the routine and be ready for the next interrupt. Display time for 10 character rows is 6.4 ms, which in turn is the time interval for one 10-bit word. This translates into a 1600-baud maximum capability if scroll is not included in the service routine.

FIGURE 1. System Block Schematic Using Line Buffer, Address and Data Buffer

FIGURE 2. System Block Schematic for the Low Cost Terminal

Address Decoding

Holding parts to a minimum leads to a one ROM address decoding scheme. However, this does not coincide with minimum cost. Instead, 2 low-power Schottky MSI devices replace the ROM in the final design.

Memory Address Space Utilization

A very simple decoding scheme is facilitated by partitioning the processor memory space into 500-byte

pages. The detailed memory map is shown in *Figure 3*. In addition, address bits 12 and 13 (multiplexed on the data bus), are used to map four 4-kilobyte pages, with the first page dedicated to processor peripherals and the following 3 pages dedicated to register loading of the CRT Controller. The 3 CRT Controller registers to be loaded are "top of page", "row start" and "cursor".

FIGURE 3. Memory Map

DISCUSSION OF SPECIFICATIONS

A device used to communicate with a computer is called interactive if it has the following properties:

- a. Data may be entered on a keyboard and sent to the computer, which in turn echoes it back to the display.
- b. Data may be received from the computer and displayed; keyboard is scanned for "Break" (BRK) entry by the operator of the system.

The concept of an interactive terminal is illustrated by the block diagram shown in Figure 4. To understand this, follow the data from the keyboard to the display and list the specifications for each block. An overall terminal specification is depicted in Table I.

FIGURE 4. Block Diagram of an Interactive Terminal

TABLE I. TERMINAL SPECIFICATIONS

Key	board	
-----	-------	--

Style

Characters/code set

Cursor controls

Keyboard encoder

Typewriter 64/ASC II

6

Software

Communication

Mode

Technique

Communications protocol Code

Bits/character Speed, bits/second

Operator selectable speeds

Format

Terminal interface

Full duplex, half duplex option

Asynchronous

ASC II

ASC II

10/11 110 to 1200 (19,200 word-by-word)

Character

RS-232, 20 mA current loop

Display

Display positions, characters/display

Display arrangement (line x characters)

Total display symbols Symbol formation

Reverse video Scrolling Cursor type

Cursor position

1920

24 x 80

64

5 x 7 dot matrix

Cursor and whole screen

Yes

Block, reverse video

Down, left, right, home and return, back space.

Keyboard

The keyboard is a copy of a standard teletypewriter with two-key rollover. The 54 keys can be broken into alphanumeric, purictuation, symbols, cursor control, and system control keys. The processor scans the keys at all times and translates any key closure into a unique code (ASC II), which is sent to the input/output channel for serial transmission to the computer. It should be noted that the RAM I/O chip has the capability of scanning 64 keys (8 x 8).

Communications

The input/output channel is based upon the Asynchronous Communication Element (ACE). This integrated circuit performs parallel-to-serial conversion of the data received from the keyboard, and serial-to-parallel conversion of data sent from the computer for display on the screen. When the system is initiated (power-up), the on-chip programmable baud generator is loaded with the desired baud rate (switch selectable). Start, stop, and parity bits are appended or deleted in this block of the system, depending on the direction of data flow. All control signals for the standard RS-232C interface are likewise generated here. Standard electrical specifications for RS-232C and 20 mA current loop are met by adding dedicated interface parts.

Display

After the data is received from the computer, it is stored in the video RAM. The CRT Controller chip refreshes the display at 60 Hz by sequentially addressing the video RAM; 1920 addresses are generated to fetch data for 24 lines of 80 characters. The standard 64-character ASC II set is displayed using a 5 x 7 dot-matrix block for each character. Data is entered from left to right and from top to bottom, until the screen is full. After that, upward scrolling with top-line overflow and newly cleared bottom line takes place automatically with line feed.

Software

A detailed flow chart of the software is shown in Figure 5. It is set up to service 3 major functions: a) initialize the system; b) scan the keyboard and c) service the ACE upon interrupt request.

a. Initialization

The video RAM is cleared and the cursor is loaded at the upper left corner of the screen. ACE is set up with the desired baud rate and the interrupt enable flag is armed.

b. Keyboard Scan

The keyboard is first checked for "Any Key Down" status. If positive, the keyboard is scanned and the binary code (ASC II) is computed by the program and read to ACE.

c. ACE Interrupt Service Routine

When its receiver buffer is full, the ACE puts out an interrupt request. The SC/MP immediately suspends keyboard scanning and reads the buffer register. The main portion of this routine is checking incoming data for control functions and updating the video RAM and the CRT Controller registers. It should be noted that the need for executing this routine is the limiting factor for high baud rate communications.

Hardware

The detailed hardware implementation is shown in Figure 6. The CRT Controller grants the SC/MP microprocessor bus access during blanked scanlines and vertical blanking interval by logically OR-ing line counter outputs with the vertical blanking pulse and using this signal as a bus-available signal. The CRT Controller is held off the bus by disabling the TRI-STATE address output. This is done by applying logical "0" to the RAM address enable pin of the CRT Controller, the SC/MP then takes the bus as needed.

Sense-A of SC/MP is used as an interrupt request input whenever received data is available in the receiver buffer register of the ACE. The interrupt service routine is executed during vertical blanking and "inactive" video time as indicated above.

The keyboard is sensed for "Any Key Down" (under program control) by reading Port-B of the RAM I/O chip. Upon a positive result, the keys are scanned by a special sequence for key identification and encoding.

Mechanical

A PC board layout and its assembly is shown in Figure 7. Note that the keyboard is mounted directly on the card.

Acknowledgment

The development of the terminal involved significant contribution by a large number of people. The author would particularly like to express his appreciation to Len Bryson for software development and Dana Knight for invaluable suggestions and ideas during the hardware design phase.

START

FIGURE 6. Low Cost CRT Terminal

FIGURE 6. Low Cost CRT Terminal (Continued)

A Low Component Count Video Data Terminal Using the DP8350 CRT Controller and the INS8080 CPU

INTRODUCTION

The DP8350 is an 1^2L — LS technology integrated circuit, designed to provide all control signals for a cathode ray tube (CRT) display system. This application note explains a system using the DP8350 and the INS8080 microprocessor. The design philosophy shows how the DP8350 interfaces to the INS8080, completing the function of a video data terminal with a minimum component count. After reading and understanding this application note the reader will realize the ease and flexibility of designing video terminals with the DP8350*. To thoroughly understand this application note the

The video data terminal described is divided into the following sections, (Figure 1).

reader must be familiar with the DP8350 and the

The DP8350 CRT controller (CRTC).

The 8080 μP system which includes ROM, RAM, interrupt instruction port, oscillator, and control support chips.

The character generator.

INS8080 microprocessor.

The communication element.

The keyboard and baud rate select ports.

THE CRTC

The DP8350 generates all the required control and timing signals for displaying video information on the video monitor. Here is a summary of the controller's functions:

Dot clock, control, and counter outputs for the character generator.

Bidirectional RAM address refresh counter for refreshing the video RAM and allowing microprocessor loading to the internal DP8350 registers.

Direct drive horizontal and vertical sync signal outputs.

Direct cursor address location output. The cursor is internally delayed or pipelined, allowing for the access time of video RAM and the character generator ROM, (Figure 1).

THE CPU

The microprocessor provides CRTC, operator, and external machine control for the system. When the CRT controller is not actively refreshing the video RAM, (i.e., during vertical retrace or blank scan lines), the microprocessor is enabled for system housekeeping, (Figure 2). This method of multiplexing the RAM with *The DP8350 is equivalent to the INS8276

National Semiconductor Application Note 199 Al Brilliott August 1978

the CPU and the CRTC eliminates the need for line buffers.

THE CHARACTER GENERATOR

The character generator consists of 3 elements: an address latch to hold the input address to the character ROM allowing for the access time of the ROM; the character ROM that stores the ASCII character in a form for parallel to serial conversion by the shift register; the shift register converts the character ROMs parallel output to serial form. The serial output from the shift register is the true video output, modulating the video monitors electron beam which writes characters on the screen. All of the 3 elements of the character generator are combined in the DM8678, (Figure 3). The DP8350 CRTC provides all the control signals for the DM8678.

THE COMMUNICATION ELEMENT

The INS8250 is the asynchronous communication element (ACE) for the data terminal. The ACE allows the CPU portion of the data terminal communication with peripherals or host computers at the correct baud rate, (Figure 1). The ACE is programmed by the CPU to send and receive serial data at the standard baud rates from 110 to 4800 baud. The ACE, in conjunction with the DS1488 and DS1489 line drivers and receivers, also provides full RS232C synchronous communication if higher baud rates are desired. System communication speed must always be considered to insure the baud rate does not exceed the time required for the CPU to process a data byte. Asynchronous communication at baud rates higher than 4800 are possible by adding a line buffer.

SYSTEM INITIALIZATION

Application of the terminal's power supply resets the microprocessor, the communication element, and the CRT controller. Resetting the ACE is necessary to clear the interrupt. Resetting the CRTC is not absolutely necessary since the microprocessor loads the cursor and top of page registers in the initialization routine.

Following the reset all interrupts are disabled to avoid unwanted interrupts from the CRTC, ACE, or I/O ports. Refer to the initialization routine in the flowchart.

The stack pointer is loaded to the bottom of scratch pad RAM (3FFFH) for use as the register save pointer, (Figure 4).

The entire RAM is written with ASCII spaces generating a cleared screen. After completion of the screen clear loop the CPU writes 000H to the cursor and the top of page registers in the DP8350 CRTC. The routine homes the cursor to the upper left corner of the screen. The top of page register was loaded with 000H, therefore, the video RAM is refreshed by the CRTC from that starting address to the last address on the screen of video RAM (1920 characters).

FIGURE 2. Row Start Interrupting and Multiplexing the INS8080 with the DP8350

FIGURE 3. DM8678 Character Generator Block Diagram

Termina

the INS8080 CPL

The CPU is ready to perform the communication element (ACE) load routine. First, the baud rate divisor for the ACE must be determined. The baud rate select switch is read providing a code which corresponds to the appropriate 16-bit divisor for the ACE. This divisor determines the baud rate at which the ACE will communicate. Any additional programming requirements needed for the ACE to communicate with host computer systems could also be done at this time. The software in this system does not contain any additional programming for the ACE. There are many programming modes related to the ACE. Details of these modes are beyond the scope of this application note.

The row start look-up table, (Figure 5), is loaded up by a simple algorithm that loads and adds the data for referencing a row number to that row's starting address. The reference table, (Figure 6), is initialized next by direct loading. This table provides the CPU with top of page, bottom of page, next row load, cursor row, and scratch row numbers for system housekeeping.

Finally, the new row start and vertical interrupt latches are cleared, (Figure 7). The register pointers are loaded and the CPU is forced in a wait loop with interrupts enabled.

NON-SEQUENTIAL ADDRESSING

The data terminal described here was designed for non-sequential starting row addressing. In many systems sequential row addressing is used. If a character row consists of 10 scan lines the RAM is addressed 10 repetitive times from 000H through 04FH, (Figure 2). The next row is refreshed in the same manner from 050H to 09FH. The starting row address is sequential 000H, 050H, 0A0H—E80H for row numbers 0H, 1H, 2H,—2FH, respectively, Non-sequential row addressing would be equivalent to 050H, 000H, 0A0H—E80H for row numbers 1H, 0H,—2FH, respectively, (Figure 4).

In conjunction with the CPU, non-sequential row addressing is quite easily accomplished with the DP8350 since this is one of the features designed into the part. Accomplishing this task basically requires the following sequence of events. Assume the CRTC has finished writing a video row in the middle of the monitor's screen. This system has a 5 x 7 character font in a 7 x 10 field. (Figure 2). At the completion of the last video scan line 7 the CRTC line counters continue to count the last 3 lines. Video is not present since the character is only 7 scan lines high. The blank scan lines are 7, 8, and 9 permitting the CRTC address outputs to be TRI-STATED®, allowing the CPU to run. When the line counter outputs increment to scan line 8 an interrupt signals the CPU. The interrupt occurring is the new row start interrupt. The interrupt routine fetches the next CRTC row number from the reference table (Figure 6). This number is converted to the new starting row address, explained later, and loaded to the CRTC row start register. The CPU finishes the routine by clearing the interrupt, readying itself for the next new row start interrupt. The entire routine takes 1 scan line of time, approximately 64 us. The CRTC continues to scan the video RAM from that new starting address on for the next 7 repetitive scan lines of the next row. Many advantages become apparent using the nonsequential addressing scheme. Scrolling up or down with the cursor always on the screen may be done faster and easier from a hardware/software standpoint. Exchanging one row with another row is fast since it is not necessary to rewrite the video RAM. Row swapping is useful for higher end terminals requiring row editing functions.

ADDRESS MAP

FIGURE 4. RAM Organization

MEMORY REFERENCE TABLES

Page 1

				ROW NRS HIGH NRS LOW													
RC	W			N	RS	н	GH			N	RS	LC)W				
NUM	BEF	₹]	ADDRESS				RC	VV	٨٢	DDI	00	ROW					
DEC	HE	Х	AL		/N L 3 3		DATA		AL	ADDITE			DATA				
0	0	0	3	F	0	0	3	0	3	F	3	0	0	0			
1	0	1	3	F	0	1	3	0	3	F	3	1	5	0			
2	0	2	3	F	0	2	3	0	3	F	3	2	Α	0			
3	0	3	3	F	0	3	3	0	3	F	3	3	F	0			
4	0	4	3	F	0	4	3	1	3	F	3	4	4	0			
5	0	5	3	F	0	5	3	1	3	F	3	5	9	0			
6	0	6	3	F	0	6	3	1	3	F	3	6	Е	0			
7	0	7	3	F	0	7	3	2	3	F	3	7	3	0			
8	0	8	3	F:	0	8	3	2	3	F	3	8	В	0			
9	0	9	3	F:	0	9	3	2	3	F	3	9	D	0			
10	0	Α	3	F:	0	Α	3	3	3	F	3	Α	2	0			
11	0	В	3	۴	0	В	3	3	3	F	3	В	7	0			
12	0	С	3	F	0	С	3	3	3	F	3	С	С	0			
13	0	D	3	F	0	D	3	4	3	F	3	D	1	0			
14	0	E	3	۴	0	Ε	3	4	3	F	3	Е	6	0			
15	0	F	3	F	0	F	3	4	3	F	3	F	В	0			
16	1	0	3	F	1	0	3	5	3	F	4	0	0	0			
17	1	1	3	F	1	1	3	5	3	F	4	1	5	0			
18	1	2	3	F	1	2	3	5	3	F	4	2	Α	0			
19	1	3	3	F	1	3	3	5	3	F	4	3	F	0			
20	1	4	3	F	1	4	3	6	3	F	4	4	4	0			
21	1	5	3	F	1	5	3	6	3	F	4	5	9	0			
22	1	6	3	F	1	6	3	6	3	F	4	6	E	0			
23	1	7	3	F	1	7	3	7	3	F	4	7	3	0			

Page 2

						Pä	ge z							
RC)W			N	RS	н	GH			N	RS	LC	W	
NUMBER DEC HEX			ADDRESS			RC DA		ΑC	D	RES	ss	RC DA		
24	1	В	3	F	1	В	3	7	3	F	4	8	8	0
25	1	9	3	F	1	9	3	7	3	F	4	9	D	0
26	1	Α	3	F	1	A	3	8	3	F	4	Α	2	0
27	1	В	3	F	1	В	3	8	3	F	4	В	7	0
2B	1	С	3	F	1	С	3	В	3	F	4	С	С	0
29	1	D	3	F	1	D	3	9	3	F	4	D	1	0
30	1	E	3	F	1	E	3	9	3	F	4	E	6	0
31	1	F	3	F	1	F	3	9	3	F	4	F	В	0
32	2	0	3	F	2	0	3	Α	3	F	5	0	0	0
33	2	1	3	F	2	1	3	Α	3	F	5	1	5	0
34	2	2	3	F	2	2	3	Α	3	F	5	2	A	0
35	2	3	3	F	2	3	3	Α	3	F	5	3	F	0
36	2	4	3	F	2	4	3	В	3	F	5	4	4	0
37	2	5	3	F	2	5	3	В	3	F	5	5	9	0
38	2	6	3	F	2	6	3	В	3	F	5	6	E	0
39	2	7	3	F	2	7	3	С	3	F	5	7	3	0
40	2	В	3	F	2	8	3	С	3	F	5	8	8	0
41	2	9	3	F	2	9	3	С	3	F	5	9	D	0
42	2	Α	3	F	2	Α	3	D	3	F	5	Α	2	0
43	2	В	3	F	2	В	3	D	3	F	5	В	7	0
44	2	С	3	F	2	С	3	D	3	F	5	С	С	0
45	2	Ď	3	F	2	D	3	Ε	3	F	5	D	1	0
46	2	Е	3	F	2	E	3	E	3	F	5	Ε	6	0
47	2	F	3	F	2	F	3	Е	3	F	5	F	В	0

FIGURE 5. New Row Start Look Up Table

ADDRESS	DATA	INITIALIZED DATA
3F60	XY	17
3F61	XY	00
3F62	XY	00
3F63	XY	00
3F64	XY	00
3F65	XY	00
3F66	XY	00
3F67	XY	00
	3F60 3F61 3F62 3F63 3F64 3F65 3F66	3F60 XY 3F61 XY 3F62 XY 3F63 XY 3F64 XY 3F65 XY 3F66 XY

COMM	IAND	FUNCTION
OUT	40	Clear new row start and vertical interrupt latches
IN	80	Read keyboard
IN	40	Read baud rate select switch

FIGURE 7. Input/Output Space

NRS LOW

DEVICE	ADDRESS*
ROM	0000 to 0FFF
RAM	3000 to 3FFF
CRTC	5000 to 5FFF
ACE	9000 to 9007

^{*}Direct device selecting was used to minimize the system component count

NUN	AI	ADDRESS			R	ROW		חם	R F	ss	ROW		
DEC	HEX	Ľ.	ADDRESS				DATA				DATA		
32	2 0	3	F	2	0	3	Α	3	F	5	0	0	0
Row	Start /	٩dd	res	s_		,							

NRS HIGH

for Row 20H.

ROW

3XXX Selects RAM. 5XXX Selects CRTC.

FIGURE 9. Example From the New Row Start Look Up Table

ROW LOADING DETAILS

Obtaining the next starting row address for the CRT controller is accomplished by an addressing and adding scheme from the new row start look-up table. The same scheme is used to determine any needed address, given the row number.

Figure 9 shows a row number and address taken from the new row start look-up table.

The row number is loaded from the reference table in RAM to a register. The CPU determines the starting address from the row number and stores it in a 16-bit pointer register. The higher order 4 bits contain address for the RAM or the CRT controller, (Figure 8).

Here are the details of how this is accomplished. Refer to the new row start interrupt in the software listing and *Figure 9.*

The CPU D-E registers are loaded to point to a row number in the reference table. The number is put in the accumulator and moved into the E register. The D-E register in this example now contains 3F20 which points to NRS HIGH ROW DATA (3A). The addressed data is moved to the accumulator and then to the H register. If it was desired to point to the CRTC then 20H would have been added to it first. The D-E register still contains 3F20H. To obtain the NRS LOW ROW DATA the E register is moved to the accumulator and 30H is added to it. Now the D-E register contains 3F50H and points to NRS LOW ROW DATA (00H). The data is loaded to the accumulator and then to the L register. The H-L registers contain 3A00H which is the starting row address for row number 20H. The method just described is used throughout the terminals program to move the cursor, load the top of page, and load the new starting row address in the CRTC.

VERTICAL INTERRUPT

The vertical interrupt occurs when the CRTC has completed refreshing a video page (1920 characters) of information. Vertical blanking identifies that condition and interrupts the CPU forcing it to the vertical interrupt routine. Refer to the vertical interrupt in the flow chart. The routine moves the first row number to the CRTC row number, updating it so the next new row start load occurs with the top of the page address or the first row of the video screen.

KEYBOARD INTERRUPT

The external keyboard requirements are ASCII outputs with a suitable strobe to interrupt the CPU for keyboard servicing. Refer to the keyboard interrupt in the flow chart. After the keyboard buffer is read the data byte is tested for a (CNTL E), new baud rate command. If the test fails the CPU writes the data byte to the ACE. Passing the test forces the CPU to read the baud switch and load the ACE with the new baud rate.

ACE INTERRUPT

As mentioned above, a data byte read from the keyboard that is not a baud rate command enters the accumulator. The CPU writes the data byte from the accumulator to

the transmitter holding register in the ACE. The ACE proceeds to shift out the data byte, with the appropriate start and stop bits, serially from the (SOUT) output. The data is shifted to the serial input (SIN) of the ACE and loaded into the receiver holding register. When the register is full the ACE interrupts the CPU, initializating the ACE service routine. Refer to the ACE interrupt in the flow chart.

The CPU reads the receiver holding register in the ACE. Reading the ACE resets the interrupt. The data byte now resides in the accumulator. The CPU tests for a control or an escape function. The function is executed if test conditions are met. Refer to the keyboard interrupt routine in the software listing. The data byte is written to the video RAM at the cursor address which appears on the monitor screen. The cursor and character numbers are incremented as long as it is not at the end of a row. A character at the end of a row requires further testing to recognize the following situations. Is it the last row on the monitor's screen? Or is it on the maximum row of the video RAM? Essentially, the cursor is forced to stay visible on the video monitor's screen and video RAM is always kept out of scratch pad RAM, (Figure 10).

The video screen is allowed to scroll only through the video RAM (000H to EFFH). The CPU keeps the video screen within these bounds by loading the new row start register with that address range only (row 00H to 2FH).

FIGURE 10, Drum Analogy for the RAM

FULL/HALF DUPLEX OPERATION

The data terminal and a host computer in the full duplex mode of operation would receive the serial information, process it, and send it back to the SIN input of ACE. Using the terminal in a stand-alone mode for testing, the serial out SOUT is tied to the serial in SIN of the ACE. In the half duplex mode a data byte is sent to the host computer at the same time it is sent to the terminal. When the data terminal is set up to communicate with a host computer the full duplex mode of operation is desirable.

Low Component ing the DP8350 **CRT Controller and** Terminal 1 the INS8080 CPU

		** NAT	IONAL EEN	ERTO POPOA I		135 00E9 (31001 136 00EC 117E00 137 00EF (31001		JMF LX: JMP	ACELD D, OCCUTE ACELD	1200 CAUD DIVISOR
					ONTROLLER BOARD	138 00F2 115400 139 00F5 CS1CUI		LXI	D 00054 ACELD	, 1900 BAUD DIVISOR
		AL BRI	LLIOTT-JI	IM TROUTNER		140 00FS 114000 1 141 00FB 021001	B2tnn	_xI .me	EU DHOAC ACELD	ZOUD PAUD DIVISOR
	006U 0061		LA: TRION ROMEDEN		441	142 00RE 113F00 143 0101 031001	E 24 m	LX3 JMF	D. DERICE ACELD	, 24mm PAUD DIVISOR
	0062		FIRETRO	=	114 _	144 01H4 112AHG	P1610	_x I	D. OHRIZA	SALM BAUD DIVISOR
	006÷ 0064		CHARNUM		06 I 06 4	145 0107 031001 146 010A 112000	B4:(a)	611	ACELB 51 00026	4200 EAUD DIVIEOR
	0065		ROWSAVE TEMP I	_	065 060	147 010D 071001 145 0110 111500	E72.4	_ME L×1	ACELD D, 00015	7300 PAUD DIVISOR
	mut 7		TEMF1	7	06 7 06 5	149 01113 001001	POLITA	JMF LX1	ACELD D. CUILLO	2800 DAUD DIVISOR
	unes				114 :	150 0118 111000 151 0119 (31001	E-ASI II	JMF	ACELD	Terro Bado Divisor
0000	F3	START	=100001 D1		DISALLE INTERFURT	152 157		A E L	AD ROUTINE	
COCCL	31FF0F 090B00		LXI JME	IF HIFFE	LOAD THACK POINTER FORM TO INITILIZE FOUTINE	154 155 0110 010290	ACE, D	LXI	E ono;	POINT B C TO ACE
11007			=00005	NEWE ?		156 011F DESI		MU1 STAX	A, H83	, INIT BAUD LOAD - 8 BITS DO INIT BAUD LOAD
COOR	0.32502		.MF =0610		NEW ROW FTART INTERRUFT	158 0122 0E01		MV!	001	FOINT TO PAUD HIGH
0010	C 34A01		.IMF =====1 E	INTA(E	ACE INTERUPT	159 0124 7A 160 0125 02		MOV STAX	A D	GET BAUD HIGH STORE BAUD HIGH TO ACE
0018 001B	0.33600		JMP HODGE	INTE	-) EYEMARD INTERURT	161 0126 0E00 162 0128 7B		MU1 MOV	C. Diffi A. E	POINT ACE TO BAUD LOW GET BAUD LOW
UU38	C34F02		JMF	VESTI	VEFTICAL INTERUFT	163 0129 02		FTAX	P	TORE BAUD LAW TO ACE RESET DUAL TO ZERO
003E		INIT	LXI MVI	H 00000 C 020	15T RAM ADDRESS AS II SPACE INTO C REP	164 012A 0E01 165 012C 79		MU I MOU	C,001 A I	, INIT ACE TIE
0040	3E 3E 71	CLEAM	MV1 MOV	A HOF M /	MAX RAM ADDRES" A:CII FFACE INTO MEM	166 012E H2 167 012E 0E01		TAX MV1	E (100.1	FUT TO ACE INTERRUFT ENABLE REC
0043	2.	- Linear	INX	н	NE) T RAM ADDRET	168 0130 79		MOV	AC	SELECT RECEIVED DATA INTERF
0045	024200		CMF JNZ	CLRAM	MA) RAM ADDRESS IF NO THEN NEXT ADD	169 0171 02 170 0132 HEO0		ETAX MU1	£ 1000	RESTORE [-C ACE FOINTER
004S	OEGG		MV1 MV1	A 1/40		171 0124 D1 172 0125 C9		FOF FET	D-	RESTORE DIE REGISTERS RETURN
UU40	71	CLRAMI	MOV 1NX	M. C.		173			ARD INTERRUFT F	
CID4E	B (CME	н		174 175				
	024000 08700		JNZ CALL	CLEAMI HMCUR	OO TO CUR HOME ROUTINE	177 0138 FE	INTIE	2 N E 1	415 D	READ FEYEDARD ENABLE INTERRUFT? NEED EAUD RATE? (UNTL E)
0055	CD8300		CALL	PAUD	GO TO DAMP LOAD POUTINE	178 0139 FE05		dE 1	PAUD	NEED EAUD RATE (CINTLE) 1F YES GO TO EAUD ROUTINE
			NEW RO	W START LOOK	UF TACLE GENERATION	179 013B CA9300 180 013E FE12		F 1	0.12	INVERT NEXT ONTE R
0058	21003F		LX1	H. O. BOO	.N R E HIGH ADDRESS	181 0140 CA4800 182 0143 FE11		7	IVERTN	INVERT ROW ONTL :
OUSB	11303F 010030		LXI LXI	D. (C F 20)	N S : LOW ADDRES: N S : ADDRES: DATA	181 0145 CA5401 184 0149 02		ETAX	IVERTE I	STORE DYTE TO ACE
0061	70	NR:	MOV	M. I	STORE TO N E 4 TATA TAFFE	106 0140 00		RET		RETURN
0062 0063	12		ETAX	A C D	N.A DATA LOW TO ACT TOPE TO N.A. 1. DATA TABLE L			A.E I	NTERPET ROUTIN	
0064			ADI MOV	050 6. A	ACT READY FOR NEXT LOAD ALC TO N.R.S. DATA MICH	188 199 MI4A DA	INTALE	. FAX	F	LUAD ACE DATA CYTE TO ACC
11067	75		MOV	AE	ALC TO N R S DATA MICH N R S DATA TO ACC	190 014P FE	111111111111111111111111111111111111111	E:	-	ENABLE INTEFRUFT:
OUFE	6 Euu 47		AC I MÓV	E A	ADD CARRY DIT TO DATA HIGH MOVE RESULT TO N F : DATA H	191 014C FE7E 192 014E CA7001		0F 7 U7	₽7E FUNC	, TEST FOR ESC COMAMD
006B			INE INE	E	INCREMENT N R : HIGH ADD INCREMENT N R : LOW ADD	193 0151 RE7F 194 0151 CA7001		TFI	FUNC	TEST FOR DEL COMAND
0.600	7B		MOV	A.E	N R S ADD LOW TO ALC MAX TABLE ADDRES!	195 0156 SF 196 0157 E4/0		Milly	F A	, EAVE CHAR IN REN E
005E	626 1000		CFT JNZ	LA: TROW NR:	1F FALSE NIME	197 H159 EA7001		ANI -Z	FUNC	MASH OUT CIT' FOR UNTL TEST IF ZERO UME TO UNTL FUNC
			SEEFSE	ENCE TAD E INT	T1(17E	198 0150 3A661F 199 015F DT		LDA	nife- E	LOAD INVEST MASH OF MASH AND LMAS
					LAST ROW NUMBER TO AT	200 01611 77		M .U	M, A	STURE DATA BYTE TO RAM
0075	3E17		MVI XATE	A. 1117 D	TORE TO REFERENCE TABLE	201 202		ASIZAN	CE CUB-OR	
			LLEAR	FERIFHERAL IN	ITERRUPT TOUPS	203 704 0161 1E60	ADOUS	Mul	E CHARNUM	FRINT C-C TO CHAR #
200.71	D340		OUT	11411	N R E INTERRUFT CLEAF	205 0163 1A 208 0164 23		LDAY	D M	LOAD CHAR # TO ACC NEXT CHAR LOCATION
	DBSO		IN	1120	JEY OARD INTERRIFT CLEAR	207 0165 FE4F		FI	114F	LAST CHAR OF ROW! IN TRUE NUMS TO NEXT ROW
			SET OF	P FOINTERS		208 0167 CAPE01 209 0168 0601		112 40 I	N×60 Dol	INCREMENT CHAR #
u074	11600F		L X I	Dat DEZO	FUINT D-F TO REFERENCE "ADLE	210 0160 12 211 0160 038301		IME	E STUR	STORE CHAR * TO BAM REF FIT CURIOR
CO7D	210000		LX1	H 1 D4 0 E 1 200 m	FUINT HAL TO SET RAM LUCATE FUINT E-C TO ACE	212		** *	FOR FUNCTION	
UUSU	uImi-si		L×1			212				
			, WAIT L	LOOF FOR INTER		215 0170 7E 216 0171 FE01	FUNC	HEZ Z	A E IIII Frant	HOME AND CLEAR ENTL A (50H)
0063	RB	E'Ac t	E1	[At)	ENAILE INTERRUFT: LUDE UNTIL INTERRUFTEI	217 0173 CAUDIO		Z E 1	FIART	CASSAGE SETUEN
тин⊵4	(38300		LIME		COOK CARLLE THIEDRING CT	215 017/ FEND 219 0175 CACEUL		12	I E	
			HOME	UF CARSOR		220 017E FE11 221 017D CA7E0L		- F ;	AVEU	SAVE ROW # (NT) (*DC1)
	110050 3E01	HMCUR	LX1 MVI	el, tropici A, titte	FOINT [-C TO URIC T (F REGISTER EUECT	222 0180 FEOC 222 0182 CA6101		17	OUT ADDUS	ADVANCE CURSOR CNTL (VFR
0000	77		MOV	M A	T F LOAD	224 0125 REGE		FF 1	0002	HOME HE ONT, COSTX
0080	77		1 NF MUV	A M A	CURTOR REGISTER ELECT CURTOR LOADS TO C. F.	225 0127 CAA400 224 018A FE1A		TF I	HUME	SWAF INTE 2 1.00 1
	21/0010		LX1 BET	H 05000	FRINT HAL TO 15" SAM ADD RETURN	227 0190 CAE501 228 018F FEGA		F 1	BWAF IIIIA	LINEFEED
	-			RATE :ELECT		125 0191 CARDIC 230 0194 REU:		TE I	LF OD	EACH FRACE ONTL M (C+)
						201 0196 CAE003		12	19	UP CURSON UNTL > (VT)
0094	B 05	BAUD	FUEH 1N	[) 11401	:AVE D-E REGISTERS READ DAUD SELECT CODE	212 0133 FEOC 255 0198 CAF101		2 Z	OPĆUR	
0096	E60F		ANI	DDF1	ZERU THE HIGH ORDER 4 CITS	234 017E FE12 275 01A0 CALOUD		JZ	M15 CLROW	CLEAF ROW (NTL X (CAN)
0094	FEOO A CADAM		12	Dille	. [10 BAUD ROUTINE	274 01A3 FE07 277 01A5 CA4503		CFI	1.01 - "	RING BELL (NTL & (IEL)
0091	FE01		OF I UZ	(0)1 E15)	150 CAUD ROUTINE	275 01AP FE12		F 1	EEL:	INVERT NEXT (NTL R . DC.)
CICIA	2 FEU2 4 CAECOC		CRI JZ	001 P1/00	DOCEMUD ROUTINE	139 MIAA CA4600 240 MIAD FEI:		12 -F1	1 VERTN	INVEST BOW UNTL E (DEC)
00A7	7 FE03		(F1	1017		241 01AF (A540)		-2	IVERTA	RETURN
900A9	• CAE604	'	JZ CF1	Before	600 DAUD ROUTINE	242 01B2 (3 243		RET		
OGAE	E CAECO		JZ	01200 me	1240 BAUD ROUTINE	244		ET IN	E COREUR TO CA	TU FROM HEL RELITTER
2 000E3	1 REOS CAFZO		OF I	Eletur	1300 EAUD ROUTINE	246 01B8 7€	FOUR	MOV	A H	H REGITH ALC MET H∼L REGITH CRITC ADD
00B6	6 REH6 8 CAFSUR	1	CF 1	10.04 E 20.00 i	10 m FAUE ROUTINE	247 01B4 6620 249 01B/ 67		AP1	0.70 H. A	H 1: CRTC ADD
5 0081	B FEO7 D CAFEUC		ČĒ I	QUI7 E 24000	: 4 FT DAUD ROUTINE	249 ((187 .760) 250 ()189 70		MOV	M_Text	CHREUR REGISTER TELECT H REG TET DACK TO VIDIO RAM
7 (0.00)	u FEO8		CF 1	1008 100600	"6 M BAUD ROUTINE	251 01BA D620 252 01PC 67		NUV	1120 H-A	ADDRESS
	Z CAUGO) S EELO		CPI	DIC 2		250 01BD 09		SET.		RETURN
000		ı	3Z G€ I	E4am	, 4900 DAUD ROUTINE	254 255				
9 00C1 9 00C1	7 CA0A0:		32	B7200	730H BAUD ROUTINE	256 257		LAIT	RUM ON SCREEN	
0000 0000 0000 0000 0000	7 CADAD: A FEDA C (A100:	1		10°/E	YOUR BAND ROUTINE	257 258 UIBE CDDCH	1 NXEO	LALL	NXR01	.00 TO NEXT BOW SUBROUTINE
9 0001 9 0001 0 0001 1 0007 2 0001 4 000	7 CAOAO: A FEOA		JZ	Detin	CALL PRINT MODITION	230 0122				
9 0005 9 0005 1 0007 2 0001 2 0001 4 000	7 CADAD: A FEDA C (A1DU: E FEDB		JZ	RATE SET UE F		259 0101 CDF10 260 0104 E5	/LROW	LALL RUSH	ZCHAR H	, ZERO CHARACTER , SAVE H.L.
8 000 2 9 000 1 0 000 1 1 000 4 2 000 1 2 000 1 3 000 1	7 CAOAG: A FEOA C CA1OU: R FEOB 1 CA16U	1	JZ BAUD	RATE SET UE F	OUTINE'	259 0101 00F30 260 0104 E5 261 0105 1E60	/ LROW	AUSH MUI	H E LAFTROW	.SAVE H.L FOINT D.E TO LASTROW
8 000; 9 000; 0 000; 1 000; 2 000; 2 000; 3 000; 5 6 7 8 000;	7 CADAG: A FEGA C (A10) R FEGP 1 CA160 4 116309 7 C2100	1 5 BII0 1	JZ BAUD LXI JMF	RATE SET UF F	OUTINE: 110 SAUD DIVISOR 50 TO ACE LOAD ROUTINE	259 0101 CDF10 260 0104 E5 261 0105 (E60 262 0107 18 263 0108 0601	/LROW	MUI LDAX ADI	E LASTRON D	SAVE HUL FOINT DUE TO LASTRON FOINT AC TO FIRST ROW OFF SC
8 000; 9 000; 0 000; 1 000; 2 000; 2 000; 3 000; 5 000; 9 000; 1 700;	7 CADA(): A FEDA C (A10) E FEDE 1 CA16U 4 11630 7 C3100 A 11F30	5 BI10 1 3 B150	JZ PAUD LXI	RATE SET UF F D 00543 ACELD D.00 FI	OUTINE:	259 0101 00Flo 260 0104 E5 261 0105 1860 262 0107 18	/LROW	MUSH MUI LDAX	H E LAFTROW D	.SAVE H.L FOINT D.E TO LASTROW
8 0000 9 0000 10 0000 12 0000 12 0000 12 0000 13 0000 14 0000 15 0000 16 0000 17 0000 18 0000 18 0000 18 0000 18 0000	7 CADAG: A FEGA C (A10) R FEGP 1 CA160 4 116309 7 C2100	5 BII0 1 3 BI50 1 1 B200	JZ BAUD LXI IMF LXI	RATE SET UF F	OUTINE: 110 SAUD DIVISOR 50 TO ACE LOAD ROUTINE	259 0101 CDF10 260 0104 E5 261 0105 1E60 262 0107 1A 263 0108 (601 264 0108 FE20	/LROW	AUSH MUI LDAX ADI (P1 .IZ	H E (A:TROW D OC1 OC0	SAVE HUL FOINT DUE TO LASTRON FOINT AC TO FIRST ROW OFF SC

VIDEO DATA TERMINAL SYSTEM SCHEMATIC

12V 19 EPROM

D6

DI 00

CPU

WALE

19

SYNE

RESET

12

A15

A14

A13 37

A12 40 1

A11

A10

DSIN

HLDA

23

2

2 CRTC ADDRESS

TO NEW ROW START LDGIC OR INPUT PIN 4

CPU CONTROLLER

26 18 086

16 13 061 DBO

10 NEW ROW START LDGIC + OR INPUT PIN S ACE

26 cso

14 CS2

13 CSI INSR250 DTH RTS

6 DATA 5

5 DATA 4

22 19 DISTR

TD RESET PIN 12 8080

DATA 7

DATA 6

CATAG

DATA 2

DATA

DATA

DISTR

DÖSTR

DOSTR ADS

XTAL

BĀUĒOUT

RCLK

ŌUT 1

ØU₹ 2 39 5V

61.50

DSR

€TS

SOUT

SIN

INTERF

CSOUT

11

30 ACE INTRPT

085

D 84

DB3 111

D 82

MEMW 25

I'DR

('ow

21 19 6

10 12 17

22

DM741 S2

06 6

086 8

065

084 083

D82

D2

BUSEN

STSTE

TD #350 AND ACE CS2

FEATURES

- Keyboard input port
- Serial I/O up to 9600 baud 4k bytes RAM
- 1k byte ROM 2 video pages
- 80 x 24 characters
- 5x7 character font, 7x10 field size
- Block cursor
- Single crystal
- Maximum CPU time/frame without line buffers
- Line or page scroil capability
- Full cursor control
- Complete software fexibility
- Modem control capability
- Low component count

- Clear screen, clear
- Row swap (row interchange)
- home and clear 20

 - 12V 28
- LC FOR OVERTONE
 MODE ONLY

TOW,

CLK GEN

\$7110

RESIT

STSTB

- NL 24

- 106

nP#226

02 TTI

16

- - - ν_{cc} 12V v_{D0} GNO
 - THE TO SV O
 - - A1 12 10 TO VERT
 - INTERRUP
 - PORT

16

- 15 17 19 081 21 980 5

*3 3k PULL UPS

TD BUSEN ◀ 8728

BAND RATE SELECT

10-62

VIDEO DATA TERMINAL SYSTEM SCHEMATIC (Continued)

6 OICF CD8002 7 OID2 CD3003	LOOPS	CALL	LOHLI CLROW2	LOAD H.L WITH ADD OF LASTRO	400 401			CARRA	SE RETUAN	
01D2 CD3B43 01D5 E1 01D6 (9		POF RET	н	RESTORE H.L	403 U 404 H	270 3E(0) 272 12	CR	MVI MVI STAX	ELEHARNUM A. 2000 D	FOINT DIE TO CHAR #
ID7 SEON ID9 CYCFNI	RÚZERÓ	MVI JMF NEXT F	A, DDD LODRS SOW	,LOAD ROW ZERO	40€ U	273 1E41 275 CD9202 278 C3B301		MVI LALL JMR SAVE I	E ROWEN- LDHL FOUR Roug	CUREOR TO THE BEGINNING OF R
01DC 1E40 01DE 1A 01DF EE 01E0 23 01E1 BE 01E2 CA0502	NXR01	MVI LDAX XCHG INX IMF	E.LASTROW D H M SCROLL	FOINT D-E REG TO LAST ROW FRIT LAST ROW # TO AFT EXY HANGE H-L WITH D-E H-L 15 NOW AT 2005 ROW # COMPARE LAST ROW # WITH (\$000 ROW # IF TRUE SCROLL	410 411 1 412 0 413 0 414 0	278 1E41 1270 IA 1276 1E65 1280 12 1281 (9	SAVEU	MVI LDAX MVI ETAX RET	ELRAW-O-H D E ROWSAVE D	POINT DEE TO SUPP ROWN FUT SUSO ROW W TO ACC FOINT DEE TO KOM SAVE STORE ROW SAVE W IN REF TAB RETURN
			MENT SOSO ROW #		417		. Fant	H-L RO	w DATA LUAE ROU D	TINE LOAD ACC WITH D-E DATA
01ES RE2F 01E7 DE 01E8 CAFF01 01EB 34 01EC EF 01ED IE(4) 01EF (DS(02) 01F2 C*	INCRO	MVI CMP UZ INR XCHS MVI CALL RET	A, D2F M 7ROW M E. ROWAUSD LDHL	TEST FOR MAX ROW AND JUMP TO ZERO ROW IF TRUE ZERO ROW INCREMENT THE SUBER ROW # JEDINT H L TO LHAR #	420 0 421 0 422 0 423 0 424 0 425 0 426 0 427 0	0282 1A 1280 5F 1284 1A 1285 67 1286 7F 1287 C630 1289 5F 1288 1A 1288 6F 1280 C9	LDHL I	MOV LDAX MOV ADI MOV LDAX MOV RET	E A D H-A A E M D E A D	FOUND DEE TO N R S DATA HI KOWN TO N R S DATA HIDH KOWN TO N R S DATA HIDH KOWN TO N R S DATA HIDH FOUND TO N R S DATA LOW FOUNT DEE TO N R S DATA LOW KOWN TO N R S DATA LOW KOWN TO L REG
	ZCHAR	MVI	A, con	FIIT LHAK # TO ZERO	429 430			LINEF	EEI:	
01R5 32633F 01F6 0 0 01		STA	DISFAI PYUR	AND STURE 60 TO FUT CURSOR ROUTINE	433 (280 (0000) 290 (0004))1	LF	CALL CALL MVI	NXROL FLEOW: F. ROW: 0911	.DG NEXT ROW SUBROUTINE OFF ECREEN CLEAR ROW ROUTINE MOVE REFERENCE ROW # TO H-L
01FD 1600 01FD 2E00 01FF 56 0200 2E30 0202 5E 0203 E8 0204 C9	ZROW	MVI MVI MNV MVI MOV XCHU RET	\$0,801 ROW # M. DOD L. 2020 E. M. L. 2020 E. M.	THE ROW B TO ZERO N R = ADDRESS HIGH N R = DATA HIGH TO D REG N R = ADDRESS LOW N R = DATA LOW TO S REG EXCHANGE HEL WITH D-E RETURN	436 436 437 (438 (439 440 441	0290 1E61 0295 0D8202 0298 9A830F 0298 85 0290 6F 0290 70 0290 67 0240 67	ADDCH	FALL LDA ADD MOV MOV ACI MOV JMF	E DEL DIFY: L A A, H DDO H A FCUR	CHAR # TO ACL CHAR # TO ACL CHAR # TO ACL CHAR # TO THE FIRST ROW ADDRESS IF A CARRY OCCURED ADD TO THE DATA HIGH H-L FUINT: TO LINE FED ROW RITT CURSOR TO LINE FED ROW
		RUW :	CROLL		444 445			HOME	CURSOR IO 1 U F	F
0205 2B 0204 3E2F 0208 DE	SCROLL	DOX MVI OME	H A U2F M	POINT HEL TO LAST ROWN DEFORE SCRATCH TABLES TEST FOR THE LAST ROW	447	02A4 1E41 02A4 IA 02A7 IE6I	HOME	MVI LDAX MV1	E FIRETRO D E ROW-H-1	FOINT DHE TO 1:T ROW STORE FIRETROW TO ROWSUSD
0209 (A1902 0200 34		J7 INE	ZLEO M	DUME TO ZERO LAST ROW IR TR - INCREMENT TO NEXT ROW	450 451 452 451	02A9 13 02AA (DSC02 02AD CE00 02AF 0267.F		ETAX LALL MVI ETA MR	E LEHL 1 A GOV DIEAT FUIR	MOVE REFERENCE ROW TO H-L FUT CHAR # DACY TO ZERO FUT ZURFOR HUME
020D 2E61 020F BE 0210 CA1E02	ROLFI	MVI UME UZ	L FIRETRO M ZEBO	FOINT HEL TO RIMST ROW# 1- FIRST LOW - TO LAST ROW JUME TO ZERO FIRST R	454 455 456			, SWAF	F-∩M'	
0213 34 0214 2E6I 0216 03E501		INE MVI JMF	M L ROMEDED INCRO	INCREMENT TO NEXT ROW FOINT H-L TO SUED ROW BU TO INCREMENT ROW ROUTINE	457 458 459 460 461	0285 [E65 0287 [D820] 028A 2266]F 028D [E61 028F [D820]	: WAF	MVI CALL SHLD MVI LALL	E ROWLAVE LDHL OTEZZ E ROWLOUM LDHL	FOINT DEE TO ROW SAVE # AND FUT IN HEL REG STORE ROW SAVE # TO TEMP 1 * FOINT DEE TO SOME ROW # AND FUT ADDRESS IN HEL REG
021B (30D)2	ZLRO	MV I JMF	M, 11001 ROLO	FUT LAST KOWN TO ZERO ON TO ROUTINE FOR FIRST KOW	464 465	0202 1E65 0204 IA 0205 5F 0206 70 0207 I2		MVI LDAX MOV MOV ETAX	E RUW:AVE Ø E A A H D	POINT DE TO ROW SAVE # AND FUT IN ACC SOURCE BOWN # TO ADD MIGH STORE SOON FOUNT S DATA HIGH
2 8 U21E 36U0 8 U22E 3E61 8 U222 C3E5U1	ZFRO	MVI MVI ME	MEDIOD LE ROMEDIED INCRU OM START INTERRUR	FUT KIKST KIMM TO ZEKO FOINT HOL TO STORM ON TO INCKEMENT KOW POUTINE	468 469 470 471	02CC 7D 02CD 12		MÖV ADI MOV MOV ETAX	A E 1130 E A A.L P	PLIT SHED ROW M TO IN R E DATA LOW PUT ROW SAVE M BACH TO MEL
0205 F5 0226 E5 0227 D5 0228 11640F	NEWRO	FUSH FUSH EUSH EXI	F ! W H D D: D B C 4	AVE AFF AND FLAG: AVE H-L KE. FUINT D-E TO ENTEROW #	472 473 474 475 476	030E 2A663F 02DI 1E61 02D3 1A 02D4 5F 03D5 70		LHLD MVI LDAX MOV MOV	DIFAL E-ROWGUHU DI E-A SIM	PUT ROW SAVE # EACH TO H-L LUMENT SAME AS ABOVE
022B 1A 022C 5F 022D 1A 022E (620) 0230 67		LDAX MOV LDAX ADI MOV	D E : A D 0 201 B : A	LUAD ACC WITH CRIC ROW # N R : DATA ADD HIGH TO E S W E41A HIGH INTO ACC N R : DATA ADD HIGH INTO H	477 475 479 4801	02D6 12 02D7 7E 02D8 (6D) 02DA 5F 02DB 7D		:TAX MOV ADI MOV MOV	D Av E H, A Av L	
9 0231 7F 9 0232 (633) 0 0204 5F 1 0275 1A 2 0236 6F		MOV ADI MNV LDAX MOV	A E	ACCITO NIR FIDATA LOW NIR FIDATA ADDILOWITH FIRE RUM DATA LOWITH ACCI NIR FIDATA ADDILOW INTO L	482 483	02DC 12 02DD 03980.	2	FTAX JMF SACE	D ADIDI H SPIACE	NIME TO ADD LHAR
0237 2601 0239 D340 0238 1E64 5 0230 1A		MVI UUT MVI LDAX	M 0001 040 E. CR U BOW D	TURE N A S TO CRTC RESET N A F AND VERT INTER-	487 488 489 490	02E0 IE41 02E2 IA 03E1 FEMP 02E5 CAEE4, 02E8 3D	D-i	MVI LDAX CFI JZ DCR	FICHARNOM () or () OFROM ()	ROINT THE D-E REU TO CHAR # AND FUT IN ACC TEST FUR THE CHAR # - TO ZERO JUMF IF TRUE DED REMENT CHAR #
7 023E FEJF 8 0240 (A4A03 9 0243 00 9 0244 12 1 0245 D1	LUJF	UFI UZ INA STAX FOR	ZERTE A D D	IF TRUE ZERO ADD INCREMENT TO NEXT FORM TURE NEXT FION NUMBER	493	02E0 12 02E0 28 03E0 03000	1	STAX DCX JMF	D H FCUR	STORE DECREMENTED CHAR # DET H-L FOR NEW YURSOR LOCA; FUT CURSOR IN DECREMENTED LO
2 0246 E1 3 0247 R1		FOF	H FEW	RESTORE HELL REG RESTORE AFF AND FLAG-	496		UPROW	NEXT MUT	ROW HE	MINE THE CHOE &
4 0248 FE 5 0249 F9 6 7		E I RE T		- RETURN	498 499 500	U2EE 3E4F U2FU I2	UPRUW	EΤΑλ	D CURSOF UK	TE SOON AND STURE IT
8			CRICKOW		502 503	U2F1 EE	URCUR	XCHG		POINT H-L TO 2020 ROW AND D-
01 024A TEO) 1 024C 634403 2 2			A (0.0) LOOF ICAL INTERRUET	ZERG ACT	504 505 507 508	02F2 2E6I 02F4 7E 02F5 31 02F4 EF 02F7 CA020	_	MVI MUV INX ⊢ME JZ	L RAWATEA A M M M HEE) (TO NEW CURSOR LOCATION TEST IF NEXT UP (URSOR WILL CE ON THE RIRST ROW LE TRUE HIME TO UP SCROOL ROUTINE
5 0248 F5 6 0250 E5 7 0251 D5	VERTI	FUSH FUSH	F≟W H D	TAVE H REG	5)19 510	D2FA 2B D2FC FEUD	EACH 1	DCX	H ,000	FOINT H-L BACK TO 8080 ROW # IF -DED ROW # IS EQUAL TO
9 0252 1E62 9 0254 1A 0 0255 1E64 1 0257 12 2 0258 E6.F		MVI LDAX MVI ETAX ANI	E FIR-TED D E CRITCROW D DOE	FOINT DEE TO FIRST ROW # LOAD IST ROW # INTO ACC FUINT DEE TU CRICROW # URDATE CRICROW # REMOVE MAKUER	512 513 514 515	USFE CA1ED DEED 35 D.DI EL	LOOFI	JZ DER XCHG CALL	M LDHL	ZERO 11MF TO ROW 4 ROUTINE DELREMENT 2020 ROW 4 JOINT HEL TO NEW CURSOR LOCA AND DEF TO 8080 ROW 4 JUME
13 HZ5A 5R 14 HZ5B 1A 15 HZ5C C620 26 HZ5E 47		MOV LDAX AD1 MOV	E. A 50 H.20 H. A A, E	I KOJNY H L TØ CKYC F\$KAT KOW	- I	1012 FD820 1015 L0980 1010 FEUG	URTUI	MUA CEI	ADDOH A.M	TO ADD CHARACTER ROUTINE AUT FIRST NOW W INTO ACC TEST IF FIRST ROW W IS = TO
7 1125F 78 18 1036H 663H 19 10262 5F 10 10263 1A		AD1 MOV LDAX	HENA D		522 521 524	0.0E 0.5 0.0E 0.5	LOOFS	JZ DCR MVI	FRC4E M L LASTRIW	ZERÛ IF TRUE JUMP TÛ ROM 49 RUUTINE
P1 0264 6F P2 0265 1602 P3 0267 D240 P4 0269 D1 P5 0268 E1		MOV MVI OUT POF POF	L, A M 10012 1040 B H	STORE TOE OF FAGE	527	0.11 7E 0012 FENO 0014 CA2A0 0317 05	2	MÖV CF 1 JZ DCR	A. M 1807 USQ4∂ M	
96 U26E FI 97 U26C FE		POR E I	FEW	AESTORE ACC AND FLAGS RETURN	530	0016 2E61 001A 7E	L00F3	MOV	(Rowauen A.M	.FUINT H-L TO SUBO ROW # AND LOAD TO ACC

534	0.31F	3E2F	RD48	MVI	A. 02F M. A	CHANGE 8080 ROW #
	0320		110.10	MOV	M. A	TD 23D AND STORE
		C30103		JMP	L00P1	JUMP TO POINTER EXCHANGE ROU
537						
		3E2F	FR048	MVI	A. n2F	
	0326				H. A	
	0327	C30F03		JMF	L00F2	
541					. 1	
	072C		LR048	MVI MOV		PUT THE 1ST ROW TO
		C11802		JMF	M.A LOOP?	JUMP TO 8080 ROW # STORE
545	0320	Cilebs		Cirile	LOOP :	SUMP TO BOSH ROW # STURE
546				CLEAR	ROW ROUTINE	
547				, 022	NOW NOOTINE	
548	n33u	CD3603	CLROW	CALL	CLROW1	
	0333	C36E02		JMF	CR	
550						
			CLRO₩1		E, ROMBOBO	
		CD8202				PUT ROW DATA IN H-L REG
		3E50		MVI	A. 050	INTILIZE LOOP COUNTER
	033F	36.20	LOOP4	MV1 DEP		STORE ASC11 SFACE IN MEM
	0340			RZ	н	DECREMENT LOOF COUNTER RETURN IF ZERO BIT IS SET
	0341			INX	н	NEXT LOCATION
		C33B03			LOOP4	CLEAR NEXT LOCATION
559						
		D301	BELL	001	001	RING BELL
	Q347	Co		RET		
5¢2						
563	0348	AF	1 VERTN		Α	
	0349 034B	1E68		HV]	E. IMAS) D	POINT B.E TO MASK
	0340			RAL	b	.CK EIT 8 STATUS
		DAS203		JC	RESET	.UF LIT 8 STATUS
		3E80		MVI	A, 080	INVERT BIT \$
569	0352	12	RESET	STAX	D	STORE OUT NEW MASK
570	0353	(0		RE*		TOTAL DOT HER THOP
571						
572	0354	E5	1 VERTE	PU ^c H	H	
573	0.055	1E61		MU:	E ROWSOSO	
		CD8202		CALL	LDHL	LOAD 15T ADD OF SUBHROW TO
		1E50		MV:	E 050	BET COUNTER
5/6	0350	15	LOUPE	MOV RAL	A. M	GET CHAR GE BIT & STATUS AND INVERT
578	0325	DAZOUG		HAL JC	RESET1	TER BUT E STATUS AND INVERT
	0361			RAR	116.00.14	
580	0542	EASO		CIC 1	080	.MASE DIT 3 HIGH
581	0364	77	BACL 2	MOV	M. A	STORE MOD CHAS TO MEM
	0365			1NX	H	FOINT TO NEXT MEM
	0366			MOV	AE	
		FEOG		CPI	001	
	0360	CA76 IC		DZ DC6	DONE E	REDIRN IF COUNT - ZERO
		0.25001		JME	LOOP6	DEC CONTER
588		c.sem.		20.00	Loor e	
589	0370	18	RESET1	RAF		
590	0371	E67F		ANI	0.7F	RESET EIT "
591	0272	036403		IME	DAO E	
592						
	00.76		DONE	POF	н	
	0377			RET		
595		ound		END	TART	

A	0007	ACELD	011C	ADCUR	0161	ADDCH	0298
В	0000	P110	0004	81200	00EC	B150	OODA
B1800	0HF2	B2000	00F8	B2400	OOFE	B300	COEC
B3600	0104	84800	010A	B600	00E6	B7200	0110
89600	0116	BACK	0083	BACKI	02FB	BACK 2	0364
BAUD	0090	BELL.	0345	BS	02E0	c	0001
CHARNU	0063	CLRAM	0042	CLRAMI	004C	CLROW	0330
CLROW1	0236	CLROW2	033B	CLRDW3	0104	£R.	026€
CRYCRO	0064	Ð	0002	DONE	0376	E	0003
FIRSTR	0062	FR048	0324	FUNC	0170	н	0004
HMCUR	0087	HOME	02A4	1MASK	8900	INCRO	01E
INIT	003B	INTACE	014A	1NTKB	0136	IVERTN	
1 VERTR	0354	L	0005	LASTRO		LDHL	0282
LDHL1	0283	LF	0280	LOOP	0244	LDOF1	0301
L00P2	030F	LOOF 3	0318	LCOP4	033D	LCOP5	OICE
L00P6	0.350	LE048	032A	м	9000	NEWRO	0225
NRS	0061	NXRO	01BE	NXRO1	01 DC	PCUR	01B;
PSW	0006	RESET	0352	RESET1	D370	RO48	0316
ROLO	0200	R0W808	0061	ROWSAV	0065	ROZERO	0107
SAVRO	027B	SCROLL	0205	SP	9000	START	0000
SWAP	0.2B5	TEMP1	0066 *	TEMP2	0067 *	UPCUR	02F1
UPRDW	02EE	UFSCL	0308	VERT1	U24F	ZCHAR	01F3
ZCRTC	U24A	ZERO	021E	ZLRO	n219	ZROW	OIFE

DEFINITIONS

ACE - Asynchronous communication element CRTC - Cathode ray tube controller Video Page - Visible screen data Video RAM - Entire portion of RAM used only for display First Row # - Address for top row of video page Last Row # - Address for bottom row of video page CRTC Row # - Address for next row load 8080 Row # - Address for cursor row Character # - Character location in a row XXXH are hexidecimal numbers

REFERENCES

National Semiconductor Data Sheets:

DP8350 Series Programmable CRT Controllers INS8250 Asynchronous Communications Element DM8678 Bipolar Character Generator INS8080 Assembly and Reference Manuals

National Semiconductor Application Notes:

Simplify CRT Terminal Design with the DP8350, AN-198

DM8678 Bipolar Character Generator, AN-167

Data Bus and Differential Line Drivers and Receivers. AN-83

Transmission Line Characteristics, AN-108

Hardware Reference Manual BLC 80/10 Board Level Computer. National Semiconductor Microcomputer Systems Chapter 6 - System Interfacing.

Section 11
Appendices/
Physical Dimensions

11

Understanding Rel Flows

National Semiconductor

MIL-STD-883

Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and MIL-STD-202C for transistors and diodes at about the time that National Semiconductor Corporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MIL-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's quality control procedures almost from the start. Qur Quality Assurance Procedures Manual is available upon request.

We offer a complete line of 883 (Class B) products as standard, off-the-shelf items. Special 883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 program. In addition, we will test any of our integrated circuits to any class of MIL-STD-883.

MIL-M-38510

MIL-M-38510 specifies the general requirements for supplying microcircuits. These are, product assurance, which includes screening and quality conformance inspection; design and construction; marking, and workmanship. The screening and quality conformance inspection are conducted in accordance with MIL-STD-883.

Screening

All microcircuits delivered in accordance with MIL-M-38510 must have been subjected to, and passed all the screening tests defailed in Method 5004 of MIL-STD-883 for the type of microcircuit and product assurance level.

The device electrical and package requirements of MIL-M-38510 are detailed by a device specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD 883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate.

The MIL-M-38510 specs for standard devices require 100% DC testing at 25°C, -55°C and +125°C AC testing is performed at +25°C. The electrical parameters specified are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely matched maintensive documentation and closely matched maintensive.

MIL-STD-883/MIL-M-38510

Quality Conformance

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL-STD-883. These tests are conducted on a sample basis with Group A performed on each sublot, Group B on each lot, and Group C as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must qualify the devices he plans to supply to the detail specifications. Qualification consists of notifying the qualifying activity of one's intent to qualify to MIL-M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of the Group A, B, and C requirements of Method 5005 of MIL-STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A, 8, and C inspections then shall be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a 100% basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL-M-38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MTL-M-38510 specifications

The A+ Program from National

A+ Program: a comprehensive program that utilizes National's experience gained from participation in the many Military/Aerospace programs.

A program that not only assures high quality but also increases the reliability of molded integrated circuits.

The A+ program is intended for users who cannot perform incoming inspection of IC's or does not wish to do so, yet needs significantly better than usual incoming quality and higher reliability levels for his standard integrated circuit.

Users who specify A+ processed parts will find that the program

- Eliminates incoming electrical inspection.
- Eliminates the need for, and thus the added cost, of independent testing laboratories
- Reduces the cost of reworking assembly boards
- Reduces field failures
- Reduces equipment down-time
- Reduces the need for excess inventories due to yield loss incurred as a result of processing performed at independent testing laboratories

The A+ Program Saves You Money

It is a widely accepted fact that down-time of equipment is costly not only in lost hours of machine usage—but also costly in the reapir and maintenance cycle. One of the added advantages of the A+ program is the burn-in screen, which is one of the most effective screening procedures in the semiconductor industry. Failure rates as a result of the burn-in can be decreased many times. The objective of burn-in is to stress the device much higher than would be stressed during normal usage.

Reliability vs Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliability and quality are different, and IC users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for products improvement

that are generally available, and National's A+ program in particular.

The concept of quality gives us information about the population and faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty IC's that escape detection at the IC vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty IC's that escape detection. Quality Control does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level (AQL) in turn determines the stringency of the sampling. As the AQL decreases it becomes more difficult for defective parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.

Thus, the difference between quality and reliability means the IC's of high quality may, in fact, be of low reliability, while those of low quality may be of high reliability.

Improving the Reliability of Shipped Parts

The most important factor that affects a part's reliability is its construction: the materials used and the method by which they are assembled.

Reliability cannot be tested into a part. Still, there are tests and procedures that an IC vendor can implement which will subject the IC to stresses in excess of those that it will endure in actual use, and which will eliminate marginal, short-life parts.

In any test of reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time of failure of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

AQL

0.14%

0.28%

0.25%

1%

High Temperature (100°C) Functional Electrical National's A+ Program **Test** – A high temperature test with voltages applied places the die under the most severe stress National has combined the successful B+ program with possible. The test is actually performed at 100°C the Military/Aerospace processing specifications and provides 30°C higher than the commercial ambient limit. the A+ program as the best practical approach to maximum All devices are thoroughly exercised at the 100°C quality and reliability on molded devices. The following ambient. flow chart shows how we do it step by step. DC Functional and Parametric Tests - These SEM - Randomly selected wafers are taken from production regularly and subjected to SEM analysis. room-temperature functional and parametric tests are the normal, final tests through which all National products pass. Tighter-Than-Normal QC Inspection Plans -Epoxy B Seal -- At National, all molded semi-Most vendors sample inspect outgoing parts to a conductors, including IC's, have been built by 0.65% AQL. Some even use a looser 1% AQL. this process for some time now. All processing When you specify the A+ program, however, steps, inspections and QC monitoring are designed to provide highly reliable products. (A not only do we sample your parts to a 0.28% AQL for all data sheet DC parameters. reliability report is available that gives, in detail, but they receive 0.14% AQL for functionality the background of Epoxy B. the reason for its as well. Now functional failures - not parameter selection at National and reliability data that shifts beyond spec - cause most system failures. proves its success.) Thus, the five-times to seven-times tightening of the sampling procedure (from 0.65% to 0.14% AOL) gives a substantially higher quality to Six Hour, 150°C Bake - This stress places the your A+ parts. And you can rely on the intedie bond and all wire bonds into a combined grity of your received IC's without incoming tensile and shear stress mode, and helps eliminate tests at your facility. marginal bonds and electrical connections. Ship Parts Five Temperature Cycles (0°C to 100°C) -Exercising the circuits over 100°C temperature Here are the AC sampling plans used in our A+ test program. range further stresses the bonds and generally eliminated any marginal bonds missed during TEST **TEMPERATURE** the bake. 25°C Electrical Functionality 25°C Parametric, DC Electrical Testing - Every device will be tested Major Mechanical 25°C at 25°C for functional and DC parameters. Minor Mechanical 25°C

Burn-In Test - Devices are stressed at maximum

devices. Test is performed per MIL-STD-883A,

operating conditions to eliminate marginal

method 1015.1.

Okay - Want More Information?

Simple. Just contact your local National Field Sales Office They'll be happy to help you. As always.

The B+ Program from National

B+ Program: a comprehensive program that assures high quality and high reliability of molded, integrated circuits.

The B+ program improves both the quality and the reliability of National's linear integrated circuits in Epoxy B packages. It is intended for the manufacturing user who cannot perform incoming inspection of discrete components, or does not wish to do so, yet needs significantly-better-than usual incoming quality and reliability levels for his parts.

Integrated circuit users who specify B+ processed parts will find that the program

- Eliminates incoming electrical inspection
- Eliminates the need for, and thus the cost of, independent testing laboratories
- Reduces the cost of reworking assembled boards
- Reduces field failures
- Reduces equipment downtime

Reliability Saves You Money

With the increased component density in modern electronic products has come an increased concern with component failures in such products.

And rightly so, for at least two major reasons. First of all, the effect of component reliability on product reliability can be quite dramatic. For example, suppose that you, as a product manufacturer, were to choose an IC component that is 99 percent reliable. You would find that if your product used only 70 such components, the overall reliability of the product's IC component portion would be only 50 percent. In other words, only one product in two would operate. The result? Products very costly to build and probably very difficult to sell.

Secondly, you cannot afford to be hounded by the spectre of unnecessary maintenance costs. Not only because labor, repair and rework costs have risen—and promise to continue to rise—but also because field replacement may be prohibitively expensive.

If you ship a product that contains a marginallyperforming component, a component that later fails in the field, the cost of replacement may be literally—hundreds of times more than the cost of the failed component itself.

Reliability vis-a-vis Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted

identical facets of a product's merit. But reliability and quality are different, and discrete component users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for product improvement that are generally available, and National's B+ program in particular.

The concept of quality gives us information about the population of faulty components among good components, and generally relates to the number of faulty components that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty components that escape detection at the component vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty components that escape detection. QC does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level (AQL) in turn determines the stringency of the sampling. As the AQL decreases it becomes more difficult for bad parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.

Thus, the difference between quality and reliability means that discrete components of high quality may, in fact, be of low reliability, while those of low quality may be of high reliability.

Improving the Reliability of Shipped Parts

The most important factor that affects a component's reliability is its construction: the materials used and the method by which they are assembled.

Now, it's true that reliability cannot be tested into a part. Still, there are tests and procedures that a component vendor can implement, which will subject the component to stresses in excess of those that it will endure in actual use, and which will eliminate most marginal, short-life parts.

In any test for reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time to failure of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

Quality Improvement

When a discrete component vendor specifies 100 percent final testing of his parts then, in theory, every shipped part should be a good part. However, in any population of mass-produced items there does exist some small percentage of defective parts.

One of the best ways to reduce the number of such faulty parts is simply to retest the parts prior to shipment. Thus, if there is a one-percent chance that a bad part will escape detection initially, retesting the parts reduces that probability to only 0.01 percent. (A comparable tightening of the QC group's sampled test plan ensures the maintenance of the improved quality level.)

National's B+ Program Gets It All Together

We've stated that the B+ program improves both the quality and reliability of National's epoxy-packaged discrete transistors, and pointed out the difference between the two concepts. Now, how do we bring them together? The answer is in B+ program processing, which is a continuum of stress and double testing. With the exception of the final QC inspection, which is sampled, all steps of the B+ process are performed on 100 percent of the program parts. The following flow chart shows how we do it, step by step.

Epoxy B Processing for All Molded Parts-At National, all molded semiconductors have been built by this process for some time now. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. (A reliability report is available that gives, in detail. the background of Epoxy B. the reason for its selection at National and reliability data that proves its success.) Six Hour, 150°C Bake-This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections. Five Thermal Shock Cycles (0°C to 100°C)-Exercising the transistors over a 100°C temperature range further stresses the bonds and generally eliminates any marginal bonds missed during the bake. High Temperature (100°C) Functional Electrical Test - A high-temperature test such as this with voltages applied places the die under the most severe stress possible. The test is actually performed

at 100°C; that's 30°C higher than the

commercial ambient limit. All devices

are thoroughly exercised at the 100°C ambient. (Even though Epoxy B processing has virtually eliminated thermal intermittents, we perform this test to ensure against even the remote possibility of such a problem. Remember, the emphasis in the B+ program is on the elimination of those marginally performing devices that would otherwise lower field reliability of the parts.)

DC Functional and Parametric Tests— These room-temperature functional and parametric tests are the normal, final tests through which all National products pass.

Tighter Than-Normal QC Inspection Plans-Most vendors sample inspect outgoing parts to a 0.65% AQL. Some use even a looser 1% AQL. When you specify the B+ program, however, not only do we sample your parts to a 0.28% AOL for all data-sheet dc parameters, but they receive a 0.14% AQL for functionality as well. Now, functional failures - not parameter shifts beyond spec-cause most product failures. Thus the five-times to seven-times tightening of the sampling procedure (from 0.65-1% to 0.14% AQL) gives a substantially higher quality to your B+ parts you can relay on the integrity of your received transistors without incoming tests at your facility.

Here are the QC sampling plans used in our B+ test program.

TEST	TEMPERATURE	AQL
Electrical Functionality	25°C	0.14%
Parametric, dc	25°C	0.28%
Parametric, de	(100°C)	1%
Parametric, ac	25°C	1%
Major Mechanical		0.25%
Minor Mechanical		1%

Okay-Want More Information?

Ship Parts

Simple. Just contact your local National Field Sales office. They'll be happy to help you.

As always.

883/RETS Program

The National Semiconductor 883/RETS Program was conceived with the intent of offering our customers a standardized, off-the-shelf, integrated circuit fully compliant to MIL-STD-883.

The following specification outlines the program qualification, quality conformance and processing requirements. Records and data substantiating the testing as specified herein are controlled and administered by the National Semiconductor Quality Assurance and Reliability groups and are available for review.

As a complement to this program, the National Quality system is designed to encompass the requirements of MIL-Q-9858 and associated documents.

J. Edward Thompson, Director Quality Assurance and Reliability National Semiconductor Corporation

1.0 Scope

1.1 Purpose

This specification establishes the requirements for screening and processing of integrated circuits in accordance with MIL-STD-883, Class B or C.

12 Intent

This program is intended to provide the user with the ability to procure standardized, off-the-shelf integrated circuits manufactured by National Semiconductor Corporation that are fully compliant to MIL-STD-883.

2.0 Applicable Documents

The following specifications and standards, of the Issue in effect on the date of invitation for bids or request for proposal, form a part of this specification to the extent specified herein.

2.1 Specifications

Military	
M1L-M-55565	Microcircuits, Packaging of
MIL-M-38510	General Specification for Micro
MIL-C-45662 MIL-Q-9858	Calibration System Requirements Quality System Requirements

2.2 Standards

Military	
MIL-STD-105	Sampling Procedures and Tables
MIL-STD-883	Test Methods and Procedures for
	Microelectronics

2.3 Detail Specifications

The detail specification for a particular device is the manufacturer's RETS (Rel Electrical Test Spec. see Figure 2).

3.0 General Requirements

The individual requirements shall be as specified herein and in accordance with the applicable detail specification. The static and dynamic electrical performance requirements of the integrated circuits and electrical test methods shall be as specified in the detail specification.

3.1 Process Conditioning, Testing, Reliability and Quality Assurance Screening

Two levels of reliability and quality assurance for integrated circuits are provided for in this specification. Process conditioning, screening and testing shall be as specified in Section 4.0.

MIL-STD-883 Q.A. Process Level	Applicable Process Flow Chart	Suffix Level Indicator
В	Figure 1a	/8838
С	Figure 1b	/883C

3.1.1 Qualification

The devices furnished under this specification shall be products which have been produced and tested and have passed the qualification tests specified herein. Successful qualification for a given level results in qualification approval for that level and all lower product assurance levels of that device (reference appendix E Miller-M-38510C).

3.1.2 Alternate Qualification

In lieu of meeting the requirements of 3.1.1, the manufacturer may establish qualification by performing an initial, one time qualification test. Qualification testing shall be performed on each generic family supplied. Upon successful completion of the qualification program, the manufacturer shall remain qualified for a period not to exceed 12 months.

3.2 Quality Conformance Inspection

Devices furnished under this specification shall be products which have been produced and tested in conformance with all the provisions of this specification for the applicable level. Devices which have been accepted as conforming to a given product assurance level may be furnished as conforming to any other level for which they meet or exceed the quality conformance requirements.

3.3 Marking

3.3.1 Marking on Each Device

The following marking shall be placed on each integrated circuit:

- a) Index point (see 3.3.4)
- b) Part number (see 3.3.5)
- c) Product assurance level (see 3.3.6)
- d) Inspection lot identification code (see 3.3.8)
- e) Manufacturer's Identification (see 3.3.9)

3.3.2 Marking on Initial Container

All of the marking specified in 3.3.1, except the index point, shall appear on the initial protection or wrapping for delivery.

3.3.3 Marking Permanence

Marking shall be permanent in nature and remain legible after testing. Damage to marking caused by mechanical fixturing in Group B and C tests shall not be cause for lot rejection.

FIGURE 1. MIL-STD-883 Screening

PARAMETER	SYMBOL	SNOILIGNOO	TEST NO			Box/Tape: 1 and RD5	Box/Tape: Teradyne J 283 and RD5492AXXA			DRIFT	UNITS
				MIN +	+25 MAX	MIN +1	+125 MAX	MIN	55' MAX	25 C	
Logical "1" Output Voltage	^Он	$V_{CC} = 4.5 \text{ V. } \text{ I}_{OUT} = 800 \mu \text{A. V}_{IH} = 2 \text{V. V}_{IL} = 0$ (4)	23, 31 37, 45	2.4		2.4		24			>
Logical "0" Output Voltage	VOL 1	$V_{CC} = 45V, I_{OUT}$ 16 mA, $V_{IH} = 2V, V_{IL} = 0$ (4)	26, 34, 42, 50		0.4		0.4		0.4		>
	VOL 2	- 45V, IOUT - 0 mA, VIH 3V, VIL - 0	30, 36, 44, 52		0.4		0.4		0,4		>
Logical "1" Input Current	1 _H 1	5.5V, V _{1N} = 2.4V, All Other Inputs at 0 (Reset)	53, 57		40		40		40		ď,
		V _{CC} 55V, V _{IN} = 24V, V _{IH} 3V, V _{IL} 0 (A Input) (1)	63		80		80		80		4 <
			54 60 64 71				2 +		- 5		¥ E
Logical "U Input Current	Ē	55v, VIN = 04v, Omer Inputs at 3V (Reset)	55, 61		9,		31		9;		e,
			. 65		3.2		3.2		3.2		ΑH
		(B Input) [1]	72		2.9		2.9		2.9		ωĄ
Input Clamp Voltage	VIC	V _{CC} 4.5V, I _{IN} 12 mA, V _{IH} = 3V, V _{IL} (4)	56, 62, 66, 73		1.5		15		1.5		>
Short Circuit Current	so,	VCC 55V VOUT OV VIH 3V, VIL OV	24, 25 37 33	0,	7.	06	ž	5			8
	-	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	23.26.43.61	2 =	3	<u> </u>	3	ñ	;		4
Output Sink Current	SINK	45V VOUT = 0 /V, VIH 3V, VIL = 0V	16 54 65 17	2		<u>-</u>		2			
Power Supply Current	20,	VCC 55V, All Inputs at 0 When measuring reset input all inputs are 0, otherwise V ₁₊₁ Reset)	7.5		39	_			£		E F
		The following parameters are measured indirectly (go in go									
		Ajud									
Logical "1" Input Voltage	±I>	V _{CC} 45V		2		2		2			>
Logical "1" Output Current	НОІ				800		800		800		Αщ
Loyical "0" Output Current	101				91		16		16		μĄ
		The following parameters are guranteed but may be read and recorded at extra cost									
Propagation Delay Time		V _{CC} 5V, H _L 400 C _L - 15 pF									
A to O.A	tpd1			5 %	9 2						S 5
A to QD	Dad, Lbd			48	- 84						so
	Opd ₁			93	ş						£
B to OB	tpd1			·e ;	9						ē
70 ot 8	tpd0			7 91	21						ž č
	t pd0			12	77					_	SU
B to QO	t _{pd} 1			32	32						SO.
	0pd)			£ \$	32						Su I
Set to U - to Any	0pd ₁			0.5	04						6
		The following parameters are quaranteed incougn other testing									
Max Clock Frequency	[†] MAX	A to QA A to QB		32							MH ₂
Puise Width	waj	A Input		15							su
		B Input Reset		15							s s
Setup Time	tSETUP			25							SU
Logical "0" Input Voltage	VIL				90		c	_	-		>

FIGURE 2. RETS5492A (DM5492A Basic Device)

3.3.4 Index Point

The index point indicating the starting point for numbering of leads and/or mechanical orientation of the integrated circuit may be a tab, color dot, or other suitable indicator.

3.3.5 Part Number

The part number shall be the manufacturer's generic part number.

3.3.6 Product Assurance Level

Integrated circuits shall be marked with a code indicating the product assurance level to which they have been tested and found to conform. The code shall consist of /883 followed by the letter B or C corresponding to the applicable product assurance level designation.

3.3.7 Formation of Lots

Microcircuits shall be assembled into inspection lots as required to meet the product assurance inspection and test requirements of this specification. An inspection sublot shall consist of microcircuits of a single type contained on a single detail specification, manufactured on the same production line(s) through final seal by the same product techniques, and to the same device design rules and package with the same material requirements, and within the same period not exceeding 6 weeks.

3.3.8 Inspection Lot Identification Code

Integrated circuits shall be marked by a 4-digit date code indicating the date the lot was submitted for inspection. The first 2 numbers in the code shall be the last 2 digits of the number of the year. The third and fourth numbers shall be 2 digits indicating the calendar week of the year. When the number of the week is a single digit, it shall be preceded by a zero. Reading from left to right, the code number shall designate year, year, week, week.

3.3.9 Manufacturer's Identification

Integrated circuits shall be marked with the name, logo, or trademark of the manufacturer.

4.0 Conditions and Methods of Test

Conditions and methods of test shall be in accordance with Method 5004 of MIL-STD-883 and as specified herein on a 100% basis. The general requirements of MIL-STD-883 apply as applicable. This section establishes the stress screening tests and quality conformance inspection tests for this program. The purpose of these tests is to assure the quality and reliability of the product to a particular process level commensurate with the product's intended application.

4.1 Internal Visual Inspection (Precap)

Internal visual inspection shall be performed per MIL-STD-883, Method 2010, Condition B. Hybrid internal visual shall be performed per Method 2017.

4.2 Stabilization Bake

Stabilization bake shall be performed per MIL-STD-883, Method 1008, Condition C. The devices shall be stored for 24 hours minimum at 150°C minimum. No end point measurements shall be performed.

4.3 Temperature Cycling

Temperature cycling shall be performed per MIL-STD-883, Method 1010, Condition C, 10 cycles, from -65° C to $+150^{\circ}$ C.

4.4 Constant Acceleration

Constant acceleration shall be performed per MIL-STD-883, Method 2001. Condition E, at 30,000 G's, in Y1 plane only.

4.5 Hermeticity

Hermeticity tests shall be performed per the following to determine the seal integrity of the package.

Fine Leak Testing

Fine leak testing shall be performed per MIL-STD-883, Method 1014, Condition B. The criterion for rejection will be in accordance with MIL-STD-883.

Gross Leak Testing

Gross leak testing shall be performed per MIL-STD-883, Method 1014, Condition C. The rejection criterion will be per MIL-STD-883.

4.6 Interim Electrical Parameters

Interim electrical parameters shall be the 25°C DC parameters, specified in the detail specification (RETS). (Interim electrical parameters are performed at the manufacturer's option.)

4.7 Burn-In

Burn-in shall be performed per MIL-STD-833, Method 1015; Conditions A, B, C or D on all Class B devices. (Burn-in condition varies with product type.)

The ambient temperature shall be 125°C.

4.8 Final Electrical Parameters

Final electrical parameters shall be as specified in the applicable detail specification (RETS). DC testing shall be performed at 25°C, -55°C, 125°C. AC testing shall be performed at 25°C. The PDA (Percent Defective Allowable) shall be 10% maximum and shall only apply to DC measurements at 25°C.

4.9 External Visual Inspection

All National Semiconductor products regardless of class shall receive external visual inspection per MIL-STD-883, Method 2009.

5.0 Quality Assurance Provisions

5.1 Quality Conformance Inspection

Quality conformance inspection shall be in accordance with Tables I, II, III and IV. Inspection lot sampling shall be in accordance with Method 5005 of MIL-STD-883. Inspection lots failing to meet quality conformance inspection for a given product assurance level shall be rejected.

5.1.1 Group A Inspection

Group A inspection shall consist of the electrical parameters in the RETS (Rel Electrical Test Spec). If an inspection lot is made up of a collection of sublots, each sublot shall be subjected to Group A, as specified, (see Table I).

5.1.2 Group B Inspection

Group B inspection consists of construction testing. This sample test sequence includes physical dimensions,

resistance to solvents, internal visual and mechanical, bond strength and solderability (see Table II). The Group B qualifies the inspection sublot the sample is pulled from. It also qualifies all generically similar devices if the date code is within 6 weeks of the sample date code.

5.1.3 Group C Inspection

Group C inspection consists of die stress testing. This sample test sequence includes operating life, temperature cycling, constant acceleration, hermeticity, visual examination and end point electricals (see Table III). A Group C qualifies the lot the sample is pulled from and all generically similar die types for a period of 90 days.

5.1.4 Group D Inspection

Group D testing further stresses the package and the die. The Group D tests include physical dimensions, lead integrity, hermeticity, thermal shock, temperature cycling, moisture resistance, mechanical shock, vibration variable frequency, constant acceleration, salt atmosphere, visual examination, and end point electricals (see Table IV). A Group D qualifies the lot the sample is pulled from and all devices built in the same package for a period of 6 months.

TABLE I. GROUP A ELECTRICAL TEST

SUBGROUPS	CLASS B LTPD	CLASS C LTPD
Subgroup 1		
Static tests at 25°C	5	5
Subgroup 2		
Static tests at maximum rated	7	10
operating temperature		
Subgroup 3		
Static tests at minimum rated	7	10
operating temperature		
Subgroup 4		
Dynamic tests at 25°C	5	5
Subgroup 5		
Dynamic tests at maximum rated	7	10
operating temperature		
Subgroup 6		
Dynamic tests at minimum rated	7	10
operating temperature		
Subgroup 7		
Functional tests at 25°C	5	5
Subgroup 8		
Functional tests at maximum and	10	15
minimum rated operating]]
temperature		
Subgroup 9		
Switching tests at 25°C	7	10

TABLE II. GROUP BINSPECTION

TEST	METHOD	CONDITIONS	NSC CLASS B AND C
Subgroup 1			
Physical dimension	2016		2 devices
			(No failures)
Subgroup 2			
a) Resistance to solvents	2015		3 devices
			(No failures)
b) Visual and mechanical	2014	Failure criteria from design	1 device
		& construction requirements	(No failures)
		of applicable procurement	
		document	
c) Bond strength	2011	Test condition C or D	15 Bonds
			(10 units min
			No failures)
Subgroup 3			
Solderability	2003	Soldering temperature of	15 leads
		260 ±10°C	(3 units min
			No failures)

TABLE III. GROUP C INSPECTION

TEST	METHOD	CONDITIONS	NSC CLASS B AND C LTPD
Subgroup 1			
Operating Life Test	1005	Test conditions to be specified 1000 hours	5
Subgroup 2			
Temperature cycling	1010	Test condition C	15
Constant acce eration	2001	Test condition E, Y1 axis followed by X or Z	
Seal Fine Gross	1014	As applicable	
Visual examination	1010		
End point electrical		As specified in applicable	
parameters		device specification	

TABLE IV. GROUP D INSPECTION

TEST	METHOD	CONDITIONS	NSC CLASS B AND C LTPD
Subgroup 1			
Physical dimensions	2016		15
Subgroup 2			
Lead integrity	2004	Test conditions B2 (lead	15
		fatigue)	
Seal	1014	As applicable	
Fine			
Gross			
Subgroup 3			
Thermal shock	1011	Test condition B — 15 cycles	15
Temperature cycling	1010	Test condition C – 100 cycles	
Moisture resistance	1004		
Seal	1014	As applicable	
Fine			
Gross			
Visual examination	1010		
End point electrical		As specified in the applicable	
parameters		device specification	
Subgroup 4			
Mechanical shock	2002	Test condition B	15
Vibration variable freq.	2007	Test condition A	
Constant acceleration	2001	Test condition E	
Seal	1014	As applicable	
Fine	1		
Gross			
Visual examination	2007		
End point electrical		As specified in the applicable	
parameters		device specification	
Subgroup 5			
Salt atmosphere	1009	Test condition A	15
Visual examination	1009	Paragraph 3.3.1 of Method 1009	

883 PROCESS FLOW

TEST	MIL-STD-883 METHOD	TTL, LS, LOW POWER CMOS, LINEAR, MOS/LSI, MEMORY	HYBRID
Internal visual	2010, Cond. B	100%	100% (Method 2017)
Bake	1008, Cond. C	100%	100%
Temperature cycling	1010, Cond. C	100%	100%
Constant acceleration	2001, Cond. E	100%	100%
Fine leak	1014, Cond. B	100%	100%
Gross leak	1014, Cond. C	100%	100%
Burn-in	1015, Cand. A, B, C or D	100%	100%
Electrical test Per the applicable		100% RETS	
Group A	detail specification	LTPD Samp	le (RETS)
External visual	2009	100%	100%

6.0 DATA

6.1 Certificate of Conformance

All 883/RETS material shipped shall be accompanied by a Certificate of Conformance as shown on the opposite page.

6.2 Attributes Data

Attributes data for 100% screening will not normally be provided, but shall be retained on file. Copies are available at nominal cost.

6.3 Quality Conformance Data

Quality conformance data will not normally be provided, but shall be retained on file. Copies are available at nominal cost.

National Semiconductor Corporation

883/RETS* PROGRAM CERTIFICATE OF CONFORMANCE

TEST	MIL-STD-883 METHOD**	REQUIREMENT
INTERNAL VISUAL	2010B	100%
STABILIZATION BAKE	1008 C 24 HRS @ +150°C	100%
TEMPERATURE CYCLING	1010 C 10 CYCLES -65°C/+150°C	100%
CONSTANT ACCELERATION	2001 E	100%
FINE LEAK	1014 B 5 x 10 ⁻⁸	100%
GROSS LEAK	1014 C2	100%
BURN-IN	1015 160 HRS @ +125°C	100%
FINAL ELECTRICAL PDA	+25°C DC PER NSC RETS 10% MAX ALLOWABLE	100%
	+125°C DC PER NSC RETS	100%
	-55°C DC PER NSC RETS	100%
	+25°C AC PER NSC RETS	100%
QA ACCEPTANCE	LTPD SAMPLE	
EXTERNAL VISUAL	2009	100%

^{*} RETS = REL ELECTRICAL TEST SPECIFICATION

THIS IS TO CERTIFY THAT ALL 883/RETS MATERIALS SUPPLIED TO YOUR PURCHASE ORDER COMPLY WITH ALL THE REQUIREMENTS, SPECIFICATIONS, AND DOCUMENTS PERTINENT TO THE NATIONAL 883/RETS PROGRAM. ALL TEST DATA AND CERTIFICATION IS ON FILE AT OUR FACILITY.

Part Number
P.O. Number
Date Code(s)
Lot Code(s)

QUALITY ASSURANCE REPRESENTATIVE

^{**} All METHODS TO CURRENT REVISION LEVELS

Thermal Ratings for IC's

MAXIMUM POWER DISSIPATION

To insure reliable long term operation of its Interface Integrated Circuits, National Semiconductor has specified maximum junction temperature $\{T_j\}$ limits. These limits are at 150°C for circuits packaged in a molded dual-in-line package (Epoxy B), and 175°C for all other package types.

Maximum power dissipation (PD) of an integrated circuit is limited by maximum allowable junction temperature of the silicone die, and thermal resistance (θ_{J-X}) of the package. Figure 1 illustrates the relationship between power dissipation and junction temperature.

The line indicating "Maximum Power Rating of Package" is projected from the maximum junction temperature limit (150°C in this example) at a slope corresponding to the package thermal resistance (1/ θ J $_{-}$ X). Below

this fine is the safe operating area of the device. Additional constraints are Maximum Power Dissipation and Maximum Operating Temperature (T_A). These parameters may be determined from device data sheets. For this example, $P_{D\{MAX\}}$ - 300 mW and $T_{A\{MAX\}} = 70^{\circ}C$.

Point "A" in Figure 1 is an operating point corresponding to TA $^\circ$ 50°C and PD $^\circ$ 100 mW. Determine device junction temperature by projecting a line from point "A", parallel to the Maximum Power Rating curve, until it intersects the horizontal axis. T_j is determined from the point of intersection with the horizontal axis. For this example, T_j is 45°C.

THERMAL INFORMATION

Figure 2 illustrates thermal resistance characteristics for Interface Integrated Circuit packages.

FIGURE 1. Power Dissipation vs Temperature

FIGURE 2. Maximum θ_{J-X} Values for IC Packages

Industry Package Cross Reference Guide

Semiconouclo	i								
	NSC	Signetics	Fairchild	Motorola	TI	RCA	Silicon General	AMD	Raytheon
14/16 Lead Glass/Metal DIP	D	ı	D	L		D	D	D	D, M
Glass/Metal Flat-Pack	F	a	F	F	F, S	к	F	F	J. F. Q
TO.99, TO.100, TO.5	Н	T, K, L, DB	Н	G	L	S*, V1**	Т	н	т,
8, 14 and 16-Lead Low-Temperature Ceramic DIP	J	F	R, D	U	J				DC, DD
TO 3	к	DA	к	кѕ	К		к		K LK, TK
8, 14 and 16-Lead Plastic DIP	N	V, A, B	T,	Р	P,	E	M, N	PC	N, DN, DP, MP

^{*}With dual-in-line formed leads

11-18

^{**}With radially formed leads.

	NSC	Signetics	Fairchild	Motorola	ΤI	RCA	Silicon General	AMD	Raytheon
TO-202 (D-40, Durawatt)	P				KD				
"SGS" Type Power DIP	S		ВР						
TO-220	т	U	U		кс				
Low Temperature Glass Hermetic Flat Pack	w		F	F	w			FM	
TO-92 (Plastic)	z	S	w	Р	LP				
	"SGS" Type Power DIP TO-220 Low Temperature Glass Hermetic Flat Pack	TO-202 (D-40, Durawatt) "SGS" Type Power DIP TO-220 T Low Temperature Glass Hermetic Flat Pack W TO-92	TO-202 (D-40, Durawatt) "SGS" Type Power DIP TO-220 T U Low Temperature Glass Hermetic Flat Pack TO-92 Z S	TO-202 (D-40, Durawatt) TO-202 (D-40, Durawatt) TO-220 TO-220 T U U F TO-92	TO-202 (D-40, Durawatt) "SGS" Type Power DIP TO-220 T U U Low Temperature Glass Hermetic Flat Pack TO-92	TO-202 (D-40, Durawatt) "SGS" Type Power DIP TO-220 T U U KC Low Temperature Glass Hermetic Flat Pack TO-92 Z S W P LP	TO-202 (D-40, Durawatt) "SGS" Type Power DIP S BP TO-220 T U KC Low Temperature Glass Hermetic Flat Pack TO-92 Z S W P IP	TO-202 (D-40, Durawatt) TO-202 (D-40, Durawatt) TO-220 TO-2	NSC Signetics Fairchild Motorola TI RCA General AMD TO.202 (D-40, Durawatt) P S BP TO.220 T U U KC F F W FM TO.92

Definition of Terms

interface circuits

Common Mode Voltage: Arithmetic mean of voltages at the differential inputs referenced to ground pin at the receiver.

Common Mode Sensitivity: Rate of change of input differential voltage required to produce a given output level, against common mode voltage.

Supply Sensitivity: Rate of change of input dif-

ferential voltage required to produce a given output level, against power supply voltage (V Pin 14 – V Pin 7).

Disabled Output Clamp Current: The current which flows from the output of a disabled TRI-STATE gate when it is dragged below ground (for instance by a transmission-line-associated transient). It is derived from the V_{CC} power rail.

sense amplifiers

AC Common-Mode Input Firing Voltage: The peak level of a common-mode pulse which will exceed the input dynamic range and cause the logic output to switch. Pulse characteristics: $t_r = t_f < 15$ ns, PW = 50 ns.

Common-Mode Input Overload Recovery Time: The time necessary for the device to recover from a $\pm 2V$ common-mode pulse ($t_r = t_f = 20$ ns) prior to the strobe enable signal.

Differential Input Offset Current: The absolute difference in the two input bias currents of one differential input.

Differential Input Overload Recovery Time: The time necessary for the device to recover from a 2V differential pulse ($t_f = t_r = 20$ ns) prior to the strobe enable signal.

Differential Input Threshold Voltage: The DC input voltage which forces the logic output to the logic threshold voltage (\sim 1.5V) level.

Input Bias Current: The DC current which flows into each input pin with differential input of OV.

Supply Current: The total DC current per package drawn from the voltage supply.

Offset Voltage: Difference between the absolute values of threshold voltage in positive and negative-going directions.

Propagation Delay Time: Interval from switching input through 1.5V to output traversing its 50% voltage point. Measured with 50Ω load to +10V 15 pF total capacitance.

Ordering Information

Ordering information for National devices covered in this catalog is as follows:

DEVICE FAMILY

DM - Digital Monolithic

DP - Digital Product

DS - Digital Special

DEVICE NUMBER

3, 4 or 5 digit number.

Suffix Indicators:

A - Improved Electrical Specification

PACKAGE

D - Glass/Metal Dual-In-Line Package

F - Flat Package (0.25" wide)

G - TO-8 (12 lead) Metal Can

H - TO-5 (multi-lead) Metal Can

J - Glass/Glass Dual-In-Line Package

N - Molded Dual-In-Line Package

W - Flat Package (0.275" wide)

National's interface products use a 16/36 prefix. The 16 is used to denote the military temperature range (-55°C to +125°C) and the 36 denotes the commercial temperature range (0°C to +70°C), i.e. DS1630/DS3630. Display drivers and line drivers and receivers employ a 76/86 or a 78/88 prefix. The 76 or 78 applies to the military part, and the 86 or 88 to the commercial part, i.e. DS7830/DS8830. Some interface circuits and sense amplifiers employ a 55 as the first two digits for the military temperature range part, and a 75 for the commercial part, i.e. DS5520/DS7520. Digital products employ a 54 as the first two digits for the military temperature range part, and a 74 for the commercial part, i.e. DM5446/DM7446.

National Semiconductor

Physical Dimensions

All dimensions in inches (millimeters)

NS Package F10A 10-Lead Flat Package (F)

NS Package F14A 14-Lead Flat Package (F)

NS Package F16A 16-Lead Flat Package (F)

NS Package H06C 6-Lead TO-5 Metal Can Package (H)

NS Package H08C 8-Lead TO-5 Metal Can Package (H)

NS Package H10C 10-Lead TO-5 Metal Can Package (H) (Low Profile)

National Semiconductor Corporation 2900 Semiconductor Drive Sante Clera, California 95051 Tef. (408) 737-5000 TWX (910) 339-9240

National Semiconductor GmbH

Elsenheimerstr. 61/2 8000 Munchen 21 West Germany Tel. {0.89} 57.80.91 Telex 5.22.772

Ferdinandsplatz 11 8380 Bad Homburg West Germeny Tel. (06172) 2 3011 Telex 415 887

Hohenheimer Str. 11 7022 Leinfelden-Stuttgart West Germany Tel. (07 II) 7510 57 Telex 7 255 746

Dockenhudener Str 29 2000 Hamburg 55 West Germany Tel. (040) 868457 Telex 2 11 039

NS Electronics Pty. Ltd. Cnr. Stud Rd. & Mtn. Highway Beysweter, Victoria 3153

Australia Tel. (03) 729-6333 Telex 32096

National Semiconductor 789 Ave. Houba de Strooper 1020 Bruxelles 8elgium Tel. (02) 4 78 34 00 Telex 61 007

NS Electronics Do Brasil Avde Brigedeiro Farie Lime 844 11 Ander Conjunto 1104 Jardim Paulistano Sao Paulo, Brasil Telex 1121008 Cabine Sao Paulo

National Semiconductor District Sales Office 345 Wilson Avenue, Suite 404 Downsview, Ontano M3H 5W1 Canede Tel. (418) 635-7280

National Semiconductor Ltd. Vodroffsvej 44 1900 Copenhagen V Tel. (01) 35 65 33 Telex 15 17 9

National Semiconductor France Expansion 10000 28, rue de le Redoute 92280 Fontenay-aux-Roses Tel. (01) 680 8140 Telex 250956

National Samiconductor (Hong Kong) Ltd. Cheung Kong Electronic 8ldg.

Cheung Kong Electrol 4 Hing Yip Street Kwan Tong Kowloon, Hong Kong Tel, 3-411241-8 Telex 73856 Ceble NATSEMI

National Semiconductor SRL Via Alberto Mario 28 20149 Milano

Italy Tel. (02) 469 28 64/4 69 24 31 Telex 39835

NS International Inc., Jepan

Miyake Building I-9 Yotsuya, Shinjuku-ku 180 Tokyo, Jepan Tel. (03) 355-3711 Telex 232-2015

National Semiconductor (Hong Kong) Ltd. Korea Lieison Office Rm. 897, 615 Seoul Bldg. 6,2 KA Huehyun-Dong Bidg. C. P. O. 80x 7941 Jung Ku, Seoul 100

Korea Tel. 28-4748 Telex K 28589 wyp

Mexicana da Electronica Industrial S.A. Tiecoquemecati No. 139-401 Esquine Adolfo Prieto Mexico 12, D.F. Tel. 575-78-68, 575-79-24

National Samiconductor (Pty.) Ltd. No. 1100 Lower Delta Road Singapore 3 Tel. 2700011 Telex 21402

National Semiconductor AB Algrytevegen 23 S-127 32 Skerholmen Sweden Tel. (08) 970835

Telex 10731

Netional Semiconductor (Taiwan) Ltd. Rm. B, 3rd Fl., Ching Lin 8ldg. No. 9, Ching Tao E. Road P. O. 8ox 68-332 or 39-1178 Taipei Tel. 3917324-6 Telex 22837 Ceble NSTW TAIPEI

National Semiconductor (UK) Ltd. 301 Harpur Centre, Horne Lene Bedford, MK 40 1TR United Kingdom Tel. (02 34) 4 7147 Telex 826 209