

1 of 6 REV: 032405

REVISION B4 ERRATA
The errata listed below describe situations where DS80C390 revision B4 components perform differently
than expected or differently than described in the data sheet. Dallas Semiconductor intends to correct
these errata in subsequent die revisions.

This errata sheet only applies to DS80C390 revision B4 components. Revision B4 components are
branded on the topside of the package with a six-digit code in the form yywwB4, where yy and ww are
two-digit numbers representing the year and workweek of manufacture, respectively. To obtain an errata
sheet on another DS80C390 die revision, visit the website at www.maxim-ic.com/errata.

1. CURRENT CONSUMPTION EXCEEDS SPECIFICATIONS

Description:
Current consumption can exceed the data sheet specifications. Listed below is the maximum current
consumption in various operating modes.

ICC at 40MHz: 160mA
IIDLE at 40MHz: 100mA
ISTOP: Due to specification variations, this parameter is not tested and is not recommended for critical

applications. Please contact the factory for more information.
ISPBG: Due to specification variations, this parameter is not tested and is not recommended for critical

applications. Please contact the factory for more information.

Work Around:
None

2. ITL EXCEEDS SPECIFICATIONS

Description:
ITL maximum can be as high as -700�A.

Work Around:
None

3. RRST EXCEEDS SPECIFICATIONS

Description:
RRST maximum can be as high as 300k�.

Work Around:
None

ERRATA SHEET

DS80C390
Dual CAN High-Speed Microprocessor

www.maxim-ic.com

http://www.maxim-ic.com/errata

DS80C390 REV B4 ERRATA SHEET

2 of 6

4. RESTRICTIONS ON ACALL OR LCALL INSTRUCTION IN 24-BIT CONTIGUOUS MODE

Description:
While operating in the 24-bit contiguous addressing mode, the execution of an ACALL or LCALL
instruction when the return address is located within 4 bytes of a 64kB address boundary can result in
incorrect data being pushed onto the stack.

Work Around:
Ensure that the return addresses are not located within 4 bytes of a 64kB page boundary.

5. INTERRUPT WHILE SETTING IDLE BIT CAN CORRUPT OPERATION

Description:
Device operation may be corrupted if an interrupt occurs during the execution of the instruction that
sets the idle bit (PCON.0). Interrupts that are enabled and acknowledged after the idle state has been
entered are handled normally and cause an exit from the idle state.

Work Around:
Software can be used to detect which interrupts are imminent and to put off entering the idle state
until the interrupt. The detection technique is specific to the type of interrupts that are used/enabled in
the application:

Serial Port: If a serial port interrupt is enabled, poll the least significant nibble of the Status (C5h)
SFR. If all 4 bits are clear, then no serial port transmit or receive operation is in progress and the idle
bit can be safely set. If any of the 4 bits are set, loop until clear.

Timer 0, 1, or 2: Read the timer value, and, if close to its rollover value, delay until the timer has
rolled over.

CAN0/1 and CAN Bus Activity Interrupts: Under certain circumstances it is possible to have CAN
interrupts enabled and use the idle feature at the same time. This can be accomplished by polling the
CAN bus active bits (CAN0BA and/or CAN1BA) to confirm if CAN activity, which might generate
an interrupt, is ongoing. If both bits are clear, then no CAN operation is in progress and the idle bit
can be safely set. Note that this scheme may not work in some networks because of the high rate of
CAN activity.

Watchdog Timer: Reset the watchdog timer before entering idle mode.

Power-Fail Interrupt: No work around. Do not use the power-fail interrupt if the idle mode is also
used.

External Interrupts: By their nature, external interrupts are asynchronous and very difficult to predict.
By careful examination of the application it is possible to find windows of time during which the idle
mode can be safely invoked without fear of an external interrupt occurring at the same time. In this
way, it may be possible to use external interrupts and the idle mode in the same application.

DS80C390 REV B4 ERRATA SHEET

3 of 6

6. INT0 AND INT1 PINS REQUIRE SYNCHRONIZED INPUT

Description:
The input pins of INT0 and INT1 can fail to detect transitions in edge mode if the transitions occur at
specific times during the sampling process. This situation does not occur with interrupt signals that
are synchronized to processor operation.

Work Around:
Qualify the input on the previously mentioned signals so that they do not transition during the
sampling window. This can be easily done by gating the input signal with a D-type flip-flop using the
falling edge of ALE as a clocking signal.

7. UPDATE OF CAN INTRQ, DTUP BITS BLOCKED BY SIMULTANEOUS SOFTWARE
WRITE

Description:
Under the following conditions, the INTRQ and DTUP bits for a message center can fail to be
updated by an incoming message:

1) An incoming message has been received in a message center,
2) The internal CAN hardware sets the INTRQ bit of that message center, and
3) Software simultaneously clears the INTRQ bit of any other message center in the same CAN

module.
There is no direct way to detect this condition because of the invisibility of the internal CAN
hardware operations and the asynchronous nature of CAN communications.

Work Around:
Although the INTRQ and DTUP bits are not set, CAN receive message-stored register (CxRMS0 and
CxRMS1) and the CAN transmit message-acknowledgment register (CxTMA0 and CxTMA1) bits
are still updated to show activity associated with the corresponding message center. After clearing any
INTRQ bit, interrogate the CxRMS0, CxRMS1, CxTMA0, and CxTMA1 registers. Indication of
activity in those registers points to either a missed setting of the INTRQ or new activity in another
message center. In either case, service the message centers as appropriate.

DS80C390 REV B4 ERRATA SHEET

4 of 6

8. UPDATE OF CAN MTRQ BIT BLOCKED BY SIMULTANEOUS SOFTWARE WRITE

Description:
Under the following conditions, the MTRQ bit for a message center can fail to be updated by the
CAN hardware. This can cause multiple transmissions of a message until the condition is cleared.

1) The internal CAN hardware attempts to modify the MTRQ bit of a particular message center,
either to signal that a message has been transmitted, or is transmitting in response to a remote
frame request.

2) Software simultaneously modifies the MTRQ bit of any other message center in the same CAN
module.

The effect of this condition depends on the use of the MTRQ bit:

1) If hardware attempted to clear the MTRQ bit to signal that a message has been successfully
transmitted, the MTRQ bit is not cleared. As a result, the message is resent until the condition
clears, at which time the MTRQ bit will be cleared.

2) If hardware attempted to set the MTRQ bit in response to a remote frame request, then the
remote frame request is received but the MTRQ bit is not automatically set.

There is no direct way to detect this condition because of the invisibility of the internal CAN
hardware operations and the asynchronous nature of CAN communications.

Work Around:
The work around depends on the use of the MTRQ bit:

1) The MTRQ bit is being used to signal that a message has been successfully transmitted:
Ensure that the system level software can tolerate multiple resends of the same message.
Alternatively, a polling routine can be used to wait until all MTRQ bits of all message centers
are 0. When all MTRQ bits of all message centers are 0, there is no pending CAN activity that
could simultaneously write to the MTRQ bit while software sets it to initiate a transmission.

2) The MTRQ bit is being used to in conjunction with a remote frame request:
As a result of this erratum, the automatic frame request reply feature cannot be supported. Use
the nonautomatic frame-request reply feature.

DS80C390 REV B4 ERRATA SHEET

5 of 6

9. READS OF C0RMSX OR C0TMAX CAN UNINTENTIONALLY AFFECT OTHER SFRs

Description:
Reads of the CAN 0 transmit message-acknowledgement registers or the CAN 0 receive message-
stored registers can unintentionally clear the corresponding SFR in the CAN 1 module. For example,
reading C0RMS0 clears C1RMS0. Affected registers include C0RMS0, C0RMS1, C0TMA0,
C0TMA1, C1RMS0, C1RMS1, C1TMA0, and C1TMA1.

Work Around:
When reading one of the above CAN 0 SFRs, first read and store the corresponding CAN 1 SFR to
preserve its contents. For example, if software desires to read C0RMS0, first read the C1RMS0 and
store off the contents to a dedicated shadow memory location. Then read C0RMS0 normally. When it
is desired to read C1RMS0, read it and logically OR its contents with the shadow register. This
workaround requires 4 bytes of memory to shadow the contents of the C1RMS0, C1RMS1, C1TMA0,
and C1TMA1 registers.

The software examples below use direct RAM to shadow the SFRs. One example routine is shown for
reading affected SFRs associated with CAN 0, another routine for reading affected SFRs associated
with CAN 1.

; Reading C0TMAx or C0RMSx. This example reads C0TMA0
MOV R0, #C1TMA0_addr ; Point to shadow location for C1TMA0.
MOV @R0, C1TMA0 ; Copy C1TMA0 to shadow location.
MOV A, C0TMA0 ; Read C0TMA0.

; Reading C1TMAx or C1RMSx. This example reads C1TMA0
MOV R0, #C1TMA0_addr ; Point to shadow location for C1TMA0.
MOV A, C1TMA0 ; Get current value of C1TMA0.
ORL A, @R0 ; ORL with prev value stored in shadow loc.

10. FIRST CODE FETCH FOLLOWING RESET CAN EXHIBIT DIFFERENT TIMING

Description:
The first code fetch following a reset occurs early. This could result in incorrect program execution.

Work Around:
The work around depends on whether multiplexed or nonmultiplexed addressing is used.

Multiplexed: The first instruction of the program, located at 000000h, must be an NOP (00h). Because
the reset vector is only 3 bytes long, the next instruction must be an SJMP to another location where
an LJMP redirects program flow to the start of the main program. The combination of the address bus
and op code being all 0s ensures that the NOP and subsequent instructions are executed correctly.

Nonmultiplexed: Assume that for the first cycle following a reset the tMCS factor is 3 tCLCL.

DS80C390 REV B4 ERRATA SHEET

6 of 6

11. RESTRICTIONS ON DIV AB INSTRUCTION

Description:
The DIV AB instruction may return erroneous results if the following instructions access the A
register immediately before the DIV AB instruction. Affected are:

RL A
RLC A
RR A
RRC A
SWAP A
MOVC A, @A+DPTR
MOVC A, @A+PC

MOVX A, @Ri
MOVX A, @DPTR
XCH A, Rn
XCH A, direct
XCH A, @Ri
XCHD A, @Ri

Work Around:
It is common programming practice to load both the A and B registers right before executing the DIV
AB. Shown are correct and incorrect examples. These examples show the MOV A,#data instruction,
but apply to any of the above instructions that write to the A register.

MOV B, #data MOV A, #data MOV B, #data
MOV A, #data MOV B, #data MOV A, #data
DIV AB ;*INCORRECT* DIV AB ;CORRECT NOP
 DIV AB ;CORRECT

12. CAN AUTOBAUD MODE RXS BIT FUNCTION CLARIFIED

Description:
When either CAN is operating in autobaud mode, the RXS bit in the CxS SFR will only be set upon
reception of a valid (i.e., no bus errors) identifier that matches one or more of the message IDs
programmed into the CAN module. The documentation implies that the RXS bit should be set if a
valid identifier is received, even if the identifier did not match any of the message IDs programmed
into the CAN module.

Work Around:
If it is desired to use the autobaud mode to monitor bus activity and set RXS when any message is
successfully received, the user should enable a message center to receive messages with any ID. Upon
exit from autobaud mode, this message center can be reconfigured for other uses.

