Evaluate: MAX15090/MAX15090A ## **General Description** The MAX15090 evaluation kit (EV kit) provides a proven design to evaluate the MAX15090 hot-swap controller with an integrated 12A MOSFET. The MAX15090 EV kit is configured to pass 12A in a 2.7V to 18V hot-swap application, thus providing a fully integrated solution. The MAX15090 EV kit uses the MAX15090EWI+ in a 3.5mm x 2mm, 28-bump, 0.5mm pitch wafer-level package (WLP) with a proven four-layer PCB design. As configured, the MAX15090 EV kit is optimized to operate at 12V. The MAX15090A EV kit can be used to evaluate the MAX15090A and uses the MAX15090AEWI+. Ordering Information appears at end of data sheet. ## **Component List** | DESIGNATION | QTY | DESCRIPTION | |-------------|-----|--| | C1, C2 | 2 | 1μF ±10%, 25V X7R ceramic
capacitors (0603)
Murata GRM188R71E105K
TDK C1608X5R1E105M | | C3 | 1 | 5600pF ±10%, 50V X7R ceramic
capacitor (0603)
Murata GRM188R71H562K
TDK C1608C0G1H562J | | C4 | 1 | 0.047µF ±10%, 25V X7R ceramic
capacitor (0603)
Murata GRM188R71E473K
TDK C1608X7R1E473K | | C5 | 1 | 0.22µF ±10%, 25V X7R ceramic
capacitor (0603)
Murata GRM188R71E224K
TDK C1608X7R1E224K | | C6–C11 | 6 | 10μF ±10%, 25V X7R ceramic
capacitors (1206)
Murata GRM31CR71E106K
TDK C3216X5R1E106M | | C12 | 0 | Not installed, ceramic capacitor (1206) | | C13 | 0 | Not installed, electrolytic capacitor (D = 11mm) | | C14 | 0 | Not installed, ceramic capacitor (0805) | #### **Features** - 2.7V to 18V Operating Voltage Range - Up to 12A Configurable Load Current Capability - Banana Jacks for Input and Output Voltage - Programmable Slew-Rate Control - Selectable/Configurable Circuit-Breaker Threshold - Configurable Overvoltage/Undervoltage Lockout - Programmable Time-Out Delay - FAULT and PG Outputs - Defined Safe Operation Area - Proven PCB Layout - Fully Assembled and Tested | DESIGNATION | QTY | DESCRIPTION | |--------------------------------------|-----|--| | CDLY, GATE,
GDRV, REG,
UV, VCC | 6 | Red test points | | D1 | 1 | 18V, 600W transient voltage
suppressor (SMB)
Fairchild SMBJ18A | | D2 | 0 | Not installed, Schottky diode (SMA) | | D3 | 0 | Not installed, Schottky diode (SOD523) | | GND (x2), IN,
OUT | 4 | Banana jacks | | JU1 | 1 | 3-pin header | | JU2 | 1 | 2-pin header | | Q1 | 1 | 30V, 94A n-channel MOSFET (DPAK)
IRF IRLR8113TRPBF | | R1 | 1 | 178kΩ ±1% resistor (0603) | | R2 | 1 | 5.23kΩ ±1% resistor (0603) | | R3 | 1 | 17.8kΩ ±1% resistor (0603) | | R4 | 1 | 10Ω ±5% resistor (0603) | | R5 | 1 | 40.2kΩ ±5% resistor (0603) | | R6 | 1 | 1kΩ ±1% resistor (0603) | | R7-R9 | 3 | 100kΩ ±5% resistors (0603) | | R10 | 1 | 49.9Ω ±1% resistor (0603) | | R11 | 1 | 50kΩ potentiometer | | R12 | 1 | 0Ω resistor (0603) | Evaluate: MAX15090/MAX15090A ## **Component List (continued)** | DESIGNATION | QTY | DESCRIPTION | |-------------|-----|--| | U1 | 1 | 12A hot-swap solution (28 WLP) Maxim MAX15090EWI+ or Maxim MAX15090AEWI+ | | U2 | 1 | General-purpose timer (8 SO)
Maxim ICM7555ISA | | DESIGNATION | QTY | DESCRIPTION | |-------------|-----|------------------------------| | _ | 2 | Shunts | | _ | 1 | PCB: MAX15090 EVALUATION KIT | ## **Component Suppliers** | SUPPLIER | PHONE | WEBSITE | |--|--------------|-----------------------------| | Fairchild Semiconductor | 888-522-5372 | www.fairchildsemi.com | | Murata Electronics North America, Inc. | 770-436-1300 | www.murata-northamerica.com | | STMicroelectronics | 408-452-8585 | www.us.st.com | | TDK Corp. | 847-803-6100 | www.component.tdk.com | Note: Indicate that you are using the MAX15090 when contacting these component suppliers. ### **Quick Start** ### **Required Equipment** - MAX15090 EV kit - 12V, 12A DC power supply - Voltmeter #### **Procedure** The EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed. - 1) Verify that a shunt is installed across pins 1-2 on jumper JU1. - 2) Turn on the power supply and set the supply to 12V, then disable the power supply. - Connect the positive terminal of the power supply to the IN banana jack on the EV kit. Connect the negative terminal of the power supply to the GND banana jack. - 4) Enable the power supply. - 5) Verify that the voltage between the OUT and GND banana jacks is 12V. - 6) Verify that the internal regulator voltage (REG) is 3.3V. - 7) The EV kit is now ready for additional evaluation. ## **Detailed Description of Hardware** The MAX15090 EV kit provides a proven design to evaluate the MAX15090. The MAX15090 EV kit can be conveniently connected between the system power and the load using the banana jacks provided for the input and output. PCB pads are provided to monitor and control the device signals. The MAX15090 EV kit operates between 2.7V and 18V up to 12A load current capability. #### **Evaluating the MAX15090A** The MAX15090A EV kit can be used to evaluate the MAX15090A, with the MAX15090AEWI+ installed. The MAX15090A is pin-to-pin compatible with the MAX15090. Refer to the MAX15090/MAX15090A IC data sheet for details on the MAX15090A. #### **Circuit Breaker (CB)** Jumper JU1 sets the current limit for the internal circuit breaker (CB) of the device. The CB pin can be connected to a fixed resistor (R5) or a potentiometer (R11) to set the current limit. See Table 1 for shunt positions. The circuit-breaker threshold can be set according to the following formula: $$I_{CB} = R_{CB}/3333.3$$ where I_{CB} is in A and R_{CB} (the resistor between CB and ground) is in $\Omega.$ **Table 1. JU1 Jumper Selection (CB)** | SHUNT
POSITION | CB PIN
CONNECTED TO | CURRENT LIMIT | |-------------------|------------------------|---------------| | 1-2* | R5 | 12A | | 2-3 | R11 | Adjustable | ^{*}Default position. # Table 2. JU2 Jumper Selection (EN) | SHUNT
POSITION | EN PIN | TIME-OUT DELAY | |-------------------|---|------------------| | Installed | Forced to GND | Bypassed | | Not installed* | Set low when C5 is charged to 2/3 x OUT; timing is set by R7/C5 | 47ms (set by C4) | ^{*}Default position. ## Setting Time-Out Delay for EN (CDLY) Capacitor C4 is used to set the time-out delay for $\overline{\text{EN}}$ to go low to prevent internal MOSFET shutdown after power-up. This is set at a rate of 1s/ μ F. The EV kit is configured for a 47ms time-out delay. ### Delayed EN The IC's $\overline{\text{EN}}$ pin must be pulled low before the time-out delay set by capacitor C4 elapses. The EV kit provides a simple timer circuit comprised of U2, R7, and C5 to pull the $\overline{\text{EN}}$ pin low before the time-out delay. Once PG asserts as open-drain, R7 begins to charge C5 to the output voltage (OUT). When C5 charges to 2/3 x OUT, U2 pulls the $\overline{\text{EN}}$ pin low. The EV kit is configured to have $\overline{\text{EN}}$ pulled low after ~22ms. Jumper JU2 is also provided to bypass the time-out delay and force $\overline{\text{EN}}$ low, if installed. See Table 2 for JU2 settings. #### **Setting the Output Slew Rate** An external capacitor (C3) is connected from GATE to GND on the IC to reduce the output slew rate during startup. During startup, a $5.7\mu A$ (typ) current is sourced to enhance the internal MOSFET with 10V/ms (typ). C3 can be calculated according to the following formula: C3 = $$(I_{GATE} \times \Delta t)/\Delta V_{GATE}$$ where I_{GATE} is 5.7µA (typ), Δt is the desired slew rate, and ΔV_{GATE} is the voltage at the gate of the internal MOSFET at turn-on. ### **Undervoltage Lockout** The EV kit provides an option to configure the undervoltage-lockout threshold. The undervoltage-lockout threshold for the device is configured by the IN voltage level divided by R1 and (R2 + R3) at the UV pin. By default, the undervoltage-lockout threshold is set to 10.8V. Evaluate: MAX15090/MAX15090A ### **Overvoltage Lockout** The EV kit provides an option to configure the overvoltage-lockout threshold. The overvoltage-lockout threshold for the device is configured by the IN voltage level divided by (R1 + R2) and R3 at the OV pin. By default, the overvoltage-lockout threshold is set to 13.2V. #### **Current-Sense Output (ISENSE)** The IC's ISENSE pin is the output of an accurate current-sense amplifier and provides a source current proportional to the load current flowing into the main switch. The factory-trimmed current ratio is set to $220\mu\text{A/A}$. On the EV kit, this allows producing a scaled voltage by routing resistor R6 from ISENSE to GND. This voltage signal then goes to an ADC and provides digitized information of the current supplied to the powered system. www.maximintegrated.com Maxim Integrated | 3 Figure 1. MAX15090 EV Kit Schematic Evaluate: MAX15090/MAX15090A Figure 2. MAX15090 EV Kit Component Placement Guide—Component Side Figure 3. MAX15090 EV Kit PCB Layout—Component Side Figure 4. MAX15090 EV Kit PCB Layout— Layer 2 (PWR/GND) Evaluate: MAX15090/MAX15090A Figure 5. MAX15090 EV Kit PCB Layout—Layer 3 (GND) Figure 6. MAX15090 EV Kit PCB Layout—Solder Side Evaluate: MAX15090/MAX15090A # **Ordering Information** | PART | TYPE | |-----------------|--------| | MAX15090EVKIT# | EV Kit | | MAX15090AEVKIT# | EV Kit | #Denotes RoHS compliant. www.maximintegrated.com Maxim Integrated | 7 Evaluate: MAX15090/MAX15090A # **Revision History** | REVISION NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |-----------------|---------------|-----------------|------------------| | 0 | 11/12 | Initial release | _ | For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.