High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

General Description

The MAX15109 high-efficiency, current-mode, synchronous step-down switching regulator with integrated power switches deliver up to 8 A of output current. This regulator operates from 2.7 V to 5.5 V and provides four output voltages using two VID control inputs.
This IC utilizes a current-mode control architecture with a high gain transconductance error amplifier. The current-mode control architecture facilitates easy compensation design and ensures cycle-by-cycle current limit with fast response to line and load transients.
The low $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ integrated switches ensure high efficiency at heavy loads while minimizing critical inductance, making the layout design a much simpler task with respect to discrete solutions. The high switching frequency $(1 \mathrm{MHz})$, along with the PWM current-mode architecture allows for a compact, all-ceramic capacitor design.
The IC features a capacitor-programmable slew-rate control to reduce input current at the startup and when the output changes state under VID control. Internal control circuitry ensures safe-startup into a prebiased output. Power sequencing is controlled with the enable input and power-good output.
The IC is available in a 20-bump (4×5 array), $2.5 \mathrm{~mm} \times$ 2 mm , WLP package and is fully specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

- Distributed Power Systems
- DDR Memory
- Notebook Power

Features

- Continuous 8A Output Current
- Efficiency Over 90\%
- $\pm 1 \%$ Accuracy Over Load, Line, and Temperature
- Operates from a 2.7 V to 5.5 V Supply
- VID Control Inputs for Selecting Output Voltage
- Programmable Slew-Rate Control
- Safe Startup into Prebiased Output
- 1MHz Switching Frequency
- Stable with Low-ESR Ceramic Output Capacitors
- Enable Input and Power-Good Output for PowerSupply Sequencing
- Cycle-by-Cycle Overcurrent Protection Faults
- Fully Protected Against Overcurrent and Overtemperature
- Input Undervoltage Lockout
- 20-Bump (4 x 5 Array), $2.5 \mathrm{~mm} \times 2 \mathrm{~mm}$, WLP Package

Typical Operating Circuit

High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

Absolute Maximum Ratings

IN, PGOOD to PGND...	V to +6V
LX to PGND.-0.3V to ($\left.\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
LX to PGND.	-1 V to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$) for 50 ns
EN, COMP, FB, SS, VIDO, VID1 to PGND	V to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
Continuous LX Current (No -12A to +12A
Output Short-Circuit DuraContinuous

(
Note 1: LX has internal clamp diodes to PGND and IN. Do not exceed the power dissipation limits of the device when forward biasing these diodes.
Note 2: Limit the junction temperature to $+110^{\circ} \mathrm{C}$ for continuous operation at full current.
Note 3: The WLP package is constructed using a unique set of package techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 20-BUMP WLP

Package Code	W202D2Z +1
Outline Number	$\underline{21-0505}$
Land Pattern Number	Refer to Application Note 1891

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SS}}=4.7 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN Voltage Range	$\mathrm{V}_{\text {IN }}$		2.7		5.5	V
IN Shutdown Supply Current		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		0.3	3	$\mu \mathrm{A}$
IN Supply Current	IIN	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1 \mathrm{~V}$, not switching		3.4	6	mA
$V_{\text {IN }}$ Undervoltage Lockout Threshold		LX starts switching, $\mathrm{V}_{\text {IN }}$ rising		2.6	2.7	V
$V_{\text {IN }}$ Undervoltage Lockout Hysteresis		LX stops switching, $\mathrm{V}_{\text {IN }}$ falling		200		mV
ERROR AMPLIFIER						
Transconductance	gmV			1.4		mS
Voltage Gain	AVEA			90		dB
Output Voltage Accuracy	V_{FB}	Over line, load, and temperature	-1		+1	\%
FB Input Bias Current	$\mathrm{I}_{\text {FB }}$		-100		+100	nA
COMP to Current-Sense Transconductance	$\mathrm{G}_{\text {MOD }}$			25		A/V
COMP Clamp Low		$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$		0.93		V
Compensation RAMP Valley				1		V
POWER SWITCHES						
High-Side Switch Current-Limit Threshold	$\mathrm{I}_{\mathrm{HSCL}}$			14		A
Low-Side Switch Sink Current-Limit Threshold				14		A
Low-Side Switch Source Current-Limit Threshold				14		A
LX Leakage Current		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
RMS LX Output Current			8			A
OSCILLATOR						
Switching Frequency	fsw		850	1000	1150	kHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$			94		\%
Minimum Controllable On-Time				100		ns
ENABLE						
EN Input High Threshold Voltage		$\mathrm{V}_{\text {EN }}$ rising	1.3			V
EN Input Low Threshold Voltage		$\mathrm{V}_{\text {EN }}$ falling			0.4	V
EN Input Leakage Current		$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
VID CONTROL INPUTS						
VID_High Threshold Voltage		$\mathrm{V}_{\text {VID_ }}$ rising	0.67			V
VID_ Low Threshold Voltage		$\mathrm{V}_{\text {VID__ }}$ falling			0.33	V
VID1 Input Leakage Current		$\mathrm{V}_{\mathrm{VID1}}=5 \mathrm{~V}$			30	$\mu \mathrm{A}$
VIDO Input Leakage Current		$\mathrm{V}_{\mathrm{VID}}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$

High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{SS}}=4.7 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)($ Note 4$)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SOFT-START, PREBIAS								
Soft-Start Current	ISS	$\mathrm{V}_{\text {SS }}=0.45 \mathrm{~V}$, sourcing				10		$\mu \mathrm{A}$
SS Discharge Resistance	RSS	$\mathrm{I}_{S S}=10 \mathrm{~mA}$, sinking				8.5		Ω
SS Prebias Mode Stop Voltage		SS rising				0.58		V
HICCUP								
Number of Consecutive Current-Limit Events to Hiccup						8		Events
Timeout						1024		Clock Cycles
POWER-GOOD OUTPUT								
PGOOD Threshold	PGT	FB rising	VIDO	VID1				mV
			0	0	824	853	884	
			0	1	705	729	755	
			1	0	654	677	701	
			1	1	580	602	624	
		FB falling			559	578	600	mV
PGOOD V_{OL}		$\mathrm{I}_{\mathrm{PGOOD}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V}$				22	100	mV
PGOOD Leakage		$\mathrm{V}_{\text {PGOOD }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1 \mathrm{~V}$					1	$\mu \mathrm{A}$
THERMAL SHUTDOWN								
Thermal Shutdown Threshold						+160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis		Temperatu				25		${ }^{\circ} \mathrm{C}$

Note 4: Specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization.

Typical Operating Characteristics

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT SHUTDOWN CURRENT
vs. SUPPLY VOLTAGE

SHORT-CIRCUIT HICCUP MODE

$40 \mu \mathrm{~s} / \mathrm{div}$

RMS INPUT CURRENT
vs. SUPPLY VOLTAGE

Typical Operating Characteristics (continued)

(Circuit of Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION		
A1, B1, C1, D1	PGND	Power Ground. Low-side switch source terminal. Connect PGND and the return terminals of input and output capacitors to the power ground plane.		
A2, A3, B2, C2	LX	Inductor Connection. Connect LX to the switching side of the inductor. LX is high impedance when the device is in shutdown mode.		
A4	PGOOD	Open-Drain Power-Good Output. PGOOD goes low when V ${ }_{\text {FB }}$ is below the PGOOD threshold.		
A5	VID0	VID0 Logic Input. Use VID0 and VID1 to select output voltage.		
B3, C3, D3	IN	Input Power Supply. Input supply range is 2.7V to 5.5V. Bypass IN with a minimum 10uF ceramic capacitor to PGND. See the Typical Application Circuit.		
B4	I.C.	Internally Connected. Leave unconnected.		
B5	FB	Feedback Input. Connect FB to the sense the output voltage.		
C4	VID1	VID1 Logic Input. Use VID0 and VID1 to select output voltage.		
C5	SS	Soft-Start and VID Transition Timing Control. Connect a capacitor from SS to PGND to set the startup time and the output voltage transition timing. See the Output Voltage Transition Timing section for details.		
D2	INX	Input Power Pin for Control Section. Connect to IN. D4\quad EN		Enable Input. EN is a digital input that turns the regulator on and off. Drive EN high to turn on
:---				
the regulator. Connect to IN for always-on operation.				

Functional Diagram

High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

Detailed Description

The MAX15109 high-efficiency, current-mode switching regulator delivers up to 8 A of output current. The regulator operates from 2.7 V to 5.5 V and provides a VID selectable output.
The IC current-mode control architecture uses a high gain transconductance error amplifier that facilitates an easy compensation design and ensures cycle-by-cycle current limit with fast response to line and load transients.
The regulator features a 1 MHz fixed switching frequency, allowing for all-ceramic capacitor designs with fast transient responses. The high operating frequency minimizes the size of external components. The IC is available in a $2.5 \mathrm{~mm} \times 2 \mathrm{~mm}$ (4×5 array), 0.5 mm pitch WLP package.
The low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ integrated switches ensure high efficiency at heavy loads while minimizing critical inductance, making the layout design a much simpler task than that of discrete solutions. The IC's simple layout and footprint assure first-pass success in new designs.
The IC has output voltages of $0.9 \mathrm{~V}, 0.8 \mathrm{~V}, 0.725 \mathrm{~V}$, and 0.625 V by configuring the VID inputs. The regulator offers capacitor-programmable soft-start to reduce input inrush current. The device safely starts up into a prebiased output. The IC includes an enable input and open-drain PGOOD output for sequencing with other devices.

Controller Function—PWM Logic

The controller logic block determines the duty cycle of the high-side MOSFET under different line, load, and temperature conditions. Under normal operation, where the current-limit and temperature protection are not triggered, the controller logic block takes the output from the PWM comparator to generate the driver signals for both high-side and low-side MOSFETs. The control logic block controls the break-before-make logic and all the necessary timing.
The high-side MOSFET turns on at the beginning of the oscillator cycle and turns off when the COMP voltage crosses the internal current-mode ramp waveform. The internal ramp is the sum of the compensation ramp and
the current-mode ramp. The high-side MOSFET also turns off if the maximum duty cycle exceeds 95%, or when the current limit is reached. The low-side MOSFET turns on for the remainder of the switching cycle.

Starting into a Prebiased Output

The IC can soft-start into a prebiased output without discharging the output capacitor. In safe prebiased startup, both low-side and high-side MOSFETs remain off to avoid discharging the prebiased output. PWM operation starts when the voltage on SS crosses the voltage on FB.
The IC can start into a prebiased voltage higher than the nominal set point without abruptly discharging the output. Forced PWM operation starts when the SS voltage reaches 0.58 V , forcing the converter to start. When the low-side sink current-limit threshold of 14A is reached, the low-side switch turns off before the end of the clock period. The low-side sink current limit is 14 A . The high-side switch turns on until one of the following conditions is satisfied:

- High-side source current hits the reduced high-side current limit (14A). The high-side switch turns off for the remaining time of clock period.
- The clock period ends.

Reduced high-side current limit is activated in order to recirculate the current into the high-side power switch rather than into the internal high-side body diode, which can cause damage to the devices. The high-side current limit is set to 14A.
Low-side sink current limit protects the low-side switch from excessive reverse current during prebiased operation.

Enable Input

The IC features independent device enable control and power-good signal that allow for flexible power sequencing. Drive the enable input (EN) high to enable the regulator, or connect EN to IN for always-on operation. Powergood (PGOOD) is an open-drain output that goes high when V_{FB} is above the PGOOD threshold, and goes low if V_{FB} is below the PGOOD threshold.

High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

Programmable Soft-Start (SS)

The IC utilizes a soft-start feature to slowly ramp up the regulated output voltage to reduce input inrush current during startup. Connect a capacitor from SS to PGND to set the startup time. See the Output Voltage Transition Timing section for capacitor selection details.

Error Amplifier

A high-gain error amplifier provides accuracy for the voltage feedback loop regulation. Connect a compensation network between COMP and SGND. See the Compensation Design Guidelines section. The error amplifier transconductance is 1.4 mS . COMP clamp low is set to 0.8 V , just below the PWM ramp compensation valley, helping COMP to rapidly return to the correct set point during load and line transients.

PWM Comparator

The PWM comparator compares COMP voltage to the current-derived ramp waveform (LX current to COMP voltage transconductance value is $25 \mathrm{~A} / \mathrm{V}$). To avoid instability due to subharmonic oscillations when the duty cycle is around 50% or higher, a compensation ramp is added to the current-derived ramp waveform. The compensation ramp slope $(0.3 \mathrm{~V} \times 1 \mathrm{MHz}=0.3 \mathrm{~V} / \mu \mathrm{s})$ is equivalent to half of the inductor current down-slope in the worst case (load 2A, current ripple 30% and maximum duty-cycle operation of 95%). The compensation ramp valley is set to 1 V .

Overcurrent Protection and Hiccup

When the converter output is connected to ground or the device is overloaded, each high-side MOSFET currentlimit event (14A) turns off the high-side MOSFET and turns on the low-side MOSFET. A 3-bit counter increments on each current-limit event. The counter is reset after three consecutive events of high-side MOSFET turn-on without reaching the current limit. If the currentlimit condition persists, the counter fills up reaching eight events. The control logic then discharges SS, stops both high-side and low-side MOSFETs and waits for a hiccup period (1024 clock cycles) before attempting a new softstart sequence. The hiccup-mode also operates during soft-start.

Thermal Shutdown Protection

The IC contains an internal thermal sensor that limits the total power dissipation to protect it in the event of an extended thermal fault condition. When the die temperature exceeds $+160^{\circ} \mathrm{C}$, the thermal sensor shuts down the device, turning off the DC-DC converter to allow the die to cool. After the die temperature falls by $25^{\circ} \mathrm{C}$, the device restarts, following the soft-start sequence.

Applications Information

Setting the Output Voltage

The output voltage is selected by using the VID0 and VID1 control inputs. Table 1 summarizes the output voltages.
Table 1. Output Voltages

VID0	VID1	VOLTAGE (V)
0	0	0.9
0	1	0.8
1	0	0.725
1	1	0.675

Inductor Selection

A large inductor value results in reduced inductor ripple current, leading to a reduced output ripple voltage. A highvalue inductor is of a larger physical size with a higher series resistance (DCR) and a lower saturation current rating. Choose inductor values to produce a ripple current equal to 30% of the load current. Choose the inductor with the following formula:

$$
\mathrm{L}=\frac{\mathrm{V}_{\text {OUT }}}{f_{\mathrm{SW}} \times \Delta I_{\mathrm{L}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

where f SW is the internally fixed 1 MHz switching frequency, and ΔI_{L} is the estimated inductor ripple current (typically set to $0.3 \times$ LOAD). In addition, the peak inductor current, $\mathrm{I}_{\mathrm{L}} \mathrm{PK}$, must always be below the high-side current-limit value, $\mathrm{I}_{\mathrm{HSCL}}$, and the inductor saturation current rating, I_{L} SAT.
Ensure that the following relationship is satisfied:

$$
\mathrm{I}_{\mathrm{L}_{-} \mathrm{PK}}=\mathrm{I}_{\mathrm{LOAD}}+\frac{1}{2} \times \Delta \mathrm{I}_{\mathrm{L}}<\mathrm{MIN}\left(\mathrm{I}_{\mathrm{HSCL}}, \mathrm{I}_{\mathrm{L}_{-}} \mathrm{SAT}\right)
$$

Figure 1. Peak Current-Mode Regulator Transfer Model

Input Capacitor Selection

For a step-down converter, the input capacitor C_{IN} helps to keep the DC input voltage steady, in spite of discontinuous input AC current. Use low-ESR capacitors to minimize the voltage ripple due to ESR.
Size C_{IN} using the following formula:

$$
\mathrm{C}_{\text {IN }}=\frac{\mathrm{I}_{\text {LOAD }}}{\mathrm{f}_{\text {SW }} \times \Delta \mathrm{V}_{\text {IN_RIPPLE }}} \times \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}
$$

Make sure that the selected capacitance can accommodate the input ripple current given by:

$$
\mathrm{I}_{\mathrm{RMS}}=\mathrm{I}_{\mathrm{O}} \times \frac{\sqrt{\mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\mathrm{IN}}}
$$

If necessary, use multiple capacitors in parallel to meet the RMS current rating requirement.

Output Capacitor Selection

Use low-ESR ceramic capacitors to minimize the voltage ripple due to ESR. Use the following formula to estimate the total output voltage peak-to-peak ripple:

$$
\Delta \mathrm{V}_{\text {OUT }}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{f}_{\mathrm{SW}} \times \mathrm{L}} \times\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right) \times\left(\mathrm{R}_{\text {ESR_COUT }}+\frac{1}{8 \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{C}_{\mathrm{OUT}}}\right)
$$

Select the output capacitors to produce an output ripple voltage that is less than 2% of the set output voltage.

Output Voltage Transition Timing

The IC features programmable output voltage transition timing control. The regulator tracks the voltage on the SS pin that is set with a current-limited $(10 \mu \mathrm{~A})$ VID DAC. A small capacitor at SS can therefore be used to set the transition timing for startup and VID transitions.

$$
\mathrm{C}_{\mathrm{SS}}=\frac{\mathrm{I}_{\mathrm{SS}} \times \Delta \mathrm{t}}{\Delta \mathrm{~V}_{\mathrm{OUT}}}
$$

where ISS is the soft-start current of $10 \mu \mathrm{~A}, \Delta \mathrm{~V}_{\text {OUT }}$ is the output-voltage transition, and Δt is the transition time. When using large COUT capacitance values, the highside current limit can trigger during the soft-start period. To ensure the correct soft-start time, tss, choose CSS large enough to satisfy:

$$
\mathrm{C}_{\text {SS }} \gg \mathrm{C}_{\text {OUT }}=\frac{\mathrm{V}_{\mathrm{OUT}} \times I_{\mathrm{SS}}}{\left(\mathrm{I}_{\mathrm{HSCL}} \mathrm{MIN}-\mathrm{I}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{FB}}}
$$

IHSCL_MIN is the minimum high-side switch current-limit value.

High-Efficiency, 8A, Current-Mode Synchronous Step-Down Switching Regulator with VID Control

Figure 2. Setting Soft-Start Time

Compensation Design Guidelines

The IC uses a fixed-frequency, peak-current-mode control scheme to provide easy compensation and fast transient response. The inductor peak current is monitored on a cycle-by-cycle basis and compared to the COMP voltage (output of the voltage error amplifier). The regulator's duty cycle is modulated based on the inductor's peak current value. This cycle-by-cycle control of the inductor current emulates a controlled current source. As a result, the inductor's pole frequency is shifted beyond the gain bandwidth of the regulator. System stability is provided with the addition of a simple series capacitor-resistor from COMP to PGND. This pole-zero combination serves to tailor the desired response of the closed-loop system. The basic regulator loop consists of a power modulator (comprising the regulator's pulse-width modulator, compensation ramp, control circuitry, MOSFETs, and inductor), the capacitive output filter and load, an output feedback, and a voltage-loop error amplifier with its associated compensation circuitry. See Figure 1.
The average current through the inductor is expressed as:

$$
\overline{\mathrm{I}_{\mathrm{L}}}=\mathrm{G}_{\mathrm{MOD}} \times \overline{\mathrm{V}_{\mathrm{COMP}}}
$$

where $\bar{l}_{\bar{L}}$ is the average inductor current and $G_{M O D}$ is the power modulator's transconductance.
For a buck converter:

$$
\overline{\mathrm{V}_{\mathrm{OUT}}}=\mathrm{R}_{\mathrm{LOAD}} \times \overline{I_{\mathrm{L}}}
$$

where $R_{\text {LOAD }}$ is the equivalent load resistor value. Combining the above two relationships, the power modulator's transfer function in terms of $\overline{\mathrm{V}} \overline{\mathrm{OUT}}$ with respect to $\overline{\mathrm{V}} \mathrm{COMP}$ is:

Having defined the power modulator's transfer function gain, the total system loop gain can be written as follows (see Figure 1):

$$
\begin{gathered}
\alpha=\frac{R_{\text {OUT }} \times\left(s C_{C} R_{C}+1\right)}{\left[s\left(C_{C}+C_{C C}\right)\left(R_{C}+R_{\text {OUT }}\right)+1\right] \times} \\
{\left[s\left(C_{C} \| C_{C C}\right)\left(R_{C} \| R_{O U T}\right)+1\right]} \\
\beta=G_{M O D} \times R_{\text {LOAD }} \times \frac{\left(s C_{O U T} E S R+1\right)}{\left[s C_{\text {OUT }}\left(E S R+R_{\text {LOAD }}\right)+1\right]} \\
G a i n=\frac{R_{2}}{R_{1}+R_{2}} \times \frac{A_{\text {VEA }}}{R_{\text {OUT }}} \times \alpha \times \beta
\end{gathered}
$$

where ROUT is the quotient of the error amplifier's DC gain, AVEA, divided by the error amplifier's transconductance, $g_{M V}$; $R_{\text {OUT }}$ is much larger than R_{C}.

$$
\frac{R_{2}}{R_{1}+R_{2}}=\frac{V_{\mathrm{FB}}}{V_{\mathrm{OUT}}}
$$

Also, CC is much larger than CCC , therefore:

$$
\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{CC}} \approx \mathrm{C}_{\mathrm{C}}
$$

and

$$
\mathrm{C}_{\mathrm{C}} \| \mathrm{C}_{\mathrm{cc}} \approx \mathrm{C}_{\mathrm{Cc}}
$$

Rewriting:

$$
\begin{aligned}
\text { Gain }= & \frac{V_{\text {FB }}}{V_{\text {OUT }}} A_{\text {VEA }} \times \frac{\left(s C_{C} R_{C}+1\right)}{\left[s C_{C}\left(\frac{A_{V E A}}{g_{M V}}\right)+1\right] \times\left(s C_{C C} R_{C}+1\right)} \times \\
& G_{M O D} R_{\text {LOAD }} \times \frac{\left(s C_{\mathrm{OUT}} E S R+1\right)}{\left[\mathrm{sC}_{\mathrm{OUT}}\left(E S R+R_{\mathrm{LOAD}}\right)+1\right]}
\end{aligned}
$$

The dominant poles and zeros of the transfer loop gain are shown below:

$$
\begin{gathered}
f_{\mathrm{P} 1}=\frac{g_{M V}}{2 \pi \times 10 \text { AVEA }^{\mathrm{dB} / 20} \times \mathrm{C}_{\mathrm{C}}} \\
\mathrm{f}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}}\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)} \\
\mathrm{f}_{\mathrm{P} 3}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} \mathrm{R}_{\mathrm{C}}} \\
\mathrm{f}_{\mathrm{Z} 1}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}} \\
\mathrm{f}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}} \mathrm{ESR}}
\end{gathered}
$$

The order of pole-zero occurrence is:

$$
\mathrm{f}_{\mathrm{P} 1}<\mathrm{f}_{\mathrm{P} 2}<\mathrm{f}_{\mathrm{Z} 1}<\mathrm{f}_{\mathrm{Z} 2} \leq \mathrm{f}_{\mathrm{P} 3}
$$

Under heavy load, $\mathrm{f}_{\mathrm{P} 2}$, approaches $\mathrm{f}_{\mathrm{Z} 1}$.

If Cout is large, or exhibits a lossy equivalent series resistance (large ESR), the circuit's second zero might come into play around the crossover frequency $\left(\mathrm{f}_{\mathrm{CO}}=\omega / 2 \pi\right)$. In this case, a third pole can be induced by a second (optional) small compensation capacitor (C_{CC}), connected from COMP to PGND. The loop response's fourth asymptote (in bold, Figure 3) is the one of interest in establishing the desired crossover frequency (and determining the compensation component values). A lower crossover frequency provides for stable closedloop operation at the expense of a slower load and line transient response. Increasing the crossover frequency improves the transient response at the (potential) cost of system instability. A standard rule of thumb sets the crossover frequency $\leq 1 / 10$ th of the switching frequency. First, select the passive and active power components that meet the application's requirements. Then, choose the small-signal compensation components to achieve the desired closed-loop frequency response and phase margin as outlined in the Closing the Loop: Designing the Compensation Circuitry section.

Figure 3. Asymptotic Loop Response of Peak Current-Mode Regulator

Closing the Loop:

Designing the Compensation Circuitry
Select the desired crossover frequency. Choose f_{CO} approximately $1 / 10$ th of the switching frequency fSW, or $\mathrm{f}_{\mathrm{CO}} \approx 100 \mathrm{kHz}$.
Select R_{C} using the transfer-loop's fourth asymptote gain (assuming $f_{C O}>f_{P 1}, f_{P 2}$, and $f_{Z 1}$ and setting the overall loop gain to unity) as follows:

$$
\begin{aligned}
1= & \frac{V_{F B}}{V_{O U T}} \times g_{M V} \times R_{C} \times G_{M O D} \times R_{\text {LOAD }} \times \\
& \frac{1}{2 \pi \times f_{C O} \times C_{O U T} \times\left(E S R+R_{\text {LOAD }}\right)}
\end{aligned}
$$

therefore:

$$
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}} \times \frac{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{C}_{\mathrm{OUT}} \times\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)}{g_{\mathrm{MV}} \times \mathrm{G}_{\mathrm{MOD}} \times \mathrm{R}_{\mathrm{LOAD}}}
$$

For $\mathrm{R}_{\text {LOAD }}$ much greater than ESR, the equation can be further simplified as follows:

$$
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}} \times \frac{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{C}_{\mathrm{OUT}}}{\mathrm{~g}_{\mathrm{MV}} \times \mathrm{G}_{\mathrm{MOD}}}
$$

where V_{FB} is equal to 0.6 V .
Determine C_{C} by selecting the desired first system zero, $\mathrm{f}_{\mathrm{Z} 1}$, based on the desired phase margin. Typically, setting $\mathrm{f}_{\mathrm{Z} 1}$ below $1 / 5$ th of f CO provides sufficient phase margin.

$$
f_{Z 1}=\frac{1}{2 \pi \times C_{C} R_{C}} \leq \frac{f_{C O}}{5}
$$

Therefore:

$$
\mathrm{C}_{\mathrm{C}} \geq \frac{5}{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{R}_{\mathrm{C}}}
$$

If the ESR output zero is located at less than one-half the switching frequency, use the (optional) secondary compensation capacitor, C_{C}, to cancel it, as follows:

$$
\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} R_{\mathrm{C}}}=\mathrm{f}_{\mathrm{P} 3}=\mathrm{f}_{\mathrm{Z} 2}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{OUT}} \mathrm{ESR}}
$$

therefore:

$$
\mathrm{C}_{\mathrm{CC}}=\frac{\mathrm{C}_{\mathrm{OUT}} \times \mathrm{ESR}}{\mathrm{R}_{\mathrm{C}}}
$$

If the ESR zero exceeds $1 / 2$ the switching frequency, use the following equation:

$$
\mathrm{f}_{\mathrm{P} 3}=\frac{1}{2 \pi \times \mathrm{C}_{\mathrm{CC}} \mathrm{R}_{\mathrm{C}}}=\frac{\mathrm{f}}{\mathrm{SW}} 2
$$

therefore:

$$
\mathrm{C}_{\mathrm{CC}}=\frac{2}{2 \pi \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{R}_{\mathrm{C}}}
$$

Overall C_{C} detracts from the overall system phase margin. Place this third pole well beyond the desired crossover frequency to minimize the interaction with the system loop response at crossover. Ignore C_{CC} in these calculations if C_{CC} is smaller than 10 pF .

Power Dissipation

The IC is available in a 20-bump WLP package and can dissipate up to 1.27 W at $+70^{\circ} \mathrm{C}$ board temperature. When the die temperature exceeds $+155^{\circ} \mathrm{C}$, the thermal-shutdown protection is activated. See the Thermal Shutdown Protection section.

Layout Procedure

Careful PCB layout is critical to achieve clean and stable operation. It is highly recommended to duplicate the MAX15109 evaluation kit layout for optimum performance. If deviation is necessary, follow these guidelines for good PCB layout:

1) Connect input and output capacitors to the power ground plane.
2) Place bypass capacitors as close to IN and the softstart capacitor as close to SS as possible.
3) Keep the high-current paths as short and wide as possible. Keep the path of switching current short and minimize the loop area formed by LX, the output capacitors, and the input capacitors.
4) Connect IN, LX, and PGND separately to a large copper area to help cool the IC to further improve efficiency.
5) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close as possible to the IC.
6) Route high-speed switching nodes (such as LX) away from sensitive analog areas (such as FB, COMP, SGND, and SS).

Typical Application Circuit

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX15109EWP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BiCMOS Step-Down Switching Regulator with VID Control

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 11$	Initial release	-
1	$8 / 11$	Updated Package Thermal Characteristics, Electrical Characteristics, Bump Descrip- tion, and Typical Application Circuit	$2,3,8,16,17$
2	$1 / 13$	Updated the General Description and Detailed Description sections. Removed TOC08 and TOC10a, Skip Mode Operation and Skip Mode Frequency and Output Ripple sec- tions, and Figure 3	$1,5,10-11$, 13,15
3	$2 / 13$	Updated Functional Diagram	9

