# Evaluates: MAX16731

# MAX16731 Evaluation Kit

# **General Description**

The MAX16731 evaluation kit (EV kit) is a reference design platform designed for evaluation of the MAX16731, a single-output POL regulator with on-chip bias LDO that integrates full control circuitry and a power train that can provide up to 30A to the load. The EV kit package comprises a fully assembled and tested multilayer PCB implementation of high efficiency and high-power density solution.

The selection of key converter configuration parameters, acting on one external resistor and jumpers, allows design flexibility to match several application scenario requirements.

Refer to the MAX16731 IC data sheet for detailed information regarding the *Description*, *Features*, *Benefits*, and *Parameters*.

MAX16731 EV Kit Board Photos

#### Features

- Wide 2.7V to 16V Input Voltage Range
- High Efficiency and Power Density
- 0.5V to 5.8V V<sub>OUT</sub> (Selectable through Resistor Divider)
- Selectable: PWM Frequency, OCP Threshold, DEM Feature, DCM Mode, Voltage Loop Gain and Switching frequency (through jumpers)
- Low Component Count
- Proven PCB Layout
- Fully Assembled and Tested for Basic Functionality

Ordering Information appears at end of data sheet.

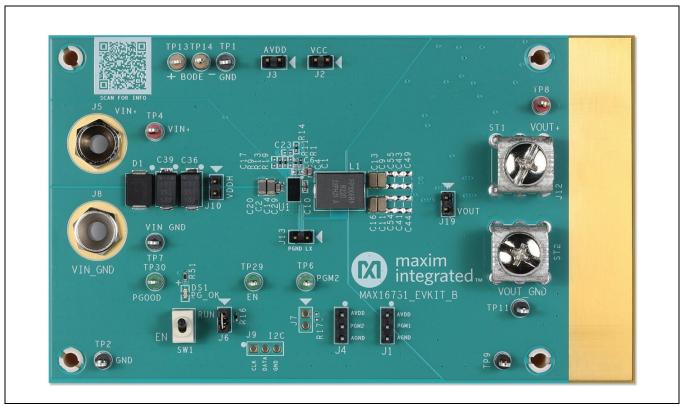



Figure 1. Top view of the MAX16731 EV kit



### Evaluates: MAX16731

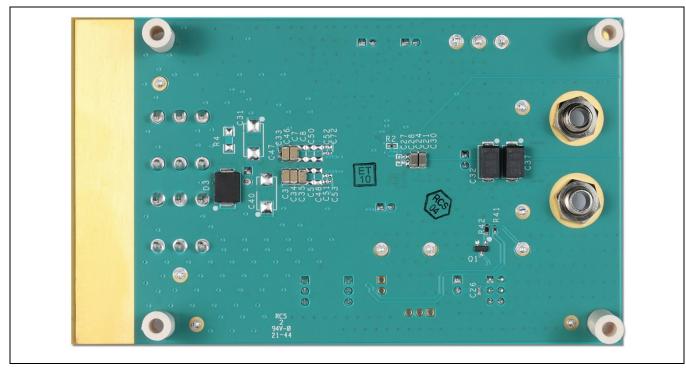



Figure 2. Bottom view of the MAX16731 EV kit

### Quick Start

#### **Required Equipment**

- MAX16731 EV kit and EV kit datasheet
- 2.7V to 16V V<sub>IN</sub> power supply (10A minimum current capability)
- Measure instruments E.g. Digital Voltage and Current meters
- Multi-trace digital scope (not mandatory)
- Low voltage 30A Electronic load

#### Procedure

The EV kit is fully assembled and tested. Make the required hardware connections to the start operation of the EV kit. **Note:** Do not supply  $V_{IN}$  until the board has been correctly configured and with input and output cables connected. Follow the steps to verify basic board operations and to run the EV kit.

- Setup V<sub>IN</sub> powers supply at a voltage level between 2.7V and 16V. Disable the power supply output. Connect the positive and negative terminal of the V<sub>IN</sub> power supply to the board using suitable section cables and equipped with male banana plugs. (J5 + V<sub>IN</sub>, J8 GND).
- Verify that the position of each jumper on the board is correct according to the Configuration that needs to be tested (See <u>Table 1</u> for Jumpers and Rprog options).
- 3. Connect the electronic load to the output screw connectors, respecting the polarity (if you want to test the regulator behavior under load). Disable the load. (ST1, +V<sub>OUT</sub>, ST2 GND).
- 4. Connect all the measurement instruments or scope probes to the targeted test points to measure current or voltage, or to observe operating waveforms (See <u>MAX16731 EV Kit Schematic Diagram</u>).
- 5. Supply V<sub>IN</sub>.
- 6. Enable the regulator through the EN switch SW1 (PWM starts).
- 7. Enable your load.

Note: Steps 5-7 are not subjected to sequence limitations.

www.analog.com

## **Evaluates: MAX16731**

#### **Detailed Description of Hardware**

#### Operation

The MAX16731 IC is a monolithic, single-output, high-frequency, step-down converter with internal bias LDO, optimized for applications requiring high-power density and high-efficiency. Detailed product and application information is provided in the MAX16731 IC datasheet.

#### **Output Enable (OE)**

OE pin is used to enable/disable the operation and so the output voltage. On the EV kit board, the selection switch SW1 is present to allow enabling and disabling the regulator.

#### **Output Voltage selection**

The MAX16731 has an internal 0.5V reference voltage. The MAX16731, 30A, integrated step-down switching regulator performs a differential  $V_{OUT}$  voltage sense to improve regulation at high load current. When the desired output voltage is higher than 0.5V, it is required to use a resistor divider R<sub>13</sub> and R<sub>9</sub> to sense the output voltage. (See <u>MAX16731 EV Kit Schematic Diagram</u>). The resistor divider ratio is given by Equation 1.

#### Equation 1:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{\text{R13}}{R9}\right)$$

where:

 $V_{OUT}$  = Output voltage  $V_{REF}$  = 0.5V fixed reference voltage  $R_{13}$  = Top divider resistor  $R_9$  = Bottom divider resistor

Note: It is recommended for R9, not to exceed  $5K\Omega$ .

#### Test points

J2 and J3 headers, respectively VCC and AVDD are intended as test points to measure the two bias voltages. VCC is provided by the on-chip LDO, AVDD (power IC internal analog blocks supply) is derived from VCC through a simple RC filter. J10 and J13 are respectively VDDH and LX test points that can be used for waveforms measurements. J2, J3, J10, and J13 must be left open if not connected to any external measurement instrument. TP13, TP14, TP1 are three test points dedicated for Bode plot acquisition. A  $10\Omega$  resistor is in series into the feedback line and provides an input port to inject the sweep frequency signal generated by a Bode plot equipment, through a decoupling transformer.

#### User case selection

The MAX16731 gives the flexibility to set application parameters acting on the value of one resistor (R2, connected on PGM0 pin) and the logic level of PGM1 and PGM2 at the power-up. See <u>Table 2</u> for setting the value of the resistor on PGM0, a 32-level code reading capability allows selecting both the switching frequency of the converter and the voltage control loop gain, selecting through six scenario configurations (A, B, C, D, E, and F) see <u>Table 4</u>.

PGM1 and PGM2 can recognize only a three-level setting, instead (AVDD, AGND, Hi-impedance). See <u>Table 3</u> to set the position of J1 and J4, allowing to select of the wanted OCP (over current protection) threshold level and the option to allow the converter to work into auto DCM (Discontinuous Current Mode) at light load.

**Note:** PGM0 resistor, PGM1, and PGM2 logic level are detected only one time at the power-on reset. Moving the jumpers while the bias is present won't affect any of the parameters.

|               | •                              |                                       |
|---------------|--------------------------------|---------------------------------------|
| JUMPERS/Rprog | POSSIBLE CONNECTION/VALUE      | FEATURE                               |
| J1            | Open, (Short 1-2), (Short 2,3) | OCP levels and DCM options            |
| J2            | Open, (Short 1-2), (Short 2,3) | OCP levels and DCM options            |
| R2            | 95.3Ω to 115.000Ω              | f <sub>SW</sub> and scenario settings |

#### Table 1. Jumpers and Rprog options

Note: See <u>Table 2</u>, <u>Table 3</u>, and <u>Table 4</u> for more details.

# Evaluates: MAX16731

#### **PGM0 Factory settings**

The MAX16731 EV kit comes pre-assembled as follows:

• R2 on PGM0, 95.3Ω. (f<sub>SW</sub> = 500Khz, Scenario A selected. See <u>Table 4</u> for Scenario Details)

The value of R2 selects the switching frequency and on of the six scenarios (A, B, C, D, E, F)

#### Table 2. PGM0 codes selection

| PGM0 CODES | R(Ω)   | fsw (kHz) | Scenario |
|------------|--------|-----------|----------|
| 0          | 95.3   |           | А        |
| 1          | 200    |           | В        |
| 2          | 309    |           | С        |
| 3          | 422    | 500       | D        |
| 4          | 536    |           | E        |
| 5          | 649    |           | F        |
| 6          | 768    |           | А        |
| 7          | 909    |           | В        |
| 8          | 1050   |           | С        |
| 9          | 1210   | 600       | D        |
| 10         | 1400   |           | E        |
| 11         | 1620   |           | F        |
| 12         | 1870   |           | А        |
| 13         | 2150   |           | В        |
| 14         | 2490   | 750       | С        |
| 15         | 2870   | 750       | D        |
| 16         | 3740   |           | E        |
| 17         | 8060   |           | F        |
| 18         | 12400  |           | А        |
| 19         | 16900  |           | В        |
| 20         | 21500  | 1000      | С        |
| 21         | 26100  | 1000      | D        |
| 22         | 30900  |           | E        |
| 23         | 36500  |           | F        |
| 24         | 42200  |           | А        |
| 25         | 48700  |           | В        |
| 26         | 56200  | 1200      | С        |
| 27         | 64900  |           | D        |
| 28         | 75000  |           | E        |
| 29         | 86600  |           | F        |
| 30         | 100000 | 4500      | А        |
| 31         | 115000 | 1500      | В        |

## **Evaluates: MAX16731**

#### PGM1 and PGM2 settings

PGM1 and PGM2 are two selection pins tri state sensitive. These pins can be connected to VCC, GND or left open acting respectively on the jumpers named as J1 and J4. <u>Table 3</u> shows the selection of DCM mode and OCP level (over current protection level) according to the position of J1 and J4.

#### Table 3. PGM1 and PGM2 selection

| PGM1 CONNECTION | PGM2 CONNECTION | DCM     | OCP (A) | PGM 1 AND 2 CODE |
|-----------------|-----------------|---------|---------|------------------|
|                 | OPEN            | Disable | 00      | 0                |
| OPEN            | AGND            | Enable  | - 38    | 1                |
|                 | AVDD            | Disable | 28      | 2                |
|                 | OPEN            | Enable  | 38      | 3                |
| AGND            | AGND            | Disable |         | 4                |
|                 | AVDD            | Enable  |         | 5                |
|                 | OPEN            | Disable |         | 6                |
| AVDD            | AGND            | Enable  | 28      | 7                |
|                 | AVDD            | Disable | 33      | 8                |

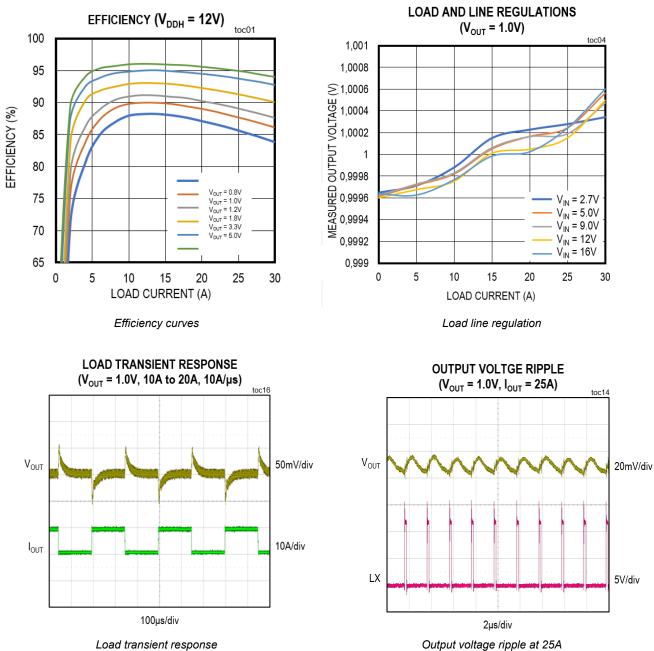
See <u>Table 4</u> for the R<sub>VGA</sub> value, that fix the gain in the con voltage control loop, according to the selected scenario.

The value of the voltage control loop gain can be calculated as:

$$V_{GAIN} = \left(\frac{\mathrm{R}_{\mathrm{VGA}}}{10K\Omega}\right)$$

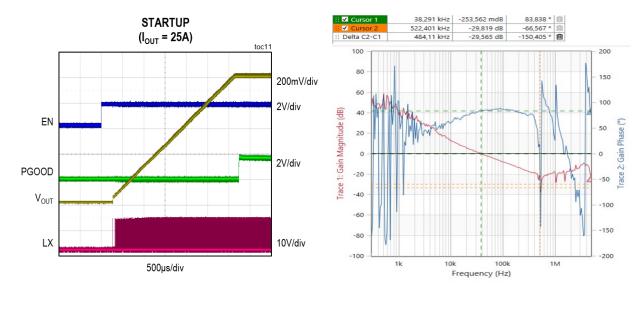
So, it can assume values from 1.57 to 6.23.

#### Table 4. Voltage loop gain and DEM status according to the scenario selection


| SCENARIO | R <sub>VGA</sub> (ΚΩ) | DEM STATUS |
|----------|-----------------------|------------|
| А        | 15.7                  | Enabled    |
| В        | 22.7                  | Enabled    |
| С        | 31.3                  | Enabled    |
| D        | 44.8                  | Disabled   |
| E        | 52.9                  | Disabled   |
| F        | 62.3                  | Disabled   |

The voltage loop gain resistance affects the bandwidth of the voltage loop. For good stability and transient response, the equivalent voltage loop bandwidth is recommended to be set lower than 1/5th of the switching frequency.

Refer to the MAX16731 IC datasheet for detailed calculation of the bandwidth, function of voltage feedback resistor divider ratio, and amount of output capacitance.


## Evaluates: MAX16731

## MAX16731 EV Kit Performances Chart (TOC)



Output voltage ripple at 25A

# Evaluates: MAX16731



Soft start

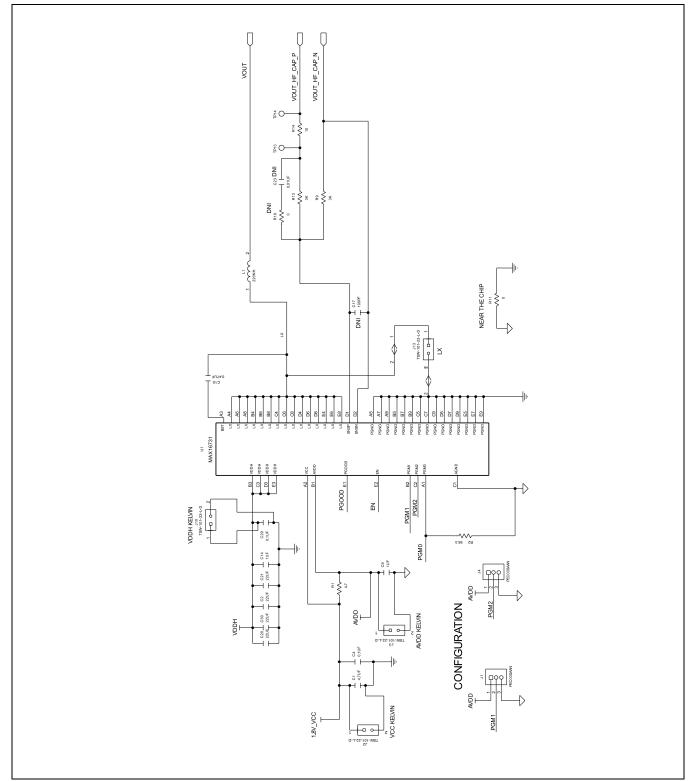
Bode Plot

### **Ordering Information**

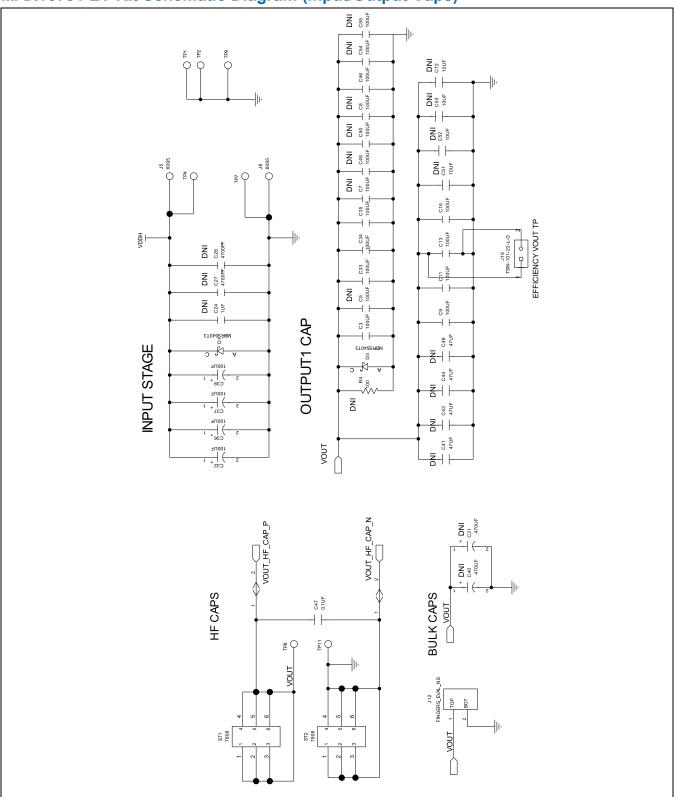
| PART           | TYPE   |  |  |
|----------------|--------|--|--|
| MAX16731EVKIT# | EV Kit |  |  |

#Denotes RoHS compliance.

# Evaluates: MAX16731


## MAX16731 EV Kit Bill of Materials

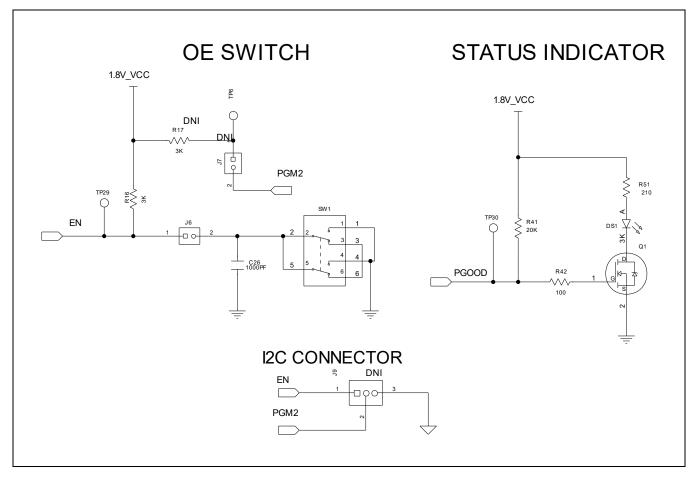
| REF DES                                      | QTY | MFG PART#                                                    | MANUFACTURER                          | VALUE      | DESCRIPTION                  |  |
|----------------------------------------------|-----|--------------------------------------------------------------|---------------------------------------|------------|------------------------------|--|
| C1                                           | 1   | GMC10X7R475K6R3NT,<br>CL10B475KQ8NQN,<br>JMK107BB7475KA,     | SAMSUNG,<br>TAIYO YUDEN,<br>CAL- CHIP | 4,7uF/6,3v | CERAMIC CAP, SMT(0603)       |  |
| C2, C20,<br>C21, C30                         | 4   | CL31X226KAHN3N,<br>GRM31CC81E226KE11                         | SAMSUNG,<br>MURATA                    | 22uF/25v   | CERAMIC CAP, SMT(1206)       |  |
| C3, C9, C11,<br>C13, C16,<br>C33-C35,<br>C46 | 9   | GRM31CD80J107ME39                                            | MURATA                                | 100uF/6,3v | CERAMIC CAP, SMT(1206)       |  |
| C4                                           | 1   | GRM155R70J104KA01                                            | MURATA                                | 0,1uF/6,3v | CERAMIC CAP, SMT(1206)       |  |
| C6                                           | 1   | CL05B105KQ5NQNC,<br>GRM155R70J105KA12                        | SAMSUNG,<br>MURATA                    | 1uF/6,3v   | CERAMIC CAP, SMT(0402)       |  |
| C10                                          | 1   | LMK105B7474KV,<br>GRM155R71A474KE01                          | TAIYO YUDEN,<br>MURATA                | 0,47uF/10v | CERAMIC CAP, SMT(0402)       |  |
| C14                                          | 1   | TMK107B7105KA,<br>C1608X7R1E105K080AE                        | TAIYO YUDEN,<br>TDK                   | 1uF/25v    | CERAMIC CAP, SMT(0603)       |  |
| C26                                          | 1   | C0402C102K5GAC                                               | KEMET                                 | 1000pF     | CERAMIC CAP, SMT(0603)       |  |
| C29, C47                                     | 2   | GRM155R71E104KE14,<br>C1005X7R1E104K050BB,<br>TMK105B7104KVH | MURATA,<br>TDK,<br>TAIYO YUDEN        | 0,1uF/25v  | CERAMIC CAP, SMT(0402)       |  |
| C32, C36,<br>C37, C39                        | 4   | T521X107M025ATE060                                           | KEMET                                 | 100uF/25v  | TANTALUM, SMT(7343)          |  |
| D1, D3                                       | 2   | MBRS540T3G                                                   | ON-SEMICONDUCTOR                      | —          | SCHOTTKY DIODE               |  |
| DS1                                          | 1   | LGL29K-G2J1-24-Z                                             | OSRAM                                 | —          | GREEN LED                    |  |
| J1, J4                                       | 2   | PEC03SAAN                                                    | SULLINS CONNECTOR                     | 3 PIN      | MALE THROUGHT HOLE CONN.     |  |
| J2, J3, J6,<br>J10, J13,<br>J19              | 6   | TSW-101-22-L-D                                               | SAMTEC                                | 2 PIN      | MALE THROUGHT HOLE<br>HEADER |  |
| J5, J8                                       | 2   | 6095                                                         | KEISTONE                              | 1 PIN      | PANELMOUNT FEMALE            |  |
| L1                                           | 1   | FP1008R5-R220-R                                              | EATON                                 | 220nH      | FERRITE INDUCTOR             |  |
| Q1                                           | 1   | BSS138                                                       | ONSEMI                                | —          | LOGIC LEVEL NMOS             |  |
| R1                                           | 1   | CRCW04024R70FK                                               | VISHAY DALE                           | 4,7ohm     | RESISTOR SMT(0402)           |  |
| R2                                           | 1   | CRCW040295R3FK                                               | VISHAY DALE                           | 95,3ohm    | RESISTOR SMT(0402)           |  |
| R9, R13,<br>R16                              | 3   | CRCW04023K00FK                                               | VISHAY DALE                           | 3Kohm      | RESISTOR SMT(0402)           |  |
| R11                                          | 1   | RC0402JR-070RL                                               | YAGEO                                 | 0ohm       | RESISTOR SMT(0402)           |  |
| R14                                          | 1   | 9C04021A10R0FL                                               | YAGEO                                 | 10ohm      | RESISTOR SMT(0402)           |  |
| R41                                          | 1   | CRCW040220K0FK                                               | VISHAY DALE                           | 20Kohm     | RESISTOR SMT(0402)           |  |
| R42                                          | 1   | RC0603FR-07100RL                                             | YAGEO                                 | 100ohm     | RESISTOR SMT(0603)           |  |
| R51                                          | 1   | ERJ-3EKF2100                                                 | PANASONIC                             | 210ohm     | RESISTOR SMT(0603)           |  |


| ST1, ST2                             | 2   | 7808                                  | KEYSTONE            | _          | SCREW TERMINAL               |
|--------------------------------------|-----|---------------------------------------|---------------------|------------|------------------------------|
| SW1                                  | 1   | GT21MCBE                              | C&K COMPONENS       | _          | THROUGH HOLE SWITCH          |
| TP1, TP2,<br>TP7, TP9,<br>TP11       | 5   | 5011                                  | KEYSTONE            | _          | TEST POINT                   |
| TP6, TP29,<br>TP30                   | 3   | 5010                                  | KEYSTONE            | _          | TEST POINT                   |
| TP13, TP14                           | 2   | 5012                                  | KEYSTONE            | _          | TEST POINT                   |
| U1                                   | 1   | MAX16731AVX+                          | ANALOG DEVICE       | _          | POL REGULATOR (WLP45)        |
| C5, C7, C8,<br>C48, C50,<br>C54, C55 | DNP | GRM31CD80J107ME39                     | MURATA              | 100uF/6,3v | CERAMIC CAP, SMT(1206)       |
| C17                                  | DNP | VJ0402A101FXJCW1BC                    | VISHAY              | 100pF      | CERAMIC CAP, SMT(0402)       |
| C23                                  | DNP | C0402C103J3RAC                        | KEMET               | 0,01uF/25v | CERAMIC CAP, SMT(0402)       |
| C24                                  | DNP | TMK107B7105KA,<br>C1608X7R1E105K080AE | TAIYO YUDEN,<br>TDK | 1uF/25v    | CERAMIC CAP, SMT(0603)       |
| C27, C28                             | DNP | GRM155R71E472KA01                     | MURATA              | 4700pF/25v | CERAMIC CAP, SMT(0402)       |
| C31, C40                             | DNP | T491X477K010AT                        | KEMET               | 470uF/10v  | TANTALUM, SMT(7343)          |
| C41, C43,<br>C44, C49                | DNP | T491X477K010AT                        |                     |            |                              |
| C51, C53,<br>C72                     | DNP | CL31X476KQHNNN                        | SAMSUNG             | 47uF/6,3v  | CERAMIC CAP, SMT(1206)       |
| J7                                   | DNP | TSW-101-22-L-D                        | SAMTEC              | 2 PIN      | MALE THROUGHT HOLE<br>HEADER |
| J9                                   | DNP | PEC03SAAN                             | SULLINS             | 3 PIN      | MALE THROUGHT HOLE<br>HEADER |
| R4                                   | DNP | ERJ-P08J101                           | PANASONIC           | 10ohm      | RESISTOR SMT(1206)           |
| R17                                  | DNP | CRCW04023K00FK                        | VISHAY              | 3Kohm      | RESISTOR SMT(0402)           |
| R19                                  | DNP | RC0402JR-070RL                        | YAGEO               | 0ohm       | RESISTOR SMT(0402)           |

Evaluates: MAX16731

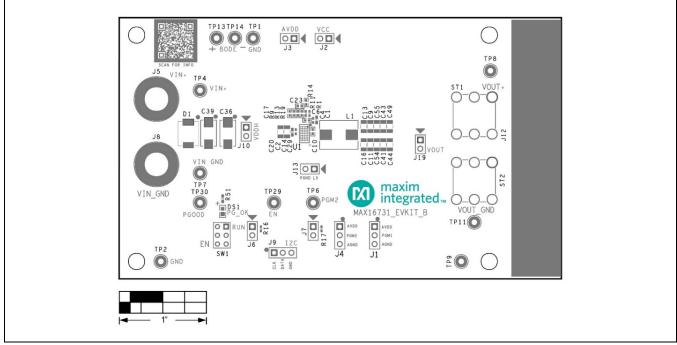
# MAX16731 EV Kit Schematic Diagram



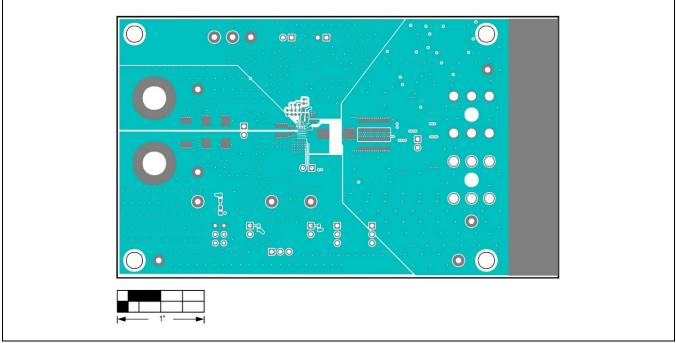

# Evaluates: MAX16731



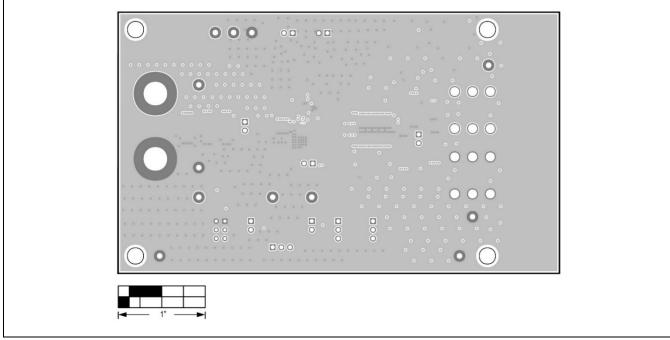
### MAX16731 EV Kit Schematic Diagram (Input/Output Caps)


Evaluates: MAX16731

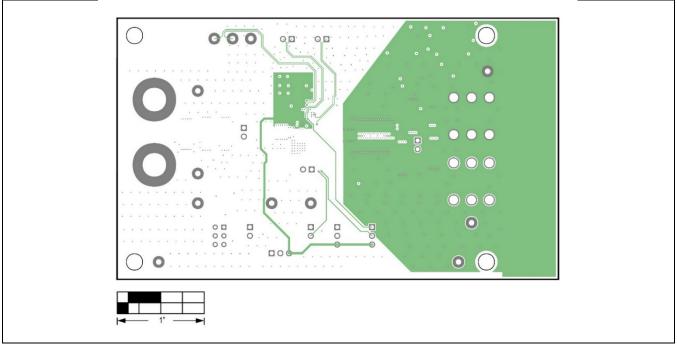
### MAX16731 EV Kit Schematic (EN switch, PGOOD indicator)



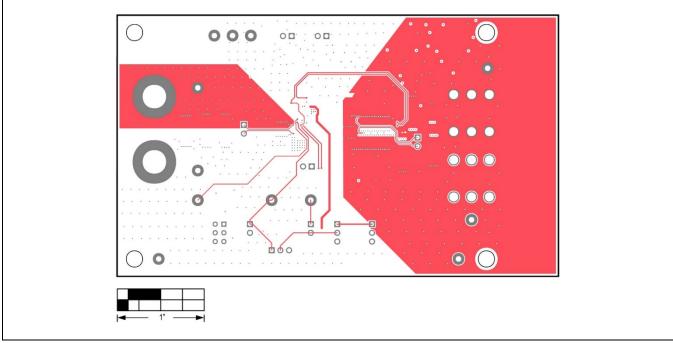

## Evaluates: MAX16731


### MAX16731 EV Kit PCB Layout Diagrams

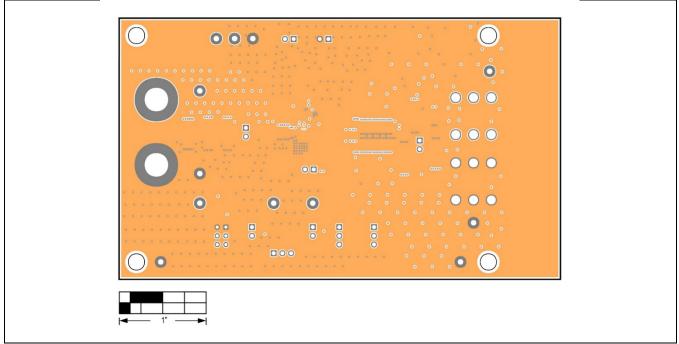



MAX16731 EV kit Component Placement Guide—Top Silkscreen

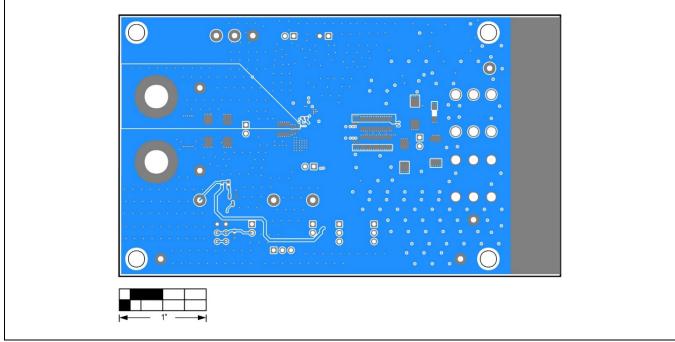



MAX16731 EV kit PCB Layout—Top View

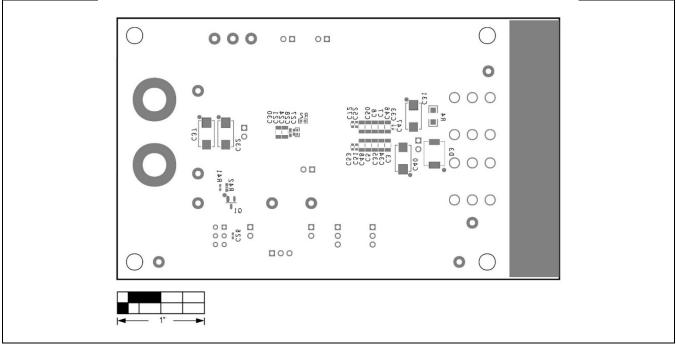



MAX16731 EV Kit PCB Layout—Layer 2




MAX16731 EV Kit PCB Layout—Layer 3




MAX16731 EV Kit PCB Layout—Layer 4



MAX16731 EV Kit PCB Layout—Layer 5



MAX16731 EV Kit PCB Layout—Bottom View



MAX16731 EV kit Component Placement Guide—Silkscreen Bottom

## **Evaluates: MAX16731**

#### **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION     | PAGES<br>CHANGED |
|--------------------|------------------|-----------------|------------------|
| 0                  | 04/22            | Initial release | _                |



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.