Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

General Description

The MAX16809 is an integrated, high-efficiency white or RGB LED driver. It is designed for LCD backlighting and other LED lighting applications with multiple strings of LEDs. The MAX16809's current-mode PWM controller regulates the necessary voltage to the LED array. Depending on the input voltage and LED voltage range, this device can be used with boost or buck-boost (SEPIC) topologies.
The MAX16809 LED driver includes 16 open-drain, constant-current-sinking LED driver outputs rated for 36V continuous operation. The LED current-control circuitry achieves $\pm 3 \%$ current matching among strings and enables paralleling of outputs for LED string currents higher than 55mA. The output-enable pin is used for simultaneous PWM dimming of all output channels. Dimming frequency range is 50 Hz to 30 kHz and dimming ratio is up to $5000: 1$. The constant-current outputs are single resistor programmable and the LED current can be adjusted up to 55 mA per output channel.
The MAX16809 operates either in stand-alone mode or with a microcontroller ($\mu \mathrm{C}$) using an industry-standard, 4-wire serial interface.
The MAX16809 includes overtemperature protection, operates over the full $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, and is available in a $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ thermally enhanced, 38-pin TQFN exposed pad package.

Pin Configuration appears at end of data sheet.

Typical Operating Circuits

Features

- 16 Constant-Current Output Channels (Up to 55 mA Each)
- $\pm 3 \%$ Current Matching Among Outputs
- Paralleling Channels Allows Higher Current per LED String
- Outputs Rated for 36V Continuous Voltage
- Output-Enable Pin for PWM Dimming (Up to 30 kHz)
- One Resistor Sets LED Current for All Channels
- Wide Dimming Ratio Up to 5000:1
- Low Current-Sense Reference (300mV) for High Efficiency
- 8 V to 26.5 V Input Voltage or Higher with External Biasing Devices
- 4-Wire Serial Interface to Control Individual Output Channels

Applications

- LCD White or RGB LED Backlighting:

LCD TVs, Desktop, and Notebook Panels Industrial and Medical Displays

- Ambient, Mood, and Accent Lighting

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX16809ATU +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	38 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Absolute Maximum Ratings

	+30V
Current into $\mathrm{V}_{C C}\left(\mathrm{~V}_{C C}>24 \mathrm{~V}\right)$	30 mA
V+ to PGND	-0.3V to +6V
OUT to AGND.	-0.3V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
OUT Current ($10 \mu \mathrm{~s}$ duration)	$\pm 1 \mathrm{~A}$
FB, COMP, CS, RTCT, REF to AGND	-0.3V to +6V
COMP Sink Current	10 mA
OUT0-OUT15 to PGND.	-0.3V to +40V
DIN, CLK, LE, $\overline{O E}$, SET to PGND	-0.3V to (V++0.3V)

OUT0-OUT15 Sink Current .. 60 mA
Total PGND Current (1s pulse time) 960 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
38 -Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}^{*}$ above $+70^{\circ} \mathrm{C}$)..... 2857 mW
Operating Temperature Range......................... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
*Per JEDEC51 Standard (Multilayer Board).

Stresses beyond those listed under "bsolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics (PWM Controller)

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=+3 \mathrm{~V}\right.$ to +5.5 V referenced to $\mathrm{PGND}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{REF}=$ open, $\mathrm{COMP}=$ open, $\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}$, $C S=A G N D, A G N D=P G N D=0 \mathrm{~V}$; all voltages are measured with respect to $A G N D$, unless otherwise noted. $\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE						
Output Voltage	$V_{\text {REF }}$	$\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	4.95	5	5.05	V
Line Regulation	$\Delta \mathrm{V}_{\text {LINE }}$	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$, $\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$		0.4	4	mV
Load Regulation	$\Delta \mathrm{V}_{\text {LOAD }}$	$1 \mathrm{~mA}<\mathrm{I}_{\text {REF }}<20 \mathrm{~mA}$		6	50	mV
Total Output-Voltage Variation	$V_{\text {REFT }}$	(Note 2)	4.875		5.125	V
Output Noise Voltage	$\mathrm{V}_{\text {NOISE }}$	$10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}$		50		$\mu \mathrm{V}$
Output Short-Circuit Current	ISHORT	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	30		180	mA
OSCILLATOR						
Initial Accuracy		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	51	54	57	kHz
Voltage Stability		$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		0.2	0.5	\%
Temperature Stability				1		\%
RTCT Ramp Peak-to-Peak				1.7		V
RTCT Ramp Valley				1.1		V
Discharge Current	IDIS	$\mathrm{V}_{\text {RTCT }}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	7.9	8.3	8.7	mA
		$\mathrm{V}_{\text {RTCT }}=2 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$	7.5	8.3	9.0	
Frequency Range	fosc		20		1000	kHz
ERROR AMPLIFIER						
FB Input Voltage	$V_{\text {FB }}$	FB shorted to COMP	2.45	2.5	2.55	V
Input Bias Current	${ }^{1}$ B(FB)			-0.01	-0.1	$\mu \mathrm{A}$
Open-Loop Gain	Avol	$2 \mathrm{~V} \leq \mathrm{V}_{\text {COMP }} \leq 4 \mathrm{~V}$		100		dB
Unity-Gain Bandwidth	$\mathrm{f}_{\text {GBW }}$			1		MHz
Power-Supply Rejection Ratio	PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$	60	80		dB
COMP Sink Current	ISINK	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=1.1 \mathrm{~V}$	2	6		mA
COMP Source Current	IsOURCE	$\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=5 \mathrm{~V}$	0.5	1.2	1.8	mA
COMP Output-Voltage High	V_{OH}	$\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{COMP}}=15 \mathrm{k} \Omega$ to AGND	5	5.8		V
COMP Output-Voltage Low	V_{OL}	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{COMP}}=15 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{REF}}$		0.1	1.1	V

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Electrical Characteristics (PWM Controller) (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=+3 \mathrm{~V}\right.$ to +5.5 V referenced to $\mathrm{PGND}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{REF}=$ open, $\mathrm{COMP}=$ open, $\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}$, $C S=A G N D, A G N D=P G N D=0 V$; all voltages are measured with respect to AGND, unless otherwise noted. $T_{J}=T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CURRENT-SENSE AMPLIFIER							
Current-Sense Gain	$\mathrm{A}_{\text {CS }}$	(Notes 3, 4)		2.85	3	3.40	V/V
Maximum Current-Sense Signal	VCS_MAX	(Note 3)		0.275	0.300	0.325	V
Power-Supply Rejection Ratio	PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$			70		dB
Current-Sense Input Bias Current	ICS	$\mathrm{V}_{\text {COMP }}=0 \mathrm{~V}$			-1	-2.5	$\mu \mathrm{A}$
Current Sense to OUT Delay	tpWM	50 mV overdrive			60		ns
MOSFET DRIVER							
OUT Low-Side On-Resistance	VRDS_ONL	$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 2)		4.5	10	Ω
			$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		4.5	12	
OUT High-Side On-Resistance	VRDS_ONH	$\begin{aligned} & \text { ISOURCE = } \\ & 100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 2)		3.5	7.5	Ω
			$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		3.5	10	
Source Current (Peak)	IsOURCE	$C_{\text {LOAD }}=10 \mathrm{nF}$		2			A
Sink Current (Peak)	ISINK	$C_{\text {LOAD }}=10 \mathrm{nF}$		1			A
Rise Time	t_{R}	$\mathrm{C}_{\text {LOAD }}=1 \mathrm{nF}$		15			ns
Fall Time	t_{F}	$C_{\text {LOAD }}=1 \mathrm{nF}$		22			ns
UNDERVOLTAGE LOCKOUT/STARTUP							
Startup Voltage Threshold	$V_{\text {CC_START }}$			7.98	8.4	8.82	V
Minimum Operating Voltage After Turn-On	VCC_MIN			7.1	7.6	8.0	V
Undervoltage-Lockout Hysteresis	UVLOHYST				0.8		V
PULSE-WIDTH MODULATION (PWM)							
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$			94.5	96	97.5	\%
Minimum Duty Cycle	$\mathrm{D}_{\text {MIN }}$					0	\%
SUPPLY CURRENT							
Startup Supply Current	ISTART	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$			32	65	$\mu \mathrm{A}$
Operating Supply Current	ICC	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}$			3	5	mA
V_{CC} Zener Voltage	V_{Z}	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$		24	26.5		V

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Electrical Characteristics (LED Driver)

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to +5.5 V , AGND $=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND, unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at TA $=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+		3.0		5.5	V
Output Voltage	VOUT-_				36	V
Standby Current (Interface Idle, All Output Ports High Impedance)		$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=360 \Omega, \text { DIN, LE, CLK }=\text { PGND or } \mathrm{V}+\text {, } \\ & \overline{\mathrm{OE}}=\mathrm{V}+, \text { DOUT unconnected } \end{aligned}$		3.6	4.5	mA
Standby Current (Interface Active, All Output Ports High Impedance)		$\mathrm{R}_{\mathrm{SET}}=360 \Omega, \mathrm{f} \text { CLK }=5 \mathrm{MHz}, \overline{\mathrm{OE}}=\mathrm{V}+\text {, }$ DIN, LE = PGND or V+, DOUT unconnected		3.8	4.8	mA
Supply Current (Interface Idle, All Output Ports Active Low)	+	$R_{S E T}=360 \Omega, \overline{O E}=$ PGND, DIN, LE = V+, DOUT unconnected		30	52.5	mA
INTERFACE (DIN, CLK, DOUT, LE, $\overline{\text { OE) }}$						
Input-Voltage High (DIN, CLK, LE, $\overline{\text { OE }}$)	V_{IH}		$\begin{gathered} 0.7 \\ \times \mathrm{V}+ \end{gathered}$			V
Input-Voltage Low (DIN, CLK, LE, $\overline{O E}$)	VIL				$\begin{gathered} 0.3 \\ \times V+ \end{gathered}$	V
Hysteresis Voltage (DIN, CLK, LE, $\overline{\mathrm{OE}}$)	$\mathrm{V}_{\mathrm{HYST}}$			0.8		V
Input Leakage Current (DIN, CLK)	ILEAK		-1		+1	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {OE }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{PGND}$	0.25	1.5	25	$\mu \mathrm{A}$
LE Pulldown Current to PGND	lLE	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{LE}=\mathrm{V}+$	0.25	1.5	25	$\mu \mathrm{A}$
Output-Voltage High (DOUT)	V_{OH}	ISOURCE $=4 \mathrm{~mA}$	$\begin{gathered} V+ \\ -0.5 \mathrm{~V} \end{gathered}$			V
Output-Voltage Low (DOUT)	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {SINK }}=4 \mathrm{~mA}$			0.5	V
OUT__ Output Current	lout_-	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=360 \Omega \end{aligned}$	43.25	47.5	51.75	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=1 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{SET}}=360 \Omega \end{aligned}$	40		55	
OUT__ Leakage Current		$\overline{\mathrm{OE}}=\mathrm{V}+$			1	$\mu \mathrm{A}$

5V Timing Characteristics

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND , unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,5)

PARAMETER	SYMBOL	CONDITION	MIN	TYP MAX	UNITS
INTERFACE TIMING CHARACTERISTICS					
CLK Clock Period	t_{CP}		40		ns
CLK Pulse-Width High	${ }^{\text {t }}$ CH		19		ns
CLK Pulse-Width Low	${ }^{\text {t }}$ CL		19		ns
DIN Setup Time	$t_{\text {DS }}$		4		ns
DIN Hold Time	${ }_{\text {t }}$ H		8		ns
DOUT Propagation Delay	t_{DO}		10	50	ns
DOUT Rise Time	$t_{\text {DR }}$	$C_{\text {DOUT }}=10 \mathrm{pF}, 20 \%$ to 80%		10	ns
DOUT Fall Time	$t_{\text {DF }}$	$C_{\text {DOUT }}=10 \mathrm{pF}, 80 \%$ to 20%		10	ns
LE Pulse-Width High	tLW		20		ns
LE Setup Time	tLS		15		ns
LE Rising to OUT__ Rising Delay	tLRR	(Note 6)		110	ns
LE Rising to OUT_ _ Falling Delay	tLRF	(Note 6)		340	ns
CLK Rising to OUT__ Rising Delay	${ }^{\text {t CRR }}$	(Note 6)		110	ns
CLK Rising to OUT__ Falling Delay	$\mathrm{t}_{\text {CRF }}$	(Note 6)		340	ns
$\overline{\text { OE Rising to OUT__ Rising Delay }}$	toer	(Note 6)		110	ns
$\overline{\text { OE Falling to OUT__ Falling Delay }}$	toef	(Note 6)		340	ns
OUT__ Turn-On Fall Time	$t_{\text {F }}$	80\% to 20\% (Note 6)		210	ns
OUT_ _ Turn-Off Rise Time	t_{R}	20\% to 80\% (Note 6)		130	ns

3.3V Timing Characteristics

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to $<+4.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND, unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,5)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
INTERFACE TIMING CHARACTERISTICS					
CLK Clock Period	t_{CP}		52		ns
CLK Pulse-Width High	t_{CH}		24		ns
CLK Pulse-Width Low	t_{CL}		24		ns
DIN Setup Time	tDS		4		ns
DIN Hold Time	$t_{\text {DH }}$		8		ns
DOUT Propagation Delay	too		12	70	ns
DOUT Rise Time	$t_{\text {DR }}$	$\mathrm{C}_{\text {DOUT }}=10 \mathrm{pF}, 20 \%$ to 80\%		12	ns
DOUT Fall Time	tDF	$\mathrm{C}_{\text {DOUT }}=10 \mathrm{pF}, 80 \%$ to 20%		12	ns
LE Pulse-Width High	tLW		20		ns
LE Setup Time	tLS		15		ns
LE Rising to OUT_ _ Rising Delay	tLRR	(Note 6)		140	ns
LE Rising to OUT__ Falling Delay	tLRF	(Note 6)		400	ns
CLK Rising to OUT__ Rising Delay	tCRR	(Note 6)		140	ns
CLK Rising to OUT__ Falling Delay	tCRF	(Note 6)		400	ns
$\overline{\text { OE Rising to OUT__ Rising Delay }}$	toER	(Note 6)		140	ns
$\overline{\text { OE Falling to OUT__ Falling Delay }}$	toEF	(Note 6)		400	ns
OUT_ _ Turn-On Fall Time	t_{F}	80\% to 20\% (Note 6)		275	ns
OUT__ Turn-Off Rise Time	t_{R}	20\% to 80\% (Note 6)		150	ns

Note 1: This device is 100% production tested at $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. Limits to $-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: Guaranteed by design, not production tested.
Note 3: Parameter is measured at trip point of latch with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$.
Note 4: Gain is defined as $\mathrm{A}=\Delta \mathrm{VCOMP} / \Delta \mathrm{VCS}, 0.05 \mathrm{~V} \leq \mathrm{VCS} \leq 0.25 \mathrm{~V}$.
Note 5: See Figures 3 and 4.
Note 6: A 65Ω pullup resistor is connected from OUT__ to 5.5 V . Rising refers to $\mathrm{V}_{\mathrm{OUT}_{-}}$when current through OUT_{-}is turned off and falling refers to $\mathrm{V}_{\text {OUT }}$ _ when current through OUT_{-}_ is turned on.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OPERATING SUPPLY CURRENT

reference voltage vs. REFERENCE LOAD CURRENT

(fosc $=\mathrm{fsw}=300 \mathrm{kHz}$)

reference voltage vs. SUPPLY VOLTAGE

OSCILLATOR $R_{T} / \mathrm{C}_{\boldsymbol{T}}$ DISCHARGE CURRENT
vs. TEMPERATURE

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=$ open, $\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE (INTERFACE IDLE, ALL OUTPUTS ON, RSET = 360 $)$

SUPPLY CURRENT vs. SUPPLY VOLTAGE (INTERFACE IDLE, ALL OUTPUTS ON, RSET $=720 \Omega$)

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,31,32 \\ 36,38 \end{gathered}$	N.C.	No Connection. Not internally connected. Leave unconnected.
2	FB	Error-Amplifier Inverting Input
3	COMP	Error-Amplifier Output
4-11	OUT8-OUT15	LED Driver Outputs. OUT8-OUT15 are open-drain, constant-current-sinking outputs rated for 36V.
12	$\overline{\mathrm{OE}}$	Active-Low, Output Enable Input. Drive $\overline{\mathrm{OE}}$ low to PGND to enable the OUT0-OUT15. Drive $\overline{\mathrm{OE}}$ high to disable OUT0-OUT15.
13	DOUT	Serial-Data Output. Data is clocked out of the 16-bit internal shift register to DOUT on CLK's rising edge.
14	SET	LED Current Setting. Connect R ${ }_{\text {SET }}$ from SET to PGND to set the LED current.
15	V+	LED Driver Positive Supply Voltage. Bypass V+ to PGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
16, 17	PGND	Power Ground
18	DIN	Serial-Data Input. Data is loaded into the internal 16-bit shift register on CLK's rising edge.
19	CLK	Serial-Clock Input
20	LE	Latch-Enable Input. Data is loaded transparently from the internal shift register(s) to the output latch(es) while LE is high. Data is latched into the output latch(es) on LE's falling edge, and retained while LE is low.
21-28	OUT0-OUT7	LED Driver Outputs. OUT0-OUT7 are open-drain, constant-current-sinking outputs rated for 36V.
29	RTCT	PWM Controller Timing Resistor/Capacitor Connection. A resistor R $_{T}$ from RTCT to REF and a capacitor C_{T} from RTCT to AGND set the oscillator frequency.
30	CS	PWM Controller Current-Sense Input
33	AGND	Analog Ground
34	OUT	MOSFET Driver Output OUT. Connects to the gate of the external n-channel MOSFET.
35	V_{CC}	Power-Supply Input. Bypass V_{CC} to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor or a parallel combination of a $0.1 \mu \mathrm{~F}$ and a higher value ceramic capacitor.
37	REF	5 V Reference Output. Bypass REF to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
-	EP	Exposed Paddle. Connect to the ground plane for improved power dissipation. Do not use as the only ground connection.

Detailed Description

The MAX16809 LED driver includes an internal switchmode controller that can be used as a boost or buck-boost (SEPIC) converter to generate the voltage necessary to drive the multiple strings of LEDs. This device incorporates an integrated low-side driver, a programmable oscillator (20 kHz to 1 MHz), an error amplifier, a low-voltage $(300 \mathrm{mV})$ current sense for higher efficiency, and a 5 V reference to power up external circuitry (see Figures 1a and 1 b).
The MAX16809 LED driver includes a 4-wire serial interface and a current-mode PWM controller to generate the necessary voltage for driving 16 open-drain, constant-current-sinking output ports. The driver uses
current-sensing feedback circuitry (not simple current mirrors) to ensure very small current variations over the full allowed range of output voltage (see the Typical Operating Characteristics). The 4 -wire serial interface comprises a 16-bit shift register and a 16-bit transparent latch. The shift register is written through a clock input, CLK, and a data input, DIN, and the data propagates to a data output, DOUT. The data output allows multiple drivers to be cascaded and operated together. The contents of the 16 -bit shift register are loaded into the transparent latch through a latch-enable input, LE. The latch is transparent to the shift register outputs when high and latches the current state on the falling edge of LE. Each driveoutput is an open-drain, con-stant-current sink that should be connected to the
cathode of a string of LEDs connected in series. The constant-current capability is up to 55 mA per output, set for all 16 outputs by an external resistor, RSET. The device can operate in a stand-alone mode (see the Typical Operating Circuits).

The number of channels can be expanded by using the MAX6970 and MAX6971 family in conjunction with the MAX16809.

Figure 1a. Internal Block Diagram

MAX16809

Figure 1b. OUT__ Driver Internal Diagram

Switch-Mode Controller

Current-Mode Control Loop
 The

The advantages of current-mode control over volt-age-mode control are twofold. First, there is the feed-forward characteristic brought on by the controller's ability to adjust for variations in the input voltage on a cycle-bycycle basis. Second, the stability requirements of the cur-rent-mode controller are reduced to that of a single-pole system unlike the double pole in the voltage-mode control
scheme. The MAX16809 uses a current-mode control system unlike the double pole in the voltage-mode control
scheme. The MAX16809 uses a current-mode control loop where the output of the error amplifier is compared to the current-sense voltage (V_{CS}). When the current-sense signal is lower than the inverting input of the CPWM comparator, the output of the comparator is low and the switch is turned on at each clock pulse. When the current-sense is turned on at each clock pulse. When the current-sense
signal is higher than the inverting input of the CPWM comparator, the output is high and the switch is turned off.

Undervoltage Lockout (UVLO)

The turn-on supply voltage for the MAX16809 is 8.4 V (typ). Once V_{CC} reaches 8.4 V , the reference powers up. There is a 0.8 V of hysteresis from the turn-on voltage to the UVLO threshold. Once V_{CC} reaches 8.4 V , the MAX16809 operates with $V_{C C}$ down to 7.6 V . Once V_{CC} goes below 7.6 V (typ), the device is in UVLO. When in UVLO, the quiescent supply current into V_{CC} falls back to $32 \mu \mathrm{~A}$ (typ), and OUT and REF are pulled low.

MOSFET Driver

OUT drives an external n-channel MOSFET and swings from AGND to V_{CC}. Ensure that V_{CC} remains below the absolute maximum V_{GS} rating of the external MOSFET. OUT is a push-pull output with the on-resistance of the pMOS typically 3.5Ω and the on-resistance of the nMOS
 pMOS typically 3.5Ω and the on-resistance of the nMOS

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller
typically 4.5Ω. The driver can source 2 A and sink 1 A typically. This allows for the MAX16809 to quickly turn on and off high gate-charge MOSFETs. Bypass V_{CC} with one or more $0.1 \mu \mathrm{~F}$ ceramic capacitors to AGND, placed close to V_{CC}. The average current sourced to drive the external MOSFET depends on the total gate charge (QG) and operating frequency of the converter. The power dissipation in the MAX16809 is a function of the average output drive current (IDRIVE). Use the following equation to calculate the power dissipation in the device due to IDRIVE:

$$
\begin{gathered}
\text { IDRIVE }=\left(Q_{G} \times f \mathrm{fW}\right) \\
\mathrm{PD}=\left(\mathrm{I}_{\text {DRIVE }}+\mathrm{I}_{\mathrm{CC}}\right) \times \mathrm{V}_{\mathrm{CC}}
\end{gathered}
$$

where $I_{C C}$ is the operating supply current. See the Typical Operating Characteristics for the operating supply current at a given frequency.

Error Amplifier

The MAX16809 includes an internal error amplifier. The inverting input is at FB and the noninverting input is internally connected to a 2.5 V reference. Set the output voltage using a resistive divider between output of the converter $\mathrm{V}_{\text {OUT }}$, FB, and AGND. Use the following formula to set the output voltage:

$$
\mathrm{V}_{\mathrm{OUT}}=\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \times \mathrm{V}_{\mathrm{FB}}
$$

where $\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}$.

Oscillator

The oscillator frequency is programmable using an external capacitor and a resistor at RTCT (see R_{T} and C_{T} in the Typical Operating Circuits). R_{T} is connected from RTCT to the 5 V reference (REF), and C_{T} is connected from RTCT to AGND. REF charges C_{T} through R_{T} until its voltage reaches 2.8 V . C_{\top} then discharges through an 8.3 mA internal current sink until $\mathrm{C}_{\boldsymbol{\top}}$'s voltage reaches 1.1 V , at which time C_{T} is allowed to charge through R_{T} again. The oscillator's period is the sum of the charge and discharge times of C_{\top}. Calculate the charge time as follows:

$$
\mathrm{t}_{\mathrm{C}}=0.57 \times \mathrm{R}_{\mathrm{T}} \times \mathrm{C}_{\mathrm{T}}
$$

where t_{C} is in seconds, R_{T} in ohms (Ω), and $\mathrm{C}_{\boldsymbol{T}}$ in Farads (F).
The discharge time is then:

$$
t_{D}=\left(R_{T} \times C_{T} \times 1000\right) /\left[\left(4.88 \times R_{T}\right)-(1.8 \times 1000)\right]
$$

where t_{D} is in seconds, R_{T} in ohms (Ω), and C_{\top} in Farads (F).

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

The oscillator frequency is then:

$$
\mathrm{fOSC}=\frac{1}{\left(\mathrm{tc}_{\mathrm{c}}+\mathrm{t}_{\mathrm{D}}\right)}
$$

Reference Output

REF is a 5 V reference output that can source 20 mA . Bypass REF to AGND with a $0.1 \mu \mathrm{~F}$ capacitor.

Current Limit

The MAX16809 includes a fast current-limit comparator to terminate the ON cycle during an overload or a fault condition. The current-sense resistor, R_{CS}, connected between the source of the external MOSFET and AGND, sets the current limit. The CS input has a voltage trip level $\left(\mathrm{V}_{\mathrm{CS}}\right)$ of 0.3 V . Use the following equation to calculate R_{CS} :

$$
\mathrm{R}_{\mathrm{CS}}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{I}_{\mathrm{P}-\mathrm{P}}}
$$

Ip-p is the peak current that flows through the MOSFET. When the voltage produced by this current (through the current-sense resistor) exceeds the current-limit comparator threshold, the MOSFET driver (OUT) turns the switch off within 60ns. In most cases, a small RC filter is required to filter out the leading-edge spike on the sense waveform. Set the time constant of the RC filter at 50 ns.

Buck-Boost (SEPIC) Operation

Figure 2 shows a buck-boost application circuit using the MAX16809 in a stand-alone mode of operation. SEPIC topology is necessary when the total forward voltage of the LEDs in a string is such that $\mathrm{V}_{\text {OUT }}$ can be below or above V_{IN}.

Figure 2. Buck-Boost (SEPIC) Operation

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

LED Driver

4-Wire Interface

The MAX16809 also operates in a stand-alone mode (see the Typical Operating Circuits). For use with a microcontroller, the MAX16809 features a 4-wire serial interface using DIN, CLK, LE, $\overline{\mathrm{OE}}$ inputs and DOUT as a data output. This interface is used to write the LED channels? data to the MAX16809. The serial-interface data word length is 16 bits, D0?D15. See Figure 3.
The functions of the five interface pins are as follows:
DIN is the serial-data input, and must be stable when it is sampled on the rising edge of CLK. Data is shifted in MSB first. This means that data bit D15 is clocked in first, followed by 15 more data bits, finishing with the LSB, D0.
CLK is the serial-clock input that shifts data at DIN into the MAX16809's 16-bit shift register on its rising edge.

LE is the latch-enable input of the MAX16809 that transfers data from the 16 -bit shift register to its 16 -bit output latches (transparent latch). The data latches on the falling edge of LE (Figure 4). The fourth input ($\overline{\mathrm{OE}}$) provides output-enable control of the output drivers. When $\overline{\mathrm{OE}}$ is driven high, the outputs (OUTO-OUT15) are forced to high impedance without altering the contents of the output latches. Driving $\overline{\mathrm{OE}}$ low enables the outputs to follow the state of the output latches. $\overline{\mathrm{OE}}$ is independent of the serial interface operation. Data can be shifted into the serial-interface shift register and latched, regardless of the state of $\overline{O E}$. DOUT is the serial-data output that shifts data out from the MAX16809's 16-bit shift register on the rising edge of CLK. Data at DIN propagates through the shift register and appears at DOUT 16 clock cycles later. Table 1 shows the 4 -wire serial-interface truth table.

Table 1. 4-Wire Serial-Interface Truth Table

$\begin{gathered} \text { SERIAL } \\ \text { DATA } \end{gathered}$	CLOCK INPUT	SHIFT REGISTER CONTENTS						LOAD INPUT	LATCH CONTENTS						BLANKING INPUT	OUTPUT CONTENTS CURRENT AT OUT \qquad					
DIN	CLK	D0	D1	D2	...	Dn-1	Dn	LE	D0	D1	D2	...	Dn-1	Dn	$\overline{O E}$	D0	D1	D2	...	Dn-1	Dn
H	\checkmark	H	R0	R1	...	Rn-2	Rn -1														
L	7	L	R0	R1	...	Rn-2	Rn -1														
X		R0	R1	R2	\ldots	Rn-1	Rn														
		X	X	X	...	X	X	L	R0	R1	R2	...	Rn -1	Rn							
		P0	P1	P2	...	Pn-1	Pn	H	P0	P1	P2	...	Pn-1	Pn	L	P0	P1	P2	...	Pn-1	Pn
									X	X	X	...	X	X	H	L	L	L	...	L	L

[^0]
Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Figure 3. 4-Wire Serial-Interface Timing Diagram

Figure 4. LE and CLK to OUT__ Timing

Selecting External Component

 RSET to Set LED Output CurrentThe MAX16809 uses an external resistor, RSET, to set the LED current for outputs OUT0-OUT15. The minimum allowed value of RSET is 311Ω, which sets the output currents to 55 mA . The maximum allowed value of $\mathrm{R}_{\text {SET }}$ is $5 \mathrm{k} \Omega$ (lout _ $=3.6 \mathrm{~mA}$) and the maximum allowed capacitance at SET is 100 pF .
Use the following formula to set the output current:

$$
\mathrm{RSET}=\frac{17,100 \mathrm{~V}}{\mathrm{IOUT}_{--}}
$$

where IOUT_ _ is the desired output current in milliamps and the value for $\mathrm{R}_{\text {SET }}$ is in ohms.

Overtemperature Cutoff

The MAX16809 contains an internal temperature sensor that turns off all outputs when the die temperature exceeds $+165^{\circ} \mathrm{C}$. The outputs are enabled again when the die temperature drops below $+140^{\circ} \mathrm{C}$. Register contents are not affected, so when a driver is overdissipating, the external symptom is the load LEDs cycling on and off as the driver repeatedly overheats and cools, alternately turning itself off and then back on again.

MAX16809

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Stand-Alone Operation

In stand-alone operation, the MAX16809 does not use the 4-wire interface (see the Typical Operating Circuits). Connect DIN and LE to V+ and provide at least 16 external clock pulses to CLK to enable 16 output ports. This startup pulse sequence can be provided either using an external clock or the PWM signal. The external clock can also be generated using the signal at RTCT and an external comparator.

LED Dimming

PWM Dimming

All the output channels can be dimmed simultaneously by applying a PWM signal (50 Hz to 30 kHz) to $\overline{\mathrm{OE}}$. This allows for a wide range of dimming up to a 5000:1 ratio. Each channel can be independently turned on and off using a 4 -wire serial interface. The dimming is proportional to the PWM duty cycle.

LED Current Amplitude Adjustment

Using an analog or digital potentiometer as RSET allows for LED current amplitude adjustment and linear dimming.

Computing Power Dissipation

Use the following equation to estimate the upper limit power dissipation (PD) for the MAX19:

$$
\begin{aligned}
\mathrm{PD} & =\mathrm{DUTY} \times\left[(\mathrm{V}+\mathrm{xI}+)+\sum_{\mathrm{i}=0}^{\mathrm{i}=15} \mathrm{~V}_{\text {OUTi }} \times \text { IOUTi }\right] \\
& +\left(\mathrm{V}_{\mathrm{CC}} \times \mathrm{ICC}_{\mathrm{C}}\right)
\end{aligned}
$$

where:
V+ = supply voltage
I+ = V+ operating supply current
DUTY = PWM duty cycle applied to $\overline{\mathrm{OE}}$
$\mathrm{V}_{\text {OUTi }}=$ MAX16809 port output voltage when driving load LED(s)
IOUTi = LED drive current programmed by RSET
PD = power dissipation

PCB Layout Guidelines

Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity. Protect sensitive analog grounds by using a star ground configuration. Minimize ground noise by connecting AGND, PGND, the input bypass-capacitor ground lead, and the output-filter ground lead to a single point (star ground configuration). Also, minimize trace lengths to reduce stray capacitance, trace resistance, and radiated noise. The trace between the output voltage-divider and the FB pin must be kept short, as well as the trace between AGND and PGND.

Typical Operating Circuits (continued)

Integrated 16-Channel LED Driver with Switch-Mode Boost and SEPIC Controller

Pin Configuration

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
38 TQFN-EP	T3857M +1	$\underline{21-0172}$	$\underline{90-0007}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 06$	Initial release	-
1	$3 / 07$	Released the MAX16810 on the data sheet.	$1,14,16,22,23$
2	$8 / 09$	Removed the MAX16810 from the data sheet.	$1-20$
3	$4 / 14$	No $/$ N OPNs; removed Automotive reference from Applications section	1

[^0]: L = Low Logic Level
 H = High Logic Level
 X = Don't Care
 $P=$ Present State (Shift Register)
 $R=$ Previous State (Latched)

