

General Description

The MAX16913A evaluation kit (EV kit) is a fully assembled and tested surface-mount circuit board that evaluates the MAX16913A high-voltage, high-side current-sense switches. The EV kit operates from a DC supply voltage from 5V to 18V. The EV kit demonstrates the device's open-drain fault signals (OL and SC). open-load threshold setting input (OLT), and shutdown function (SHDN).

The MAX16913A EV kit can also be used to evaluate the MAX16913, which features an internally set openload threshold. To evaluate the MAX16913, request a free sample of the MAX16913GEE+ when ordering the MAX16913A EV kit.

Features

- ♦ 5V to 18V Input Range
- ♦ Tolerates Inputs Up to 42V
- ♦ Resistor-Adjustable Open-Load Threshold
- ♦ Open-Load Threshold Setting Input (OLT, MAX16913A only)
- ♦ Open-Drain, Open-Load Indicator Output (OL)
- ♦ Open-Drain, Short-Circuit Indicator Output (SC)
- **♦ Lead(Pb)-Free and RoHS Compliant**
- **♦ Fully Assembled and Tested**

Ordering Information

PART	TYPE
MAX16913AEVKIT+	EV Kit

⁺Denotes lead(Pb)-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION	
DESIGNATION	GII	DESCRIPTION	
C1	1	0.01µF ±10%, 100V X7R ceramic capacitor (0805) Murata GRM21BR72A103KA TDK C2012X7R2A103K	
C2, C5	2	100µF ±10%, 63V electrolytic capacitors (10mm x 10.2mm) SANYO 63CE100PC Panasonic EEEFK1J101P	
C3, C6	2	0.1µF ±10%, 100V X7R ceramic capacitors (0603) Murata GRM188R72A104KA	
C4	1	2.2µF ±10%, 50V X7R ceramic capacitor (1206) Murata GRM31CR71H225K KEMET C1206C225K5RACTU	
D1	1	1A diode (SMA) Fairchild S1G Vishay S1G	
IN, REF, SENS	3	Miniature test points	
JU1, JU4	2	2-pin headers, 0.1in centers	
JU2	1	3-pin header, 0.1in centers	

DESIGNATION	QTY	DESCRIPTION	
JU3	0	Not installed, 2-pin header, 0.1in centers	
LED1	1	Yellow LED (0805)	
LED2	1	Red LED (0805)	
R1	1	1Ω ±1% sense resistor (0805) IRC LVC-LVC0805LF-1R00-F Vishay L0805M1R00FST	
R2	1	10kΩ ±5% resistor (0805)	
R3	1	464kΩ ±1% resistor (0805)	
R4	1	100kΩ ±1% resistor (0805)	
R5	1	115kΩ ±1% resistor (0805)	
R6, R7	2	1kΩ ±5% resistors (0805)	
U1	1	Remote antenna current-sense amplifier (16 QSOP) Maxim MAX16913AGEE+	
U2	1	5V linear regulator (8 SO-EP*) Maxim MAX15006BASA+	
	1	PCB: MAX16913A Evaluation Kit+	

^{*}EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
KEMET Corp.	864-963-6300	www.kemet.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Panasonic Corp.	800-344-2112	www.panasonic.com
SANYO Semiconductor (U.S.A.) Corp.	201-825-8080	http://semicon.us.sanyo.com
TDK Corp.	847-803-6100	www.component.tdk.com
Vishay	402-563-6866	www.vishay.com

Note: Indicate that you are using the MAX16913/MAX16913A when contacting these component suppliers.

Quick Start

Recommended Equipment

Before beginning, the following equipment is needed:

- 18V power supply
- Load
- Voltmeter

Procedure

The MAX16913A EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on power until all connections are completed.

- 1) Verify that shunts are installed on jumpers JU1 and JU4.
- 2) Verify that the shunt on jumper JU2 is shorting pins 2-3.
- 3) Connect the power supply across the VIN and GND pads.
- 4) Connect the load across the OUT and GND pads.
- 5) Configure the power supply for 10V.
- 6) Configure the load for 20mA.
- 7) Enable the power supply then enable the load.
- 8) Verify that AOUT is approximately 0.66V.

_Detailed Description of Hardware

The MAX16913A evaluation kit (EV kit) evaluates the MAX16913A high-voltage, high-side current-sense switches. The EV kit operates from a DC supply voltage from 5V to 18V. The EV kit demonstrates the device's open-drain fault signals $(\overline{OL}$ and $\overline{SC})$, open-load threshold setting input (OLT), and shutdown function (SHDN).

The MAX16913A EV kit provides LED1 and LED2 to facilitate the monitoring of the open-load and short-circuit open-drain fault signals, respectively. The open-load threshold setting input is configurable for two possible settings using jumper JU2.

An on-board LDO (U2) is provided to support single-supply evaluation. The LDO is powered by the input supply voltage (VIN) and provides a 5V output (LDO), used to source the on-board indicator LEDs.

The EV kit can also be used to evaluate the MAX16913, which features an internally set open-load threshold. See the *Evaluating the MAX16913* section.

Shutdown (JU1)

The MAX16913A EV kit provides jumper JU1 to configure the devices shutdown pin (SHDN). See Table 1.

Table 1. Jumper JU1 Functions

SHUNT POSITION	SHDN PIN	DESCRIPTION
Installed*	Connected to GND	Device enabled
Not installed	Connected to LDO (5V) through R2	Device disabled

^{*}Default position.

Table 2. Jumper JU2 Functions

SHUNT POSITION	OPEN-LOAD THRESHOLD (mA)	
1-2	10	
2-3*	15	

^{*}Default position.

Table 3. Jumper JU4 Function

SHUNT POSITION	DESCRIPTION	
Installed*	Indicator LEDs (LED1 and LED2) used to monitor fault signals	
Not installed	Indicator LEDs (LED1 and LED2) not used. OL and SC pads used to monitor fault signals.	

^{*}Default position.

Table 4. Jumper JU3 Function (2-Pin Header Not Installed)

SHUNT POSITION	OLT PIN	DESCRIPTION
Installed	Connected to GND	EV kit configured to evaluate the MAX16913
Not installed	Connected to resistor-divider	EV kit configured to evaluate the MAX16913A

Open-Load Threshold (JU2)

The open-load threshold setting is configured by the resistor-divider between the REF and OLT device pins. The MAX16913A EV kit provides for two threshold settings that are selected by configuring jumper JU2. See Table 2.

Open-Drain Fault Signals (OL, SC)

The MAX16913A EV kit includes LED1 and LED2 to provide visual monitoring of the open-load and short-circuit fault signals. LED1 monitors the open-load (\overline{OL}) signal and LED2 monitors the short-circuit (\overline{SC}) signal. Both LED networks are driven by the on-board LDO voltage (5V). To monitor the indicator outputs by external means, remove the shunt from jumper JU4 and connect the monitoring system to the \overline{OL} and \overline{SC} pads. Ensure that the monitoring system provides pullup resistors on the open-drain indicator output pins, \overline{OL} and \overline{SC} . See Table 3.

Evaluating the MAX16913

The MAX16913A EV kit can also be used to evaluate the MAX16913 device. The open-load threshold for the MAX16913 device is internally set. As such, when evaluating the MAX16913 device the OLT resistor-divider network is not needed and jumper JU3 should be installed and configured with a shunt. See Table 4.

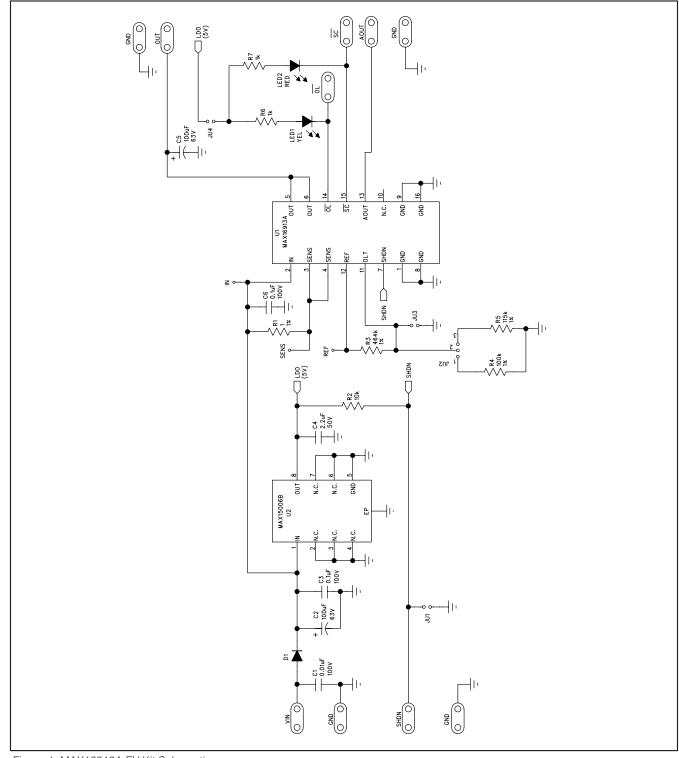


Figure 1. MAX16913A EV Kit Schematic

4 ______ *NIXIM*



Figure 2. MAX16913A EV Kit Component Placement Guide—Component Side

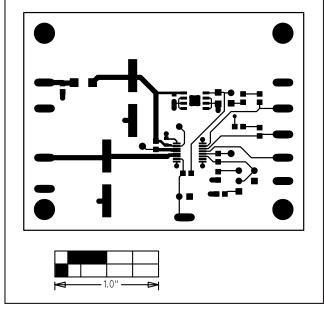


Figure 3. MAX16913A EV Kit PCB Layout—Component Side

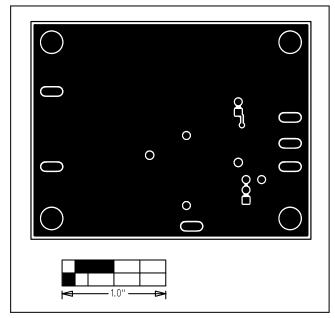


Figure 4. MAX16913A EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.