

General Description

The MAX17009 evaluation kit (EV kit) demonstrates the high-power, dynamically adjustable, dual-phase notebook CPU application circuit for AMD[®] mobile serial VID interface (SVI) CPU core supplies. This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, low-voltage CPU core. The MAX17009 EV kit meets the AMD mobile SVI CPU's transient voltage specification, power-good signaling, voltage-regulator thermal monitoring (VRHOT), and power-good output (PWRGD). The MAX17009 EV kit consists of the MAX17009 dualphase, interleaved fixed-frequency step-down controller, configured for separate mode operation, and a reference buffer. The switching regulators (SMPSs) provide power to two independent CPU cores, while the reference buffer output (NBV_BUF) sets the voltage regulation level for a north bridge (NB) regulator, completing the total CPU cores and NB power requirements.

Output voltages are dynamically changed through a 2-wire serial interface, allowing the SMPS and the NBV_BUF to be individually programmed to different voltages. A programmable slew-rate controller enables controlled upward transitions between VID codes for the switching regulators, while the slew rate for the reference buffer is set by an external capacitor.

Soft-start limits the inrush current, and soft-shutdown brings the output voltage back down to zero without any negative ring. The MAX17009 EV kit includes active voltage positioning with adjustable gain, reducing power dissipation and bulk output capacitance requirements. The MAX17009 includes latched output undervoltage fault, overvoltage fault protection, and thermaloverload protection. It also includes a voltage-regulator power-good (PWRGD) output.

This fully assembled and tested printed circuit board (PCB) provides a digitally adjustable 0 to 1.550V output voltage range (7-bit on-board DAC) from a 7V to 24V battery input range. Each phase delivers up to 18A output current for a total of 36A. The EV kit operates at 300kHz switching frequency (per phase) and has superior lineand load-transient response. The EV kit also includes Windows[®] 2000/XP-compatible software, which provides a simple graphical user interface (GUI) for exercising the features of the MAX17009.

AMD is a registered trademark of Advanced Micro Devices, Inc. Windows is a registered trademark of Microsoft Corp.

Features

- Dual Output, Fast-Response Interleaved Fixed Frequency
- AMD Mobile SVI-Compliant Serial Interface
- Separate or Combinable Outputs Detected at Power-Up
- Reference Buffer Output
- Dynamic Phase Selection Optimizes Active/Sleep Efficiency
- Transient Phase Repeat Reduces Output Capacitance
- ♦ Active Voltage Positioning with Adjustable Gain
- High Speed, Accuracy, and Efficiency
- Low-Bulk Output Capacitor Count
- ♦ 7V to 24V Input-Voltage Range
- 0 to 1.550V Output-Voltage Range (7-Bit On-Board DAC)
- ♦ 36A Load-Current Capability (18A Each Phase)
- ♦ Accurate Current Balance and Current Limit
- ♦ 300kHz Switching Frequency (per Phase)
- Power-Good (PWRGD) and Thermal-Fault (VRHOT) Output Indicators
- System Power-OK (PGD_IN) Input
- Output Overvoltage and Undervoltage Fault Protection
- ♦ 40-Pin Thin QFN Package (5mm x 5mm)
- Fully Assembled and Tested

Ordering Information

PART	ТҮРЕ
MAX17009EVKIT+	EV Kit

+Denotes lead-free and RoHS-compliant.

MAXIM.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Evaluates: MAX17009

DECIONATION	OTV	DECODIDITION
DESIGNATION	QIY	DESCRIPTION
C1–C4	4	10μF ±20%, 25V X5R ceramic capacitors (1210) TDK C3225X7R1E106M AVX 12103D106M Taiyo Yuden TMK325BJ106MM
C5–C8	4	470µF ±20%, 2V 6mΩ low-ESR polymer capacitors (D-case) NEC/Tokin PSGD0E477M6 or Panasonic EEFUD0D471L6
C9, C44–C48, C58	7	0.1µF ±10%, 25V X7R ceramic capacitors (0603) TDK C1608X7R1E104K or Murata GRM188R71E104K
C10, C19, C49, C50	4	1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C105K AVX 0603YD105MAT
C11	1	2.2µF ±20%, 10V X5R ceramic capacitor (0603) TDK C1608X5R1A225M or Murata GRM188R61A225M or AVX 0603ZD225MAT
C12, C13, C14	3	0.22µF ±20%, 10V X7R ceramic capacitors (0603) Taiyo Yuden LMK107BJ224MA TDK C1608X7R1C224M AVX 06033D224KAT
C15, C21, C22, C59, C60	5	1000pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H102K or Murata GRM188R71H102K or equivalent
C16, C17, C18, C20, C23	5	4700pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H472K or Murata GRM188R71H472K or equivalent
C24, C25	2	2200pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H222K or Murata GRM188R71H222K or equivalent
C26–C37	12	22µF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J226MT Taiyo Yuden JMK212BJ226MG
C38, C39, C41, C42, C43, C53	0	Not installed, ceramic capacitors (0603)

DESIGNATION	QTY	DESCRIPTION	
C40	1	3300pF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H332K Taiyo Yuden UMK107B332MZ	
C51, C52	2	10μF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106M or Taiyo Yuden AMK212BJ106MG AVX 08056D106MAT	
C54, C55	2	22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J	
C56, C57	2	10pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H100J	
D1, D2	2	30V, 3A Schottky diodes Nihon EC31QS03L Central Semiconductor CMSH3-40M	
D3, D4	2	LEDs, green clear SMD (0805)	
J1	1	USB series B right-angle PC-mount receptacle	
J2	0	Not installed	
J4, J5	2	Scope probe jacks	
JU1, JU3–JU6	5	3-pin headers	
JU2	1	4-pin header	
JU7	1	2-pin header	
L1, L2	2	0.45μH, 30A 1.1mΩ power inductors TOKO FDUE1040D-R45M or NEC-Tokin MPC1040LR45	
N1, N2	2	n-channel MOSFETs (PowerPAK 8-pin SO) Fairchild FDS6298 (8-pin SO) Siliconix (Vishay): SI7634DP	
N3-N6	4	n-channel MOSFETs (PowerPAK 8-pin SO) Fairchild FDS8670 (8-pin SO) Siliconix (Vishay): SI7336ADP	
N7, N8	0	Not installed, n-channel MOSFETs (DPAK)	
R1, R2	2	$0.001\Omega \pm 1\%$, 1W resistors (2512) Panasonic ERJM1WTF1M0U	
R3	1	120k Ω ±1% resistor (0603)	
R4	1	100k Ω ±1% resistor (0603)	
R5	1	40.2 k $\Omega \pm 1\%$ resistor (0603)	
R6	0	Not installed, resistor—short PC trace (0603)	

Component List

DESIGNATION	QTY	DESCRIPTION
R7	1	$13k\Omega \pm 1\%$ resistor (0603)
R8	1	$100k\Omega \pm 5\%$ NTC thermistor, B = 4250 (0603) Murata NCP18WF104J03RB TDK NTCG163JF104J (0402) or Panasonic ERT-J1VR104J
R9, R38, R39	3	100k Ω ±5% resistors (0603)
R10	1	143k Ω ±1% resistor (0603)
R11, R51, R53, R54, R55, R56	6	1k Ω ±5% resistors (0603)
R12, R19	2	$1.1k\Omega \pm 1\%$ resistors (0603)
R13, R14, R15, R20, R21	5	$100\Omega \pm 5\%$ resistors (0603)
R16, R36	2	$51\Omega \pm 5\%$ resistors (0603)
R17, R18	2	1.5k Ω ±1% resistors (0603)
R22, R23	2	$75\Omega \pm 5\%$ resistors (0603)
R24, R25, R37	3	$10\Omega \pm 5\%$ resistors (0603)
R26, R27, R57	3	0Ω resistors (0603)
R28, R35	0	Not installed, 1W resistors (2512)
R29–R34, R40, R41	0	Not installed, resistors (0603)
R42, R43, R45, R46	4	$27\Omega \pm 5\%$ resistors (0603)
R44, R47, R52	3	$1.5k\Omega \pm 5\%$ resistors (0603)
R48	1	2.2k Ω ±5% resistor (0603)

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
R49	1	$10k\Omega \pm 5\%$ resistor (0603)	
R50	1	470Ω ±5% resistor (0603)	
R61–R65	0	Not installed, resistors—short PC trace (0603)	
SW1-SW4	4	Pushbutton switches	
U1	1	Dual-phase fixed-frequency controller (40-pin thin QFN, 5mm x 5mm) Maxim MAX17009GTL+	
U2	1	Microcontroller (68-pin QFN-EP*) Maxim MAXQ2000-RAX+	
U3	1	93C46 type 3-wire EEPROM (8-pin SO), 16-bit architecture Atmel AT93C46A-10SU-2.7 Digi-Key AT93C46A-10SU-2.7	
U4	1	UART-to-USB converter (32-pin TQFP, 7mm x 7mm) FTDI FT232BL	
U5	1	LDO regulator (5-pin SC70) Maxim MAX8511EXK33+T (Top Mark: AEI)	
U6	1	LDO regulator (5-pin SC70) Maxim MAX8511EXK25+T (Top Mark: ADV)	
Y1	1	16MHz crystal	
Y2	1	6MHz crystal	
	1	PCB: MAX17009 Evaluation Kit+	

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
AVX Corp.	360-699-8714	www.avx.com
Central Semiconductor	631-435-1110	www.centralsemi.com
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com
NEC TOKIN America, Inc.	510-324-4110	www.nec-tokinamerica.com
Nihon Inter Electronics Corp.	847-843-7500	www.niec.co.jp
Panasonic Corp.	714-373-7939	www.panasonic.com
SANYO North America Corp.	619-661-6835	www.sanyodevice.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com
TOKO America, Inc.	408-432-8281	www.tokoam.com
Vishay/Siliconix	402-564-3131	www.vishay.com
Würth Electronik GmbH & Co. KG	201-785-8800	www.we-online.com

Note: Indicate that you are using the MAX17009 when contacting these component suppliers.

_MAX17009 EV Kit Files

FILE	DESCRIPTION	
INSTALL.EXE	Installs the EV kit files on your computer	
MAX17009.EXE	Application program	
FTD2XX.INF	USB device driver file	
UNINST.INI	Uninstalls the EV kit software	
TROUBLESHOOTING_USB.PDF	USB driver installation help file	

_Quick Start

Recommended Equipment

- 7V to 24V, >100W power supply, battery, or notebook AC adapter
- DC bias power supply, 5V at 1A
- Two dummy loads capable of sinking 18A each
- Digital multimeter (DMM)
- 100MHz dual-trace oscilloscope
- A user-supplied Windows 2000/XP PC with a spare USB port

Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows 2000/XP operating system.

Procedure

The MAX17009 EV kit is fully assembled and tested. Follow the steps below to verify board operation. **Caution: Do not turn on the power supply until all connections are completed.**

- 1) Visit the Maxim website (www.maxim-ic.com/evkitsoftware) to download the latest version of the EV kit software, 17009xx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start I Programs</u> menu.
- Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power.
- Verify that there are shunts across pins 1-2 of JU2 (OPTION = high) and pins 2-3 of JU3 (PRO = low).
- 5) Verify that there is a shunt across pins 1-2 of JU1 (PGD_IN), pins 1-2 of JU4 (SHDN), pins 1-2 of JU5 (SVD), and pins 1-2 of JU6 (SVC), allowing U2 to control the MAX17009.

- 6) Turn on the battery power before turning on the 5V bias power.
- 7) Connect the USB cable from the PC to the EV kit board. A <u>Building Driver Database</u> window pops up in addition to a <u>New Hardware Found</u> message when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30s, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows 2000 and XP. Refer to the TROUBLESHOOTING_USB.PDF document included with the software if you have any problems during this step.
- 8) Follow the directions of the <u>Add New Hardware</u> <u>Wizard</u> to install the USB device driver. Choose the <u>Search for the best driver for your device</u> option. Specify the location of the device driver to be <u>C:\Program Files\MAX17009</u> (default installation directory) using the <u>Browse</u> button.
- Start the EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window should appear, as shown in Figure 1.
- 10) Check the **Core 0**, **Core 1**, and **North Bridge** checkboxes. Move any slider to adjust the voltage to 1.2V and press the **Send Data** button.
- 11) Observe the 1.2000V output voltage on the SMPS and NBV_BUF outputs with the DMM and/or oscilloscope. Look at the LX switching nodes and MOSFET gate-drive signals while varying the load current.

Detailed Description of Software

The main window of the evaluation software (Figure 1) displays Address to Send, Data to Send, Last Address Sent, and Last Data Sent status. In addition, the GUI allows the user to select Core 0, Core 1, and/or North Bridge outputs.

The sliders to the right of each output checkbox correspond with the output voltage setting for that core. The **Send Data** button must be pressed to write the new output voltage setting(s) to the MAX17009. The **Last**

/// MAX17009 EVkit 9 Options Help	oftware
Address to Send: 1100-1110 Last Address Sent: ????-????	Data to Send: ????-???? Last Data Sent: ????-????
🔽 Core 0	VDD0 Plane: Voltage = 1.5500V PSI_L = 1 VID = 000-0000
Core 1	VDD1 Plane: Voltage = 1.5500V PSI_L = 1 VID = 000-0000
✓ North Bridge	VDDNB Plane: Voltage = 1.5500V PSI_L = 1 VID = 000-0000
	Power-Saving Off RESET GUI
MAXQ HW: Connected	Data Written: 0x??

Figure 1. MAX17009 EV Kit Software Main Window

Address Sent and Last Data Sent status helps the user keep track of the last transmission.

Saving Power

Unchecking the **Power-Saving Off** checkbox puts the MAX17009 in power-saving mode. The MAX17009 is in normal operation while the **Power-Saving Off** checkbox is checked. In power-saving mode, NB_SKP is forced low, and the SMPS offset, if enabled, is removed.

Resetting the GUI (RESET GUI)

The software main window will need to be synchronized to the MAX17009 EV kit hardware after the following events:

- Pressing any of the on-board switches (SW1–SW4)
- Recycling 5V power to the MAX17009 EV kit

Press the **RESET GUI** button after any of the above events in order to use the software main window again.

I²C Low-Level Commands

Press the **Options I 2-wire low level** menu item at the top of the GUI to execute low-level I²C interface commands. Once the new window opens, go to the **2-wire Interface** tab | **General Commands** | **SMBusSendByte(addr,cmd)** to write hex data manually into the registers of the MAX17009.

5

valuates: MAX17009

__Detailed Description of Firmware

The on-board switches (SW1–SW4) allow the user to perform four different predetermined high-speed I²C tests. Detailed descriptions of each dynamic output test are given below.

The sequence for the dynamic output test assigned to SW1 is shown in Table 1.

Table 1. SW1 Dynamic Output Test withHigh-Speed I2C Interface

STEP	ADDRESS	DATA	DESCRIPTION
1	0xC4	0xCC	Set DAC1 to 0.6V (Core 0)
2	N/A	N/A	Wait 100µs
3	0xC8	0xCC	Set DAC2 to 0.6V (Core 1)
4	N/A	N/A	Wait 100µs
5	0xC2	0xCC	Set DAC3 to 0.6V (NB)
6	N/A	N/A	Wait 100µs
7	0xC4	0x94	Set DAC1 to 1.3V (Core 0)
8	N/A	N/A	Wait 100µs
9	0xC8	0x94	Set DAC2 to 1.3V (Core 1)
10	N/A	N/A	Wait 100µs
11	0xC2	0x94	Set DAC3 to 1.3V (NB)

The sequence for the dynamic output test assigned to SW2 is shown in Table 2.

Table 2. SW2 Dynamic Output Test withHigh-Speed I2C Interface

STEP	ADDRESS	DATA	DESCRIPTION
1	0xC4	0xFF	Set DAC1 to 0V (Core 0)
2	N/A	N/A	Wait 100µs
3	0xC8	0xFF	Set DAC2 to 0V (Core 1)
4	N/A	N/A	Wait 100µs
5	0xC2	0xFF	Set DAC3 to 0V (NB)
6	N/A	N/A	Wait 100µs
7	0xC4	0x80	Set DAC1 to 1.55V (Core 0)
8	N/A	N/A	Wait 100µs
9	0xC8	0x80	Set DAC2 to 1.55V (Core 1)
10	N/A	N/A	Wait 100µs
11	0xC2	0x80	Set DAC3 to 1.55V (NB)

The sequence for the dynamic output test assigned to SW3 is shown in Table 3.

Table 3. SW3 Dynamic Output Test withHigh-Speed I2C Interface

STEP	ADDRESS	DATA	DESCRIPTION
1	0xC4	0xCC	Set all DACs to 0V (Core 0, Core 1, and NB)
2	N/A	N/A	Wait 1ms
3	0xC8	0xCC	Set all DACs to 1.55V (CORE 0, CORE 1, and NB)

The sequence for the dynamic output test assigned to SW4 is shown in Table 4.

Table 4. SW4 Dynamic Output Test withHigh-Speed I2C Interface

STEP	ADDRESS	DATA	DESCRIPTION
1	N/A	N/A	Set SHDN and PGD_IN to logic-low
2	N/A	N/A	Wait 10ms
3	N/A	N/A	Set SCL to logic-high and SDA to logic-low
4	N/A	N/A	Set SHDN to logic-high
5	N/A	N/A	Wait 2ms
6	N/A	N/A	Set PGD_IN to logic-high
7	N/A	N/A	Wait 10µs
8	0xCE	0x9C	Set all DACs to 1.2V (Core 0, Core 1, and NB)

_Detailed Description of Hardware

This 36A dual-phase buck-regulator design is optimized for a 300kHz switching frequency (per phase) and output voltage settings around 1.200V. At V_{OUT} = 1.200V and V_{IN} = 12V, the inductor ripple is approximately 30% (LIR = 0.3). The MAX17009 controller interleaves both phases, resulting in out-of-phase operation that minimizes the input and output filtering requirements. The dual-phase controller shares the current between two phases that operate 180° out-of-phase, supplying up to 18A per phase.

Table 5 lists the boot-voltage codes.

/N/IXI/N

Setting the Output Voltage 7-Bit DAC

Inside the MAX17009 are three 7-bit digital-to-analog converters (DACs). Each DAC can be individually programmed to different voltage levels through the serialinterface bus. The DAC sets the target for the output voltage for the SMPSs and the NB buffer output (NBV_BUF). The available DAC codes, and resulting output voltages, are compatible with the AMD SVI specifications (Table 6).

2-Wire Serial Interface (SVC, SVD)

The MAX17009 supports the 2-wire, write-only serialinterface bus, as defined by the AMD serial VID interface specification. The serial interface is similar to the high-speed 3.4MHz I²C bus, but without the mastermode sequence. The bus consists of a clock line (SVC) and a data line (SVD). The CPU is the bus master, and the MAX17009 is the slave.

The MAX17009 serial interface works from 100kHz to 3.4MHz. In the AMD mobile application, the bus runs at 3.4MHz. In the MAX17009 EV kit, the serial interface operates at 400kHz when commands are sent through the EV kit software. When using the preprogrammed SW switches, the serial interface operates at 1.7MHz.

The serial interface is active only after PGD_IN goes high in the startup sequence. The CPU sets the VID voltage of the three internal DACs and the PSI_L bit through the serial interface.

During the startup sequence, the SVC and SVD inputs serve an alternate function to set the 2-bit boot VID for all three DACs while PWRGD is low. In debug mode, the SVC and SVD inputs function in the 2-bit VID mode when PGD_IN is low, and in the serial-interface mode when PGD_IN is high.

By default, the MAX17009 serial interface is controlled by U2 through the jumper settings on JU5 (pins 1-2) and JU6 (pins 1-2). To directly control the MAX17009 with an external I²C serial interface, connect the external controller to the SDA and SCL pads, and move the shunts on JU5 and JU6 across pins 2-3.

Boot Voltage

On startup, the MAX17009 slews the target for all three DACs from ground to the boot voltage set by the SVC and SVD pin voltage levels. While the output is still below regulation, the SVC and SVD levels may be changed and the MAX17009 will set the DACs to the new boot voltage. Once the programmed boot voltage is reached, and PWRGD goes high, the MAX17009 stores the boot VID. Changes in the SVC and SVD settings will not change the output voltage once the boot

Table 5. Boot-Voltage Codes

SVC	SVD	BOOT VOLTAGE (V _{BOOT}) (PRO = VDD OR GND)	BOOT VOLTAGE (V _{BOOT}) (PRO = OPEN)
0	0	1.1	1.4
0	1	1.0	1.2
1	0	0.9	1.0
1	1	0.8	0.8

VID is stored. When PGD_IN goes high, the MAX17009 exits boot mode, and the three DACs can be independently set to any voltage in the VID table through the serial interface.

If PGD_IN goes from high to low any time after the boot VID is stored, the MAX17009 sets all three DACs back to the voltage of the stored boot VID.

When in debug mode (\overline{PRO} = open), the MAX17009 uses a different boot-voltage code set. Keeping PGD_IN low allows the SVC and SVD inputs to set the three DACs to different voltages in the boot-voltage code table. When PGD_IN is subsequently set high, the three DACs can be independently set to any voltage in the VID table through the serial interface.

Reduced Power-Dissipation Voltage Positioning

The MAX17009 EV kit uses voltage positioning to decrease the size of the output capacitor and to reduce power dissipation at heavy loads. The MAX17009 includes two transconductance amplifiers for adding gain to the voltage-positioning sense path for each output. The amplifier's input is generated by summing the currentsense inputs, which differentially sense the voltage across the current-sense resistors (R1 = R2 = $1m\Omega$). The transconductance amplifier's output connects to the voltage-positioned feedback input (FBDC1), so the resistance between FBDC1 and VCORE0 (R19) determines the voltage-positioning gain. Similarly, the other transconductance amplifier's output connects to the voltage-positioned feedback input (FBDC2), so the resistance between FBDC2 and VCORE1 (R12) determines the voltage-positioning gain. Resistors R12 and R19 provide a -1.3mV/A voltage-positioning slope at the outputs. Remote output and ground sensing eliminate any additional PCB voltage drops.

Load-Transient Experiment

One interesting experiment is to subject the output to large, fast-load transients and observe the output with an oscilloscope. Accurate measurement of output ripple and load-transient response invariably requires that

SVID[6:0]	OUTPUT VOLTAGE (V)	SVID[6:0]	OUTPUT VOLTAGE (V)	SVID[6:0]	OUTPUT VOLTAGE (V)		SVID[6:0]	OUTPUT VOLTAGE (V)
000_0000	1.5500	010_0000	1.1500	100_0000	0.7500	1	110_0000	0.3500
000_0001	1.5375	010_0001	1.1375	100_0001	0.7375		110_0001	0.3375
000_0010	1.5250	010_0010	1.1250	100_0010	0.7250	Ī	110_0010	0.3250
000_0011	1.5125	010_0011	1.1125	100_0011	0.7125		110_0011	0.3125
000_0100	1.5000	010_0100	1.1000	100_0100	0.7000	Ī	110_0100	0.3000
000_0101	1.4875	010_0101	1.0875	100_0101	0.6875	I	110_0101	0.2875
000_0110	1.4750	010_0110	1.0750	100_0110	0.6750	I	110_0110	0.2750
000_0111	1.4625	010_0111	1.0625	100_0111	0.6625		110_0111	0.2625
000_1000	1.4500	010_1000	1.0500	100_1000	0.6500		110_1000	0.2500
000_1001	1.4375	010_1001	1.0375	100_1001	0.6375		110_1001	0.2375
000_1010	1.4250	010_1010	1.0250	100_1010	0.6250		110_1010	0.2250
000_1011	1.4125	010_1011	1.0125	100_1011	0.6125		110_1011	0.2125
000_1100	1.4000	010_1100	1.0000	100_1100	0.6000		110_1100	0.2000
000_1101	1.3875	010_1101	0.9875	100_1101	0.5875		110_1101	0.1875
000_1110	1.3750	010_1110	0.9750	100_1110	0.5750		110_1110	0.1750
000_1111	1.3625	010_1111	0.9625	100_1111	0.5625		110_1111	0.1625
001_0000	1.3500	011_0000	0.9500	101_0000	0.5500		111_0000	0.1500
001_0001	1.3375	011_0001	0.9375	101_0001	0.5375		111_0001	0.1375
001_0010	1.3250	011_0010	0.9250	101_0010	0.5250		111_0010	0.1250
001_0011	1.3125	011_0011	0.9125	101_0011	0.5125		111_0011	0.1125
001_0100	1.3000	011_0100	0.9000	101_0100	0.5000		111_0100	0.1000
001_0101	1.2875	011_0101	0.8875	101_0101	0.4875		111_0101	0.0875
001_0110	1.2750	011_0110	0.8750	101_0110	0.4750		111_0110	0.0750
001_0111	1.2625	011_0111	0.8625	101_0111	0.4625		111_0111	0.0625
001_1000	1.2500	011_1000	0.8500	101_1000	0.4500		111_1000	0.0500
001_1001	1.2375	011_1001	0.8375	101_1001	0.4375		111_1001	0.0375
001_1010	1.2250	011_1010	0.8250	101_1010	0.4250		111_1010	0.0250
001_1011	1.2125	011_1011	0.8125	101_1011	0.4125		111_1011	0.0125
001_1100	1.2000	011_1100	0.8000	101_1100	0.4000		111_1100	0
001_1101	1.1875	011_1101	0.7875	101_1101	0.3875		111_1101	0
001_1110	1.1750	011_1110	0.7750	101_1110	0.3750	ļ	111_1110	0
001_1111	1.1625	011_1111	0.7625	101_1111	0.3625		111_1111	0

Table 6. Output Voltage VID DAC Codes

ground clip leads be completely avoided and that the probe must be removed to expose the GND shield, so the probe can be directly grounded with as short a wire as possible to the board. Otherwise, EMI and noise pickup corrupt the waveforms.

Most benchtop electronic loads intended for powersupply testing lack the ability to subject the DC-DC converter to ultra-fast-load transients. Emulating the supply current (di/dt) at the CPU VCORE pins requires at least 500A/µs load transients. One easy method for generating such an abusive load transient is to install a power MOSFET at the N7 location and install resistor R35 between $5m\Omega$ and $10m\Omega$ to monitor the transient current. Then drive its gate (TP5) with a strong pulse generator at a low duty cycle (< 5%) to minimize heat

stress in the MOSFET. Vary the high-level output voltage of the pulse generator to vary the load current.

To determine the load current, you might expect to insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy-load MOSFET. To determine how much load current a particular pulse-generator amplitude is causing, observe the current through inductor L1 by looking across R1 with a differential probe. In the buck topology, the load current is approximately equal to the average value of the inductor current.

NBV_BUF Operation

Controlling the North Bridge (NB) Regulator

The reference buffer (NBV_BUF) sets the output voltage of any regulator with an analog reference input (REFIN) function. This regulator can be an LDO (e.g., MAX1510 or MAX8794), a single-switching regulator (e.g., MAX8792), or a dual-switching regulator (e.g., MAX8775).

Connect the NBV_BUF output to the REFIN pin of the NB regulator and the GNDS_NB input to the NB regulator ground. Connect the required supply voltages and control signals to the selected NB regulator. The MAX17009 SHDN input may be connected to the enable input of the NB regulator so that both regulators start up and shut down at the same time.

Use the SW1–SW4 switches or the EV kit software to control the output of the NB regulator. Monitor the NB regulator output voltage with a DMM to measure the final voltage, or with an oscilloscope to observe the transitions.

Reference Buffer Output (NBV_BUF)

When the MAX17009 EV kit is not connected to an NB regulator, the GNDS_NB input must be grounded back to the MAX17009 EV kit ground using jumper wires. Leaving the GNDS_NB floating can result in false readings of the NBV_BUF voltage.

Use the SW1–SW4 switches or the EV kit software to control the output of the NBV_BUF. Monitor the NBV_BUF output voltage with a DMM to measure the final voltage, or with an oscilloscope to observe the transitions.

Jumper Settings Shutdown (SHDN)

When SHDN goes low (JU4 = GND), the MAX17009 enters the low-power shutdown mode. PWRGD is pulled low immediately and the SMPS output voltages ramp down at $1mV/\mu$ s. See Table 7.

Table 7. Jumper JU4 Function (SHDN)

SHUNT POSITION		SHDN PIN	MAX17009 OUTPUT		
	1-2	Connected to U2 pin 58	—		
	2-3	Connected to GND	Shutdown mode, SMPS output voltages disabled. VCORE0 = 0V VCORE1 = 0V		
No	Not installed Connected to VDD through 100kΩ resistor R9		SMPS output voltages enabled. VCORE0, VCORE1, and NBV_BUF voltages are set by SVC and SVD inputs.		

The MAX17009 shuts down completely—the drivers are disabled, the reference turns off, and the supply currents drop to about 1µA (max)—20µs after the controller reaches the 0V target. When a fault condition (overvoltage or undervoltage) occurs on one SMPS, the other SMPS and the NBV_BUF immediately go through the soft-shutdown sequence. To clear the fault latch and reactivate the controller, toggle SHDN or cycle V_{CC} power.

Soft-shutdown for the NB regulator is determined by the particular NB regulator's shutdown behavior. In the typical application, the NB regulator's SHDN pin or enable pin is toggled at the same time as the MAX17009's SHDN pin.

System Power-Good Input (PGD_IN)

After the SMPS outputs reach the boot voltage, the MAX17009 switches over to the serial-interface mode when PGD_IN goes high. Any time during normal operation, a high-to-low transition on PGD_IN causes the MAX17009 to slew all three internal DACs back to the stored boot VIDs. PWRGD goes low for a minimum of 20µs when PGD_IN goes low, and stays low until 20µs after both SMPS internal DACs reach the boot VID. The SVC and SVD inputs are disabled during this time that PGD_IN is low. The serial interface is reenabled when PGD_IN goes high again. See Table 8.

Offset and Transient-Phase Repeat (OPTION)

The 12.5mV offset and the transient-phase repeat features of the MAX17009 can be selectively enabled and disabled by the OPTION pin setting. Table 9 shows the OPTION pin voltage levels and the features that are enabled. Refer to the *Offset* and the *Transient-Phase Repeat* sections in the MAX17009 data sheet for a detailed description of the respective features.

SHUNT POSITION	PGD_IN PIN	MAX17009 OUTPUT		
1-2	Connected to U2 pin 59	_		
2-3	Connected to GND	The SVC and SVD inputs are disabled during the time PGD_IN is low.		
Not installed	Connected to 2.5V through 100kΩ resistor R39	The serial interface is re- enabled when PGD_IN goes high again. The MAX17009 switches over to the serial-interface mode when PGD_IN goes high.		

Table 8. Jumper JU1 Function (PGD_IN)

Selectable Overvoltage Protection and Debug Mode (PRO)

The MAX17009 features a tri-level PRO pin that enables the overvoltage protection (OVP) feature, or puts the MAX17009 in debug mode. Table 10 shows the PRO

Table 9. Jumper JU2 Function (OPTION)

SHUNT POSITION	OPTION PIN	OFFSET ENABLED	TRANSIENT- PHASE REPEAT ENABLED
1-2	Connected to VDD	0	0
Not installed	Open	0	1
1-3	Connected to REF	1	0
1-4	Connected to GND	1	1

selectable options. Debug mode is intended for applications where the serial interface is not properly functioning and the output voltage needs to be adjusted to different levels. The DAC voltage settings in debug mode further depend on the PGD_IN level to switch between the 2-bit VID setting or serial-interface operation.

	•	\		
SHUNT POSITION	PRO PIN	MAX17009 OUTPUT		
1-2	Connected to VDD	OVP disabled		

Table 10. Jumper JU3 Function (PRO)

Connected to

GND

Open

2-3

Not installed

Combined-Mode Operation

OVP enabled

Debug mode, OVP disabled

To configure the MAX17009 for combined-mode operation, remove R13 and connect the GNDS2 input to the 2.5V, 3.3V, or 5V supply using a wire. Connect a copper strap (e.g., solder wick) between the output capacitors of each phase.

The SW1–SW4 switches and the EV kit software still control the combined SMPS and NBV_BUF outputs in combined mode, but in combined mode, the MAX17009 SMPS only responds to core 0 commands. Core 1 commands are ignored.

In combined mode, unchecking the **Power-Saving Off** checkbox in the software sets the MAX17009 SMPS into single-phase operation, removes the offset, if enabled, and sets NB_SKP low. Checking the **Power-Saving Off** checkbox in the software sets the MAX17009 SMPS into dual-phase operation.

Figure 2a. MAX17009 EV Kit Schematic (Sheet 1 of 2)

Evaluates: MAX17009

Figure 2b. MAX17009 EV Kit Schematic (Sheet 2 of 2)

Figure 3. MAX17009 EV Kit Component Placement Guide—Component Side

13

Figure 4. MAX17009 EV Kit PCB Layout—Component Side

Figure 5. MAX17009 EV Kit PCB Layout—Internal Layer 2

Figure 6. MAX17009 EV Kit PCB Layout—Internal Layer 3

Figure 7. MAX17009 EV Kit PCB Layout—Internal Layer 4

Figure 9. MAX17009 EV Kit PCB Layout—Solder Side

Figure 10. MAX17009 EV Kit Component Placement Guide—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

20

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.