General Description

The MAX17582 evaluation kit (EV kit) demonstrates the high-power, dynamically adjustable, multiphase IMVP-6.5 notebook CPU application circuit. This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, low-voltage CPU core VCC rail. The MAX17582 EV kit meets the Intel mobile IMVP-6.5 CPU's transient voltage specification, power-good signaling, voltage regulator thermal monitoring (VRHOT), and power-good output (PWRGD). The MAX17582 EV kit consists of the MAX17582 2-phase interleaved Quick-PWM[™] step-down controller. The MAX17582 EV kit includes active voltage positioning with adjustable gain, reducing power dissipation, and bulk output capacitance requirements. A slew-rate controller allows controlled transitions between VID codes. controlled soft-start and shutdown, and controlled exit suspend voltage. Precision slew-rate control provides "just-in-time" arrival at the new DAC setting, minimizing surge currents to and from the battery.

Two dedicated system inputs (PSI and DPRSLPVR) dynamically select the operating mode and number of active phases, optimizing the overall efficiency during the CPU's active and sleep states.

The MAX17582 includes latched-output undervoltagefault, overvoltage-fault, and thermal-overload protection. It also includes a voltage regulator power-good (PWRGD) output, a clock enable (CLKEN) output, a current monitor output (IMON), and a phase-good (PHASEGD) output.

This fully assembled and tested circuit board provides a digitally adjustable 0 to 1.5000V output voltage (7-bit onboard DAC) from a 7V to 24V battery input range. Each phase is designed for a 20A thermal design current, and delivers up to 30A peak output current for a total of 60A. The MAX17582 EV kit operates at 300kHz switching frequency (per phase) and has superior line- and loadtransient response.

Features

- Dual-Phase, Fast-Response Interleaved, Quick-**PWM**
- Intel IMVP-6.5 Code-Set Compliant (Calpella) Socket Configuration)
- Dynamic Phase Selection Optimizes Active/Sleep Efficiency
- Transient Phase Overlap Reduces Output Capacitance
- Active Voltage Positioning with Adjustable Gain
- High Speed, Accuracy, and Efficiency
- Low Bulk Output Capacitor Count
- 7V to 24V Input-Voltage Range
- ♦ 0 to 1.5000V Output-Voltage Range (7-Bit DAC)
- ♦ 60A Peak Load-Current Capability (30A Each Phase)
- Accurate Current Balance and Current Limit
- 300kHz Switching Frequency (per Phase)
- Power-Good (PWRGD) and Phase-Good (PHASEGD) Outputs and Indicators
- Clock Enable (CLKEN) and Thermal Fault (VRHOT) Outputs and Indicators
- Current Monitor (IMON) Output
- Undervoltage Fault Protections
- ♦ 48-Pin Thin QFN Package with an Exposed Pad
- Fully Assembled and Tested

Ordering Information

PART	TYPE				
MAX17582EVKIT+	EV Kit				
+Denotes lead(Ph)-free and RoHS compliant					

+Denotes lead(PD)-free and RoHS compliant

Quick-PWM is a trademark of Maxim Integrated Products, Inc.

MIXI/M

Maxim Integrated Products 1

valuates: MAX17582

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Evaluates: MAX17582

DESIGNATION	QTY	DESCRIPTION
CLKEN, DPRSLPVR, GND_SENSE, IMON, PGDIN, PHASEGD, PSI, PWRGD, V3P3, VOUT_SENSE, VRHOT, VR_ON	12	Test points
C1–C4	4	10μF ±20%, 25V X5R ceramic capacitors (1210) Murata Electronics GRM32DR61E106KA12L TDK C3225X7R1E106M AVX 12103D106M Taiyo Yuden TMK325BJ106MM KEMET C1210C106M3RAC
C5, C7, C8	3	330µF, 2V, 4.5mΩ low-ESR polymer capacitors (D case) Panasonic EEFSX0D331E4 or NEC TOKIN PSGV0E337M4.5 KEMET T520V337M2R5ATE4R5
C6	0	Not installed, capacitor (D case)
C9	0	Not installed, capacitor (0805)
C10, C11	2	1μF ±10%, 16V X5R ceramic capacitors (0603) TDK C1608X5R1C105K Taiyo Yuden EMK107BJ683MA Murata GRM188R61C105K
C12, C21, C22, C24, C25	0	Not installed, capacitors (0603)
C13, C14	2	0.22µF ±20%, 10V X7R ceramic capacitors (0603) Taiyo Yuden LMK107BJ224MA TDK C1608X7R1C224M AVX 06033D224KAT
C15, C16	2	2200pF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H222K or Murata GRM188R71H222K

DESIGNATION QTY DESCRIPTION 1000pF ±10%, 50V X7R ceramic C17, C18, C19, capacitors (0603) 5 C23, C26 TDK C1608X7R1H102K or Murata GRM188R71H102K 0.1µF ±10%, 25V X7R ceramic capacitor (0603) C20 1 TDK C1608X7R1E104K or Murata GRM188R71E104K Not installed, capacitor-short C27 0 (PC trace) (0603) 10µF ±20%, 6.3V X5R ceramic capacitors (0805) C30–C39, TDK C2012X5R0J106M or 18 C60-C67 Taiyo Yuden AMK212BJ106MG AVX 08056D106MAT 22µF, 6.3V X5R ceramic capacitors (0805) C40-C59 20 TDK C2012X5R0J226MT Taiyo Yuden JMK212BJ226MG 3A, 30V Schottky diodes 2 Nihon EC31QS03L D1, D2 Central Semi CMSH3-40M Green clear SMD LEDs (0805) D3-D6 4 Lite-On LTST-C170GKT Digi-Key 160-1179-1-ND JU1 0 Not installed, 3-pin header 0.36μ H, 36A, $0.82m\Omega$ power inductors L1, L2 2 Panasonic ETQP4LR36ZFC NEC TOKIN MPC1055LR36 TOKO FDUE1040D-R36M n-channel MOSFETs (PowerPAK 8 SO) N1, N2 2 Fairchild FDS6298 (SO 8) Vishay (Siliconix) SI4386DY n-channel MOSFETs (PowerPAK 8 SO) N3-N6 4 Fairchild FDS8670 (SO 8) Vishay (Siliconix) SI4626ADY

Component List

_Component	List	(continued)
------------	------	-------------

		l .		
DESIGNATION	QTY	DESCRIPTION		
N7	0	Not installed, n-channel MOSFET (DPAK)		
R1, R9, R13, R15, R16, R43, R44	7	$10\Omega \pm 5\%$ resistors (0603)		
R2	1	59k Ω ±1% resistor (0603)		
R3	1	12.1k Ω ±1% resistor (0603)		
R4	1	200k Ω ±1% resistor (0603)		
R5, R6	2	0Ω resistors (0603)		
R7, R11	2	0.001Ω ±1%, 1W resistors (2512) Panasonic ERJM1WTF1M0U		
R8, R12	2	100Ω ±5% resistors (0603)		
R17	1	3.24 k $\Omega \pm 1\%$ resistor (0603)		
R18, R34, R35, R45	0	Not installed, resistors (0603) R18 and R45 are open; R34 and R35 are short (PC trace)		
R19	1	51Ω ±5% resistor (0603)		
R20	0	Not installed, 1W resistor (2512)		
R21–R24, R30	5	1k Ω ±5% resistors (0603)		

DESIGNATION	QTY	DESCRIPTION			
R25	1	13k Ω ±1% resistor (0603)			
R26	1	$100k\Omega \pm 5\%$ NTC thermistor, $\beta = 4250$ (0603) Murata NCP18WF104J03RB TDK NTCG163JF104J			
R27, R28, R29, R31, R32, R36–R42	12	100k Ω ±5% resistors (0603)			
R33	1	6.34 k $\Omega \pm 1\%$ resistor (0603)			
SW1	1	7-position, low-profile DIP switch			
SW2	1	5-position, low-profile DIP switch			
U1	1	2-phase Quick-PWM VID controller (48 TQFN-EP*) Maxim MAX17582GTM+			
U2	1	CPU socket rPGA-989			
_	1	PCB: MAX17582 EVALUATION KIT+			

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
AVX Corporation	843-946-0238	www.avxcorp.com
Central Semiconductor Corp.	631-435-1110	www.centralsemi.com
Digi-Key Corp.	800-344-4539	www.digikey.com
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
KEMET Corp.	864-963-6300	www.kemet.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
NEC TOKIN America, Inc.	408-324-1790	www.nec-tokinamerica.com
Nihon Inter Electronics Corp.	847-843-7500	www.niec.co.jp
Panasonic Corp.	800-344-2112	www.panasonic.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com
TOKO America, Inc.	847-297-0070	www.tokoam.com
Vishay	402-563-6866	www.vishay.com

Note: Indicate that you are using the MAX17582 when contacting these component suppliers.

Quick Start

Recommended Equipment

- MAX17582 EV kit
- 7V to 24V, > 100W power supply, battery, or notebook AC adapter
- DC bias power supply, 5V at 1A
- Dummy load capable of sinking 60A
- Digital multimeters (DMMs)
- 100MHz dual-trace oscilloscope

Procedure

The MAX17582 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power.
- Verify that all positions of switch SW2 are off. The DAC code settings (D6–D0) are set by switch SW1. Set SW1 (1, 14), SW1 (3, 12), SW1 (5, 10), and SW1 (7, 8) to the on positions. The output voltage is set for 0.9750V.
- 3) Turn on the battery power before turning on the 5V bias power.
- Observe the 0.9750V output voltage with the DMM and/or oscilloscope. Look at the LX switching nodes and MOSFET gate-drive signals while varying the load current.

_Detailed Description of Hardware

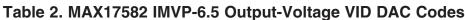
This 60A peak multiphase buck-regulator design is optimized for a 300kHz switching frequency (per phase) and output-voltage settings around 1V. At V_{OUT} = 1V and V_{IN} = 12V, the inductor ripple is approximately 35% (LIR = 0.35). The MAX17582 controller interleaves all the active phases, resulting in out-of-phase operation that minimizes the input and output filtering requirements. The multiphase controller shares the current between two phases that operate 180° out-of-phase, supplying up to 30A per phase.

Setting the Output Voltage

The MAX17582 has an internal digital-to-analog converter (DAC) that programs the output voltage. The output voltage can be digitally set from 0 to 1.5000V (Table 2) from the D0–D6 pins. There are two different ways of setting the output voltage:

- Drive the external VID0–VID6 inputs (all SW1 positions are off). The output voltage is set by driving VID0–VID6 with open-drain drivers (pullup resistors are included on the board) or 3V/5V CMOS output logic levels.
- 2) Switch SW1. When SW1 positions are off, the MAX17582's D0–D6 inputs are at logic 1 (connected to VDD). When SW1 positions are on, D0–D6 inputs are at logic 0 (connected to GND). The output voltage can be changed during operation by activating SW1 on and off. As shipped, the EV kit is configured with SW1 positions set for 0.9750V output (Table 2). Refer to the MAX17582 IC data sheet for more information.

INPUTS						
SHDN SW2 (1, 10)	SLOW SW2 (5, 6)	DPRSLPVR SW2 (2, 9)	PSI SW2 (3, 8)	PHASE OPERATION*	OPERATING MODE	
GND	X	Х	x	Disabled	Low-Power Shutdown Mode. DL1 and DL2 are forced low and the controller is disabled. The supply current drops to $1\mu A$ (max).	
Rising	x	Х	X	Multiphase pulse-skip- ping 1/8 RTIME slew rate	Startup/Boot. When SHDN is pulled high, the MAX17582 begins the startup sequence. The controller enables the PWM controller and ramps the output voltage up to the boot voltage.	
High	High	Low	High	Multiphase forced-PWM normal R _{TIME} slew rate	Full Power. The no-load output voltage is determined by the selected VID DAC code (D0–D6, Table 2).	
High	High	Low	Low	1-phase forced-PWM normal R _{TIME} slew rate	Intermediate Power. The no-load output voltage is deter- mined by the selected VID DAC code (D0–D6, Table 2). When PSI is pulled low, the MAX17582 immediately disables phase 2. DH2 and DL2 are pulled low.	
High	High	High	×	1-phase pulse-skip- ping normal R _{TIME} slew rate	Deeper Sleep Mode. The no-load output voltage is deter- mined by the selected VID DAC code (D0–D6, Table 2). When DPRSLPVR is pulled high, the MAX17582 immedi- ately enters 1-phase pulse-skipping operation allowing automatic PWM/PFM switchover under light loads. The PWRGD and CLKEN upper thresholds are blanked during downward transitions. DH2 and DL2 are pulled low.	
High	Low	X	х	1/2 RTIME slew rate	When SLOW is pulled low during any normal operating mode, the slew rate is changed to half of the normal value set by RTIME.	
Falling	X	Х	X	Multiphase forced-PWM 1/8 RTIME slew rate	Shutdown. When SHDN is pulled low, the MAX17582 immediately pulls PWRGD and PHASEGD low, CLKEN becomes high impedance, all enabled phases are activated, and the output voltage is ramped down to ground. Once the output reaches 0V, the controller enters the low-power shutdown state.	
High	X	X	х	Disabled	Fault Mode. The fault latch has been set by the MAX17582 UVP or thermal-shutdown protection. The co troller remains in fault mode until VCC power is cycled SHDN toggled.	


*Multiphase operation = all enabled phases active.

X = Don't care.

Evaluates: MAX17582

Evaluates: MAX17582

D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE (V)	D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE (V)
0	0	0	0	0	0	0	1.5000	1	0	0	0	0	0	0	0.7000
0	0	0	0	0	0	1	1.4875	1	0	0	0	0	0	1	0.6875
0	0	0	0	0	1	0	1.4750	1	0	0	0	0	1	0	0.6750
0	0	0	0	0	1	1	1.4625	1	0	0	0	0	1	1	0.6625
0	0	0	0	1	0	0	1.4500	1	0	0	0	1	0	0	0.6500
0	0	0	0	1	0	1	1.4375	1	0	0	0	1	0	1	0.6375
0	0	0	0	1	1	0	1.4250	1	0	0	0	1	1	0	0.6250
0	0	0	0	1	1	1	1.4125	1	0	0	0	1	1	1	0.6125
0	0	0	1	0	0	0	1.4000	1	0	0	1	0	0	0	0.6000
0	0	0	1	0	0	1	1.3875	1	0	0	1	0	0	1	0.5875
0	0	0	1	0	1	0	1.3750	1	0	0	1	0	1	0	0.5750
0	0	0	1	0	1	1	1.3625	1	0	0	1	0	1	1	0.5625
0	0	0	1	1	0	0	1.3500	1	0	0	1	1	0	0	0.5500
0	0	0	1	1	0	1	1.3375	1	0	0	1	1	0	1	0.5375
0	0	0	1	1	1	0	1.3250	1	0	0	1	1	1	0	0.5250
0	0	0	1	1	1	1	1.3125	1	0	0	1	1	1	1	0.5125
0	0	1	0	0	0	0	1.3000	1	0	1	0	0	0	0	0.5000
0	0	1	0	0	0	1	1.2875	1	0	1	0	0	0	1	0.4875
0	0	1	0	0	1	0	1.2750	1	0	1	0	0	1	0	0.4750
0	0	1	0	0	1	1	1.2625	1	0	1	0	0	1	1	0.4625
0	0	1	0	1	0	0	1.2500	1	0	1	0	1	0	0	0.4500
0	0	1	0	1	0	1	1.2375	1	0	1	0	1	0	1	0.4375
0	0	1	0	1	1	0	1.2250	1	0	1	0	1	1	0	0.4250
0	0	1	0	1	1	1	1.2125	1	0	1	0	1	1	1	0.4125
0	0	1	1	0	0	0	1.2000	1	0	1	1	0	0	0	0.4000
0	0	1	1	0	0	1	1.1875	1	0	1	1	0	0	1	0.3875
0	0	1	1	0	1	0	1.1750	1	0	1	1	0	1	0	0.3750
0	0	1	1	0	1	1	1.1625	1	0	1	1	0	1	1	0.3625
0	0	1	1	1	0	0	1.1500	1	0	1	1	1	0	0	0.3500
0	0	1	1	1	0	1	1.1375	1	0	1	1	1	0	1	0.3375
0	0	1	1	1	1	0	1.1250	1	0	1	1	1	1	0	0.3250
0	0	1	1	1	1	1	1.1125	1	0	1	1	1	1	1	0.3125
0	1	0	0	0	0	0	1.1000	1	1	0	0	0	0	0	0.3000
0	1	0	0	0	0	1	1.0875	1	1	0	0	0	0	1	0.2875
0	1	0	0	0	1	0	1.0750	1	1	0	0	0	1	0	0.2750
0	1	0	0	0	1	1	1.0625	1	1	0	0	0	1	1	0.2625
0	1	0	0	1	0	0	1.0500	1	1	0	0	1	0	0	0.2500
0	1	0	0	1	0	1	1.0375	1	1	0	0	1	0	1	0.2375
0	1	0	0	1	1	0	1.0250	1	1	0	0	1	1	0	0.2250
0	1	0	0	1	1	1	1.0125	1	1	0	0	1	1	1	0.2125
0	1	0	1	0	0	0	1.0000	1	1	0	1	0	0	0	0.2000
0	1	0	1	0	0	1	0.9875	1	1	0	1	0	0	1	0.1875

D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE (V)	D6	D5	D4	D3	D2	D1	D0	OUTPUT VOLTAGE (V)
0	1	0	1	0	1	0	0.9750	1	1	0	1	0	1	0	0.1750
0	1	0	1	0	1	1	0.9625	1	1	0	1	0	1	1	0.1625
0	1	0	1	1	0	0	0.9500	1	1	0	1	1	0	0	0.1500
0	1	0	1	1	0	1	0.9375	1	1	0	1	1	0	1	0.1375
0	1	0	1	1	1	0	0.9250	1	1	0	1	1	1	0	0.1250
0	1	0	1	1	1	1	0.9125	1	1	0	1	1	1	1	0.1125
0	1	1	0	0	0	0	0.9000	1	1	1	0	0	0	0	0.1000
0	1	1	0	0	0	1	0.8875	1	1	1	0	0	0	1	0.0875
0	1	1	0	0	1	0	0.8750	1	1	1	0	0	1	0	0.0750
0	1	1	0	0	1	1	0.8625	1	1	1	0	0	1	1	0.0625
0	1	1	0	1	0	0	0.8500	1	1	1	0	1	0	0	0.0500
0	1	1	0	1	0	1	0.8375	1	1	1	0	1	0	1	0.0375
0	1	1	0	1	1	0	0.8250	1	1	1	0	1	1	0	0.0250
0	1	1	0	1	1	1	0.8125	1	1	1	0	1	1	1	0.0125
0	1	1	1	0	0	0	0.8000	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	0.7875	1	1	1	1	0	0	1	0
0	1	1	1	0	1	0	0.7750	1	1	1	1	0	1	0	0
0	1	1	1	0	1	1	0.7625	1	1	1	1	0	1	1	0
0	1	1	1	1	0	0	0.7500	1	1	1	1	1	0	0	0
0	1	1	1	1	0	1	0.7375	1	1	1	1	1	0	1	0
0	1	1	1	1	1	0	0.7250	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	0.7125	1	1	1	1	1	1	1	Off

Table 2. MAX17582 IMVP-6.5 Output-Voltage VID DAC Codes (continued)

Reduced Power-Dissipation Voltage Positioning

The MAX17582 includes a transconductance amplifier for adding gain to the voltage-positioning sense path. The amplifier's input is generated by summing the current-sense inputs, which differentially sense the voltage across the inductor's DCR. The transconductance amplifier's output connects to the voltage-positioned feedback input (FBAC), so the resistance between FBAC and V_{OUT} (R17) determines the voltage-positioning gain. Resistor R17 (3.24k Ω) provides a -1.9mV/A voltage-positioning slope at the output when all phases are active. Remote output and ground sensing eliminate any additional PCB voltage drops.

Dynamic Output-Voltage Transition Experiment

This MAX17582 EV kit is set to transition the output voltage at 6.25mV/µs (SLOW = GND). The speed of the transition is altered by scaling resistors R2 and R3.

During the voltage transition, watch the inductor current by looking at the current-sense inputs with a differential scope probe. Observe the low, well-controlled inductor current that accompanies the voltage transition. Slew-rate control during shutdown and startup results in well-controlled currents into and out of the battery (input source).

There are two methods to create an output-voltage transition. Select D0–D6 (SW1). Then either manually change the SW1 settings to a new VID code setting (Table 2), or disable all SW1 settings and drive the VID0–VID6 PCB test points externally to the desired code settings.

Load-Transient Experiment

One interesting experiment is to subject the output to large, fast load transients and observe the output with an oscilloscope. Accurate measurement of output ripple and load-transient response invariably requires that ground clip leads be completely avoided and the probe removed to expose the GND shield, so the probe can be directly grounded with as short a wire as possible to the board. Otherwise, EMI and noise pickup corrupt the waveforms.

Most benchtop electronic loads intended for powersupply testing lack the ability to subject the DC-DC converter to ultra-fast load transients. Emulating the supply current (di/dt) at the IMVP-6.5 VCORE pins requires at least 500A/µs load transients. One easy method for generating such an abusive load transient is to install a power MOSFET at the N7 location and install resistor R20 between 5m Ω and 10m Ω to monitor the transient current. Then drive its gate (TP1) with a strong pulse generator at a low duty cycle (< 5%) to minimize heat stress in the MOSFET. Vary the high-level output voltage of the pulse generator to vary the load current.

To determine the load current, you might expect to insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy-load MOSFET. To determine how much load current particular pulse-generator amplitude is causing, observe the current through inductor L1. In the buck topology, the load current is approximately equal to the average value of the inductor current.

Note: CPU socket is based on the Calpella platform pin configuration.

Table 3. Shutdown Mode (SHDN)

SW2 (1, 10)	SHDN PIN	MAX17582 OUTPUT				
Off	Connected to VDD	Output enabled—Vout is selected by VID DAC code (D0–D6) settings				
On	Connected to GND	Shutdown mode, V _{OUT} = 0V				

Switch SW2 Settings

Shutdown SW2 (1, 10)

When \overline{SHDN} goes low (SW2 (1, 10) = on), the MAX17582 enters the low-power shutdown mode. PWRGD is pulled low immediately, and the output voltage ramps down at 1/8 the slew rate set by R2 and R3 (71.1k Ω). When the controller reaches the 0V target, the drivers are disabled (DL1 and DL2 driven high), the reference is turned off, and the IC supply currents drop to 1µA (max).

When a fault condition activates the shutdown sequence (output undervoltage lockout or thermal shutdown), the protection circuitry sets the fault latch to prevent the controller from restarting. To clear the fault latch and reactivate the MAX17582, toggle SHDN or cycle VDD power.

DPRSLPVR SW2 (2, 9), **PSI** SW2 (3, 8)

DPRSLPVR and PSI together determine the operating mode, as shown in Table 4. The MAX17582 is forced into full-phase PWM mode during startup, while in boot mode, during the transition from boot mode to VID mode, and during shutdown.

Table 4. DPRSLPVR, PSI

DPRSLPVR SW2 (2, 9)	PSI SW2 (3, 8)	POWER LEVEL	OPERATING MODE				
On (VDD)	Х	Low current	1-phase pulse- skipping mode				
Off (GND)	On (GND)	Intermediate	1-phase forced- PWM mode				
Off (GND)*	Off (VDD)*	Full	Normal opera- tion—all phases are active, forced- PWM mode				

X = Don't care.

*Default position.

SLOW, SW2 (5, 6)

This 1V logic input signal selects between the nominal and "slow" (half of nominal rate) slew rates. When SLOW is forced high, the selected nominal slew rate is set by the TIME resistance. When SLOW is forced low, the slew rate is reduced to half of the nominal slew rate.

PGDIN, SW2 (4, 7)

PGDIN indicates the power status of other system rails and is used for power-supply sequencing. After powerup to the boot voltage, the output voltage remains at

Table 5. SLOW

SW2 (5, 6)	SLOW PIN	MAX17582
Off	Connected to VDD	Nominal slew rate is set by R2 and R3
On*	Connected to GND	Slew rate is reduced to half of the nominal slew rate

*Default position.

VBOOT, CLKEN remains high, and PWRGD remains low as long as the PGDIN stays low. When PGDIN is pulled high, the output transitions to selected VID voltage, and CLKEN is pulled low. If the system pulls PGDIN low during normal operation, the MAX17582 immediately drives CLKEN high, pulls PWRGD low, and slews the output to the boot voltage (using 2-phase pulse-skipping mode). The controller remains at the boot voltage until PGDIN goes high again, SHDN is toggled, or the V_{DD} is cycled.

Table 6. PGDIN

SW2 (4, 7)	PGDIN PIN	MAX17582 OUTPUT
Off	Connected to GND	V _{OUT} remains at the boot volt- age. CLKEN remains high, and PWRGD remains low.
On*	Connected to VDD	VOUT transitions to selected VID voltage, and CLKEN is pulled low.

*Default position.

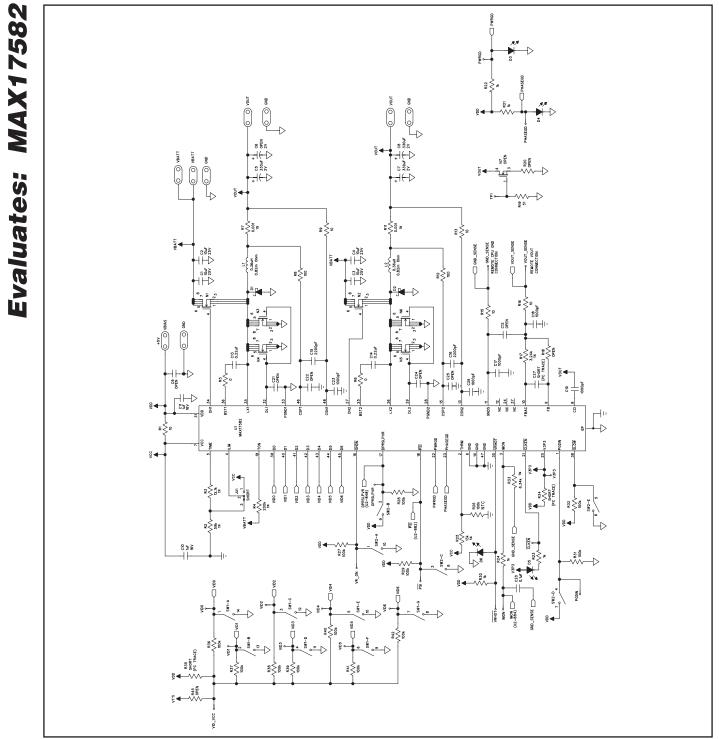


Figure 1a. MAX17582 EV Kit Schematic (Sheet 1 of 2)

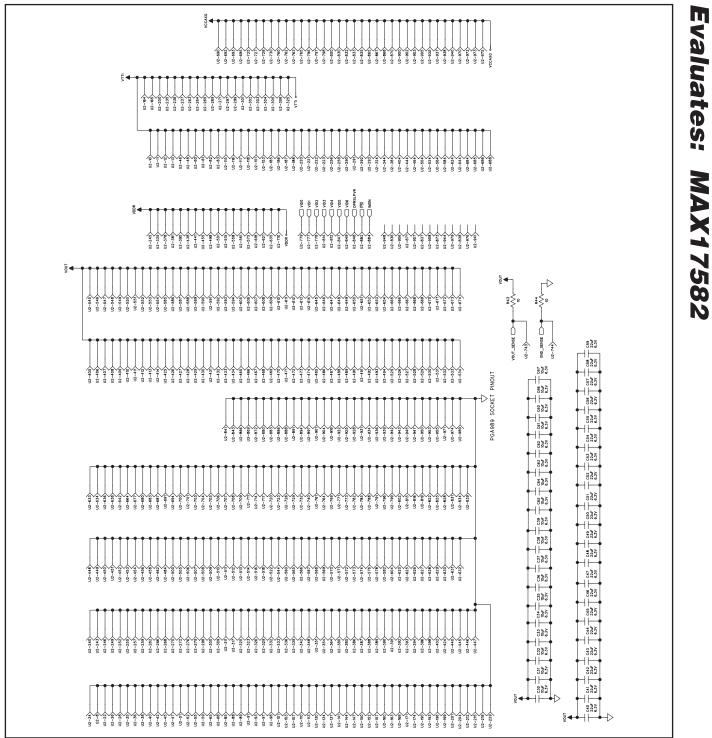


Figure 1b. MAX17582 EV Kit Schematic (Sheet 2 of 2)

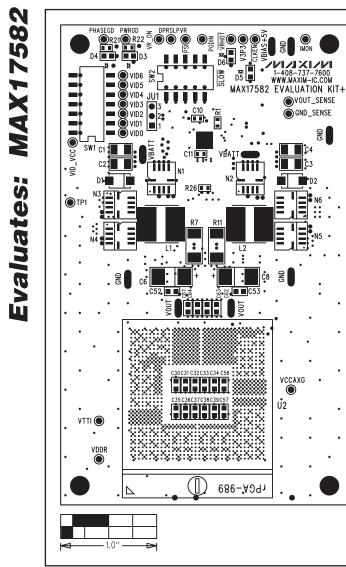


Figure 2. MAX17582 EV Kit Component Placement Guide— Component Side

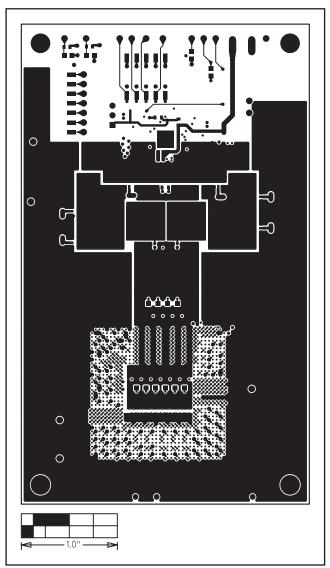


Figure 3. MAX17582 EV Kit PCB Layout—Component Side

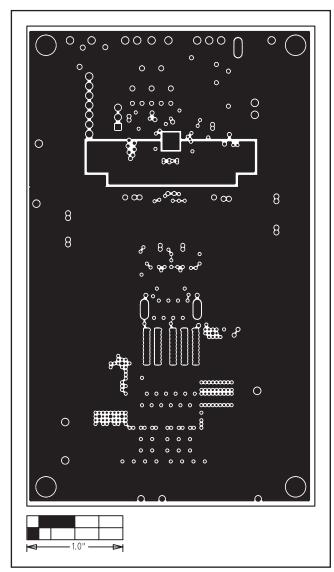


Figure 4. MAX17582 EV Kit PCB Layout—Internal Layer 2 (VBATT/PGND Plane)

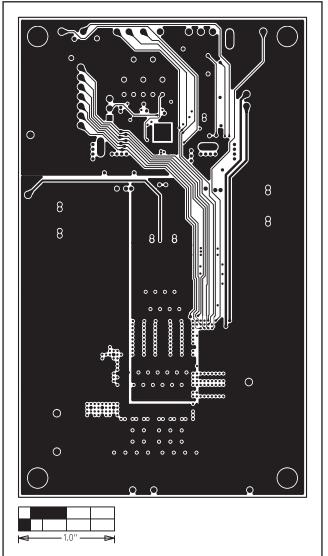


Figure 5. MAX17582 EV Kit PCB Layout—Internal Layer 3 (Signal Layer)

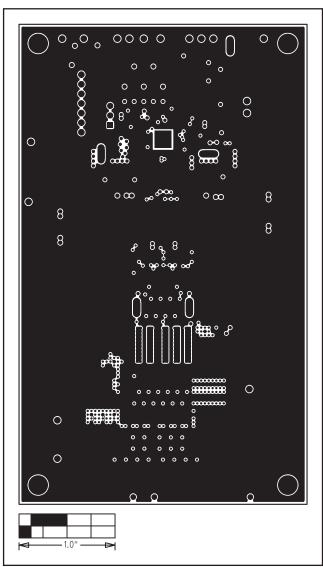


Figure 6. MAX17582 EV Kit PCB Layout—Internal Layer 4 (PGND Layer)

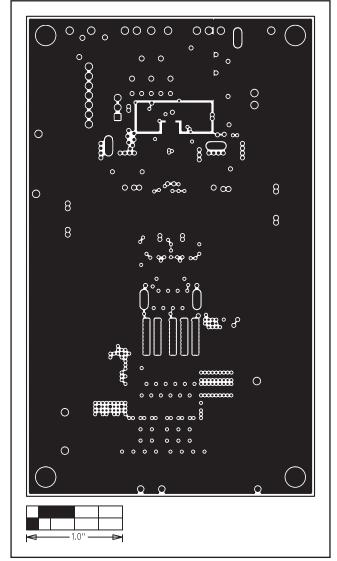


Figure 7. MAX17582 EV Kit PCB Layout—Internal Layer 5 (AGND/PGND Layer)

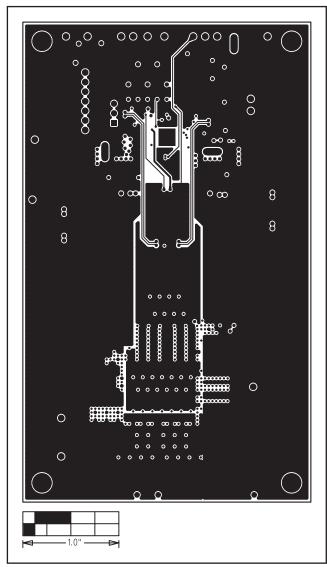


Figure 8. MAX17582 EV Kit PCB Layout—Internal Layer 6 (Signal Layer)

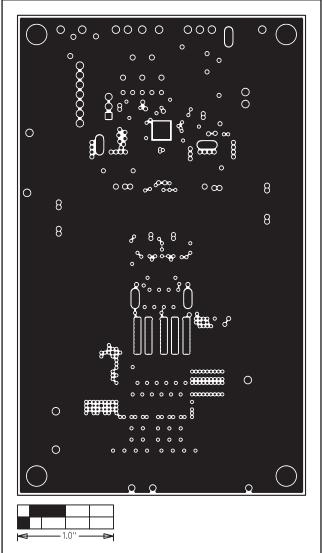


Figure 9. MAX17582 EV Kit PCB Layout—Internal Layer 7 (PGND Layer)

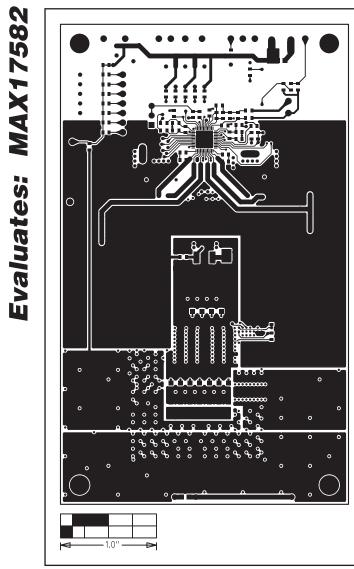


Figure 10. MAX17582 EV Kit PCB Layout—Solder Side

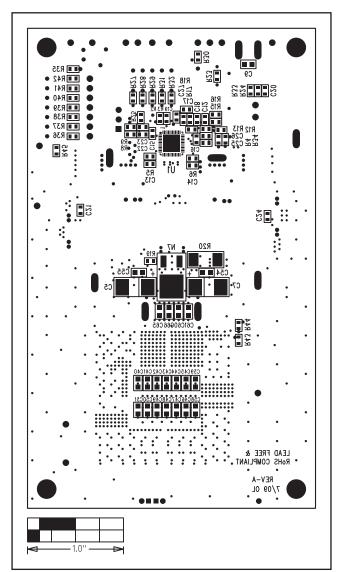
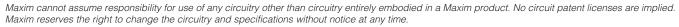



Figure 11. MAX17582 EV Kit Component Placement Guide—Solder Side

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2009 Maxim Integrated Products

16

Maxim is a registered trademark of Maxim Integrated Products, Inc.