Quad Driver with Integrated Level Setters

General Description

The MAX19001 fully integrated, quad-channel, highperformance pin-electronics driver with built-in level setters is ideal for memory and SOC ATE systems. Each MAX19001 channel includes a four-level pin driver, programmable cable-loss compensation, built-in programmable level setters, and a comparator that is useful for AC calibration.
The driver features a wide -2 V to +6 V operating range and a data rate of 1200 Mbps at +2 V operation, and in high-voltage mode (VHH mode) offers an output voltage range of 0 to 13 V . The device includes high impedance, active termination (3rd-level drive), and is highly linear even at low voltage swings. The calibration comparators and multiplexer provide a timing calibration path for each channel. A serial interface configures the device, easing PCB signal routing.
For a complete system solution for memory and SOC ATE systems, the MAX19001 can be paired with the MAX19000. The MAX19000 is a fully integrated, dualchannel, high-performance pin electronics driver/ comparator with similar driver characteristics to the MAX19001.
The MAX19001 is available in a 64-pin TQFP package with an exposed pad.

Applications

Memory Testers
SOC Testers

Features

- High Speed: 1200Mbps at +2V Operation
- Fast Rise/Fall Times: 400ps Maximum at +2V (20\% to 80\%)
- Extremely Low Power Dissipation: 0.7W/Channel
- Wide, High-Speed Voltage Range: -2V to +6V
- Low-Leak Mode, 100nA Maximum
- Integrated Termination On-the-Fly (3rd-Level Drive)
- Integrated VHH Programming Mode (4th-Level Drive) Up to 13V
- Programmable Drive Cable-Loss Compensation
- Integrated Calibration Comparator
- Digital Slew-Rate Control
- Integrated Level Setters
- Adjustable Output Resistance
- Very Low Timing Dispersion
- Minimal External Component Count
- Serial-Control Interface

Ordering Information

PART	TEMP RANGE	COMPARATOR OUTPUT $(\mathbf{m A})$	DATA_/NDATA_RCV_/NRCV_ DIFFERENTIAL TERMINATION (Ω)	PIN-PACKAGE
MAX19001BECB +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	12	100	64 TQFP-EP*

[^0]
Quad Driver with Integrated Level Setters

ABSOLUTE MAXIMUM RATINGS
$V_{C C}$ to GND...-0.3V to +11.0 V VEE to GND ..-6.0V to +0.3 V Any VCC to Any VEE.. +16.5 V
VDD to DGND ..-0.3V to +5.0 V
VHHP to GND.. 0.3 V to +19.0 V
DGND to GND.. $\pm 0.3 \mathrm{~V}$
GNDDAC_ to GND .. $\pm 0.3 \mathrm{~V}$
DGND to GNDDAC__... $\pm 0.3 \mathrm{~V}$
DGS to GND... $\pm 1.0 \mathrm{~V}$
CTV, DATV_, RTV_ to GND-0.3V to +5 V
DATA_, NDATA_ to GND(VEE -0.3 V) to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
RCV_, NRCV_ to GND.....................(VEE - 0.3V) to (VCC + 0.3V)
CMP, NCMP to GND (VCTV - 1.1V) to (VCTV + 0.3V)
Current into CMP, NCMP .. $\pm 10 \mathrm{~mA}$
DATA_ to NDATA_, RCV_ to NRCV_ $\pm 1 \mathrm{~V}$
DUT_ to GND
(all modes except VHH) (VEE -0.3 V) to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
DUT_ to GND (VHH mode) 3.5 V to +13.5 V
DUT_ to VEE ... +19V
SCLK, DIN, $\overline{\mathrm{CS}}, \overline{\mathrm{LOAD}}, \overline{\mathrm{RST}}$ to DGND..... -0.3V to (VDD +0.3 V)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (NOTE 1)

64 TQFP-EP

Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)......... $40^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

 $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V} V H H=+10 \mathrm{~V}, \mathrm{CDRP}_{2}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $T_{J}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T} J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :--- | :--- | :---: | UNITS

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC_ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{T} J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Temperature Coefficient (Notes 3, 4)	VDHV_TC			± 75	± 500	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	VDLV_TC			± 75	± 500	
	VDTV_TC			± 75	± 500	
Gain (Note 2)	ADHV_	$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DHV }}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.999	1	1.001	V/V
	ADLV_	$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+6.0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \text { VDLV }_{-}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.999	1	1.001	
	ADTV_	$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=-2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=+0.125 \mathrm{~V} \text { and }+3.875 \mathrm{~V} \end{aligned}$	0.999	1	1.001	
Linearity Error, -0.5 V to +4.5 V (Note 2)		$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DHV }}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \end{aligned}$		± 1	± 6	mV
		$\begin{aligned} & \mathrm{V}_{\text {DHV }}=+6.0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{VDLV}_{-}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \end{aligned}$		± 1	± 6	
		$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-0.5 \mathrm{~V} \text { to }+4.5 \mathrm{~V} \end{aligned}$		± 1	± 6	
Linearity Error, -1.75 V to +5.125 V (Note 2)		$\begin{aligned} & \mathrm{V}_{\text {DLV_ }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}=+1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DHV}}=-1.75 \mathrm{~V} \text { to }+5.125 \mathrm{~V} \end{aligned}$			± 12	mV
		$\begin{aligned} & \text { VDHV }_{\text {D }}=+6.0 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \\ & \text { VDLV_ }^{2}-1.75 \mathrm{~V} \text { to }+5.125 \mathrm{~V} \end{aligned}$			± 12	
		$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV_ }}=-1.75 \mathrm{~V} \text { to }+5.125 \mathrm{~V} \end{aligned}$			± 12	
Linearity Error, Full Range (Note 2)		$\begin{aligned} & \mathrm{VDLV}_{-}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}^{-}=+1.5 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=-1.8 \mathrm{~V} \text { to }+6.0 \mathrm{~V} \end{aligned}$		± 5	± 14	mV
		$\begin{aligned} & \mathrm{VDHV}_{-}=+6.0 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \\ & \mathrm{VDLV}_{-}=-2.0 \mathrm{~V} \text { to }+5.8 \mathrm{~V} \end{aligned}$		± 5	± 14	
		$\begin{aligned} & \mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+6.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV }}=-2.0 \mathrm{~V} \text { to }+6.0 \mathrm{~V} \end{aligned}$		± 5	± 14	
DHV_-to-DLV_ Crosstalk		$\begin{aligned} & \mathrm{VDLV}_{-}=-0.5 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \\ & \mathrm{VDHV}_{-}=-0.3 \mathrm{~V} \text { and }+6.0 \mathrm{~V} \end{aligned}$			± 3	mV
DLV_-to-DHV_ Crosstalk		$\begin{aligned} & \mathrm{VDHV}_{-}=+4.5 \mathrm{~V}, \mathrm{~V}_{\text {DTV }}^{-}=+1.5 \mathrm{~V} \\ & \mathrm{VDLV}_{-}=-2.0 \mathrm{~V} \text { and }+4.3 \mathrm{~V} \end{aligned}$			± 3	mV
DTV_-to-DLV_ and DHV_ Crosstalk		$\begin{aligned} & \mathrm{VDHV}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{VDTV}_{-}=-2.0 \mathrm{~V} \\ & \text { and }+6.0 \mathrm{~V} \end{aligned}$			± 2	mV
DHV_-to-DTV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{\text {DTV }}^{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}_{-}}=+1.6 \mathrm{~V} \\ & \text { and }+3.0 \mathrm{~V} \end{aligned}$			± 3	mV
DLV_-to-DTV_ Crosstalk		$\begin{aligned} & \mathrm{V}_{\mathrm{DTV}}^{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}_{-}}=0 \mathrm{~V} \\ & \text { and }+1.4 \mathrm{~V} \end{aligned}$			± 3	mV

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-5.25 \mathrm{~V}, \mathrm{~V}\right.$ HHP $=+17.5 \mathrm{~V}, \mathrm{~V} D \mathrm{DD}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $T J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Term Voltage Dependence on DATA_		$\begin{aligned} & \mathrm{VDTV}_{-}=+1.5 \mathrm{~V}, \\ & \text { DATA_ }^{2}=\text { high } \end{aligned}$	$\mathrm{V}_{D H V_{-}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}_{-}}=0 \mathrm{~V},$ and low			± 2	mV
DC Power-Supply Rejection	PSRRDHV	$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}$, V_{CC} and $\mathrm{V}_{\text {EE }}$ independently varied full range		40			dB
	PSRRDLV	$V_{D L V}=0 V, V_{C C}$ and $V_{E E}$ independently varied full range		40			
	PSRRDTV	$V_{\text {DTV }}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ and V_{EE} independently varied full range		40			
DC Drive Current Limit		When DATA_ = high , VDHV_ $=+6.0 \mathrm{~V}$ and VDUT_ = -2V		+65		+110	mA
		When DATA_ = low, $\mathrm{V}_{\text {DLV }}=-2.0 \mathrm{~V}$ and VDUT_ = +6V		-110		-65	
DC Output Resistance		RO_ = 0b1000 (Note 5)		46	48	50	Ω
DC Output Resistance Variation (Note 6)		$\begin{aligned} & \text { DATA_ = high, VDHV_= +3V, VDLV_ }=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DTV}}^{-}=+1 \mathrm{~V}, \text { IDUT_ }^{2}=1 \mathrm{~mA}, 12 \mathrm{~mA}, 40 \mathrm{~mA} \end{aligned}$			1	2	Ω
		$\begin{aligned} & \text { DATA_ = Iow, } \text { VDHV }_{-}=+3 \mathrm{~V}, \mathrm{VDLV}_{-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DTV_ }}=+1 \mathrm{~V}, \text { IDUT_ }=-1 \mathrm{~mA},-12 \mathrm{~mA},-40 \mathrm{~mA} \end{aligned}$			1	2	
Adjustable Output Resistance Range	$\Delta \mathrm{Ro}$	$R O_{-}=$Fh vs. $\mathrm{RO}_{-}=8 \mathrm{~h}$ and $\mathrm{RO}_{-}=0 \mathrm{~h} v \mathrm{~s}$. RO_ = 8h, resolution of 0.36Ω (see conditions of Note 5)			± 2.5		Ω
DRIVER AC CHARACTERISTICS (RL = 50 Ω to GND) (Note 7)							
Dynamic Drive Current		(Note 8)			± 100		mA
Drive Mode Overshoot		Cable-droop compensation off	$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+0.1 \mathrm{~V}$		50		\%
			$\mathrm{V}_{\text {DLV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}$		12		
			$\mathrm{V}_{\text {DLV_- }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}$		3.3		
			$\mathrm{V}_{\text {DLV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+5 \mathrm{~V}$		2.0		
Drive Mode Undershoot		Cable-droop compensation off	$V_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV_ }}=+0.1 \mathrm{~V}$		20		\%
			$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}$		5		
			$V_{\text {DLV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}$		2.3		
			$\mathrm{V}_{\text {DLV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+5 \mathrm{~V}$		2.0		
Cable-Droop Compensation Range, Fast Time Constant		$\mathrm{V}_{\text {DLV_ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRPS}_{-}=000$			0		\%
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRPS}_{-}=111$			15		
Cable-Droop Compensation Range, Slow Time Constant		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRPL}_{-}=000$			0		\%
		$\mathrm{V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{CDRPL}_{-}=111$		15			
Driver Cable-Droop Compensation, Short Time Constant				60			ps
Driver Cable-Droop Compensation, Long Time Constant					1.2		ns

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC_ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $T J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Settling Time (Notes 4, 9)		To within $100 \mathrm{mV}, \mathrm{V}_{\text {DHV }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}$		0.25	1	ns
		To within 50 mV , $\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}$		0.25	1	
		To within $25 \mathrm{mV}, \mathrm{V}_{\text {DHV }}=+0.5 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}$		0.25	1	
TIMING CHARACTERISTICS (Notes 7, 10)						
Propagation Delay, Data to Output		$\mathrm{V}_{\text {DHV }}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {DLV_ }}=0 \mathrm{~V}$ (Note 11)	0.6	1.0	1.4	ns
Propagation-Delay Match, tLH vs. thL		(Note 4)		± 40	± 80	ps
Propagation-Delay Match, Drivers Within Package		Same edge		40		ps
Propagation-Delay Temperature Coefficient		(Note 4)		3	5	ps/ ${ }^{\circ} \mathrm{C}$
Propagation-Delay Change vs. Pulse Width		$V_{D H V_{-}}=+1 \mathrm{~V}, \mathrm{~V}_{D L V_{-}}=0 \mathrm{~V}, 0.85 \mathrm{~ns}$ to 24.150ns pulse width (Note 4)		± 25	± 50	ps
		$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV_ }}=0 \mathrm{~V}$, 1.0ns to 24.0 ns pulse width (Note 4)		± 35	± 60	
		VDHV_ $_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\text {DLV_ }}=0 \mathrm{~V}$, 1.5 ns to 23.5 ns pulse width		± 100		
Propagation-Delay Change vs. Common (Note 4)		$\mathrm{V}_{D H V_{-}}-\mathrm{V}_{\mathrm{DLV}}^{-}=+1 \mathrm{~V}, \mathrm{~V}_{D H V_{-}}=+1 \mathrm{~V} \text { to }+4 \mathrm{~V}$ (using a DC block)		50	60	ps
		$\mathrm{VDHV}_{-}-\mathrm{V}_{\mathrm{DLV}}^{-}=+1 \mathrm{~V}, \mathrm{~V}_{D H V_{-}}=-1 \mathrm{~V} \text { to }+6 \mathrm{~V}$ (using a DC block)		50	100	
Propagation Delay, Drive to High Impedance, High Impedance to Drive		$\mathrm{V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=-1 \mathrm{~V}($ Notes 4,12$)$	1.5	2.2	2.9	ns
Delay Match, Drive to High Impedance vs. High Impedance to Drive		$\mathrm{V}_{\text {DHV }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {DLV_ }}=-1 \mathrm{~V}($ Note 13)		± 0.35		ns
Delay Match, High Impedance vs. Data				1.1		ns
Propagation Delay, Drive to Term, Term to Drive		(Notes 4, 14)	1.7	2.5	3.4	ns
Delay Match, Drive to Term vs. Term to Drive		$V_{D H V}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DT}} \mathrm{V}_{-}=+1.5 \mathrm{~V}$ (Note 15)		± 1		ns
Delay Match, Terminate vs. Data				1.5		ns

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP}_{\ldots}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T} J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Rise and Fall Time		0.2VP-P programmed, $\mathrm{V}_{\text {DHV }}=+0.2 \mathrm{~V}$, VDLV_ = OV, 20\% to 80\% (Note 16)		140		
		$0.2 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+0.2 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 20 \%$ to 80% (Note 17)		150		
		$1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1.0 \mathrm{~V}$, VDLV_ = OV, 10\% to 90% (Notes 4, 16)	200	270	400	
		$1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1.0 \mathrm{~V}$, VDLV_ $=0 \mathrm{~V}, 10 \%$ to 90% (Note 17)		350		
		$1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1.0 \mathrm{~V}$, $V_{D L V}=0 V, 20 \%$ to $80 \%($ Notes 4, 16)	140	190	275	
		$2 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+2 \mathrm{~V}$, $V_{\text {DLV }}=0 \mathrm{~V}, 20 \%$ to 80% (Notes 4, 16)	230	280	400	ps
		$2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+2 \mathrm{~V}$, $V_{D L V}=0 V, 20 \%$ to 80\%, (Note 17)		300		
		3VP-P programmed, VDHV_= +3V, VDLV_ = OV, 10\% to 90\%, trim condition (Note 16)	425	550	800	
		$3 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+3 \mathrm{~V}$, VDLV_ = OV, 10\% to 90\% (Note 17)		605		
		$5 \mathrm{VP}-\mathrm{P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+5 \mathrm{~V}$, VDLV $=0 \mathrm{~V}, 10 \%$ to 90% (Notes 4, 16)	650	850	1050	
		5VP-P programmed, VDHV_ = +5V, VDLV_ = 0V, 10\% to 90\% (Note 17)		880		
Rise and Fall Time Matching (Notes 16, 18)		0.2VP-P programmed, $\mathrm{VDHV}_{-}=+0.2 \mathrm{~V}$, VDLV_ = OV, 20\% to 80\%		± 20		
		$1 \mathrm{VP}-\mathrm{P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1.0 \mathrm{~V}$, VDLV_ = OV, 10\% to 90\% (Note 4)		± 20	± 40	
		2VP-P programmed, VDHV_ $=+2.0 \mathrm{~V}$, VDLV_ = 0V, 20\% to 80\% (Note 4)		± 20	± 40	ps
		$3 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+3 \mathrm{~V}$, VDLV_ = OV, 10\% to 90\%		± 30	± 80	
		$5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+5 \mathrm{~V}$, VDLV_ = OV, 10\% to 90\%		± 50		
Slew Rate, Relative to SC1 = SC0 $=0$ (Note 19)		$\begin{aligned} & S C 1=0, S C 0=1, V_{D H V}=+3 V \\ & V_{D L V_{-}}=0 V, 20 \% \text { to } 80 \% \end{aligned}$		75		
		$\begin{aligned} & \mathrm{SC1}=1, \mathrm{SCO}=0, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{LLV}}=0 \mathrm{~V}, 20 \% \text { to } 80 \% \end{aligned}$		50		\%
		$\begin{aligned} & \mathrm{SC} 1=1, \mathrm{SCO}=1, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, 20 \% \text { to } 80 \% \end{aligned}$		25		

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC_ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $T J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Pulse Width (Positive or Negative)		$0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+0.2 \mathrm{~V}$, VDLV_ = OV (Note 20)		400		ps
		$1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}=+1 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)		475	610	
		1VP-P programmed, VDHV_= +1V, VDLV_ = OV; output reaches at least 90% of its nominal DC output level (Note 4)		390	525	
		2VP-P programmed, $\mathrm{V}_{\text {DHV }}=+2 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)		665	833	
		$3 V_{P-P}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+3 \mathrm{~V}$, VDLV_ = OV (Notes 4, 20)		800	1000	
		$5 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+5 \mathrm{~V}$, VDLV_ = OV (Note 20)		1300		
Data Rate		$0.2 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+0.2 \mathrm{~V}$, VDLV_ = OV (Note 21)		2500		Mbps
		$1 \mathrm{~V}_{\text {P-P }}$ programmed, $\mathrm{V}_{\mathrm{DHV}}=+1 \mathrm{~V}$, VDLV_ = OV (Notes 4, 21)	1650	2100		
		$1 \mathrm{VP}_{\text {P-p }}$ programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+1 \mathrm{~V}$, VDLV_ = OV; output reaches at least 90% of its nominal DC output level (Note 4)	1910	2570		
		2VP-p programmed, $\mathrm{V}_{\mathrm{DH}} \mathrm{V}_{-}=+2 \mathrm{~V}$, VDLV_ = OV (Notes 4, 21)	1200			
		3VP-P programmed, VDHV_ $=+3 \mathrm{~V}$, VDLV_ = OV (Notes 4, 21)	1000			
		$5 \mathrm{VP-P}$ programmed, $\mathrm{V}_{\mathrm{DHV}}^{-}=+5 \mathrm{~V}$, $V_{\text {DLV_ }}=0 V($ Note 21)		900		
Rise and Fall Time, Drive to Term		$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DTV_ }}=+1.5 \mathrm{~V}$, measured 10% to 90% of waveform (Note 22)	250	700	1300	ps
Rise and Fall Time, Term to Drive		$\mathrm{V}_{\mathrm{DHV}}^{-}=+3 \mathrm{~V}, \mathrm{~V}_{\text {DLV }}=0 \mathrm{~V}, \mathrm{VDTV}_{-}=+1.5 \mathrm{~V},$ measured 10% to 90% of waveform (Note 22)	400	550	800	ps
COMPARATOR						
COMPARATOR DC CHARACTERISTICS						
Input Voltage Range		(Note 23)	-2.2		+6.2	V
Input Offset Voltage		VDUT_ $=+0.125 \mathrm{~V}$ (Note 24)		± 1	± 5	mV
Input-Voltage Temperature Coefficient		(Notes 24, 25)		± 50		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common-Mode Rejection	CMRR	VDUT_ = -2.0V, +6.0V (Notes 24, 26)	50	55		dB

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{R T V}=0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP}_{\ldots}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | ---: | :---: | :---: | UNITS

COMPARATOR AC CHARACTERISTICS (Notes 29-32)

Effective Comparator Bandwidth, Term Mode		(Notes 4, 33)	2.0	4.0
Effective Comparator Bandwidth, High-Impedance Mode		(Note 34)		GHz
Minimum Pulse Width	(Notes 4, 35)	800	MHz	
Propagation Delay		0.35	0.9	0.65
Propagation-Delay Temperature Coefficient			ns	
Channel-to-Channel Propagation- Delay Match, High/High vs. Low/ Low			1.5	ns

PROPAGATION-DELAY DISPERSIONS

Propagation-Delay Dispersion vs. Common-Mode Input	$\mathrm{V}_{\text {CM }}=-1.9 \mathrm{~V}$ to $+5.9 \mathrm{~V}($ Notes 4,36$)$	40	55	ps
Propagation-Delay Dispersion vs. Duty Cycle	0.6 ns to 24.4 ns pulse width, relative to 12.5ns pulse width, (Notes 4, 37)	± 25	± 45	ps
Propagation-Delay Dispersion vs. Slew Rate	$1.0 \mathrm{~V} / \mathrm{ns}$ to $6.0 \mathrm{~V} / \mathrm{ns}$, relative to $2.0 \mathrm{~V} / \mathrm{ns}$ (Note 4)	± 30	± 40	ps
Waveform Tracking (Notes 4, 38)	Driver in term mode, peak-to-peak within 100 mV < VCMPV < 900mV window	50	80	ps
	Driver in term mode, peak-to-peak within 50 mV < VCMPV < 950mV window	80	130	
High-Impedance Waveform Tracking	Driver in high impedance, peak-to-peak within 100 mV < VCMPV $<900 \mathrm{mV}$ window (Notes 4, 38)	150	200	ps

LOGIC OUTPUTS CMP, NCMP (CMP, NCMP collector output, RL = 50Ω internal pullup to CTV) (Note 39)

Termination Voltage CTV	External termination voltage	0	1.2	3.5	V
CTV Current	Total current for user-supplied termination voltage		12	14	mA
Output High Voltage	With external 50Ω resistors	$\begin{gathered} \text { VCTV - } \\ 0.1 \end{gathered}$	$\begin{gathered} \hline \text { VCTV - } \\ 0.02 \end{gathered}$	$\begin{gathered} \hline \text { VCTV }+ \\ 0.05 \end{gathered}$	V
Output Low Voltage	With external 50Ω resistors	$\begin{gathered} \text { VCTV - } \\ 0.45 \end{gathered}$	$\begin{gathered} \hline \text { VCTV - } \\ 0.3 \end{gathered}$	$\begin{gathered} \hline \text { VCTV - } \\ 0.25 \end{gathered}$	V

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP}^{\prime}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $T J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T} J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output-Voltage Swing		With external 50Ω resistors	250	300	350	mV
Output Termination Resistor			47		53	Ω
Differential Rise Time		10\% to 90\% (Notes 4, 32)		210	400	ps
Differential Fall Time		10\% to 90\% (Notes 4, 32)		210	400	ps
TEMPERATURE MONITOR						
Nominal Voltage		$\mathrm{TJ}=+70^{\circ} \mathrm{C}, \mathrm{RL} \geq 10 \mathrm{M} \Omega$		3.43		V
Nominal Voltage Variation		$T_{J}=+125^{\circ} \mathrm{C}, R_{L} \geq 10 \mathrm{M} \Omega$, one standard deviation		± 50		mV
Temperature Coefficient				10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Resistance				22		$\mathrm{k} \Omega$
High-Impedance Leakage Current		VTMPSNS $=+4 \mathrm{~V}, \mathrm{TSMUXO}=0$			1	$\mu \mathrm{A}$
TEMPERATURE COMPARATOR/ALARM						
Comparator Hysteresis				0		mV
Alarm Threshold				+125		${ }^{\circ} \mathrm{C}$
Temperature Alarm Accuracy				± 5		${ }^{\circ} \mathrm{C}$
DIGITAL I/O						
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)						
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	Functional test	+0.2		+3.5	V
Input Low Voltage	VIL	Functional test	-0.2		+3.1	V
Differential Input Voltage		Functional test	± 0.15		± 1.0	V
Differential Termination Resistance		Differential termination between DATA」」 NDATA_ and RCV_/NRCV_, tested at $\pm 4 \mathrm{~mA}$	96		104	Ω

SINGLE-ENDED INPUTS ($\overline{\mathbf{C S}}, \mathbf{S C L K}, \mathrm{DIN}, \overline{\mathrm{RST}}, \overline{\text { LOAD }}, \overline{\mathrm{ENVHH}})$

Input High			$\begin{aligned} & 2 / 3 x \\ & \text { VDD } \end{aligned}$	VDD	V
Input Low			-0.1	$\begin{aligned} & 1 / 3 x \\ & \text { VDD } \end{aligned}$	V
Input Bias Current				± 25	$\mu \mathrm{A}$
SINGLE-ENDED OUTPUT (DOUT)					
High Output	VOH	$\mathrm{IOH}=25 \mu \mathrm{~A}$	$\begin{gathered} V_{D D}- \\ 0.15 \end{gathered}$		V
Low Output	VoL	$\mathrm{IOL}=-25 \mu \mathrm{~A}$		$\begin{gathered} \text { VDGND }+ \\ 0.15 \end{gathered}$	V
SINGLE-ENDED OPEN-DRAIN OUTPUTS (OVALARM, TALARM with external 1k (o VDD)					
Voltage Range	Vvoc		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.3 \end{gathered}$	$\begin{gathered} \text { VDD }+ \\ 0.3 \end{gathered}$	V
Low Output	VoL		VDGND	VVoc - 1.0	V

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP}_{\ldots}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SERIAL-PORT TIMING						
SCLK Frequency					50	MHz
SCLK Pulse-Width High	tch		10			ns
SCLK Pulse-Width Low	tCL		10			ns
$\overline{\text { CS }}$ Low to SCLK High Setup	tCSSO		4.25			ns
SCLK High to $\overline{\mathrm{CS}}$ Low Hold	tCSHO		4.25			ns
$\overline{\text { CS High to SCLK High Setup }}$	tCSS1		4.25			ns
SCLK High to $\overline{\mathrm{CS}}$ High Hold	tCSH1		4.25			ns
DIN to SCLK High Setup	tDS		4.25			ns
DIN to SCLK High Hold	tDH		4.25			ns
$\overline{\mathrm{CS}}$ High Pulse Width	tcswh		40			ns
$\overline{\text { LOAD Low Pulse Width }}$	tLDW		20			ns
$\overline{\mathrm{RST}}$ Low Pulse Width	tRST		25			ns
$\overline{\mathrm{CS}}$ High to $\overline{\text { LOAD Low Hold }}$	tCSHLD		50			ns
SCLK to DOUT Delay	tDO				62.4	ns

Operating Voltage Range			-2.0		+13	V	
High-Impedance Mode Leakage	IDUT	$\text { VCMPV }=+6.0 \mathrm{~V}, \text { VDUT_ }=-2.0 \mathrm{~V}, \mathrm{CMP} \text { _EN }=$ high			± 50	$\mu \mathrm{A}$	
		VCMPV $=-2.0 \mathrm{~V}, \mathrm{~V}_{\text {DUT_ }}=+6.0 \mathrm{~V}, \mathrm{CMP}$ _EN $=$ high			± 50		
Low-Leak Mode Leakage	IDUT	VDUT_ = -2.0V and +6.0V (Note 40)			± 100	nA	
Combined Capacitance		Driver in terminate mode (Note 4)		0.5	1.0	pF	
		Driver in high impedance		3			
Low-Leak Enable Time		$\overline{\mathrm{CS}}$ high for setting LLEAKS_ high to IDUT_ specification		20		$\mu \mathrm{S}$	
Low-Leak Disable Time		$\overline{\mathrm{CS}}$ high for setting LLEAKS_ low to normal operation		20		$\mu \mathrm{S}$	
Low-Leak Spike, VDLV_/Leak		VDLV_ = OV, ZL = 10M Ω II 8pF to GND (Note 4)	-200		+600	mV	
Low-Leak Spike, VDHV_/Leak		$V_{D H V}=+2 \mathrm{~V}, \mathrm{ZL}=10 \mathrm{M} \Omega \\| 8 \mathrm{pF}$ to GND (Note 4)	-200		+350	mV	
Low-Leak Spike, HighImpedance/Leak		$R L=50 \Omega$ to GND (Note 4)	-125		+350	mV	

DUT_OVERVOLTAGE ALARM

Maximum Programmable OVHV			6.7	7.0	V
Minimum Programmable OVLV			-3.0	-2.7	V

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{H H P}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{D T V_{-}}=+1.5 \mathrm{~V}, \mathrm{~V}_{D L V}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{T} J=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T} J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Accuracy		Includes gain, offset, and linearity errors over full alarm range, V VVHV $=+6.7 \mathrm{~V}$ and VOVLV $=-2.7 \mathrm{~V}$			150	mV
Comparator Delay		With 50 mV overdrive on DUT_ signal		390		ns
Comparator Hysteresis				7		mV
Minimum Alarm Setting Voltage	VOVHV VOVLV		2			V

POWER SUPPLIES

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP}_{\ldots}=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T} J=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER VHH DC CHARACTERISTICS						
Output Voltage Range	VVHH	DGS = AGND; for DGS $=$ AGND, refer to the DGS gain specification	0		13	V
DC Output Voltage		$\mathrm{VVHH}=+13 \mathrm{~V}$, IDUT $=10 \mathrm{~mA}$		12.45		V
		$\mathrm{V} \mathrm{VHH}=0 \mathrm{~V}$, IDUT $=-10 \mathrm{~mA}$		0.55	0.75	
Current Limit		$\begin{aligned} & \mathrm{V} \text { VHH }=+13 \mathrm{~V}, \mathrm{~V}_{\text {DUT }}=0 \mathrm{~V} \text { and } \mathrm{V} \text { VHH }=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DUT_ }}=+13 \mathrm{~V} \end{aligned}$	± 12		± 27	mA
Offset Voltage		$\mathrm{VVHH}=+7.75 \mathrm{~V}$			± 30	mV
Output-Voltage Temperature Coefficient	VVHH_TC	(Note 3)		± 75	± 500	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Normalized Gain		$\mathrm{V} \mathrm{VHH}=+7.75 \mathrm{~V},+12.75 \mathrm{~V}$	0.998	1.000	1.002	V/V
Linearity Relative to $+7.75 \mathrm{~V},+12.75 \mathrm{~V}$		$\mathrm{VVHH}=+7.0$ to +13.0 V			± 14	mV
Linearity Relative to $+1.5 \mathrm{~V},+12.75 \mathrm{~V}$		$\mathrm{V} \mathrm{VHH}=0.0 \mathrm{~V}$ to +13.0 V			± 30	mV
Output Resistance		IDUT $= \pm 2 \mathrm{~mA}, \mathrm{VVHH}=+1 \mathrm{~V}$	45	55	75	Ω
Power-Supply Rejection Ratio		VCC, VEE, VHHP independently varied over their allowed ranges		20		mV/V
VHH Rise/Fall Times		$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+13 \mathrm{~V}, 10 \%$ to 90%			250	ns
VHH Overshoot		$\mathrm{V}_{\text {DHV }}=+3 \mathrm{~V}, \mathrm{~V} V H H=+13 \mathrm{~V}$ (Note 3)			180	mV
LEVEL DACs						
Settling Time		Full-scale transition to within 5mV		20		$\mu \mathrm{s}$
Differential Nonlinearity		All levels not shown below, $1 \mathrm{LSB}=610 \mu \mathrm{~V}$			± 1	mV
		VHH			± 2	
		OVHV, OVLV			± 39.1	

Note 2: $\quad V_{H D V}, V_{D L V}$, and $V_{D T V}$ _ levels are calibrated for gain at +0.125 V and +3.875 V and are calibrated for offset at +0.125 V ; relative to straight line between +0.125 V and +3.875 V .
Note 3: Change in level over operating range. Includes both gain and offset temperature effects. Simulated over entire $+40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ junction operating range. Verified at worst-case points, which are at the endpoints VDHV - VDLV_ $\geq 200 \mathrm{mV}$.
Note 4: Guaranteed by design and characterization.
Note 5: $\quad D A T A_{-}=$high, $V_{D H V}=3 V, V_{D L V}=0 V, V_{D T V}=1.5 \mathrm{~V}$, IOUT $= \pm 30 \mathrm{~mA}$. Nominal target value is 48Ω.
Note 6: Resistance measurements are made using $\pm \overline{2} .5 \mathrm{~mA}$ current changes in the loading instrument about the noted value. Absolute value of the difference in measured resistance over the specified range, tested separately for each current polarity. Test conditions at IDUT are $\pm 1 \mathrm{~mA}, \pm 12 \mathrm{~mA}$, and $\pm 40 \mathrm{~mA}$, respectively.
Note 7: Rise time of the differential inputs DATA_ and RCV_ is $150 \mathrm{ps}(10 \%$ to $90 \%)$. SC1 $=$ SC0 $=0,40 \mathrm{MHz}$, unless otherwise specified.
Note 8: Current supplied for a minimum of 10 ns. Verified to be greater than or equal to $D C$ drive current by design and characterization.
Note 9: Measured from the 90% point of the driver output (relative to its final value) to the waveform settling to within the specified limit.
Note 10: Propagation delays are measured from the crossing point of the differential input signals to the 50% point of expected output swing.
Note 11: Average of the two measurements for propagation delay, tLH and tHL
Note 12: Average of the four measurements in propagation delay, drive to high impedance, and high impedance to drive (tLZ, thZ, tZL, and tzH). Measured from crossing point of RCV_/NRCV_ to 50% point of the output waveform.

Quad Driver with Integrated Level Setters

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{H H P}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{R T V_{-}}=0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{CTV}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{V H H}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}_{-}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included. The device is tested at $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ with an accuracy of $\pm 15^{\circ} \mathrm{C}$; specification compliance with supply and temperature variations are verified by guardbanding mean shifts of characterized data, unless otherwise noted. Temperature coefficients are measured at $\mathrm{T}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Note 13: Four measurements are made: VDHV_ to high impedance, $V_{D L V}$ to high impedance, high impedance to $V_{D H V}$, and high impedance to $V_{D L V}$ ($\mathrm{t} L \mathrm{Z}, \mathrm{t} \mathrm{t} Z, \mathrm{tZL}$, and tzH). The worst-case difference is calculated.
Note 14: Average of the four measurements in propagation delay, drive to term, and term to drive (tLT, thT, tTL, and tTH) . Measured from the crossing point of RCV_/NRCV_ to the 50% point of the output waveform.
Note 15: Four measurements are made: VDHV_ to $V_{D T V}, V_{D L V}$ to $V_{D T V}, V_{D T V}$ to $V_{D H V}$, and $V_{D T V}$ to $V_{D L V}$ (tLT, tht, tTL, and $\mathrm{t}_{\mathrm{T} H} \mathrm{H}$). The worst-case difference is calculated.
Note 16: Cable-droop compensation disabled. Measured as close as possible to DUT_ using a high-bandwidth cable.
Note 17: Cable-droop compensation enabled. Measured at end of 2m RG174 cable.
Note 18: There should not be a systemic mismatch in rise vs. fall time or tLH vs. thL.
Note 19: Functionally tested during production.
Note 20: At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude. The pulse width is measured at the DATA_ (input) pins.
Note 21: Maximum data rate in transitions/second. A waveform that reaches at least 95% of its programmed amplitude can be generated at one-half of this frequency.
Note 22: This specification is indicative of switching speed from VDHV_ or VDLV_ to VDTV_ and VDTV_ to VDHV_ or VDLV_ when VDLV_ < VDTV_ < VDHV_. If VDTV_ < VDLV_ or VDTV_ > VDHV_, switching speed is degraded by roughly a factor of 3.
Note 23: The comparator tolerates the VHH level produced by the driver, but the specifications only apply for the -2.2 V to +6.2 V input voltage range.
Note 24: Measured by using a servo to locate comparator thresholds
Note 25: Change in offset at any voltage over operating range. Includes both gain (CMRR) and offset temperature effects. Simulated over entire operating range. Verified at worst-case points, which are at the endpoints.
Note 26: Change in offset voltage over input range.
Note 27: Relative to straight line between +0.125 V and +3.875 V .
Note 28: Change in offset voltage with power supplies independently varied over their full range.
Note 29: All propagation delays measured from VDUT_ crossing calibrated $V_{C M P V}$ threshold to crossing point of differential outputs.
Note 30: All AC specifications are measured with the DUT_ pin (comparator input) as the reference.
Note 31: $40 \mathrm{MHz}, 0$ to +2 V input to comparator, V CMPV reference $=+1.0 \mathrm{~V}, 50 \%$ duty cycle 1 ns rise/fall time, $\mathrm{Zs}=50 \Omega \mathrm{~s}$, driver in term mode with $\mathrm{V}_{\text {DTV }}=+1.0 \mathrm{~V}$, unless otherwise noted.
Note 32: Use calibration comparator per channel and avoid any transition on deselected channel. If transitions cannot be avoided, keep deselected channels in low-leak mode to minimize coupling during calibration.
Note 33: Input rise/fall time $=45 \mathrm{ps} .0$ to $1.0 \mathrm{~V}, 50 \%$ duty cycle.
Note 34: Input rise/fall time = 150ps. 0 to $1.0 \mathrm{~V}, 50 \%$ duty cycle.
Note 35: At this pulse width, the output reaches at least 90% of its nominal peak-to-peak swing. The pulse width is measured at the crossing points of the differential outputs. 500ps rise/fall time. Timing specifications are not guaranteed.
Note 36: VDUT_ = 200mVP-P, rise/fall time $=250 \mathrm{ps}$, overdrive $=100 \mathrm{mV}$, $\mathrm{V}_{\text {DTV }}=\mathrm{V}_{\mathrm{CM}}$. Valid for a common-mode range where the signal does not exceed the operating range. This specification is the worst-case (slowest to fastest) over the specified range.
Note 37: 0 to +1 V input to comparator, V CMPV reference $=+0.5 \mathrm{~V}$, input rise/fall time $=250 \mathrm{ps}$.
Note 38: Input to comparator is 40 MHz at 0 to $+1.0 \mathrm{~V}, 50 \%$ duty cycle, 1 ns rise/fall time.
Note 39: Unless otherwise specified, comparator outputs are terminated with 50Ω to +1.2 V and $\mathrm{V}_{C T V}=+1.2 \mathrm{~V}$.
Note 40: While device is in low-leak mode, care must be taken to never present a voltage greater than VCc to the DUT_ node, as this can damage the part.
Note 41: At nominal supply voltages. Nominal values are $\mathrm{V}_{\mathrm{CC}}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{VHH}}=+17.5 \mathrm{~V}$. Production tests are performed with worst-case supply conditions for each specification. Supply conditions are either min VCC and max VEE or $\max \mathrm{V}_{C C}$ and min V_{EE}. Some tests could require both conditions. Total current for device. RL $\geq 10 \mathrm{M} \Omega$.
Note 42: Increasing DGS beyond OV requires a proportional increase in the minimum supply levels. Specified ranges for all levels are defined with respect to DGS.
Note 43: Increasing DGS beyond OV requires a proportional increase in the minimum supply levels. Limited range of -1.5 V to +5.5 V for all levels are defined with respect to DGS.

Quad Driver with Integrated Level Setters

Typical Operating Characteristics

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{VDHV}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}^{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{\text {RTV }}=\mathrm{GND}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\text {CMPV }}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)
$\left(V_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{VHHP}^{2}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DAT}} \mathrm{V}_{-}=\mathrm{V}_{\mathrm{RTV}}=\mathrm{GND}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)
 $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\text {CMPV }}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)
$\left(V_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{E E}=-5.25 \mathrm{~V}, \mathrm{VHHP}^{2}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DHV}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DAT}} \mathrm{V}_{-}=\mathrm{V}_{\mathrm{RTV}}=\mathrm{GND}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=+9.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{HHP}}=+17.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{VDHV}_{-}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DTV}}^{-}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DLV}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DATV }}=\mathrm{V}_{R T V}=\mathrm{GND}\right.$, $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{G N D D A C}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)
 $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMPV}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} _=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\text {GNDDAC__ }}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{T}_{\mathrm{J}}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}_{\mathrm{J}}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

TRANSIENT RESPONSE VHH

Quad Driver with Integrated Level Setters

Typical Operating Characteristics (continued)

 $V_{C T V}=+1.2 \mathrm{~V}, \mathrm{~V}_{\text {CMPV }}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{VHH}}=+10 \mathrm{~V}, \mathrm{CDRP} \ldots=000 \mathrm{~b}, \mathrm{RO}_{-}=1110 \mathrm{~b}, \mathrm{SC}=00 \mathrm{~b}, \mathrm{~V}_{\mathrm{DGS}}=\mathrm{V}_{\mathrm{GND}}=\mathrm{V}_{\mathrm{GNDDAC}}=0 \mathrm{~V}$, specifications apply after calibration, level-setter errors included, $\mathrm{TJ}=+70^{\circ} \mathrm{C}$, temperature coefficients are measured at $\mathrm{TJ}=+40^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$, unless otherwise noted.)

DRIVER
1800Mbps TOGGLE RATE, 2V

DRIVER
1300Mbps TOGGLE RATE, 3V

Pin Configuration

Quad Driver with Integrated Level Setters

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,16,34 \\ 37,44,47 \end{gathered}$	VCC	Positive Power Supply
2	REF	DAC 2.5V Reference Input. Set REF with respect to GNDDAC__.
3	DGS	Device Under Test Ground-Sense Input
4	$\overline{\mathrm{RST}}$	Active-Low Serial-Port Reset Input
5	$\overline{\text { LOAD }}$	Active-Low Serial-Port Load Input
6	$\overline{\mathrm{CS}}$	Active-Low Serial-Port Chip-Select Input
7	SCLK	Serial-Port Clock Input
8	DIN	Serial-Port Data Input
9	DOUT	Serial-Port Data Output
10	DGND	Digital Ground
11	VDD	Logic Power Supply
12	ENVHH	Active-Low High-Voltage-Enable Input
13	CTV	Comparator Termination Voltage
14	CMP	Comparator Output
15	NCMP	Comparator-Output Complement
17, 33, 48, 64	GND	Analog Ground
$\begin{aligned} & 18,36,39, \\ & 42,45,63 \end{aligned}$	VEE	Negative Power Supply
19	OVALARM	Overvoltage Alarm Output
20	GNDDAC23	Channels 2 and 3 DAC Ground
21	NRCV3	Channel 3 Receive Input Complement
22	RCV3	Channel 3 Receive Input
23	RTV3	Channel 3 Receive Termination Voltage
24	NDATA3	Channel 3 Data Input Complement
25	DATA3	Channel 3 Data Input
26	DATV3	Channel 3 Data Termination Voltage
27	NRCV2	Channel 2 Receive Input Complement
28	RCV2	Channel 2 Receive Input
29	RTV2	Channel 2 Receive Termination Voltage
30	NDATA2	Channel 2 Data Input Complement
31	DATA2	Channel 2 Data Input
32	DATV2	Channel 2 Data Termination Voltage
35	DUT3	Channel 3 Input/Output
38	DUT2	Channel 2 Input/Output
40	TEMP	Temperature Sensor Output
41	VHHP	High-Voltage Power Supply
43	DUT1	Channel 1 Input/Output
46	DUT0	Channel 0 Input/Output
49	DATV1	Channel 1 Data Termination Voltage
50	DATA1	Channel 1 Data Input
51	NDATA1	Channel 1 Data Input Complement

Quad Driver with Integrated Level Setters

Pin Description (continued)

PIN	NAME	
52	RTV1	Channel 1 Receive Termination Voltage
53	RCV1	Channel 1 Receive Input
54	NRCV1	Channel 1 Receive Input Complement
55	DATV0	Channel 0 Data Termination Voltage
56	DATA0	Channel 0 Data Input
57	NDATA0	Channel 0 Data Input Complement
58	RTV0	Channel 0 Receive Termination Voltage
59	RCV0	Channel 0 Receive Input
60	NRCV0	Channel 0 Receive Input Complement
61	GNDDAC01	Channels 0 and 1 DAC Ground
62	TALARM	Temperature Alarm Output
-	EP	Exposed Pad. EP is internally connected to VEE. Connect to VEE or leave unconnected. Do not use EP as a primary connection to VEE.

Block Diagram

Quad Driver with Integrated Level Setters

Detailed Description

The MAX19001 quad-channel, pin-electronics driver integrates multiple pin-electronics functions into a single IC. Each channel includes a four-level pin driver, a shared calibration comparator, and seven independent level-setting DACs (five 14 -bit and two 8 -bit). Additionally, each channel of the MAX19001 features programmable cable-droop compensation for the driver output, adjustable driver output resistance, and driver slew-rate adjustment.
The driver features a wide -2 V to +6 V high-speed operating range. In VHH mode the output is from 0 to +13 V . The MAX19001 also offers high-impedance and activetermination (3rd-level drive) modes, and is highly linear even at low-voltage swings. The driver provides highspeed differential control inputs compatible with most high-speed logic families. The calibration comparators provide extremely low timing variation over changes in slew rate, pulse width, or overdrive voltage, and provide 50Ω source outputs internally terminated to an applied voltage at CTV.
Independent low-leak control is provided for each channel. Placing the MAX19001 DUT_ output into a very lowleakage state disables the driver functions. An SPITMcompatible serial interface and external inputs configure the MAX19001.

Integrated PE Mode Selection

The MAX19001 features two modes of operation, active and low leak. The MAX19001 enters low-leak mode when the LLEAKS_ bit is set to 1 . The serial bits LLEAKS_ $=1$ can be used to force the QDRV register to low-leak mode independent of other control bits. Setting LLEAKS_ to 0 is necessary to allow any other mode of operation (see Table 1). For SPI register bit assignments see Table 9.

Driver

The driver uses a high-speed multiplexer to select one of three DAC voltages (VDHV_, VDLV_, and VDTV_), high-impedance mode, or high-voltage mode (VHH). Multiplexer switching is controlled by high-speed differential inputs DATA_NDATA_ and RCV_/NRCV_ and mode-control bits TMSEL_ and ENVHHS_ (see Table 1). The multiplexer output is buffered to drive DUT_. A programmable slew-rate circuit controls the slew rate of the buffer output.
In high-impedance mode, the comparator remains connected to DUT_, the DUT_ bias current is less than $\pm 50 \mu \mathrm{~A}$, and the node continues to track high-speed signals. In low-leak mode, the bias current at DUT_ is further reduced to less than $\pm 100 \mathrm{nA}$, yet signal tracking slows.
The nominal driver output resistance is 48Ω and features an adjustment range of $\pm 2.5 \Omega$ through the serial interface in $360 \mathrm{~m} \Omega$ increments.

Table 1. Driver Functional Overview

LLEAKS (SPI BIT)	ENVHHS* (SPI BIT)	$\begin{gathered} \overline{\text { ENVHH }}^{* *} \\ \text { (EXTERNAL PIN) } \end{gathered}$	TMSEL (SPI BIT)	RCV_	DATA_	DRIVER OUTPUT
0	X	1	X	0	0	Drive to DLV_
0	X	1	X	0	1	Drive to DHV_
0	0	1	0	1	X	High-impedance receive
0	0	1	1	1	X	Drive to DTV_
0	1	X	X	1	X	Drive to VHH**
0	X	0	X	X	X	Drive to $\mathrm{VHH}^{* *}$
1	X	X	X	X	X	Low leak

[^1]Note: It is anticipated that the driver's VHH state is entered from one of the two drive states (DLV_ or DHV_) and not directly from the high-impedance or DTV_ states.

Quad Driver with Integrated Level Setters

Driver Slew Control

A slew-rate circuit controls the slew rate of the buffer output. Select one of four possible slew rates according to Table 2. The speed of the internal multiplexer sets the 100% driver slew rate. SC1 and SCO are set to 0 at power-up or when $\overline{\text { RST }}$ is forced low.

Table 2. Driver Slew Control

SC1	SC0	DRIVER SLEW RATE (\%)
0	0	100
0	1	75
1	0	50
1	1	25

Driver Cable-Droop Compensation

The driver incorporates active cable-droop compensation (refer to Application Note 4338: Cable-Loss Solutions). At high frequencies, transmission-line effects from the tester signal delivery path (PCB trace, connectors, and cabling between the MAX19001 DUT_ output and the device under test itself) can degrade the output waveform fidelity at the DUT, resulting in a highly degraded or unusable signal. The compensation circuit counters this degradation by adding a double time-constant decaying waveform to the nominal output waveform (preemphasis). Figure 1 shows a comparison between a typical driver and the MAX19001, and shows how droop compensation counters signal degradation. The maximum swing while maintaining the linear compensation of the driver cable droop is 4.4VP-P. There are long-time-constant (1.2ns) control bits, CDRPL[2:0], and

Figure 1. Driver Cable-Droop Compensation

Quad Driver with Integrated Level Setters

short-time-constant (60ps) control bits, CDRPS[2:0], in the QDRV CAL register to set the amount of compensation. Control bits CDRP_[2:0] vary the amplitude of the compensation signal. Tables 3 and 4 show the percent compensation as a function of control bit settings. The default power-on reset (POR) value of CDRP_[2:0] is Ob000 for zero compensation.

Table 3. Driver Cable-Droop
Compensation Short-Time-Constant Control Logic

CDRPS2	CDRPS1	CDRPS0	DROOP COMPENSATION (\%)
0	0	0	0.0
0	0	1	2.1
0	1	0	4.3
0	1	1	6.4
1	0	0	8.6
1	0	1	10.7
1	1	0	12.9
1	1	1	15.0

Table 4. Driver Cable-Droop
Compensation Long-Time-Constant Control Logic

CDRPL2	CDRPL1	CDRPLO	DROOP COMPENSATION (\%)
0	0	0	0.0
0	0	1	2.1
0	1	0	4.3
0	1	1	6.4
1	0	0	8.6
1	0	1	10.7
1	1	0	12.9
1	1	1	15.0

Adjustable Driver Output Impedance
The MAX19001 driver output impedance is adjustable to $\pm 2.5 \Omega$ with a $360 \mathrm{~m} \Omega$ resolution. The RO_ bits in the QDRV CAL register set the impedance value. Table 5 shows the output-resistance control logic. The output resistance is set to Ro_ $+0.0 \Omega(0 \mathrm{~b} 1000)$ at power-up.

VHH Function
VHH allows DUT_ to drive voltages up to +13 V . The VHH DAC, which is shared among all four channels, adjusts from 0 to +13 V . Although the primary VHH level is shared, there are independent offset and gain correction circuits for each channel. Table 1 indicates the control settings required to set DUT_ to VHH. See the Level Transfer Functions section for the transfer function of the VHH DAC.
Drive $\overline{E N V H H}$ low or set the ENVHHS_ serial bit to 1 to enable VHH mode. See Table 1.

Table 5. Driver Delta Ro Control

RO3	RO2	RO1	RO0	DRIVER OUTPUT RESISTANCE (Ω)
0	0	0	0	Ro-2.88
0	0	0	1	Ro-2.52
0	0	1	0	Ro-2.16
0	0	1	1	Ro-1.80
0	1	0	0	Ro-1.44
0	1	0	1	Ro-1.08
0	1	1	0	Ro-0.72
0	1	1	1	Ro-0.36
1	0	0	0	Ro + 0.0
1	0	0	1	Ro +0.36
1	0	1	0	Ro + 0.72
1	0	1	1	Ro + 1.08
1	1	0	0	Ro + 1.44
1	1	0	1	$\mathrm{Ro}+1.80$
1	1	1	0	Ro + 2.16
1	1	1	1	$\mathrm{Ro}+2.52$

Quad Driver with Integrated Level Setters

Table 6. Calibration Comparator Control

CMP_EN	LLEAKS3	LLEAKS2	LLEAKS1	LLEAKS0	CMUX1	CMUX0	DRIVER SELECTED
1	X	X	X	0	0	0	$\mathrm{CH0}$
1	X	X	0	X	0	1	CH 1
1	X	0	X	X	1	0	CH 2
1	0	X	X	X	1	1	CH 3
1	1	1	1	1	X	X	$*$
0	X	X	X	X	X	X	$*$

$X=$ Don't care.
*Comp output fixed. CMP $=$ high and $N C M P=$ low.

Calibration Comparator

Set CMP_EN $=1$ to enable the comparator function. The drive channel selected by the CMUX_ and LLEAKS_ bits is presented to the high-speed comparator outputs as shown in Table 6.

Serial Interface

AnSPI-compatible serial interface controls the MAX19001. The serial interface, detailed in Figure 2, operates with clock speeds up to 50 MHz and includes the signals $\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{DIN}, \overline{\mathrm{RST}}, \overline{\mathrm{LOAD}}$, and DOUT. Serial-interface timing is shown in Figure 3 and timing specifications are detailed in the Electrical Characteristics table.

Loading Data into the MAX19001

Load data into the 24-bit shift register from DIN on the rising edge of SCLK, while $\overline{\mathrm{CS}}$ is low (Figure 2). Enter the address and data bits in order from MSB to LSB. The MAX19001 is updated when the control and level-setting data are latched into the control and level-setting registers. The control and level-setting registers are separated from the shift register by the input and channel-select registers. Two methods allow for data to transfer from the shift register to the control and level-setting registers, depending on the state of external digital input $\overline{\mathrm{LOAD}}$.
Holding $\overline{\mathrm{LOAD}}$ high during the rising edge of $\overline{\mathrm{CS}}$ allows the shift register data to transfer only into the input and channel-select registers. Force $\overline{\mathrm{LOAD}}$ low to transfer the data into the control and level-setting registers. Changes update on the falling edge of $\overline{\mathrm{LOAD}}$, which allows preloading of data and facilitates synchronizing updates across multiple devices.
Holding $\overline{\mathrm{LOAD}}$ low during the rising edge of $\overline{\mathrm{CS}}$ forces the input and channel-select registers to become transparent and all data transfers through these registers directly to
the control and level-setting registers. Changes update on the rising edge of $\overline{\mathrm{CS}}$. Figures 4 and 5 show how $\overline{\mathrm{LOAD}}$ and $\overline{\mathrm{CS}}$ function, and also the data configuration of SCLK, DIN, and DOUT. The calibration registers change on the rising edge of $\overline{\mathrm{CS}}$, regardless of the state of $\overline{\text { LOAD }}$.

Serial-Port Timing
Timing and arrangement of the serial-port signals is shown in Figures 3, 4, and 5.

Figure 2. Serial-Interface Block Diagram

Quad Driver with Integrated Level Setters

Figure 3. Detailed Serial-Port Timing Diagram

Figure 4. Serial-Port Timing with Asynchronous Load

Quad Driver with Integrated Level Setters

Figure 5. Serial-Port Timing with Synchronous Load

Serial Interface DOUT

DOUT is a buffered version of the last bit in the serialinterface shift register. The complete contents of the shift register can be read at DOUT during the next write cycle. To shift data out without modifying any registers, perform a write with address bits $A[7: 0]=0 \times 08$. Use DOUT to daisy-chain multiple devices, and/or to verify that data was properly shifted in during the previous communication. Data is shifted into the shift register on the rising edge of the SCLK, when $\overline{\mathrm{CS}}$ is low. The shift register is 24 bits long.

Device Control
Control and level-setting registers are selected to receive data based on the channel and mode-select bits A[7:0]. Tables 9 and 10 show the control register bits and functions. Level-setting DAC data and control register data are contained in the 16 data bits $\mathrm{D}[15: 0]$. Tables 7,8 ,
and 9 detail the bit functions. Clock in bit A7 first and bit DO last, as shown in Figure 3.
Bit A7 allows access to the DAC calibration registers. Use the calibration registers to adjust the gain and offset of each DAC. Set bit A7 to write to the calibration

Table 7. Serial-Interface Control Bits

DIN	FUNCTION
A7	Calibration register write
A6	Broadcast enable
$A[5: 4]$	Channel address
$A[3: 0]$	Register address
$D[15: 0]$	Register data

*All channels are written when the broadcast enable bit (A6) is set high and bits $A[5: 4]$ are set low.
registers. See the Level-Setter DAC and Calibration Addresses section for more information.

Quad Driver with Integrated Level Setters

Register Address Table
Table 8．Serial－Interface Register Addresses

ADDRESS＊				REGISTER	
A3	A2	A1	A0	A7 $=0, \mathrm{~A} 4$ AND $\mathrm{A} 5=\mathrm{CH}$	A7 $=1$, A4 AND A5 $=\mathbf{C H}$
0	0	0	0	QDRV	QDRV CAL
0	0	0	1	DHV＿	DHV＿CAL
0	0	1	0	DLV＿	DLV＿CAL
0	0	1	1	DTV＿	DTV＿CAL
0	1	0	0	TS （CHO only）	－
1	0	1	1	$\begin{aligned} & \text { CMPV } \\ & \text { (CHO only) } \end{aligned}$	CMPV CAL
1	1	0	0	VHH （CHO only）	VHH CAL
1	1	0	1	OVHV	－
1	1	1	0	OVLV	－
1	1	1	1	CMP （CHO only）	－

＊The addresses from Ob0101 to Ob1010 are not allowed．
Data Bit Assignments
Table 9．Serial－Interface Data Bit Assignments

REGISTER	ADDRESS（Note 1）					DATA（Notes 1，2）																$\begin{array}{\|c\|} \hline \text { POR } \\ \text { VALUE } \\ \hline \end{array}$
NAME	ALL	CH3	CH2	CH1	CHO	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
QDRV	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	®.	泡	$\stackrel{\stackrel{\otimes}{\mathrm{o}}}{\stackrel{1}{\circ}}$	응	I	I	｜	｜	｜		0	।	｜	\｜	｜		$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{1}{n}} \\ & 0 \\ & \end{aligned}$		$\stackrel{\infty}{\Omega}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{i}{2} \end{aligned}$
DHV＿	$\stackrel{\stackrel{\star}{\star}}{\stackrel{1}{*}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{a}}}{\mathrm{a}}$	何	$\stackrel{\ominus}{\underset{\unlhd}{\unlhd}}$	$\stackrel{\stackrel{\circ}{0}}{ }$	I	I	$\begin{aligned} & \stackrel{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\leftrightharpoons} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{array}{\|l\|l} \hline \frac{0}{\Sigma} \\ \stackrel{N}{N} \end{array}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ \vdots \\ \vdots \\ \hline 8 \end{array}$	$\begin{aligned} & \text { o } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{c} \\ & 5 \\ & \vdots \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { 交 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \vdots \\ & \hline \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \frac{0}{5} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \underset{0}{x} \\ & \frac{1}{5} \end{aligned}$	$\begin{array}{\|l} \hline \frac{0}{2} \\ \frac{1}{5} \\ \hline \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\stackrel{\circ}{\omega}}}{\stackrel{\omega}{\omega}}$
DLV＿	$\stackrel{\stackrel{\circ}{\mathrm{A}}}{\stackrel{1}{2}}$	$\stackrel{\ominus}{\mathrm{\omega}}$	芯	$\stackrel{\otimes}{\stackrel{\otimes}{v}}$	$\stackrel{\stackrel{\circ}{\mathrm{N}}}{\substack{0}}$	I	I	$\begin{aligned} & \hline \frac{\square}{\Sigma} \\ & \stackrel{\rightharpoonup}{\Lambda} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \hline \frac{0}{\Sigma} \\ & \stackrel{\rightharpoonup}{s} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{array}{\|l\|} \hline \underset{x}{x} \\ \vdots \\ \vdots \\ \hline \end{array}$		$\begin{array}{\|l\|l} \hline 0 \\ \hline \frac{1}{5} \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \hline \stackrel{0}{1} \\ & \vdots \\ & \vdots \\ & \infty \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \hline ⿳ 亠 口 子 阝 \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \stackrel{y}{5} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \stackrel{0}{5} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \underset{K}{2} \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & \frac{0}{2} \\ & \vdots \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|l\|l} \hline \underset{y}{2} \\ \vdots \\ \vdots \end{array}$	$\begin{array}{\|l\|l} \hline \frac{0}{2} \\ \frac{1}{5} \\ \hline 8 \end{array}$	$\begin{aligned} & \hline \stackrel{\stackrel{\rightharpoonup}{e}}{\stackrel{\rightharpoonup}{\omega}} \\ & \stackrel{1}{2} \end{aligned}$
DTV＿	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$	$\stackrel{\ominus}{\omega}$	$\underset{\omega}{\underset{\omega}{\text { K }}}$	$\frac{\stackrel{\otimes}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{E}}}{ }$	I	I	$\begin{aligned} & \hline \frac{0}{\Sigma} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \frac{1}{5} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{array}{\|l\|} \hline \underset{y}{x} \\ \vdots \\ \vdots \\ \hline \end{array}$		$\begin{array}{\|l\|l} \hline \frac{0}{2} \\ \frac{1}{5} \\ \hline \end{array}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \frac{1}{5} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \frac{1}{5} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \frac{0}{2} \\ & \frac{1}{5} \\ & 8 \end{aligned}$		$\begin{array}{\|l\|} \hline 0 \\ \frac{0}{2} \\ \vdots \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \frac{0}{2} \\ \stackrel{y}{6} \end{array}$	$\begin{aligned} & \hline 0 \\ & \frac{0}{2} \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \frac{1}{2} \\ \vdots \end{array}$	$\begin{array}{\|l\|} \hline \frac{0}{2} \\ \frac{1}{5} \\ \hline 8 \end{array}$	$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{x}}{\stackrel{\rightharpoonup}{\omega}} \\ & \hline \end{aligned}$
TS	$\stackrel{\otimes}{ \pm}$	1	I	I	$\begin{aligned} & \stackrel{\circ}{8} \\ & \end{aligned}$	1	1	I	｜	I	I	｜	I	\｜		I	I	｜	1	I	｜	\％

Quad Driver with Integrated Level Setters

Table 9．Serial－Interface Data Bit Assignments（continued）

REGISTERNAME	ADDRESS（Note 1）					DATA（Notes 1，2）																$\begin{gathered} \text { POR } \\ \text { VALUE } \end{gathered}$
	ALL	CH3	CH2	CH1	CHO	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	
CMPV	$\begin{aligned} & \stackrel{\ominus}{+} \\ & +\infty \end{aligned}$	｜	｜	｜	$\begin{aligned} & \text { O} \\ & \text { ® } \end{aligned}$	｜	I	$\begin{aligned} & \stackrel{\nabla}{\Sigma} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \vdots \\ & \stackrel{\rightharpoonup}{\lrcorner} \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{1}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{2} \\ & \stackrel{1}{5} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \vdots \\ & \hline-\infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{x} \\ & \stackrel{y}{5} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{2} \\ & \stackrel{1}{5} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{S} \\ & \vdots \\ & \vdots \end{aligned}$	$$	$\begin{array}{\|l} \hline 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \frac{0}{\leq} \\ \vdots \\ \hline 8 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\times} \\ & \underset{\omega}{\omega} \\ & \hline \end{aligned}$
VHH	$\begin{aligned} & \stackrel{\rightharpoonup}{\times} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	1	｜	I	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{b}} \\ & \hline \end{aligned}$	1	1	$\begin{aligned} & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{\leq} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{V} \\ & \stackrel{\rightharpoonup}{\Sigma} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \vdots \\ & \stackrel{\rightharpoonup}{د} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{2} \\ & \stackrel{1}{5} \\ & 8 \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \vdots \\ & \hline-\infty \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \stackrel{1}{5} \\ & \hline- \end{aligned}$	$\begin{aligned} & \stackrel{\nabla}{2} \\ & \stackrel{1}{<} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{S} \\ & \vdots \\ & \vdots \end{aligned}$	$$	$\begin{array}{\|l} \hline 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \frac{0}{\leq} \\ \vdots \\ \hline 8 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\omega}{\omega}} \\ & \underset{\omega}{\omega} \end{aligned}$
OVHV	$\begin{aligned} & \stackrel{\ominus}{+} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\omega} \\ & \text { - } \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\times} \\ & \stackrel{\rightharpoonup}{\nabla} \end{aligned}$		｜	\｜	｜	｜	｜	1	1	\｜	$\begin{aligned} & \stackrel{0}{c} \\ & \stackrel{5}{5} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{5}{5} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{S} \\ & \text { o } \end{aligned}$	$$	$\begin{array}{\|l} \hline 0 \\ \vdots \\ \vdots \\ \hline \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \mathbf{o} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \frac{0}{\leq} \\ 5 \\ \hline 8 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$
OVLV	$\begin{aligned} & \stackrel{\otimes}{\times} \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{\omega}}}{\mathrm{~m}}$	$\begin{aligned} & \text { 자 } \\ & \text { ㄲ․ } \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{x}}{\underset{m}{n}}$		｜	｜	I	｜	｜	｜	1	\｜		$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{c}{5} \\ & \hline 8 \end{aligned}$		$\begin{aligned} & \square \\ & \stackrel{0}{\leq} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ \frac{0}{2} \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \frac{0}{\leq} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \vdots \\ \vdots \\ \vdots \end{array}$	$\begin{array}{\|l} \hline \frac{0}{2} \\ \frac{1}{5} \\ \hline 8 \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{+}{\circ} \end{aligned}$
CMP	$\begin{aligned} & \times \\ & \stackrel{\otimes}{7} \end{aligned}$	1	｜	1	$\begin{aligned} & \text { 우 } \\ & \text { 뀨 } \end{aligned}$	1	\｜	｜	｜	｜	｜	1	I	｜	1	｜	｜	｜	$\begin{array}{\|c} \hline 0 \\ 3 \\ 10 \\ 10 \\ \mathbf{z} \end{array}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{3} \\ & \underset{\substack{㐅}}{ } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \hline 8 \end{aligned}$
QDRV CAL （Note 4）	$\stackrel{\ominus}{\circ}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { ó } \end{aligned}$	1	1	I	1	1	｜	$\begin{aligned} & \hline \stackrel{0}{0} \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{0} \\ & 00 \\ & \bar{\square} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{0}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline 8 \\ \hline 8 \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline 8 \end{aligned}$
$\begin{array}{\|c} \text { DHV_CAL } \\ (\text { Note 4) } \end{array}$	$\begin{aligned} & \stackrel{\ominus}{\square} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{x} \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\geqq}{\bullet}$	$\begin{aligned} & \stackrel{\ominus}{\bullet} \\ & \stackrel{-}{-} \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\stackrel{\circ}{\infty}}$	｜	1	$\begin{aligned} & \cap \\ & \stackrel{Q}{\square} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{P} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{O} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\cap} \\ & \stackrel{\square}{\square} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\square} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{O}{B} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{O}{?} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{array}{\|l} \stackrel{O}{O} \\ \stackrel{\rightharpoonup}{\omega} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{2} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\perp} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	층 O O
DLV＿CAL （Note 4）	$\begin{aligned} & \stackrel{\rightharpoonup}{\wedge} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\text { N }} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{㐅} \\ & \text { ㅊ } \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { è } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	I	1	$\begin{aligned} & \stackrel{\cap}{P} \\ & \stackrel{8}{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\cap} \\ & \stackrel{B}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{O} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\square} \\ & \stackrel{\square}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{P} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\overparen{C}} \\ & \stackrel{\rightharpoonup}{\nu} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\text { B }}{2} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$		$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{array}{\|l} \stackrel{O}{O} \\ \stackrel{\rightharpoonup}{\omega} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{D}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\Gamma}{Ð} \\ & \underset{~}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	층 O O
DTV＿CAL （Note 4）	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{E}}}{\substack{2}}$	$\begin{aligned} & \stackrel{\otimes}{\omega} \\ & \hline \end{aligned}$	$\underset{\omega}{\stackrel{\rightharpoonup}{\infty}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{e}} \\ & \stackrel{\omega}{2} \end{aligned}$	$\underset{\substack{\circ \\ \underset{\omega}{0} \\ \hline}}{ }$	1	1	$\begin{aligned} & \stackrel{Q}{\cap} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{P} \\ & \stackrel{B}{\perp} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{P} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{Q}{2} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\square} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\cap} \\ & \stackrel{\rightharpoonup}{\nu} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{O}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{array}{\|l} \mathrm{O} \\ \underset{\sim}{\mathrm{D}} \\ \stackrel{\rightharpoonup}{2} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{D}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{\rightleftarrows} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	층 O 0
CMPV CAL （Note 4）	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { P } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{1} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { م) } \end{aligned}$	1	｜	$\begin{aligned} & \stackrel{Q}{n} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\cap} \\ & \stackrel{B}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\cap} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{?} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\cap} \\ & \stackrel{\rightharpoonup}{\nu} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\text { B }}{2} \\ & \stackrel{B}{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{array}{\|l} \mathrm{O} \\ \underset{\sim}{\circ} \\ \stackrel{\rightharpoonup}{\omega} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{D}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{Ð} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { 층 } \\ & \text { OD } \end{aligned}$
VHH CAL （Note 4）	$\begin{aligned} & \stackrel{\rightharpoonup}{\ominus} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { ৷ } \\ & \text { ® } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\diamond} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{\circ}}$	｜	1	$\begin{aligned} & \cap \\ & \stackrel{Q}{\stackrel{~}{\sigma}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\square} \\ & \stackrel{B}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{O} \\ & \stackrel{\rightharpoonup}{\stackrel{1}{\omega}} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{\square} \\ & \stackrel{\square}{\square} \end{aligned}$		$\begin{aligned} & \stackrel{\ominus}{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{C} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{O}{\cap} \\ & \stackrel{\rightharpoonup}{\square} \\ & \hline \end{aligned}$	$\stackrel{\bigcirc}{\bigcirc}$	－	$\begin{aligned} & \stackrel{O}{\Gamma} \\ & \stackrel{\rightharpoonup}{\perp} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { N } \\ & \text { O } \end{aligned}$

Note 1：Em dashes（一）in the register bit table represent an unused register bit set to 0 ．
Note 2：The data bits enter the shift register in the order D［15：0］．
Note 3：The EN＿TEMP＿ALARM bit is in the CHO QDRV register only．
Note 4：Level－setter calibration registers and QDRV calibration registers reset only through an internally generated POR signal．

Quad Driver with Integrated Level Setters

Level-Setter DAC and Calibration Addresses

The MAX19001 contains a total of 28 DACs to generate the DC voltage levels for the various control and monitoring circuits of the 4-channel MAX19001, a total of seven levels per channel. All channels share a common DAC for the CMPV and VHH; however each channel includes independent gain and offset adjustment for CMPV and VHH. All DAC levels, with the exception of OVHV and OVLV, are set by a 14-bit code value that varies between a hex value of 0×0000 and $0 \times 3 F F F$. OVHV and OVLV are set using an 8 -bit code that varies between 0×00 and $0 x F F$.

Tables 10, 11, and 12 identify the serial-interface address of each DAC and the address of the associated calibration register. Registers can be addressed by individual
channel or by utilizing a broadcast address that accesses all channels simultaneously. The level-setter output block diagram is shown in Figure 6.

Figure 6. Letter-Setter Block Diagrams

Table 10. Level-Setter DAC Addressing Table

LEVEL NAME	LEVEL DESCRIPTION	DAC REGISTER					
		ADDRESS					RESET VALUE*
		CHO	CH1	CH2	CH3	ALL	
DHV_	Driver high	0x01	0×11	0x21	0×31	0x41	0x1333
DLV_	Driver low	0x02	0×12	0×22	0×32	0×42	0×1333
DTV_	Driver term	0x03	0×13	0×23	0x33	0x43	0×1333
CMPV**	Comparator threshold	0x0B	-	-	-	-	0×1333
VHH**	Driver very high voltage	0x0C	-	-	-	-	0×1333
OVHV	Overvoltage-detect high	0x0D	0x1D	0x2D	0x3D	0x4D	0x4D
OVLV	Overvoltage-detect low	0x0E	0x1E	0x2E	$0 \times 3 \mathrm{E}$	0x4E	0x4D

*These values are reset during a POR or with the assertion of the $\overline{R S T}$ pin.
**The VHH and CMPV levels are shared among channels 0-3. Each channel has independent calibration registers.

Table 11. Level-Setter DAC Calibration Address Table

LEVEL NAME	LEVEL DESCRIPTION	CALIBRATION REGISTER					
		ADDRESS					RESET VALUE*
		CH0	CH1	CH2	CH3	ALL	
DHV_	Driver high	0×81	0×91	0xA1	0xB1	0xC1	0x2080
DLV_	Driver low	0×82	0x92	0xA2	0xB2	0xC2	0x2080
DTV_	Driver term	0×83	0×93	0xA3	0xB3	0xC3	0x2080
CMPV**	Comparator threshold	0x8B	0x9B	0xAB	0xBB	0xCB	0x2080
VHH**	Driver very high voltage	0x8C	0x9C	0xAC	0xBC	0xCC	0x2080

[^2]
Quad Driver with Integrated Level Setters

Table 12. Comparator Control Address Table

LEVEL NAME	LEVEL DESCRIPTION	COMMON CONTROL REGISTER					
		ADDRESS					RESET VALUE*
		CHO	CH1	CH2	CH3	ALL	
CMP*	Calibration comparator mux register	OxOF	-	-	-	-	0x0000

*This register controls the common calibration multiplexer.
${ }^{* *}$ These values are reset during a POR or with the assertion of the $\overline{R S T}$ pin.

Level-Setter Calibration Registers-Gain and Offset Codes

DAC calibration registers adjust the gain and offset of each DAC. Each DAC includes one or more calibration registers. All DAC calibration registers are programmed with a 14-bit code (Table 9). The codes are divided into two fields, one field each for gain (GCAL_) and offset (OCAL_). All DACs provide a 6-bit field for gain and an 8 -bit field for offset.
Calibration registers are reset to default values only during a POR. Asserting the RST does not force the calibration registers to default values.

Level Transfer Functions

Each of the MAX19001 analog DAC levels except OVHV and OVLV is set with a transfer function that includes the 14-bit DAC code setting, the gain code setting, and the offset code setting. The VDAC expressions below present the basic DAC transfer function. Each DAC provides a voltage output range of -3.0 V to +7.0 V (typ). There are five of these DACs per channel, and an additional two DACs that are shared among all channels. Each DAC is identical and generates a potential according to the equation that follows.
The transfer function for the 14-bit DACs (DHV_, DLV_, DTV_, CMPV, and VHH) is:

> VDAC14 $=4 \times($ DAC_code/16,384 $) \times$ VREF \times $(1-$ VG/VREF $) \times(0.98+0.02 \times$ gain code/32 $)-3 V+$
> $(0.1 \times$ offset_code/128-0.1) + VDGS $+1.2 \times V G$
where $\mathrm{VG}=$ VGNDDAC \qquad - VDGS

The transfer function for the 8-bit DACs (OVHV and OVLV) is:

$$
\begin{gathered}
\text { VDAC8 }=4 \times(\text { DAC_code/256) } \times \text { VREF } \times \\
\left(1-V_{G} / V_{R E F}\right)-3 V+\text { VDGS }+1.2 \times V_{G}
\end{gathered}
$$

where $\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GNDDAC}}$ \qquad - VDGS

For all DACs, the offset code is an integer value between 0 and 255, and the gain code is an integer value between 0 and 63. Offset and gain codes are based on the calibration register settings (Table 13).
Each channel has individual offset and gain correction for the commonly shared VHH and CMPV DACs.

Table 13. Level-Setter Transfer Functions

LEVEL	LEVEL TRANSFER FUNCTION
DHV_	VDAC14 \times DHV_gain + DHV_offset
DLV_	VDAC14 \times DLV_gain + DLV_offset
DTV_	VDAC14 \times DTV_gain + DTV_offset
CMPV	VDAC14 \times CMPVgain + CMPVoffset
VHH	(VDAC - VDGS) $\times 2 \times$ VHH gain + VHH offset + VDGS
OVHV	VDAC8
OVLV	VDAC8

Applications

Device Power-Up State

Upon power-up, the MAX19001 enters low-leak mode; the QDRV register defaults to 0×0004, the level and calibration registers default to 0×1333 and 0×2080, respectively, and OVLV and OVHV are set to $0 \times 4 \mathrm{D}$. For initial power-up values for the levels, see Tables 10, 11, and 12. Power supplies can be powered on in any sequence.

Alarms

 The MAX19001 features two fault-condition alarms. The first is a temperature sense alarm that activates when the MAX19001 internal temperature exceeds $+125^{\circ} \mathrm{C}$. The second fault condition activates when the voltage on DUT_ falls outside programmable voltage levels, higher than OVHV or below OVLV. The OVHV and OVLV levels are set by internal 8-bit DACs. Each channel features individual overvoltage-enable alarm bits, EN_OV_ALARM, in the QDRV register. A shared temper-ature-sense alarm-enable bit is in the QDRV register of channel 0 (see Table 9 for the register map). A binary 1 must be programmed into those enable bits for the monitor circuits to assert their respective alarm outputs (TALARM, OVALARM). Alarm outputs are active low, open drain, and referenced to DGND. It is anticipated that the user implements the latch function in the ASIC/ FPGA that monitors the TALARM signal. The overvoltage alarm is disabled when the driver is selected to VHH , because in most cases, VHH exceeds OVHV.
Quad Driver with Integrated Level Setters

Temperature Sensor
The MAX19001 provides a temperature sensor. The tem-perature-sensor function is enabled utilizing the TSMUXO bit in the TS register. Contents of the TS register can be modified through the serial interface. Table 14 defines the bit code necessary to enable this function. The tem-perature-sensor output is an analog voltage with +3.43 V representing $\mathrm{TJ}=+70^{\circ} \mathrm{C}$ and varies at $\pm 10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Power-Supply Considerations

Bypass each supply input to GND and REF to DGS with $0.1 \mu \mathrm{~F}$ capacitors. Additionally, use bulk bypassing of at least $10 \mu \mathrm{~F}$ where the power-supply connections meet the circuit board.

Exposed Pad

The exposed pad (EP) is internally connected to VEE. Connect to VEE or leave unconnected. Do not use the EP as the primary connection to VEE. Connect the EP to a large plane or heat sink to maximize thermal performance.

Warning: Do not connect EP to ground.

Level-Setter Output Programming

For DHV_, DLV_, DTV_, and CMPV, the DAC output voltage is nominally:
(VreF x code/4096) - 3 + VDGS
where $V_{\text {REF }}$ is nominally 2.500 V .
The gain DAC pivot point is 1.0 V .
For VHH , the DAC output voltage is nominally:

$$
2 \times((\text { VREF } \times \text { code/4096) }-3)+\text { VDGS }
$$

The gain DAC pivot point is 2.0 V .
$V_{\text {REF }}$ is a precision +2.500 V reference.
Table 14. Temp Sensor Control

TSMUX0	TEMP PIN OUTPUT
0	High impedance
1	Temperature-sensor voltage

To program a given voltage $\left(\mathrm{V}_{0}\right)$ for the 14 -bit DAC, the voltage to code conversion is:

$$
\begin{gathered}
\text { Code }=1638.4 \times(\mathrm{Vo}+3) \\
\left(\text { for } \text { DHV }_{-}, \text {DLV_, }^{2}\right. \text { DTV_, and CMPV) } \\
\text { Code }=1638.4 \times((\mathrm{Vo} / 2)+3) \\
(\text { for } \mathrm{VHH})
\end{gathered}
$$

The DAC power-up default is 0×1333 ($0 V$ nominal).
The DAC $\overline{\text { RST }}$ default is 0×1333 (0 V nominal).
The DAC has 14 bits of resolution. For DAC code settings that result in V_{0} output values that exceed the device specifications, the outputs roughly max out at the device range specification. For example, if DHV_{-}is programmed to code 16383 (7.5V), the driver outputs about 6.25 V . More accurately, an internal diode begins to conduct, and the limiting is soft.

Figure 7. Sample Connection Diagram for Two Parts per Board

Quad Driver with Integrated Level Setters

Calibration

After mathematically determining the calibration values, shown in Tables 15 and 16, the calibrated levels need to be checked and potentially adjusted up or down because the DAC gain and offset calibration registers have a nonlinear response that could result in the gain or offset values being off by as much as ± 3 LSBs, based on mathematical calculations from endpoint measurements during calibration.

Calibration Algorithm

The user can perform a system calibration by overwriting the default values in the gain and offset registers for any DAC level. The DAC calibration points are shown in Table 17.
The DAC calibration algorithm is as follows:

1) Set the offset DAC to midpoint ($10000000=0 \mathrm{~V}$ nominal).
2) Set the level DAC to gain point 1 (GP1).
3) Set the gain DAC code to minimum $=000000$.
4) Measure the output and call it VGAINmingP1.
5) Set the gain DAC code to maximum $=111111$.
6) Measure the output and call it VGAINMAXGP1.
7) Set the level DAC to gain point 2 (GP2).

Table 15. Offset Calibration Register

CODE	OFFSET VALUE	NOMINAL OFFSET (mV)
11111111	+ FS/2 - 1 LSB	+100
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
10000001	+1 LSB	\bullet
10000000	0	0
0111111	-1 LSB	-
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
00000000	$-\mathrm{FS} / 2$	-100

8) Set the gain DAC code to minimum $=000000$.
9) Measure the output and call it VGAINMINGP2.
10) Set the gain DAC code to maximum $=111111$.
11) Measure the output and call it VGAINMAXGP2.
12) Calculate the gain code.

The DAC is not $0 V$ based, so there are gain differences at OV and at 3 V .
For 63 codes, calculate the average range:
GAINMIN $=($ VGAINMINGP2 - VGAINMINGP1 $) /$ (GP2-GP1)

$$
\text { GAINMAX }=(\text { VGAINMAXGP2 }- \text { VGAINMAXGP1)/ }
$$

(GP2 - GP1)
GAINRANGE = GAINMAX - GAINMIN
LSB $=$ GAINRANGE/63
Calculated gain code $=(1-$ GAINMIN $) / L S B$. Call it Gcalc.
13) For gain DAC codes of GCALC - 2 to GCALC +2 , measure the gain (VGP2 - VGP1)/(GP2 - GP1) at each code, where VGP_ is the output at level DAC code GP_.

Table 16. Gain Calibration Register

CODE	OFFSET VALUE	NOMINAL GAIN (V/V)
111111	+ FS/2 - 1 LSB	1.02
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
100001	+1 LSB	-
100000	0	1
011111	-1 LSB	-
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
000000	$-\mathrm{FS} / 2$	\bullet

Table 17. Calibration Points

DAC	GAIN POINT 1 (V) (CODE)	GAIN POINT 2 (V) (CODE)	OFFSET POINT (V) (CODE)	CONDITION
DHV_	$0.125(0 \times 1400)$	$3.875(0 \times 2 C 00)$	$0.125(0 \times 1400)$	$V_{D L V}=-2 V_{,} V_{D T V}=+1.5 \mathrm{~V}$
DLV $_{-}$	$0.125(0 \times 1400)$	$3.875(0 \times 2 C 00)$	$0.125(0 \times 1400)$	$V_{D H V}=+6 V_{,}, V_{D T V}=+1.5 \mathrm{~V}$
DTV $_{-}$	$0.125(0 \times 1400)$	$3.875(0 \times 2 C 00)$	$0.125(0 \times 1400)$	$V_{D L V}=-2 V_{,}, V_{D H V}=+6 \mathrm{~V}$
CMPV	$0.125(0 \times 1400)$	$3.875(0 \times 2 C 00)$	$0.125(0 \times 1400)$	-
VHH	$7.75(0 \times 2 C 00)$	$12.75(0 \times 3 C 00)$	$7.75(0 \times 2 C 00)$	-

Quad Driver with Integrated Level Setters

14) From codes GCALC - 2 to GCALC + 2, choose the code that yields a gain closest to 1.0 and program the gain DAC to that code.
15) Set the level DAC to the offset point (OP).
16) Set the offset DAC code to minimum $=00000000$.
17) Measure the output and call it VofFSmin.
18) Set the offset DAC code to maximum $=11111111$.
19) Measure the output and call it VOFFSMAX.
20) Calculate the offset code:

$$
\begin{gathered}
\text { OFFSRANGE }=\text { VOFFSMAX }- \text { VOFFSMIN } \\
L S B=\text { OFFSRANGE/255 }
\end{gathered}
$$

Calculated offset code $=($ OP - VOFFSMIN $) /$ LSB. Call it OCALC.
21) For offset DAC codes of OCALC - 2 to OCALC +2 , measure the offset (VOP - OP) at each code, where VoP is the output at level DAC code OP.
22) From codes OCALC - 2 to OCALC +2 , choose the code that yields an offset closest to the desired value and program the offset DAC to that code.
23) The DAC should now be calibrated.

Calibration Example

The following is a calibration example for a DHV_ driver output high level:

1) With $\mathrm{DHV}_{-}=+0.125 \mathrm{~V}, \mathrm{VGAINMINGP}^{2}=+0.1600 \mathrm{~V}$ and VGAINMAXGP1 $=+0.084851 \mathrm{~V}$.
2) With $\mathrm{DHV}_{-}=+3.875 \mathrm{~V}, \mathrm{VGAINMINGP}_{2}=+3.8239 \mathrm{~V}$ and VGAINMAXGP2 $=+3.9246 \mathrm{~V}$.
3) $\operatorname{GAINMIN}=(3.8239 \mathrm{~V}-0.1603 \mathrm{~V}) /(3.875 \mathrm{~V}-0.125 \mathrm{~V})=$ 0.976967.
4) $\operatorname{GAINMAX}=(3.9246 \mathrm{~V}-0.084851 \mathrm{~V}) /(3.875 \mathrm{~V}-0.125 \mathrm{~V})$ $=1.023933$.
5) GAINRANGE $=1.023933-0.976967=0.046966$.
6) $\mathrm{LSB}=\mathrm{GAINRANGE/63}=0.000745$.
7) Gain code $=(1-0.976967) / 0.000745=31$.
8) Remeasured +0.125 V output at gain codes 29 , $30,31,32$, and $33=+0.127601 \mathrm{~V},+0.127091 \mathrm{~V}$, $+0.126848 \mathrm{~V},+0.126473 \mathrm{~V}$, and +0.126098 V .
9) Remeasured +3.875 V output at gain codes 29 , $30,31,32$, and $33=+3.876120 \mathrm{~V},+3.876615 \mathrm{~V}$, $+3.877110 \mathrm{~V},+3.877605 \mathrm{~V}$, and +3.878100V
10) Gains at codes 29, 30, 31, 32, and 33 are +0.999605 , $+0.999837,+1.000070,+1.000302$, and +1.000534 .
11) Adjusted gain code $=31$ (the closest to 1.0).
12) Program the gain DAC to code 31.
13) Set VDHV $_{-}=+0.125 \mathrm{~V}, \mathrm{VOFFSMIN}^{2}=+0.0269 \mathrm{~V}$, and VOFFSMAX $=+0.2180 \mathrm{~V}$
14) Calculate the offset code:

$$
\begin{gathered}
\text { OFFSRANGE }=\text { VOFFSMAX }- \text { VOFFSMIN }= \\
+0.2180 \mathrm{~V}-0.0269 \mathrm{~V}=+0.1911 \mathrm{~V} \\
\text { LSB }=\text { OFFSRANGE/255 }=+0.000749 \mathrm{~V} . \\
\text { Calculated offset code }=(0.125 \mathrm{~V}- \\
\text { VOFFSMIN)/LSB }=131 .
\end{gathered}
$$

15) Offsets at codes 129, 130, 131, 132, and 133 are $+0.1222 \mathrm{~V},+0.1230 \mathrm{~V},+0.1237 \mathrm{~V},+0.1245 \mathrm{~V}$, and +0.1252 V .
16) Adjusted offset code $=133$ (the closest to +0.125 V).
17) Program adjusted offset code.
18) DHV_ should now be calibrated.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
64 TQFP-EP	C64E+9R	$\underline{\mathbf{2 1 - 0 1 6 2}}$	$\underline{90-0164}$

Quad Driver with Integrated Level Setters

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 10$	Initial release	-
1	$11 / 10$	Updated Electrical Characteristics	9,10
2	$3 / 11$	Updated Driver Cable-Droop Compensation and Adjustable Driver Output Impedance sections	25
3	$6 / 11$	Updated Table 16	34

[^0]: +Denotes a lead(Pb)-free/RoHS-compliant package.
 *EP = Exposed pad.

[^1]: $X=$ Don't care.
 *DHV_-to-DLV_ and DLV_-to-DHV_ transition times are not altered by the state of ENVHHS_.
 ${ }^{* *}$ Control of VHH is initiated either through the direct assertion of the ENVHH input, or in response to the assertion of the RCV」」 NRCV_ high-speed inputs when ENVHHS_ $=1$ in the QDRV register.

[^2]: *These values are only reset during a POR. Thus, the device can be reset to a known state without requiring the reprogramming of calibration registers.
 **The VHH and CMPV levels are shared among channels 0-3. Each channel has independent calibration registers.

