Evaluates: MAX19692/MAX19693

General Description

The MAX19692 and MAX19693 evaluation kits (EV kits) include either a MAX19692 2.3Gsps or MAX19693 4.0Gsps 12-bit, direct RF synthesis digital-to-analog converter (DAC). The evaluation board includes a transformer circuit used to convert the differential DAC output to a single-ended 50 Ω signal. An on-board 3-transformer circuit is also provided to convert a single-ended 50 Ω clock source into the well balanced, 50% duty cycle, 100 Ω differential source required by the MAX19692/MAX19693.

The MAX19692/MAX19693 evaluation board employs two SAMTECH Q Strip[®] (QSH) connectors for the digital interface. The EV Kit includes an adapter board that converts the QSH interface to an FPGA Mezzanine Connector (FMC). The FMC connector is commonly available on Commercial Off-the-Shelf (COTS) FPGA evaluation boards such as the Xilinx[®] Virtex[®]-7 VC707 EV kit.

The MAX19692/MAX19693 EV Kit is supported by the MUXDAC Data Source based on a VC707 FPGA board which provides a useful tool for supplying the digital signals required to evaluate the MAX19692/MAX19693. Refer to the MUXDAC Data Source User's Guide for more information.

Features

- Evaluates the MAX19692/MAX19693
- Supports Maximum Update Rates
 - 2.3Gsps for MAX19692
 - 4.0Gsps for MAX19693
- Proven 12-Layer PCB Design
- Single-Ended Clock Interface
 - 2.3GHz Maximum Clock Rate (MAX19692)
 - 2.0GHz Maximum Clock Rate (MAX19693)
- Single-Ended DAC Output Interface
 - Selectable Frequency Response (MAX19692)
 - Wideband Output Transformer
 - Supports from 50MHz to >2GHz
- On-Board 1.25V Reference Circuitry
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

Evaluates: MAX19692/MAX19693

Figure 1. MAX19692/MAX19693 EV Kit and MUXDAC Data Source Test Setup

Evaluates: MAX19692/MAX19693

Quick Start

Required Equipment

- Window PC (Windows 7/10 operating system), with two available USB2.0 ports
- Spectrum analyzer Agilent PXA or equivalent
- RF signal generator Rohde & Schwarz SMF100A or equivalent
- One 3.3V/0.5A power supply (AVDD3.3)
- One or two 1.8V power supplies (AVDD1.8 and AVCLK)
 - Total current capability should be 0.5A per supply connection
- Xilinx VC707 EV kit user supplied
 - VC707 board
 - 12V/5A power cube
 - 1 each USB-A to Mini-B cable for interfacing and programming
 - 1 each USB-A to Micro-B cable for interfacing and programming
- Low-Loss SMA/SMA cables as needed for connections to the spectrum analyzer and signal generator
- Included in the MAX19692/MAX19693 EV Kit
 - MAX19692/MAX19693 EV kit board
 - MAXDACFMCADP1 adapter Board
 - Mounting hardware

Required Installed Software and Drivers

 Maxim Integrated MUXDAC data source and associated components

Procedure

1) Install the MUXDAC Data Source software

Reference the *MUXDAC Data Source User's Guide* for detailed installation and operating instructions. The MUXDAC Data Source User's Guide and software are available for download from <u>www.maximintegrated.com</u>. Search for 'MUXDAC Data Source', then download the User's Guide and follow the link to download the software. You will be prompted to accept Maxim's End User License Agreement to complete the download process.

- 2) Setup and connect the MAX19692/MAX19693 EV kit board.
 - a. Install the two 1-1/4" stand-offs included with the MAX19692/MAX19693 EV kit. Stand-offs should be installed on the DAC output side of the board.
 - b. Mate the MAXDACFMCADP1 board to the MAX19692/MAX19693 EV kit.
 - i. Secure the two boards using the supplied screws/nuts/washers.
 - c. Verify all jumpers on the MAX19692/MAX19693 EV kit board are in the default position; refer to Table 1 and Table 2.
 - d. Connect the MAX19692/MAX19693 EV kit board to the VC707 board, HPC1 as shown in Figure 1.
 - e. Connect the power supplies to the MAX19692/ MAX19693 EV kit and enable the output.
 - f. Connect the RF generator to the clock input with a low-loss SMA cable and set the frequency to 2.0GHz (50% duty-cycle) with output power at +10dBm.
 - g. Connect the DAC Output to the spectrum analyzer with a low-loss SMA cable.
 - h. Turn on the VC707 by sliding switch SW12 to the ON (left) position.
 - i. Connect the USB A to Micro-B cable from the VC707 JTAG port to the PC.
 - j. Connect the USB A to Mini-B cable from the VC707 USB2.0 port to the PC.
- Start the MUXDACEVKITSoftwareController.exe
 a. Wait for the program to initialize.
- 4) Load the FPGA configuration
 - a. Click on the Xilinx Impact Tool Installed checkbox.
 - b. Click the <Load FPGA Configuration File> button.
 - i. A file browser will open in the C:\ maximintegrated\MUXDACEVKIT\ VC707Files folder. Double click the *MUXDAC_DSS_vNpM.bit* file. (N and M are the revision numbers, i.e., v1p3 is Version 1.3)
 - c. A progress bar will display while the FPGA is configured, should take < 2 minutes.

Please ensure that all the USB device drivers are installed and 'ready for use' before proceeding to the next step. This preparation may take up to 20 minutes to complete. The Windows OS reports new device arrivals in the Notification Area of the Task Bar. Device Manager can also be used to verify the USB connections.

Evaluates: MAX19692/MAX19693

Table 1. General MAX19692/MAX19693 EV Kit Jumper Settings

JUMPER	POSITION	EVKIT FUNCTION	
JU1	Installed* Not Installed	MAX19692/MAX19693 external reference connected MAX19692/MAX19693 using internal reference	
JU2	Installed* Not Installed	Power for U3 – MAX6161 – external reference MAX6161 NOT powered	
JU3	1-2*	Logic High (VDD3.3) – Delay of 1/2 Input Data Period	
(DELAY)	2-3	Logic low (GND) – No Delay Added	
JU5	1-2*	Logic High (VDD3.3) – DDR Mode: DATACLK = input data rate/2 (f _{CLK} /4)	
(CLKDIV)	2-3	Logic low (GND) – QDR Mode: DATACLK = input data rate/4 (f _{CLK} /8)	
JU8	Installed*	External RESET (CAL Enable) Connected	
(CAL)	Not Installed	Float CAL Input	

*Default position.

Table 2. MAX19692 Frequency-Response Selection (JU4, JU9)

SHUNT P	OSITION		
$JU4 \rightarrow RZ$	$JU9 \rightarrow RF$	OF ERATING MODE	
2-3*	2-3*	NRZ mode	
2-3	1-2	RZ mode	
1-2	2-3	RF mode	

*Default position.

Table 3. MAX19693 Modulation Mode Selection (JU4)

SHUNT POSITION	OPERATING MODE
1-2	Enable fDAC/2 Modulation Mode
2-3*	Disable Modulation Mode

*Default position.

Table 4. MAX19693 Input Register Scan Enable (JU7)

CONNECTION	SE PIN	SCAN FUNCTION		
Installed*	Connected to GND	Scan Disabled		
Not Installed	Not connected (SE pin internally pulled down to ground GND)	User must supply a 1.8V CMOS logic signal to pin 1 of jumper JU7 to enable scan		

*Default position.

Evaluates: MAX19692/MAX19693

- 5) Select the DAC in use
 - a. Click on the text box in the DAC Selection section of the window.
 - b. Select MAX19692 or MAX19693 from the list.
- 6) Load Test Patterns
 - a. Click the Load Pattern List button.
 - A file browser will open in the C:\maximintegrated\ MUXDACEVKIT\TestPatterns folder. Select the CW or Two-Tone list for 12-bit devices.
- 7) Wait for the patterns to load.
- 8) Select a Pattern from the List
 - a. Click on the Select Pattern text.
 - b. Select a pattern from the populated list.
 - i. The format of the CW pattern's name is FO_FNumxFS_AO_ANumdBFS_12-Bit and the format of the two-tone pattern's name is FCent_FNumxFS_FSpcSNUMxFS_AO_ ANumdBFS_12-BIT, where the variables are FNum, ANum, and SNum for the frequency, amplitude, and spacing, respectively. The DAC output frequency of the patterns will be at or around FNum * f_{DAC}.
- 9) Start the Pattern
 - a. Click the Start button.
- 10) Observe the DAC output.

Refer to the *Test Patterns and Lists* section of the MUXDAC User's Guide for details regarding the creation of custom patterns and lists.

Detailed Description of Hardware

The MAX19692 and MAX19693 EV kits are designed to simplify the evaluation of the MAX19692 2.3Gsps and MAX19693 4.0Gsps 12-bit, direct RF synthesis DACs. Each EV Kit operates with LVDS data inputs, a single-ended clock input signal, and 1.8V/3.3V power supplies for simple board operation.

The evaluation board features on-board QSH connectors that interface to the MAXDACFMCADP1 board that allows direct connection to a VC707 FMC connector, circuitry that converts the differential 50Ω output to a single-ended 50Ω signal, and circuitry to convert a user-supplied single-ended clock signal to a differential clock required by the DAC. The evaluation board also includes jumpers that configure frequency response, modulation, scan, reference voltage, calibration, and data clock modes.

Power Supplies

Each evaluation board operates from two 1.8V and one 3.3V power supplies. The two separate 1.8V power supplies can be driven from the same source. Each power plane on the PCB is filtered for optimum dynamic performance.

Clock Signal

Each DAC requires a differential clock input signal with minimal jitter. The evaluation boards feature single-endedto-differential-conversion circuitry. Supply a single ended clock signal at the SMA connector labeled CLK. The power applied to the SMA should be between +10dBm and +15dBm when measured at the connector. Insertion losses due to the interconnecting cable decrease the power seen at the board input. Account for these losses when setting the signal generator amplitude.

Reference Voltage Options

The DAC requires a reference voltage to set its output power. The DAC features a stable on-chip bandgap reference of 1.2V. The internal reference can be overdriven by an external reference to enhance accuracy and drift performance or for gain control.

The evaluation board features three reference options. Use the DAC's internal voltage reference by removing the shunts from jumpers JU1 and JU2. Use an external reference by removing the shunts from jumpers JU1 and JU2 and connecting a stable voltage reference at the REFIO pad. Install shunts on jumpers JU1 and JU2 to use the on-board reference (MAX6161). See <u>Table 1</u> to configure the shunts across jumpers JU1 and JU2 and select the source of the reference voltage.

The full-scale continuous-wave (CW) output power is dependent on the value of the reference voltage and resistor R6. Use the equation below to calculate the DAC full-scale output power:

$$\mathsf{P}_{OUT} = 73.1 + 20 \times \mathsf{log} \bigg(\frac{\mathsf{V}_{\mathsf{REFIO}}}{\mathsf{R6}} \bigg) [\mathsf{dBm}]$$

where:

POUT = DAC full-scale output power,

 V_{REFIO} = Voltage present at the REFIO pad in volts (1.2V if using the device's internal reference),

R6 = Value of resistor R6 in ohms ($2k\Omega$ default).

Clock Division

The data clock output differential signal (DATACLK) frequency is scaled down from the DAC clock input. Jumper JU5 controls the division factor. See <u>Table 2</u> for shunt settings. Refer to the IC data sheet for details on synchronizing the DAC to an external pattern generator. Install resistors R2, R3, and R4 to access the differential output data clock signal at the DATA-CLKP and DATA-CLKN SMA connectors on the evaluation board when not using the MUXDAC Data Source System.

Data Clock Delay

Jumper JU3 adjusts the delay of the data clock output. Refer to the Data Timing Relationships section in the IC data sheet for more details. See Table 1 for shunt settings.

Differential Output

The DAC features a differential output with built-in selfcalibrated output termination resistors. The evaluation board circuit pulls the outputs up to AVDD3.3 through bias inductors L4 and L5 to optimize performance of the device. Balun transformer T1 converts the differential signal to a single-ended signal. Measure the resulting DAC output at the SMA connector labeled OUT.

Impulse/Frequency Response (MAX19692)

The MAX19692 DAC has three impulse/frequency response modes: NRZ, RZ, and RF. These modes are set with the RZ and RF input pins. The MAX19692 EV kit provides jumpers JU4 and JU9 to configure these pins. See <u>Table 2</u> for jumpers JU4 and JU9 configuration. Refer to the *DAC Impulse/Frequency Response Mode* section in the MAX19692 IC data sheet for more details.

Modulation (MAX19693)

The MAX19693 $f_{DAC}/2$ (or $f_{CLK})$ modulation mode can be enabled or disabled by connecting the MOD pin to 3.3V or to ground. The evaluation board circuit provides jumper

Ordering Information

PART	TYPE
MAX19692EVKIT	EV KIT
MAX19693EVKIT	EV KIT

JU4 to configure the MOD pin. Refer to the MAX19693 IC data sheet for more details on the MOD pin. See <u>Table 3</u> for jumper JU4 configuration.

Output Resistor Calibration

The evaluation board circuit features an on-board μ P supervisor (U2) to generate the CAL signal required to calibrate the integrated output termination resistors. At power-up, the supervisor applies a logic-high to the CAL pin 140ms after the final supply voltage is within its specified range. Pressing switch SW1 recalibrates the integrated termination resistors by creating a logic-low pulse on the CAL pin. The shunt on jumper JU8 can be removed to apply an external logic signal to pin 1 of jumper JU8 and initiate a CAL operation. See <u>Table 1</u> for jumper JU8 configuration. Refer to the IC data sheet for details on the CAL operation.

Input Register Scan (MAX19693)

The MAX19693 scan function can be enabled or disabled by configuring the SE pin. When the scan function is enabled, the contents of the input register are shifted out on the SO pin. Connect a digital sampling device to pin 1 of JU6 to access the scan output data on the SO pin. The EV kit circuit provides jumper JU7, which is used to enable or disable the scan function. During normal operation, install the shunt across jumper JU7 to disable the scan function. Refer to the MAX19693 IC data sheet for more details. See Table 4 for jumper JU7 configuration.

Operation with the MUXDAC Data Source

The device's LVDS-level data clock outputs (DATACLKP, DATACLKN) synchronize the data source and the DAC during normal operation of the EV Kit. Install a shunt on JU5:1-2 to configure the DAC for DDR mode which produce the correct DATACLK frequency for operation with the MUXDAC Data Source System.

Evaluates: MAX19692/MAX19693

MAX19692/MAX19693 EV Kit Bill of Materials

ITEM	REFERENCE	QTY	VALUE	TOLERANCE	DESCRIPTION	PART NUMBER	MANUFACTURER
1	C1, C2	2	100pF	±5%	0402 Ceramic Capacitor, SMT, 50V	C1005C0G1H101J GRM1555C1H101J	TDK Murata
2	C3, C4, C12, C13	4	0.1µF	±20%	0402 Ceramic Capacitor, SMT, 10V	C1005X5R1A104M	TDK
3	C5-C8, C24-C31	12	1.0µF	±20%	0402 Ceramic Capacitor, SMT, 6.3V	EEEFTV151XAP	PANASONIC
4	C9, C10, C11	0	-	-	0603 Capacitors, SMT, Not Installed	-	-
5	C14, C15, C16	3	47µF	±20%	C-Case Tantalum Capacitor, SMT, 16V	TPSC476M016R0350 594D476X0016C2T	AVX Vishay
6	C17-C23	7	10µF	±20%	0805 Ceramic Capacitor, SMT, 6.3V	C2012X5R0J106M GRM21BR60J106M	TDK Murata
7	C32 – C47	16	0.1µF	±20%	0201 Ceramic Capacitor, SMT, 6.3V	C0603X5R0J104M	TDK
8	DATA-CLKP, DATA-CLKN	0	-	-	SMA PC Mount Connector, Vertical, Not installed	-	-
9	CLK, OUT	2	-	-	PC edge mount 0.92" SMA Connector	32K243-40ML5	Rosenberger
10	H1, H2	2	-	-	Vertical 2x60 surface mount high speed socket connectors	QSH-060-01-L-D-A	Samtec
11	JU1, JU2, JU7, JU8	4	-	-	2x4 pin header(Cut to Fit)	PEC36SAAN	Sullins Electronic Corp.
12	JU3, JU4, JU5, JU9*	4 (3*)	-	-	3 Pin Headers (Cut to Fit)	PEC36SAAN	Sullins Electronic Corp.
13	JU6	0	-	-	2-pin headers, No Installed	PEC36SAAN	Sullins Electronic Corp.
14	L1, L2, L3	3	-	-	1812 Chip bead cores, SMT	EXC-CL4532U1	PANASONIC
15	L4, L5	2	2.2uH	±5%	2520 wire-wound chip inductors, SMT, 0.47A	1008CS-222XJLB	Coilcraft
16	R1	1	10.0 kOhm	±1%	0603 chip resistor, SMT		
17	R2, R3	0	-	-	0402 chip resistor, SMT, Not Installed		
18	R4	0	-	-	0603 chip resistor, SMT, Not Installed		
19	R5, R6	2	49.9 Ohm	±1%	0402 chip resistors, SMT		
20	R7	1	2.0 kOhm	±0.1%	0603 chip resistor, SMT		

Evaluates: MAX19692/MAX19693

ITEM	REFERENCE	QTY	VALUE	TOLERANCE	DESCRIPTION	PART NUMBER	MANUFACTURER
21	R8	1	499 Ohm	±1%	0402 chip resistor, SMT		
22	R9, R11	2	174 kOhm	±1%	0603 chip resistor, SMT		
23	R10, R12	2	100k Ohm	±1%	0603 chip resistor, SMT		
24	SW1	1	-	-	Switch, Momentary, Push-Button, SMT	B3S-1000	Omron Electronics
25	T1 - T4	4	-	-	1:1 3000MHz RF Transformers	TC1-1-13M+	Mini-Circuits
26	TP1	0	-	-	Test point, Not Installed		
27	VDD1.8, AVDD3.3, AVCLK	3	-	-	PC Test Point, Red	5000	Keystone Electronics
28	GND	3	-	-	PC Test point, black	5001	Keystone Electronics
29	U1 (MAX19692)	1	-	-	12-Bit, 2.3Gsps, Digital- to-Analog Converter, 169 CSBGA	MAX19692EXW-D	Maxim
30	U1 (MAX19693)	1	-	-	12-Bit, 4Gsps, Digital- to-Analog Converter, 169 CSBGA	MAX19693EXW-D	Maxim
31	U2	1	-	-	High-Accuracy Supervisory Circuit, 6-SOT23	MAX6710LUT+ (Top Mark: AAZL)	
32	U3	1	-	-	1.25V precision voltage reference, 8 SO	MAX6161AESA+ or MAX6161BESA+	Maxim
33	-	8 (7*)	-	-	Shunts (JU1-JU5, JU7- JU9*)	STC02SYAN	Sullins Electronic Corp.
34		1	-	-	PCB, 1 Oz Impedance Controlled	MAX19692 / MAX19693 Evaluation Kit	Maxim
35		1			FMC ADAPTER CARD	MAXDACFMCADP1	Maxim

MAX19692/MAX19693 EV Kit Bill of Materials (continued)

*MAX19693EVKIT Excludes JU9

MAX19692 Kit Schematic

Evaluates: MAX19692/MAX19693

MAX19692 Kit Schematic (continued)

MAX19693 Kit Schematic

Evaluates: MAX19692/MAX19693

MAX19693 Kit Schematic (continued)

Evaluates: MAX19692/MAX19693

ITEM	REFERENCE	QTY	DESCRIPTION	PART NUMBER	MANUFACTURER
1	J1, J2	2	120 pin high-speed connector, SMT	QTH-060-01-L-D-A	SAMTEC
2	J3	1	High pin count FMC connector, SMT	ASP-134488-01	SAMTEC
3	PCB	1	PCB:EPCBMAXADAPTDACFMC1	EEEFTV151XAP	

MAXDACFMCADP1 Bill of Materials

Evaluates: MAX19692/MAX19693

MAXDACFMCADP1 Schematic

Evaluates: MAX19692/MAX19693

MAXDACFMCADP1 Schematic (continued)

Evaluates: MAX19692/MAX19693

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/06	Initial release	_
1	5/08	The EV kit board was redesigned. The same data sheet is now used for both the MAX19692 and MAX19693 EV kits	1–16
2	3/19	Extensive changes to flow and content of document. Changes include matching newer format. Also details new tools and adapters provided for the MAX19692 and MAX19693 EV kits	1–16
3	10/20	Updated <i>Procedure</i> , <i>Detailed Description of Hardware</i> , <i>Power Supplies</i> , <i>Clock Division</i> , <i>Operation with the MUXDAC Data Source</i> sections, Table 1 and Ordering Information table	3–6

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.