Automotive I^{2} C-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

General Description

The MAX20069C is a highly integrated TFT power supply and LED backlight driver IC for automotive TFT-LCD applications. The IC integrates one buck-boost converter, one boost converter, two gate-driver supplies, and a boost/SEPIC converter that can power one to four strings of LEDs in the display backlight.
The source-driver power supplies consist of a synchronous boost converter and an inverting buck-boost converter that can generate voltages up to +18 V and down to -7 V . The positive source driver can deliver up to 120 mA , while the negative source driver is capable of 100 mA . The positive source-driver supply-regulation voltage ($\mathrm{V}_{\mathrm{POS}}$) is set by connecting an external resistor-divider on FBP or through $I^{2} \mathrm{C}$. The negative source-driver supply voltage ($\mathrm{V}_{\mathrm{NEG}}$) is always tightly regulated to $-\mathrm{V}_{\mathrm{POS}}$ (down to a minimum of -7 V). The source-driver supplies operate from an input voltage between 2.8 V and 5.5 V .
The gate-driver power supplies consist of regulated charge pumps that generate from +28 V to -21.5 V and can deliver up to 3 mA each.
The IC features a quad-string LED driver that operates from a separate input voltage ($\mathrm{V}_{\mathrm{BATT}}$) and can power up to four strings of LEDs with 150 mA (max) of current per string. The IC features logic-controlled pulse-width-modulation (PWM) dimming, with minimum pulse widths as low as 500 ns with the option of phase shifting the LED strings with respect to one another. When phase shifting is enabled, each string is turned on at a different time, reducing the input and output ripple, as well as audible noise. With phase shifting disabled, the current sinks turn on simultaneously and parallel connection of current sinks is possible.

The startup and shutdown sequences for all power domains are controlled using one of the seven preset modes, which are selectable through a resistor on the SEQ pin or through the $\mathrm{I}^{2} \mathrm{C}$ interface.
The MAX20069C is available in a 40-pin ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) TQFN package with an exposed pad, and operates over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ ambient temperature range.

Applications

- Automotive Dashboards
- Automotive Central Information Displays
- Automotive Head Up Displays
- Automotive Navigation Systems

Benefits and Features

- 4-Output TFT-LCD Bias Power
- 2.8 V to 5.5 V Input for the TFT-LCD Section
- Integrated 440 kHz or 2.2 MHz Boost and BuckBoost Converters
- Positive and Negative 3mA Gate Voltage Regulators with Adjustable Output Voltage
- Flexible Resistor-Programmable Sequencing through the SEQ Pin
- Undervoltage Detection on All Outputs
- Low-Quiescent-Current Standby Mode
- 4-Channel LED Backlight Driver
- Up to 150 mA Current per Channel
- 4.5 V to 42 V Input Voltage Range
- Integrated Boost/SEPIC Controller (440kHz or $2.2 \mathrm{MHz})$
- Dimming Ratio 10,000:1 at 200 Hz
- Adaptive Voltage Optimization to Reduce Power Dissipation in the LED Current Sinks
- Open-String, Shorted-LED, and Short-to-GND Diagnostics
- Low EMI
- Phase-Shift Dimming of LED Strings
- Spread Spectrum on LED Driver and TFT
- Selectable Switching Frequency
- I^{2} C Interface for Control and Diagnostics
- Fault Indication through the FLTB pin and $I^{2} C$
- Overload and Thermal Protection
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Ambient Temperature Operation
- 40-Pin ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) TQFN Package with Exposed Pad

Simplified Block Diagram

TABLE OF CONTENTS

General Description 1
Applications 1
Benefits and Features 1
Simplified Block Diagram 2
Absolute Maximum Ratings. 7
Package Information 7
40 TQFN 7
40 TQFN-SW 7
Electrical Characteristics 8
Typical Operating Characteristics 16
Pin Configuration. 19
MAX20069C 19
Pin Description 20
Functional Diagrams 22
Detailed Block Diagram 22
Detailed Description 23
TFT Power Section. 23
Source-Driver Power Supplies 23
Gate-Driver Power Supplies 23
Fault Protection 23
Output Sequencing Control 24
TFT Sequence with RSEQ = 10k 25
Description of the LED Driver Section 25
Current-Mode DC-DC Controller 26
8-Bit DAC 26
PWM Dimming 26
Low-Dim Mode 27
Phase Shifting 27
Figure 2 Phase-Shifted Outputs 28
Undervoltage Lockout 28
Startup Sequence 28
Stage 1 28
Stage 2 29
Open-LED Management and Overvoltage Protection (OVP) 29
Short-LED Detection 30
LED Current Control 30
FLTB Output 30
Serial Interface 31
Register Map 32
MAX20069C Automotive I^{2} C-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias
TABLE OF CONTENTS (CONTINUED)
Reg Map 32
Register Details 32
Applications Information 46
TFT Power Section 46
Boost Converter 46
Boost Converter Inductor Selection 46
Boost Output-Filter Capacitor Selection 46
Setting the POS Voltage 46
NEG Inverting Regulator 47
NEG Regulator Inductor Selection 47
NEG External Diode Selection 47
NEG Output Capacitor Selection 47
Setting the DGVDD and DGVEE Output Voltages 47
LED Driver Section 48
DC-DC Converter for LED Driver 48
Power-Circuit Design 48
Boost Configuration 48
SEPIC Configuration 49
Current-Sense Resistor and Slope Compensation 50
Output Capacitor Selection 50
External Switching-MOSFET Selection 51
Rectifier Diode Selection 51
Feedback Compensation 51
Typical Application Circuits 53
Typical Application Circuit for I²C Mode 53
Typical Application Circuit for Stand-Alone Mode 54
Typical Application Circuit for ${ }^{2}$ ²C Mode, SEPIC Topology 55
Ordering Information 56
Revision History 57

LIST OF FIGURES

Figure 2. Phase-Shifted Outputs . 28

LIST OF TABLES

Table 1. Sequencing Options 24
Table 2. ${ }^{2}$ ² Addresses 31

Absolute Maximum Ratings

MP, NDRV, ISET to GND.................... -0.3V to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{l}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

40 TQFN

Package Code	T4066-5C
Outline Number	$\underline{21-0141}$
Land Pattern Number	$\underline{90-0055}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	38
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	1
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	27
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	1

40 TQFN-SW

Package Code	$\mathrm{T} 4066 \mathrm{Y}-6 \mathrm{C}$
Outline Number	$\underline{21-100361}$
Land Pattern Number	$\underline{90-0055}$
Thermal Resistance, Single-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$38^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$1^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Four-Layer Board:	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$27^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$1^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", " " ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT SUPPLY						
IN Voltage Range			2.8		5.5	V
IN UVLO Threshold	IN_UVLO_R	Rising	2.45	2.55	2.65	V
IN UVLO Hysteresis	$\begin{gathered} \text { IN_UVLO_HY } \\ S \end{gathered}$			100		mV
IN Shutdown Current	1 IN SHDN	$\mathrm{EN}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		4	10	$\mu \mathrm{A}$
IN Quiescent Current	IIN_Q	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, no switching		2.2		mA
REFERENCE						
Reference Output Voltage	$\mathrm{V}_{\text {REF_NL }}$	No load	1.232	1.25	1.268	V
Reference UVLO Threshold	REF_UVLO_R	REF rising		1	1.2	V
Reference UVLO Hysteresis	$\underset{\text { YS }}{\text { REF_UVLO_H }}$			100		mV
Reference Load Regulation	REF_LDREG	$0<\mathrm{I}_{\text {REF }}<100 \mu \mathrm{~A}$		10	20	mV
Reference Line Regulation	REF_LNREG	$2.7 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$		2	5	mV
BOOST REGULATOR						
Output Voltage Range	$\mathrm{V}_{\text {HVINP }}$	$\mathrm{V}_{\text {IN }} \geq 4 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}+1$		18	V
		$\mathrm{V}_{\text {IN }}<4 \mathrm{~V}$	5		18	
POS Voltage Range, ${ }^{2}$ ² C Mode		SEQ connected to IN	5		18	V
POS Adjustment Step Size, $\mathrm{I}^{2} \mathrm{C}$ Mode		SEQ connected to IN		0.1		V
POS Output Regulation	$\mathrm{V}_{\mathrm{POS}}$	vpos[7:0] = 0x1A	6.37	6.5	6.63	V
Operating Frequency	$\mathrm{f}_{\text {BOOSTH }}$	swfreq_tft bit $=0$, dither disabled	1900	2200	2500	kHz
	$\mathrm{f}_{\text {BOOSTL }}$	swfreq_tft bit $=1$, dither disabled	360	430	500	
Frequency Dither	$\mathrm{f}_{\text {BOOSTD }}$			+4/-4		\%
Oscillator Maximum Duty Cycle	$\begin{gathered} \text { BOOST_MAX } \\ \text { DC } \end{gathered}$		90	94	98	\%
FBP Regulation Voltage	$V_{\text {FBP }}$		1.23	1.25	1.27	V
FBP Load Regulation	FBP_LDREG	$1 \mathrm{~mA}<\mathrm{IPOS}<100 \mathrm{~mA}$		-1		\%
FBP Line Regulation	FBP_LNREG	$\mathrm{V}_{\text {IN }}=2.8 \mathrm{~V}$ to 5.5 V	-0.4	0	+0.4	\%
FBP Input Bias Current	IFBP_BIAS	$\mathrm{V}_{\mathrm{FBP}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	20	100	200	nA
Low-Side Switch OnResistance	LXP_RON_LS	$\mathrm{L}_{\text {LXP }}=0.1 \mathrm{~A}$		0.2	0.4	Ω
Synchronous Rectifier On-Resistance				0.25	0.5	Ω
Synchronous Rectifier Zero-Crossing Threshold	ZX_TH			20		mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LXP Leakage Current	LXP_L_LEAK	$\mathrm{EN}=\mathrm{GND}, \mathrm{V}_{\text {LXP }}=15 \mathrm{~V}$			20	$\mu \mathrm{A}$
LXP Current Limit, High Setting	ILIMPH	Duty cycle $=80 \%$, lxp_lim_low $=0$	1.7	2.0	2.3	A
LXP Current Limit, Low Setting	ILIMPL	Duty cycle $=80 \%$, lxp_lim_low $=1$	0.74	1	1.3	A
Soft-Start Period	$\begin{gathered} \text { BOOST_SSTI } \\ \text { ME } \end{gathered}$	Current-limit ramp		10		ms
INVERTING REGULATOR						
INN Voltage Range			2.7		5.5	V
INN Quiescent Current		$\mathrm{EN}=\mathrm{GND}, \mathrm{V}_{\text {INN }}=3.6 \mathrm{~V}$			1	$\mu \mathrm{A}$
	IINN	$\mathrm{EN}=\mathrm{V}_{\text {INN }}=3.6 \mathrm{~V}$		1		mA
Operating Frequency	finvL	swfreq_fft bit $=0$, dither disabled	1900	2200	2500	kHz
	$\mathrm{f}_{\mathrm{INVH}}$	swfreq_fft bit = 1, dither disabled	360	430	500	
Frequency Dither	finv_DITH			± 4		\%
Oscillator Maximum Duty Cycle	INV_MAXDC			94		\%
$\mathrm{V}_{\mathrm{POS}}+\mathrm{V}_{\text {NEG }}$ Regulation Voltage	$\begin{gathered} \mathrm{V}_{\text {NEG_POS_R }} \\ \text { EG } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\text {INN }}=2.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{POS}}=7.1 \mathrm{~V}, 1 \mathrm{~mA} \\ & <\mathrm{I}_{\mathrm{NEG}}<100 \mathrm{~mA}, \mathrm{I}_{\mathrm{POS}}=\text { no load } \end{aligned}$	-60	0	70	mV
Inverting-Regulator Disable Threshold	$V_{\text {POSth }}$	Above this value on POS, the inverting regulator is turned off	7.5	7.9	8.2	V
LXN On-Resistance	LXN_RON	INN to LXN, ILXN $=0.1 \mathrm{~A}$		0.6	1.2	Ω
LXN Leakage Current	LXN_LEAK	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LXN}}=\mathrm{V}_{\text {NEG }}=-7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C} \end{aligned}$			20	$\mu \mathrm{A}$
LXN Current Limit, High Setting	ILIMNH	Duty cycle $=80 \%$, neg_lim_low $=0$	1.2	1.5	1.8	A
LXN Current Limit, Low Setting	ILIMNL	Duty cycle $=80 \%$, neg_lim_low $=1$	0.6	0.75	1.1	A
Soft-Start Period	INV_SSTIME	Current-limit ramp		5		ms
POSITIVE CHARGE-PUMP REGULATOR						
PGVDD Operating Voltage Range	VPGVDD		5		$\mathrm{V}_{\text {HVINP }}$	V
HVINP-PGVDD Threshold For DGVDD Charge-Pump Start-Up	VHVINPPGVDD	$\mathrm{V}_{\mathrm{HVINP}}=5 \mathrm{~V}$	400	510	620	mV
HVINP-DP Current Limit			15			mA
Oscillator Frequency			300	400	500	kHz
DGVDD Voltage Range, ${ }^{2}$ ² Mode			8		28	V
DGVDD Adjustment Step Size, $\mathrm{I}^{2} \mathrm{C}$ Mode				0.5		V
DGVDD Output Voltage		${ }^{2} \mathrm{C}$ mode, DGVDD set to 16V (0x10)	15.68	16	16.32	V
FBPG Regulation Voltage	VFBPG_REG		1.23	1.25	1.27	V

Automotive $\mathrm{I}^{2} \mathrm{C}$-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FBPG Line Regulation		$\mathrm{V}_{\text {HVINP }}=11 \mathrm{~V}$ to 15 V	0	0.2	$\% / \mathrm{V}$	
FBPG Input Bias Current		$\mathrm{V}_{\mathrm{FBPG}}=1.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-100		100	nA
DP On-Resistance, High		$\mathrm{I}_{\mathrm{DP}}=+10 \mathrm{~mA}$	30	60	Ω	
DP On-Resistance, Low		$\mathrm{I}_{\mathrm{DP}}=-10 \mathrm{~mA}$	15	30	Ω	

NEGATIVE CHARGE-PUMP REGULATOR

HVINP to DN Current Limit		15			mA
Oscillator Frequency		300	400	500	kHz
DGVEE Voltage Range, ${ }^{2}$ ² C Mode		-22		-8	V
DGVEE Adjustment Step Size, $\mathrm{I}^{2} \mathrm{C}$ Mode		0.5			V
DGVEE Output-Voltage Accuracy		-2		+2	\%
FBNG Regulation Voltage		-12	0	+12	mV
FBNG Line Regulation	$\mathrm{V}_{\text {NEG }}=-11 \mathrm{~V}$ to -15V		0	0.2	\%/V
FBNG Input Bias Current	$\mathrm{V}_{\mathrm{FBNG}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-100		+100	nA
DN On-Resistance, High	$\mathrm{I}_{\mathrm{DN}}=10 \mathrm{~mA}$		30	60	Ω
DN On-Resistance, Low	$\mathrm{I}_{\mathrm{DN}}=-10 \mathrm{~mA}$		15	30	Ω

SEQUENCE SWITCHES

POS Output-Voltage Range	$V_{\text {POS }}$	Tracks HVINP		5		18	V
POS On-Resistance		RONpos	$\begin{aligned} & \text { (HVINP-POS), } \\ & \text { IPOS }=80 \mathrm{~mA} \end{aligned}$		1.5	2.6	Ω
POS Charge Current Limit		Expires after soft-start period		120			mA
	ILIMPOS	Expires after soft start period		120		380	
POS Discharge Resistance				2	3.4	6	$\mathrm{k} \Omega$
POS Soft-Start Charge Time		Current mode (0A to full current limit)			5		ms
NEG Output-Voltage Range	$\mathrm{V}_{\text {NEG }}$	Tracks HVINN		-7			V
NEG Discharge Resistance				2	3.4	6	$\mathrm{k} \Omega$
PGVDD On-Resistance		(HVINP-PGVDD), IPGVDD $=3 \mathrm{~mA}$			30	60	Ω
PGVDD Current Limit		Expires when PGVDD charging is completed		15	50		mA
DGVDD Input Voltage Range				6		22	V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DGVDD Discharge Resistance			7	12	17	$\mathrm{k} \Omega$
DGVEE Input Voltage Range			-22		-6	V
DGVEE Discharge Resistance			7	12	17	$\mathrm{k} \Omega$
SEQ Bias Current	ISEQ	$V_{\text {SEQ }}=1 \mathrm{~V}$	9.4	10	10.5	$\mu \mathrm{~A}$

TFT FAULT PROTECTION

HVINP Undervoltage Fault		Before the end of POS soft-startup, $V_{\text {HVINP }}$ falling, ${ }^{2}{ }^{2} \mathrm{C}$ mode	75	80	85	\%
POS Undervoltage-Fault Threshold		After POS soft startup, $\mathrm{V}_{\mathrm{POS}}$ falling, $\mathrm{I}^{2} \mathrm{C}$ mode	75	80	85	\%
NEG Undervoltage-Fault Threshold		$\mathrm{V}_{\text {NEG }}$ rising (\% of POS setting)	75	80	85	\%
FBP Undervoltage-Fault Threshold		$V_{\text {FBP }}$ falling, stand-alone mode	0.95	1	1.05	V
FBPG UndervoltageFault Threshold		$V_{\text {FBPG }}$ falling, stand-alone mode	0.95	1	1.05	V
FBNG UndervoltageFault		$\mathrm{V}_{\text {FBNG }}$ rising, standalone mode.	160	210	260	mV
DGVDD Undervoltage Fault		${ }^{2} \mathrm{C}$ C mode, DGVDD falling	75	80	85	\%
DGVEE Undervoltage Fault		$1^{2} \mathrm{C}$ mode, DGVEE rising	75	80	85	\%
Undervoltage-Fault Timer				50		ms
HVINP Short-Circuit Fault		Before end of POS soft-start, HVINP falling, $I^{2} \mathrm{C}$ mode	30	40	50	\%
FBP Short-Circuit Fault Threshold		$\mathrm{V}_{\text {FBP }}$ falling, stand-alone mode	30	40	50	\%
POS Overload Fault Threshold	POS_OL	POS falling (\% of $\mathrm{V}_{\mathrm{HVINP}}$)	70	73	76	\%
NEG Short-Circuit Fault Threshold		$\mathrm{V}_{\text {NEG }}$ rising (\% of POS setting)	30	40	50	\%

LED BACKLIGHT DRIVER

Input Voltage Range	$V_{\text {BATT }}$		4.5		42	V
		$\mathrm{V}_{\text {BATT }}=\mathrm{V}_{\mathrm{CC}}$	4.5		5.5	
Quiescent Supply Current	BATT_IQ	$\mathrm{V}_{\text {DIM }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OVP }}=1.3 \mathrm{~V}$, OUT1-OUT4 open		5	8	mA
Standby Supply Current	BATT_ISHDN	Backlight block disabled			1	$\mu \mathrm{A}$
Undervoltage Lockout	UVLO ${ }_{\text {BATT }}$	$\mathrm{V}_{\text {BATT }}$ rising, $\mathrm{V}_{\text {DIM }}=5 \mathrm{~V}$	3.7	4.15	4.45	V
Undervoltage-Lockout Hysteresis	$\begin{gathered} \text { UVLO }_{\text {BATTHY }} \\ \mathrm{s} \\ \hline \end{gathered}$			500		mV

Automotive $\mathrm{I}^{2} \mathrm{C}$-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {CC }}$ REGULATOR						
Output Voltage	Vcc	$\begin{aligned} & 5.75 \mathrm{~V}<\mathrm{V}_{\mathrm{BATT}}<36 \mathrm{~V} \text {, } \mathrm{IVCC}=1 \mathrm{~mA} \text { to } \\ & 10 \mathrm{~mA}, \mathrm{C}_{\mathrm{VCC}}=2.2 \mu \mathrm{~F} \end{aligned}$	4.8	5	5.2	V
Dropout Voltage	VCC ${ }_{\text {DROP }}$	$\mathrm{V}_{\mathrm{BATT}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{VCC}}=5 \mathrm{~mA}$		0.05	0.12	V
$V_{\text {CC }}$ Undervoltage Lockout, Rising	UVLOVCCR		4.05	4.2	4.35	V
V_{CC} Undervoltage Lockout, Falling	UVLOVCCF		3.75	3.9	4.04	V
Short-Circuit Current Limit	IVcc_sc	V_{CC} shorted to GND		50		mA
BOOST/SEPIC CONTROLLER						
Switching Frequency	fsw	Dither disabled	1980	2200	2420	kHz
Minimum Off-Time	toff_MIN	Switching frequency 2.2 MHz		40		ns
Frequency Dither	$\mathrm{f}_{\text {DITH }}$			± 6		\%
SLOPE COMPENSATION						
Peak Slope- Compensation Current Ramp Per Cycle	ISLOPE	Current ramp added to CS	42	50	60	$\mu \mathrm{A}$
CS LIMIT COMPARATOR						
CS Threshold Voltage	VCS_MAX		380	410	440	mV
CS Input Current	ICS		-1		+1	$\mu \mathrm{A}$
ERROR AMPLIFIER						
OUT_Regulation High Threshold	VOUT_UP	Vout_falling	0.9	0.97	1.05	V
OUT_Regulation Low Threshold	Vout_Down	Vout_ rising	0.65	0.72	0.8	V
Transconductance	gM		400	700	880	$\mu \mathrm{S}$
COMP Sink Current	ICOMP_SINK	$\mathrm{V}_{\text {COMP }}=2 \mathrm{~V}$	200	480	800	$\mu \mathrm{A}$
COMP Source Current	ICOMP_SRC	$\mathrm{V}_{\text {COMP }}=1 \mathrm{~V}$	200	480	800	$\mu \mathrm{A}$
MOSFET DRIVER						
NDRV On-Resistance	$\mathrm{R}_{\text {NDRV_LS }}$	$\mathrm{I}_{\text {NDRV }}=-20 \mathrm{~mA}$		1.2	2	Ω
	R ${ }_{\text {NDRV_HS }}$	$l_{\text {NDRV }}=+20 \mathrm{~mA}$		1.5	3	
LED CURRENT SINK						
ISET Resistance Range	RISET		10		75	k Ω
Full-Scale OUT_Output Current	IOUT	$\mathrm{R}_{\text {ISET }}=10 \mathrm{k} \Omega$	143.5	150	156.5	mA
	lout100	$\mathrm{R}_{\text {ISET }}=15 \mathrm{k} \Omega$	96	100	104	
	IOUT50	$\mathrm{R}_{\text {ISET }}=30 \mathrm{k} \Omega$	47.5	50	52.5	
	IOUT20	$\mathrm{R}_{\text {ISET }}=75 \mathrm{k} \Omega$	17.5	20	22.5	
ISET Output Voltage	$\mathrm{V}_{\text {ISET }}$		1.22	1.25	1.28	V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Current Regulation Between Strings	$\underset{50}{\text { IOUT_MATCH1 }^{\text {ITM }}}$	$\mathrm{lOUt}_{-}=150 \mathrm{~mA}$	-2.2		+2.2	\%
	$\underset{0}{\text { IOUT_MATCH5 }}$	$\mathrm{lout}_{-}=50 \mathrm{~mA}$	-2.5		+2.5	
Current-Setting Resolution	IOUT_LSB			0.5		\%
OUT_ Leakage Current	Iout_LEAK	$\mathrm{V}_{\text {OUT_ }}=48 \mathrm{~V}$, DIM $=0$, all OUT_ pins shorted together		8	12	$\mu \mathrm{A}$
lout_ Rise Time	IOUT_TR	10\% to 90\% IOUT		150		ns
lout_ Fall Time	lout_tF	90\% to 10% IOUT		50		ns
LED FAULT DETECTION						
LED Short-Detection Threshold	$\mathrm{V}_{\text {THSHRT }}$	${ }^{2} \mathrm{C}$ mode, bit configuration = 11 (00 : short detection disabled), default value in stand-alone mode	7.3	7.8	8.3	V
		$\mathrm{I}^{2} \mathrm{C}$ mode, led_short_th[1:0] = 10	5.6	6	6.4	
		${ }^{2} \mathrm{C}$ mode, led_short_th[1:0] $=01$	2.8	3	3.2	
LED Short-Detection Disable Threshold	VTHSHRT_DIS	All active OUT_s rising		2.8		V
OUT_Check-LEDSource Current	IOUT_CKLED		45	60	70	$\mu \mathrm{A}$
OUT_Short-to-GND Detection Threshold	Vout_GND		250	300	350	mV
OUT_Unused-Detection Threshold	Vout_un		1.15	1.25	1.35	V
OUT_Open-LEDDetection Threshold	VOUT_OPEN		250	300	350	mV
Shorted-LED-Detection Flag Delay	tshrt			7		$\mu \mathrm{s}$
OVERVOLTAGE AND UNDERVOLTAGE PROTECTION						
Overvoltage-Trip Threshold	Vovpth	Vovp rising	1.18	1.23	1.28	V
Overvoltage Hysteresis	V ${ }_{\text {OVPHYS }}$			70		mV
OVP Input Bias Current	lovp	$0<\mathrm{V}_{\text {OVP }}<1.3 \mathrm{~V}$	-500		+500	nA
Undervoltage-Trip Threshold	Vovpuvio	Vovp falling	0.405	0.425	0.44	V
Boost UndervoltageDetection Delay	$\begin{gathered} \hline \text { OVPUVLO_B } \\ \text { LK } \end{gathered}$			10		$\mu \mathrm{s}$
Boost UndervoltageBlanking Time		After soft-startup		60		ms
LOGIC INPUTS and OUTPUTS (EN, SCL, ADD, SDA, DIM)						
EN Blanking Time	EN_BLK			10		$\mu \mathrm{s}$
DIM Input, Logic-High	$\mathrm{V}_{\text {DIM_IH }}$		2.1			V
DIM Input, Logic-Low	V ${ }_{\text {DIM_IL }}$				0.8	V

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {BATT }}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIM Input Hysteresis	$\mathrm{V}_{\text {DIM_HYS }}$			300		mV
DIM Pullup Current	IDIM_PUP			5		$\mu \mathrm{A}$
EN, ADD Input, LogicHigh			2.1			V
EN, ADD Input, LogicLow					0.8	V
SCL, SDA Input, LogicHigh			$\begin{gathered} 0.38 x \\ \mathrm{~V}_{\text {IN }} \end{gathered}$			V
SCL, SDA Input, LogicLow					$\begin{gathered} 0.11 \mathrm{x} \\ \mathrm{~V}_{\mathrm{IN}} \\ \hline \end{gathered}$	V
Input Current			-1		+1	$\mu \mathrm{A}$
SEQ Level to Set ${ }^{2}{ }^{2} \mathrm{C}$ Mode				$\begin{gathered} 0.92 x \\ \mathrm{~V}_{\mathrm{IN}} \end{gathered}$		V
FLTB, SDA Output Low Voltage	V OL	Sinking 5mA			0.4	V
FLTB, SDA Output Leakage Current	l LEAK	5.5 V	-1		+1	$\mu \mathrm{A}$
FLTB Frequency for Fault Detection	$\mathrm{f}_{\text {FLTB }}$		0.84	0.97	1.08	kHz
FLTB Pin Duty Cycle on LED String Fault	FLTB_DLED	Stand-alone mode		25		\%
FLTB Pin Duty Cycle on TFT-Rail Fault	FLTB_DTFT	Stand-alone mode; fault on at least one of the POS, NEG, DGVDD, or DGVEE pins		75		\%
FLTB Pin Duty Cycle on LED String and TFT-Rail Fault	FLTB_D	Stand-alone mode, fault on at least one of the POS, NEG, DGVDD, or DGVEE pins, and LED driver		50		\%
FLTB Duty Cycle on Thermal-Shutdown Event		FLTB continuously low		0		\%
THERMAL WARNING/SHUTDOWN						
Thermal-Warning Threshold	TWARN	Backlight only, $\mathrm{T}_{\text {RISING }}$		125		${ }^{\circ} \mathrm{C}$
Thermal-Warning Hysteresis	TWARN_HYS	Backlight only		10		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Threshold	TSHDN	TRISING		160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDN_HYS			15		${ }^{\circ} \mathrm{C}$
$\mathrm{I}^{2} \mathrm{C}$ INTERFACE						
Clock Frequency	$\mathrm{f}_{\text {SCL }}$				1	MHz
Setup Time (Repeated) START	tsu:STA	(Note 2)	260			ns
Hold Time (Repeated) START	$t_{\text {thD }}$ STA	(Note 2)	260			ns

Electrical Characteristics (continued)

$\left(\mathrm{V}_{I N}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=12 \mathrm{~V}\right.$, Typical operating circuit, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$. (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP
SCL Low Time	$\mathrm{t}_{\text {LOW }}$	(Note 2)	500	MAX
SCL High Time	$\mathrm{t}_{\text {HIGH }}$	(Note 2)	260	ns
Data Setup Time	$\mathrm{t}_{\text {SU:DAT }}$	(Note 2)	50	ns
Data Hold Time	$\mathrm{t}_{\text {HD: }}$ DAT	(Note 2)	0	ns
Setup Time for STOP Condition	$\mathrm{t}_{\text {SU:STO }}$	(Note 2)	260	ns
Spike Suppression		(Note 2)		ns

Note 1: Limits are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{TA}=+105^{\circ} \mathrm{C}$ and $\mathrm{TA}=-40^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
Note 2: Guaranteed by design. Not production tested.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=14 \mathrm{~V}$ unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=14 \mathrm{~V}$ unless otherwise noted.)

BATT SUPPLY CURRENT vs. BATT SUPPLY VOLTAGE

Typical Operating Characteristics (continued)

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=14 \mathrm{~V}\right.$ unless otherwise noted.)

Typical Operating Characteristics (continued)

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATT}}=14 \mathrm{~V}\right.$ unless otherwise noted.)

Pin Configuration

MAX20069C

Pin Description

PIN	NAME	FUNCTION
1	FBPG	Feedback Input for DGVDD. In stand-alone mode, connect a resistor-divider between DGVDD and GND with its midpoint connected to the FBPG pin to set the DGVDD voltage. In ${ }^{2}{ }^{2} \mathrm{C}$ mode, connect FBPG to GND.
2	FBP	Feedback Input for HVINP. In stand-alone mode, connect a resistor-divider from the boost output to GND with its midpoint connected to the FBP pin to set the HVINP voltage. In $I^{2} \mathrm{C}$ mode, connect FBP to GND.
3	IN	Supply Input. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from IN to GND for proper operation.
4	GND	Ground Connection
5	LXN	DC-DC Inverting Converter Inductor/Diode Connection
6	INN	Buck-Boost Converter Input. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from INN to GND for proper operation.
7	NEG	Negative Source-Driver Output Voltage
8	DGVEE	Connects directly to the negative charge-pump output to facilitate DGVEE discharge through an internal switch connected between DGVEE and GND. In $I^{2} \mathrm{C}$ mode, DGVEE is the regulator feedback pin.
9	DN	Regulated Charge-Pump Driver for the Negative Charge Pump. Connect to the external flying capacitor.
10	DGND	Digital Ground
11	SEQ	Sequencing Programming Pin. In stand-alone mode, connect an appropriate resistor from SEQ to GND to program the desired sequence. When using ${ }^{2} \mathrm{C}$ control, connect SEQ to IN (see the description). When SEQ is connected to IN, it is still possible to adjust the OUT_ output current through $I^{2} \mathrm{C}$ and read the fault registers.
12	FBNG	Feedback Input for the Negative Charge Pump. In stand-alone mode, connect a resistor-divider from REF to DGVEE, with its midpoint connected to FBNG to set the DGVEE voltage. In $I^{2} \mathrm{C}$ mode, connect FBNG to GND.
13	REF	1.25V Reference Output. Connect a 220nF ceramic capacitor from REF to GND.
14	FLTB	Active-Low Open-Drain Fault Indication Output. Connect an external pullup resistor from FLTB to an external supply lower than 5 V .
15	ADD	1^{2} C Address Select (see Table 2). In stand-alone mode, this pin is used to select the startup speed of the backlight boost converter. Connect to GND for the standard startup. Connect to IN to select accelerated startup with a final voltage of 1.1 V on OVP.
16	DIM	PWM Dimming Input. DIM has an internal pullup to V_{CC}.
17	SDA	${ }^{2} \mathrm{C}$ Data I/O. Connect SDA to GND in stand-alone mode.
18	SCL	${ }^{2} \mathrm{C}$ C Clock Input. Connect SCL to ground in stand-alone mode.
19	ISET	Full-Scale LED Current-Adjustment Pin. The resistance from ISET to GND controls the current in each LED string.
20	LGND1	Power-Ground Connection for OUT1 and OUT2
21	OUT1	LED String 1 Cathode Connection
22	OUT2	LED String 2 Cathode Connection. Connect OUT2 to ground using a $12 \mathrm{k} \Omega$ resistor if not used.
23	LGND2	Power-Ground Connection for OUT3 and OUT4
24	OUT3	LED String 3 Cathode Connection. Connect OUT3 to ground using a $12 \mathrm{k} \Omega$ resistor if not used.
25	OUT4	LED String 4 Cathode Connection. Connect OUT4 to ground using a $12 \mathrm{k} \Omega$ resistor if not used.
26	OVP	LED Driver Output-Voltage-Sensing Input. This voltage is used for overvoltage and undervoltage protection.
27	COMP	LED Driver Switching-Converter Compensation Input. Connect an RC network from COMP to GND to compensate the backlight boost converter (see the Feedback Compensation section).

Pin Description (continued)

PIN	NAME	FUNCTION
28	CS	LED Driver Current-Sense Connection. Connect a sense resistor from the MOSFET source to PGND and a further resistor from the MOSFET source to the CS pin to set the slope compensation (see the Current-Sense Resistor and Slope Compensation section).
29	EN	Enable Input. When EN is high, the device is enabled in stand-alone mode. When using $\mathrm{I}^{2} \mathrm{C}$ control, connect EN to GND.
30	NDRV	Switching nMOSFET Gate-Driver Output. Connect NDRV to the gate of the external switchingpower MOSFET. Typically, a small resistor (1Ω to 22Ω) is inserted between the NDRV output and nMOSFET gate to decrease the slew rate of the gate driver and reduce the switching noise.
31	V_{CC}	5 V Regulator Output. Place a $2.2 \mu \mathrm{~F}$ ceramic capacitor as close as possible to V_{CC} and GND.
32	BATT	LED Driver Supply Input. Connect BATT to a $4.75 \mathrm{~V}-40 \mathrm{~V}$ supply. Bypass BATT to ground with a ceramic capacitor.
33	PGND	Power-Ground Connection
34	LXP	Boost HVINP Converter Switching-Node Connection. Connect LXP to the external inductor.
35	HVINP	Input Power for the POS Voltage Rail
36	POS	Positive Source-Driver Output Voltage
37	BST	Boost Converter High-Side Driver Power Supply. Connect a $0.1 \mu \mathrm{~F}$ capacitor from BST to LXP.
38	DGVDD	DGVDD connects directly to the positive charge-pump output to facilitate DGVDD discharge through an internal switch connected between DGVDD and GND. In ${ }^{2} \mathrm{C}$ mode, DGVDD is the regulator feedback pin. In stand-alone mode, DGVDD is used for the discharge function.
39	PGVDD	Switched Version of HVINP Voltage for the Positive Charge Pump. Provides soft-start control of the DGVDD output.
40	DP	Regulated Charge-Pump Driver for Positive Charge Pump. Connect to an external flying capacitor.
-	EP	Exposed Pad. Connect to a large contiguous copper-ground plane for optimal heat dissipation. Do not use EP as the only electrical ground connection.

Functional Diagrams

Detailed Block Diagram

Detailed Description

The MAX20069C is highly integrated TFT power supply and LED backlight driver IC for automotive TFT-LCD applications. The IC integrates one buck-boost converter, one boost converter, two gate-driver supplies, and a boost/ SEPIC converter that can power one to four strings of LEDs in the display backlight.
The source-driver power supplies consist of a synchronous boost converter and an inverting buck-boost converter that can generate voltages up to +18 V and down to -7 V . The positive source-driver can deliver up to 120 mA , while the negative source driver is capable of 100 mA . The positive source-driver-supply regulation voltage ($\mathrm{V}_{\mathrm{POS}}$) is set by connecting an external resistor-divider on FBP or through $I^{2} \mathrm{C}$. The negative source-driver-supply voltage $\left(\mathrm{V}_{\mathrm{NEG}}\right)$ is always tightly regulated to $-\mathrm{V}_{\text {POS }}$ (down to a minimum of -7 V). The source-driver supplies operate from an input voltage between 2.8 V and 5.5 V .
The gate-driver-power supplies consist of regulated charge pumps that generate between +28 V and -21.5 V and can deliver up to 3 mA each.
The IC features a quad-string LED driver that operates from a separate input voltage (BATT) and can power up to four strings of LEDs with 150 mA (max) of current per string. The IC features logic-controlled pulse-width modulation (PWM) dimming, with minimum pulse widths as low as 500 ns and the option of phase shifting the LED strings with respect to one another. When phase shifting is enabled, each string is turned on at a different time, reducing the input and output ripple, as well as audible noise. With phase shifting disabled, each current sink turns on at the same time and allows parallel connection of current sinks.
The startup and shutdown sequences for all power domains are controlled using one of the seven preset modes that are selectable through a resistor on SEQ. If the SEQ pin is connected to $\operatorname{IN}\left(I^{2} C\right.$ control), any sequence can be controlled using the individual regulator-enable bits. When a regulator other than HVINP is enabled, the HVINP boost is automatically enabled (if not previously active). In this case, the second regulator is enabled when the soft-start of HVINP has completed.

TFT Power Section

Source-Driver Power Supplies

The source-driver power supplies consist of a boost converter with output switch and an inverting buck-boost converter that generates up to +18 V (\max) and down to $-7 \mathrm{~V}(\mathrm{~min}$), respectively, and can deliver up to 120 mA on the positive regulator and -100 mA on the negative regulator. The positive source-driver power supply's regulation voltage (VPOS) can be set by the resistor-divider on FBP or through the ${ }^{2} \mathrm{C}$ interface.
The negative source-driver supply voltage ($\mathrm{V}_{\mathrm{NEG}}$) is automatically tightly regulated to $-\mathrm{V}_{\mathrm{POS}}$. $\mathrm{V}_{\mathrm{NEG}}$ cannot be adjusted independently of $V_{\text {POS }}$. In $I^{2} \mathrm{C}$ mode, $\mathrm{V}_{\text {POS }}\left(a n d V_{\text {NEG }}\right.$) is set by writing to the appropriate register. When HVINP is set to a voltage greater than 7 V in $I^{2} \mathrm{C}$ mode, the NEG converter should be disabled to avoid damage to the device. If the NEG output is not needed, the external components can be omitted and INN should be connected to IN; LXN should be left open and NEG should be connected to GND.

Gate-Driver Power Supplies

The positive gate-driver power supply (DGVDD) generates +28 V (max) and the negative gate-driver power supply (DGVEE) generates $-21.5 \mathrm{~V}(\mathrm{~min})$. Both can supply up to 3 mA output current. The DGVDD and DGVEE regulation voltages are set independently using external resistor networks or through the $\mathrm{I}^{2} \mathrm{C}$ interface.

Fault Protection

The IC has robust fault and overload protection. In stand-alone mode, if any of the DGVEE, NEG, POS, or DGVDD outputs fall to less than 80% (typ) of their intended regulation voltage for more than 50 ms (typ), or if a short-circuit condition occurs on any output for any duration, then all outputs latch off (at the same time without any power-down sequence) and a fault condition is set. In $I^{2} \mathrm{C}$ mode, only the output at fault is automatically disabled.
In stand-alone mode, the fault condition is cleared when the EN pin or IN supply are cycled. In $I^{2} \mathrm{C}$ mode, the fault condition is cleared when the EN bit of the affected rail is set to 0 or the IN supply is cycled.
Both sections (TFT and WLED) have thermal-fault detection; only the section causing the thermal overload is turned off.

Thermal faults are cleared when the die temperature drops by $15^{\circ} \mathrm{C}$.
When a fault is detected, FLTB goes low in $I^{2} \mathrm{C}$ mode, while in stand-alone mode the FLTB output pulses at a duty cycle that indicates the source of the fault.

Output Sequencing Control

The IC's source-driver and gate-driver outputs (DGVEE, NEG, POS, and DGVDD) can be controlled by the resistor value on the SEQ pin (stand-alone mode), or by the $I^{2} \mathrm{C}$ interface if SEQ is connected to $\mathrm{IN}\left(\mathrm{I}^{2} \mathrm{C}\right.$ mode). In $\mathrm{I}^{2} \mathrm{C}$ mode, the EN pin does not have any function; the IC is turned on once one of the rails is activated by the appropriate $I^{2} \mathrm{C}$ command, and the sequence is controlled by the $\mathrm{I}^{2} \mathrm{C}$ commands.

All outputs are brought up with soft-start control to limit the inrush current.
In stand-alone mode, toggling the EN pin from low to high initiates an adjustable preset power-up sequence (see Table 1). Toggling the EN pin from high to low initiates an adjustable preset power-down sequence. The EN pin has an internal deglitching filter of $7 \mu \mathrm{~s}$ (typ).
Note that a glitch in the EN signal with a period of less than $7 \mu \mathrm{~s}$ is ignored by the internal enable circuitry. After all the TFT outputs have exceeded their power-good levels, the backlight block is turned on.

Table 1. Sequencing Options

SEQ PIN RESISTOR (k $\mathbf{~} \pm 1 \%$)	POWER-ON SUPPLY SEQUENCING ($\mathbf{t}_{1}-\mathbf{t}_{4}{ }^{*}$ IS TIME FROM THE EXPIRATION OF SOFT-START PERIOD)				POWER-OFF SEQUENCING (REVERSE ORDER OF POWER-UP) ($\mathrm{t}_{5}-\mathrm{t}_{8}$ IS TIME FROM THE INSTANT WHEN EN IS DRIVEN LOW)			
	1st AFTER $\mathbf{t}_{\mathbf{1}}$ (ms)	$\begin{aligned} & \text { 2nd AFTER } \mathrm{t}_{2} \\ & \text { (ms) } \end{aligned}$		$\begin{gathered} \text { 4th AFTER } \\ \mathbf{t}_{4}(\mathrm{~ms}) \end{gathered}$	$\begin{gathered} \text { 1st AFTER } \\ \mathrm{t}_{5}(\mathrm{~ms}) \end{gathered}$		$\begin{aligned} & \text { 3rd AFTER } \mathrm{t}_{7} \\ & (\mathrm{~ms}) \end{aligned}$	4th AFTER t_{8} (ms)
10	POS	NEG	DGVEE	DGVDD	DGVDD	DGVEE	NEG	POS
30	POS	NEG	DGVDD	DGVEE	DGVEE	DGVDD	NEG	POS
51	NEG	POS	DGVEE	DGVDD	DGVDD	DGVEE	POS	NEG
68	POS	DGVEE	DGVDD	No NEG output	DGVDD	DGVEE	POS	No NEG output
91	POS	DGVDD	DGVEE	No NEG output	DGVEE	DGVDD	POS	No NEG output
110	POS NEG	-	-	DGVDD DGVEE	DGVDD DGVEE	-	-	POS NEG
150	DGVEE	DGVDD	NEG	POS	POS	NEG	DGVDD	DGVEE

${ }^{*} t_{1}=t_{5}=15 \mathrm{~ms}$
$\mathrm{t}_{2}=\mathrm{t}_{6}=30 \mathrm{~ms}$
$\mathrm{t}_{3}=\mathrm{t}_{7}=45 \mathrm{~ms}$
$\mathrm{t}_{4}=\mathrm{t}_{8}=60 \mathrm{~ms}$

TFT Sequence with RSEQ = 10k

Figure 1. TFT Sequence with $R_{S E Q}=10 \mathrm{k} \Omega$

Description of the LED Driver Section

The IC also includes a high-efficiency, high-brightness LED driver that integrates all the necessary features to implement a high-performance backlight driver to power LEDs in medium-to-large-sized displays for automotive and general applications. The IC provides load-dump voltage protection up to 52 V in automotive applications and incorporates two major blocks: a DC-DC controller with peak current-mode control to implement a boost, or a SEPIC-type switched-mode power supply and a 4 -channel LED driver with 20 mA to 150 mA constant-current-sink capability per channel.
The IC features constant-frequency, peak current-mode control with programmable slope compensation to control the duty cycle of the PWM controller. The DC-DC converter implemented using the controller generates the required supply voltage for the LED strings from a wide input-supply range. Connect LED strings from the DC-DC converter output to the 4-channel constant-current-sink drivers (OUT1-OUT4) to control the current through the LED strings. A single resistor connected from the ISET input to ground adjusts the forward current through all four LED strings. Fine adjustment can be made to the LED current using the $\mathrm{I}^{2} \mathrm{C}$ interface, even in stand-alone mode.
The IC features adaptive voltage control that adjusts the converter output voltage depending on the forward voltage of the LED strings. This feature minimizes the voltage drop across the constant-current-sink drivers and reduces power dissipation in the device. The backlight boost and current sinks are enabled when the complete sequence of the TFT bias section is completed.
The IC provides a very wide (10,000:1) PWM dimming range at 200 Hz dimming frequency (with a dimming pulse as narrow as 500 ns possible). The internal dimming signal is derived from the DIM signal or from the phase-shift dimming logic. Phase shifting of the LED strings can be disabled in $I^{2} \mathrm{C}$ mode by writing to the psen bit in the enable (0x02) register.
Other advanced features include detection and string disconnect for open-LED strings, partially or fully shorted strings, and unused strings. Overvoltage protection clamps the converter output voltage to the programmed OVP threshold in the event of an open-LED condition.
The shorted-LED string threshold is programmable using the led_short_th[1:0] bits in the cnfg_gen (0x01 register (in

MAX20069C

Automotive I^{2} C-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

stand-alone mode, the threshold is fixed at 7.8 V).
In $I^{2} \mathrm{C}$ mode, the FLTB signal asserts low to indicate open-LED, shorted-LED, and overtemperature conditions if they are not masked. In stand-alone mode, a fault in the backlight section causes FLTB to pulse at 25% duty cycle. Disable individual current-sink channels by connecting the corresponding OUT_ to LGND_ through a $12 \mathrm{k} \Omega$ resistor (starting with OUT4). In this case, FLTB will not indicate an open-LED condition for the disabled channel. The IC also features overtemperature warning and protection that shuts down the controller if the die temperature exceeds $+160^{\circ} \mathrm{C}$.

Current-Mode DC-DC Controller

The IC backlight boost is a constant-frequency, current-mode controller designed to drive the LEDs in a boost or SEPIC configuration. The IC features multiloop control to regulate the peak current in the inductor, as well as the voltage across the LED current sinks to minimize power dissipation.
The default switching frequency is 2.2 MHz but this can be reduced to 440 kHz by setting the bl_swfreq bit in the cnfg_gen (0x01) register. Programmable slope compensation is used to avoid subharmonic oscillation that can occur at $>50 \%$ duty cycles in continuous-conduction mode.
The external nMOSFET is turned on at the beginning of every switching cycle. The inductor current ramps up linearly until turned off at the peak current level set by the feedback loop. The peak inductor current is sensed from the voltage across the current-sense resistor (R_{CS}) connected from the source of the external nMOSFET to PGND.
The IC features leading-edge blanking to suppress the external nMOSFET switching noise. A PWM comparator compares the current-sense voltage plus the slope-compensation signal with the output of the transconductance error amplifier. The controller turns off the external nMOSFET when the voltage at CS exceeds the error amplifier's output voltage (at the COMP pin). This process repeats every switching cycle to achieve peak current-mode control.
In addition to the peak current-mode-control loop, the IC has two other feedback loops for control. The converter output voltage is sensed through the OVP input, which goes to the inverting input of the error amplifier.
The OVP gain (AOVP) is defined as $V_{\text {OUT }} / V_{\text {OVP }}$, or $(R 17+R 16) / R 16$. The other feedback comes from the OUT_ current sinks. This loop controls the headroom of the current sinks to minimize total power dissipation, while still ensuring accurate LED current matching. Each current sink has a window comparator with a low threshold of 0.68 V and a high threshold of 0.93 V . These comparators drive logic that controls an up/down counter. The up/down counter is updated on every falling edge of the DIM input and drives an 8-bit digital-to-analog converter (DAC), which sets the reference to the error amplifier.

8-Bit DAC

The error amplifier's reference input is controlled with an 8-bit DAC. The DAC output is ramped up during startup to implement a soft-start function (see the Startup Sequence section). During normal operation, the DAC output range is limited to between 0.6 V and 1.25 V . The DAC LSB determines the minimum output-voltage step according to the following equation.

Equation 1:

$V_{\text {STEP_MIN }}=V_{\text {DAC_LSB }} \times A_{\text {OVP }}$
where $\mathrm{V}_{\text {STEP_MIN }}$ is the minimum output-voltage step, $\mathrm{V}_{\text {DAC_LSB }}$ is 2.5 mV (typ), and AOVP is the OVP resistor-divider gain.

PWM Dimming

The DIM input accepts a pulse-width modulation (PWM) signal to control the luminous intensity of the LEDs and modulate the pulse width of the LED current. This allows for changing the brightness of the LEDs without the color temperature shift that sometimes occurs with analog dimming. The DIM input detects the dimming frequency based on the first two pulses applied to the DIM input after EN goes high. The dimming frequency cannot be changed during normal operation. If a change of dimming frequency is desired, disable the backlight block, change the DIM frequency, and then re-enable the backlight block. The DIM signal can be applied before or after the device is enabled, but must power on smoothly (no high-frequency pulses). If the DIM signal turn-on is inconsistent, the DIM signal should be applied first; once the DIM signal is stable, the backlight block can be enabled. In normal dimming mode, if at least one of the LED current sinks is turned on, the boost converter switches. If none of the current sinks are on (each current-sink DIM signal is low), the boost converter stops switching, and the COMP node is disconnected from the error amplifier until one of the LED current

Automotive $\mathrm{I}^{2} \mathrm{C}$-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

sinks is turned on again.

Low-Dim Mode

The IC's operation mode changes at very narrow dimming pulses to ensure a consistent dimming response of the LEDs. The IC checks the pulse width of the signal being applied to the DIM input, and if the dimming on-time is lower than $25 \mu \mathrm{~s}$ (typ) for the 2.2 MHz switching frequency (f_{SW}), the IC enters low-dim mode. In this state, the converter switches continuously and the LED short detection is disabled. When the DIM input is greater than $26 \mu \mathrm{~s}$ (typ) for 2.2 MHz , the IC goes back into normal dim mode, enabling the short-LED detection and switching the power FET only when the DIM signal is high. When the switching frequency is set to 440 kHz the low-dim thresholds become $50 \mu \mathrm{~s}$ and $51 \mu \mathrm{~s}$.

Phase Shifting

The IC offers phase shifting of the LED strings. To achieve this, the DIM signal is sampled internally by a 10MHz clock.
When phase shifting is enabled, the sampled DIM input is used to generate separate dimming signals for each LED string that is shifted in phase. The resolution with which the DIM signal is captured degrades at higher DIM input frequencies; therefore, dimming frequencies between 100 Hz and 3 kHz are recommended, although higher dimming frequencies are technically possible. The phase shift between strings is determined by the following equation.

Equation 2:

$\Theta=\frac{360}{n}$
where n is the total number of strings being used and θ is the phase shift in degrees. The order of the sequence is fixed, with OUT1 as the first in the sequence and OUT4 as the last. See Figure 2 for a timing diagram example with phase shifting enabled.
The phase-shifting feature is enabled or disabled with the psen bit. In stand-alone mode (no $I^{2} \mathrm{C}$), the psen bit in register 0×02 is set high by default (phase shifting enabled). When phase shifting is disabled, all strings turn on/off at the same time. If multiple current sinks are being connected in parallel to achieve greater than 150 mA per string, phase shifting should be disabled.
If a fault is detected, resulting in a string being disabled during normal operation, the phase shifting does not adjust. For example, if all four strings are used, each string is 90° out-of-phase. If the 4th string is disabled due to a fault, there will still be 90° phase difference between each string.
When disabling unused strings, disable the higher-numbered OUT_ current sinks first.

Figure 2 Phase-Shifted Outputs

Figure 2. Phase-Shifted Outputs

Undervoltage Lockout

The WLED section features two UVLOs that monitor the input voltage at BATT and the output of the internal LDO regulator at V_{CC}. The backlight boost is active only when both BATT and V_{CC} exceed their respective UVLO thresholds.

Startup Sequence

The WLED section startup sequence occurs in two stages, as described in the Stage 1 and Stage 2 sections. The overall startup time can be selected as either slow or fast using the ADD pin in stand-alone mode or the wled_ss_time bit in the fault_masks $1(0 \times 0 B)$ register when using the $\mathrm{I}^{2} \mathrm{C}$ interface. The final boost output voltage differs between the slow and fast startup modes: when the slow-startup mode is selected, the final voltage on the OVP pin is 0.6 V , while in the fast mode and the final voltage on OVP is 1.1 V .

Stage 1

Assuming the BATT input is above its UVLO and the TFT has completed the startup sequence, the V_{CC} regulator begins to charge up its output capacitor. Once the V_{CC} regulator output rises above the V_{CC} UVLO threshold, the IC goes through its power-up checks, including unused string detection and OUT_ short-to-ground detection. To avoid possible damage, the converter does not start if any OUT_ is detected as shorted to ground.
Any current sinks detected as unused are disabled to prevent a false fault-flag assertion during normal operation. After these checks have been performed, the converter begins to operate and the output voltage begins to ramp up. The DAC reference to the error amplifier is stepped upwards until the OVP pin reaches 0.6 V (or 1.1 V in fast startup mode).
This stage duration is fixed at approximately 50 ms (22 ms in fast startup mode).

Stage 2

The second stage begins once the first stage is complete and the DIM input goes high. During Stage 2, the output of the converter is adjusted until the minimum OUT_ voltage falls within the window comparator limits of 0.68 V (typ) and 0.93 V (typ). The output ramp is again controlled by the DAC, which provides the reference for the error amplifier. The DAC output is updated on each rising edge of the DIM input. If the DIM input is a 100% duty cycle (DIM $=$ high), then the DAC output is updated once every 10 ms .
The total soft-start time can be calculated using the following equation in slow-startup mode.

Equation 3:

$t_{\mathrm{SS}}=50 \mathrm{~ms}+\frac{V_{\mathrm{LED}}+0.81-\left(0.6 \times A_{\mathrm{OVP}}\right)}{f_{\mathrm{DIM}} \times 0.01 \times A_{\mathrm{OVP}}}$
where $t_{S S}$ is the total soft-start time, 50 ms is the fixed Stage 1 duration, $\mathrm{V}_{\mathrm{LED}}$ is the total forward voltage of the LED strings, 0.81 V is midpoint of the window comparator, AOVP is the gain of the OVP resistor-divider, folm is the dimming frequency (use 100 Hz if the DIM input duty cycle is 100%), and 0.01 V is the maximum voltage step per clock cycle of the DAC.
In fast-startup mode (with ADD connected to IN or the wled_ss_time bit in the fault_masks1 (0x0B) register set to 1), the following equation should be used.

Equation 4:

$t_{\mathrm{SS}}=22 \mathrm{~ms}+\frac{1.1 \times A_{\mathrm{OVP}}-\left(V_{\mathrm{LED}}+0.81\right)}{f_{\mathrm{DIM}} \times 0.01 \times A_{\mathrm{OVP}}}$

Open-LED Management and Overvoltage Protection (OVP)

On power-up, the IC detects and disconnects any unused current-sink channels before entering the DC-DC converter soft-start. Disable the unused current-sink channels by connecting the corresponding OUT_ to LGND_ through a $12 \mathrm{k} \Omega$ resistor. This avoids asserting the FLTB output for the unused channels. After soft-start, the IC detects open strings and disconnects them from the internal minimum OUT_ voltage detector. This keeps the DC-DC converter output voltage within safe limits and maintains high efficiency.
If any LED string is open, the voltage at the open OUT_ goes to GND. The DC-DC converter output voltage then increases to the overvoltage-protection threshold set by the voltage-divider network connected between the converter output, OVP input, and GND (the threshold at which the PWM controller is switched off, holding NDRV low). At that point, any current-sink output with $\mathrm{V}_{\text {OUT }}<300 \mathrm{mV}$ (typ) is disconnected from the minimum-voltage detector. Select $\mathrm{V}_{\text {OUT_O }}$ OVP (which will be the maximum voltage that the boost converter can produce) according to the following equation.

Equation 5:

$V_{\text {OUT_OVP }}>1.1 \times\left(V_{\text {LED_MAX }}+1\right)$
where V LED_MAX $^{\prime}$ is the maximum expected LED string voltage. VOUT_OVP should also be chosen such that the voltage at the OUT_-pins does not exceed the absolute maximum rating.
The upper resistor in the OVP resistor-divider (R17) can be selected using the following formula.

Equation 6:

$R 17=R 16 \times\left(\frac{V_{\text {OUT_OVP }}}{1.23}-1\right)$
where 1.23 V is the typical OVP threshold. Ensure that the minimum voltage on the OVP pin is always greater than 0.6 V to avoid the boost converter latching off due to undervoltage by checking the following.

Equation 7:

$\left(V_{\text {LED_MIN }}+0.6\right) \times \frac{R 16}{R 16+R 17}>0.6 V$
where $\mathrm{V}_{\text {LED_MIN }}$ is the worst-case minimum LED string voltage.
When an open-LED condition occurs, FLTB is asserted low in ${ }^{2} \mathrm{C}$ mode or switches at 25% in stand-alone mode.

For boost-circuit applications, the OVP resistor-divider always dissipates power from the battery, through the inductor and switching diode. If ultra-low shutdown current is needed in stand-alone mode, a general-purpose MOSFET can be added between the bottom OVP resistor and ground, with the EN of the device controlling the gate of the MOSFET. This additional MOSFET disconnects the OVP resistor-divider path when the device is disabled.

Short-LED Detection

The IC checks for shorted LEDs at each rising edge of DIM. An LED short is detected at OUT_ if the OUT_ voltage is greater than the value programmed using the led_short_th bits in register 0×01 (or 7.8 V in stand-alone mode). Once a short is detected on any of the strings, the LED strings with the short are disconnected and the FLTB output flag asserts (unless the fault is masked) until the device detects that the shorts are removed on any of the following rising edges of DIM. Short-LED detection is disabled in low-dimming mode. If the DIM input is connected high, short-LED detection is performed continuously.
Short-LED detection is also disabled in cases where all active OUT_channels rise above 2.8 V (typ). This can occur in a boost-converter application when the input voltage becomes higher than the total LED string voltage drop, such as during a battery load dump. If a short-LED fault occurs during a load dump, the fault flag does not assert until the load dump is over and the minimum OUT_ voltage has fallen below 2.8 V . If a load dump occurs after a short LED is detected, the fault flag deasserts until the load dump is over and the minimum OUT_ voltage has fallen below 2.8 V , at which point, the fault flag reasserts.

LED Current Control

The IC features four identical constant-current sources used to drive multiple high-brightness LED strings. The current through each one of the four channels is adjustable between 20 mA and 150 mA using an external resistor ($\mathrm{R}_{\text {ISET }}$) connected between ISET and GND.
Select $R_{\text {ISET }}$ using the formula below.

Equation 8:

$R_{\text {ISET }}=\frac{1500}{l_{\text {OUT_ }}}$
where IOUT is the desired output current for each of the four channels. All four channels can be paralleled together for string currents exceeding 150 mA . When $I^{2} \mathrm{C}$ control is used, the current in the strings can be reduced in steps by writing to the diout $(0 x 06)$ register. The resolution of this setting is 0.5% of the value set by the resistor on ISET.

FLTB Output

The FLTB output pin is an active-low, open-drain output that can be used to signal various device faults (for operation in stand-alone mode (see the Stand-Alone Mode section). When the ${ }^{2}{ }^{2} \mathrm{C}$ interface is used, the FLTB output can flag any or all of the following conditions:

- Open fault on any of the OUT_ pins
- Shorted-LED fault on any of the OUT_ pins
- Any OUT_ shorted to GND
- LED boost converter undervoltage or overvoltage
- Undervoltage on HVINP, POS, NEG, DGVDD, or DGVEE
- Thermal warning on LED drive section
- Thermal shutdown on either LED drive or TFT bias section

The above conditions can be masked from causing FLTB to go low by using the corresponding mask bit in the bl_fault_masks (0x0A), fault_masks1 (0x0B), and fault_masks2 (0x0C) registers, if available.
In standalone mode, the duty.cycle output on the FLTB pin indicates the type of fault according to the following scheme:

- FLTB continuously low: Thermal-shutdown fault
- 25% duty cycle on FLTB: Fault in LED section
- 50% duty cycle on FLTB: Fault in TFT section
- 75% duty cycle on FLTB: Faults in both LED and TFT sections

Automotive $\mathrm{I}^{2} \mathrm{C}$-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

Serial Interface

The MAX20069C IC features an I^{2} C, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 1 MHz . The master, typically a microcontroller, generates SCL and initiates data transfer on the bus.
The Slave ID of the MAX20069C depends on the connection of the ADD pin and the selected device version (see Table 2).

Table 2. ${ }^{2}$ C Addresses

ADD PIN CONNECTION	DEVICE VERSION	DEVICE ADDRESS							WRITE ADDRESS	READADDRESS	NOTES
		A6	A5	A4	A3	A2	A1	A0			
GND	MAX20069CGTL	1	1	1	0	0	0	0	0xE0	0xE1	
IN	MAX20069CGTL	1	1	1	0	1	0	0	0xE8	0xE9	
GND	MAX20069CGTLA	0	1	0	0	0	0	0	0x40	0×41	Future device, contact factory
IN	MAX20069CGTLA	0	1	0	0	1	0	0	0x48	0x49	Future device, contact factory

A master device communicates with the MAX20069C by transmitting the correct Slave ID followed by the register address and data word. Each transmit sequence is framed by a START (S) or Repeated START (Sr) condition, and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
The IC's SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the SDA bus. In general, the resistor has to be selected as a function of bus capacitance such that the rise time on the bus is not greater than 120ns. The IC's SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. In general, for the SCL-line resistor selection, the same SDA recommendations apply. Series resistors in line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation even on a noisy bus.

Register Map

Reg Map

Register Map of the AP74

ADDRESS	NAME	MSB							LSB
bank 0									
0x00	nop[7:0]	rev_id[3:0]				dev_id[3:0]			
0×01	cnfg_gen[7:0]	$\begin{aligned} & \text { lxp_lim_I } \\ & \text { ow } \end{aligned}$	$\begin{gathered} \hline \text { neg_lim_- } \\ \text { low } \end{gathered}$	led_short_th[1:0]		bl_swfre q	ssoff_bl	swfreq_tf t	ssoff_tft
0×02	enable[7:0]	-	enbst	enpos	enneg	engvdd	engvee	enblight	psen
0×03	vpos_set[7:0]	vpos[7:0]							
0×04	dgvdd set[7:0]	-	-	dgvdd[5:0]					
0×05	dgvee_set[7:0]	-	-	-	dgvee[4:0]				
0×06	diout[7:0]	-	diout[6:0]						
0x07	bl fault[7:0]	led_open[3:0]				led_short[3:0]			
0×08	fault[7:0]	boostuv	boostov	led_short gnd	hvinpuv	pos_ol	neguv	dgvdduv	dgveeuv
0x09	dev status[7:0]	-	-	-	-	hw_rst	$\begin{gathered} \text { wled_th_- } \\ \text { shdn } \end{gathered}$	wled_th_ warn	$\begin{aligned} & \text { tft_th_sh } \\ & d n \end{aligned}$
$0 \times 0 \mathrm{~A}$	bl fault masks[7:0]	led_open_mask[3:0]				led_short_mask[3:0]			
0x0B	fault masks1[7:0]	boostuv_ mask	boostov mask	led_short gnd_mas \bar{k}	hvinpuv mask	$\begin{aligned} & \text { wled_ss_ } \\ & \text { time } \end{aligned}$	$\begin{gathered} \text { neguv_m } \\ \text { ask } \end{gathered}$	dgvdduv _mask	dgveeuv _mask
0x0C	fault_masks2[7:0]	-	-	-	-	-	-	$\begin{aligned} & \text { wled_th_ } \\ & \text { warn_ma } \\ & \text { sk } \end{aligned}$	-

Register Details

```
nop (0x00)
```

Device identification register

BIT	7	6	5	4	3	2	1	0
Field	rev_id[3:0]				dev_id[3:0]			
Reset	0x4				0x9			
Access Type	Read Only				Read Only			
BITFIELD	BITS	DESCRIPTION			DECODE			
rev_id	7:4	Revision ID.			0000: Revision ID			
dev_id	3:0	Device identification.			1001: Device ID for the device			

cnfg gen (0×01)

Configuration register

BIT	7	6	5	4		2	1	0
Field	Ixp_lim_low	$\text { neg_lim_lo }_{w}$	led_short_th[1:0]		bl_swfreq	ssoff_bl	swfreq_tft	ssoff_tft
Reset	Ob0	Ob0	0x3		0b0	0b0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS	DESCRIPTION				DECODE		
Ixp_lim_low	7	When set to 1 , the LXP switch current limit is reduced.						
neg_lim_low	6	When set to 1 , the NEG switch current limit is reduced.						
led_short_th	5:4	LED fault-detection threshold.			00: Fault disabled 01: Fault threshold is 3 V 10: Fault threshold is 6 V 11: Fault threshold is 7.8 V			
bl_swfreq	3	Sets backlight boost switching frequency. Default value is 2.2 MHz .				$\begin{aligned} & \hline 0: 2.2 \mathrm{MHz} \\ & 1: 440 \mathrm{kHz} \end{aligned}$		
ssoff_bl	2	When 1 , spread-spectrum modulation is disabled on the backlight boost; when 0 , spread spectrum is enabled.				0 : SS enabled 1: SS disabled		
swfreq_tft	1	Sets TFT section switching frequency (note that the charge-pump operating frequency is always 400 kHz). Default value is 2.2 MHz .				$\begin{aligned} & 0: 2.2 \mathrm{MHz} \\ & 1: 420 \mathrm{kHz} \end{aligned}$		
ssoff_ft	0	When 1 , spread-spectrum modulation is disabled on the TFT section; when 0 , spread spectrum is enabled.				0: Enabled 1: Disabled		

enable (0x02)

Block enables register

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	enbst	enpos	enneg	engvdd	engvee	enblight	psen
Reset	-	0×0	0×1					
Access Type	-	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
enbst	6	Boost converter enable bit.	0: Disabled 1: Enabled
enpos	5	POS output enable bit. When POS is enabled, the HVINP boost converter is automatically enabled if not already active.	0: Disabled 1: Enabled
enneg	4	NEG converter enabled bit. When NEG is enabled, the HVINP boost converter is automatically enabled if not already active.	0: Disable 1: Enable
engvdd	3	DGVDD regulator enable bit. When DGVDD is enabled, the HVINP boost converter is automatically enabled if not already active.	0: Disabled 1: Enabled
engvee	2	DGVEE regulator enable bit. When DGVEE is enabled, the HVINP boost converter is automatically enabled if not already active.	0: Disabled 1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
enblight	1	Backlight boost converter and current sinks enable bit. If 1, they are enabled when the TFT section has completed soft-start.	0: Disabled 1: Enabled
psen	0	LED string phase-shift enable. When 0, phase shifting between the strings is disabled. Read only at backlight startup; thereafter, this bit has no effect.	0: Direct dimming 1: Phase shift

vpos set (0x03)

BIT	7	6	5	4	3	2	1	0
Field	vpos[7:0]							
Reset	0x14							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
vpos	7:0	Sets POS output voltage.	0xA: 5 0xB: 5.1 0xC: 5.2 0xD: 5.3 0xE: 5.4 0xF: 5.5 0x10: 5.6 0x11: 5.7 $0 \times 12: 5.8$ $0 \times 13: 5.9$ 0x14: 6 0x15: 6.1 0x16: 6.2 0×17 : 6.3 0x18: 6.4 0x19: 6.5 0x1A: 6.6 0x1B: 6.7 $0 \times 1 \mathrm{C}: 6.8$ 0x1D: 6.9 0x1E: 7 0x1F: 7.1 0x20: 7.2 0x21: 7.3 0x22: 7.4 $0 \times 23: 7.5$ 0x24: 7.6 $0 \times 25: 7.7$ 0x26: 7.8 0x27: 7.9 0×28 : 8 0x29: 8.1 $0 \times 2 A: 8.2$ 0x2B: 8.3 0x2C: 8.4 0x2D: 8.5 0x2E: 8.6 0x2F: 8.7 $0 \times 30: 8.8$ 0x31: 8.9 $0 \times 32: 9$ 0x33: 9.1 0x34: 9.2 0x35: 9.3 0x36: 9.4 0x37: 9.5 0×38 : 9.6 0x39: 9.7 $0 \times 3 \mathrm{~A}: 9.8$ 0x3B: 9.9 0x3C: 10 0x3D: 10.1 0x3E: 10.2 $0 \times 3 F: 10.3$ 0×40 : 10.4 0×41 : 10.5 0x42: 10.6 0×43 : 10.7 0×44 : 10.8

BITFIELD	BITS	DESCRIPTION	DECODE
			0x45: 10.9
			0x46: 11
			0x47: 11.1
			0x48: 11.2
			0x49: 11.3
			0x4A: 11.4
			0x4B: 11.5
			0x4C: 11.6
			0x4D: 11.7
			0x4E: 11.8
			0x4F: 11.9
			0x50: 12
			0x51: 12.1
			0x52: 12.2
			0x53: 12.3
			0x54: 12.4
			0x55: 12.5
			0x56: 12.6
			0x57: 12.7
			0x58: 12.8
			0x59: 12.9
			0x5A: 13
			0x5B: 13.1
			0x5C: 13.2
			0x5D: 13.3
			0x5E: 13.4
			0x5F: 13.5
			0x60: 13.6
			0x61: 13.7
			0x62: 13.8
			0x63: 13.9
			0x64: 14
			0x65: 14.1
			0x66: 14.2
			0x67: 14.3
			0x68: 14.4
			0x69: 14.5
			0x6A: 14.6
			0x6B: 14.7
			0x6C: 14.8
			0x6D: 14.9
			0x6E: 15
			0x6F: 15.1
			0x70: 15.2
			0x71: 15.3
			0x72: 15.4
			0x73: 15.5
			0x74: 15.6
			0x75: 15.7
			0x76: 15.8
			0x77: 15.9
			0x78: 16
			0x79: 16.1
			0x7A: 16.2
			0x7B: 16.3
			0x7C: 16.4
			0x7D: 16.5
			0x7E: 16.6
			0x7F: 16.7

BITFIELD	BITS	DESCRIPTION	DECODE
			0x80: 16.8 0x81: 16.9 0x82: 17 0x83: 17.1 0x84: 17.2 0x85: 17.3 0x86: 17.4 0x87: 17.5 0x88: 17.6 0x89: 17.7 0x8A: 17.8 0x8B: 17.9 0x8C: 18 0x8D-0xFF: 18

dgvad set (0x04)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-		$\mathbf{0}$			
Reset	-	-		0×0			
Access Type	-	-	Write, Read $[5: 0]$				

BITFIELD	BITS	DESCRIPTION	DECODE
dgvdd	5:0	Sets DGVDD output voltage.	0x0: 8 0x1: 8.5 0x2: 9 0x3: 9.5 0x4: 10 0x5: 10.5 0x6: 11 0x7: 11.5 0x8: 12 0x9: 12.5 $0 \times A: 13$ 0xB: 13.5 $0 x C: 14$ 0xD: 14.5 0xE: 15 0xF: 15.5 0x10: 16 0x11: 16.5 0x12: 17 0x13: 17.5 0x14: 18 0x15: 18.5 0x16: 19 0x17: 19.5 0x18: 20 0x19: 20.5 $0 \times 1 \mathrm{~A}: 21$ $0 \times 1 \mathrm{~B}: 21.5$ 0x1C: 22 0x1D: 22.5 0x1E: 23 0x1F: 23.5 0x20: 24 0x21: 24.5 0x22: 25 0x23: 25.5 0x24: 26 0x25: 26.5 0x26: 27 0x27: 27.5 0x28: 28 $0 \times 29-0 \times 3 F$: Unused

dgvee set (0x05)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-		dgvee[4:0]			
Reset	-	-	-		0×0			
Access Type	-	-	-		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
dgvee	4:0	Sets DGVEE output voltage.	0×0 : -6 0x1: -6.5 0x2: -7 0x3: -7.5 $0 \times 4:-8$ 0x5: -8.5 0x6: -9 0x7: -9.5 0x8: -10 0x9: -10.5 $0 x A:-11$ $0 x B:-11.5$ 0xC: -12 0xD: -12.5 0xE: -13 0xF: -13.5 0x10: -14 0x11: -14.5 $0 \times 12:-15$ 0×13 : -15.5 0x14: -16 0x15: -16.5 0x16: -17 0x17: -17.5 $0 \times 18:-18$ 0x19: -18.5 $0 \times 1 \mathrm{~A}:-19$ 0x1B: -19.5 $0 \times 1 \mathrm{C}:-20$ 0x1D: -20.5 $0 \times 1 \mathrm{E}:-21$ 0x1F: -21.5

diout (0×06)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	diout[6:0]					
Reset	-	$0 \times 7 F$					
Access Type	-	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
diout	6:0	The value in this register sets the percentage of LED current, with respect to the value dictated by the resistor on the ISET pin.	0x0: 36.5 0x1: 37 0x2: 37.5 0x3: 38 0x4: 38.5 0x5: 39 0x6: 39.5 0x7: 40 0x8: 40.5 0x9: 41 0xA: 41.5 0xB: 42 0xC: 42.5 0xD: 43 0xE: 43.5 0xF: 44 0x10: 44.5 0x11: 45 0×12 : 45.5 0x13: 46 0x14: 46.5 0x15: 47 0x16: 47.5 0x17: 48 0x18: 48.5 0x19: 49 $0 \times 1 \mathrm{~A}: 49.5$ $0 \times 1 \mathrm{~B}: 50$ $0 \times 1 \mathrm{C}: 50.5$ 0x1D: 51 0x1E: 51.5 0x1F: 52 $0 \times 20: 52.5$ 0x21: 53 0x22: 53.5 0x23: 54 0x24: 54.5 0x25: 55 0x26: 55.5 0x27: 56 0x28: 56.5 0x29: 57 $0 \times 2 A: 57.5$ $0 \times 2 \mathrm{~B}: 58$ 0x2C: 58.5 0x2D: 59 $0 \times 2 \mathrm{E}: 59.5$ 0x2F: 60 0×30 : 60.5 0x31: 61 0×32 : 61.5 0x33: 62 0x34: 62.5 0x35: 63 0x36: 63.5 0x37: 64 0×38 : 64.5 0x39: 65 $0 \times 3 A: 65.5$

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3B: 66
			0x3C: 66.5
			0x3D: 67
			0x3E: 67.5
			0x3F: 68
			0x40: 68.5
			0x41: 69
			0x42: 69.5
			0x43: 70
			0x44: 70.5
			0x45: 71
			0x46: 71.5
			0x47: 72
			0x48: 72.5
			0x49: 73
			0x4A: 73.5
			0x4B: 74
			0x4C: 74.5
			0x4D: 75
			0x4E: 75.5
			0x4F: 76
			0x50: 76.5
			0x51: 77
			0x52: 77.5
			0x53: 78
			0x54: 78.5
			0x55: 79
			0x56: 79.5
			0x57: 80
			0x58: 80.5
			0x59: 81
			0x5A: 81.5
			0x5B: 82
			0x5C: 82.5
			0x5D: 83
			0x5E: 83.5
			0x5F: 84
			0x60: 84.5
			0x61: 85
			0x62: 85.5
			0x63: 86
			0x64: 86.5
			0x65: 87
			0x66: 87.5
			0x67: 88
			0x68: 88.5
			0x69: 89
			0x6A: 89.5
			0x6B: 90
			0x6C: 90.5
			0x6D: 91
			0x6E: 91.5
			0x6F: 92
			0x70: 92.5
			0x71: 93
			0x72: 93.5
			0x73: 94
			0x74: 94.5
			0x75: 95

BITFIELD	BITS	DESCRIPTION	DECODE
			$\begin{aligned} & 0 \times 76: 95.5 \\ & 0 \times 77: 96 \\ & 0 \times 78: 96.5 \\ & 0 \times 79: 97 \\ & 0 \times 7 \mathrm{~A}: 97.5 \\ & 0 \times 7 \mathrm{~B}: 98 \\ & 0 \times 7 \mathrm{C}: 98.5 \\ & 0 \times 7 \mathrm{D}: 99 \\ & 0 \times 7 \mathrm{E}: 99.5 \\ & 0 \times 7 \mathrm{~F}: 100 \end{aligned}$

bl fault (0×07)

Backlight LED string faults

BIT	7	6	5	4	3	2	1	0
Field	led_open[3:0]				led_short[3:0]			
Reset	0x0				0x0			
Access Type	Read Only				Read Only			
BITFIELD	BITS	DESCRIPTION			DECODE			
led_open	7:4	Each bit of this field corresponds to a string. If a bit is set to 1 , then an open fault has been detected on the corresponding string and the string was disabled.			0 : Corresponding string is not open 1: Corresponding string is open or the string is unused or shorted to GND.			
led_short	3:0	Each bit of this field corresponds to a string. If a bit is set to 1 , then one or more LEDs in that string are shorted. This bit is updated at the beginning of each DIM cycle.			0 : Corresponding string has no LED shorted 1: Corresponding string has one or more LEDs shorted			

fault (0×08)

TFT fault register

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	boostuv	boostov	led_shortgn d	hvinpuv	pos_ol	neguv	dgvdduv	dgveeuv
Reset	0×0							
Access Type	Read Only							
BITFIELD	BITS	DESCRIPTION					DECODE	
boostuv	7	Backlight boost undervoltage status/flag. When an undervoltage is detected, the boost is disabled.	0: Not detected so far 1: Event detected					
boostov	6	Backlight boost overvoltage status flag. When the overvoltage level is reached, switching stops but the converter is not disabled.	0: Not detected so far 1: Event detected					
led_shortgnd	5	LED string shorted to GND status flag. When this bit is detected, the converter does not start and the condition is latched.	0: No LED strings shorted to GND 1: One or more LED strings shorted to GND					

BITFIELD	BITS	DESCRIPTION	DECODE
hvinpuv	4	Undervoltage on FBP (external feedback) or POS (internal feedback). Set immediately if an undervoltage is detected. If the undervoltage persists for 50ms, the output is turned off.	0: No undervoltage detected so far 1: Undervoltage detected
pos_ol	3	When 1, signals an overload or overcurrent fault on the POS output.	0: No error detected so far 1: Error detected
neguv	2	NEG output undervoltage status flag. Set immediately when an undervoltage is detected. If the condition persists for 50ms, the output is turned off.	0: No undervoltage detected $1:$ Undervoltage detected
dgvdduv	1	DGVDD undervoltage status flag. This bit is set immediately when an undervoltage is detected. If the condition persists for 50ms, the output is turned off.	0: No undervoltage detected $1:$ Undervoltage detected
dgveeuv	0	DGVEE undervoltage status/flag. This bit is set immediately when an undervoltage is detected. If the condition persists for 50ms, the output is turned off.	0: No undervoltage detected $1:$ Undervoltage detected

dev status (0×09)
Device status bits

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	hw_rst	wled_th_sh dn	wled_th_wa rn	tft_th_shdn
Reset	-	-	-	-	0×1	0×0	0×0	0×0
Access Type	-	-	-	-	Read Clears All	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
hw_rst	3	This flag reports if a POR took place since the last time this bit was reset. It is reset when this register is read.	0: No POR since last read $1:$ This is the first read of this register after a POR.
wled_th_shd n	2	LED driver thermal-shutdown status flag.	0: No thermal shutdown 1: Backlight driver is in thermal shutdown
wled_th_war n	1	LED driver thermal-warning status flag.	0: Device junction temperature is below $125^{\circ} \mathrm{C}$ 1: Device junction temperature is equal to or greater than $125^{\circ} \mathrm{C}$
tft_th_shdn	0	TFT section thermal-shutdown status flag.	0: No thermal shutdown $1:$ TFT section is in thermal shutdown

bl fault masks ($0 \times 0 \mathrm{~A}$)

Backlight LED string masks for fault bits

BIT	7	6	5	4	3	2	1	0
Field	led_open_mask[3:0]				led_short_mask[3:0]			
Reset	0x0				0x0			
Access Type	Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
led_open_ma sk	$7: 4$	This field contains masks for the corresponding led_open flags. A bit set to 1 in this field implies that the corresponding status flag will not casue the FLTB pin to assert.	0: Status flag causes FLTB pin assertion
1: Status flag does not cause FLTB pin assertion			
led_short_ma sk	$3: 0$	This field contains masks for the corresponding led_short flags. A bit set to 1 in this field implies that the corresponding status/flag will not contribute to fault-pin assertion.	0: Status flag causes FLTB pin assertion 1: Status flag does not cause FLTB pin assertion

fault masks1 ($0 \times 0 \mathrm{~B}$)

TFT masks for fault bits

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	boostuv_ma sk	boostov_ma sk_	led_shortgn d_mask	hvinpuv_ma sk_	wled_ss_tim e	neguv_mas k	dgvdduv_m ask	dgveeuv_m ask
Reset	0×0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
boostuv_mas k	7	Mask for backlight boost undervoltage status flag.	O: Boost UV will cause FLTB pin assertion 1: Boost UV will not cause FLTB pin assertion
boostov_mas k	6	Mask for backlight boost overvoltage status flag.	0: Boost OV will cause FLTB pin assertion 1: Boost OV will not cause FLTB pin assertion
led_shortgnd mask	5	Mask for led_shortgnd status flag.	0: A short-to-ground fault will cause FLTB pin assertion 1: A short-to-ground fault will not cause FLTB pin assertion
hvinpuv_mas k	4	Mask for HVINP undervoltage status flag.	0: A HVINP UV fault will cause FLTB pin assertion 1: A HVINP UV fault will not cause FLTB pin assertion
wled_ss_time	3	Backlight boost soft-start and final voltage setting.	0: Standard 50ms soft-start with final value of 0.6V on OVP. 1: Accelerated start-up (22ms) with final value of 1.1V on OVP.
neguv_mask	2	Mask for NEG undervoltage status flag.	0: A NEG UV fault will cause FLTB pin assertion 1: A NEG UV fault will not cause FLTB pin assertion
dgvdduv_ma sk	1	Mask for DGVDD undervoltage status flag.	0: A DGVDD UV fault will cause FLTB pin assertion 1: A DGVDD UV fault will not causeFLTB pin assertion
dgveeuv_ma sk	0	Mask for DGVEE undervoltage status flag.	0: A DGVEE UV fault will cause FLTB pin assertion 1: A DGVEE UV fault will not cause FLTB pin assertion

fault masks2 ($0 \times 0 \mathrm{C}$)

Masks for ofaults contained in register dev_status

Automotive $\mathrm{I}^{2} \mathrm{C}$-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	-	-	wled_th_wa rn_mask	-
Reset	-	-	-	-	-	-	0×0	-
Access Type	-	-	-	-	-	-	Write, Read	-
BITFIELD	BITS							
wled_th_war n_mask	1	Mask for wled_th_warn status flag.	0: Status flag will cause FLTB pin assertion $1: S t a t u s ~ f l a g ~ w i l l ~ n o t ~ c a u s e ~ F L T B ~ p i n ~ a s s e r t i o n ~$					

Applications Information

TFT Power Section

Boost Converter

Boost Converter Inductor Selection

Three key inductor parameters must be specified for operation with the device: Inductance value (L), inductor saturation current (ISAT), and DC resistance (R_{DC}). To determine the inductance value, first select the ratio of inductor peak-topeak ripple current to average output current (LIR). Higher LIR values mean higher RMS inductor current and therefore, higher $I^{2} R$ losses. To achieve a lower LIR value, a high-valued inductor, which may be physically larger, must be used. A good compromise between size and loss is to select a 30% to 60% peak-to-peak ripple current to average-current ratio (LIR from 0.3 to 0.6). If extremely thin high-resistance inductors are used, as is common for LCD-panel applications, the best LIR may lie between 0.5 and 1.0. The value of the inductor is determined by the following equations.

Equation 9:

$L=\frac{V_{\mathrm{INA}} \times D}{\operatorname{LIR} \times I_{\mathrm{IN}} \times f_{\mathrm{SW}}}$
using:
Equation 10:
$I_{\text {IN }}=\frac{V_{\mathrm{OUT}} \times I_{\mathrm{OUT}}}{\eta \times V_{\text {INA }}}$
$D=1-\frac{V_{\text {INA }}}{V_{\text {OUT }}}$
where $\mathrm{V}_{\text {INA }}$ is the input voltage, $\mathrm{V}_{\text {OUT }}$ is the output voltage, $\mathrm{I}_{\text {OUT }}$ is the output current, I_{IN} is the calculated average boost input current, η is the efficiency of the boost converter, D is the duty cycle, and $\mathrm{f}_{S W}$ is either 440 kHz or 2.2 MHz (the selected switching frequency of the boost converter). The efficiency of the boost converter can be estimated from the Typical Operating Characteristics and accounts for losses in the internal switch, inductor, and capacitors.
The inductor's saturation rating must exceed the maximum current limit of 1.7 A or 0.74 A , depending on the setting of the Ixp_lim_low bit in the cnfg_gen (0x01) register.

Boost Output-Filter Capacitor Selection

The primary criterion for selecting the output-filter capacitor is low effective series resistance (ESR). The product of the peak inductor current and the output filter capacitor's ESR determine the amplitude of the high-frequency ripple seen on the output voltage. For stability, the boost output-filter capacitor should have a value of $10 \mu \mathrm{~F}$ or greater.
To avoid a large drop on HVINP when POS is enabled, the capacitance on the HVINP node should be at least three times larger than that on POS.

Setting the POS Voltage

In stand-alone mode, the POS output voltage is set by connecting FBP to a resistive voltage divider between HVINP and GND. Select the lower feedback resistor value and calculate the upper resistor value using the following formula.

Equation 11:

$R_{\text {UPPER }}=\frac{\left(V_{\text {HVINP }}-1.25\right) \times R_{\text {LOWER }}}{1.25}$
In $I^{2} \mathrm{C}$ mode, the POS output is set by writing an 8-bit value to the vpos_set (0×03) register.
The NEG converter outputs a negative voltage whose absolute value is the same as POS. The most negative voltage the NEG can output is -7 V .

NEG Inverting Regulator

NEG Regulator Inductor Selection

The inductor value for the NEG regulator can be selected using the following formula.

Equation 12:

$L=\frac{v_{\text {NEG }} \times(1-D)^{2}}{\operatorname{LIR} \times I_{\mathrm{NEG}} \times f_{\mathrm{SW}}}$
where $V_{\text {NEG }}$ is the output voltage, $l_{\text {NEG }}$ the output current, LIR the desired inductor ripple ratio, and $f_{S W}$ is the the switching frequency.
Calculate the duty-cycle D using:
Equation 13:
$D=\frac{v_{\mathrm{NEG}}}{v_{\mathrm{IN}}+v_{\mathrm{NEG}}}$
The inductor's saturation current rating must exceed the maximum current-limit setting of 1.2 A or 0.6 A , depending on the setting of the neg_lim_low bit in the cnfg_gen (0x01) register.

NEG External Diode Selection

Select a diode with a peak current rating of at least the selected LXN current limit (1.8A or 1.1A) for use with the NEG output. The diode breakdown-voltage rating should exceed the sum of the maximum INN voltage and the absolute value of the NEG voltage. A Schottky diode improves the overall efficiency of the converter.

NEG Output Capacitor Selection

The primary criterion for selecting the output filter capacitor is low ESR and capacitance value, as the NEG capacitor provides the load current when the internal switch is on. The voltage ripple on the NEG output has two components:

- Ripple due to ESR, which is the product of the peak inductor current and the output filter capacitor's ESR
- Ripple due to bulk capacitance that can be determined as follows.

Equation 14:

$\Delta V_{\mathrm{BULK}}=\frac{\rho_{\mathrm{NEG}} \times \frac{D}{f_{\mathrm{SW}}}}{C_{\mathrm{NEG}}}$
For stability, the NEG output capacitor should have a value of $10 \mu \mathrm{~F}$ or greater.

Setting the DGVDD and DGVEE Output Voltages

For most applications, a single charge-pump stage is sufficient for both the positive and negative charge pumps. In the case of DGVDD, the maximum output voltage is then twice the HVINP voltage. For DGVEE, the most negative voltage is - $\mathrm{V}_{\text {HVINP. }}$. If necessary, add further stages while maintaining the DGVDD and DGVEE voltages within their permitted operating ranges.
The DGVDD output voltage is set in stand-alone mode with a resistor-divider from DGVDD to GND, with its center connected to the FBPG pin. After a value for RLOWER is selected, RUPPER can be calculated using the following formula.
Equation 15:
$R_{\text {UPPER }}=\frac{(\text { DGVDD }-1.25) \times R_{\text {LOWER }}}{1.25}$
The DGVEE output voltage is set by connecting a resistor-divider from REF to DGVEE, with its center connected to FBNG. The control loop forces FBNG to OV. Select the resistor connected to REF ($R_{R E F}$) so that less than $100 \mu \mathrm{~A}$ is drawn from REF (i.e., the value of $R_{\text {REF }}$ shall be greater than $12.5 \mathrm{k} \Omega$). After selecting $R_{\text {REF }}$, calculate $R_{\text {DGVEE }}$ using Equation 16.

Equation 16:

$R_{\text {DGVEE }}=\frac{R_{\text {REF }} \times \mid \text { DGVEE }}{1.25}$
In $1^{2} \mathrm{C}$ mode, the DGVDD and DGVEE voltages are set by writing a 6 -bit value to the dgvdd_set (0×04) register and a 5 -bit value to the dgvee_set (0×05) register, respectively.

LED Driver Section

DC-DC Converter for LED Driver

Two different converter topologies are possible with the DC-DC controller in the device, which has the ground-referenced outputs necessary to use the constant-current sink drivers. If the LED string forward voltage is always higher than the input supply voltage range, use the boost-converter topology. If the LED string forward voltage falls within the supplyvoltage range, use the SEPIC topology.
Note that the boost converter topology provides the highest efficiency.

Power-Circuit Design

First select a converter topology based on the above factors. Determine the required input supply-voltage range, the maximum voltage needed to drive the LED strings, including the worst-case 1 V across the constant LED current sink ($\mathrm{V}_{\mathrm{LED}}$), and the total output current needed to drive the LED strings ($\mathrm{l}_{\text {LED }}$) as shown below.

Equation 17:

$I_{\text {LED }}=I_{\text {STRING }} \times N_{\text {STRING }}$
where ISTRING is the LED current per string in amperes and NSTRING $^{\text {is }}$ the number of strings used. Calculate the maximum duty cycle ($\mathrm{D}_{\mathrm{MAX}}$) using the following equations:
Equation 18 (for the boost configuration):
$D_{\mathrm{MAX}}=\frac{\left(v_{\mathrm{LED}}+v_{D 1}-v_{\mathrm{IN}} \mathrm{MIN}\right)}{\left(v_{\mathrm{LED}}+v_{D 1}-v_{\mathrm{DS}}-0.42\right)}$

Equation 18 (for the SEPIC configuration):

$D_{\mathrm{MAX}}=\frac{\left(v_{\mathrm{LED}}+v_{D 1}\right)}{\left(v_{\mathrm{IN} \text { MIN }}-v_{\mathrm{DS}}-0.42+v_{\mathrm{LED}}+v_{D 1}\right)}$
where $V_{D 1}$ is the forward drop of the rectifier diode in volts (approximately 0.6 V), $\mathrm{V}_{\text {IN }}$ MIN is the minimum input supply voltage in volts, V_{DS} is the drain-to-source voltage of the external MOSFET in volts when it is on, and 0.42 V is the peak current-sense voltage. Initially, use an approximate value of 0.2 V for V_{DS} to calculate $\mathrm{D}_{\mathrm{MAX}}$. Calculate a more accurate value of $D_{\text {MAX }}$ after the power MOSFET is selected based on the maximum inductor current.

Boost Configuration

The average inductor current varies with the line voltage, and the maximum average current occurs at the lowest line voltage. For the boost converter, the average inductor current is equal to the input current. Select the maximum peak-topeak ripple on the inductor current ($\Delta \mathrm{IL}$). The recommended peak-to-peak ripple is 60% of the average inductor current. Use the following equations to calculate the maximum average inductor current ($\mathrm{IL}_{\mathrm{AVG}}$) and peak inductor current (ILP) in amperes.

Equation 20:

$\mathrm{IL}_{\text {AVG }}=\frac{\mathrm{I}_{\text {LED }}}{1-D_{\text {MAX }}}$
Allowing the peak-to-peak inductor ripple $\Delta I L$ to be $\pm 30 \%$ of the average inductor current:

Equations 21:

$\Delta \mathrm{I}_{\mathrm{L}}=\mathrm{IL}_{\mathrm{AVG}} \times 0.3 \times 2$

MAX20069C

Automotive I^{2} C-Controlled 4-Channel 150 mA Backlight Driver and 4-Output TFT-LCD Bias

and
$\mathrm{IL}_{P}=\mathrm{IL}_{\mathrm{AVG}}+\frac{\Delta \mathrm{L}_{\mathrm{L}}}{2}$
Calculate the minimum inductance value ($\mathrm{L}_{\mathrm{MIN}}$), in henries with the inductor-current ripple set to the maximum value.
Equation 22:
$L_{\text {MIN }}=\frac{\left(v_{\text {IN_MIN }}-v_{\text {DS }}-0.42\right) \times D_{\text {MAX }}}{f_{\text {SW }} \times I_{L}}$
where 0.42 V is the peak current-sense voltage. Choose an inductor that has a minimum inductance greater than the calculated $\mathrm{L}_{\text {MIN }}$ and current rating greater than ILp. The recommended saturation current limit of the selected inductor is 10% higher than the inductor peak current for boost configuration.

SEPIC Configuration

Power-circuit design for the SEPIC configuration is very similar to a conventional design, with the output voltage referenced to the input supply voltage. For SEPIC, the output is referenced to ground and the inductor is split into two parts (see Typical Application Circuits). One of the inductors (L2) has the LED current as the average current, and the other inductor (L1) has the input current as its average current. Use the following equations to calculate the average inductor currents (IL1AVG, IL2AVG) and peak inductor currents (IL1p, IL2p) in amperes:

Equation 23:

$\mathrm{IL1}_{\mathrm{AVG}}=\frac{{ }_{\mathrm{LED} \times D_{\mathrm{MAX}} \times 1.1}^{1-D_{\mathrm{MAX}}}}{1}$
The factor 1.1 provides a 10% margin to account for the converter losses:

Equation 24:

$\mathrm{IL2}_{\text {AVG }}=/_{\text {LED }}$
Assuming the peak-to-peak inductor ripple $\Delta \mathrm{IL}$ is $\pm 30 \%$ of the average inductor current:

Equations 25:

$\Delta \mathrm{I}_{\mathrm{L} 1}=\mathrm{IL} 1_{\mathrm{AVG}} \times 0.3 \times 2$
and
$\mathrm{IL} 1_{P}=\mathrm{IL}_{\mathrm{AVG}}+\frac{\Delta \mathrm{L}_{\mathrm{L} 1}}{2}$
$\Delta \mathrm{I}_{\mathrm{L} 2}=\mathrm{IL} 2_{\mathrm{AVG}} \times 0.3 \times 2$
and

$$
\mathrm{IL} 2_{P}=\mathrm{IL} 2_{\mathrm{AVG}}+\frac{\Delta \mathrm{L}_{\mathrm{L} 2}}{2}
$$

Calculate the minimum inductance values $\mathrm{L1}_{\mathrm{MIN}}$ and $\mathrm{L}_{2 \mathrm{MIN}}$ in henries with the inductor current ripples set to the maximum value as follows:

Equations 26:

$L 1_{\text {MIN }}=\frac{\left(v_{\left.\text {IN_MIN }-v_{\text {DS }}-0.42\right) \times D_{\text {MAX }}}^{f_{S W} \times \Delta I_{L 1}}\right.}{\text {. }}$
$L 2_{\text {MIN }}=\frac{\left(V_{I_{N}} \mathrm{MIN}^{-}-V_{\mathrm{DS}}-0.42\right) \times D_{\mathrm{MAX}}}{f_{\text {SW }} \times \Delta \mathrm{I}_{\mathrm{L}}}$
where 0.42 V is the peak current-sense voltage. Choose inductors that have a minimum inductance greater than the calculated $\mathrm{L} 1_{\mathrm{MIN}}$ and $\mathrm{L} 2_{\mathrm{MIN}}$, and current ratings greater than IL1p and IL2p, respectively. The recommended saturation current limit of the selected inductor is 10% higher than the inductor peak current.

For simplifying further calculations, consider L1 and L2 as a single inductor with L1/L2 connected in parallel. The combined inductance value and current is calculated as follows:

Equations 27:

$L_{\mathrm{MIN}}=\frac{L 1_{\mathrm{MIN}} \times L 2_{\mathrm{MIN}}}{L 1_{\mathrm{MIN}}+L 2_{\mathrm{MIN}}}$
and
$\mathrm{IL}_{\mathrm{AVG}}=\mathrm{IL} 1_{\mathrm{AVG}}+\mathrm{IL} 2_{\mathrm{AVG}}$
where ILAVG represents the total average current through both the inductors, connected together for SEPIC configuration. Use these values in the calculations for the SEPIC configuration in the following sections.
Select coupling capacitor CS so that the peak-to-peak ripple on it is less than 2% of the minimum input supply voltage. This ensures that the second-order effects created by the series resonant circuit comprising L1, CS, and L2 do not affect the normal operation of the converter. Use the following equation to calculate the minimum value of CS.

Equation 28:

$\mathrm{CS} \geq \frac{l_{\text {LED }} \times D_{\text {MAX }}}{V_{\text {IN_MIN }} \times 0.02 \times f_{\text {SW }}}$
where CS is the minimum value of the coupling capacitor in farads, ILED is the LED current in amperes, and the factor 0.02 accounts for 2% ripple.

Current-Sense Resistor and Slope Compensation

The MAX20069C backlight boost generates a current ramp for slope compensation. This ramp current is in sync with the switching frequency, starting from zero at the beginning of every clock cycle and rising linearly to reach $50 \mu \mathrm{~A}$ at the end of the clock cycle. The slope-compensating resistor (R_{SC}) is connected between the CS input and the source of the external MOSFET. This adds a programmable ramp voltage to the CS input voltage to provide slope compensation.
Use the following equation to calculate the value of slope-compensation resistance ($\mathrm{R}_{S C}$):
Equation 29: (for boost configuration):
$R_{\mathrm{SC}}=\frac{\left(V_{\mathrm{LED}}-2 \times V_{\mathrm{IN}} \mathrm{MIN}\right) \times R_{\mathrm{CS}} \times 3}{L_{\mathrm{MIN}} \times 50 \mu \mathrm{~A} \times f_{\mathrm{SW}} \times 4}$
Equation 30: (for SEPIC and coupled-inductor configurations):
$R_{\mathrm{SC}}=\frac{\left(V_{\mathrm{LED}}-V_{\mathrm{IN}} \mathrm{MIN}\right) \times R_{\mathrm{CS}} \times 3}{L_{\mathrm{MIN}} \times 50 \mu \mathrm{~A} \times f_{\mathrm{SW}} \times 4}$
where $V_{\text {LED }}$ and $V_{\text {IN_MIN }}$ are in volts, $R_{S C}$ and $R_{C S}$ are in ohms, $L_{\text {MIN }}$ is in henries, and $f_{S W}$ is in hertz. The value of the switch current-sense resistor (R_{CS}) can be calculated as follows:
Equation 31: (for the boost configuration):
$R_{\mathrm{CS}}=\frac{4 \times L_{\mathrm{MIN}} \times f_{\mathrm{SW}} \times 0.39 \times 0.9}{L_{\mathrm{LP}} \times 4 \times L_{\mathrm{MIN}} \times f_{\mathrm{SW}}+D_{\mathrm{MAX}} \times\left(V_{\mathrm{LED}}-2 \times V_{\mathrm{IN} \text { MIN }}\right) \times 3}$
Equation 32: (for SEPIC and coupled-inductor configurations):
$R_{\mathrm{CS}}=\frac{4 \times L_{\mathrm{MIN}} \times f_{\mathrm{SW}} \times 0.39 \times 0.9}{l_{\mathrm{LP}} \times 4 \times L_{\mathrm{MIN}} \times f_{\mathrm{SW}}+D_{\mathrm{MAX}} \times\left(V_{\mathrm{LED}}-V_{\mathrm{IN} \text { MIN }}\right) \times 3}$
where 0.39 is the minimum value of the peak current-sense threshold. The current-sense threshold also includes the slope-compensation component. The minimum current-sense threshold of 0.4 is multiplied by 0.9 to take tolerances into account.

Output Capacitor Selection

For all converter topologies, the output capacitor supplies the load current when the main switch is on. The function of the output capacitor is to reduce the converter output ripple to acceptable levels. The entire output-voltage ripple appears
across the constant-current sink outputs because the LED string voltages are stable due to the constant current. For the MAX20069C, limit the peak-to-peak output-voltage ripple to 200 mV to get stable output current.
The ESR, ESL, and bulk capacitance of the output capacitor contribute to the output ripple. In most applications, using low-ESR ceramic capacitors can dramatically reduce the output ESR and ESL effects, connecting multiple ceramic capacitors in parallel to achieve the required bulk capacitance. To minimize audible noise during PWM dimming however, it may be desirable to limit the use of ceramic capacitors on the boost output. In such cases, an additional electrolytic or tantalum capacitor can provide the majority of the bulk capacitance.

External Switching-MOSFET Selection

The external switching MOSFET should have a voltage rating sufficient to withstand the maximum boost output voltage, together with the rectifier diode drop and any possible overshoot due to ringing caused by parasitic inductance and capacitance. The recommended MOSFET $V_{D S}$ voltage rating is 30% higher than the sum of the maximum output voltage and the rectifier diode drop.
The continuous-drain current rating of the MOSFET (ID), when the case temperature is at maximum operating ambient temperature, should be greater than that calculated below.

Equation 33:

$\mathrm{ID}_{\mathrm{RMS}}=\left(\sqrt{\mathrm{IL}_{\mathrm{AVG}}{ }^{2} \times D_{\mathrm{MAX}}}\right) \times 1.3$
The MOSFET dissipates power due to both switching losses and conduction losses. Use the following equation to calculate the conduction losses in the MOSFET.

Equation 34:

$P_{\mathrm{COND}}=\mathrm{IL}^{2} \mathrm{AVG} \times D_{\mathrm{MAX}} \times R_{\mathrm{DS}(\mathrm{ON})}$
where $R_{D S(O N)}$ is the on-state drain-to-source resistance of the MOSFET. Use the following equation to calculate the switching losses in the MOSFET.
Equation 35:
$P_{\mathrm{SW}}=\frac{\mathrm{I}_{\mathrm{AVG}} \times V_{\mathrm{LED}}{ }^{2} \times C_{\mathrm{GD}} \times f_{\mathrm{SW}}}{2} \times\left(\frac{1}{I_{\mathrm{GON}}}+\frac{1}{l_{\mathrm{GOFF}}}\right)$
where $I_{G O N}$ and $I_{G O F F}$ are the gate currents of the MOSFET in amperes when it is turned on and turned off, respectively. C_{GD} is the gate-to-drain MOSFET capacitance in farads.

Rectifier Diode Selection

Using a Schottky rectifier diode produces less forward drop and puts the least burden on the MOSFET during reverse recovery. A diode with considerable reverse-recovery time increases the MOSFET switching loss. Select a Schottky diode with a voltage rating 20% higher than the maximum boost-converter output voltage and current rating greater than that calculated in the following equation.

Equation 36:

$I_{D}=I_{\mathrm{AVG}} \times\left(1-D_{\mathrm{MAX}}\right) \times 1.2$

Feedback Compensation

During normal operation, the feedback control loop regulates the minimum OUT_ voltage to fall within the window comparator limits of 0.8 V and 1.1 V when LED string currents are enabled during PWM dimming. When LED currents are off during PWM dimming, the control loop turns off the converter and stores the steady-state condition in the form of capacitor voltages, primarily the output filter-capacitor voltage and compensation-capacitor voltage. When the PWM dimming pulses are less than 24 switching-clock cycles, the feedback loop regulates the converter output voltage to 95% of the OVP threshold.
The worst-case condition for the feedback loop is when the LED driver is in normal mode regulating the minimum OUT_ voltage. The switching converter small-signal transfer function has a right-half plane (RHP) zero for boost configuration if the inductor current is in continuous-conduction mode. The RHP zero adds a $20 \mathrm{~dB} / \mathrm{decade}$ gain and a 90° phase lag,
which is difficult to compensate.
The worst-case RHP zero frequency (fZRHP) is calculated as follows:

Equation 37 (for boost configuration):

$f_{\text {ZRHP }}=\frac{v_{\mathrm{LED}} \times\left(1-D_{\mathrm{MAX}}\right)^{2}}{2 \pi \times L \times I_{\mathrm{LED}}}$
Equation 38 (for SEPIC configuration):
$f_{\mathrm{ZRHP}}=\frac{v_{\mathrm{LED}} \times\left(1-D_{\mathrm{MAX}}\right)^{2}}{2 \pi \times L \times /_{\mathrm{LED}} \times D_{\mathrm{MAX}}}$
where $f_{Z R H P}$ is in hertz, $V_{\text {LED }}$ is in volts, L is the inductance value of $L 1$ in henries, and $I_{L E D}$ is in amperes. A simple way to avoid this zero is to roll off the loop gain to 0 dB at a frequency less than $1 / 5$ of the RHP zero frequency with a -20 dB / decade slope.
The switching converter small-signal transfer function also has an output pole. The effective output impedance, together with the output filter capacitance, determines the output pole frequency ($\mathrm{f}_{\mathrm{P} 1}$), calculated as follows:

Equation 39 (for boost configuration):

$f_{P 1}=\frac{l_{\text {LED }}}{2 \pi \times V_{\text {LED }} \times C_{O U T}}$

Equation 40 (for SEPIC configuration):

$f_{P 1}=\frac{l_{\mathrm{LED}} \times D_{\mathrm{MAX}}}{2 \pi \times V_{\mathrm{LED}} \times C_{\mathrm{OUT}}}$
where $f_{P 1}$ is in hertz, $V_{L E D}$ is in volts, $l_{L E D}$ is in amperes, and $C_{O U T}$ is in farads. Compensation components ($R_{C O M P}$ and $\mathrm{C}_{\text {COMP }}$) perform two functions: CCOMP introduces a low-frequency pole that presents a $-20 \mathrm{~dB} /$ decade slope to the loop gain, and $\mathrm{R}_{\text {COMP }}$ flattens the gain of the error amplifier for frequencies above the zero formed by RCOMP and $\mathrm{C}_{\text {COMP }}$. For compensation, this zero is placed at the output pole frequency ($\mathrm{f}_{\mathrm{p} 1}$), so it provides a -20dB/decade slope for frequencies above $\mathrm{f}_{\mathrm{P} 1}$ to the combined modulator and compensator response.
The value of $R_{\text {COMP }}$ needed to fix the total loop gain at $f_{P 1}$, so the total loop gain crosses 0 dB with $-20 \mathrm{~dB} /$ decade slope at $1 / 5$ the RHP zero frequency, is calculated as follows.

Equation 41 (for boost configuration):

$R_{\mathrm{COMP}}=\frac{f_{\mathrm{ZRHP}} \times R_{\mathrm{CS}} \times /_{\mathrm{LED}}}{5 \times f_{P 1} \times \mathrm{GM}_{\mathrm{COMP}} \times V_{\mathrm{LED}} \times\left(1-D_{\mathrm{MAX}}\right)}$

Equation 42 (for SEPIC configuration):

$R_{\mathrm{COMP}}=\frac{f_{\mathrm{ZRHP}} \times R_{\mathrm{CS}} \times /_{\mathrm{LED}} \times D_{\mathrm{MAX}}}{5 \times f_{P 1} \times \mathrm{GM}_{\mathrm{COMP}} \times V_{\mathrm{LED}} \times\left(1-D_{\mathrm{MAX}}\right)}$
where $R_{C O M P}$ is the compensation resistor in ohms, $f_{Z R H P}$ and $f_{P 2}$ are in hertz, $R_{C S}$ is the switch current-sense resistor in ohms, and $\mathrm{GM}_{\text {COMP }}$ is the transconductance of the error amplifier ($700 \mu \mathrm{~S}$).
The value of $\mathrm{C}_{\text {COMP }}$ is calculated as follows.

Equation 43:

$C_{\text {COMP }}=\frac{1}{2 \pi \times R_{\text {COMP }} \times f_{Z 1}}$
where $f_{Z 1}$ is the compensation zero placed at $1 / 5$ of the crossover frequency that is, in turn, set at $1 / 5$ of the $f_{Z R H P}$. If the output capacitors do not have low ESR, the ESR zero frequency may fall within the OdB crossover frequency. An additional pole may be required to cancel out this pole placed at the same frequency. This is usually implemented by connecting a capacitor in parallel with $\mathrm{C}_{\text {COMP }}$ and $\mathrm{R}_{\mathrm{COMP}}$.

Typical Application Circuits

Typical Application Circuit for I ${ }^{2}$ C Mode

Typical Application Circuits (continued)

Typical Application Circuit for Stand-Alone Mode

Typical Application Circuits (continued)

Typical Application Circuit for $\mathrm{I}^{2} \mathrm{C}$ Mode, SEPIC Topology

Ordering Information

PART	TEMP RANGE	PACKAGE CODE	PIN-PACKAGE	7b I2C ADDRESS
MAX20069CGTL/V+	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066-5C	40 TQFN-EP*	$0 \times 70 / 0 \times 74$
MAX20069CGTL/V+T	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066-5C	40 TQFN-EP*	$0 \times 70 / 0 \times 74$
MAX20069CGTL/VY +	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066Y-6C	40 TQFN-EP*	$0 \times 70 / 0 \times 74$
MAX20069CGTL/VY+T	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066Y-6C	40 TQFN-EP*	$0 \times 70 / 0 \times 74$
MAX20069CGTLA/V+**	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066-5C	40 TQFN-EP*	$0 \times 20 / 0 \times 24$
MAX20069CGTLA/V+T**	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066-5C	40 TQFN-EP*	$0 \times 20 / 0 \times 24$
MAX20069CGTLA/VY+**	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066Y-6C	40 TQFN-EP*	$0 \times 20 / 0 \times 24$
MAX20069CGTLA/ VY $+T^{* *}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T4066Y-6C	40 TQFN-EP*	$0 \times 20 / 0 \times 24$

N Denotes an automotive-qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*EP = Exposed pad.
$Y=$ Side-wettable (SW) package
**Future product—contact factory for availability.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$11 / 19$	Initial release	-
1	$11 / 21$	Added Simplified Block Diagram, added 40 TQFN-SW in Package Information, changed VNEG_POS_REG minimum limit in the Electrical Characteristics table, corrected I2C addresses in the Detailed Description and Ordering Information table, updated NEG Inverting Regulator section, removed future product notation from MAX20069CGTL in Ordering Information table	2, 7, 9, 31, 47,56

