

Click here to ask an associate for production status of specific part numbers.

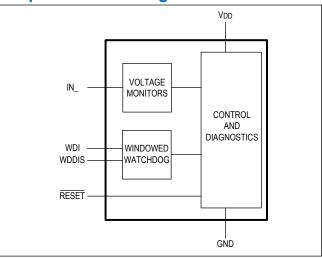
Four- to Seven-Input Automotive Power-System Monitor Family

General Description

The MAX20481 is a complete ASIL-compliant SoC power system monitor with up to seven voltage-monitor inputs. Each input has factory OTP programmable OV/UV thresholds of between 2.5% and 10% with \pm 1% accuracy. Two of the inputs have a separate remote ground-sense input for use with high-current SoC supplies.

The MAX20481 contains a factory-programmable windowed watchdog with digital input pins for both refreshing and disabling the watchdog. The RESET pin of the device can be set at the factory to assert under a variety of conditions.

The MAX20481 significantly reduces system size and component count while improving reliability compared to separate ICs or discrete components. The MAX20481 meets ASIL B reliability levels in a standalone application. The device is designed to operate from -40°C to +125°C ambient temperature.


Applications

- ADAS
- Autonomous Driving Processing Systems
- Remote Sensor Modules
- Power System Supervision and MCU/SoC Montioring

Benefits and Features

- Small Solution
 - 2.35V to 5.50V Operating Supply Voltage
 - No External Components Needed
 - 150µA Operating Current
- High Precision
 - Selectable 102.5% to 110% OV Monitors
 - Selectable 97.5% to 90% UV Monitors
 - ±1% Accuracy
 - 0.5% Step Size
 - ASIL B Compliance
- Highly Integrated
 - Five Fixed-Voltage Monitoring Inputs
 - Two Differential-Voltage Monitoring Inputs with Remote GND Sense
 - Windowed Watchdog with Disable Pin for SoC Programming
 - Error-Correcting Code (ECC) on Internal OTP
 Factory-Programmable RESET Pin
- 16-Pin, Side-Wettable TQFN with Exposed Pad (3mm x 3mm)
- AEC-Q100 Qualified
- -40°C to +125°C Operating Temperature

Simplified Block Diagram

Ordering Information appears at end of data sheet.

© 2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Four- to Seven-Input Automotive Power-System Monitor Family

TABLE OF CONTENTS

Applications 1 Benefits and Features 1 Simplified Block Diagram 1
Simplified Block Diagram
Absolute Maximum Ratings
Package Information
16-TQFN-EP
Electrical Characteristics
Typical Operating Characteristics
Pin Configurations
MAX20481A: 4-Channel Monitor
MAX20481B: 5-Channel Monitor
MAX20481C: 6-Channel Monitor
MAX20481D: 7-Channel Monitor
Pin Description
Functional Diagrams
Detailed Description
Voltage Monitor
Windowed Watchdog and Reset Control 12
Watchdog Window Settings 12
RESET Output
Register Map
Top Level
Register Details
Applications Information
Diagnostics
Typical Application Circuits
Circuit 1
Ordering Information
Revision History

LIST OF TABLES

Table 1	. Diagnostics					
---------	---------------	--	--	--	--	--

Four- to Seven-Input Automotive Power-System Monitor Family

Absolute Maximum Ratings

V _{DD} to GND	0.3V to +6V
IN1–IN5 to GND	0.3V to +6V
INP6–INP7 to GND	0.3V to +6V
INM to GND	0.3V to 0.3V
RESET to GND	0.3V to +6V
WDI to GND	
WDDIS to GND	0.3V to VDD + 0.3V

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16-TQFN (derate 22.5mW/°C > 70°C)	1797.8mW
Operating Temperature	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature Range	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16-TQFN-EP

Package Code	T1633Y+5
Outline Number	<u>21-100150</u>
Land Pattern Number	<u>90-100064</u>
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction-to-Ambient (0 _{JA})	44.5°C/W
Junction to Case (θ_{JC})	5.9°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/</u> <u>thermal-tutorial</u>.

Electrical Characteristics

 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions, unless otherwise noted. (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
	\/	Fully operational	2.35		5.5	v
Supply Voltage Range	V _{DD}	RESET output guaranteed low	1.2			V
UVLO	Manage	V _{DD} Voltage Rising	1.85	2.05	2.25	v
UVLO	V _{UVLO}	V _{DD} Voltage Falling	1.75	1.95	2.15	v
Internal Oscillator	fosc		1.15	1.28	1.40	MHz
IN1–IN4						
Input Current	I _{IN_}	V _{IN} _≤ 3.3V		1	1.5	μA
Set-Point Range			0.5		3.6875	V
Set-Point Resolution		12.5mV/step		8		Bits
OV/UV Threshold Range			2.5		10	%
OV/UV Threshold Resolution		0.5%/step		4		Bits

Four- to Seven-Input Automotive Power-System Monitor Family

Electrical Characteristics (continued)

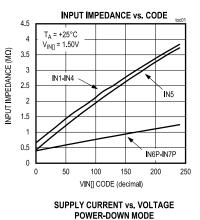
 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions, unless otherwise noted. (Note 1)

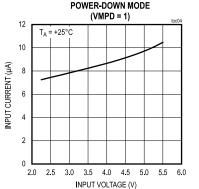
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OV/UV Threshold		(IN1 through IN4) ≥ 1.0V. Factory- trimmed thresholds.	-1		1	%
Accuracy		(IN1 through IN4) < 1.0V. Factory- trimmed thresholds.	-10		10	mV
OFF Threahald	N/	(IN1 through IN4) voltage falling	0.23	0.25	0.27	v
OFF Threshold	V _{OFF}	(IN1 through IN4) voltage rising	0.28	0.3	0.32	
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	t _{OV}	2% above threshold		5		μs
IN5						
Input Current	I _{IN5}	V _{IN5} ≤ 5V		1.5	2.3	μA
Set-Point Range			0.5		5.5	V
Set-Point Resolution		20mV/step		8		Bits
OV/UV Threshold Resolution		0.5%/step		4		Bits
OV/UV Threshold		IN5 \geq 1.0V. Factory-trimmed thresholds.	-1		1	%
Accuracy		IN5 < 1.0V. Factory-trimmed thresholds.	-10		10	mV
OFF Threshold		IN5 voltage falling	0.23	0.25	0.27	v
OFF Threshold	V _{OFF}	IN5 voltage rising	0.28	0.28 0.3 0.32		
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	t _{OV}	2% above threshold		5		μs
OV/UV Threshold Range			2.5		10	%
IN6P–IN7P, INM	•					
INM Range	V _{INM}		-0.1		0.1	V
Input Current	I _{IN_}	V _{IN} _ ≤ 1.8V		1.4	2.2	μA
Set-Point Range		Relative to INM	0.5		1.775	V
Set-Point Resolution		5mV/step		8		Bits
		(IN6P, IN7P) ≥ 1.0V	-1		1	%
Set-Point Accuracy		(IN6P, IN7P) < 1.0V	-10		10	mV
	N	(IN6P, IN7P) voltage falling, relative to INM	0.23	0.25	0.27	
OFF Threshold	VOFF	(IN6P, IN7P) voltage rising, relative to INM	0.28 0.3 0.32			V
UV Comparator Filter Time	t _{UV}	2% below threshold		5		μs
OV Comparator Filter Time	t _{OV}	2% above threshold		5		μs

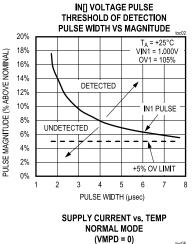
Four- to Seven-Input Automotive Power-System Monitor Family

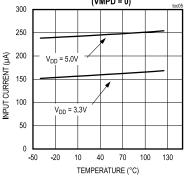
Electrical Characteristics (continued)

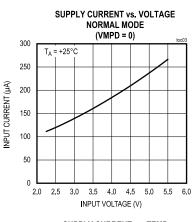
 $(V_{DD} = 3.3V, T_A = T_J = -40^{\circ}C$ to +125°C, unless otherwise noted, Typical values are at $T_A = 25^{\circ}C$ under normal conditions, unless otherwise noted. (Note 1)

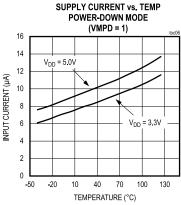

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
WDI, WDDIS INPUTS						•
Input High Level	VIH	Input Voltage Rising	1.3			V
Input Low Level	VIL	Input Voltage Falling			0.4	V
Hysteresis				0.1		V
DIGITAL OUTPUT (RESE	T)					
Digital Output Low Level	V _{RL}	V _{DD} = 2.35V, I _{SINK} = 2mA			0.2	V
Digital Output Leakage	I _{R-LKG}	RESET = 5.0V			1	μA
		RHLD[1:0] = 00		6		μs
Active Timeout Period	4	RHLD[1:0] = 01	7.2	8	8.8	
Active Timeout Period	thold	RHLD[1:0] = 10	14.4	16	17.6	ms
		RHLD[1:0] = 11	28.8	32	35.2	1

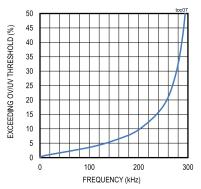

Note 1: Limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

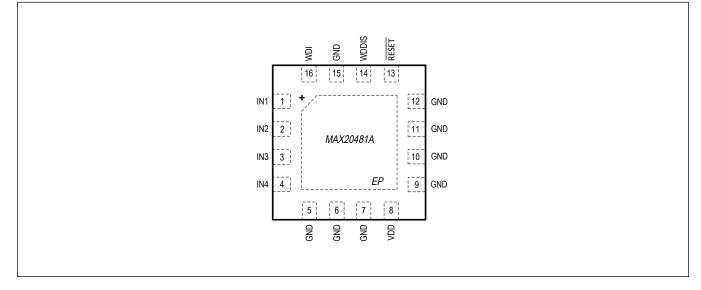

Four- to Seven-Input Automotive Power-System Monitor Family

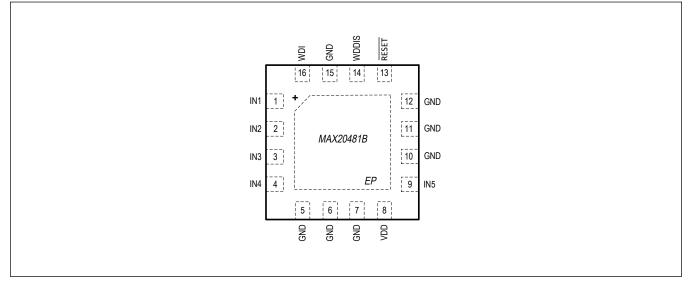

Typical Operating Characteristics


 $(V_{DD} = 3.3V, T_A = +25^{\circ}C)$



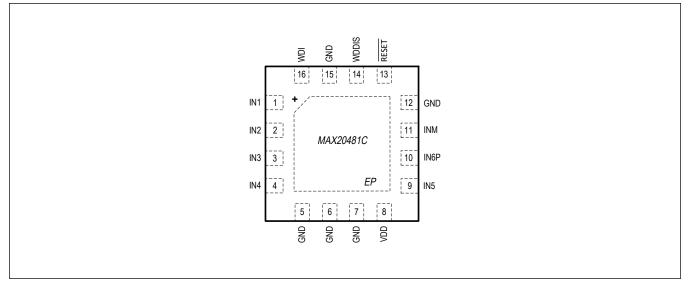



OV/UV FREQUENCY RESPONSE

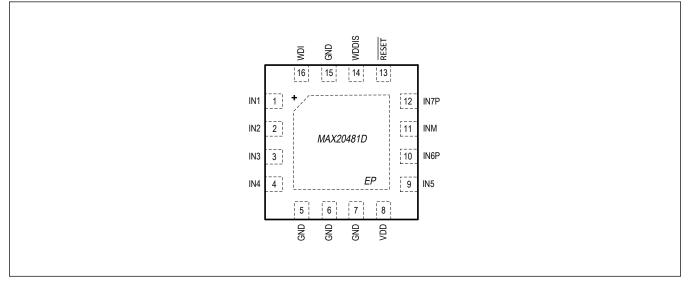

Four- to Seven-Input Automotive Power-System Monitor Family

Pin Configurations

MAX20481A: 4-Channel Monitor



MAX20481B: 5-Channel Monitor



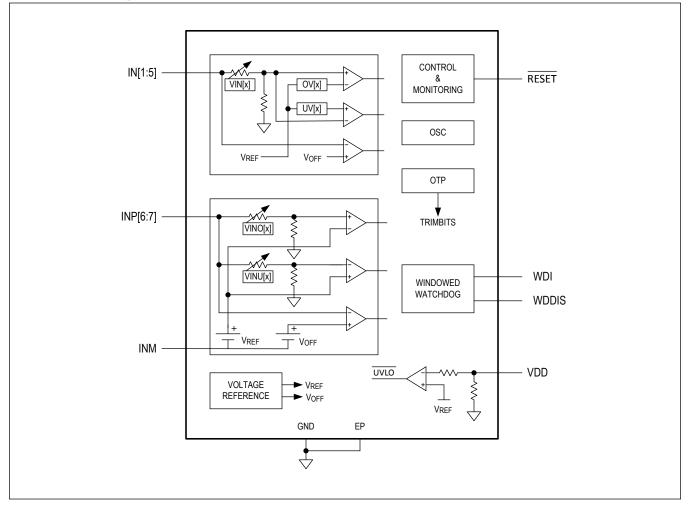
Four- to Seven-Input Automotive Power-System Monitor Family

MAX20481C: 6-Channel Monitor

MAX20481D: 7-Channel Monitor

Pin Description

	P	IN		NAME	FUNCTION		
MAX20481A	MAX20481B	MAX20481C	MAX20481D	NAME	FUNCTION		
MAX20481							
1	1	1	1	IN1	Input Voltage Monitor 1		
2	2	2	2	IN2	Input Voltage Monitor 2		
3	3	3	3	IN3	Input Voltage Monitor 3		
4	4	4	4	IN4	Input Voltage Monitor 4		
5, 6, 7	5, 6, 7	5, 6, 7	5, 6, 7	GND	Ground. Connect all grounds together at the EP.		


Four- to Seven-Input Automotive Power-System Monitor Family

Pin Description (continued)

	Р	IN		NAME	FUNCTION			
MAX20481A	MAX20481B	MAX20481C	MAX20481D	NAME				
8	8	8	8	VDD	Input Supply Voltage. Connect a 0.1μ F capacitor between V _{DD} and GND and place close to the IC.			
9	-	-	-	GND	Ground. Connect all grounds together at the EP.			
-	9	9	9	IN5	Input Voltage Monitor 5			
10	10	-	-	GND	Ground. Connect all grounds together at the EP.			
-	-	10	10	IN6P	Differential Input Voltage Monitor 6			
11	11	-	-	GND	Ground. Connect all grounds together at the EP.			
-	-	11	11	INM	Common Negative Input for Voltage Monitors 6 and 7.			
12	12	12	-	GND	Ground. Connect all grounds together at the EP.			
-	-	-	12	IN7P	Differential Input Voltage Monitor 7			
13	13	13	13	RESET	RESET Output. Open-drain output that signals a status change. Can be mapped to any combination of input monitors to indicate that they are within nominal operating range. Connect to logic supply with a pullup resistor.			
14	14	14	14	WDDIS	Watchdog Disable. Connect to GND to enable windowed watchdog. Connect to V_{DD} to disable watchdog.			
15	15	15	15	GND	Ground. Connect all grounds together at the EP.			
16	16	16	16	WDI	Watchdog Input. A low-to-high transition will refresh the watchdog. This pin is only available on the MAX20481 version.			
-	-	-	-	EP	Exposed Pad. Connect to ground. Does not serve as a substitute for a proper GND pin connection.			

Four- to Seven-Input Automotive Power-System Monitor Family

Functional Diagrams

Detailed Description

The MAX20481 is an ASIL B-compliant SoC power-system monitor. It has up to 7 channels voltage monitors to supervise system power rails, and a windowed watchdog for SoC/MCU monitoring. The system features numerous checks and redundancies to maintain a high performance level and meet ASIL B reliability specifications.

Voltage Monitor

The MAX20481 IC has up to seven voltage-monitor channels available for system power rails. Five of the monitors have single-ended inputs. For these channels, a nominal voltage is set first and OV/UV thresholds (as a percentage of that nominal voltage setting) are set second. The remaining two monitors have differential inputs and share a remote ground-sense pin (INM). Unlike the other monitors, which have a nominal voltage + %OV/UV configuration, the two differential inputs have completely independent OV and UV comparators. Each comparator can be configured with a separate reference voltage.

Monitor channels IN1 through IN5 have the single-ended configuration, with OV/UV thresholds independently configurable from $\pm 2.5\%$ to $\pm 10\%$ in 0.5% steps. IN1 through IN4 have a nominal voltage set-point range of 0.50V to 3.6875V, while IN5 has an extended range of 0.50V to 5.50V. IN6P and IN7P have the differential configuration. Their OV and UV set points can range from 0.50V to 1.775V; these measurements are with respect to the voltage difference between the INxP supply and INM remote ground-sense pins. Every monitor channel also has an OFF comparator that asserts when the monitor input voltage falls below 0.25V (typ).

Modern SoCs and processors can require a large amount of supply current, which may cause small offsets in ground voltages (even when using multiple large ground planes). To account for this when using the differential channels, route the INM pin separately from ground and connect to a point near where the IN6P and IN7P lines are connected. If this feature is not necessary, the INM pin can be grounded directly at the IC. The comparators on the voltage monitors are designed to respond quickly for applications that require rapid response to voltage fluctuations. If a slower response is desired, an RC filter can be added between the IC pin and the monitored voltage rail. If an RC filter is implemented, the value of the resistor should be kept low to avoid artificial voltage shift at the IC pins. Because each IN_ pin draws a few microamperes of current, the filter resistor value should be $1k\Omega$ or less.

Windowed Watchdog and Reset Control

The IC also contains a windowed watchdog for external SoC monitoring. The closed and open windows are independently configurable, as well as the main watchdog clock (which can range from 200µs/tick to 12.8ms/tick). Because the watchdog is meant to supervise a processor system, it features an extended first-update window: when the IC RESET pin deasserts, the watchdog window is immediately opened and extended to provide extra time for an SoC to finish any boot sequences before being required to update the watchdog. (The specific length of the extended first-update window is configurable as well.) The watchdog is refreshed through a dedicated pin on the IC (the WDI pin). A low-to-high transition triggers a refresh of the watchdog. For system programming at the factory, there is also an active-high watchdog disable pin (WDDIS). Pulling the pin high disables the watchdog functionality while leaving the voltage monitors fully active. The watchdog will trigger an error signal on both too-early or too-late update faults. It can be configured to assert RESET on every update violation, or only after encountering two consecutive violations. The watchdog is inactive while the RESET pin is asserted low (for any fault condition).

Watchdog Window Settings

A regular watchdog window consists of two parts: an initial (closed) window during which updates are not allowed, and a second (open) window during which updates are accepted. For a given watchdog clock rate t_{WDCLK} (set according to the WDCDIV register), the two window lengths are as follows:

 $t_{CLO} = t_{WDCLK} \times 8 \times WDCFG1.CLO[3:0]$

 $t_{OPN} = t_{WDCLK} \times 8 \times WDCFG1.OPN[3:0]$

If a refresh is sent to the IC during the closed window, the IC asserts a fault and restarts the watchdog once RESET deasserts. When the IC receives a valid refresh, it will immediately transition to a new closed window. It will not finish the existing open window. The first cycle encountered once the watchdog starts (either on power-on reset or once RESET deasserts) is different from the typical closed/open cycle. It has no closed window, and is longer than a normal cycle.

Four- to Seven-Input Automotive Power-System Monitor Family

This is to allow for an SoC or MCU to run through a boot sequence that may take longer than the usual watchdog cycle. The length of the first update window is an odd multiple of the sum of the normal closed and open windows: $t_{1UD} = (t_{OPN} + t_{CLO}) \times (1 + 2 \times WDCFG2.1UD[2 : 0])$

RESET Output

The device features an open-drain interrupt/reset output that asserts low when any mapped fault conditions occur. RESET remains asserted for a fixed timeout period after all triggering fault conditions are removed. The fixed timeout period can be set to 6μ s, 8ms, 16ms, or 32ms. The RESET pin works as an open-drain output. To obtain a logic signal, place a pullup resistor between the RESET pin and system I/O voltage (10k Ω to 100k Ω recommended for reduced current consumption). Mapping of this pin to selected fault sources is fully programmable.

Four- to Seven-Input Automotive Power-System Monitor Family

Register Map

Top Level

ADDRESS	NAME	MSB							LSB
General Co	nfiguration	I		I				1	
0x01	CONFIG1[7:0]	-	_	_	_	_	_	MBST	-
Voltage Mo	nitor System								
0x04	RSTMAP[7:0]	PARM	IN7	IN6	IN5	IN4	IN3	IN2	IN1
0x08	<u>VIN1[7:0]</u>			•	D[7:0]			
0x09	<u>VIN2[7:0]</u>				D[]	7:0]			
0x0A	<u>VIN3[7:0]</u>				D[]	7:0]			
0x0B	<u>VIN4[7:0]</u>				D[7:0]			
0x0C	<u>VIN5[7:0]</u>				D[7:0]			
0x0D	<u>VINO6[7:0]</u>				D[7:0]			
0x0E	<u>VINU6[7:0]</u>				D[7:0]			
0x0F	<u>VINO7[7:0]</u>				D[]	7:0]			
0x10	<u>VINU7[7:0]</u>				D[7:0]			
0x11	<u>OVUV1[7:0]</u>		OV[[3:0]			UV	[3:0]	
0x12	<u>OVUV2[7:0]</u>		OV	[3:0]			UV	[3:0]	
0x13	<u>OVUV3[7:0]</u>		OV[[3:0]			UV	[3:0]	
0x14	<u>OVUV4[7:0]</u>		OV	[3:0]			UV	[3:0]	
0x15	<u>OVUV5[7:0]</u>		OV[3:0] UV[3:0]						
Watchdog a	and RESET Control								
0x27	WDCDIV[7:0]	_	_	WDIV[5:0]					
0x28	WDCFG1[7:0]		CLO	D[3:0] OPN[3:0]					
0x29	WDCFG2[7:0]	_	_	-	-	WDEN		1UD[2:0]	
0x2C	RSTCTRL[7:0]	-	-	_	-	-	MR1	RHLI	D[1:0]

Register Details

CONFIG1 (0x01)

Configuration Register 1

BIT	7	6	5	4		3	2	1	0	
Field	-	-	-	-		-	-	MBST	-	
Reset	_	-	-	-		_	-	OTP	-	
Access Type	_	-	-	_		_	-	Write, Read	-	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
MBST	1	When set, a	It-In Self-Test Mapping. en set, <u>any comparator that fails BIST will</u> se the RESET pin to be asserted.				0: BIST for OV/UV/OFF comparators not mapped to RESET pin 1: BIST for OV/UV/OFF comparators mapped to RESET pin			

Four- to Seven-Input Automotive Power-System Monitor Family

RSTMAP (0x4)

Interrupt Mapping

BIT	7	6	5	4		3	2	1	0	
Field	PARM	IN7	IN6	IN5		IN4	IN3	IN2	IN1	
Reset	OTP	OTP	OTP	OTP		OTP	OTP	OTP	OTP	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
PARM	7			arity check failu	ıre	1: Any p): Parity faults are not mapped to the RESET pin. : Any parity fault will cause the RESET pin to be asserted.			
IN7	6			/UV assertions gger.	will	0: OV/UV faults are not mapped to the RESET pin. 1: OV/UV faults are mapped to the RESET pin.				
IN6	5			/UV assertions gger.	will			t mapped to the pped to the RE		
IN5	4			/UV assertions gger.	will		: OV/UV faults are not mapped to the RESET pin. : OV/UV faults are mapped to the RESET pin.			
IN4	3			/UV assertions gger.	will	0: OV/UV faults are not mapped to the RESET pin. 1: OV/UV faults are mapped to the RESET pin.				
IN3	2			/UV assertions gger.	will			t mapped to <u>the</u> upped to the RE		
IN2	1			/UV assertions gger.	will	 0: OV/UV faults are not mapped to the RESET pin. 1: OV/UV faults are mapped to the RESET pin. 				
IN1	0			/UV assertions gger.	will			t mapped to the pred to the RE		

<u>VIN1 (0x8)</u>

IN1 Nominal Voltage Set Point

BIT	7	6	5	4	3	2	1	0				
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0	Nominal Rail Voltage V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)										

<u>VIN2 (0x9)</u>

IN2 Nominal Voltage Set Point

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	2	1	0				
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0	7:0 Nominal Rail Voltage V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)										

<u>VIN3 (0xA)</u>

IN3 Nominal Voltage Set Point

BIT	7	6	5	4	3	2	1	0		
Field			1	D[7	7:0]	i				
Reset				0	TP					
Access Type		Write, Read								
BITFIELD	BITS		DESCRIPT	ION		0	ECODE			
D	7:0	7:0 Nominal Rail Voltage V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V 3.6875V)						.5V to		

<u>VIN4 (0xB)</u>

IN4 Nominal Voltage Set Point

BIT	7	7 6 5 4 3 2 1 0										
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0 Nominal Rail Voltage V _{NOM} = 500mV + 12.5mV x D[7:0] (0.5V to 3.6875V)											

VIN5 (0xC)

IN5 Nominal Voltage Set Point BIT 7 6 5 4 3 2 1 0 Field D[7:0] OTP Reset Access Write, Read Туре DECODE BITFIELD BITS DESCRIPTION V_{NOM} = 500mV + 20mV x D[7:0] (0.5V to 5.6V) D 7:0 Nominal Rail Voltage

VINO6 (0xD)

IN6 Overvoltage Threshold Set Point

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3		2	1	0			
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0	OV Threshold V _{OV6} = 500mV + 5mV x D[7:0] (0.5V to 1.775V)							to 1.775V)			

<u>VINU6 (0xE)</u>

IN6 Undervoltage Threshold Set Point

BIT	7	6	5	4	3	2	1	0				
Field		D[7:0]										
Reset		OTP										
Access Type		Write, Read										
BITFIELD	BITS	BITS DESCRIPTION DECODE										
D	7:0	UV Threshold V _{UV6} = 500mV + 5mV x D[7:0] (0.5V to 1.775V)										

<u>VINO7 (0xF)</u>

IN7 Overvoltage Threshold Set Point

	Ϋ́ Ι							1					
BIT	7	6	5	4	3	2	1	0					
Field		D[7:0]											
Reset		OTP											
Access Type		Write, Read											
BITFIELD	BITS	BITS DESCRIPTION DECODE											
D	7:0	OV Threshold V _{OV7} = 500mV + 5mV x D[7:0] (0.5V to 1.775V)											

VINU7 (0x10)

IN7 Undervoltage Threshold Set Point

BIT	7	6	5	4	3	2	1	0			
Field		D[7:0]									
Reset		OTP									
Access Type				Write,	Read						
BITFIELD	BITS	ITS DESCRIPTION DECODE									
D	7:0	UV Threshold V _{UV7} = 500mV + 5mV x D[7:0] (0.5V to 1.775V)									

<u>OVUV1 (0x11)</u>

IN1 Overvoltage and Undervoltage Thresholds

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4	3	2	1	0		
Field		OV[[3:0]			UV[3:0]				
Reset		0	ΓP		OTP					
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OV	7:4	IN1 Overvol	tage Threshold	ł	OV (%) = 102.5% + 0.5% x OV[3:0]					
UV	3:0	IN1 Undervo	ltage Thresho	ld	UV (%) = 97.5% - 0.5% x UV[3:0]					

OVUV2 (0x12)

IN2 Overvoltage and Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0		
Field		OV[[3:0]			UV[3:0]				
Reset		0	TP			OTP				
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
OV	7:4	IN2 Overvol	tage Threshold	1	OV (%) = 102.5% + 0.5% x OV[3:0]					
UV	3:0	IN2 Undervo	oltage Thresho	ld	UV (%) = 97.5% - 0.5% x UV[3:0]					

<u>OVUV3 (0x13)</u>

IN3 Overvoltage and Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0			
Field		OV	[3:0]			UV[3:0]					
Reset		0.	TP			OTP					
Access Type		Write,	Read			Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE					
OV	7:4	IN3 Overvol	tage Threshold	t	OV (%	OV (%) = 102.5% + 0.5% x OV[3:0]					
UV	3:0	IN3 Undervo	oltage Thresho	ld	UV (%) = 97.5% - 0.5% x UV[3:0]						

OVUV4 (0x14)

IN4 Overvoltage and Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0			
Field		OV	[3:0]			UV[3:0]					
Reset		0.	TP			OTP					
Access Type		Write,	Read			Write, Read					
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
OV	7:4	IN4 Overvol	tage Threshold	ł	OV (%)	OV (%) = 102.5% + 0.5% x OV[3:0]					
UV	3:0	IN4 Undervo	oltage Thresho	ld	UV (%)	UV (%) = 97.5% - 0.5% x UV[3:0]					

Four- to Seven-Input Automotive Power-System Monitor Family

OVUV5 (0x15)

IN5 Overvoltage and Undervoltage Thresholds

BIT	7	6	5	4	3	2	1	0			
Field		OV	3:0]			UV[3:0]					
Reset		0	ГР			OTP					
Access Type		Write,	Read			Write, Read					
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
OV	7:4	IN5 Overvol	age Threshold		OV (%)	OV (%) = 102.5% + 0.5% x OV[3:0]					
UV	3:0	IN5 Undervo	ltage Threshol	ld	UV (%)	UV (%) = 97.5% - 0.5% x UV[3:0]					

WDCDIV (0x27)

Watchdog Mode and Clock Divider

BIT	7	6	5	4	3	2	1	0		
Field	_	-		WDIV[5:0]						
Reset	-	-		OTP						
Access Type	-	-	Write, Read							
BITFIELD	BITS		DESCRIPT	ION		DECODE				
WDIV	5:0	The main os supplied to t	Clock Divider. Scillator is divide he watchdog s S further dividin	ed by 32 and ubsystem. This g of the clock.	, ^t wdclk	(= (WDIV[5:0]	+ 1) x 25µs x 8	3		

WDCFG1 (0x28)

Watchdog Configuration Register 1

BIT	7	6	5	4	3	2	1	0		
Field		CLO	[3:0]			OPI	v[3:0]			
Reset		0	ΓP			0	TP			
Access Type		Write,	Read		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
CLO	7:4	Sets the len	Watchdog Closed Window. Sets the length of the first portion of a watchdog period, where updates are rejected.			(CLO[3:0] + 1)	x 8 x t _{WDCLK}			
OPN	3:0	Watchdog Open Window. Sets the length of the second portion of a watchdog period, where updates are accepted.			t _{OPN} =	(OPN[3:0] + 1)	x 8 x t _{WDCLK}			

WDCFG2 (0x29)

Watchdog Configuration Register 2

Four- to Seven-Input Automotive Power-System Monitor Family

BIT	7	6	5	4		3	2	1	0
Field	-	-	-	-	V	VDEN	1UD[2:0]		
Reset	-	_	-	-		OTP	OTP		
Access Type	-	-	_	_	Rea	ad Only	/ Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
WDEN	3								
1UD	2:0	First Update first open wi	First Update Extension. Sets the length of the first open window after RESET deassertion.				(t _{CLO} + t _{OPN})	x (1UD[2:0] x 2	! + 1)

RSTCTRL (0x2C)

RESET Control

BIT	7	6	5	4		3 2 1		0	
Field	-	-					MR1	IR1 RHLD[1:0]	
Reset	-	-	-	_		_	OTP	0	TP
Access Type	-	-	-			-	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			DECODE		
MR1	2	Assertion. This determ asserted on	Assertion. This determines whether the RESET pin is				T will assert af T will assert or s. Valid update if one violation	nly after two co s will reset the	nsecutive violation
RHLD	1:0	This is the a remains low	This is the amount of time that the RESET pin remains low after the removal of any event that would cause the RESET pin to assert			00: 0ms (6μs typ, used for interrupt-style functionality) 01: 8ms 10: 16ms 11: 32ms			yle

Applications Information

Diagnostics

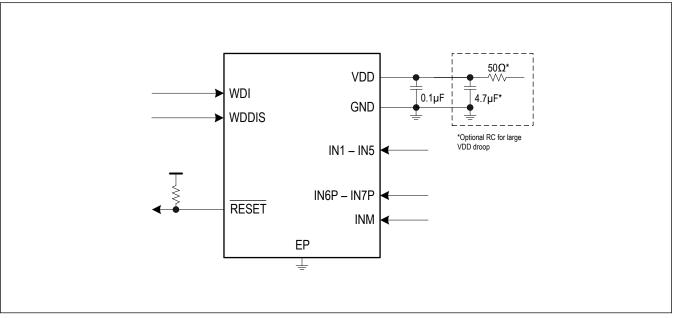

The MAX20481 is ASIL B-compliant in a standalone monitor role. In addition to out-of-bounds voltage rails and watchdog faults, the IC can also use the RESET pin to communicate various internal faults, including register parity-check failures, oscillator faults, and comparator BIST results. Internal OTP configuration information is protected by an automatic single-error-correcting coding scheme. For full safety-related information, contact Maxim Integrated.

Table 1. Diagnostics

FAULT	DIAGNOSTIC COVERAGE
Short to GND/V _{DD} on IN[x] pins	OV/UV comparators assert depending on voltage
Open on IN[x] pins	UV/OFF comparators assert
IN[x] comparator fault	Built-in self-test operates at power-on and can communicate faults through RESET pin
Short to GND on V_{DD} pin	RESET is pulled low (if connected to same supply as IC)
Open on V _{DD} pin	Can be detected through host-induced test
Open GND pin	RESET can still assert down to one body diode above system ground. Persistent UV conditions will occur if monitored rails are operational.
Short to V _{DD} on RESET	Can be detected through host-induced test
Open on RESET pin	Can be detected through host-induced test
Internal watchdog block failure	Can be detected through host-induced test

Typical Application Circuits

Four- to Seven-Input Automotive Power-System Monitor Family

Ordering Information

PART	Ch1 (V)	Ch2 (V)	Ch3 (V)	Ch4 (V)	CH5 (V)	Ch6 OV (V)	Ch6 UV (V)	Ch7 OV (V)	Ch7 UV (V)
MAX20481AATEB/VY+*	1.8000	2.8000	0.5000	0.5000	—	—	_	—	—
MAX20481AATEC/VY+	3.3000	1.8000	1.1500	0.5000	—	—	—	—	—
MAX20481BATEA/VY+	1.0250	1.8000	1.3500	3.3000	1.2000	—	_	—	—
MAX20481CATEA/VY+	3.300	1.8000	2.5000	0.5000	1.1000	1.0050	0.8350	—	—

Y denotes a side-wettable package.

N+ denotes an automotive-qualified part.

+Denotes a lead(Pb)-free/RoHS-compliant package.

*Future product—contact factory for availability.

For variants with different options, contact the factory.

Devices are also available in tape-and-reel packaging. Specify tape and reel by adding "T" to the part number when ordering.

Four- to Seven-Input Automotive Power-System Monitor Family

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/19	Initial release	—
1	8/19	Added Typical Operating Characteristics	7
2	1/20	Updated <u>General Description</u> , <u>Benefits and Features</u> , <u>Pin Configurations</u> , and <u>Detailed Description</u>	1, 8, 9, 13
3	9/20	Updated Electrical Characteristics and Functional Diagrams	6, 11
4	5/21	Updated Package Information	3
5	6/21	Updated Ordering Information table	13
6	12/21	Added Register Map, <u>ASIL Diagnostics</u> section, and MAX20481BATEA/VY+ to <u>Ordering Information</u> table	14–20, 21, 22

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.