Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

General Description

The MAX25611 evaluation kit (EV kit) provides a proven design to evaluate the MAX25611A/MAX25611B/MAX25611C/MAX25611D automotive high-voltage, high-brightness LED (HB LED) controller. The EV kit is set up for boost and buck-boost configurations and operates from a 6V to 18V DC supply voltage. The EV kit is configured to deliver up to 0.88A to one string of LEDs. The total voltage of the string can vary from 3V to 36V. The anode of the LED string should be connected to the LED+terminal. The cathode of the LED string can be connected either to GND (boost mode) or IN (buck-boost mode). In the case of boost mode, the input voltage should not exceed the LED string voltage.

Benefits and Features

- Configured for Boost and Buck-Boost Application
- Analog Dimming Control
- Proven PCB Layout
- Fully Assembled and Tested Feature

Ordering Information appears at end of data sheet.

Quick Start

Required Equipment

- MAX25611 EV kit
- 12V, 5A DC power supply
- A series-connected LED string rated at least 1A
- Oscilloscope with a current probe

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation. **Caution: Do not turn on power supply until all connections are made.**

- 1) Verify that all jumpers (J1, J2, and J7) are in their default positions, as shown in Table 1.
- Connect the positive terminal of the 12V supply to the VIN PCB pad and the negative terminal to the nearest GND PCB pad.
- 3) Connect the LED string across the LED+ and LED-PCB pads on the EV kit for buck-boost configuration. For boost configuration, connect the LED string across the LED+ and GND PCB pads on the EV kit. The LED string voltage should be higher than the input voltage in this configuration.
- 4) Clip the current probe on the wire connected to the LED string.
- 5) Turn on the DC power supply.
- 6) Verify that the LEDs turn on.
- 7) Verify that the oscilloscope displays approximately 0.88A.

Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

Detailed Description

The MAX25611 EV kit provides a proven design to evaluate the MAX25611A/MAX25611B/MAX25611C/MAX25611D high-voltage HB LED driver with integrated high-side current sense. The EV kit is set up for boost and buck-boost configurations and operates from a 6V to 18V DC supply voltage. The string-forward voltage can vary from 3V to 36V. The EV kit is optimized for 0.8A and a series of 8 LEDs in a string. Other configurations may require changes to component values.

Analog Dimming Control (REFI)

When J2 is installed across pins 1-2, the LED current is set at the maximum current. The REFI pin is connected to VCC and in this case, the LED current is given by the following equation:

$$I_{LED} = \frac{220\,mV}{R14}$$

In the case of the EV kit, I_{LED} is set to 0.88A.

When J2 is installed across pins 2-3, the REFI pin is connected to the voltage-divider of R1 and R2, which sets the REFI voltage. If V_{REFI} < 1.2V, then V_{REFI} sets the LED current level.

$$I_{LED} = \frac{\left(V_{REFI} - 0.2 V\right)}{5 \times R14}$$

Alternatively, the analog dimming can be controlled by removing the shunt on J2 and applying a voltage between 0 and 5.5V on the REFI test point on the EV kit. REFI voltages above 1.3V are limited to an equivalent of 1.3V inside the IC.

Pulse-Dimming Input (PWMDIM)

The EV kit demonstrates the PWM dimming feature of the buck controller using either an external PWM signal, or a DC voltage at the DIM pin.

Analog-to-PWM dimming: Install a shunt across J1 (1-2). Adjust the potentiometer R18 to set a DC voltage on the PWMDIM pin. The PWM dimming duty cycle is set by the voltage at PWMDIM between 0.2V (0% duty) and 3V (100% duty). Alternatively, drive the PWMDIM testpoint with an external DC source. PWMDIM voltages above 3V set the dimming duty cycle to 100%.

Direct PWM dimming: Leave J1 open and connect a PWM signal to the PWMDIM testpoint. Vary the duty cycle to increase or decrease the intensity of the HB LED string. The PWMDIM input of the device has a 2V (max) rising threshold and a 0.8V (min) falling threshold and is compatible with 3.3V and 5V logic-level signals. Uninstall C2 to achieve fast PWMDIM rise and fall edges at the IC pin.

Table 1. MAX25611 EV Kit Jumper Descriptions

JUMPER	SHUNT POSITION	DESCRIPTION				
	1-2*	Connects the PWMDIM pin of the device to VCC through a voltage divider formed by R13 and R18. The dimming duty cycle is adjusted from 0% to 100% for PWMDIM level between 0.2V and 3V. The dimming frequency is internally set at 200Hz.				
J1	2-3	Connects the PWMDIM pin to ground to disable the analog dimming function and keep the IC off.				
31	Open	Connect an external function generator to drive the PWMDIM pin with a signal from 0 to 3.3V or higher. PWMDIM pulse width should be at least above one switching period. Recommended PWMDIM frequency range is from 200Hz to 2kHz for visible LEDs. IR LEDs can operate at lower frequencies where flicker is not visible.				
	1-2*	Connects VCC to the REFI pin. LED current is at the maximum value of 0.88A in this configuration.				
J2	2-3	Connects the REFI pin of the device to VCC through a voltage divider formed by R1 and R2. Adjusting R2 allows programming the LED current from 0 to 0.88A for REFI levels from 0.2V to 1.3V. For REFI voltages above 1.3V, the LED current is limited at 0.88A.				
	Open	Connect an external voltage source to set the LED current from 0 to 0.88A for REFI levels from 0.2V to 1.3V. For REFI voltages above 1.3V, the LED current is limited at 0.88A.				
J7	1-2*	Connects the IN pin to the same input supply as the boost power stage through a 10Ω filter resistor.				
J/	Open	Connect an external supply voltage greater than 4.7V to J7 pin 2 to bias the IC IN pin.				

^{*}Default position.

Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

2.2MHz Operation

The EV kit can be used to evaluate 2.2MHz operation. To test the 2.2MHz application:

- Change the IC to MAX25611B (provided).
- Change L2 to 2.2µH.
- Change C9 to 0.22μF. R6 remains at 50Ω.
- Output capacitance can be reduced to 1x 4.7µF. Note that short pulse widths at low frequencies benefit from having higher total output capacitance to counter leakage currents that discharge the output voltage before the next pulse.
- Change other components as required (e.g., MOSFET, FET current sense R9, LED current sense R14).

High-Beam/Low-Beam Application

The EV kit can be used to evaluate high-beam/low-beam switching applications. Connect the low-beam LED string across LED+ and HB_LED+, and the high-beam LED string across HB_LED+ and GND. Use a function generator or a DC source to drive the HIGHBEAM_OFF pad to 5V or GND to disabled or enable the high-beam LEDs. Slew rate control of the driving signal, or adjustment of R19 and C17 values can be used to control the transition of the Q3 shunting FET to minimize surge currents through the low-beam LEDs.

Latch Circuit

The latch circuit proves HB+LED+ short-to-battery protection by disabling the shunt FET gate. This prevents the shunt FET from shorting out the battery. The latch is reset by removing power to recycle VCC.

Voltage Regulator Configuration

The EV kit can be reconfigured as a voltage regulator using R27 and R28 as the voltage feedback resistor divider, after removing R14.

$$V_{OUT} = \frac{\left(V_{REFI} - 0.2\right)}{5} \times \frac{\left(R27 + R28\right)}{R27}$$

Setting V_{REFI} = 1.2V selects a large feedback signal for better accuracy and noise immunity. For simplicity, select R27 to match the programmed regulation voltage across ISENSEP and ISENSEN. For example, with V_{REFI} = 1.2V, V(ISENSEP - ISENSEN) = 200mV, and R27 should be 200 Ω . This makes 1mV per Ω or 1mA down the resistor string, minimizing the error due to ISENSEN leakage current. The calculation for R28 is then simplified to (VOUT - 0.2) x 1000.

The following components should also be changed:

- Power stage components (Q1, L2, D1, R9 and output capacitance) as required for the application (voltage, current rating, etc).
- COMP components (R6, C9, C16) to match the application requirements.
- Remove C14, R17, and Q2.

Ordering Information

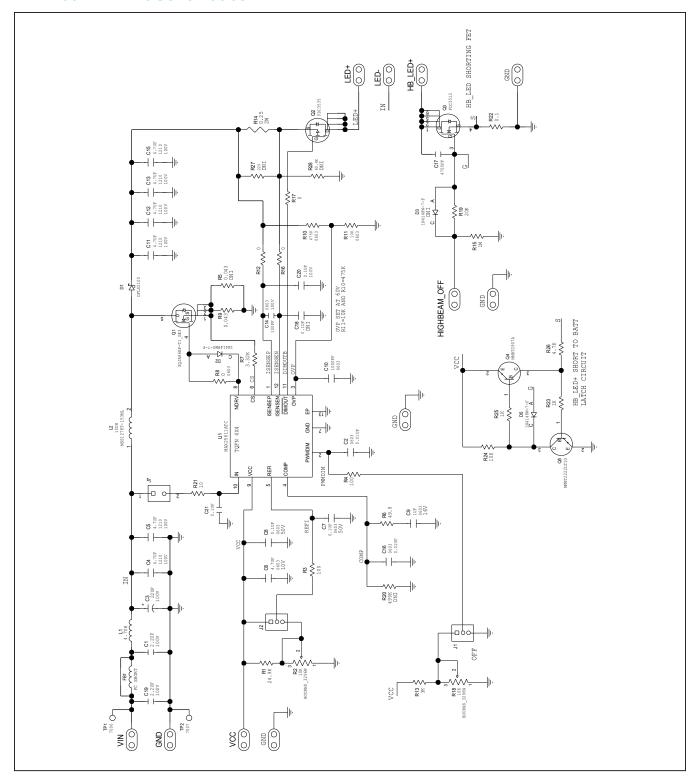
PART	TYPE	
MAX25611EVKIT#	EV Kit	

#Denotes RoHS compliance.

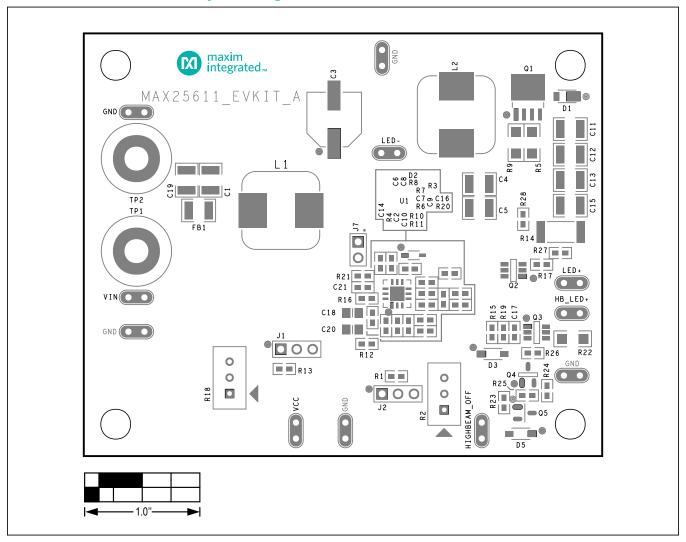
Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

MAX25611 EV Kit Bill of Materials

ITEM	REF_DES	DNI/DNP	QTY	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION	
IICM	KEF_DE3	DNI/DNF	QII.		MANUFACTURER	VALUE	DESCRIPTION	
1	C1, C19	_	2	GRM32ER72A225KA35; CGA6N3X7R2A225K230; CC1210KKX7R0BB225	MURATA;TDK; YAGEO	2.2UF	CAPACITOR; SMT (1210); CERAMIC CHIP; 2.2UF; 100V; TOL = 10%; MODEL = GRM SERIES; TG = -55°C to +125°C; TC = X7R	
2	C2, C16	_	2	CGA3EANP02A103J080AC	TDK	0.01UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.01UF; 100V; TOL = 5%; MODEL = MULTILAYER CERAMIC CHIP CAPACITOR; TC = NPO	
3	C3	_	1	EEE-TG2A220UP	PANASONIC	22UF	CAPACITOR; SMT (CASE_F); ALUMINUM-ELECTROLYTIC; 22UF; 100V; TOL = 20%; MODEL = TG SERIES; TG = -40°C TO +125°C	
4	C4, C5, C11-C13, C15	_	6	CGA6M3X7S2A475K200AE; CGA6M3X7S2A475K200AB	TDK;TDK	4.7UF	CAPACITOR; SMT (1210); CERAMIC CHIP; 4.7UF; 100V; TOL = 10%; TG = -55°C TO +125°C; TC = X7S; AUTO	
5	C6	_	1	C1608X6S1A475K	TDK	4.7UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 4.7UF; 10V; TOL = 10%; TG = -55°C TO +105°C; TC = X6S	
6	C7, C8	-	2	GCJ188R71H104KA12; GCM188R71H104K; CGA3E2X7R1H104K080AA	MURATA; MURATA;TDK	0.1UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1UF; 50V; TOL = 10%; TG = .55°C TO +125°C; TC = X7R; AUTO	
7	C9	_	1	GCM188R71C105KA64; CGA3E1X7R1C105K080AC	MURATA;TDK	1UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 1UF; 16V; TOL = 10%; TG = -55°C TO +125°C; TC = X7R; AUTO	
8	C10	_	1	GRM1885C1H102JA01; C1608C0G1H102J080	MURATA;TDK	1000PF	CAPACITOR; SMT (0603); CERAMIC CHIP; 1000PF; 50V; TOL = 5%; TG = -55°C TO +125°C	
9	C14	_	1	C0603C101K1GAC	KEMET	100PF	CAPACITOR; SMT (0603); CERAMIC CHIP; 100PF; 100V; TOL = 10%; MODEL = COG; TG = -55°C TO +125°C; TC = +	
10	C17	-	1	C0603X472J1GAC	KEMET	4700PF	CAPACITOR; SMT (0603); CERAMIC CHIP; 4700PF; 100V; TOL = 5%; MODEL = FT-CAP; TG = -55°C TO +125°C; TC = C0G	
11	C20	-	1	C0805C104J1RAC	KEMET	0.1UF	CAP; SMT (0805); 0.1UF; 5%; 100V; X7R; CERAMIC CHIP	
12	C21	_	1	CGA3E3X7S2A104K080AB	TDK	0.1UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1UF; 100V; TOL = 10%; TG = -55°C TO +125°C; TC = X7S	
13	D1	-	1	DFLS2100	DIODES INCORPORATED	DFLS2100	DIODE; SCH; SMT (POWERDI-123); PIV = 100V; IF = 2A	
14	D2	_	1	1N4148WS-7-F	DIODES INCORPORATED	1N4148WS-7-F	DIODE; SWT; SMT (SOD-323); PIV = 75V; IF = 0.3A	
15	D5	_	1	1N4148W-7-F	DIODES INCORPORATED	1N4148W-7-F	DIODE; SWT; SMT (SOD-123); PIV = 100V; IF = 0.3A; -65°C TO +150°C	
16	FB1	-	1	HF70ACB322513	TDK	52	INDUCTOR; SMT (1210); FERRITE-BEAD; 52; TOL = ±25%; 0.4A; -40°C TO +125°C	
17	GND, HB_LED+, HIGHBEAM_OFF, J3-J6, LED+, LED-, VCC, VIN	_	11	9020 BUSS	WEICO WIRE	MAXIMPAD	EVK KIT PARTS; MAXIM PAD; WIRE; NATURAL; SOLID; WEICO WIRE; SOFT DRAWN BUS TYPE-S; 20AWG	
18	J1, J2	-	2	PCC03SAAN	SULLINS	PCC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 3PINS; -65°C TO +125°C	
19	J7	_	1	PCC02SAAN	SULLINS	PCC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65°C TO +125°C	
20	L1	_	1	MSS1278T-472ML	COILCRAFT	4.7UH	INDUCTOR; SMT; FERRITE BOBBIN CORE; 4.7UH; TOL = ±0.2; 6.2A; -40°C TO +125°C	
21	L2	_	1	MSS1278T-153ML	COILCRAFT	15UH	INDUCTOR; SMT; FERRITE; 15UH; 20%; 4.9A	
22	MH1-MH4	_	4	9032	KEYSTONE	9032	MACHINE FABRICATED; ROUND-THRU HOLE SPACER; NO THREAD; M3.5; 5/8/IN; NYLON	
23	Q1	-	1	SQJA86EP-T1_GE3	VISHAY SILICONIX	SQJA86EP-T1_GE3	TRAN; NCH; SO-8L; PD-(48W); I-(30A); V-(80V)	
24	Q2	_	1	FDC3535	FAIRCHILD SEMICONDUCTOR	FDC3535	TRAN; P-CHANNEL POWER TRENCH MOSFET; PCH; SSOT-6; PD-(1.6W); I-(-2.1A); V-(-80V)	

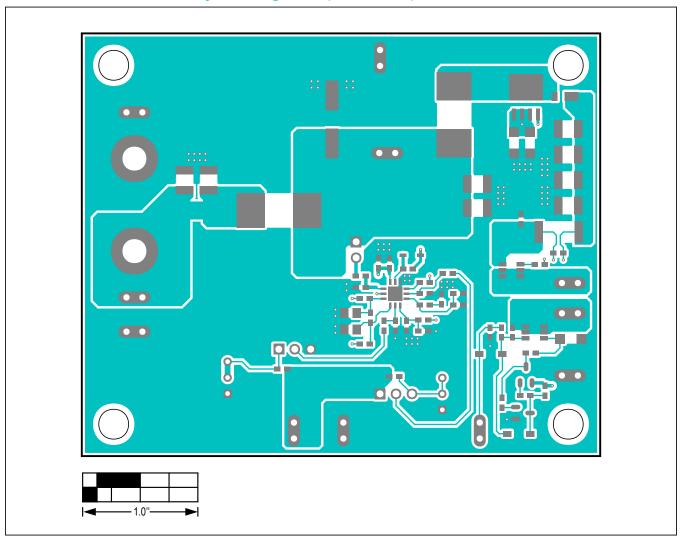

Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

MAX25611 EV Kit Bill of Materials (continued)


ITEM	REF_DES	DNI/DNP	QTY	MFG PART#	MANUFACTURER	VALUE	DESCRIPTION	
25	Q3	-	1	FDC3512	ON SEMICONDUCTOR	FDC3512	TRAN; N-CHANNEL POWERTRENCH MOSFET; NCH; SUPERSOT-6; PD-(1.6W); I-(3A); V-(80V)	
26	Q4	-	1	MMBT2907A	FAIRCHILD SEMICONDUCTOR	MMBT2907A	TRAN; SMALL SIGNAL TRANSISTOR; PNP; SOT-23; PD-(0.35W); IC-(-0.6A); VCEO-(-60V)	
27	Q5	-	1	MMBT2222LT1G	ON SEMICONDUCTOR	MMBT2222LT1G	TRAN; NPN; SOT-23; PD-(0.225W); I-(0.6A); V-(30V)	
28	R1	-	1	CRCW060324K9FK	VISHAY DALE	24.9K	RESISTOR; 0603; 24.9KΩ; 1%; 100PPM; 0.10W; THICK FILM	
29	R2, R18	_	2	3296W-1-103LF	BOURNS	10K	RESISTOR; THROUGH-HOLE-RADIAL LEAD; 3296 SERIES; 10KΩ; 10%; 100PPM; 0.5W; SQUARE TRIMMING POTENTIOMETER; 25 TURNS; MOLDER CERAMIC OVER METAL FILM	
30	R3, R4	-	2	CRCW0603100RFK; ERJ-3EKF1000; RC0603FR-07100RL	VISHAY DALE; PANASONIC	100	RESISTOR; 0603; 100Ω; 1%; 100PPM; 0.10W; THICK FILM	
31	R6	_	1	CRCW060349R9FK	VISHAY DALE	49.9	RESISTOR; 0603; 49.9Ω; 1%; 100PPM; 0.10W; THICK FILM	
32	R7	_	1	CRCW06033K32FK	VISHAY DALE	3.32K	RESISTOR; 0603; 3.32K; 1%; 100PPM; 0.10W; THICK FILM	
33	R8, R12, R16, R17	-	4	CRCW06030000ZS; MCR03EZPJ000; ERJ-3GEY0R00	VISHAY DALE;ROHM; PANASONIC	0	RESISTOR; 0603; 0Ω; 0%; JUMPER; 0.10W; THICK FILM	
34	R9	-	1	ERJ-8CWFR043	PANASONIC	0.043	RESISTOR; 1206; 0.043Ω; 1%; 75PPM; 1W; THICK FILM	
35	R10	_	1	CRCW0603475KFK	VISHAY DALE	475K	RESISTOR; 0603; 475KΩ; 0.1%; 100PPM; 0.1W; THICK FILM	
36	R11	_	1	CRCW060310K0FK; ERJ-3EKF1002	VISHAY DALE; PANASONIC	10K	RESISTOR; 0603; 10K; 1%; 100PPM; 0.10W; THICK FILM	
37	R13	-	1	CRCW06033K00FK	VISHAY DALE	3K	RESISTOR; 0603; 3KΩ; 1%; 100PPM; 0.10W; THICK FILM	
38	R14	-	1	LRC-LR2512LF-01-R250F	TT ELECTRONICS	0.25	RESISTOR; 2512; 0.25Ω; 1%; 100PPM; 2W; THICK FILM	
39	R15	-	1	CRCW06031M00JN	VISHAY DALE	1M	RESISTOR; 0603; 1MΩ; 5%; 200PPM; 0.10W; METAL FILM	
40	R19	-	1	CRCW060320K0JN	VISHAY DALE	20K	RESISTOR; 0603; 20KΩ; 5%; 200PPM; 0.10W; METAL FILM	
41	R21	-	1	ERA-V15J100V	PANASONIC	10	RESISTOR; 0603; 10Ω; 5%; 1500PPM; 0.063W; METAL FILM	
42	R22	_	1	LRC-LR1206LF-01-R100-F	TT ELECTRONICS	0.1	RESISTOR; 1206; 0.1Ω; 1%; 100PPM; 0.5W; THICK FILM	
43	R23, R25	_	2	ERJ-3GEYJ102V	PANASONIC	1K	RESISTOR; 0603; 1KΩ; 5%; 200PPM; 0.10W; THICK FILM	
44	R24	-	1	301-10K-RC	XICON	10K	RESISTOR, 0603, 10KΩ, 5%, 200PPM, 1/16W, THICK FILM	
45	R26	-	1	ERJ-3GEYJ472V	PANASONIC	4.7K	RESISTOR; 0603; 4.7KΩ; 5%; 200PPM; 0.10W; THICK FILM	
46	SU1-SU3	_	3	S1100-B;SX1100-B	KYCON;KYCON	SX1100-B	TEST POINT; JUMPER; STR; TOTAL LENGTH = 0.24IN; BLACK; INSULATION = PBT; PHOSPHOR BRONZE CONTACT = GOLD PLATED	
47	TP1	-	1	7006	KEYSTONE	7006	CONNECTOR; PANELMOUNT; BINDING POST; STRAIGHT THROUGH; 1PIN; RED	
48	TP2	-	1	7007	KEYSTONE	7007	CONNECTOR; PANELMOUNT; BINDING POST; STRAIGHT THROUGH; 1PIN; BLACK	
49	U1	-	1	MAX25611ATC	MAXIM	MAX25611ATC	EVKIT PART - IC; MAX25611ATC; PACKAGE OUTLINE DRAWING: 21-0139; LAND PATTERN DRAWING: 90-0068; TQFN16-EP	
50	PCB	-	1	MAX25611	MAXIM	PCB	PCB:MAX25611	
51	C18	DNP	0	C0805C104J1RAC	KEMET	0.1UF	CAP; SMT (0805); 0.1UF; 5%; 100V; X7R; CERAMIC CHIP	
52	D3	DNP	0	1N4148W-7-F	DIODES INCORPORATED	1N4148W-7-F	DIODE; SWT; SMT (SOD-123); PIV = 100V; IF = 0.3A; -65°C TO +150°C	
53	R5	DNP	0	ERJ-8CWFR043	PANASONIC	0.043	RESISTOR; 1206; 0.043Ω; 1%; 75PPM; 1W; THICK FILM	
54	R20	DNP	0	CRCW0603499KFK	VISHAY DALE	499K	RESISTOR; 0603; 499KΩ; 1%; 100PPM; 0.1W; THICK FILM	
55	R27	DNP	0	CRCW0603220RFK	VISHAY DALE	220	RESISTOR; 0603; 220Ω; 1%; 100PPM; 0.10W; THICK FILM	
56	R28	DNP	0	CRCW060360K4FK	VISHAY DALE	60.4K	RESISTOR, 0603, 60.4KΩ, 1%, 100PPM, 0.1W, THICK FILM	
TOTAL			80					

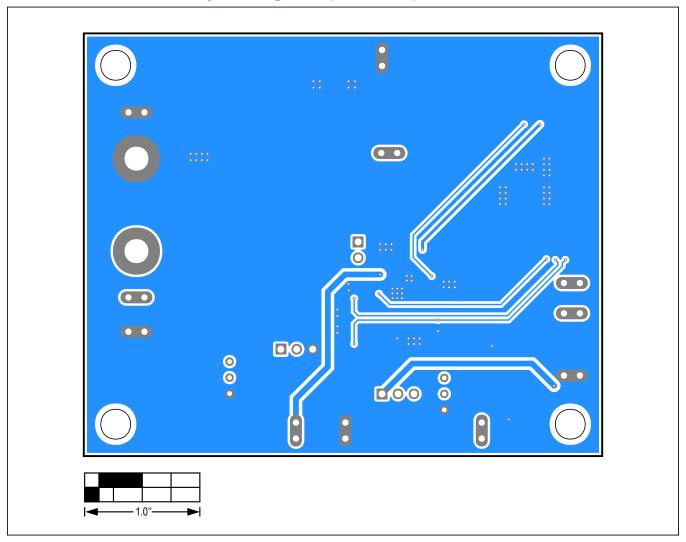
Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

MAX25611 EV Kit Schematics



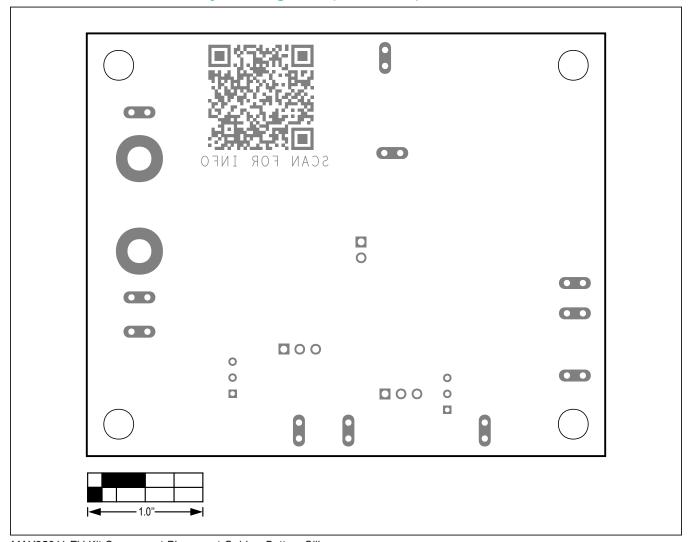
MAX25611 EV Kit PCB Layout Diagrams

MAX25611 EV Kit Component Placement Guide—Top Silkscreen


MAX25611 EV Kit PCB Layout Diagrams (continued)

MAX25611 EV Kit PCB Layout—Top View

MAX25611C/MAX25611D


MAX25611 EV Kit PCB Layout Diagrams (continued)

MAX25611 EV Kit PCB Layout—Bottom View

MAX25611C/MAX25611D

MAX25611 EV Kit PCB Layout Diagrams (continued)

MAX25611 EV Kit Component Placement Guide—Bottom Silkscreen

Evaluates: MAX25611A/MAX25611B/ MAX25611C/MAX25611D

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/19	Initial release	_
1	3/19	Updated parts evaluated to MAX25611A/MAX25611B	1–11
2	9/19	Updated parts evaluated to MAX25611A/MAX25611B/MAX25611C/MAX25611D	1–11

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.