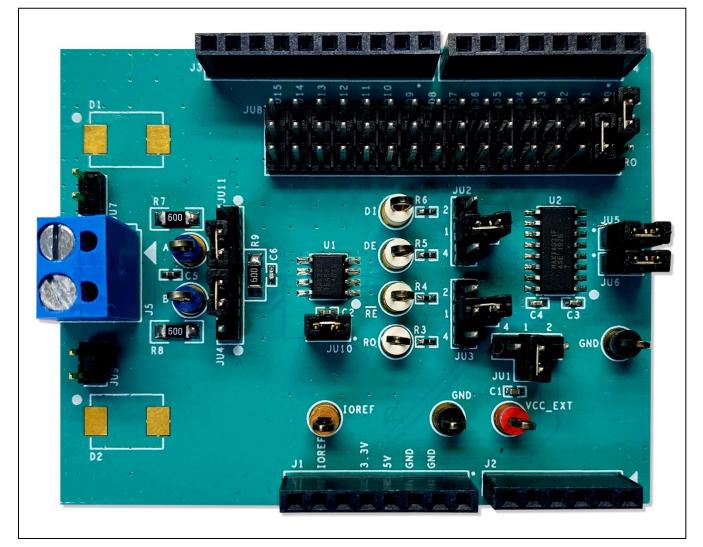
Evaluates: MAX33071E/MAX33070E

General Description


The MAX33071E Shield evaluation kit (EV kit) is a fully assembled and tested printed circuit board (PCB) that demonstrates the functionality of the MAX33071E halfduplex RS-485 transceiver, with \pm 65V fault protection, extended \pm 40V common-mode range, and \pm 40kV ESD Human Body Model (HBM) for A, B data lines. The EV kit features a digital isolator, which is used as a level translator between the RS-485 transceiver and the controller interface.

MAX33071E Shield EV Kit Photo

Features

- Easy Evaluation of the MAX33071E
- I/O Interface Compatibility from 1.71V to 5.5V
- Proven PCB Layout
- Mbed[™]/Arduino[®] Platform Compatible
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

Quick Start

Required Equipment

- MAX33071E Shield EV kit
- 3.3V (or 5V), 500mA DC power supply
- Signal/function generator that can generate 250kHz square wave signal
- Oscilloscope

Procedure

The EV kit is fully assembled and tested. Follow these steps to verify board operation:

- 1. Place the MAX33071E Shield EV kit on a nonconductive surface to ensure that nothing on the PCB gets shorted to the workspace.
- Set JU2 to 1-2 position (DE = 1) and JU3 to 1-4 position (RE = 0). Set all the other jumpers to their default position as shown in <u>Table 1</u>.
- 3. With +3.3V (or 5V) power supply disabled, connect the positive terminal to VCC_EXT and IOREF test points. Connect the negative terminal to the GND test point.
- 4. Connect the positive terminal of the function generator to D0 (pin 1 of J4) and negative terminal to any GND test points on the shield.
- 5. Set function generator to output a 250kHz square wave between 0V and 3.3V (or 5V), and then enable function generator output.
- 6. Turn on the +3.3V (or 5V) DC power supply.
- 7. Connect an oscilloscope probe on D1 (pin 2 of J4) and verify the D1 output signal (RO) matches the D0 input signal (DI).

JUMPER	SHUNT POSITION	DESCRIPTION		
	1-2	VCC is shorted to +5V supply from shield header		
JU1	1-3*	VCC is shorted to VCC_EXT external supply		
JUT	1-4	VCC is shorted to +3.3V supply from shield header		
	Open	VCC is open		
	1-2	DE is shorted to VCC		
JU2	1-3*	DE is connected to level shifter output		
JUZ	1-4	DE is shorted to GND		
	Open	DE is open		
JU3	1-2	RE is shorted to VCC		
	1-3*	RE is connected to level shifter output		
303	1-4	RE is shorted to GND		
	Open	RE is open		
	1-2	Connects 120Ω between A and B		
JU4 & JU11	2-3*	Connects 60Ω between A and B		
	Open	No load is connected between A and B		
	1-2*	Connects POL to D7 of J4		
JU5	Open	Disconnects POL from D7 of J4		
ILIC	1-2*	Connects DE to D6 of J4		
JU6	Open	Disconnects DE from D6 of J4		

Table 1. Jumper Settings

www.maximintegrated.com

JUMPER	SHUNT POSITION	DESCRIPTION	
JU7	1-2*	TVS Diode (DNI) connected to A	
307	Open	TVS Diode (DNI) disconnected from A	
	1-2*	TVS Diode (DNI) connected to B	
JU9	Open	TVS Diode (DNI) disconnected from B	
	1-2*	Connects VCC pin of U1 to supply rail	
JU10	Open	Disconnects VCC pin of U1 from supply rail	

Note: *indicates default jumper state.

Detailed Description of Hardware

The MAX33071E Shield EV kit is a fully assembled and tested circuit board for evaluating the MAX33071E fault-protected half-duplex RS-485 transceiver (U1) with ±65V of fault protection. The EV kit is designed to evaluate MAX33071E alone or in a RS-485 system. The EV kit enables Mbed or Arduroino platform to communicate on a RS-485 bus. The MAX14931 digital isolator is used as a level translator with a 1.71V to 5.5V supply range. Remove the 0 Ω resistor R6 to apply the transmitter input signal directly on the DI test point. Likewise, remove the 0 Ω resistor R3 to measure the receiver output signal directly on the RO test point.

If external protection is desired beyond the device's built-in protection, the shield also features footprints for TVS diodes (D1 and D2) that can be connected to the A and B lines using JU7 and JU9, respectively.

This evaluation kit should be used with the following documents:

- MAX33071E data sheet
- MAX33071E Shield EV kit (this document)

These documents, or links to them, are included on the MAX33071E Shield page. For the latest versions of the documents listed, use this link: www.maximintegrated.com/MAX33071ESHLD

Powering the Board

This EV Kit requires two power supplies: one 3V–5.5V supply for the MAX33071E (U1) transceiver applied at the VCC_EXT test point, and one 1.71V–5.5V supply for the microcontroller domain applied at the IOREF test point. When the EV kit board is used with an Arduino/Mbed board, the power supply for U1 can also come from the Arduino/Mbed board's 3.3V or 5V rail. Place the shunt on 2-3 position of JU1 to connect VCC to VCC_EXT pin. Place the shunt of JU1 on 1-2 position or 1-4 position to connect the VCC of U1 to the Arduino/Mbed 3.3V or 5V supply rail. In this scenario, IOREF is directly taken from the Arduino/Mbed header.

On-Board Termination

A properly terminated RS-485 bus is terminated at each end with the characteristic impedance of the cable. For CAT5 or CAT6 cables, this is typically 120Ω on each end for a 60Ω load on the RS-485 driver. This EV kit features a selectable 60Ω or 120Ω load circuit between the A and B driver outputs. If the board is evaluated in a system and is connected at the end of the cable, then select the 120Ω termination. The termination resistors on the EV kit should be changed to 60Ω with a 100pF load to simulate a complete system load during evaluation.

DI and RO Configuration

Digital channels for DI and RO are selected through JU8. It consists of three columns and 16 rows. The columns labeled DI and RO are connected to MAX33071E through the digital isolator (MAX14931FASE+ (U2)). The middle column is the digital I/O pins, D0 to D15, from the Arduino/Mbed header. This provides flexibility for the user to select different resources on the microcontroller to transmit and receive signals to and from the RS-485 transceiver. <u>Table 2</u> shows the list of JU8 jumper options.

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2*	Connects DI to D0
	4-5	Connects DI to D1
	7-8	Connects DI to D2
	10-11	Connects DI to D3
	13-14	Connects DI to D4
	16-17	Connects DI to D5
	19-20	Connects DI to D6
	22-23	Connects DI to D7
	25-26	Connects DI to D8
	28-29	Connects DI to D9
	31-32	Connects DI to D10
	34-35	Connects DI to D11
	37-38	Connects DI to D12
	40-41	Connects DI to D13
	43-44	Connects DI to D14
JU8	46-47	Connects DI to D15
308	2-3	Connects RO to D0
	5-6*	Connects RO to D1
	8-9	Connects RO to D2
	11-12	Connects RO to D3
	14-15	Connects RO to D4
	17-18	Connects RO to D5
	20-21	Connects RO to D6
	23-24	Connects RO to D7
	26-27	Connects RO to D8
	29-30	Connects RO to D9
	32-33	Connects RO to D10
	35-36	Connects RO to D11
	38-39	Connects RO to D12
	41-42	Connects RO to D13
	44-45	Connects RO to D14
	47-48	Connects RO to D15

Note: *indicates default jumper state.

Flexible Interface Options

The EV kit allows multiple points of connection to the MAX33071E transceiver. This EV kit board could be placed on a Arduino/Mbed compatible board to connect all the digital pins (DI, DE, RO, RE) through the J3, J4 headers. These signals could also be connected directly at their respective test points on the board, bypassing the digital isolator (U2). The A, B signals are connected to a terminal block (J5) to easily connect to a twisted pair cable. Alternately, the A, B test points may be used.

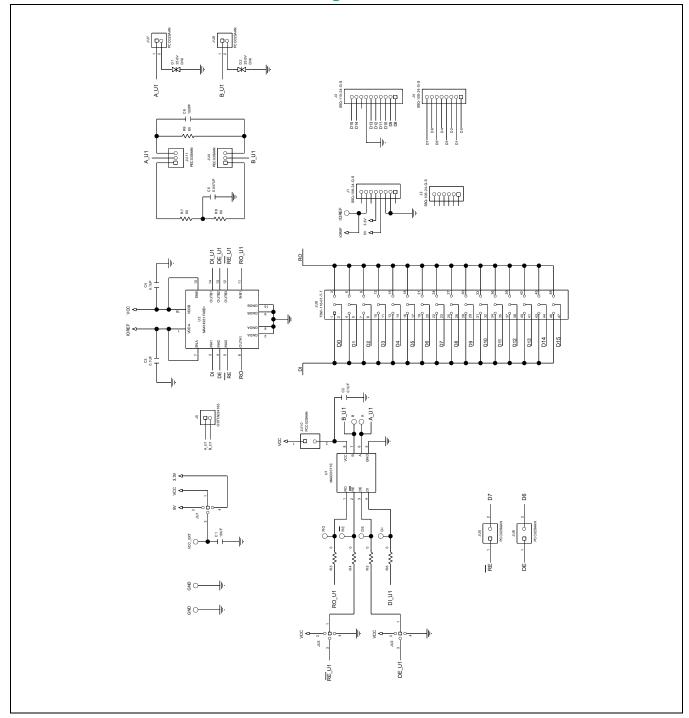
PCB Layout for Thermal Dissipation

PCB layout can affect the performance of the transceiver in conditions with high common-mode voltage at high ambient temperatures. The layout of the EV kit is designed to maximize thermal performance in such cases. Large copper pads are used for all the pins. The GND pad is connected to a large copper plane on the top layer, with vias throughout the plane connecting to the GND plane on the bottom layer. A thick trace from the VCC pad to JU10 allows for greater heat dissipation at the V_{CC} pin.

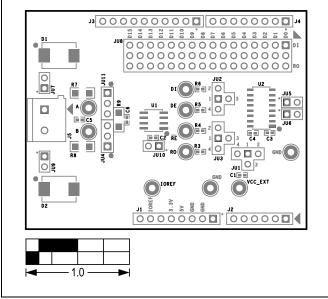
Ordering Information

PART NUMBER	TYPE	
MAX33071ESHLD#	EV Kit	

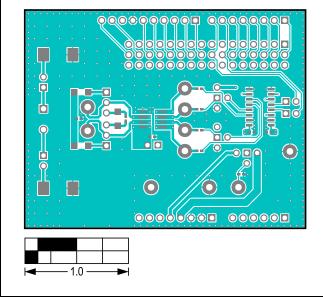
#Denotes RoHS-compliant.

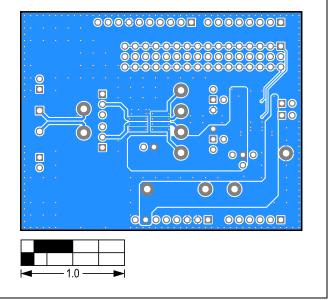

MAX33071E Shield EV Kit Bill of Materials

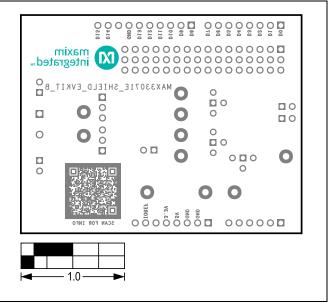
REF_DES	QTY	MFG PART #	VALUE	DESCRIPTION	
A, B	2	5127	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLUE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
C1	1	GRM155R60J106ME44; GRM155R60J106ME47; C1005X5R0J106M050BC; CL05A106MQ5NUN; C0402C106M9PAC	10UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 10UF; 6.3V; TOL=20%; TG=-55 DEGC TO +85 DEGC; TC=X5R	
C2-C4	3	C0402C104J4RAC; GCM155R71C104JA55	0.1UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 0.1UF; 16V; TOL=5%; MODEL=; TG=-55 DEGC TO +125 DEGC; TC=X7R	
C5	1	C1005X7R1E473K050BC; GRM155R71E473K; GCM155R71E473KA55	0.047UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 0.047UF; 25V; TOL=10%; TG=-55 DEGC TO +125 DEGC	
C6	1	C0402C101K5GAC; C1005C0G1H101K050BA	100PF	CAPACITOR; SMT; 0402; CERAMIC; 100pF; 50V; 10%; C0G; -55degC to + 125degC; 0 +/-30PPM/degC	
DE, DI, RE, RO	4	5012	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
IOREF	1	5125	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BROWN PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
J1, J4	2	SSQ-108-24-G-S	SSQ-108-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 8PINS ;	
J2	1	SSQ-106-24-G-S	SSQ-106-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 6PINS ;	
J3	1	SSQ-110-24-G-S	SSQ-110-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 10PINS ;	


MAX33071E Shield EV Kit Bill of Materials (continued)

REF_DES	QTY	MFG PART #	VALUE	DESCRIPTION	
J5	1	OSTTA024163	OSTTA024163	CONNECTOR; FEMALE; THROUGH HOLE; 5.08MM TERM BLOCK CONNECTOR; STRAIGHT; 2PINS; -30 DEGC TO +105 DEGC	
JU1-JU3	3	PEC04SAAN	PEC04SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS	
JU4, JU11	2	PEC03SAAN	PEC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS	
JU5-JU7, JU9, JU10	5	PCC02SAAN	PCC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC	
JU8	1	TSW-116-07-T-T	TSW-116-07-T-T	CONNECTOR; MALE; THROUGH HOLE; 0.025IN SQ POST HEADER; STRAIGHT; 48PINS	
R3-R6	4	ERJ-2GE0R00	0	RESISTOR; 0402; 0 OHM; 0%; JUMPER; 0.10W; THICK FILM	
R7-R9	3	CRCW120660R0KNEAIF	60	RESISTOR; 1206; 60 OHM; 10%; 200PPM; 0.25W; THICK FILM	
SU1-SU3, SU5, SU6, SU8-SU10	8	S1100-B;SX1100- B;STC02SYAN	SX1100-B	TEST POINT; JUMPER; STR; TOTAL LENGTH=0.24IN; BLACK; INSULATION=PBT;PHOSPHOR BRONZE CONTACT=GOLD PLATED	
TP18, TP19	2	5011	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
U1	1	MAX33071EASA+	MAX33071EASA+	EVKIT PART - IC; MAX33071E; CI25 - 70V FAULT PROTECTED HALF DUPLEX RS-485; TRANSCEIVER; PACKAGE OUTLINE DRAWING: 21-0041; LAND PATTERN NUMBER: 90-0096; PACKAGE CODE: S8+4; NSOIC8	
U2	1	MAX14931FASE+	MAX14931FASE+	IC; DISO; 3/1 CHANNEL; 150MBPS; DEFAULT LOW; 2.75KVRMS DIGITAL ISOLATOR; NSOIC16 150MIL	
VCC_EXT	1	5010	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;	
PCB	1	MAX33071ESHIELD	РСВ	PCB:MAX33071ESHIELD	
D1, D2	0	SM15T30CA	25.6V	DIODE; TVS; SMC (DO-214AB); VRM=25.6V; IPP=36A	


MAX33071E Shield EV Kit Schematic Diagram


MAX33071E Shield EV Kit PCB Layout Diagrams


MAX33071E Shield EV Kit PCB Layout Diagram—Top Silkscreen

MAX33071E Shield EV Kit PCB Layout Diagram—Top View

MAX33071E Shield EV Kit PCB Layout Diagram—Bottom View

MAX33071E Shield EV Kit PCB Layout Diagram—Bottom Silkscreen

Evaluates: MAX33071E/MAX33070E

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	3/21	Release for market intro	—

Arduino is a registered trademark of Arduino, LLC. Mbed is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.