Evaluates: MAX33076E

General Description

The MAX33076E Shield is a fully assembled and tested printed circuit board (PCB) that demonstrates the functionality of the MAX33076E quad channel RS-485/422 receivers with data rate up to 20Mbps \pm 65V fault protection, extended \pm 25V common mode input range, and \pm 25kV ESD Human Body Model (HBM). The shield features a digital isolator, which is used as a level translator between the RS-485/422 transceiver and the controller interface.

Features and Benefits

- Easy Evaluation of the MAX33076E
- I/O interface compatibility from 1.71V to 5.5V
- Proven PCB Layout
- Mbed[™]/Arduino[®] Platform Compatible
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

EV Kit Photo

Figure 1. MAX33076E Shield

Arduino is a registered trademark of Arduino LLC. Mbed is a registered trademark and service mark of Arm Limited

319-100811; Rev 0; 09/21

Quick Start

Required Equipment

- MAX33076E Shield
- 5V, 500mA DC power supply
- Signal/function generator that can generate 10MHz square wave signal
- Oscilloscope

Procedure

Follow the steps below to test the MAX33076E Shield as a standalone evaluation board.

- 1. Place the MAX33076E Shield on a nonconductive surface to ensure that nothing on the PCB gets shorted to the workspace.
- 2. Set all the jumpers to their default positions as shown in Table 1.
- 3. With +5V power supply disabled, connect the positive terminal to VCC_EXT test point. Connect the negative terminal to the GND test point.
- 4. For Channel 1 testing, connect the positive terminal of the function generator to A1 test point and the negative terminal to any GND test point on the shield. Connect B1 test point to GND.
- 5. Set function generator output to a 10MHz square wave between -1V and +1V, and then enable function generator output.
- 6. Turn on the +5V DC power supply.
- 7. Connect an oscilloscope probe on Y1 and verify the signals on A1, B1, and Y1 test points.
- 8. Repeat the same for channels 2-4.

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	V _{CC} is shorted to +5V supply.
. 1	1-3*	V _{CC} is shorted to V _{CC_EXT} supply.
JU1	1-4	V _{CC} is shorted to +3.3V supply.
	Open	V _{CC} is open.
11.12	1-2*	Connects 120Ω between CH1 A and B inputs
JUZ	Open	No load is connected between CH1 A and B
11.12	1-2*	Connects 120Ω between CH2 A and B inputs
JU3	Open	No load is connected between CH2 A and B
11.14	1-2*	Connects 120Ω between CH3 A and B inputs
JU4	Open	No load is connected between CH3 A and B inputs
	1-2*	Connects 120Ω between CH4 A and B inputs
JUS	Open	No load is connected between CH4 A and B inputs
	1-2*	V_{CC} is shorted to V_{CC_1} of MAX33076E IC supply
JUb	Open	V _{CC_1} of MAX33076E is open
	1-2*	Enable input (G) is connected to V_{CC}
JU7	1-3	Enable input (G) is connected to GND
	Open	Enable input (G) is open
	1-2	Enable input (G) is connected to V _{CC}
JU8	1-3*	Enable input (G) is connected to GND
	Open	Enable input (G) is open
JU9	1-2*	IRO is connected to D2 of Arduino connector

Table 1. Jumper Settings

Evaluates: MAX33076E

1-3	IRQ is connected to D3 of Arduino connector
Open	IRQ is open

Note: * indicates default jumper state.

Detailed Description of Hardware

The MAX33076E Shield is a fully assembled and tested circuit board for evaluating the MAX33076E fault-protected RS-485/422 transceiver (U1) with \pm 65V of fault protection. The Shield is designed to evaluate MAX33076E alone or in an RS-485/422 system. The MAX33076E Shield enables Mbed or Arduino platform to communicate on an RS-485/422 receiver, or it may be used as a standalone evaluation board. The MAX14931 digital isolator is used as a level translator with a 1.71V to 5.5V supply range.

If external protection is desired beyond the device's built-in protection, the Shield also features footprints for TVS diodes (D1 and D2) that can be connected to the A1 and B1 lines, respectively. Similarly, footprints are provided for channels 2–4.

Powering the Board

The MAX33076E Shield requires two power supplies – one 3.3V or 5V supply for the MAX33076E (U1) transceiver applied at the V_{CC_EXT} test point and one 1.71V–5.5V supply for the microcontroller domain applied at the IOREF test point. When the Shield board is used with an Arduino/Mbed board, the power supply for U1 can also come from the Arduino/Mbed board's 5V rail. Place the shunt on 1-3 position of JU1 to connect V_{CC} to external supply. Place the shunt of JU1 on 1-2 position to connect the V_{CC} of U1 to Arduino/Mbed 5V supply rail and 1-4 position for 3.3V. In this scenario, IOREF is directly taken from the Arduino/Mbed header.

Output Configuration

The MAX33076E converts RS-485 differential signals (A and B) to single ended signals (Y). The quad outputs are interfaced to Arduino/Mbed board through the MAX14830, a quad channel universal asynchronous receiver-transmitter (UART). The MAX14830 is controlled by Arduino/Mbed using SPI communication.

Ordering Information

PART	TYPE
MAX33076ESHLD#	EV Kit

#Denotes RoHS compliance.

Evaluates: MAX33076E

MAX33076E Shield Bill of Materials

ITEM	QTY	REF	MFG PART #	DESCRIPTION	MANUFACTURER	STATUS	VALUE
1	12	A1- A4, B1- B4, Y1- Y4	5000	TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN;	KEYSTONE		N/A
2	10	C1, C3, C5, C6, C8- C12, C14	C0402C104J4R AC;GCM155R71 C104JA55	CAP; SMT (0402); 0.1UF; 5%; 16V; X7R; CERAMIC	KEMET;MURATA		0.1UF
3	2	C2, C4	C0402X7R160- 103JNP; X7R0402CTT;	CAP; SMT (0402); 0.01UF; 5%; 16V; X7R; CERAMIC;	VENKEL LTD;KOA SPEER ELECTRONICS INC;AVX		0.01UF
4	2	C7, C13	EMK105BJ105K V	CAP; SMT (0402); 1UF; 10%; 16V; X5R; CERAMIC;	TAIYO YUDEN		1UF
5	1	C15	GRM155R60J10 6ME44; GRM155R60J10 6ME47; C1005X5R0J106 M050BC; CL05A106MQ5N UN; C0402C106M9P AC	CAP; SMT (0402); 10UF; 20%; 6.3V; X5R; CERAMIC	MURATA;MURATA;TD K;SAMSUNG ELECTRONICS;KEME T		10UF
6	3	GND, GND 1, GND 2	5011	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; RECOMMENDED FOR BOARD THICKNESS=0.062IN;	KEYSTONE		N/A
7	2	IORE F, VCC_ EXT	5010	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;	KEYSTONE		N/A
8	4	J1-J4	OSTVN02A150	CONNECTOR; FEMALE; THROUGH HOLE; TERMINAL BLOCK; RIGHT ANGLE; COLOR: GREEN; 2PINS	ON-SHORE TECHNOLOGY INC		OSTVN02A1 50

Evaluates: MAX33076E

9	2	J5, J8	SSQ-108-24-G- S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 8PINS	SAMTEC	SSQ-108-24- G-S
10	1	J6	SSQ-106-24-G- S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 6PINS ;	SAMTEC	SSQ-106-24- G-S
11	1	J7	SSQ-110-24-G- S	CONNECTOR; FEMALE; THROUGH HOLE; .025INCH SQ POST SOCKET; STRAIGHT; 10PINS	SAMTEC	SSQ-110-24- G-S
12	1	JU1	PEC04SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS	SULLINS ELECTRONICS CORP.	PEC04SAAN
13	5	JU2- JU6	PCC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC	SULLINS	PCC02SAAN
14	3	JU7- JU9	PBC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS; -65 DEGC TO +125 DEGC	SULLINS	PBC03SAAN
15	4	R1- R4	CRCW1206120 RFK; MCR18EZPF120 0;ERJ- 8ENF1200	RES; SMT (1206); 120; 1%; +/-100PPM/DEGC; 0.2500W	VISHAY DALE;ROHM;PANASO NIC	120
16	9	R5- R13	RC1608J000CS; CR0603-J/- 000ELF;RC0603 JR-070RL	RES; SMT (0603); 0; 5%; JUMPER; 0.1000W	SAMSUNG ELECTRONICS;BOUR NS;YAGEO PH	0
17	9	SU1- SU9	S1100- B;SX1100- B;STC02SYAN	TEST POINT; JUMPER; STR; TOTAL LENGTH=0.24IN; BLACK; INSULATION=PBT;PHOSP HOR BRONZE CONTACT=GOLD PLATED	KYCON;KYCON;SULLI NS ELECTRONICS CORP.	SX1100-B
18	1	U1	MAX33076EASA +	IC; RECV; MAX33076EASA+; PACKAGE OUTLINE NUMBER: 21-0041; PACKAGE LAND PATTERN NUMBERL 90- 0097; PACKAGE CODE: S16+1C; SOIC16	MAXIM	MAX33076E ASA+
19	1	U3	MAX14930FASE +	IC; DISO; 4/0 CHANNEL; 150MBPS; DEFAULT LOW; 2.75KVRMS DIGITAL	MAXIM	MAX14930F ASE+

Evaluates: MAX33076E

				ISOLATOR; NSOIC16 150MIL		
20	1	U4	MAX14830ETM +	IC; UART; QUAD SERIAL UART WITH 128-WORD FIFOS; TQFN48-EP	MAXIM	MAX14830E TM+
21	1	U5	MAX14931FASE +	IC; DISO; 3/1 CHANNEL; 150MBPS; DEFAULT LOW; 2.75KVRMS DIGITAL ISOLATOR; NSOIC16 150MIL	MAXIM	MAX14931F ASE+
22	1	U6	MAX13046EELT +	IC; TRANS; SINGLE- BIDIRECTIONAL LOW- LEVEL TRANSLATOR; UDFN6 1X1.5	MAXIM	MAX13046E ELT+
23	1	Y5	LFXTAL030798	CRYSTAL; SMT; 3.68640MHZ; 16PF; TOL = +/-30PPM	IQD FREQUENCY PRODUCT	LFXTAL0307 98
24	1	PCB	MAX33076ESHI ELD	PCB:MAX33076ESHIELD	MAXIM	PCB
25	0	D1- D8	P6SMB18CA	DIODE; TVS; SMB (DO- 214AA); VRM=15.3V; IPP=24.2A	LITTELFUSE	15.3V
26	0	U2	MAX33076EAEE +	EVKIT PART - IC; RECV; MAX33076EAEE+; PACKAGE OUTLINE NUMBER: 21-0055; PACKAGE LAND PATTERN NUMBERL 90- 0167; PACKAGE CODE: E16+11C; QSOP16	MAXIM	MAX33076E AEE+

MAX33076E Shield Schematic

MAX33076E Shield Schematic (continued)

Evaluates: MAX33076E

MAX33076E Shield PCB Layout

MAX33076E Shield Component Placement Guide—Top Silkscreen

MAX33076E Shield PCB Layout—Top

MAX33076E Shield PCB Layout—Layer 2_GND

MAX33076E Shield PCB Layout—Layer 3_PWR

Evaluates: MAX33076E

MAX33076E Shield PCB Layout (Continued)

MAX33076E Shield PCB Layout—Bottom

MAX33076E Shield Component Placement Guide—Bottom Silkscreen

Evaluates: MAX33076E

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	09/21	Initial release	—

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.