2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

The MAX3866 combined transimpedance preamplifier and limiting postamplifier is intended for application in SDH/SONET systems operating at 2.488 Gbps . It operates from a single +3.3 V or +5 V supply and provides a differential output signal. The differential outputs are each 50Ω reverse terminated (100Ω differential termination) for low-noise and high-speed signal performance.
The small-signal bandwidth and noise performance is specified for a source capacitance of 0.5 pF . When the MAX3866 is used with the PIN photodetector, sensitivities better than $-22 d B m$ can be achieved. The MAX3866 is equipped with a programmable TL loss-of-power (LOP) output.

Applications
SDH/SONET Transmission Systems
PIN/Preamplifier Receivers
2.488Gbps ATM Receivers

Regenerators for SDH/SONET

Features
Input Sensitivities Better than $-22 \mathrm{dBm}(7.8 \mu \mathrm{Ap}-\mathrm{p})$
Overdrive Capability Better than +1.4 dBm
$\begin{aligned} & \text { (2.5mAp-p) }\end{aligned}$
$\begin{aligned} & \text { Single }+3.3 \mathrm{~V} \text { or }+5 \mathrm{~V} \text { Supply } \\ & \text { 165mW Power Dissipation (at } 3.3 \mathrm{~V} \text {) } \\ & \text { 1.8GHz Analog Input Bandwidth }\end{aligned}$

- Programmable Loss-of-Power Indicator
- 100 Ω Differential Output

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3866E/D	(see Note)	Dice

Note: Dice are designed to operate over a $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ junction temperature (T_{j}) range, but are tested and guaranteed at $T_{A}=+25^{\circ} \mathrm{C}$.

Pad Configuration appears at end of data sheet.

Typical Application Circuit

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

ABSOLUTE MAXIMUM RATINGS

VCCD Voltage \qquad VCCS Voltage \qquad $0 \leq$ VCCS \leq VCCD and if VCCD $\geq 3.13 \mathrm{~V}$ then $3.13 \mathrm{~V} \leq \mathrm{VCCS} \leq \mathrm{VCCD}$
CHF+, CHF-, FIL, INV, LOP Voltage-0.5V to (VCCD + 0.5V)
IN-, IN+ Voltage \qquad ge. \qquad (VCCD - 1.6 V) to (VCCD +0.5 V)

OUT+, OUT- Voltage(VCCD - 1.1V) to (VCCD + 0.5V)
IN Current. \qquad
\qquad 0 to 3 mA PDC Current. -1 mA to 0 Operating Junction Temperature Range $\left(\mathrm{T}_{\mathrm{j}}\right) \ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Processing Temperature (Die) .$+400^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VCCD $=\mathrm{VCCS}=+3.3 \mathrm{~V} \pm 5 \%$ or $\mathrm{VCCD}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{VCCS}=$ open, $\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at +3.3 V and $\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$.)

AC ELECTRICAL CHARACTERISTICS

(VCCD $=\mathrm{VCCS}=+3.3 \mathrm{~V} \pm 5 \%$ or $\mathrm{VCCD}=+5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{VCCS}=$ open, $\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at +3.3 V and $\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small-Signal Bandwidth	BW			1.8		GHz
Input Sensitivity	In	$\begin{aligned} & \text { 2.5Gbps, } 2^{23}-1 \text { PRBS, } \mathrm{BER} \leq 10^{-10} \text {, } \\ & \mathrm{CIN}=0.5 \mathrm{pF}, \mathrm{~T}_{\mathrm{j}}=+120^{\circ} \mathrm{C} \end{aligned}$		7.8	(Note 3)	$\mu A p-p$
Input-Referred RMS Noise	NIN	$\mathrm{CIN}_{\text {IN }}=0.5 \mathrm{pF}, \mathrm{T}_{\mathrm{j}}=+120^{\circ} \mathrm{C}$		433	566	nA
Low-Frequency Cutoff	$f \mathrm{~L}$				100	kHz
Power-Supply Rejection Ratio	PSRR	$\mathrm{f} \leq 2 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}$	25	30		dB
LOP Hysteresis		Electrical (Note 4), low LOP assert, RPD $=510 \Omega$	3			dB
LOP Assert Level		RPD $=510 \Omega$	0.9			$\mu \mathrm{A}$
LOP Deassert Level		RPD $=510 \Omega$			8.0	$\mu \mathrm{A}$
Output Edge Speed	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}$	20\% to 80\% (Note 5)		50	70	ps
Pulse-Width Distortion	PWD	(Notes 5, 6)		21	80	ps

Note 1: $\mathrm{C}_{\mathrm{IN}}=$ total capacitance on IN.
Note 2: AC parameters are guaranteed by design and characterization.
Note 3: See Typical Operating Characteristics for worst-case distribution.
Note 4: Hysteresis = 20 log (VDEASSERT / VASSERT).
Note 5: $\mathrm{l}_{\mathrm{IN}}=2.5 \mathrm{~mA}$.
Note 6: $\mathrm{PWD}=\mid[(2 \cdot$ Pulse Width $)-$ Period $] / 2 \mid$.
Note 7: External load not required for normal operation.

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCS}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

differential OUTPUT VOLTAGE
vs. TEMPERATURE

PULSE-WIDTH DISTORTION vs. INPUT CURRENT

PULSE-WIDTH DISTORTION
vs. TEMPERATURE

SUPPLY CURRENT
vs. TEMPERATURE

ELECTRICAL EYE DIAGRAM

OUTPUT COMMON-MODE VOLTAGE vs. TEMPERATURE

OUTPUT VOLTAGE vs. INPUT CURRENT

ELECTRICAL EYE DIAGRAM

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CCD}}=\mathrm{V}_{\mathrm{CCS}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

DISTRIBUTION OF ELECTRICAL SENSITIVITY (WORST CASE)

Pad Description

PAD NAME	FUNCTION
VCCS	Positive Supply Voltage of Input Stage. Apply +3.3 V if VCCD $=+3.3 \mathrm{~V}$. If VCCD $>+3.47 \mathrm{~V}$, disconnect from sup- ply and decouple to GND.
CHF+	External Filter Capacitor. A capacitor connected between CHF+ and CHF- is used for setting the low-frequency cutoff.
CHF-	External Filter Capacitor. A capacitor connected between CHF+ and CHF- is used for setting the low-frequency cutoff.
FIL	On-Chip Resistor for Filtering Photodiode Supply Voltage (connected to VCCD on chip)
GND	Electrical Ground
IN+	Signal Input
IN-	No Connect
PDC	The voltage at this node programs the gain of the power detector. Connect a resistor between PDC and INV to adjust the LOP threshold.
INV	Used for programming the gain of the power detector. Connect a resistor between PDC and INV to adjust the LOP threshold.
CPD-	Filter Node for Power Detector. A capacitor connected between CPD+ and CPD- will provide additional filtering to the rectifier output within the power detector.
CPD+	Filter Node for Power Detector. A capacitor connected between CPD+ and CPD- will provide additional filtering to the rectifier output within the power detector.
OUT-	Inverted Data-Signal Output
OUT+	Noninverted Data-Signal Output LOPTTL Output, Loss-of-Power, active high VCCDPower-Supply Voltage

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Typical Operating Circuits

* NOTE: IF LOP OPERATION IS NOT DESIRED, RPD $=0 \Omega$

Circuit Description

Data Path

The combined preamplifier and limiting postamplifier (Figure 1) accepts an input current from a photodiode attached to the input pad IN+. The transimpedance input amplifier stage converts the input current to an output voltage with a typical transimpedance of $1.4 \mathrm{k} \Omega$.
The second stage of the data path is an active highpass filter. This filter converts the single-ended input signal to a differential signal, eliminating the DC component and adding approximately 16dB of gain. The output of the highpass filter drives the power detector and limiting amplifier circuitry.
The limiting amplifier circuit is the third stage of the data signal path. It amplifies and limits the differential input signal. The output stage is a differential pair with internal 50Ω load resistors. The limited output voltage is typically $145 \mathrm{mV} p-\mathrm{p}$.

Power Detector
The power detect circuit consists of an adjustable-gain amplifier and combined rectifier with a lowpass filter. The adjustable-gain amplifier is controlled by an op amp. The gain is adjusted by means of an external resistor connected between the PDC and INV pins.

The output voltage of the adjustable gain amplifier drives the combined rectifier and lowpass filter circuitry. The resulting DC voltage is fed to a Schmitt trigger, which generates a high-level output signal if the DC input signal is below the LOP assert level, thus causing an LOP condition on the LOP output.

Design Procedure

Power Supply

The complete amplifier is supplied by a single supply voltage, $\mathrm{V}_{\mathrm{CCD}}$. For operation at 3.3 V , the supply voltage is applied at both the VCCD and VCCS pins (see Typical Operating Circuit). For operation at 5.0V, the voltage is only applied at VCCD. In this case, VCCS is on-chip controlled to approximately 3.2 V . In the 5.0 V configuration, an external 10 nF grounded capacitor is required at the VCCS pin.

External Filter Capacitor CHF

The value of CHF affects the maximum speed at which the compensation loop adjusts the input offset current. ChF should be chosen between 10 nF and 100 nF . The loop should be as slow as possible to reduce patterndependent jitter. Maxim recommends a value of $\mathrm{CHF}=$ 100nF.

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Figure 1. Functional Diagram of the Combined Preamplifier and Limiting Postamplifier

External Filter Capac itor CPD

The LF cutoff of the power detector can be reduced by adding external capacitance across the CPD pins. This capacitor is only needed when this circuit is operated at lower data rates and lower edge speeds. In this way, the remaining ripple of power detector output voltage is reduced.

Loss-of-Power Threshold If the LOP function is desired, Maxim recommends RPD $=510 \Omega$. If the LOP function is not desired, RPD $=0 \Omega$ (shorted). See Figure 2 for LOP definitions. If desired, the LOP threshold can be adjusted (see Assert/ Deassert vs. Rpd in the Typical Operating Characteristics.

Figure 2. Loss-of-Power Definitions with $R P D=510 \Omega$

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Internal Input/Output Schematics

Figure 3. OUT Pads

Figure 5. FIL Pads

Figure 4. IN Pads

Figure 6. CHF Pads

2.5Gbps, +3.3V Combined
 Transimpedance/Limiting Amplifier

MAX3866 \qquad Internal Input/Output Schematics (continued)

Figure 7. INV Pad

Figure 9. LOP Pad

Figure 8. PDC Pad

Figure 10. CPD Pad

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

Applic ations Information

Converting Average Optical Power to Signal Amplitude

Many of the MAX3866's specifications relate to input signal amplitude. When working with fiber optic receivers, the input is usually expressed in terms of average optical power and extinction ratio. The relations given in Table 1 are helpful for converting optical power to input signal when designing with the MAX3866.
In an optical receiver, the input current to the transimpedance amplifier can be found by multiplying the power relationships in Table 1 with the photodiode responsivity.

Wire Bonding

Make corrections to the die with gold wire only, using ball bonding techniques. Die pad size is $4 \mathrm{mils}(100 \mu \mathrm{~m})$ square and die thickness is 12mils ($\sim 300 \mu \mathrm{~m}$).

Layout Techniques

The MAX3866's performance can be greatly affected by circuit board layout and design. Use good high-frequency design techniques, including minimizing ground inductances and using fixed-impedance transmission lines on all data signals.

Table 1. Optical-Power Relations*

PARAMETER	SYMBOL	RELATION
Average Power	Pave	PAVE $=(P 0+P 1) / 2$
Extinction Ratio	re_{e}	$\mathrm{r}_{\mathrm{e}}=\mathrm{P} 1 / \mathrm{P} 0$
Optical Power of a " 1 "	P1	$\mathrm{P} 1=2 \mathrm{P}_{\mathrm{AVE}} \frac{r_{\mathrm{e}}}{\mathrm{r}_{\mathrm{e}}+1}$
Optical Power of a " 0 "	P0	$\mathrm{PO}=2 \mathrm{PaVE}^{\text {A }} /\left(\mathrm{re}_{\mathrm{e}}+1\right)$
Signal Amplitude	PIN	$\mathrm{P}_{\mathrm{IN}}=\mathrm{P}_{1}-\mathrm{P} 0=2 \mathrm{P}_{\mathrm{AVE}} \frac{\left(\mathrm{r}_{\mathrm{e}}-1\right)}{\left(\mathrm{r}_{\mathrm{e}}+1\right)}$

*Assuming a 50\% average input mark density.

Pad Configuration

TRANSISTOR COUNT: 851
2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

NOTES

2.5Gbps, +3.3V Combined Transimpedance/Limiting Amplifier

NOTES

