

Click here to ask an associate for production status of specific part numbers.

Evaluates: MAX5112/MAX5113/MAX5832

MAX5113 Evaluation Kit

General Description

The MAX5113 evaluation kit (EV kit) provides a proven design to evaluate the MAX5113 9-channel, 14-bit current DAC. The EV kit also includes Windows $XP^{\textcircled{B}_{-}}$, Windows Vista \textcircled{B}_{-} , Windows \textcircled{B}_{-} , Windows \textcircled{B}_{-} , and Windows 10-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the device.

The EV kit comes with a MAX5113GTJ+ installed. Contact the factory for free samples of the pin-compatible MAX5112GTJ+ or MAX5832GWX+ to evaluate these devices.

Features

- On-Board +3.0V Regulator Accepts +5.5V to +3.35V Supply Range
- On-Board -5.2V Regulator Accepts -6.5V to -5.24V Supply Range
- Windows XP, Windows Vista, Windows 7, and Windows 10-Compatible Software
- USB-PC Connection (Cable Included)
- On-Board Diode and Resistive Loads
- SPI™ Interface Terminals (MAX5113)
- I²C Interface Terminals (MAX5112/MAX5832)
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information

PART	TYPE	
MAX5113EVKIT#	EV Kit	

#Denotes RoHS compliance.

Component List

DESIGNATION	QTY	DESCRIPTION
C10–C18, C100–C104, C111, C121, C122	17	0.1µF ±10%, 25V X7R ceramic capacitors (0603) TDK C1608X7R1E104K
C21, C22, C31, C32, C108, C131, C141	7	1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C105K
C23, C109, C132, C142	4	10µF ±10%, 6.3V X7R ceramic capacitors (0805) Murata GRM21BR70J106K
C33	0	Not installed, ceramic capacitor (0805)
C105	1	0.01µF ±10%, 16V X7R ceramic capacitor (0402) Murata GRM155R71C103K
C106, C107	2	22pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H220J
C110	1	33000pF ±10%, 25V X7R ceramic capacitor (0603) Murata GRM188R71E333K
C123, C124	2	10pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H100J
D11A–D14A, D11B– D14B, D11C–D14C, D11D–D14D, D21A– D24A, D21B–D24B, D21C–D24C, D21D– D24D, D31, D32, D34, D35, D36, D41, D42, D43, D51, D52, D61, D62, D71, D72, D73, D81–D85, D91–D95	57	200mA, 25V Schottky diodes (SOT23) Fairchild BAT54
D33	1	1N4001 diode Diodes Inc. 1N4001
D44, D53, D74	3	1N4148 diodes (SOT23) Fairchild MMBD4148 (Top Mark: 5H)

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

SPI is a trademark of Motorola, Inc.

319-100496; Rev 2; 6/21

© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2022 Analog Devices, Inc. All rights reserved.

Evaluates: MAX5112/MAX5113/MAX5832

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
H1	1	36-pin (2 x 18) header
H2	1	8-pin header
H120, H123	0	Not installed, 9-pin headers
HOUT1A–HOUT1D, HOUT2A–HOUT2D, HOUT3–HOUT9	15	2-pin headers
JTAGU120	0	Not installed, 10-pin (2 x 5) header
JU10, JU11, JU16, JU17	4	2-pin headers
JU12, JU13, JUOUT1A– JUOUT1D, JUOUT2A– JUOUT2D, JUOUT4, JUOUT5, JUOUT7, JUOUT8, JUOUT9	15	3-pin headers
JU14, JU15, JUOUT6	3	4-pin headers
JU101–JU108	0	Not installed, headers— shorted with PCB trace
JUOUT3	1	5-pin header
L101	1	Ferrite bead (0603) TDK MMZ1608R301A
LEDPWR	1	Red LED (0805)
Q100	1	p-channel FET (SOT223) Fairchild Semi NDT456P
R11	1	1MΩ ±5% resistor (0603)
R16, R17	2	4.7kΩ ±5% resistors (0603)
R21	1	220kΩ ±1% resistor (0603)
R22	1	80.6kΩ ±1% resistor (0603)
R31	1	316k Ω ±1% resistor (0603)
R32	1	$100k\Omega \pm 1\%$ resistor (0603)
R41, R42, R43, R51, R52, R71, R72, R73	8	$10\Omega \pm 5\%$ resistors (0603)
R61, RL61	2	6.8Ω ±5%, 1W resistors (2512) Vishay/Dale CRCW25126R80JNEG
R62, RL62	2	33Ω ±5% resistors (0805)
R100, RL32	2	1kΩ ±5% resistors (0603)

DESIGNATION	QTY	DESCRIPTION
R101, R102	2	27Ω ±5% resistors (0603)
R103	1	1.5kΩ ±5% resistor (0603)
R104	1	470Ω ±5% resistor (0603)
R111	1	2.2kΩ ±5% resistor (0603)
R112	1	10kΩ ±5% resistor (0603)
RL1A–RL1D, RL2A–RL2D	8	$200\Omega \pm 5\%$ resistors (0603)
RL4, RL7	2	22Ω ±5% resistors (1206)
RL5	1	11Ω ±1%, 0.5W resistor (1210) KOA Speer RK73H2ETTD11R0F
RL31	1	100Ω ±5% resistor (0603)
RL81, RL82, RL91, RL92	4	$270\Omega \pm 5\%$ resistors (0603)
RLEDPWR	1	330Ω ±5% resistor (0603)
TP0	1	Black multipurpose test point
TP1, TP22	2	Red multipurpose test points
TP2, TP32	2	Yellow multipurpose test points
TP00, TP10, TP100, TP101, TP108, TP132, TP142	0	Not installed, multipurpose test points
U1	1	9-channel, 14-bit current DAC (32 TQFN-EP*) Maxim MAX5113GTJ+
U2	1	3.3V at 1000mA LDO regulator (16 TSSOP-EP*) Maxim MAX8869EUE33+
U3	1	-5V at 200mA LDO regulator (5 SOT23) Maxim MAX1735EUK30+ (Top Mark: ADOY)
U100	1	UART-to-USB converter (32 TQFP)
U110	0	Not installed, 93C46-type 3-wire EEPROM 16-bit architecture (8 SO)

Evaluates: MAX5112/MAX5113/MAX5832

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
U120	1	Low-power microcontroller (68 QFN-EP*) Maxim MAXQ2000-RAX+
U130	1	2.5V regulator (5 SC70) Maxim MAX8511EXK25+T (Top Mark: ADV)
U140	1	3.3V regulator (5 SC70) Maxim MAX8511EXK33+T (Top Mark: AEI)
USB1	1	USB type-B right-angle female receptacle

DESIGNATION	QTY	DESCRIPTION
Y100	1	6MHz crystal Hong Kong X'tals SSL60000N1HK188F0-0
Y120	1	16MHz crystal Hong Kong X'tals SSM16000N1HK188F0-0
_	1	USB high-speed A-to-B cables, 6ft
_	23	Shunts
_	1	PCB: MAX5113 EVALUATION KIT+

*EP = Exposed pad.

Component Suppliers

SUPPLIER	WEBSITE
Diodes Incorporated	www.diodes.com
Fairchild Semiconductor	www.fairchildsemi.com
Hong Kong X'tals Ltd.	www.hongkongcrystal.com
Murata Electronics North America, Inc.	www.murata-northamerica.com
TDK Corp.	www.component.tdk.com
Vishay	www.vishay.com

Note: Indicate that you are using the MAX5113 when contacting these component suppliers.

MAX5113 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX5113.EXE	Application program
CDM20600.EXE	Installs the USB device driver
UNINSTALL.EXE	Uninstalls the EV kit software
USB_Driver_Help_200.PDF	Uninstalls the EV kit software

Evaluates: MAX5112/MAX5113/MAX5832

Quick Start

Required Equipment

- MAX5113 EV kit (USB cable included)
- Windows XP, Windows Vista, Windows 7 or Windows 10 PC with a spare USB port
- User-supplied +5V DC at 750mA power supply
- User-supplied -5.5V DC at 100mA power supply
- Digital voltmeters (DVMs)

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit <u>www.maximintegrated.com</u> to download the latest version of the EV kit software, MAX5113ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- 2) Install the EV kit software and USB driver on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows <u>Start | Programs</u> menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.
- 3) Verify that all jumpers (JU10–JU17, JUOUT1A– JUOUT2D, JUOUT3–JUOUT9) are in their default positions, as shown in <u>Table 1</u> and <u>Table 2</u>.
- To measure OP9, connect the DVM between HOUT9 (OP9) and GND (optionally, outputs can be monitored at the labeled test points on header H1).
- 5) Connect the +5V DC power supply between TP1 (+5V) and TP0 (GND).
- 6) Connect the -5.5V DC power supply between TP2 (-5.5V) and TP0 (GND).

- 7) Enable both power supplies.
- 8) Connect the USB cable from the PC to the EV kit board. A Windows message appears when connecting the EV kit board to the PC for the first time. Each version of Windows has a slightly different message. If you see a Windows message stating <u>ready to</u> <u>use</u>, then proceed to the next step. Otherwise, open the USB_Driver_Help_200.PDF document in the Windows <u>Start | Programs</u> menu to verify that the USB driver was installed successfully.
- Start the EV kit software by opening its icon in the Windows <u>Start | Programs</u> menu. The EV kit software main window appears, as shown in Figure 1.

DAC1 Output MUX Test

- 1) Press **F1** to return to the block diagram. Click on **OP1** to drill down to **IDAC Configuration** for OP1.
- 2) Connect a DVM to HOUT1A.
- 3) Under the **Output pin to drive** drop-down list, select **OP1A**.
- 4) Drag the Source Mode Code track bar to the right.
- 5) Verify that the DVM connected to HOUT1A shows approximately +2.0V (10mA output current).
- 6) Connect a DVM to HOUT1B.
- 7) Verify that the DVM connected to HOUT1B shows approximately 0V (0mA output current).
- 8) Under the **Output pin to drive** drop-down list, select **OP1B**.
- 9) Verify that the DVM connected to HOUT1B shows approximately +2.0V (10mA output current).
- 10) Connect a DVM to HOUT1C.
- 11) Verify that the DVM connected to HOUT1C shows approximately 0V (0mA output current).
- 12) Under the **Output pin to drive** drop-down list, select **OP1C**.
- 13) Verify that the DVM connected to HOUT1C shows approximately +2.0V (10mA output current).
- 14) Connect a DVM to HOUT1D.
- 15) Verify that the DVM connected to HOUT1D shows approximately 0V (0mA output current).

Evaluates: MAX5112/MAX5113/MAX5832

- 16) Under the **Output pin to drive** drop-down list, select **OP1D**.
- 17) Verify that the DVM connected to HOUT1D shows approximately +2.0V (10mA output current).

DAC2 Output MUX Test

- 1) Under the **IDAC to configure** drop-down list, select **OP2**.
- 2) Connect a DVM to HOUT2A.
- 3) Under the **Output pin to drive** drop-down list, select **OP2A**.
- 4) Drag the **Source Mode Code** track bar to the right.
- 5) Verify that the DVM connected to HOUT2A shows approximately +2.0V (10mA output current).
- 6) Connect a DVM to HOUT2B.
- 7) Verify that the DVM connected to HOUT2B shows approximately 0V (0mA output current).
- 8) Under the **Output pin to drive** drop-down list, select **OP2B**.
- 9) Verify that the DVM connected to HOUT2B shows approximately +2.0V (10mA output current).
- 10) Connect a DVM to HOUT2C.
- 11) Verify that the DVM connected to HOUT2C shows approximately 0V (0mA output current).
- 12) Under the **Output pin to drive** drop-down list, select **OP2C**.
- 13) Verify that the DVM connected to HOUT2C shows approximately +2.0V (10mA output current).
- 14) Connect a DVM to HOUT2D.
- 15) Verify that the DVM connected to HOUT2D shows approximately 0V (0mA output current).
- 16) Under the **Output pin to drive** drop-down list, select **OP2D**.
- 17) Verify that the DVM connected to HOUT2D shows approximately +2.0V (10mA output current).

DAC3 Range Test

- 1) Press **F1** to return to the block diagram. Click on **OP3** to drill down to **IDAC Configuration** for OP3.
- 2) Connect a DVM to HOUT3.

- 3) Verify that the DVM connected to HOUT3 shows approximately 0V (0mA output current).
- 4) Click on the **High current range** radio button.
- 5) Drag the **Source Mode Code** track bar to the right.
- 6) Verify that the DVM connected to HOUT3 shows approximately +2.0V (20mA output current).
- 7) Click on the Low current range radio button.
- 8) Verify that the DVM connected to HOUT3 shows approximately +0.2V (2mA output current).

DAC4 Current-Source Test

- 1) Click on **OP4** to drill down to **IDAC Configuration** for OP4.
- 2) Connect a DVM to HOUT4.
- 3) Drag the Source Mode Code track bar to the right.
- 4) Verify that the DVM connected to HOUT4 shows approximately +2.0V (90mA output current).

DAC5 Current-Source Test

- Click on OP5 to drill down to IDAC Configuration for OP5.
- 2) Connect a DVM to HOUT5.
- 3) Drag the **Source Mode Code** track bar to the right.
- Verify that the DVM connected to HOUT5 shows approximately +2.0V (180mA output current).

DAC6 Source-Mode Test

- 1) Press **F1** to return to the block diagram. Click on **OP6** to drill down to **IDAC Configuration** for OP6.
- 2) Connect a DVM to HOUT6.
- 3) Drag the Source Mode Code track bar to the right.
- 4) Verify that the DVM connected to HOUT6 shows approximately +2.0V (300mA output current).

DAC6 Sink-Mode Test

- 1) Press **F1** to return to the block diagram. Click on **OP6** to drill down to **IDAC Configuration** for OP6.
- 2) Connect a DVM to HOUT6.
- 3) Drag the Sink Mode Code track bar to the right.
- 4) Click on the **Low current range** radio button.
- 5) Verify that the DVM connected to HOUT6 shows approximately -0.4V (-60mA output current).

Evaluates: MAX5112/MAX5113/MAX5832

DAC6 Shutter-Mode Test

- 1) Press **F1** to return to the block diagram. Click on **OP6** to drill down to **IDAC Configuration** for OP6.
- 2) Connect a DVM to HOUT6.
- 3) Drag the Shutter Mode Code track bar to the center.
- 4) Click on the High current range radio button.
- 5) Under **CLR pin action**, click on the **SHUTTER** radio button.
- 6) Set **CLR pin** to **High** to enter shutter mode.
- 7) Verify that the DVM connected to HOUT6 shows approximately -0.2V (-30mA output current).
- 8) Set CLR pin to Low to exit shutter mode.
- 9) Verify that the DVM connected to HOUT6 shows approximately +2.0V (300mA output current).

DAC7 Current-Source Test

- 1) Click on **OP7** to drill down to **IDAC Configuration** for OP7.
- 2) Connect a DVM to HOUT7.
- 3) Drag the **Source Mode Code** track bar to the right.
- 4) Verify that the DVM connected to HOUT7 shows approximately +2.0V (90mA output current).

DAC8 Current-Source Test

- 1) Click on **OP8** to drill down to **IDAC Configuration** for OP8.
- 2) Connect a DVM to HOUT8.
- 3) Drag the **Source Mode Code** track bar to the right.
- 4) Verify that the DVM connected to HOUT8 shows approximately +2.0V (15mA output current).

DAC9 Current-Source Test

- 1) Click on **OP9** to drill down to **IDAC Configuration** for OP9.
- 2) Connect a DVM to HOUT9.
- 3) Drag the Source Mode Code track bar to the right.
- 4) Verify that the DVM connected to HOUT9 shows approximately +2.0V (15mA output current).

Detailed Description of Software

The main window of the evaluation software (Figure 1) displays the output code for all DAC outputs. In addition, the main window has four tabs. The **Block Diagram** tab sheet shows the status of all nine DACs. Click on a DAC to drill down to the **IDAC Configuration** tab sheet (Figure 2). The **Registers** tab sheet (Figure 3) provides low-level access to all device registers. The **Interface History** tab sheet (Figure 4) shows the sequence of I²C or SPI operations that have been performed.

Advanced User Interface

There are two methods for communicating with the device. The first is through the windows shown in Figures 1–4. The second is through the **Advanced User Interface** window shown in Figures 5 and 6. The **Advanced User Interface** window becomes available by selecting the **Option | Interface (Advanced User)** menu item and allows execution of serial commands manually.

The **Advanced User Interface** window can also be used as a debug tool because it is capable of manually reading and writing to every register of the device.

Figure 1. MAX5113 EV Kit Software Main Window (Block Diagram Tab)

MAX5113 Evaluation Kit	
File Options View Help	
Block Diagram IDAC Configuration Registers Interface Hist	עוס
IDAC to configure: DP6 💌	Output MUX
Ground Switch When code = 0: 0: Float	Output pin to drive: OP6 V Other pins state:
<u> </u>	C A=out, BCD=0 C A=out, BCD=Z C ABCD=0
CLR pin action Range © IGNORE © High current range: 300mA source © SHUTTER © Low current range: ComA sink	
C GATE C RESET	• B=out, ABC=0 • B=out, ABC=0 • • • • • • • • • • • • • • •
	C C=out, ABD=0 C C=out, ABD=Z
Sink Mode Code	
Shutter Mode Code	C D=out, ABC=0 C D=out, ABC=Z
Device Address: ? J Auto Read all Initialize	EV kit Read All Write All
MAX5110 not found on I2C, assume SPI interface	

Figure 2. MAX5113 EV Kit Software Main Window (IDAC Configuration Tab)

ile Options	View Help		
Block Diagram	n IDAC Configuration Registers Interface History		
-0x00 Genera Read	al Configuration GSWG BHEN MASK 00: Invididual GSW settings	is operational 💌	
-0v01 DAC C/	opfiguration DP1		l E
Read	GSW (when code=0) CLR_CFG (CLR pin) TH_EN RNG (Full Scale) MU>	(Multiplexer)	
Read	onfiguration 0P2 GSW (when code=0) CLR_CFG (CLR pin) TH_EN RNG (Full Scale) MUX 0: Float ▼ 00: IGNORE ▼ 0: Disable ▼ 0: FS=20mA, ▼ 0000	(Multiplexer) Write	
0.02 DAC C			
Read	GSW (when code=0) CLR_CFG (CLR pin) TH_EN RNG (Full Scale) MU> 0: Float ▼ 00: IGNORE ▼ 0: Disable ▼ 0: FS=20mA, ▼ 000	(Multiplexer) Write	
Read	GSW (when code=0) CLR_CFG (CLR pin) TH_EN RNG (Full Scale) MU> 0: Float ▼ 00: IGNORE ▼ 0: Disable ▼ 0: FS=20mA, ▼ 0000	(Multiplexer) Write	
0.05 0.40 0			
Read	GSW (when code=0) CLR_CFG (CLR pin) TH_EN RNG (Full Scale) MUX	(Multiplexer) Write	
-Ux06 DAC Co Read	ontiguration UP6 GSW (when code=0) CLB CEG (CLB nin) THIEN BNG (Eull Scale) _MUX	(Multinlexer) Write 1	
Device Addre	ess: 🤶 🚽 🗖 Auto Read all 🛛 Initialize EV kit 🔹 Read All 👘 Writ	te All	

Figure 3. MAX5113 EV Kit Software Main Window (Registers Tab)

Evaluates: MAX5112/MAX5113/MAX5832

MAX5113 Evaluation Kit	
e Options View Help	
lock Diagram IDAC Configuration Registers Interface History	
distoru	
noosy noosy 12C deuiee address)	
reacting 12 could device address	
PI WriteWord[register 0x00 General Configuration, 0x0000)	
PI WriteWord[register 0x01 DAC Configuration 0P1, 0x0000]	
PI WriteWord(register 0x02 DAC Configuration 0P2, 0x0000)	
PI WriteWord(register 0x03 DAC Configuration 0P3, 0x0000)	
PI WriteWord(register 0x04 DAC Configuration OP4, 0x0000)	
PI WriteWord(register 0x05 DAC Configuration UP5, 0x0000)	
rr writeword(register uxub DAL Configuration OP5, uxuuuu) PDU//ite//configuration 0x07 DAC Configuration OP7, 0x00000	
PT write word(register oxor DAC Configuration CP7, 0x0000)	
Pl WiteWord(register 0x00 DAC Configuration 0.09, 0x0000)	
PI Write Word[register 0x0F Software Reset Command. 0x0000]	
PI WriteWord(register 0x10 Group DAC Code Command, 0x0000)	
PI WriteWord(register 0x11 DAC1 Code, 0x0000)	
PI WriteWord(register 0x12 DAC2 Code, 0x0000)	≣
PI WriteWord(register 0x13 DAC3 Code, 0x0000)	
PI writeWord(register 0x14 DAC5 Code, 0x00000)	
IPT writeWord[register us15 DACS Lode, usuuluu]	
r I willeword(register us to DAC6 Source Mode Code, Ux0000)	
FI witheword(register 0x17 DACF Code, 0x0000)	
PI WriteWord[register 0x19 DAC9 Code, 0x0000]	
PI WriteWord[register 0x1A DAC6 Sink Mode Code, 0x0000]	
PI WriteWord(register 0x18 DAC6 Shutter Mode Code, 0x0000)	
PI WriteWord(register 0x1F DAC6 Polarity Command, 0x0000)	
PIReadWord(register0x0E Status / Revision Read Back Command) = 0x0110	
iead All: read 1 out of 1 registers	
	~
	2
Device Address: ? 🔄 🔽 Auto Read all Initialize EV kit 🛛 Read All 🔹 Write All	

Figure 4. MAX5113 EV Kit Software Main Window (Interface History Tab)

Options Help Connection 2-wire interface 3-wire interface Logging	
Connection K10 Clock (SCK) (SCLK)	Configuration ▼ Send & receive MSB first 下 CPOL=1 (clock idles high) ▼ CPHA=1 (sample 2nd edge)
K12 Data from master to slave (MOSI) (DIN) K11 Data from slave to master (MISO) (DOUT) K9 Chip-select (CS) for data framing Image: Standard connections for high-speed SPI	MOSI Data Inverted Logic MISO Data Inverted Logic CS is active high, idle low 8.0 x 1 MHz 8.0 X 1 MHz Get Speed Set Speed
Send and Receive Data Data bytes to be written: 0x55, 0xAA Send Now repeat 1 Data bytes received: ?	

Figure 5. Advanced User Interface Window (3-Wire Interface Tab)

Options Help	
Connection 2-wire interface 3-wire interface 1 Logging	
Target Device Address: ? O000000r/w Hunt for active listeners	
General commands SMBus register watch Low Level commands	
Command (SMBus Protocols, Raw Block Read/Write, EEPROM Read/Write)	
Q - SMBusQuick(addr) -> device present? Execute PASS/FAIL	
Command byte: UXUU V Data Uut: { UXUU, UXUU }	
Byte count: 1 📑 Data In: 1?	
Use SMBus PEC Packet Error Correction byte	
Hunting for active listeners on SCL/SDA	<u></u>
No devices found. Check SCL/SDA connection	

Figure 6. Advanced User Interface Window (2-Wire Interface Tab)

Evaluates: MAX5112/MAX5113/MAX5832

Detailed Description of Hardware

The MAX5113 EV kit provides a proven layout for the MAX5113 in a 32-pin TQFN package with an exposed pad. I²C and SPI interface pads and easy-to-use USBPC connection are included on the EV kit.

Standard MINIQUSB-equivalent microcontroller circuits (U100–U140) connect from the USB to the SPI and I²C interfaces. The MINIQUSB circuit powers its +2.5V and +3.3V supplies from the +5V USB.

External user-supplied power connects to the device through test points TP0, TP1, and TP2. The MAX8869 LDO linear regulator (U2) supplies +3V at 1000mA powered from the external TP1 positive supply. The MAX1735 negative LDO linear regulator (U3) supplies -5.2V at 200mA powered from the external TP2 negative supply. TP0 is the ground return.

Jumpers JU10–JU17 connect the MINIQUSB SPI bus, I²C bus, and GPIO signal to the CLR pin, as well as the MINIQUSB +3.3V VDDIO power supply.

Each of the outputs has its own dedicated 2-pin output header with GND and a jumper-selectable choice of onboard loads, including both resistive loads and diode loads. The resistive loads produce a voltage drop on the order of +2V at full-scale current. The diode loads mimic a typical fiber-optic system. Output 3 has two resistive loads and two diode loads to support both the 2mA and the

20mA ranges. Output 6 has two parallel strings of diodes, one for source load and the other for sink load.

Header H1 connects outputs 1–9 with ground returns and power-supply connections for optional external-user hardware connections. If a standard ribbon cable is connected to H1, ground returns are on alternating wires.

User-Supplied SPI Interface

To use the EV kit with a user-supplied SPI interface, remove the shunts on JU10–JU17. Connect the DIN, SCLK, \overline{CS} , DOUT, VDD, GND, and CLR signals to the corresponding pads on header H2 on the EV kit board.

Evaluating the MAX5112 or MAX5832

The MAX5112 or MAX5832 is the I²C version of the MAX5113. To evaluate this device, request a free sample of the MAX5112GTJ+ or MAX5832GWX+ when ordering the EV kit. With power off, replace U1 with the MAX5112 or MAX5832. Move JU12 and JU13 shunts to 2-3. Move JU14 and JU15 shunts to 1-2. Move JU16 and JU17 shunts to 1-2 (see Table 1).

User-Supplied I²C Interface

To evaluate the MAX5112 or MAX5832 using the EV kit with a user-supplied I²C interface, remove the shunts from JU10–JU17. Connect the SDA, SCL, A0, A1, VDD, GND, and CLR signals to the corresponding pads on header H2 on the EV kit board.

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU10		1-2*	MINIQUSB powers digital interface VDDI with 3.3V from U14.
	VDDI	Open	User-supplied interface powers VDDI logic supply.
JU11		1-2*	MINIQUSB drives CLR pin under software control.
		Open	User-supplied interface drives CLR, pulled low (inactive) by R11.
JU12 DIN/SD		1-2*	MINIQUSB SPI interface (master-out/slave-in data).
	DIN/SDA	2-3	MINIQUSB I ² C interface (SDA).
		Open	User-supplied interface connected to header H2.
JU13	SCLK/SCL	1-2*	MINIQUSB SPI interface (clock).
		2-3	MINIQUSB I ² C interface (SCL).
		Open	User-supplied interface connected to header H2.
JU14	CS/A0	1-2	MINIQUSB I ² C interface address select A0 = 0.
		1-3*	MINIQUSB SPI interface (chip select).
		1-4	MINIQUSB I ² C interface address select A0 = 1.
		Open	User-supplied interface connected to header H2.

Table 1. Jumper Descriptions (JU10–JU17)

Evaluates: MAX5112/MAX5113/MAX5832

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU15	DOUT/A1	1-2	MINIQUSB I ² C interface address select A1 = 0.
		1-3*	MINIQUSB SPI interface (master-in/slave-out data).
		1-4	MINIQUSB I ² C interface address select A1 = 1.
		Open	User-supplied interface connected to header H2.
JU16	SCL	1-2	MINIQUSB I ² C SCL pullup resistor R16 is enabled.
		Open*	MINIQUSB SPI does not require pullup R16.
JU17	SDA	1-2	MINIQUSB I ² C SCL pullup resistor R17 is enabled.
		Open*	MINIQUSB SPI does not require pullup R17.

Table 1. Jumper Descriptions (JU10–JU17) (continued)

*Default position.

Table 2. Load Jumper Descriptions (JUOUT1A–JUOUT9)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JUOUT1A		1-2	Output connects to 10mA diode load.
	OUT1A	2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
		1-2	Output connects to 10mA diode load.
JUOUT1B	OUT1B	2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
JUOUT1C		1-2	Output connects to 10mA diode load.
	OUT1C	2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
JUOUT1D	OUT1D	1-2	Output connects to 10mA diode load.
		2-3*	Output connects to10mA resistive load.
		Open	Output requires user-supplied current load.
	OUT2A	1-2	Output connects to10mA diode load.
JUOUT2A		2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
	OUT2B	1-2	Output connects to 10mA diode load.
JUOUT2B		2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
	OUT2C	1-2	Output connects to 10mA diode load.
JUOUT2C		2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.
		1-2	Output connects to 10mA diode load.
JUOUT2D	OUT2D	2-3*	Output connects to 10mA resistive load.
		Open	Output requires user-supplied current load.

Evaluates: MAX5112/MAX5113/MAX5832

Table 2. Load Jumper Descriptions (JUOUT1A–JUOUT9) (continued)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JUOUT3	OUT3	1-2	Output connects to 2mA diode load.
		1-3	Output connects to 20mA diode load.
		1-4	Output connects to 2mA resistive load.
		1-5*	Output connects to 20mA resistive load.
		Open	Output requires user-supplied current load.
JUOUT4		1-2	Output connects to 90mA diode load.
	OUT4	2-3*	Output connects to 90mA resistive load.
		Open	Output requires user-supplied current load.
JUOUT5	OUT5	1-2	Output connects to 180mA diode load.
		2-3*	Output connects to 180mA resistive load.
		Open	Output requires user-supplied current load.
	OUT6	1-2	Output connects to 300mA/-60mA diode load.
		1-3	Output connects to -60mA resistive load.
300010		1-4*	Output connects to 300mA resistive load.
		Open	Output requires user-supplied current load.
	OUT7	1-2	Output connects to 90mA diode load.
JUOUT7		2-3*	Output connects to 90mA resistive load.
		Open	Output requires user-supplied current load.
JUOUT8	OUT8	1-2	Output connects to 15mA diode load.
		2-3*	Output connects to 15mA resistive load.
		Open	Output requires user-supplied current load.
	OUT9	1-2	Output connects to 15mA diode load.
JUOUT9		2-3*	Output connects to 15mA resistive load.
		Open	Output requires user-supplied current load.

*Default position.

Figure 7a. MAX5113 EV Kit Schematic (Sheet 1 of 6)

Figure 7c. MAX5113 EV Kit Schematic (Sheet 3 of 6)

Figure 7d. MAX5113 EV Kit Schematic (Sheet 4 of 6)

Figure 7e. MAX5113 EV Kit Schematic (Sheet 5 of 6)

Figure 7f. MAX5113 EV Kit Schematic (Sheet 6 of 6)

Figure 8. MAX5113 EV Kit Component Placement Guide—Component Side

Figure 9. MAX5113 EV Kit PCB Layout—Component Side

Figure 10. MAX5113 EV Kit PCB Layout—Ground Layer 2

Figure 11. MAX5113 EV Kit PCB Layout—Power Layer 3

Figure 12. MAX5113 EV Kit PCB Layout—Solder Side

Evaluates: MAX5112/MAX5113/MAX5832

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/20	Initial release	—
1	4/20	Updated Ordering Information	1
2	6/21	Added MAX5832 to data sheet including General Description and Features.	1–24

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.