General Description

The MAX5882 14-bit, 4.6Gsps digital-to-analog converter (DAC) is designed for direct RF synthesis of multicarrier quadrature amplitude modulation (QAM) signals in cable modem termination systems (CMTS) and edge QAM (EQAM) devices. The DAC features excellent spurious, noise, and adjacent-channel power (ACP) performance, and directly synthesizes multiple carriers in the 47MHz to 1003MHz cable downstream band, as defined by the Data-Over-Cable Service Interface Specification (DOCSISM). The 4.6Gsps update rate allows digital generation of signals with more than 2GHz bandwidth.

The device has four 14-bit, multiplexed, low-voltage differential signaling (LVDS) input ports that each operate at up to 1150Mwps in double data rate (DDR) or single data rate (SDR) mode. The inputs also accept differential high-speed transceiver logic (DHSTL) input levels. The device accepts a clock at 1/2 the DAC update rate, as conversion is triggered on both rising and falling clock edges. The input data rate on each port is 1/4 the DAC update rate or 1/2 of the clock rate. The device contains a delay-locked loop (DLL) that simplifies the interface to FPGA or ASIC devices. Using the DLL, the phase of the output clock (DATACLK) is adjusted to ensure that the input LVDS data bus has the proper timing relationship to the on-chip clock used to latch the data.

The device is a current-steering DAC with an integrated 50I differential output termination to ensure optimum dynamic performance. Operating from 3.3V and 1.8V power supplies, the device consumes 2.3W at 4.6Gsps. The device is specified over the extended temperature range (-40NC to +85NC) and is offered in a 256 CSBGA lead(Pb)-free/RoHS-compliant package.

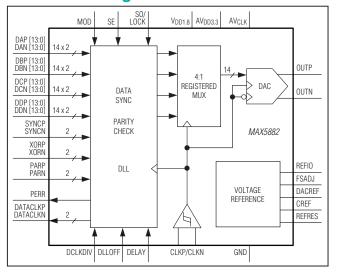
Applications

- DOCSIS-Compliant Edge QAM Devices
- Cable Modem Termination Systems (CMTS)
- Broadcast Video Modulators
- Video-On-Demand (VOD)
- Coax Media Converters
- Remote PHY

DOCSIS is a registered trademark of Cable Television Laboratories, Inc. (CableLabs $^{\ensuremath{\$}}$)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Features


- 4.6Gsps Output Update Rate
 - Direct RF Synthesis from 47MHz to 1003MHz
 - No Aliasing of HD3 into Cable Band
- Industry-Leading DOCSIS 3.0 Performance Noise
 Floor
 - -70dBc at four = 900MHz, 8 Channel (256 QAM)
 - -66dBc at four = 900MHz, 16 Channel (256 QAM)
 - -62dBc at four = 900MHz, 32 Channel (256 QAM)
 - -57dBc at four = 500MHz, 128 Channel (256 QAM)
- High Output Power 9dBm (CW)
 Enables Low Solution Power
- 4:1 Multiplexed LVDS Inputs
 - Up to 1150Mwps Each Port
 - Double Data Rate (DDR) Mode
- On-Chip DLL for Input Data Synchronization
- Parity Error Flag
- Internal 50Ω Differential Output Termination
- Input Register Scan Mode
- Compact 17mm x 17mm, 256 CSBGA Package
- Evaluation Kit Available (Order MAX5882EVKIT+)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5882EXF+D	-40°C to +85°C	256 CSBGA

+Denotes a lead(Pb)-free/RoHS-compliant package. D = Dry pack.

Functional Diagram

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Absolute Maximum Ratings

$\begin{array}{llllllllllllllllllllllllllllllllllll$
OUTP, OUTN to GND, DACREF0.3V to AV _{DD3.3} + 1.0V CREF to GND, DACREF0.3V to V _{DD1.8} + 0.3V
SE, DCLKDIV, DLLOFF, MOD, DELAY,
REFRES TO GND, DACREF0.3V to AV _{DD3.3} + 0.3V
CLKP, CLKN to GND, DACREF0.3V to AV _{CLK} + 0.3V
DAP0–DAP13, DBP0–DBP13, DCP0–DCP13 to GND,
DACREF0.3V to V _{DD1.8} + 0.3V
DDP0–DDP13, XORP, SYNCP, PARP to GND,
DACREF0.3V to V _{DD1.8} + 0.3V
DAN0–DAN13, DBN0–DBN13, DCN0–DCN13 to GND,
DACREF0.3V to V _{DD1.8} + 0.3V

DDN0-DDN13, XORN, SYNCN, PARN to GND,

DACREF0.3V to V _{DD1.8} + 0.3V
DATACLKP, DATACLKN to GND,
DACREF0.3V to V _{DD1.8} + 0.3V
SO/LOCK, PERR to GND, DACREF0.3V to V _{DD1.8} + 0.3V
SO/LOCK, PERR Continuous Current
DATACLKP, DATACLKN Continuous Current8mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
256 CSBGA (derate 38.6mW/°C above +70°C)3088.8mW
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
STATIC PERFORMANCE							
Resolution				14		Bits	
Full-Scale Output Current Range	IOUT	(Note 2)	10		80	mA	
Output-Power Gain Error	GE		-0.7		+0.7	dB	
Output Down Drift		Internal reference		-0.003			
Output-Power Drift		External reference	-0.0025			dB/°C	
Full-Scale Output Power	Pout	Differential, into 50Ω load, f _{OUT} = 103.5MHz, f _{DAC} = 4.608Gsps		9		dBm	
Output Resistance	R _{OUT}	Differential		50		Ω	
DYNAMIC PERFORMANCE (Note 3	·	·					
Minimum Clock Rate f _{CLK}					10	MHz	
Maximum Clock Rate	fCLK	2304			MHz		
Minimum Output Update Rate	fDAC	20				Msps	
Maximum Output Update Rate	fDAC		4608			Msps	

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Electrical Characteristics (continued)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS		
			Adjacent channel (750kHz from channel block edge to 6MHz from channel block edge)		-71 -64			
		f _{OUT} = 400MHz, f _{DAC} =	Next-adjacent channel (6MHz from channel block edge to 12MHz from channel block edge)		-73	-66		
		4608Msps	Third-adjacent channel (12MHz from channel block edge to 18MHz from channel block edge)		-73	-66		
			Noise in any other channel (Note 4)		-73			
		f _{OUT} = 860MHz, f _{DAC} = 4608Msps	Adjacent channel (750kHz from channel block edge to 6MHz from channel block edge)		-67			
Out-of-Band Noise and Spurious, Eight 6MHz QAM Chan- nels, Average Total			Next-adjacent channel (6MHz from channel block edge to 12MHz from channel block edge)		-66		dBc	
Power = -10dBFS			Third-adjacent channel (12MHz from channel block edge to 18MHz from channel block edge)		-66			
			Noise in any other channel (Note 4)		-65			
			Adjacent channel (750kHz from channel block edge to 6MHz from channel block edge)		-67			
	f _{DAC} =	1000MHz,	Next-adjacent channel (6MHz from channel block edge to 12MHz from channel block edge)		-67			
		4608Msps	Third-adjacent channel (12MHz from channel block edge to 18MHz from channel block edge)		-67			
			Noise in any other channel (Note 4)		-66			

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Electrical Characteristics (continued)

PARAMETER	SYMBOL		MIN	ТҮР	MAX	UNITS		
Harmonic Distortion, Block of Four 6MHz QAM		f _{OUT} = 300MHz,	nels coincio	eight 6MHz chan- ling with nic components		-72	-64	dPo
Channels, Average Total Power = -10dBFS		f _{DAC} = 4.6Gsps		welve 6MHz chan- ling with 3rd-har- ponents		-72	-65	- dBc
Gain Flatness	GF	Over any	single 6MHz ch	annel		0.05		dB
Gailt Flattless	Gi	Within 47	MHz to 1003MH	Iz band		1.6		ub .
Clock Spurs		f _{DAC} = 4.0 QAM cha	6Gsps, eight nnels	f _{DAC} /4 spur f _{DAC} /8 spur		-80 -100		dBm
f _{DAC} /2 - f _{OUT} Image			6Gsps, eight QA from 952MHz to	M channels covering 1000MHz		-40		dBc
f _{DAC} /2 - 2f _{OUT} Spurious			6Gsps, eight QA from 952MHz to	M channels covering 1000MHz		-64		dBc
REFERENCE								
Internal Reference Voltage Range	V _{REFIO}				1.1	1.2	1.3	V
Reference Input-Voltage Compli- ance Range	V _{REFIOR}				0.5		1.8	V
Reference Input Resistance	R _{REFIO}					10		kΩ
Reference Voltage Drift	TCO _{REF}					50		ppm/°C
ANALOG OUTPUT TIMING								
Output Fall Time	t _{FALL}	90% to 10% (Note 5)				300		ps
Output Rise Time	t _{RISE}	10% to 90	0% (Note 5)			300		ps
Settling Time	t _S	Settling to Settling to				1 2.5		- ns
Output Bandwidth	BW	(Note 6)				2.0		GHz
Output Propagation Delay	t _{PD}	(Note 7)				1.5		ns
		, ,]/DAN[13:0] to (output		11.5		
			/DBN[13:0] to (12 12.5 13			Clock
Output Data Latency	t _{DL}	-]/DCN[13:0] to					Cycles
)/DDN[13:0] to					1
TIMING CHARACTERISTICS				·				
			DLLOFF = Low	, DELAY = High	1075		1152	
		I –		LLOFF = Low, DELAY = Open			1075	1
			DLLOFF = Low, DELAY = Open950DLLOFF = Open, DELAY = Low825		825		950	1
	£	f _{DLL} =	f _{DLL} = DLLOFF = Open, DELAY = High 700				825	
DLL Frequency Range	fDLL	f _{CLK} /2 DLLOFF = Open, DEL		n, DELAY = Open	625		700	- MHz
			DLLOFF = Res	, DELAY = Low	550		625	1
		DLLOFF = Res, DELAY = High			475		550	1
			DLLOFF = Res,	DELAY = Open	400		475	1

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITION	IS	MIN	TYP	MAX	UNITS
Input Data Skew vs. SYNC		Allowed skew of any LVDS inputs (DAP[13:0]/ DAN[13:0], DBP[13:0]/ DBN[13:0], DCP[13:0]/ DCN[13:0], DDP[13:0]/ DDN[13:0], XORP/	T _{A(MIN)} = 0°C, T _{J(MAX)} = +110°C	-324		+307	
	^t skew	XORN, and PARP/ PARN), with respect to the SYNC input; this parameter only applies when DLLOFF is not driven high (Note 8)	T _{A(MIN)} = -40°C, T _{J(MAX)} = +110°C	-300		+300	ps
		DLLOFF = 1.8V; data on the LVDS input pins must be stable for tSETUP before the next	T _{A(MIN)} = 0°C, T _{J(MAX)} = +110°C	1.52			
Input Data to Clock Setup Time	^t SETUP	edge of DATACLKP/ DATACLKN; this param- eter only applies when DLLOFF is driven high (Note 8)	T _{A(MIN)} = -40°C, T _{J(MAX)} = +110°C	1.53			ns
		DLLOFF = 1.8V; data on the LVDS input pins must remain stable for t _{HOLD}	T _{A(MIN)} = 0°C, T _{J(MAX)} = +110°C	-0.85			
Input Data to Clock Hold Time	^t HOLD	after an edge of DATA- CLKP/DATACLKN; this parameter only applies when DLLOFF is driven high (Note 8)	T _{A(MIN)} = -40°C, T _{J(MAX)} = +110°C	-0.9			ns
Parity Error Pulse Width	terr	Pulse width of PERR when is detected	n a parity error		48		Data Clock Cycles
Parity Pipeline Delay	^t PIPE, PARITY	Pipeline delay in the internal parity calcu- lation; delay the incoming PARP/PARN bit by this amount		3		3	Data Clock Cycles
XOR Pipeline Delay	^t PIPE, XOR	Pipeline delay in the XOR incoming XORP/XORN bit	1		1	Data Clock Cycles	

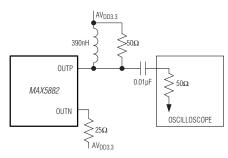
14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		N[13:0], DBP[13:0], DBN[13:0], DCP[13:0],	DCN[13:0], DDP[13:0], DDI	N[13:0],
XORP, XORN, PARP, PARN, S		SPECIFIED FOR LVDS INPUT	1			
Differential Input Logic-High	VIH		100			mV
Differential Input Logic-Low	VIL				-100	mV
Input Common-Mode Voltage Range	V _{COM}		1.125		1.375	V
Differential Input Resistance	R _{IN}		85	107	125	Ω
Input Capacitance	C _{IN}			1.5		pF
		N[13:0], DBP[13:0], DBN[13:0], DCP[13:0], SPECIFIED FOR DIFFERENTIAL-HSTL INPU], DDP[13:0], DDI	N[13:0],
Differential Input Logic-High	V _{IH(DC)}		160			mV
Differential Input Logic-Low	V _{IL(DC)}				-160	mV
Input Common-Mode Voltage Range	V _{COM}		0.456		1.0	V
Differential Input Resistance	R _{IN}		85	107	125	Ω
Input Capacitance	C _{IN}			1.5		pF
1.8V CMOS LOGIC INPUTS (D	CLKDIV, SE, MO	D)				
Input Logic-High	V _{IH1.8}		0.7 x V _{DD1.8}			V
Input Logic-Low	V _{IL1.8}				0.3 x V _{DD1.8}	V
Input Leakage Current	I _{IN1.8}		-5		+5	μ A
Input Capacitance	C _{IN1.8}			3		pF
1.8V 4-LEVEL LOGIC INPUTS	(DLLOFF, DELA)	Y)				
Input 4-Level Logic-Open	V _{OC4}		23/32 x V _{DD1.8} + 50mV		29/32 x V _{DD1.8} - 50mV	V
Input 4-Level Logic-Res	V _{RC4}		7/32 x V _{DD1.8} + 50mV		23/32 x V _{DD1.8} - 50mV	V
Input 4-Level Logic-High	V _{IH4}		29/32 x V _{DD1.8} + 50mV		V _{DD1.8}	V
Input 4-Level Logic-Low	V _{IL4}		0		7/32 x V _{DD1.8} - 50mV	V
Input Pullup Current	I _{PU4}		8	11.3	15	μ A
Input Pulldown Current	I _{PD4}		32		64	μ A
Input Capacitance	C _{IN4}			3		pF

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Electrical Characteristics (continued)


PARAMETER	PARAMETER SYMBOL CONDITIONS					UNITS
1.8V CMOS LOGIC OUTPUTS	(SO/LOCK, PER	R)				
Output Logic-High	V _{OH1.8}	I _{SOURCE} = 200µA	V _{DD1.8} - 0.2			V
Output Logic-Low	V _{OL1.8}	I _{SINK} = 200μA			0.2	V
1.8V LVDS OUTPUTS (DATAC	LKP, DATACLK	N)				
Differential Swing	V _{DIFF, LVDS}	$V_{DIFF,LVDS} = V_{DATACLKP} - V_{DATACLKN}$ with 100 Ω differential termination	±250	±350	±450	mV
Output Rise and Fall Time	t _R , t _F	With 100Ω differential termination		0.3		ns
Common-Mode Voltage	V _{COM, LVDS}		1.125	1.28	1.375	V
CLOCK INPUTS (CLKP, CLKN)					
Minimum Clock Input Power	P _{CLK} , MIN	(Note 9)		6		dBm
Maximum Clock Input Power P _{CLK, MAX} Power		Power measured into the MAX5882 clock input with 100Ω external differential termination resistor	12			dBm
Common-Mode Voltage	VCOMCLK	Input is self-biased		AV _{CLK} /3		V
Input Resistance	R _{CLK}	Differential		100		Ω
Input Capacitance	C _{CLK}			2		pF
POWER SUPPLIES						
Analog Supply Voltage Range	AV _{DD3.3}		3.2	3.3	3.5	V
1.8V Supply Voltage Range	V _{DD1.8}		1.7	1.8	1.9	V
Clock Supply Voltage Range	AV _{CLK}		1.7	1.8	1.9	V
Analog Supply Current	I _{AVDD3.3}	f _{DAC} = 4608Msps, f _{OUT} = 400MHz, 8-channel QAM (Note 3)		335	360	mA
1.8V Supply Current	I _{VDD1.8}	f _{DAC} = 4608Msps, f _{OUT} = 400MHz, 8-channel QAM (Note 3)		250	290	mA
Clock Supply Current	IAVCLK	f _{DAC} = 4608Msps, f _{OUT} = 400MHz, 8-channel QAM (Note 3)		440	500	mA
Power Dissipation	P _{DISS}	f _{DAC} = 4608Msps, f _{OUT} = 400MHz, 8-channel QAM (Note 3)		2.3	2.6	W

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

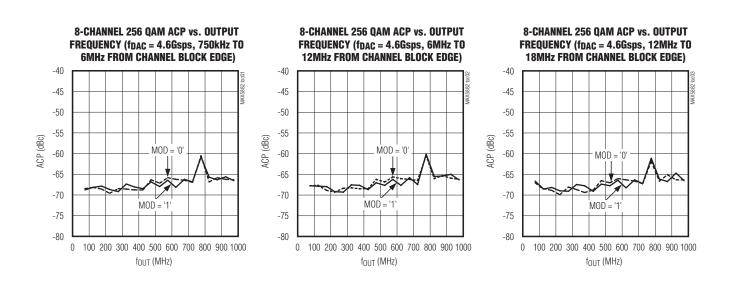
Electrical Characteristics (continued)

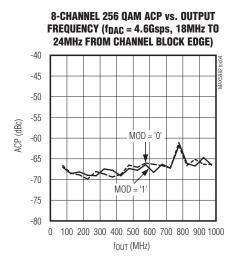
 $(V_{AVDD3.3} = 3.3V, V_{DD1.8} = V_{AVCLK} = 1.8V, R_{SET} = 2k\Omega, V_{REFIO} = external 1.25V, V_{MOD} = V_{DCLKDIV} = V_{DLLOFF} = 0V, V_{DELAY} = 1.8V, R_{REFRES} = 500\Omega$, transformer-coupled differential output, $T_{A(MIN)} = -40^{\circ}$ C, $T_{J(MAX)} = +110^{\circ}$ C, unless otherwise noted. Typical values are at $T_{J} = +65^{\circ}$ C.) (Note 1)

- Note 1: All specifications are guaranteed via test at T_J = +65°C and T_J = +110°C to an accuracy of ±15°C, unless otherwise noted. Specifications at T_J < +65°C are guaranteed by design and characterization. Timing specifications are guaranteed by design and characterization.
- Note 2: Nominal full-scale current I_{OUT} = 128 x I_{REF}.
- **Note 3:** CLK input = +9dBm, AC-coupled sine wave.
- Note 4: Excludes clock, clock images, f_{DAC}/2 f_{OUT}, and f_{DAC}/2 2f_{OUT} spurs, which are specified separately.
- **Note 5:** Measured single-ended into a double-terminated 50Ω load.

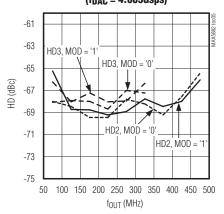
- Note 6: Excludes impulse-response dependent rolloff inherent in the DAC.
- Note 7: Referenced to rising edge of DAC update clock-excludes data latency.
- Note 8: Guaranteed by design and characterization.
- **Note 9:** Transformer-coupled clock input (Figure 4).

Thermal Characteristics

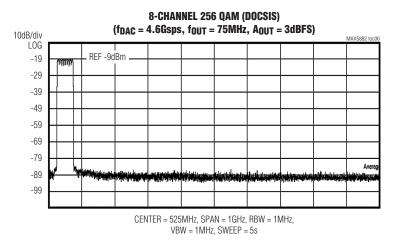

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Ambient Temperature	T _A	(Note 10)	-40		+85	°C	
Junction Temperature	ТJ		-40		+110	°C	
Thermal Resistance, Junction-	0	Air flow 0m/s		31.9		°C/M	
to-Ambient (Note 10)	θ_{JA}	Air flow 1m/s		27.7		°C/W	
Thermal Resistance, Junction- to-Case	θJC			3.4		°C/W	
Thermal Resistance, Junction- to-Board	θ_{JB}			24		°C/W	
Thermal Characterization		Air flow 0m/s		25.5		°C/M	
Parameter, Junction-to-Board	ΨJB	Air flow 1m/s	23.7			°C/W	
Thermal Characterization))(.=	Air flow 0m/s		8.1		°C/W	
Parameter, Junction-to-Top		Air flow 1m/s		1.7	/W		

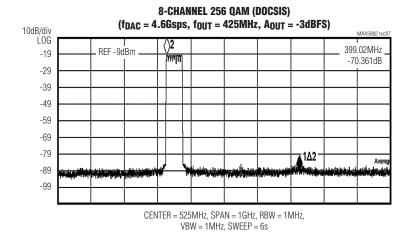

Note 10: The package is mounted on a four-layer JEDEC-standard test board, dissipating maximum power.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

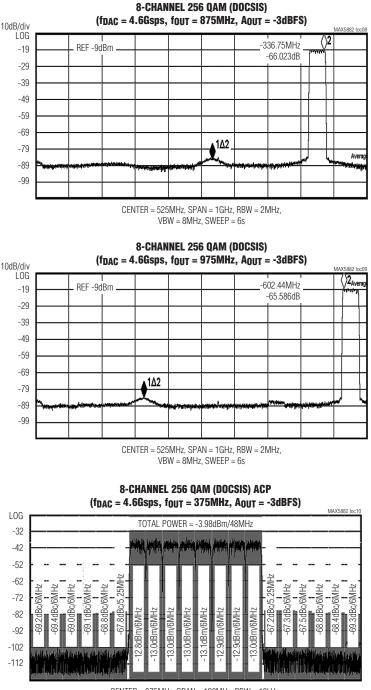

Typical Operating Characteristics

 $(V_{AVDD3.3} = 3.3V, V_{DD1.8} = V_{AVCLK} = 1.8V, R_{SET} = 2k\Omega, V_{REFIO} = external 1.25V, V_{MOD} = V_{DCLKDIV} = V_{DLLOFF} = 0V, V_{DELAY} = 1.8V, R_{REFRES} = 500\Omega$, transformer-coupled differential output, tested at T_J = +60°C, unless otherwise noted.)



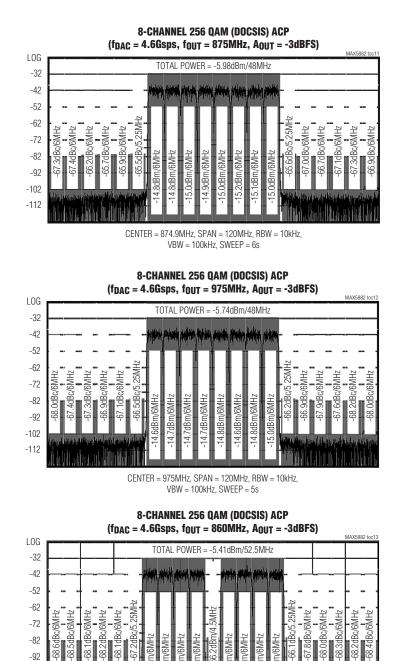

8-CHANNEL 256 QAM HARMONIC DISTORTION vs. OUTPUT FREQUENCY (fdac = 4.605Gsps)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC


Typical Operating Characteristics (continued)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Typical Operating Characteristics (continued)



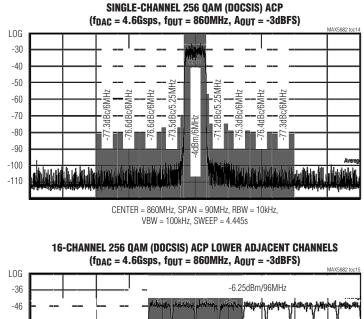
CENTER = 375MHz, SPAN = 120MHz, RBW = 10kHz, VBW = 100kHz, SWEEP = 5s

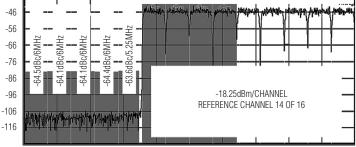
14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Typical Operating Characteristics (continued)

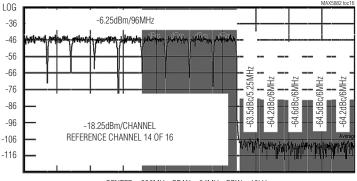
 $(V_{AVDD3.3} = 3.3V, V_{DD1.8} = V_{AVCLK} = 1.8V, R_{SET} = 2k\Omega, V_{REFIO} = external 1.25V, V_{MOD} = V_{DCLKDIV} = V_{DLLOFF} = 0V, V_{DELAY} = 1.8V, R_{REFRES} = 500\Omega$, transformer-coupled differential output, tested at T_J = +60°C, unless otherwise noted.)

CENTER = 860MHz, SPAN = 126MHz, RBW = 10kHz,

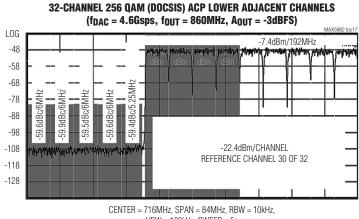

VBW = 100kHz, SWEEP = 5s


-102 -112

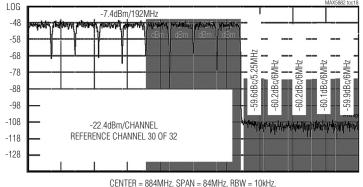
14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC


Typical Operating Characteristics (continued)

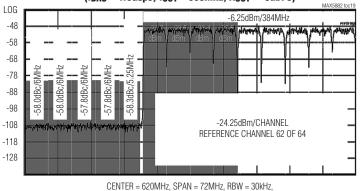
 $(V_{AVDD3.3} = 3.3V, V_{DD1.8} = V_{AVCLK} = 1.8V, R_{SET} = 2k\Omega, V_{REFIO} = external 1.25V, V_{MOD} = V_{DCLKDIV} = V_{DLLOFF} = 0V, V_{DELAY} = 1.8V, R_{REFRES} = 500\Omega$, transformer-coupled differential output, tested at T_J = +60°C, unless otherwise noted.)


CENTER = 824MHz, SPAN = 84MHz, RBW = 10kHz, VBW = 100kHz, SWEEP = 5s

16-CHANNEL 256 QAM (DOCSIS) ACP UPPER ADJACENT CHANNELS (fdac = 4.6Gsps, fout = 860MHz, Aout = -3dBFS)


14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

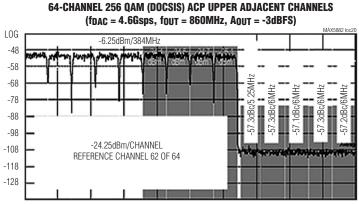
Typical Operating Characteristics (continued)


VBW = 100 kHz, SWEEP = 5s

32-CHANNEL 256 QAM (DOCSIS) ACP UPPER ADJACENT CHANNELS (fdac = 4.6Gsps, fout = 860MHz, Aout = -3dBFS)

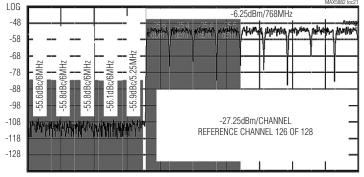
VBW = 100kHz, SWEEP = 5s

64-CHANNEL 256 QAM (DOCSIS) ACP LOWER ADJACENT CHANNELS (fdac = 4.6Gsps, fout = 860MHz, Aout = -3dBFS)

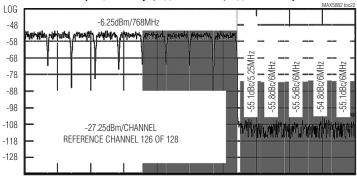


R = 620WHZ, SPAN = 72WHZ, RBW = 30Kr VBW = 300kHz, SWEEP = 5s

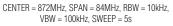
14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC


Typical Operating Characteristics (continued)

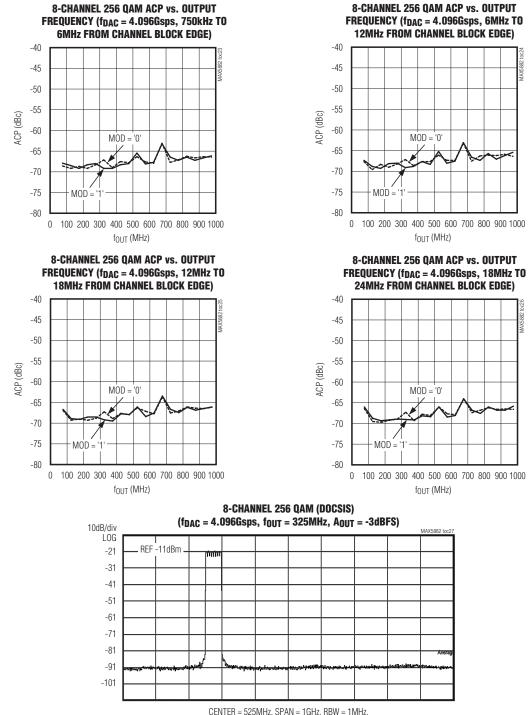
 $(V_{AVDD3.3} = 3.3V, V_{DD1.8} = V_{AVCLK} = 1.8V, R_{SET} = 2k\Omega, V_{REFIO} = external 1.25V, V_{MOD} = V_{DCLKDIV} = V_{DLLOFF} = 0V, V_{DELAY} = 1.8V, R_{REFRES} = 500\Omega$, transformer-coupled differential output, tested at T_J = +60°C, unless otherwise noted.)



CENTER = 980MHz, SPAN = 84MHz, RBW = 10kHz, VBW = 100kHz, SWEEP = 5s

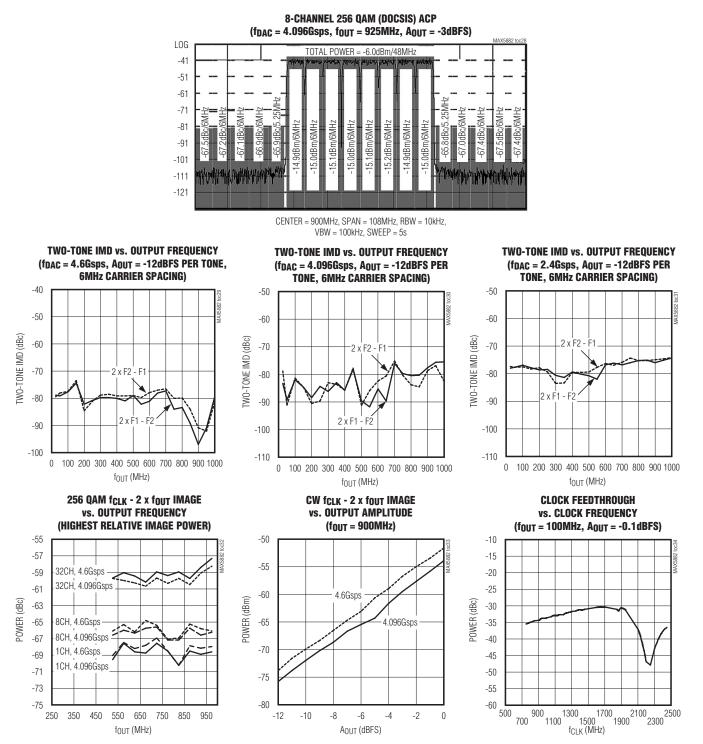

128-CHANNEL 256 QAM (DOCSIS) ACP LOWER ADJACENT CHANNELS (fdac = 4.6Gsps, fout = 860MHz, Aout = -3dBFS)

CENTER = 128MHz, SPAN = 84MHz, RBW = 10kHz, VBW = 100kHz, SWEEP = 5s

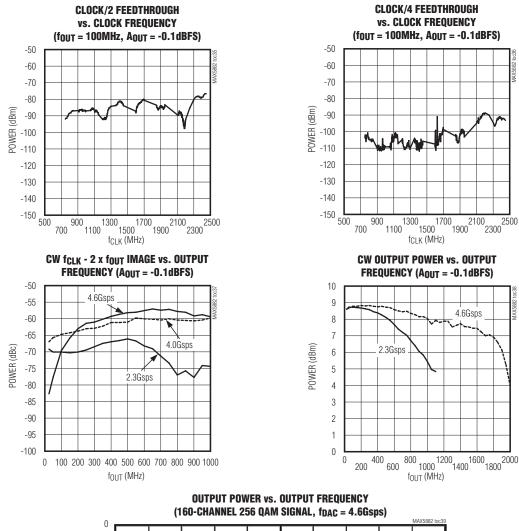


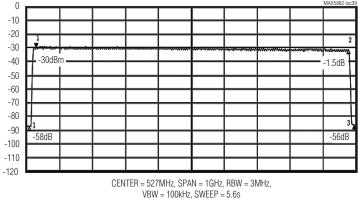
128-CHANNEL 256 QAM (DOCSIS) ACP UPPER ADJACENT CHANNELS (fdac = 4.6Gsps, fout = 860MHz, Aout = -3dBFS)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

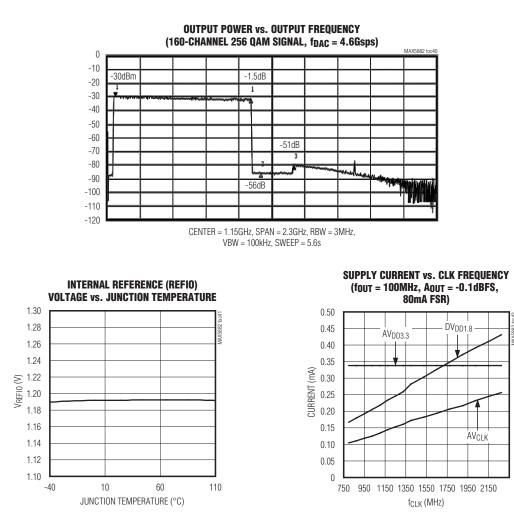

Typical Operating Characteristics (continued)

R = 525MHz, SPAN = 1GHz, RBW = 1M VBW = 1MHz, SWEEP = 5s


14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC


Typical Operating Characteristics (continued)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC


Typical Operating Characteristics (continued)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Typical Operating Characteristics (continued)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Ball Configuration

OP VIEW																
								MAXS	5882							
	CREF	DACREF	REFIO	FSADJ	REFRES	AVDD3.3	GND	AVDD3.3	AVDD3.3	OUTN	OUTP	AVDD3.3	AVDD3.3	GND	GND	GND
	(A1)	(A2)	(A3)	(A4)	(A5)	(A6)	(A7)	(A8)	(A9)	(A10)	(A11)	(A12)	(A13)	(A14)	(A15)	(A16)
	GND	GND	GND	GND	GND	GND	GND	AV _{DD3.3}	AV _{DD3.3}	OUTN	OUTP	AV _{DD3.3}	AV _{DD3.3}	GND	AVCLK	AVCLK
	(B1)	(B2)	(B3)	(B4)	(B5)	(B6)	(B7)	(B8)	(B9)	(B10)	(B11)	(B12)	(B13)	(B14)	(B15)	(B16)
	V _{DD1.8}	GND	GND	GND	GND	GND	GND	GND	GND	GND	AV _{CLK}	CLKN				
	(01)	(C2)	(C3)	(C4)	(C5)	(C6)	(07)	(08)	(09)	(C10)	(011)	(C12)	(C13)	(C14)	(C15)	(C16)
	SE	SO/LOCK	PERR	GND	DELAY	GND	GND	GND	GND	GND	GND	GND	GND	GND	AVCLK	CLKP
	(D1)	(D2)	(D3)	(D4)	(D5)	(D6)	(D7)	(D8)	(D9)	(D10)	(D11)	(D12)	(D13)	(D14)	(D15)	(D16)
	GND	DCLKDIV	GND	DLLOFF	MOD	GND	GND	GND	GND	GND	GND	GND	GND	GND	AV _{CLK}	AV _{CLK}
	(E1)	(E2)	(E3)	(E4)	(E5)	(E6)	(E7)	(E8)	(E9)	(E10)	(E11)	(E12)	(E13)	(E14)	(E15)	(E16)
	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND
	(F1)	(F2)	(F3)	(F4)	(F5)	(F6)	(F7)	(F8)	(F9)	(F10)	(F11)	(F12)	(F13)	(F14)	(F15)	(F16)
	V _{DD1.8}	V _{DD1.8}	V _{DD1.8}	V _{DD1.8}	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND
	(G1)	(G2)	(G3)	(G4)	(G5)	(G6)	(G7)	(G8)	(G9)	(G10)	(G11)	(G12)	(G13)	(G14)	(G15)	(G16)
	DAP13	DAN13	DAP12	DAN12	DAP11	DAN11	DAP10	DAN10	GND	GND	GND	GND	VDD1.8	VDD1.8	VDD1.8	VDD1.8
	(H1)	(H2)	(H3)	(H4)	(H5)	(H6)	(H7)	(H8)	(H9)	(H10)	(H11)	(H12)	(H13)	(H14)	(H15)	(H16)
	DAP9	DAN9	DAP8	DAN8	DAP7	DAN7	DAP6	DAN6	DDP13	DDN13	DDP12	DDN12	DDP11	DDN11	DDP10	DDN10
	(J1)	(J2)	(J3)	(J4)	(J5)	(J6)	(J7)	(J8)	(J9)	(J10)	(J11)	(J12)	(J13)	(J14)	(J15)	(J16)
	DAP5	DAN5	DAP4	DAN4	DAP3	DAN3	DAP2	DAN2	DDP9	DDN9	DDP8	DDN8	DDP7	DDN7	DDP6	DDN6
	(K1)	(K2)	(K3)	(K4)	(K5)	(K6)	(K7)	(K8)	(K9)	(K10)	(K11)	(K12)	(K13)	(K14)	(K15)	(K16)
	DAP1	DAN1	DAPO	DANO	GND	GND	GND	GND	DDP5	DDN5	DDP4	DDN4	DDP3	DDN3	DDP2	DDN2
	(L1)	(L2)	(L3)	(L4)	(L5)	(L6)	(L7)	(L8)	(L9)	(L10)	(L11)	(L12)	(L13)	(L14)	(L15)	(L16)
	DBP13	DBN13	DBP12	DBN12	DBP11	DBN11	DBP10	DBN10	DDP1	DDN1	DDP0	DDNO	GND	GND	GND	GND
	(M1)	(M2)	(M3)	(M4)	(M5)	(M6)	(M7)	(M8)	(M9)	(M10)	(M11)	(M12)	(M13)	(M14)	(M15)	(M16)
	DBP9	DBN9	DBP8	DBN8	DBP7	DBN7	DBP6	DBN6	DCP13	DCN13	DCP12	DCN12	DCP11	DCN11	DCP10	DCN10
	(N1)	(N2)	(N3)	(N4)	(N5)	(N6)	(N7)	(N8)	(N9)	(N10)	(N11)	(N12)	(N13)	(N14)	(N15)	(N16)
	DBP5	DBN5	DBP4	DBN4	DBP3	DBN3	DBP2	DBN2	DCP9	DCN9	DCP8	DCN8	DCP7	DCN7	DCP6	DCN6
	(P1)	(P2)	(P3)	(P4)	(P5)	(P6)	(P7)	(P8)	(P9)	(P10)	(P11)	(P12)	(P13)	(P14)	(P15)	(P16)
	DBP1	DBN1	DBP0	DBN0	PARP	PARN	SYNCP	SYNCN	DCP5	DCN5	DCP4	DCN4	DCP3	DCN3	DCP2	DCN2
	(R1)	(R2)	(R3)	(R4)	(R5)	(R6)	(R7)	(R8)	(R9)	(R10)	(R11)	(R12)	(R13)	(R14)	(R15)	(R16)
	GND	GND	GND	GND	DATACLKP	DATACLKN	XORP	XORN	DCP1	DCN1	DCP0	DCNO	GND	GND	GND	GND
	(T1)	(T2)	(T3)	(T4)	(T5)	(T6)	(T7)	(T8)	(T9)	(T10)	(T11)	(T12)	(T13)	(T14)	(T15)	(T16)

Ball Description

BALL	NAME	FUNCTION
A1	CREF	Noise Bypass Pin. A $1\mu F$ capacitor between CREF and DACREF band limits the phase noise of the device.
A2	DACREF	Current-Set Resistor Return Path. For 80mA full-scale output current, connect a $2k\Omega$ resistor between FSADJ and DACREF. DACREF is internally connected to GND. Do not connect DACREF to external ground.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Ball Description (continued)

BALL	NAME	FUNCTION	
A3	REFIO	Reference Input/Output. Output pin for the internal 1.2V bandgap reference. REFIO has a $10k\Omega$ series resistance and can be driven using an external reference. Connect a 1μ F capacit between REFIO and DACREF.	
A4	FSADJ	Full-Scale Adjust Input. Sets the full-scale output current of the DAC. For 80mA full-scale output current, connect a $2k\Omega$ resistor between FSADJ and DACREF.	
A5	REFRES	Connect a 500 Ω resistor between REFRES and AV _{DD3.3} .	
A6, A8, A9, A12, A13, B8, B9, B12, B13	AV _{DD3.3}	Analog 3.3V Supply Voltage. Connect 47nF bypass capacitors between each AV _{DD3.3} pin and GND.	
A7, A14, A15, A16, B1–B7, B14, C6–C14, D4, D6–D14, E1, E3, E6– E14, F1–F16, G5–G16, H9– H12, L5–L8, M13–M16, T1– T4, T13–T16	GND	Analog Ground. Connect to ground plane with minimum inductance.	
A10, B10	OUTN	Negative Terminal of Differential DAC Output. OUTN has an internal 25 Ω resistor to AV _{DD3.3} .	
A11, B11	OUTP	Positive Terminal of Differential DAC Output. OUTP has an internal 25Ω resistor to AV _{DD3.3} .	
B15, B16, C15, D15, E15, E16	AV _{CLK}	Clock 1.8V Supply Voltage. Connect 47nF bypass capacitors between AV _{CLK} and GND.	
C1–C5, G1– G4, H13–H16	V _{DD1.8}	1.8V Supply Voltage. Connect 47nF bypass capacitors between each $V_{DD1.8}$ pin and GND.	
D16	CLKP	Positive Converter Clock Input. There is an internal 100Ω termination resistor between CLKP and CLKN.	
C16	CLKN	Negative Converter Clock Input. There is an internal 100Ω termination resistor between CLKP and CLKN.	
D1	SE	Scan Enable. 1.8V CMOS logic input. During normal operation, SE should be connected to GND, and this makes the SO/LOCK pin a DLL LOCK indicator output. When SE is high (1.8V), the parallel input register is configured as a shift register, allowing the contents of the input register to be shifted out on SO/LOCK.	
D2	SO/LOCK	1.8V CMOS Logic Output SE = high: SO/LOCK is a scan data output SE = low: SO/LOCK is a DLL locking indicator output, and logic high indicates DLL is locked	
D3	PERR	1.8V CMOS Logic Level Parity Error Output. When a parity error is detected in the DAC input data, this pin is set high for a minimum of 48 LVDS data periods. This can be used to provide failure monitoring for the system. Note that this pin can pulse high when power is initially applied and before the DLL is locked.	

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Ball Description (continued)

BALL	NAME	FUNCTION	
D5	DELAY	Data Clock Mode Control DELAY = 0: No clock delay when DLLOFF = 1 DELAY = 1: One f _{CLK} period delay added to DATACLKP/DATACLKN when DLLOFF = 1 DLLOFF ≠ 1: DELAY is a 4-level input pin used along with DLLOFF (see Table 1 for details) DELAY is a 1.8V, 3.3V tolerant, 4-level logic input	
E2	DCLKDIV	Data Clock Divider Mode Input DCLKDIV = 1: DATACLKP/DATACKLN is f _{DAC} /8 DCLKDIV = 0: DATACLKP/DATACKLN is f _{DAC} /4 DCLKDIV is a 1.8V, 3.3V tolerant, CMOS input with an internal pulldown resistor	
E4	DLLOFF	Data Clock Mode Control DLLOFF ≠ 1: DLL is enabled as a 4-level logic input pin used along with the DELAY pin (see Table 1 for details) DLLOFF = 1: DLL is disabled DLLOFF is a 1.8V, 3.3V tolerant, 4-level logic input	
E5	MOD	f _{DAC} /2 (f _{CLK}) Modulation Control Input MOD = 0: Modulation off MOD = 1: Modulation on MOD is a 1.8V, 3.3V tolerant, CMOS input with an internal pulldown resistor	
H1, H3, H5, H7, J1, J3, J5, J7, K1, K3, K5, K7, L1, L3	DAP[13:0]	Positive Terminals of the A-Channel LVDS Data Inputs (Offset Binary Format). DAP13 is the MSB.	
H2, H4, H6, H8, J2, J4, J6, J8, K2, K4, K6, K8, L2, L4	DAN[13:0]	Negative Terminals of the A-Channel LVDS Data Inputs	
M1, M3, M5, M7, N1, N3, N5, N7, P1, P3, P5, P7, R1, R3	DBP[13:0]	Positive Terminals of the B-Channel LVDS Data Inputs (Offset Binary Format). DBP13 is the MSB.	
M2, M4, M6, M8, N2, N4, N6, N8, P2, P4, P6, P8, R2, R4	DBN[13:0]	Negative Terminals of the B-Channel LVDS Data Inputs	
N9, N11, N13, N15, P9, P11, P13, P15, R9, R11, R13, R15, T9, T11	DCP[13:0]	Positive Terminals of the C-Channel LVDS Data Inputs (Offset Binary Format). DCP13 is the MSB.	

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Ball Description (continued)

BALL	NAME	FUNCTION	
N10, N12, N14, N16, P10, P12, P14, P16, R10, R12, R14, R16, T10, T12	DCN[13:0]	Negative Terminals of the C-Channel LVDS Data Inputs	
J9, J11, J13, J15, K9, K11, K13, K15, L9, L11, L13, L15, M9, M11	DDP[13:0]	Positive Terminals of the D-Channel LVDS Data Inputs (Offset Binary Format). DDP13 is the MSB.	
J10, J12, J14, J16, K10, K12, K14, K16, L10, L12, L14, L16, M10, M12	DDN[13:0]	Negative Terminals of the D-Channel LVDS Data Inputs	
R5	PARP	Positive Terminal of the Parity LVDS Data Input. The parity input data is used internally to pro- vide detection of bit errors between the data source and the DAC and can be used for system monitoring. PARP/PARN should be delayed three DATACLKP/DATACLKN cycles.	
R6	PARN	Negative Terminal of parity LVDS Data Input	
R7	SYNCP	Positive Terminal of the Synchronization LVDS Data Input. The SYNCP/SYNCN pair should be driven synchronously with the DAC data input pairs and should be a pseudo-random sequence.	
R8	SYNCN	Negative Terminal of the Synchronization LVDS Data Input	
T5	DATACLKP	Positive Terminal of the LVDS Data Clock Output	
Т6	DATACLKN	Negative Terminal of the LVDS Data Clock Output	
Τ7	XORP	Positive Terminal of the XOR LVDS Data Input. The A-, B-, C-, and D-channel data bits are logi- cally exclusive ORed by the data on the XORP/XORN pin internally. This function can be used for whitening spurious signals that can be present in the input data. XORP/XORN should be delayed one DATACLKP/DATACLKN cycle. To disable the XOR function, drive a logic 0 into the XORP/XORN input pair.	
	XORN	Negative Terminal of XOR LVDS Data Input	

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Detailed Description

The MAX5882 is a high-performance, high-speed, 14-bit current-steering DAC with an integrated 50 Ω differential output termination to the 3.3V supply. The DAC operates with a clock rate (f_{CLK}) up to 2.3GHz. The DAC output is updated on each edge of the input clock resulting in a DAC update rate (f_{DAC}) of 4.6Gsps.

The device employs an edge-triggered 4:1 input data multiplexer and a delay-locked loop (DLL) to ease the interface requirements to FPGA or ASIC data sources. The SYNCP/SYNCN signal provides timing information to the internal DLL. The XORP/XORN signal allows whitening the spectral content of the input data stream. The data interface also provides parity validation for verification of the data transmission.

The analog output is a current-steering circuit capable of generating differential full-scale currents in the 10mA to 80mA range. An integrated 1.2V bandgap reference, control amplifier, and user-selectable external resistor determine the data converter's full-scale range.

Internal 25Ω termination resistors on each output, in combination with an external termination, convert the differential current into a voltage. The internal termination resistors are connected to the 3.3V analog supply, AV_{DD3.3}.

Reference System

The device supports operation with the on-chip 1.2V bandgap reference or an external reference voltage source. REFIO serves as the input for an external, low-impedance reference source and as the output if the DAC is operating with the internal reference. For stable operation with the internal reference, decouple REFIO to DACREF with a 1µF capacitor. Since REFIO has a 10k Ω series resistance, buffer REFIO with an external amplifier to drive external loads.

The device's reference circuit (Figure 1) employs a control amplifier that regulates the full-scale current I_{OUT} for the differential current outputs of the DAC. The bandwidth of the control amplifier is typically less than 100kHz. The DAC full-scale output current can be calculated as follows:

IOUT = 128 x IREF

where IREF is the reference output current (IREF = V_{REFIO}/R_{SET}) and I_{OUT} is the full-scale output current of the DAC. With an external reference voltage of 1.25V, RSET is typically set to $2k\Omega$, resulting in a full-scale current of 80mA and maximum 9dBm output power for a continuous-wave (CW) signal. Generally, the dynamic performance of the DAC improves with increasing full-scale current.

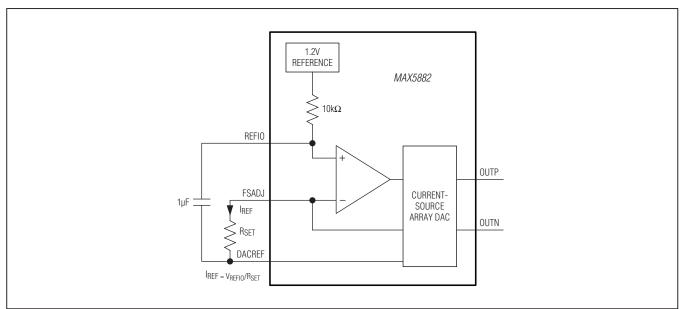


Figure 1. Reference Architecture, Internal Reference Configuration

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

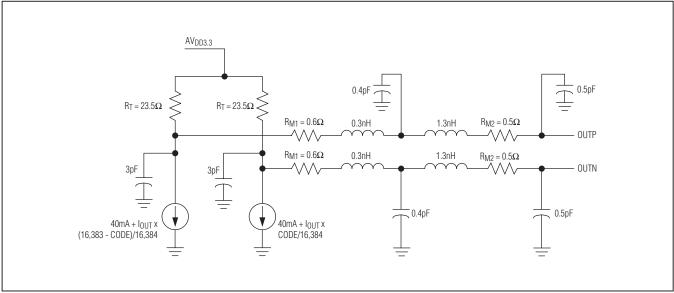


Figure 2. Equivalent Output Circuit

Analog Output

The device is a differential current-steering DAC with built-in output termination resistors. The outputs are terminated to AVDD3.3 providing a 50 Ω differential output resistance. In addition to the signal current, a constant 40mA current sink is connected to each DAC output. Figure 2 shows an equivalent circuit of the internal output structure of the device. The circuit has some resistive, capacitive, and inductive elements. These elements limit the output bandwidth to 2GHz with a resistive differential 50 Ω load.

The outputs need to be pulled up externally to AV_{DD3.3}. It is recommended that inductors be used for this purpose, as shown in Figure 3. The use of discrete inductors and capacitors allows for near perfect symmetry in the output circuit layout. An external 50Ω differential load is also required to avoid excessive voltage swings at the DAC output pins.

Clock Inputs

The device has a universal, differential clock input (CLKP, CLKN) operating from a separate power supply (AV_{CLK}) to achieve the best possible jitter performance. The two clock inputs should be driven from a differential clock source. A sine-wave or square-wave signal can be used.

For the highest speeds and highest performance, a sinusoidal clock should be used. At rates where it is feasible, an LVDS or PECL clock can also be utilized. The LVDS or PECL clock must be AC-coupled

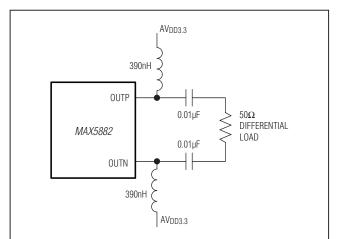


Figure 3. Typical Output Circuit

to the device. Each pin is internally DC-biased to 1/3 the supply voltage, AV_{CLK}. The clock input has an internal 100 Ω differential termination resistor. For 50 Ω differential termination at high clock frequencies, an additional external termination resistor is required between CLKP and CLKN. The balanced input should be AC-coupled unless the common mode of the clock source is within the specifications for the device's clock input. An example of a well-balanced, single-ended-to-differential application circuit using three baluns is shown in Figure 4.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

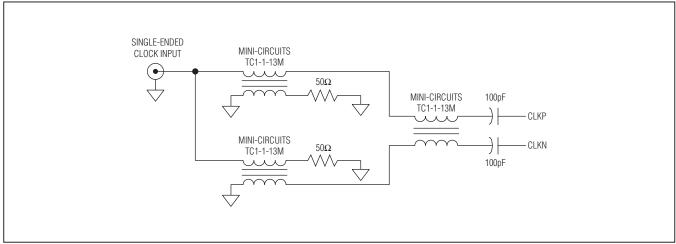


Figure 4. Balanced Clock Interface Circuit

Clock Duty Cycle

The device input clock is supplied at a frequency (f_{CLK}) that is 1/2 the DAC update rate (f_{DAC}). The DAC output updates on both edges of the clock. Deviation from a balanced duty cycle contributes to images in the output spectrum. The magnitude of the images is dependent on the absolute value of the deviation from an ideal 50% duty cycle. These artifacts occur at the following frequencies:

$$f_{IMAGE} = \frac{f_{DAC}}{2} \pm f_{OUT}$$

To minimize the image at $f_{DAC}/2 - f_{OUT}$, the clock duty cycle should be close to 50%. A filtered sine wave has this characteristic. An offset voltage at the input of the clock input buffer causes a duty-cycle change. The duty-cycle change in percent is approximately $(100/\pi) \times V_{OFS}/Ampl$, where VOFS is the offset voltage and Ampl is the peak clock input amplitude. With clock amplitude of 1V peak (differential), an offset of 3.14mV shifts the duty cycle from 50.0% to 50.1/49.9%. Alternatively, the amplitude of the odd and even input data channels can be adjusted to remove the $f_{DAC}/2 - f_{OUT}$ component. For example, the gain of the digital data into channels A and C can be slightly adjusted up or down to remove the $f_{DAC}/2 - f_{OUT}$ image.

Data Inputs

The device supports both single data rate (SDR) and double data rate (DDR) data interfaces. The data inputs (DAP[13:0], DAN[13:0], DBP[13:0], DBN[13:0], DCP[13:0],

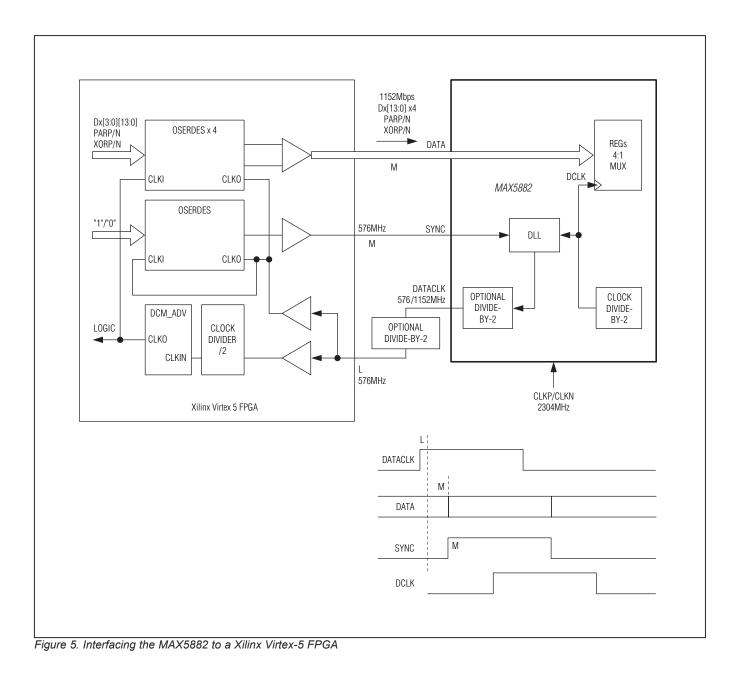

DCN[13:0], DDP[13:0], DDN[13:0], XORP, XORN, PARP, PARN, SYNCP, and SYNCN) all accept LVDS or differential-HSTL signal levels.

Figure 5 shows a simplified block diagram for a clocking scheme using a Xilinx[®] FPGA and the device's DLL. The f_{DAC}/2 input clock to the device is divided by two to produce a f_{DAC}/4 clock that is equal to the input data rate. The f_{DAC}/4 clock feeds a variable delay line and an optional divide-by-two block to produce the DATACLK signal that is sent to the FPGA. By adjusting the delay of the DATACLK signal, the phase of the input data can be adjusted. The device's DLL is used to lock the phase of the incoming data to the internal clock that is used to latch the data. The incoming SYNC signal is used to close the DLL loop and is a replica of the other data lines, but with a data pattern guaranteed to have active data.

The DCM_ADV DLL loop inside the Virtex®-5 FPGA should not be used and is not needed for clocking the output data and OSERDES to the DAC. However, the DCM_ADV can be used to generate internal clocks, locked to the DATACLK, for any data FIFO and internal logic. The buffered DATACLK without the DCM is used to clock the OSERDES. One OSERDES, with its data wired in such a manner as to reduce its function to that of a simple buffer, is used to match the timing of the SYNCP/SYNCN signal to the FPGA output data. This adds between 1ns and 3ns delay on SYNC referenced to the device's DATACLKP/DATACLKN output.

Xilinx and Vertex are registered trademarks of Xilinx, Inc.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

An alternate clocking architecture using an Altera[®] Stratix[®] III FPGA is shown in Figure 6. As with the Xilinx solution, the DAC supplies a DATACLK to the FPGA that is one quarter the DAC update rate. Notice that the Stratix PLL is placed inside the device DLL loop. The bandwidth differential between the device's DLL and the Stratix III PLL is sufficient to allow for this configuration.

When the device is configured with the optional, internal divide-by-two turned off, the output clock rate must be divided by two externally with the current generation of FPGAs (Stratix IV or Virtex-6). Placing the divide-by-two external to the device may reduce a fixed fDAC/8 spur.

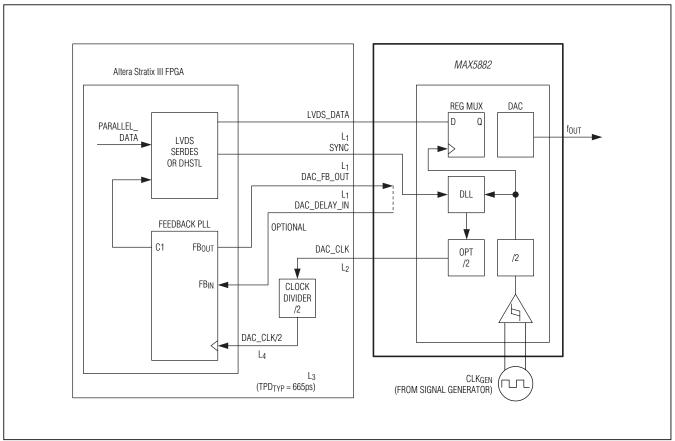


Figure 6. Interfacing the MAX5882 to an Altera Stratix III FPGA

Altera and Stratix are registered trademarks of Altera Corporation.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

DLL Frequency Selection and 4-Level Inputs

Two external pins (DLLOFF and DELAY) have 4-level inputs (high, low, open, and resistor to ground) that perform the following functions:

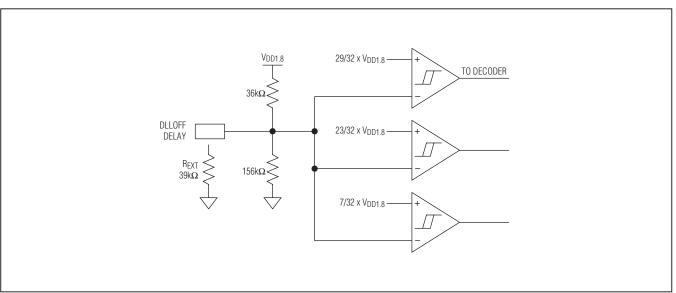
- Turn DLL on or off
- Select operating frequency range of DLL

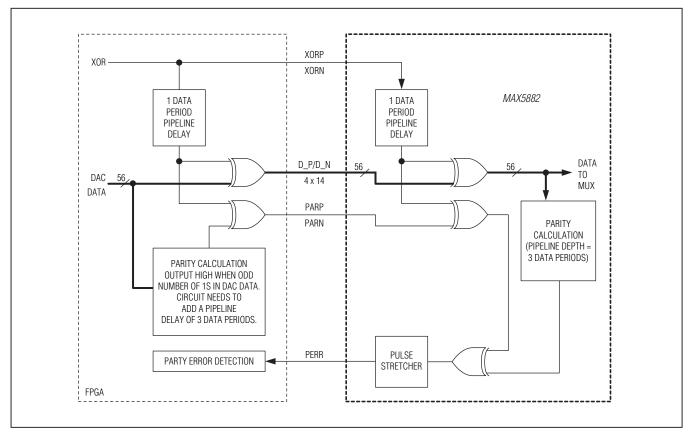
Table 1 defines the functionality of the DLLOFF and DELAY controls. Figure 7 shows the block diagram of the 4-level input circuitry.

Reset the DLL circuitry at power-up and each time the frequency range is changed. Set DLLOFF = 1 prior to selecting the range to perform the reset.

DLLOFF	DELAY	MAX5882 f _{CLK} (MHz)	OPERATION
High	High	10 to 2304	DLL disabled (one DAC clock period delay added to the DATA- CLKP/DATACLKN outputs)
High	Low	10 to 2304	DLL disabled (no delay added to the DATACLKP/DATACLKN outputs)
Low	High	2150 to 2304	DLL enabled
Low	Open	1900 to 2150	DLL enabled
Open	Low	1650 to 1900	DLL enabled
Open	High	1400 to 1650	DLL enabled
Open	Open	1250 to 1400	DLL enabled
Resistor to ground	Low	1100 to 1250	DLL enabled
Resistor to ground	High	950 to 1100	DLL enabled
Resistor to ground	Open	800 to 950	DLL enabled

Table 1. Pin Function (DLLOFF, DELAY)




Figure 7. 4-Level Input for DLLOFF and DELAY pins

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

XOR and Parity Inputs

The device includes an XOR data function that can be used to whiten the spectral content of the data bits. Figure 8 shows the XOR and parity calculation. The block labeled "parity calculation" returns a 1 when there is an odd number of 1s in the DAC data. The parity is calculated by the device and compared to the received parity from the FPGA. When the received and calculated parity bits do not match, PERR is set high and held for 48 DATACLK cycles to make it easier for the FPGA or supervisory microcontroller to monitor asynchronously. Note that the FPGA also XORs the parity bit before sending it to the device. This ensures that corruption of the XOR bit results in detected parity errors.

The XORP/XORN and PARP/PARN signals include pipeline delays internal to the device. These delays must be compensated for in the data source for them to align to the data within the device. XORP/XORN requires one DATACLK cycle delay and PARP/PARN requires three.

f_{DAC}/2 Modulation (MOD)

Figure 8. XOR and Parity Functions

The device's MOD input provides fDAC/2 (or fCLK) modulation when it is set to logic-high, as shown in Figure 9. MOD is a 1.8V, 3.3V tolerant, CMOS input with an internal pulldown resistor. Setting MOD to logic-high inverts data on channels B and D inside the device.

SO/LOCK Signal

The SO/LOCK pin is a dual-mode output signal. When SE is logic-low (0V), the SO/LOCK signal indicates the lock condition of the DLL circuit; SO/LOCK is logic-high (1.8V) when the DLL is locked.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

The second function of the SO/LOCK signal is an output of the data input register on the device. Setting SE to logic 1 configures the input data register flip-flops into a 56-bit shift register connected to the SO/LOCK output, as shown in Figure 10. The contents of the shift register are output on the SO/LOCK pin allowing verification of connectivity in the data interface.

A timing diagram for the scan operation is shown in Figure 11. Known input data is applied to the DAC data inputs on the first DATACLK pulse, and the input register is loaded

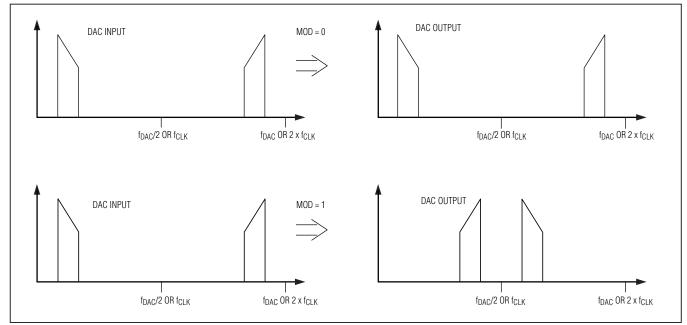


Figure 9. fDAC/2 Modulation Using the MOD Input

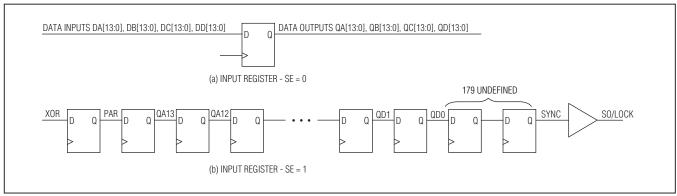


Figure 10. Input Register Flip-Flops in Normal Operation (a) and Scan Mode (b)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

in a parallel fashion. Note that the input data needs one clock cycle to propagate before SE can be set to logic-high. When SE is set to logic-high, the input shift register is activated and the serial-data stream is output at the SO/LOCK pin at the input data rate (fDATA). The bit order of the output stream is SYNC, 179 undefined states, QD[0:13], QC[0:13], QB[0:13], QA[0:13], PAR, and XOR. Any additional data out of the SO/LOCK pin is undefined and should be ignored. Set SE to logic-low to return the SO/LOCK pin to the LOCK functionality.

SE and SO/LOCK are a 1.8V CMOS logic interface intended for low-frequency operation. The DAC input clock frequency should be lower than normal when using the scan functionality.

Applications Information

Startup Conditions

The device employs a protection circuit to prevent damage to the DAC outputs. The internal clock circuitry is disabled when the reference voltage (V_{REFIO}) is less than 0.4V. The DATACLK outputs do not operate when the protection circuit is active. If the data source requires the DATACLK present to function normally, then the reference voltage must remain above 0.4V.

The device's DLL circuit requires an active, stable clock input and stable power supplies to perform accurately. After initial power is applied and the clock has stabilized, the DLL circuit should be reset by setting the DLLOFF pin high. The state of DLLOFF and DELAY can then be changed to set the DLL frequency range as needed.

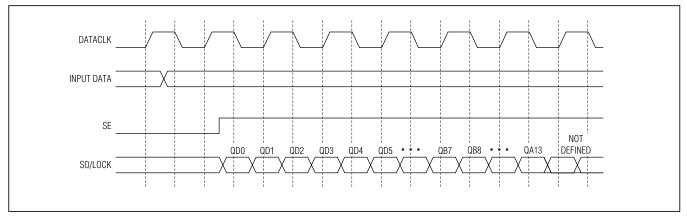


Figure 11. Timing Diagram (Scan Operation)

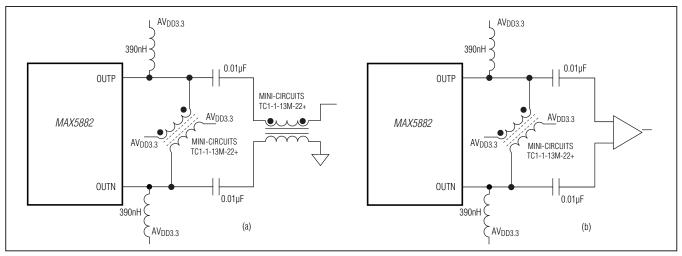


Figure 12. Balun Transformer Output (a) and Amplified Output Configuration (b)

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Output Coupling

The differential voltage between OUTP and OUTN can be converted to a single-ended voltage using a transformer or a differential amplifier configuration. The DAC outputs should be pulled up to AV_{DD3.3}. It is recommended to use bias tees built from discrete inductors and capacitors for the pullups. Two recommended output circuit configurations are shown in Figure 12. To achieve the maximum bandwidth, minimize the inductance in the ground lead on the secondary side of the transformer. Use a very short trace and multiple vias for the connection to the ground plane.

Spectral Considerations

DAC Update Rate Selection

The 4.6Gsps maximum update rate of the device allows flexibility in system design. Several trade-offs exist in terms of update rate versus performance or circuit complexity, and these should be considered when selecting the DAC update rate.

An attenuated image of the desired DAC output is present at fDAC/2 - fOUT, due to the fact that the DAC output is updated on both edges of the clock. The DAC update rate must be at least four times higher than the highest frequency generated to keep this image outside of the cable band. Since DOCSIS (DRFI, annex A) defines the upper frequency as 1003MHz, the minimum DAC update rate to keep this spur out-of-band is 4012Msps. In some cases, a 1GHz lowpass filter is required to further attenuate this image. As the DAC update rate is reduced towards the lower requirement, the design of the filter becomes increasingly difficult. However, there are several potential advantages to using lower update rates. First, the overall spurious performance of the device improves as the update rate is reduced from the 4.6Gsps maximum towards 4Gsps. Second, the power requirement for the system solution will be lower; the device alone dissipates approximately 15% less power at 4Gsps versus 4.6Gsps. The power in the ASIC or FPGA will also be reduced for lower update rates. Another consideration is that timing margins are reduced at higher update rates and can be more difficult to meet.

Harmonic Distortion

The device features low harmonic distortion. Second harmonic distortion (HD2) and third harmonic distortion (HD3) are usually the dominant harmonics. The frequency of HD2 is below 1GHz for frequencies below 500MHz,

and the frequency of HD3 is below 1GHz for output frequencies lower than 333MHz. When the DAC update rate is higher than 4Gsps, HD2 and HD3 never alias into the 45MHz to 1000MHz band.

Harmonics of Images around the Clock Frequency

The device has a spur at $f_{DAC}/2 - 2 \times f_{OUT}$. This spur is lower than the DOCSIS limit for channel counts greater than eight, but may violate DOCSIS DRFI spurious requirements for lower channel counts and high output frequencies. This spur is coincident with f_{OUT} for $f_{OUT} = f_{DAC}/6$. If necessary, this spur can be reduced using digital predistortion.

Grounding, Bypassing, Power-Supply, and Board-Layout Considerations

Grounding and power-supply decoupling can strongly influence the performance of the device. Unwanted digital crosstalk may couple through the input, reference, powersupply, and ground connections, affecting dynamic performance. Proper grounding and power-supply decoupling guidelines for high-speed, high-frequency applications should be closely followed. This reduces EMI and internal crosstalk that can significantly affect the dynamic performance of the device.

Use of a multilayer PCB with separate ground and powersupply planes is required. It is recommended that the analog output and the clock input are run as controlledimpedance microstrip lines on the top layer of the board, directly above a ground plane, and that no vias are used for the clock input (CLKP, CLKN) and the analog output (OUTP, OUTN) signals. Depending on the length of the traces, and the operating condition, a low-loss dielectric material (such as ROGERS RO4003) as the top layer dielectric may be advisable. The data clock (DATACLKP, DATACLKN) must be routed so that coupling into the clock input and the DAC output is minimized.

Digital input signals should be run as controlledimpedance striplines between ground planes. Digital signals should be kept as far away from sensitive analog inputs, reference input sense lines, common-mode inputs, and clock inputs as practical. It is particularly important to minimize coupling between digital signals and the clock to optimize dynamic performance for high output frequencies. Symmetric designs of the clock input and analog output lines are critical to minimize distortion and optimize the DAC's dynamic performance.

Digital signal paths should be kept short and run lengths matched to avoid data-delay mismatch.

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

The device supports three separate power-supply inputs for analog (AV_{DD3.3}), switching (V_{DD1.8}), and clock (AV_{CLK}) circuits. Each AV_{DD3.3}, V_{DD1.8}, and AV_{CLK} input should at least be decoupled with a separate 47nF capacitor as close as possible to the input, and their opposite ends with the shortest possible connection to the corresponding ground plane, to minimize loop inductance. All three power-supply voltages should also be decoupled at the point they enter the PCB.

Ferrite beads with additional decoupling capacitors forming a pi-network could also improve performance.

Static Performance Parameter Definitions

Offset Error

The offset error is the difference between the ideal and the actual offset current. For a DAC, the offset point is the average value at the output for the two mid-scale digital input codes, with respect to the full scale of the DAC. This error affects all codes by the same amount.

Gain Error

A gain error is the difference between the ideal and the actual full-scale output voltage on the transfer curve, after nullifying the offset error. This error alters the slope of the transfer function and corresponds to the same percentage error in each step.

Dynamic Performance Parameter Definitions

Settling Time

The settling time is the amount of time required from the start of a transition until the DAC output settles its new output value to within the specified accuracy.

Noise Spectral Density

The DAC output noise is the sum of the quantization noise and other noise sources. Noise spectral density is the noise power in a 1Hz bandwidth.

Two-/Four-Tone Intermodulation Distortion (IMD)

The two-/four-tone IMD is the ratio expressed in dBc (or dBFS) of the worst 3rd-order (or higher) IMD products to any output tone.

Adjacent Channel Power (ACP)

Adjacent channel power is commonly used in combination with DOCSIS-compliant QAM signals. ACP is the ratio in dB between the power in a channel at a specified frequency offset from the edge of the transmitted channel block, and power in the lowest frequency channel of the transmitted block. ACP provides a quantifiable method of determining out-of-band spectral energy and its influence on an adjacent channel when a bandwidth-limited RF signal passes through a nonlinear device.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
256 CSBGA	X25677-10	<u>21-0474</u>	<u>90-0291</u>

14-Bit, 4.6Gsps Cable Downstream Direct RF Synthesis DAC

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/10	Initial release	—
1	3/12	Revised average total power on out-of-band noise and spurious and harmonic distortion parameters; revised t_{SKEW} limits based on improved test methodology; and added <i>Startup Conditions</i> section	3, 4, 5, 31
2	6/13	Revised Ordering Information, Electrical Characteristics, Thermal Charac- teristics, Typical Operating Characteristics, and Figure 10.	1–8, 19, 31

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.