

### **General Description**

The MAX7057 evaluation kit (EV kit) provides a proven design to evaluate the MAX7057 frequency-programmable ASK/FSK transmitter in a 16-pin SO package. The EV kit uses Windows XP®-, Windows Vista®-, and Windows® 7-compatible software to provide a simple graphical user interface (GUI). The EV kit enables testing of the device's RF performance and requires no additional support circuitry. The RF output uses a 50 $\Omega$  matching network and an SMA connector for convenient connection to test equipment. The EV kit PCB comes with a MAX7057ASE+ installed on the EV kit.

### \_Features

- Windows XP-, Windows Vista-, and Windows 7-Compatible Software
- USB Powered
- Proven PCB Layout
- Proven Components List
- Adjustable Programmable Frequency
- Fully Assembled and Tested

### **Ordering Information**

| PART          | ТҮРЕ   |
|---------------|--------|
| MAX7057EVKIT+ | EV Kit |
|               |        |

+Denotes lead(Pb)-free and RoHS compliant.

| DESIGNATION                                                                  | QTY | DESCRIPTION                                                                     | [ |
|------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|---|
| BATT-2032                                                                    | 0   | Not installed, battery holder<br>and contact solution<br>Battery Holders BA2032 |   |
| BATT-AAA                                                                     | 0   | Not installed, plastic battery<br>holder<br>Keystone 2468                       |   |
| C1, C9, C12                                                                  | 3   | 220pF ±5%, 50V C0G<br>ceramic capacitors (0402)<br>Murata GRM1535C1H221J        |   |
| C2, C8, C13                                                                  | 3   | 0.01µF ±10%, 50V X7R<br>ceramic capacitors (0402)<br>Murata GRM155R71H103K      |   |
| C3, C6, C14                                                                  | 3   | 0.1µF ±10%, 16V X7R<br>ceramic capacitors (0402)<br>TDK C1005X7R1C104K          |   |
| C5, C11, C15, C16,<br>C17, C20, C21,<br>C22, C58, C60,<br>C68, C70, C71, C72 | 14  | 0.1µF ±10%, 16V X7R<br>ceramic capacitors (0603)<br>Murata GRM188R71C104K       |   |
| C7                                                                           | 1   | 220pF ±5%, 50V C0G<br>ceramic capacitor (0603)<br>Murata GRM1885C1H221K         |   |
| C10, C39, C62, C63                                                           | 4   | 10pF ±5%, 50V C0G<br>ceramic capacitors (0603)<br>Murata GRM1885C1H100J         |   |

### <u>Component List</u>

| DESIGNATION        | QTY | DESCRIPTION                                                                  |
|--------------------|-----|------------------------------------------------------------------------------|
| C18, C23, C65, C67 | 4   | 10µF ±10%, 6.3V X5R<br>ceramic capacitors (0805)<br>Murata GRM188R60J106M    |
| C19, C24, C64, C66 | 4   | 1µF ±10%, 16V X5R<br>ceramic capacitors (0603)<br>Murata GRM188R61C105K      |
| C31, C32, C59, C61 | 4   | 100pF ±5%, 50V C0G<br>ceramic capacitors (0603)<br>Murata GRM1885C1H101J     |
| C33, C34           | 2   | 3.9pF ±0.25pF, 50V C0G<br>ceramic capacitors (0603)<br>Murata GRM1885C1H3R9C |
| C36                | 1   | 680pF ±5%, 50V C0G<br>ceramic capacitor (0603)<br>Murata GRM1555C1H681J      |
| C38                | 1   | 6.8pF ±0.5pF, 50V C0G<br>ceramic capacitor (0603)<br>Murata GRM1885C1H6R8D   |
| C69                | 1   | 33nF ±10%, 16V X7R<br>ceramic capacitor (0603)<br>Murata GRM188R71C333K      |
| C73, C74           | 2   | 22pF ±5%, 50V COG<br>ceramic capacitors (0603)<br>Murata GRM1885C1H220J      |

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

| DESIGNATION                                                 | QTY | DESCRIPTION                                              |
|-------------------------------------------------------------|-----|----------------------------------------------------------|
| C75                                                         | 0   | Not installed, ceramic capacitor (0603)                  |
| D1–D6                                                       | 6   | Yellow LEDs (1206)                                       |
| D7-D12                                                      | 6   | Green LEDs (1206)                                        |
| GND-A–GND-F,<br>P1.7, VADJ,<br>VDUT-A, VDUT-B,<br>VEXT, 3V3 | 12  | 1-pin headers                                            |
| J1                                                          | 1   | 8-pin (2 x 4) header                                     |
| J2                                                          | 1   | 6-pin (2 x 3) header                                     |
| J3, J4                                                      | 0   | Not installed, 40-pin (2 x 20)<br>headers                |
| JU1–JU9,<br>JU31–JU34                                       | 13  | 3-pin headers                                            |
| JU10, JU11                                                  | 2   | 2-pin headers                                            |
| JU12                                                        | 1   | 36-pin (2 x 18) header                                   |
| L1                                                          | 1   | 13nH ±5% (0603)<br>Murata LQW18AN13NJ00                  |
| L2                                                          | 1   | 22nH ±5% (0603)<br>Murata LQW18AN22NJ10                  |
| P1                                                          | 1   | USB type-B right-angle female receptacle                 |
| Q1                                                          | 1   | Dual n-channel FET<br>(6 SuperSOT)<br>Fairchild FDC6301N |
| R1, R7, R8, RB                                              | 4   | $0\Omega \pm 5\%$ resistors (0603)                       |
| R2, R44, R45, RA                                            | 0   | Not installed, resistors<br>(0603)                       |
| R3, R50–R54, R56                                            | 7   | 100 $\Omega$ ±5% resistors (0603)                        |
| R4, R6, R14, R22,<br>R23, R36, R38, R46,<br>R47             | 9   | 150 $\Omega$ ±5% resistors (0603)                        |
| R11, R19, R20, R21,<br>R24–R27, R33, R34                    | 10  | 100k $\Omega$ ±1% resistors (0603)                       |
| R13                                                         | 1   | 59k $\Omega$ ±1% resistor (0603)                         |
| R15                                                         | 1   | 158k $\Omega$ ±1% resistor (0603)                        |
| R18                                                         | 1   | $43\Omega \pm 5\%$ resistor (0603)                       |
| R30                                                         | 1   | $50k\Omega \pm 10\%$ potentiometer<br>Vishay TS63Y503k   |
| R31                                                         | 1   | 27.4k $\Omega$ ±1% resistor (0603)                       |
| R32                                                         | 1   | 39.2k $\Omega$ ±1% resistor (0603)                       |

### Component List (continued)

| DESIGNATION                    | QTY | DESCRIPTION                                                                                    |
|--------------------------------|-----|------------------------------------------------------------------------------------------------|
| R35                            | 1   | $75\Omega \pm 5\%$ resistor (0603)                                                             |
| R37                            | 1   | $330\Omega \pm 5\%$ resistor (0603)                                                            |
| R40, R41                       | 2   | $27\Omega \pm 5\%$ resistors (0603)                                                            |
| R42                            | 1   | 470 $\Omega$ ±1% resistor (0603)                                                               |
| R43                            | 1   | 1.5k $\Omega$ ±5% resistor (0603)                                                              |
| REFIN                          | 0   | Not installed, SMA female vertical connector                                                   |
| RFOUT                          | 1   | SMA female vertical<br>connector                                                               |
| S1, S2                         | 2   | Momentary pushbutton switches                                                                  |
| S3                             | 1   | Quad SPST DIP switch<br>(normally open)                                                        |
| TP15, TP21–TP25,<br>TP27       | 7   | Red miniature test points                                                                      |
| TP29, TP36, TP38,<br>TP40      | 4   | Red multipurpose test points                                                                   |
| TP30–TP35, TP37,<br>TP39, TP41 | 9   | Black multipurpose test points                                                                 |
| U1                             | 1   | 300MHz to 450MHz<br>frequency-programmable<br>ASK/FSK transmitter (16 SO)<br>Maxim MAX7057ASE+ |
| U2                             | 1   | 32-bit microcontroller<br>(68 QFN-EP*)<br>Maxim MAXQ2000-RAX+                                  |
| U3, U4, U9, U12                | 4   | Low-noise LDO linear<br>regulators (5 SC70)<br>Maxim MAX8512EXK+                               |
| U5                             | 0   | Not installed, 93C46 3-wire<br>EEPROM (8 SO)                                                   |
| U6                             | 1   | UART-to-USB converter<br>(32 TQFP)                                                             |
| U7, U8, U10, U11               | 4   | 8-channel level translators<br>(20 TSSOP)<br>Maxim MAX3001EEUP+                                |
| Y1                             | 1   | 16MHz crystal<br>Crystek 017466                                                                |
| Y2                             | 0   | Not installed, 32.768kHz<br>crystal                                                            |

\*EP = Exposed pad.

## Component List (continued)

| DESIGNATION | QTY | DESCRIPTION                                                 |
|-------------|-----|-------------------------------------------------------------|
| Y3          | 1   | 16MHz crystal<br>Hong Kong X'tals<br>SSM1600000E18FAF       |
| ¥4          | 1   | 6MHz crystal (HCM49)<br>Hong Kong X'tals<br>SSL600000018FAF |

| DESIGNATION | QTY | DESCRIPTION                       |
|-------------|-----|-----------------------------------|
| —           | 33  | Shunts                            |
|             | 1   | USB high-speed A-to-B cables, 6ft |
|             | 1   | PCB: MAX7057<br>EVALUATION KIT+   |

## \_Component Suppliers

| SUPPLIER                               | PHONE        | WEBSITE                     |
|----------------------------------------|--------------|-----------------------------|
| Crystek Corporation                    | 800-237-3061 | www.crystek.com             |
| Fairchild Semiconductor                | 888-522-5372 | www.fairchildsemi.com       |
| Hong Kong X'tals Ltd.                  | 852-35112388 | www.hongkongcrystal.com     |
| Murata Electronics North America, Inc. | 770-436-1300 | www.murata-northamerica.com |
| TDK Corp.                              | 847-803-6100 | www.component.tdk.com       |
| Vishay                                 | 203-268-6261 | www.vishay.com              |

Note: Indicate that you are using the MAX7057 when contacting these component suppliers.

## MAX7057 EV Kit Files

| FILE                    | DESCRIPTION                                |
|-------------------------|--------------------------------------------|
| INSTALL.EXE             | Installs the EV kit files on your computer |
| MAX7057.EXE             | Application program                        |
| CDM20600.EXE            | Installs the USB device driver             |
| UNINSTALL.EXE           | Uninstalls the EV kit software             |
| USB_Driver_Help_200.PDF | USB driver installation help file          |
| MAX7057_CONSOLE.EXE     | Advanced user interface application        |
| MAX7057.DLL             | Required for the advanced user interface   |
| CMODCOMM.DLL            | Required for the advanced user interface   |

### \_Quick Start

#### **Required Equipment**

- MAX7057 EV kit
- Windows XP, Windows Vista, or Windows 7 PC with a spare USB port
- Spectrum analyzer

**Note:** In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

#### **Procedure**

The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit <u>www.maximintegrated.com/evkitsoftware</u> to download the latest version of the EV kit software, 7057Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- 2) Install the EV kit software and USB driver on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows Start I Programs menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.
- 3) Verify that all jumpers are in their default positions, as shown in Table 1.
- 4) Connect the USB cable from the PC to the EV kit board. A Windows message appears when connecting the EV kit board to the PC for the first time. Each version of Windows has a slightly different message. If you see a Windows message indicating <u>ready to use</u>, then proceed to the next step. Otherwise, open the USB\_Driver\_Help\_200.PDF document in the Windows <u>Start I Programs</u> menu to verify that the USB driver was installed successfully.
- 5) Start the EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window appears, as shown in Figure 1.
- Connect the RFOUT SMA connector to the spectrum analyzer. Set the analyzer to a center frequency of 315MHz and a span of 4MHz.
- 7) The EV kit GUI indicates that the digital USB hardware is connected in the lower-left status bar and

the lower-right status bar indicates that the IC is connected.

- The IC operates in ASK mode by default. Set the IC's ASK frequency to 315MHz by typing 315 in the Frequency edit box inside the Low Frequency (0x04, 0x05) group box. Press enter to set the frequency.
- 9) Click on the **ENABLE (0x08)** checkbox in the **ENABLE** group box.
- 10) Click on the **DATAIN (0x07)** checkbox in the **DATAIN** group box to set it to 1.
- 11) The spectrum analyzer should display a peak of approximately +10dBm at 315MHz. Set **DATAIN** to 0 by clicking its checkbox. The spectrum analyzer peak at 315MHz should be gone. Set **DATAIN** to 1 by clicking its checkbox. The center frequency is again at 315MHz.
- 12) To test FSK, first uncheck the ENABLE (0x08) checkbox. Click on the mode checkbox in the CONTROL (0x00) group box to set FSK. The FSK and High Frequency (0x02, 0x03) group boxes become active. In the FSK group box, set the center frequency to 315MHz and the frequency deviation to ±50kHz (default). The High Frequency and Low Frequency automatically set based on the entries in the FSK group box.
- 13) Click on the ENABLE (0x08) checkbox.
- 14) When **DATAIN** is **0**, the low frequency is the carrier frequency in the spectrum analyzer. When **DATAIN** is **1**, the high frequency is the carrier frequency in the spectrum analyzer. Toggle **DATAIN** and observe the frequency shift on the spectrum analyzer for the low and high values.

#### Additional Evaluation:

- 15) For efficiency measurements, take the shunt off pins 9-10 of jumper JU12 and place an ammeter between pins 9-10 on JU12. Set VDD to 2.7V by adjusting R30.
- 16) Connect a power meter to RFOUT. Measure the output power and supply current.
- 17) The total efficiency is calculated by the following equation:

Efficiency = 
$$\frac{10^{(P_{OUT}/10)}}{I \times V}$$

For example, if POUT is equal to +9.2dBm, the supply current is 12.2mA, the supply voltage is 2.7V, and the efficiency is approximately 25%.

### Table 1. Control Side Jumper Table (J1, JU1–JU12)

| JUMPER | SHUNT<br>POSITION | DESCRIPTION                                                                                                                   |
|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
|        | 1-2               | VDUT (IC) powered by the battery.                                                                                             |
|        | 3-4               | VDUT powered by the USB. Do not use this setting for the IC.                                                                  |
| J1     | 5-6               | VDUT powered by an external supply. Apply the external voltage between the VEXT and GND_ test points.                         |
|        | 7-8*              | VDUT powered by an adjustable on-board regulator. Change the resistance on potenti-<br>ometer R30 to the required DUT supply. |
|        | 1-2               | Connects the external supply to the REG supply.                                                                               |
| JUT    | 2-3*              | Connects the USB supply to the REG supply.                                                                                    |
|        | 1-2*              | Microcontroller supply comes from the REG supply.                                                                             |
| JU2    | 2-3               | Microcontroller supply comes from the battery. Installation of battery holders is required.                                   |
|        | 1-2*              | Selects the AAA battery holder for the VBAT supply.                                                                           |
| 103    | 2-3               | Selects the 2032 battery holder for the VBAT supply.                                                                          |
| 11.14  | 1-2               | Sets the core microcontroller supply (VMICRO) to VLO (2V typ).                                                                |
| 504    | 2-3*              | Sets the core microcontroller supply (VMICRO) to 2.5V.                                                                        |
| 1115   | 1-2*              | Sets the logic microcontroller supply (VMICROL) to 3.3V.                                                                      |
| 000    | 2-3               | Sets the logic microcontroller supply (VMICROL) to VMICRO.                                                                    |
| 11.16  | 1-2               | Reserved for future use.                                                                                                      |
| 300    | 2-3*              | Connects the microcontroller oscillator to the on-board crystal.                                                              |
| 11.17  | 1-2               | Reserved for future use.                                                                                                      |
| 507    | 2-3*              | Connects the microcontroller oscillator to the on-board crystal.                                                              |
| 11.10  | 1-2               | Reserved for future use.                                                                                                      |
| 500    | 2-3*              | Connects the RTC oscillator to the on-board crystal (not installed).                                                          |
|        | 1-2               | Reserved for future use.                                                                                                      |
| 109    | 2-3*              | Connects the RTC oscillator to the on-board crystal (not installed).                                                          |
| 1110   | Closed            | GPO2 connects to the DUT through level translators.                                                                           |
| 3010   | Open*             | GPO2 does not connect to the DUT.                                                                                             |
|        | Closed*           | GPO1 connects to the DUT GPO through level translators.                                                                       |
| JUTT   | Open              | GPO1 does not connect to the DUT.                                                                                             |
| JU12   | Closed*           | See Table 2.                                                                                                                  |

\*Default position.

### Table 2. JU12 Jumper Table

| JU12 PINS | SHUNT<br>POSITION | DESCRIPTION                                                                                                                                                                                                                         |
|-----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-2       | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 3-4       | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 5-6       | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 7-8       | Closed*           | Don't care.                                                                                                                                                                                                                         |
|           | Closed*           | VDD supply on the IC side is powered by the VDUT supply on the control side.                                                                                                                                                        |
| 9-10      | Open              | Externally power the VDD supply on the IC side by applying a voltage between the VDD test point (TP29) and the GND test point (TP31). Only open for current measurements (see step 15 in the <i>Additional Evaluation</i> section). |
|           | Closed*           | Connects the GPO signal from the IC to the on-board microcontroller. The GPO signal can be monitored on TP15.                                                                                                                       |
| 11-12     | Open              | The GPO signal is not connected to the on-board microcontroller. The GPO signal can be monitored by an external microcontroller on the GPO test point TP15 without interference loading from the on-board microcontroller.          |
| 13-14     | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 15-16     | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 17-18     | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 19-20     | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 21-22     | Closed*           | Don't care.                                                                                                                                                                                                                         |
|           | Closed*           | Connects the on-board $\overline{CS}$ to the IC. $\overline{CS}$ can be monitored on TP21.                                                                                                                                          |
| 23-24     | Open              | Does not connect the on-board $\overline{CS}$ to the IC. When using external SPI <sup>TM</sup> , remove this jumper and apply the $\overline{CS}$ signal to TP21.                                                                   |
|           | Closed*           | Connects the on-board SDI to the IC. SDI can be monitored on TP22.                                                                                                                                                                  |
| 25-26     | Open              | Does not connect the on-board SDI to the IC. When using external SPI, remove this jumper and apply the SDI signal to TP22.                                                                                                          |
|           | Closed*           | Connects the on-board SCLK to the IC. SCLK can be monitored on TP23.                                                                                                                                                                |
| 27-28     | Open              | Does not connect the on-board SCLK to the IC. When using external SPI, remove this jumper and apply the SCLK signal to TP23.                                                                                                        |
|           | Closed*           | Connects the on-board enable signal (EN) to the IC. EN can be monitored on TP24.                                                                                                                                                    |
| 29-30     | Open              | Does not connect the on-board EN signal to the IC. When using an external signal for enable, remove this jumper and apply the EN signal to TP24.                                                                                    |
| 21.22     | Closed*           | Connects the on-board transmitter data signal (DIN) to the IC. DIN can be monitored on TP25.                                                                                                                                        |
| 31-32     | Open              | Does not connect the on-board transmitter data signal to the IC. When using an external signal for transmitter data remove this jumper and apply the DIN signal to TP25.                                                            |
| 33-34     | Closed*           | Don't care.                                                                                                                                                                                                                         |
| 35.26     | Closed*           | Connects the microcontroller to the on-board SDO from the IC. SDO can be monitored on TP27. SDO has shared functionality with GPO.                                                                                                  |
| 35-36     | Open              | Does not connect the microcontroller to the SDO signal from the IC. When using external SPI, remove this jumper and connect TP27 to the MISO input.                                                                                 |

\*Default position. SPI is a trademark of Motorola, Inc.

### Table 3. DUT Side Jumper Table (JU31–JU34)

| JUMPER | SHUNT<br>POSITION     | DESCRIPTION                                                                                        |
|--------|-----------------------|----------------------------------------------------------------------------------------------------|
|        | 1-2*                  | Connects DVDD to VDD.                                                                              |
| JU31   | 2-3                   | Connects DVDD to TP37. Must apply an external voltage between TP36 and TP37 (GND) to power DVDD.   |
| JU32   | 1-2                   | Connects AVDD to TP38. Must apply an external voltage between TP38 and TP39 (GND) to power AVDD.   |
| 2-3*   | Connects AVDD to VDD. |                                                                                                    |
| JU33   | 1-2                   | Connects PAVDD to TP40. Must apply an external voltage between TP40 and TP41 (GND) to power PAVDD. |
|        | 2-3*                  | Connects PAVDD to VDD.                                                                             |
| 1-2    |                       | Connects PAOUT to ROUT for ASK amplitude shaping in.                                               |
| 5034   | 2-3*                  | Connects PAOUT to PAVDD for ASK amplitude shaping out.                                             |

\*Default position.

### Layout Issues

A properly designed PCB is essential for any RF/microwave circuit. Keep high-frequency input and output lines as short as possible to minimize losses and radiation. At high frequencies, trace lengths that are on the order of  $\lambda$ /10 or longer can act as antennas.

Both parasitic inductance and capacitance are influential on circuit layouts and are best avoided by using short trace lengths. Generally, a 10-mil wide PCB trace 0.0625in above a ground plane with FR4 dielectric has about 19nH/in of inductance and about 1pF/in of capacitance. In the matching network, where the inductor is on the order of 22nH and a capacitor is on the order of 10pF, the proximity of the circuit to the IC has a strong influence on the effective component values.

To reduce the parasitic inductance, use a solid ground or power plane below the signal traces. Also, use low-inductance connections to ground on all GND pins, and place decoupling capacitors close to all VDD connections.

### **Detailed Description of Software**

The main window of the MAX7057 EV kit is shown in Figure 1.

### **Main Control Tab**

The EV kit GUI is grouped by register addresses. Actions on the GUI perform write and read operations. Reads are automatically done after each write for verification. GPO is configured to SDO every time a read operation is done. GPO is set back to the user setting after the read operation.

### **DATAIN** and **ENABLE**

The **DATAIN** and **ENABLE** registers each have a single bit that is ORed with a hardware control pin on the EV kit board. Clicking on the checkbox writes to the respective register bit (software control). Pressing the HW EN or HW DIN buttons on the GUI sends a digital control signal from the on-board microcontroller to the respective inputs on the IC (hardware control). For example, the ENABLE (0x08) checkbox represents the enable bit found in register 0x08. A digital control signal from the on-board microcontroller connects to the IC enable input and can be toggled by pressing the HW EN button. If using software control, drive the ENABLE input low and control the enable function by pressing the ENABLE (0x08) checkbox. To control the enable feature by hardware, keep the ENABLE (0x08) checkbox unchecked. **DATAIN** works similarly with the **HW DIN** input.

### Applying an External Signal

To apply an external signal to **ENABLE** or **DATAIN**, the respective jumper must first be removed and the signal applied to the signal test point. For example, to apply an external signal to DIN, first uncheck the **DATAIN (0x08)** checkbox. Then remove the jumper from pins 31-32 of JU12 and apply the DIN signal to TP24. A complex pattern can be sent using the transmitter in this fashion. **ENABLE** works similarly.

### **ASK Carrier Frequency Programming**

To program the carrier frequency in ASK mode, enter the carrier frequency in megahertz in the **Frequency** edit box inside the **Low Frequency (0x04, 0x05)** group box. Only the low-frequency registers are used for programming the carrier frequency for ASK. The GUI greys the **High Frequency (0x02, 0x03)** group box and the **FSK** group box when ASK is selected. Every time the carrier frequency is changed, the FLOAD bit is written to without user intervention. The carrier frequency has a range-limited delta-sigma modulator. When the carrier frequency is outside that range, a label inside the group box indicates that the frequency is out of range.

**FSK Carrier Frequency Programming** There are two ways to program the carrier frequencies in FSK mode. One method is to program the **High Frequency** and **Low Frequency** by typing in the values in the **Frequency** edit boxes. Every time the high and low frequencies change, the FLOAD bit is written without user intervention.

**FSK Group Box** The **FSK** group box allows an easy way to program the high and low frequencies when operating in FSK mode. Enter the center fequency in MHz and the frequency deviation in kHz. The center frequency and deviation must be within the proper range of operation.

#### **Registers Tab**

The EV kit **Registers** tab (Figure 2) displays each register's individual bit logic-level status. A data bit in bold indicates a logic-high, while a data bit not bolded indicates a logic-low. Clicking on the individual data bit toggles the bit and performs a write command. The new command is shown in the edit box at the right. Write commands can be written to the registers alternatively by typing a hex value in the edit box and pressing the Enter key on the keyboard.

#### **Advanced User Interface**

A console application is available for advanced users by clicking **Options I Interface (Advanced Users)** (Figure 3).

The console application offers an alternative method to programming the IC. Every string on the console is a command.

### Detailed Description of Hardware

The MAX7057 EV kit provides a proven layout for the IC. On-board test points are included to monitor various signals (Table 4).

#### **Power Supply**

The IC operates from a 2.1V to 3.6V supply. The EV kit has several options to power off of the USB, or the user can externally supply a voltage to the control side or the DUT side. To power off of the USB supply, change the shunt on J1 on the control side. The shunt is in the 7-8 position by default. That position makes VDUT equal to VADJ. The user can monitor VADJ with a voltmeter and change potentiometer R30 resistance to adjust the voltage between a 2.1V to 3.6V range. **Do not put the shunt on J1 in the 3-4 position because that sets VDUT equal to VBUS (5V), which exceeds the allow-able supply voltage**. The 1-2 position on J1 allows the VDUT to be powered from a battery. Battery holders (not populated) are required.

#### External Voltage

To apply an external voltage to the IC, the voltage must be applied on the control side between VEXT and GND-\_. The shunt on jumper JU1 must be in the 5-6 position.

| TEST<br>POINT | NAME | DESCRIPTION                                                                                           |
|---------------|------|-------------------------------------------------------------------------------------------------------|
| TP15          | GPO  | GPO can act as the SDO for SPI<br>communication or various other<br>outputs. Use TP27 for SDO in SPI. |
| TP21          | CS   | Chip-select for SPI.                                                                                  |
| TP22          | SDI  | Serial data in for SPI.                                                                               |
| TP23          | SCLK | Serial clock for SPI.                                                                                 |
| TP24          | EN   | Hardware enable for the IC.                                                                           |
| TP25          | DIN  | Hardware transmitter data for the IC.                                                                 |
| TP27          | GPO  | Serial data out for SPI.                                                                              |

### Table 4. DUT-Side Signal Test Points

| Registers                                             |                      |                                    |
|-------------------------------------------------------|----------------------|------------------------------------|
| -CONTRL (0×00)                                        |                      |                                    |
| ☐ mode <b>ASK</b><br>□ ckouton<br>□ ckouts<br>□ shape | Clock Divider:       | HW DIN 0<br>DATAIN (0×07) 0        |
| 🗖 pllbw                                               | Capacitance:         |                                    |
| -CONFIG1 (0×09)<br>GPO Output:                        |                      | HW EN 0                            |
| CKOUT/SDO 🔽                                           | Opr to 7.75pr        | ENABLE (0×08) 0                    |
| -FSK-<br>Center Frequency<br>Frequency Deviation ±    | MHz<br>kHz (up to ±1 | O0kHz)                             |
| High Frequency (0×02, 0-                              | ×03)                 | / Frequency (0x04, 0x05)           |
| 256 MHz                                               | [                    | 256 MHz                            |
| 0×00 0×02                                             | 0>                   | 00 0×04                            |
| 0×00 0×03                                             | 0>                   | 00 0×05                            |
| Out of Range: 303.26MH                                | TO 448.25//H2 OU     | t ot kange: 303.26MHz to 448.25MHz |
|                                                       |                      |                                    |

Figure 1. MAX7057 EV Kit Software Main Control Panel

| Main Control<br>CONTRL<br>Addr = 0x00<br>CONFIGO<br>Addr = 0x01<br>HIFREQ1<br>Addr = 0x02      | Registo<br><b>B7</b><br>0 | ers <b>B6</b> | 85       |           |            |         |         |          |    |
|------------------------------------------------------------------------------------------------|---------------------------|---------------|----------|-----------|------------|---------|---------|----------|----|
| <b>CONTRL</b><br>Addr = 0x00<br><b>CONFIGO</b><br>Addr = 0x01<br><b>HIFREQ1</b><br>Addr = 0x02 | <b>B7</b><br>0            | B6            | 85       |           |            |         |         |          |    |
| CONTRL<br>Addr = 0x00<br>CONFIGO<br>Addr = 0x01<br>HIFREQ1<br>Addr = 0x02                      | 0                         |               |          | B4        | <b>B</b> 3 | B2      | B1      | BO       |    |
| Adar = 0x00<br><b>CONFIGO</b><br>Addr = 0x01<br><b>HIFREQ1</b><br>Addr = 0x02                  | U                         | ~             |          |           |            |         |         |          |    |
| Addr = 0x01<br>HIFREQ1<br>Addr = 0x02                                                          |                           | U             | U        | plidw     | snape      | CKOUIS  | CKOUTON | mode     |    |
| HIFREQ1<br>Addr = 0x02                                                                         | ekdiv2                    | ckdiv1        | ckdiv0   | can4      | can3       | cap2    | cap1    | cap()    |    |
| Addr = 0x02                                                                                    | CICUITZ                   | CIVILITY      | Citativo | Caba      | capo       | Capz    | capi    | саро     |    |
|                                                                                                | fhi15                     | fhi14         | fhi13    | fhi12     | fhi11      | fhi10   | fhi9    | fhi8     | 00 |
| HIFREQO                                                                                        |                           |               |          |           |            |         |         |          |    |
| Addr = 0x03                                                                                    | fhi7                      | fhi6          | fhi5     | fhi4      | fhi3       | fhi2    | fhi1    | fhi0     | 00 |
| LOFREQ1                                                                                        |                           |               |          |           |            |         |         |          |    |
| Addr = 0x04                                                                                    | flo15                     | flo14         | flo13    | flo12     | flo11      | flo10   | flo9    | flo8     | 00 |
| LOFREQO                                                                                        |                           |               |          |           |            |         |         |          |    |
| Addr = 0x05                                                                                    | flo7                      | flo6          | flo5     | flo4      | flo3       | flo2    | flo1    | flo0     |    |
| FLUAD                                                                                          | 0                         | 0             | 0        | 0         | 0          | 0       | 0       | 0J       |    |
|                                                                                                | U                         | U             | U        | U         | U          | U       | U       | noad     |    |
| Addr = 0v07                                                                                    | Ο                         | Ω             | Ω        | Ω         | Ω          | Ω       | Ω       | data in  |    |
| FN                                                                                             | °,                        |               | •        |           | 0          |         |         | 00(0_11) |    |
| Addr = 0x08                                                                                    | 0                         | 0             | 0        | 0         | 0          | 0       | 0       | enable   | 00 |
| CONFIG1                                                                                        |                           |               |          |           |            |         |         |          |    |
| Addr = 0x09                                                                                    | 0                         | 0             | 0        | 0         | 0          | gposel2 | gposel1 | gposelO  | 00 |
| STATUS                                                                                         |                           |               |          |           |            |         |         |          |    |
| Addr = 0x0C                                                                                    | fhi/lo15                  | fhi/lo14      | fhi/lo13 | fhi/lo12  | ×          | 0       | TxRdy   | NoXtal   | 09 |
|                                                                                                |                           |               | High Fra | equency o | ut of Ra   | inge    |         |          |    |
|                                                                                                |                           |               | Low End  |           | ut of Do   |         |         |          |    |
|                                                                                                |                           |               | LOW FIG  | quency of | ur oj ku   | nge     |         |          |    |
|                                                                                                |                           |               |          |           |            |         |         |          |    |
|                                                                                                |                           |               |          |           |            |         |         |          |    |
|                                                                                                |                           |               | 177      |           | 5          | _       | . 1     |          |    |
|                                                                                                | Write                     | All           | L        | Kead All  |            |         | eset    |          |    |

Figure 2. MAX7057 EV Kit Software Registers Panel



Figure 3. Advanced User Interface Window (Console Application)

#### AVDD and PAVDD

AVDD and PAVDD are powered by VDD by default. To apply an external voltage to AVDD, change the shunt on jumper JU32 to the 1-2 position and apply an external voltage on TP38. To apply an external voltage to PAVDD, change the shunt on jumper JU33 to the 1-2 position and apply an external voltage on TP40.

### Table 5. SPI Jumpers and Test Points

| JU12 PINS | TEST POINT | NAME |
|-----------|------------|------|
| 23-24     | TP15       | CS   |
| 25-26     | TP21       | SDI  |
| 27-28     | TP22       | SCLK |
| 35-36     | TP23       | GPO  |

#### **External SPI**

Remove the shunts from the SPI jumpers and apply the signals to the SPI test points. The SPI jumpers are located on jumper JU12. See Table 5 for descriptions.

#### **External Frequency Input**

For applications where an external frequency is desired over the crystal frequency, it is possible to apply an external frequency through REFIN. Resistor R2 is necessary (use  $0\Omega$ ). The EV kit GUI assumes the crystal frequency is always 16MHz. Use the **Advanced User Interface** for different crystal frequencies.



Figure 4a. MAX7057 EV Kit Schematic (Sheet 1 of 5)



Figure 4b. MAX7057 EV Kit Schematic (Sheet 2 of 5)



Figure 4c. MAX7057 EV Kit Schematic (Sheet 3 of 5)



Figure 4d. MAX7057 EV Kit Schematic (Sheet 4 of 5)



Figure 4e. MAX7057 EV Kit Schematic (Sheet 5 of 5)

Maxim Integrated



Figure 5. MAX7057 EV Kit Component Placement Guide—Component Side



Figure 6. MAX7057 EV Kit PCB Layout—Component Side



Figure 7. MAX7057 EV Kit PCB Layout—Solder Side



Figure 8. MAX7057 EV Kit Component Placement Guide—Solder Side

### **Revision History**

| REVISION | REVISION | DESCRIPTION     | PAGES   |
|----------|----------|-----------------|---------|
| NUMBER   | DATE     |                 | CHANGED |
| 0        | 5/10     | Initial release | —       |



Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

#### Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2010 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

19