

General Description

The MAX7302 evaluation kit (EV kit) provides a proven design to evaluate the MAX7302 9-port, level-translating GPIO and LED driver device. The EV kit also includes Windows[®] 2000/XP/Vista-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX7302.

The MAX7302 EV kit has a built-in USB interface, allowing a PC to control the internal registers of the MAX7302, as well as providing the power for the EV kit.

The EV kit is configured to drive three RGB LEDs. Pads and jumpers are provided to modify the board to the numerous configurations available for the MAX7302.

_Features

- Windows 2000/XP/Vista (32-Bit)-Compatible Software
- USB PC Connection (Cable Included)
- USB Powered
- Lead-Free and RoHS-Compliant
- Proven PCB Layout

DESIGNATION QTY

• Fully Assembled and Tested

_Ordering Information

PART	TYPE	
MAX7302EVKIT+	EV Kit	
+Denotes lead-free and RoHS-compliant.		

Component List

DESCRIPTION

DESIGNATION	QTY	DESCRIPTION	
C1, C2, C101, C103, C105–C108, C112, C115, C116, C117	12	0.1µF ±10%, 16V X7R ceramic capacitors (0603) Murata GRM188R71C104K	
C3, C102, C104, C118	C104,10μF ±10%, 10V X5R ceramic capacitors (0805) Murata GRM21BR61A106K		
C4, C5	2	1μ F ±10%, 10V X5R ceramic capacitors (0603) Murata GRM188R61A105K	
C109	1	0.033µF ±10%, 25V X7R ceramic capacitor (0603) Murata GRM188R71E333K	
C110, C111	22pF ±5%, 50V C0G ceramic 2 2 apacitors (0603) Murata GRM1885C1H220J		
C113, C114	C113, C114 2 10pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H100J		
D1, D2, D3	3	RGB LEDs	
D101	1	Red LED (0603)	
D102	1	Green LED (0603)	
FB101, FB102 2 220Ω, 200mA ferrite beads (Murata BLM18AG221SN1D		220 Ω , 200mA ferrite beads (0603) Murata BLM18AG221SN1D	

J1, J2	2	8-pin, single-row headers
J101	1	USB type-B right-angle female receptacle
J102	0	Not installed, dual-row header (2 x 5)
JU1–JU9, JU11, JU12, JU13, JU101, JU102	14	2-pin headers
JU10	1	4-way header
R1, R4, R7	3	$270\Omega \pm 5\%$ resistors (0603)
R2, R5, R8	3	240 Ω ±5% resistors (0603)
R3, R6, R9	3	$160\Omega \pm 5\%$ resistors (0603)
R10, R106	2	10k Ω ±5% resistors (0603)
R11, R12	2	4.7k Ω ±5% resistors (0603)
R101	1	470Ω ±5% resistor (0603)
R102, R103	2	$27\Omega \pm 5\%$ resistors (0603)
R104	1	1.5k Ω ±5% resistor (0603)
R105	1	2.2k Ω ±5% resistor (0603)
R107	1	$130\Omega \pm 5\%$ resistor (0603)
R108	1	$100\Omega \pm 5\%$ resistor (0603)
R109-R113	0	Not installed, resistor (0603), short PCB trace
SW1	1	Momentary pushbutton switch
U1	1	9-port I ² C GPIO (16-pin TQFN) Maxim MAX7302ATE+

Windows is a registered trademark of Microsoft Corp.

///XI//

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

DESIGNATION	QTY	DESCRIPTION
U101	1	2.5V LDO regulator (5-pin SC70-5) Maxim MAX8511EXK25+
U102	1	3.3V LDO regulator (5-pin SC70-5) Maxim MAX8511EXK33+
U103	1	Microcontroller (68-pin QFN-EP) Maxim MAXQ2000-RAX+
U104	1	USB-to-UART converter (32-pin TQFP) FTDI FT232BL
U105	1	93C46 type 3-wire EEPROM (8-pin SO-8) Atmel AT93C46A-10SU-2.7

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
Y101	1	6MHz crystal (HCM49) Hong Kong X'tals Ltd. SSL6000000E18FAF
Y102	1	16MHz crystal (HCM49) Hong Kong X'tals Ltd. SSM1600000E18FAF
—	15	Shunts
_	1	USB high-speed A-to-B cables, 6ft
	1	PCB: MAX7302 Evaluation Kit+

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com

Note: Indicate that you are using the MAX7302 when contacting these component suppliers.

Quick Start

- Required Equipment
 MAX7302 EV kit (USB cable included)
- A user-supplied Windows 2000/XP/Vista PC with a spare USB port

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and under-lined** refers to items from the Windows operating system.

Procedure

- Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software, 7302Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start | Programs</u> menu.
- 3) Verify that all jumpers (JU1–JU13, JU101, and JU102) are in their default positions, as shown in Table 1.

MAX7302 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX7302.EXE	Application program
FTD2XX.INF	USB device driver file
UNINST.INI	Uninstalls the EV kit software
USB_Driver_Help.PDF	USB driver installation help file

- 4) Connect the USB cable from the PC to the EV kit board. A <u>Building Driver Database</u> window will pop up in addition to a <u>New Hardware Found</u> message when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.
- 5) Follow the directions of the <u>Add New Hardware</u> <u>Wizard</u> to install the USB device driver. Choose the <u>Search for the best driver for your device</u> option. Specify the location of the device driver to be <u>C:\Program Files\MAX7302</u> (default installation directory) using the <u>Browse</u> button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document for additional information.

MAX7302 Evaluation Kit File Options Help	
Device Configuration Registers Port Configuration Registers Confi	gurable Logic Port Lock View Port Status
Register 0x26 D7 INT Occurred? NO	Register 0x27
D6 Transition Occurred? NO	D7 C Enable O Disable
D5 ~ Reserved	D5 Reserved
D4 Blink Period:	D4 ~ Reserved P3/0SCOUT D3 O P3 as 0scillator Output O P3 as GPI0
D3 🔽 1 s (1 Hz) 🔽 D2 🔽	D2 P2/OSCIN D2 P2 as Oscillator Input © P2 as GPIO
D1 O O YES	D1 O P1 as Interrupt Output O P1 as GPIO
DO NO O YES	D0 O Enable O Disable
Write Read	Write Read
I2C Address: 1001 - 101x (0x9A)	POR Reset
Hardware: Connected. I2C Address is 0x9A.	

Figure 1. Device Configuration Registers Tab

- 6) Verify that the EV kit's LED D101 is lit, indicating that the USB is communicating to the EV kit board.
- Start the MAX7302 EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window appears as shown in Figure 1.
- Switch to the Port Configuration Registers tab as shown in Figure 2. Check the Output radio button in the Port Index group box and click the Write button. Observe the red LED on port 1 turning on.

Detailed Description of Software

The software main window includes five tabs. They are **Device Configuration Registers**, **Port Configuration Registers**, **Configurable Logic**, **Port Lock**, and **View Port Status**. At the bottom of the window, there is an **I2C Address** drop-down list and a **POR Reset** button.

Device Configuration Registers Tab

The Device Configuration Registers tab shown in Figure 1 contains two group boxes: **Register 0x26** and **Register 0x27**.

Port Index Select port: 0x01 ~ 0x09: 1 - D7 Port 1 Set As Output D6 Open Drain O Push-Pull D5 Output Mode D5 PWM O Blink D4 D D3 PWM Duty Cycle: 0/32	Port 1 Set As Port 1 Set As Input Port 1 Set As Input Port Supply Reference D6
Port 1 Set As Output Output Type D6 Open Drain Output Mode D5 PwM OBlink D4 D3 PwM Duty Cycle: 0/32	Port 1 Set As Input Port Supply Reference D6 VLA VDD Transition Interrupt D5 Disable O Enable D4 ~ Reserved D3 ~ Reserved
D6 Output Type D6 Open Drain O Push-Pull D5 Otput Mode 0 PWM O Blink D4 D D3 PWM Duty Cycle: 0/32	D6 Port Supply Reference D6 VLA OVDD Transition Interrupt D5 Disable OEnable D4 ~ Reserved D3 ~ Reserved
D6 Open Drain O Push-Pull D5 PWM O Blink D4 D3 PWM Duty Cycle: 0/32	D6 VLA OVDD Transition Interrupt D5 Disable OEnable D4 ~ Reserved D3 ~ Reserved
D5 Output Mode D5 PWM O Blink D4 D D3 PWM Duty Cycle: 0/32	D5 Transition Interrupt D5 O Disable O Enable D4 ~ Reserved D3 ~ Reserved
D5 PWM O Blink D4 D3 PWM Duty Cycle: 0/32	D5 O Disable O Enable D4 ~ Reserved D3 ~ Reserved
D4 D3 PWM Duty Cycle: 0/32	D4 ~ Reserved D3 ~ Reserved
D4 D3 PWM Duty Cycle: 0/32	D4 Reserved D3 Reserved
D3 PWM Duty Cycle: 0/32	D3 ~ Reserved
	Port Input Debouncing
	D2 💿 Disable 🔿 Enable
D1 Set Output to Static Low	D1 Transition Occurred Since Last Read? NO
D0 🗖 Set Output to Static High	D0 Port Status
Write	Read
I2C Address: 1001 - 101x (0x9A)	POR Reset

Figure 2. Port Configuration Registers Tab

Clicking the **Read** button reads the current hardware register settings. Clicking the radio buttons or selecting the drop-down list inside the **Register 0x26** group box followed by clicking the **Write** button writes the new settings to the respective device register.

Port Configuration Registers Tab The **Port Configuration Registers** tab shown in Figure 2 contains the **Port Index**, **Port** *n* **Set As** **Output**, and **Port** *n* **Set As Input** group boxes. There is also a single pair of **Read** and **Write** buttons.

The spin box selects the port a user wants to configure. The **Set Port As** group box configures the selected port either as an output or an input port.

Clicking the **Read** button reads the current hardware register settings. Clicking the **Write** button writes the new settings to the hardware register.

D2 P3 Invert D1 P2 Input Enable D0 P2 Invert Write 0 Read Write Read Read

Configurable Logic Tab

The Configurable Logic tab shown in Figure 3 contains four group boxes: Register 0x28 (P2 ~ P5), Register 0x29 (P6 ~ P9), Register 0x70 (CLA Enable), and Register 0x71 (CLA Lock). Clicking the **Read** button reads the current hardware register settings. Clicking the **Write** button after the desired settings are chosen writes the new settings to a respective hardware register.

Evaluates: MAX7302

Figure 3. Configurable Logic Tab

MAX7302 Evaluation Kit	
<u>File Options H</u> elp	
Device Configuration Registers Po	rt Configuration Registers Configurable Logic Port Lock View Port Status
Register 0x72 (P1 ~ P5 Lock)	Register 0x73 (P6 ~ P9 Lock)
D7 🗖 P5	D7 🔽
D6 🗖 P4	D6 🔽
D5 🗖 P3	D5 🔽
D4 🗖 P2	D4 🔽
D3 🗖 P1	D3 🗖 P9
D2 🗖	D2 🗖 P8
D1 🗖 Conf. 0x27	D1 🗖 P7
D0 🗖	D0 🗖 P6
Write	Write Read
I2C Address: 1001 - 10	01x (0x9A) POR Reset
Hardware: Connected.	I2C Address is 0x9A.

Figure 4. Port Lock Tab

Port Lock Tab

The **Port Lock** tab shown in Figure 4 contains two group boxes: **Register 0x72 (P1 ~ P5 Lock)** and **Register 0x73 (P6 ~ P9 Lock)**.

Clicking the **Read** button reads the current hardware register setting. Clicking the **Write** button after the desired settings are chosen writes the new settings to a respective hardware register.

Dort	Function	Status	
P9	GPIO Input	High	
 P8	GPIO Input	High	
 P7	GPI0 Input	High	
 P6	GPIO Input	High	Read All Port Status
P5	GPIO Input	High	
P4	GPIO Input	High	
P3	GPIO Input	High	
P2	GPIO Input	High	
 P1	GPI0 Input	High	

Figure 5. View Port Status Tab

View Port Status Tab

The **View Port Status** tab shown in Figure 5 displays the port functions and their status. Click the **Read All Port Status** button to update all port status.

I2C Address Drop-Down List

Configure the MAX7302 slave address by selecting the appropriate address in the **I2C Address** drop-down list.

See Table 1, JU10 settings, for possible MAX7302 $\mbox{I}^2\mbox{C}$ slave address configurations.

POR Reset Button

Click the **POR Reset** button to re-establish the connection between the EV kit software and the MAX7302 EV kit hardware. The software GUI is reset to the POR state.

Connection 2-wire interface					
Target Device Address	s: 0x9A	- 10011	01 r/w	Hunt for activ	ve listeners
General commands EEPRON	1 data dump S	MBus register	watch Low	v Level comm	nands
Command (SMBus Protocols,	Raw Block Rea	d/Write, EEPF		√rite)	
Q • SMBusQuick(addr) -> dev	vice present?		Execut	e P/	ASS
Command byte: 0x00	Data Out:	0x00, 0xCD }			•
Byte count:	Data In:				
🔲 Use SMBus PEC Packet I	Error Correction	byte			

Figure 6. Maxim Command Module Interface Window

Software Menu Bar

There are three menu items on the menu bar: **File**, **Options**, and **Help**.

Select File | Exit to exit the application.

Select Options I Interface (Advanced User) to bring up the Maxim Command Module Interface as shown in Figure 6. This interface allows $\ensuremath{I^2C}$ commands to be entered manually.

The **Help** menu item gives information about this EV kit software.

Detailed Description of Hardware

The MAX7302 is a 9-port level-translating GPIO with latching transition detection, blink, and PWM features. The MAX7302 EV kit board provides a proven layout for evaluating the device. The EV kit comes with one MAX7302ATE+ installed.

Hardware Reset

Press SW1 to reset the MAX7302 device on the EV kit. Refer to the \overline{RST} Input section of the IC data sheet for detailed reset functions.

Power Supplies

The MAX7302 has separate VDD and VLA power supplies. VLA is the port I/O supply and VDD powers the rest of the MAX7302 circuitry. On the MAX7302 EV kit, VDD is powered by a 3.3V LDO, MAX8511 chip. VLED and VLA are powered by the USB port directly, i.e. 5V. VDD, VLA, and VLED can also be supplied externally through corresponding on-board pads. Pre-installed jumpers on JU11, JU12, and JU13 headers should be removed before connecting external power supplies.

User-Supplied I²C Interface

To use the MAX7302 EV kit with a user-supplied I²C interface, connect SDA, SCL, and GND lines from the user-supplied I²C interface to the SDA, SCL, and GND pads on the MAX7302 EV kit. The shunts on JU101 and JU102 should be removed.

Table 1. MAX7302 EV Kit Jumper Descriptions

JUMPER	SHUNT POSITION	DESCRIPTION	
	1-2*	Ports P1–P9 use preconfigured settings on the EV kit.	
JU1–JU9	Open	Ports P1–P9 input or output connected through the P1–P9 pads.	
JU10	1-2*	AD0 connected to VDD. Slave address is 0x9A.	
	1-3	AD0 connected to GND. Slave address is 0x98.	
	1-4	AD0 connected to SCL. Slave address is 0x9C.	
	1-5	AD0 connected to SDA. Slave address is 0x9E.	
JU11	1-2*	VLED connected to VUSB (5V).	
	Open	VLED applied externally through the VLED pad.	
JU12	1-2*	VDD connected to the on-boarc 3.3V power supply.	
	Open	VDD applied externally through the VDD pad.	
JU13	1-2*	VLA connected to VUSB (5V).	
	Open	VLA applied externally through the VLA pad.	
JU101, JU102	1-2*	On-board I ² C master is connected to the MAX7302.	
	Open	User-supplied I ² C master is connected to the MAX7302.	

*Default position.

Figure 8. MAX7302 EV Kit Schematic (Sheet 2 of 3)

Figure 10. MAX7302 EV Kit Component Placement Guide—Component Side

Figure 11. MAX7302 EV Kit PCB Layout—Component Side

Figure 12. MAX7302 EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____15