

General Description

The MAX8649 evaluation kit (EV kit) is a fully assembled and tested circuit for evaluating the MAX8649 1.8A stepdown regulator. The EV kit operates from a 2.5V to 5.5V supply voltage and outputs a voltage programmable from 0.75V to 1.38V at up to 1.8A. An on-board USBto-I²C interface and EV kit software control the output voltage, operating modes, and other features of the IC.

Features

- + 1.8A Guaranteed Output Current
- I²C-Programmable VOUT (750mV to 1.38V in 10mV steps)
- Operates from 2.5V to 5.5V Input Supply
- On-Chip FET and Synchronous Rectifier
- Fixed 3.25MHz PWM Switching Frequency
- Synchronizes to 13MHz, 19.2MHz, or 26MHz System Clock When Available
- Small 1µH Inductor
- ◆ Initial Accuracy 0.5% at 1.25V Output
- 2.0% Output Accuracy Over Load, Line, and Temperature
- Power-Save Mode Increases Light Load Efficiency
- Overvoltage and Overcurrent Protection
- Thermal-Shutdown Protection
- On-Board USB-to-I²C Interface

Ordering Information

PART	ТҮРЕ
MAX8649EV KIT+	EV Kit

+Denotes lead(Pb)-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C1, C4–C7, C10–C14, C25, C26, C28, C29, C31, C32	16	0.1µF ±10%, 16V X7R ceramic capacitors (0402) TDK C1005X7R1C104K Murata GRM155R71C104K
C2, C3	2	10μF ±20%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J106M Taiyo Yuden JMK107BJ106MA
C8	1	10μF ±20%, 16V X5R ceramic capacitor (1206) Murata GRM31CR61C106M TDK C3216X5R1C106M

DESIGNATION	QTY	DESCRIPTION	
C9, C21, C23	3	10μF ±20%, 10V X5R ceramic capacitors (0805) TDK C2012X5R1A106M Murata GRM219R61A106K	
C15, C16	2	22pF ±5%, 50V C0G ceramic capacitors (0402) TDK C1005C0G1H220J Murata GRM1555C1H220J	
C17, C18	2	10pF ±5%, 50V C0G ceramic capacitors (0402) TDK C1005C0G1H100J Murata GRM1555C1H100J	

DESIGNATION	QTY	DESCRIPTION	
C19, C20, C24, C35, C36	5	1μF ±10%, 16V X5R ceramic capacitors (0603) TDK C1608X5R1C105K Murata GRM185R61C105K	
C22	1	0.033µF ±10%, 25V X7R ceramic capacitor (0402) TDK C1005X7R1E333K Murata GRM155R71E333K	
C30	0	Not installed, ceramic capacitor (0402)	
C40	1	2.2µF ±10%, 6.3V X5R ceramic capacitor (0603) TDK C1608X5R0J225K Murata GRM188R60J225K	
D1	0	Not installed, diode (0603)	
D2	1	Dual common-cathode Schottky diode (SOT323) Central Semi CMSSH-3C LEAD FREE	
D3, D4	2	Green LEDs (0603) Panasonic LNJ308G8TRA	
J1	1	USB type-B receptacle Assmann AU-Y1007-R Tyco AMP 292304-1 Molex 67068-9000	
J2	0	Not installed, 2 x 5 JTAG header, 0.1in (pin 7 removed)	
J3	1	BNC PCB-mount jack	
JU1, JU2, JU3	3	4-pin headers, 0.1in	
JU4	1	5-pin header, 0.1in	
JU6, JU7, JU8	3	2-pin headers, 0.1in	
L1	1	1μH ±30%, 2500mA, 45mΩ inductor (4.8mm x 4.6mm x 1mm) TDK VLF5010S-1R0N2R5	
L2	1	Ferrite bead (0603) TDK MMZ1608R301A	
R1, R29	2	0Ω resistors (0402)	
R2–R8, R17, R18, R31, R33	0	Not installed, resistors (0402) R2, R3, R17, R18, R31, R33 are open; R4–R8 are PCB short	
R9, R10	2	$27\Omega \pm 5\%$ resistors (0402)	

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
R11	1	1.5kΩ ±5% resistor (0402)	
R12	1	470 Ω ±5% resistor (0402)	
R13	1	2.2kΩ ±5% resistor (0402)	
R14	1	10k Ω ±5% resistor (0402)	
R15, R25	2	196k Ω ±1% resistors (0402)	
R16, R20	2	100k Ω ±1% resistors (0402)	
R19	1	11Ω ±1% resistor (0402)	
R21	1	37.4 k $\Omega \pm 1$ % resistor (0402)	
R22	1	63.4k Ω ±1% resistor (0402)	
R23	1	374 k $\Omega \pm 1\%$ resistor (0402)	
R24	1	590k Ω ±1% resistor (0402)	
R26, R30	2	$10k\Omega \pm 1\%$ resistors (0402)	
R27	1	$100\Omega \pm 1\%$ resistor (0402)	
R28	1	49.9Ω ±1% resistor (1206)	
R32	1	220Ω 5% resistor (0402)	
U1	1	1.8A step-down regulator (16 WLP) Maxim MAX8649EWE+T	
U2	1	Microcontroller (68 QFN-EP*) Maxim MAXQ2000-RAX+	
U3	1	USB UART (32 TQFP) FTDI FT232BL	
U4	1	EEPROM (8 SO) Atmel AT93C46EN-SH-B	
U5, U7	2	Adjustable-output LDO regulators (5 SC70) Maxim MAX8512EXK+T	
U6, U11	2	2.5V LDO regulators (5 SC70) Maxim MAX8511EXK25+T	
U8	1	Quad low-voltage level translator (14 TDFN-EP*) Maxim MAX3378EETD+	
U9	1	Dual low-voltage level translator (8 SOT23) Maxim MAX3373EEKA+	
U10	1	3.3V ultra-low-power series voltage reference (5 SOT23) Maxim MAX6129BEUK33+	
Y1	1	16MHz crystal Suntsu SCS20B-16.000MHZ Vishay XT9S20ANA16M	

*EP = Exposed pad.

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
Y2	1	6MHz crystal Suntsu SCS22B-6.000MHZ Vishay XT9S20ANA6M
—	1	USB cable

DESIGNATION QTY		DESCRIPTION	
	7 Shunts, 2 positions		
_	1	PCB: MAX8649 EVALUATION KIT+	

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Assmann Electronic	480-897-7001	www.assmann.com
Central Semiconductor Corp.	631-435-1110	www.centralsemi.com
Molex	800-786-6539	www.molex.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Panasonic Corp.	800-344-2112	www.panasonic.com
Suntsu Frequency Control	949-305-0220	www.suntsuinc.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com
Tyco Electronics	800-522-6752	www.tycoelectronics.com
Vishay	402-563-6866	www.vishay.com

Note: Indicate that you are using the MAX8649 when contacting these component suppliers.

MAX8649 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on the computer
MAX8649.EXE	Application program
FTD2XX.INF	USB driver file
UNINST.INI	Uninstalls the EV kit software
USB_Driver_Help.PDF	USB driver installation help file

___Quick Start

Recommended Equipment

- 2.5V to 5.5V power supply or battery able to deliver 1.5A
- User-supplied PC with Windows[®] 2000, Windows XP[®], or Windows Vista[®] operating system and USB port
- Voltmeter
- 1.8A electronic load (or 3W load resistor 0.75 Ω or greater)

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and under**<u>lined</u> refers to items from the Windows operating system.

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

Hardware and Software Setup

- Visit <u>www.maxim-ic.com/evkitsoftware</u> to download the latest version of the EV kit software, 8649Rxx.ZIP
- 2) Unzip the software and run the INSTALL.EXE program to install the software on the computer.
- 3) Preset the power supply to 3.6V.
- 4) Turn off the power supply. Caution: Do not turn on the power supply until all connections are completed.
- 5) Make sure that jumpers JU6, JU7, and JU8 are installed on the EV kit (see Table 3).
- 6) Select the desired V_{DD} voltage using JU4 (see Table 2).
- Connect pins 1-3 of jumpers JU1, JU2, and JU3 (see Table 1) to enable software control of the EN and VID_ controls.
- 8) Connect the positive power-supply terminal to the EV kit pad labeled IN.
- 9) Connect the power-supply ground terminal to the EV kit pad labeled GND.
- 10) If desired, connect the load between the OUT and PGND terminals.
- 11) Connect a voltmeter from OUT to the PGND pad.
- 12) Turn on the power supply.
- 13) Connect the EV kit to the computer with the included USB cable.
- 14) Note that power LED D3 lights when valid USB and IN power is present.
- 15) When using the EV kit for the first time, a <u>Found New</u> <u>Hardware</u> window pops up. Follow the dialogue to install the FTD2XX driver included with the EV kit software. For more detailed information on installing the FTD2XX driver, refer to the USB_Driver_Help. PDF document included with the EV kit software.
- 16) Start the EV kit software by opening its icon in the <u>Start</u> menu.
- 17) The EV kit is now ready to communicate through the I²C interface.
- Procedure
 In the EV kit software, select the Mode Selection tab and click on the ON radio button in the EN group box (Figure 1).

- 2) Click on the **OFF** radio buttons in the **VID0** and **VID1** group boxes in the software to select mode 0.
- Select the Mode Configuration tab (Figure 2). In the Mode 0 group box, select the desired output voltage from the Output voltage(V) drop-down list.
- 4) Press the **Write** button in the **Mode 0** group box.
- 5) Verify that the voltmeter indicates the voltage selected in the software.

_Detailed Description of Hardware

The MAX8649 EV kit operates from a 2.5V to 5.5V supply and provides a 0.75V to 1.38V output at up to 1.8A. The output voltage and other features are controlled through an I²C serial interface. To ease evaluation of the IC, an on-board USB-to-I²C interface is included and EV kit software provided.

Jumpers JU1, JU2, and JU3 control the EN, VID0, and VID1 signals (see Table 1). When software control is selected by connecting pins 1-3 of these jumpers, the corresponding signals are controlled by the EV kit software (see Figure 1). Note that jumper JU6 connects power (from IN) to circuitry controlling the EN, VID0, and VID1 signals. JU6 must be connected when using the software to control these signals. When measuring quiescent current of the IC, JU6 should be removed and the EN, VID0, and VID1 signals set high or low with JU1, JU2, and JU3.

Jumper JU4 sets the V_{DD} voltage and logic level of the on-board I²C interface (see Table 2).

Jumpers JU7 and JU8 connect the I²C signals from the on-board interface to the IC (see Table 3). These jumpers must be installed when using the on-board I²C interface.

External Synchronization

To evaluate the external synchronization feature of the IC, connect the signal source to J3 (FSYNC). Using the software, check the **Enable synchronization** checkbox and press the **Write** button in the appropriate **Mode** _ group box in the **Mode Configuration** tab (see Figure 2). Select the signal frequency from the **External clock source (MHz)** drop-down list in the **SYNC** group box in the software **Control** tab shown in Figure 3.

	SHUNT POSITION			
JUMPER	1-2	1-3	1-4	
JU1	Disables the IC	EV kit software controls the enable signal	Enables the IC	
JU2	Sets VID0 low	EV kit software controls the VID0 signal	Sets VID0 high	
JU3	Sets VID1 low	EV kit software controls the VID1 signal	Sets VID1 high	

Table 1. Jumper Settings (JU1, JU2, JU3)

Table 2. Jumper Settings (JU4)

SHUNT POSITION	VDD (V)
Open	3.6
1-2	1.8
1-3	2.8
1-4	3
1-5	1.6

Detailed Description of Software

On startup, the software automatically tries to detect the MAX8649 EV kit. If the EV kit is not connected or not powered, **Command Module not found, keep trying to connect?** is displayed (Figure 3). Selecting **No** puts the software in demo mode, where all options can be viewed without communicating with the IC. To connect to the IC from demo mode, check the **Auto Detect Hardware Connection** checkbox. The software GUI is organized into five tabs: **Mode Selection**, **Mode Configuration**, **Control**, **Ramp**, and **ID** (Figures 1–5).

Mode Selection Tab

The **Mode Selection** tab sheet (Figure 1) controls the three digital inputs to the IC (EN, VID0, and VID1). To use the software to control these signals, jumper JU6 must be installed and pins 1-3 of jumpers JU1, JU2, and JU3 connected on the EV kit. Using JU1, JU2, and JU3 to set these signals high or low overrides the setting in the software. VID0 and VID1 set the mode used in the **Mode Configuration** tab. Set VID0 and VID1 to off for mode 0, VID0 on and VID1 off for mode 1, VID0 off and VID1 on for mode 2, or VID0 and VID1 on for mode 3.

Table 3. Jumper Functions (JU6, JU7, JU8)

	SHUNT POSIT	SHUNT POSITION			
JUMPER	OPEN	1-2			
JU6	JU6 can be left open when software control of EN, VID0, and VID1 is not used. Remove JU6 when making quiescent current measurements.	Short JU6 when using software control for the EN, VID0, or VID1 signals.			
JU7	Remove JU7 and JU8 when using an external I ² C master. Connect SDA to	JU7 and JU8 must be shorted			
JU8	pin 2 of JU7 and SCL to pin 2 of JU8. Install pullup resistors R2 and R3.	on-board I ² C interface.			

Table 4. LED Indicators

LED	FUNCTION
D3	Indicates power is present at IN, and from USB
D4	Indicates the interface circuit is communicating with the computer

Mode Configuration Tab

The **Mode Configuration** tab sheet (Figure 2) controls the output voltage, forced PWM, and synchronization for each of the four VID modes. The active mode is set in the **Mode Selection** tab or with jumpers JU2 and JU3 on the EV kit.

Control Tab

The software **Control** tab sheet (Figure 3) provides controls to enable or disable the internal pulldown resistors on the digital inputs (EN, VID0, and VID1), and sets the frequency of the external clock (used when synchronization is selected in the **Mode Configuration** tab).

Ramp Tab

The **Ramp** tab sheet (Figure 4) controls the RAMP register of the IC. Refer to Table 9 and the *Ramp-Rate Control* section in the MAX8649 IC data sheet for more information.

ID Tab

The **ID** tab sheet (Figure 5) allows the chip ID information to be read from the IC.

MAX8649 EV Kit Software		_ 🗆 🗙
Command Sent = 0x1C Data Sent = 0x1C	Auto Detect Hardware Connection Command Module Connected, Device Connected	
Mode Selection Mode Configura	tion Control Ramp ID	Read All Debug About E <u>x</u> it

Figure 1. MAX8649 Evaluation Kit Software Main Window (Mode Selection Tab)

Note: Jumper JU6 must be installed and pins 1-3 of jumpers JU1, JU2, and JU3 connected to control the EN, VID0, and VID1 signals using the EV kit software.

MAX8649 EV Kit Software		_ 🗆 ×
Command Sent = 0x1C Data Sent = 0x1C	Auto Detect Hardware Connection Command Module Connected, Device Connected	
Mode Selection Mode Configurati	on Control Ramp ID	1
Mode 0 Forced PWM Enable synchronization Output voltage(V) : 1.27	Mode 1 Forced PWM Enable synchronization Output voltage(V) : 1.05	Read All
Read	rite Read Write	Debug
Mode 2	Mode 3	About
Enable synchronization Output voltage(V) : 1.23	Enable synchronization Output voltage(V) : 1.05	Exit
Read	rite Read Write	

Figure 2. MAX8649 Evaluation Kit Software Main Window (Mode Configuration Tab)

MAX8649 EV Kit Software		_D×
Command Sent = 0x1C Data Sent = 0x1C	Auto Detect Hardware Connection Command Module Connected, Device Connected	
Mode Selection Mode Configura	tion Control Ramp ID	1
	CONTROL Pull down on EN Pull down on VID0 Pull down on VID1 Read	Read All Debug About
Exte	rnal clock source (MHz) : 26	E <u>x</u> it
		J

Figure 3. MAX8649 Evaluation Kit Software Main Window (Control Tab)

Command Sent = 0x09	Auto Detect Hardware Connection	
Data Sent = 0x0A	Command Module Connected, Device Connec	cted
Mode Selection Mode Co	nfiguration Control Ramp ID	
-9	amo	
	Slew rate (mv/usec) : 32 💌	
	Active ramp down enable	Read All
)	Force hysteretic mode in power save mode	Debug
1	Force oscillator on in power save mode	About
	Read Write	<u> </u>

Figure 4. MAX8649 Evaluation Kit Software Main Window (Ramp Tab)

Command Sent = 0x09	Auto Detect Hardware Connection	
Data Sent = 0x0A	Command Module Connected, Device Connected	
Mode Selection Mode Config	uration Control Ramp ID	
	CHIP ID	5
	Die Type: 0x20	Read All
	Dash: 0	Debug
	Kev: JA	About
	Read	Exit

Figure 5. MAX8649 Evaluation Kit Software Main Window (ID Tab)

Figure 6a. MAX8649 EV kit Schematic (Sheet 1 of 3)

Figure 6b. MAX8649 EV kit Schematic (Sheet 2 of 3)

Figure 6c. MAX8649 EV kit Schematic (Sheet 3 of 3)

Figure 7. MAX8649 EV Kit Component Placement Guide—Component Side

Figure 8. MAX8649 EV Kit PCB Layout-Component Side

Figure 9. MAX8649 EV Kit PCB Layout— Solder Side

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	7/10	Initial release	

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2010 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.