

General Description

The MAX8819A evaluation kit (EV kit) is a fully assembled and tested PCB for evaluating the MAX8819A power-management IC (PMIC). The MAX8819A PMIC is ideal for use in MP3 players and other handheld applications. In addition to the three step-down converters and WLED driver, the MAX8819A integrates a 1-cell lithium ion (Li+) or lithium polymer (Li-poly) charger and Smart Power Selector[™] with a power input that accepts a USB or AC-to-DC adapter.

The MAX8819A EV kit can also be used to evaluate the MAX8819B, MAX8819C, or MAX8819D. Request a pincompatible sample when ordering this EV kit.

Figure 1. MAX8819A EV Kit Photo

_____Features

- USB/AC Adapter 1-Cell Li+ Charger
- Jumper Options Offer Four Input Current Limits
- Jumper Options Allow for Easy Evaluation of Five Charge-Current Settings
- Three 2MHz Step-Down Converters
- External Resistors Allow for Output-Voltage Adjustment
- Resistor Option Allows for Reducing Quiescent Current by Disabling Regulator 2
- ♦ 6-Series WLEDs Showcase WLED Driver
- Jumper Option Allows for WLED Overvoltage Protection Evaluation
- On-Board Pulse Generator Allows for Pushbutton Evaluation of the WLED Dimming Feature
- ♦ Lead-Free and RoHS Compliant
- Fully Assembled and Tested

Ordering Information

PART	ТҮРЕ
MAX8819AEVKIT+	EV Kit

+Denotes lead-free and RoHS compliant.

Component List

Maxim Integrated Products 1

	DESIGNATION	QTY	DESCRIPTION	
	C1	1	4.7μF ±10%, 10V X5R ceramic capacitor (0805) Murata GRM21BR61A475K TDK C2012X5R1A475K Taiyo Yuden LMK212BJ475MG	
	C2	0	Not installed, capacitor (0603)	
	C3	1	0.1µF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H104K	
	C4, C14	2	0.022µF ±10%, 10V X5R ceramic capacitors (0402) Murata GRM155R61A223K or TDK C1005X5R1E223K	
	C5, C8, C10, C11	4	10µF ±10%, 6.3V X5R ceramic capacitors (0805) Murata GRM21BR61A106K TDK C2012X5R0J106M	
C6, C7		2	4.7μF ±10%, 6.3V X5R ceramic capacitors (0603) Murata GRM188R61A475K TDK C1608X5R0J475M	

Smart Power Selector is a trademark of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Evaluates: MAX8819A-MAX8819D

DESIGNATION	QTY	DESCRIPTION	
C9	1	2.2µF ±10%, 6.3V X5R ceramic capacitor TDK C1608X5R0J225K	
C12, C13, C15	3	0.1µF ±10%, 10V X5R ceramic capacitors (0402) TDK C1005X5R1A104K or equivalent Murata GRM155R61A104K	
C16, C17	2	1μF ±10%, 10V X5R ceramic capacitors (0603) Murata GRM188R61C105K TDK C1608X5R1C105K Taivo Yuden EMK107BJ105KA	
D1–D6	6	White LEDs Nichia NSCW215T	
D7	1	500mA, 30V Schottky diode (SOD-523) NXP PMEG3005EB	
J1	1	10-pin header, 1.25mm pitch, right- angle, surface-mount, lead-free Molex 53261-1071	
JU1, JU2, JU10	3	3-pin headers, 0.1in Sullins PEC36SAAN or equivalent (36-pin strip, cut to size as needed)	
JU3–JU9	7	2-pin headers, 0.1in Sullins PEC36SAAN or equivalent (36-pin strip, cut to size as needed)	
L1, L2, L3	3	4.7μH, 0.88A, 130mΩ inductors (3.2mm x 3mm x 1.2mm) TOKO 1098AS-4R7M (DE2812C series)	
L4 1		10μH, 0.77A, 290mΩ inductor (3.2mm x 3mm x 1.2mm) TOKO 1098AS-4R7M (DE2812C series)	

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
R1	1	20Ω ±1% resistor (0402)	
R2, R3, R5	3	$15k\Omega \pm 1\%$ resistors (0402)	
R4	1	7.5k Ω ±1% resistor (0402)	
R6, R10	2	470k Ω ±1% resistors (0402)	
R7, R11	0	Not installed, resistors (0402)	
R8	1	200k Ω ±1% resistor (0402)	
R9, R13, R15, R17	4	100k Ω ±1% resistors (0402)	
R12	1	80.6k Ω ±1% resistor (0402)	
R14	1	$20k\Omega \pm 1\%$ resistor (0402)	
R18, R19	2	$10k\Omega \pm 1\%$ resistors (0402)	
R20	1	221k Ω ±1% resistor (0402)	
R21, R22	2	1MΩ ±5% resistors (0402)	
S1	1	Momentary pushbutton switch Panasonic EVQ-Q2K03W	
U1	1	Power-management IC (28 TQFN-EP*) Maxim MAX8819AETI+	
U2	1	74HC series monostable multivibrator Texas Instruments CD74HC123PW or equivalent	
U3	1	LDO linear regulator (5 SOT23) Maxim MAX8875EUK25+	
	1	PCB: MAX8819A Evaluation Kit+	

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Molex	800-768-6539	www.molex.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Nichia Corp.	248-352-6575	www.nichia.com
NXP Semiconductors	408-474-8142	www.nxp.com
Panasonic Corp.	800-344-2112	www.panasonic.com
Sullins Electronics Corp.	760-744-0125	www.sullinselectronics.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com
Texas Instruments Inc.	972-644-5580	www.ti.com
TOKO America, Inc.	847-297-0070	www.tokoam.com

Note: Indicate that you are using the MAX8819A, MAX8819B, MAX8819C, or MAX8819D when contacting these component suppliers.

_Quick Start

Recommended Equipment

Before beginning, the following equipment is needed:

- Battery

 cell Li+ or Li-poly battery (Figure 2A)

 Preloaded power supply (Figure 2B)
- Voltmeter
- Loads
- 5V > 1A power source

Table 1. Jumper Functions

Procedure

The MAX8819A EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Verify that all jumpers are in default position, as shown in Table 1.
- Connect loads from the desired step-down outputs (V1, V2, and V3) to the nearest GND pad. The maximum load current for each output is shown in Table 2.
- 3) Connect a Li+ or Li-poly battery from the BAT terminal to GND, or plug battery into connector J1.

JUMPER	NODE OR FUNCTION	SHUNT POSITION	LOGIC LEVEL	FUNCTION	
JU1	DLIM2	1-2	High	If DLIM1 = high, then suspend If DLIM1 = low, then 475mA DC current limit	
		2-3*	Low	If DLIM1 = high, then 95mA DC current limit If DLIM1 = low, then 1000mA DC current limit	
	DLIM1	1-2	High	If DLIM2 = high, then suspend If DLIM2 = low, then 95mA DC current limit	
JU2		2-3*	Low	If DLIM2 = high, then 475mA DC current limit If DLIM2 = low, then 1000mA DC current limit	
JU3	CEN	Open*		Battery charge disabled	
		Short		Battery charge enabled	
11.14	EN123	Open	_	V1, V2, V3, and IC off, if VDC is invalid; otherwise V1, V2, V3, and IC are on.	
		Short*		V1, V2, V3, and IC on	
JU5	OVP4 (OUT4)	Open	—	LED string disconnected from REG4. If REG4 is enabled, it enters its overvoltage protection mode and latches off.	
		Short*		LED string connected to REG4 output	
JU6	CISET	Short*			
JU7	JU7 CISET		—	For evaluating other charge currents, see the Evaluating Other Charge	
JU8	CISET	Short*	_		
1110	EN4	Open	_	Disconnects the pulse circuit from EN4	
003		Short*		Connects the pulse circuit to EN4	
	IN supply for	1-2*	High	Enable the series pulse circuit	
3010	U3 (MAX8875)	2-3	Low	Disable the series pulse circuit	

*Default position.

Table 2. Default Output Voltages and Maximum Load Currents

	MAX88	319A/MAX8819B	MAX8819C/MAX8819D		
OUTPUT	DEFAULT VOLTAGE (V)	MAXIMUM LOAD CURRENT (mA)	DEFAULT VOLTAGE (V)	MAXIMUM LOAD CURRENT (mA)	
V1	3	400	3	550	
V2	1.8	300	1.8	500	
V3	1.2	300	1.2	500	

- 4) Optionally, connect an AC-to-DC adapter to the DC pad and nearest GND pad.
- 5) Using a voltmeter, verify that the output voltages match the values shown in Table 2.
- 6) Verify that the WLEDs are brightly lit.
- Dim the WLEDs by repeatedly pressing pushbutton S1. Verify that the WLEDs are dimming with each pulse and then return to full brightness on the 32nd button press.
- 8) Verify that the WLEDs turn off by removing the shunt on jumper JU9 or by moving the shunt from pins 1-2 of jumper JU10 to pins 2-3.

_Detailed Description of Hardware

The MAX8819A has four outputs: three step-down DC-DC regulators (V1, V2, and V3) and one LED driver. All three step-down regulator output voltages are adjustable and set by external resistors on the EV kit. See the *Setting the Output Voltages* section for information on calculating these resistor values. The default voltage and maximum current for each output is listed in Table 2.

All regulators are powered from the system supply (SYS) by default.

Setting the Output Voltages

The step-down output voltages are adjustable from 1V to V_{SYS}. The voltage is adjusted by changing two resistors on the EV kit board. First, select the lower feedback resistor (R_{FBL}) connected from FB_ to GND. R_{FBL} is typically 100k Ω for the step-down regulator. Next, find the value of R_{FBH} (connected between FB_ and OUT_) from the following equation:

$$R_{FBH} = R_{FBL} \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$

where VFB is 1V.

Smart Power Selector

The MAX8819A Smart Power Selector seamlessly distributes power between the current-limited external input (DC), the battery (BAT), and the system load (SYS). For detailed information on the MAX8819A operation, refer to the MAX8819A–MAX8819D IC data sheet.

The DC input is current limited to 95mA, 475mA, 0mA (suspend), or 1000mA, depending upon the pins selected on jumper JU2 and JU1 (DILIM1 and DILIM2, respectively). See Table 1 for jumper settings.

Battery Charger

To enable the battery charger, short jumper JU3 (CEN). To disable the battery charger, open jumper JU3 (CEN). The battery regulation voltage is factory set to 4.2V (typ). The resistor/jumper network allows for easy evaluation of many charge-current settings (Table 3). The maximum charge time is factory set and detailed in the MAX8819A–MAX8819D IC data sheet.

Input Power Connections

Either a USB or AC-to-DC adapter can be connected to DC. The AC-to-DC adapter must output between 4.1V and 6V DC and be capable of providing 1A. One suitable AC-to-DC adapter is the CUI EPS050260UHH-P5P-SZ.

The Li+ or Li-poly battery connects from the BAT pad to the GND pad on the EV kit. Alternatively, a battery connector (J1) is provided. J1 is a 10-circuit, 1.25mm (0.049in) pitch surface-mount header, Molex part number 53261-1071. The recommended mating connector is Molex 51021-1000 with crimp terminals 50058-8100. To crimp the terminals, use Molex crimper 63811-0200.

CHG and RST1

Output indicators are provided on the MAX8819A EV kit for charger status (CHG) and REG1 converter reset output (RST1). These pads connect to open-drain outputs with a pullup resistor to V1. CHG pulls low to indicate that the battery is charging. RST1 pulls low to indicate that V_{FB1} is below its regulation threshold. RST1 goes high 200ms after V_{FB1} reaches its regulation threshold. Refer to the MAX8819A–MAX8819D IC data sheet for more details.

LED Serial-Pulse Dimming

Pushbutton S1 and associated circuitry (Figure 4) allow for easy evaluation of the WLED dimming feature. To enable the pushbutton interface, install a shunt from pins 1-2 on jumper JU10. Install a shunt on jumper JU9 to connect the pushbutton circuit to the MAX8819A IC EN4 terminal.

When power is first applied to the REG4 (WLED driver) converter and serial-pulse dimming circuit, the WLEDs are set to maximum brightness (25mA per R1 on the EV kit). To dim the WLEDs, repeatedly press S1. Each pulse reduces the WLED current by 1/32 of maximum WLED current. On the 32nd button press, the WLEDs return to full brightness. To turn the WLEDs off, remove the shunt from jumper JU9 to pull EN4 to ground. If dimming control is not required, EN4 works as a simple on/off control. Drive EN4 high to enable the WLEDs, or drive EN4 low for shutdown.

The serial-pulse dimming-control signal can also be supplied by an external pulse generator. To configure the EV kit for external serial-pulse control, remove the shunt on jumper JU9, connect pins 2-3 on jumper JU10, and apply the external serial-pulse control signal to the EN4 pad. Refer to the MAX8819A–MAX8819D IC data sheet for timing information.

Programming the WLED Current

The MAX8819A uses sense resistor R1 to program the maximum WLED current. The MAX8819A regulates VFB4 to 0.5V (typ) for full-scale output current. Calculate R1 using the following equation:

$$R1 = \frac{V_{FB4}}{I_{LED(MAX)}}$$

where $I_{\text{LED}(\text{MAX})}$ is the maximum WLED current. Maximum WLED current is programmed to 25mA using a 20 Ω resistor.

Evaluating the MAX8819B/MAX8819C/MAX8819D

Order a sample of the pin-compatible MAX8819B, MAX8819C, or MAX8819D along with the MAX8819A EV kit. Replace the MAX8819A (U1) with the sampled IC. When evaluating the MAX8819C/MAX8819D, it is recommended for optimal performance to replace capacitors C8, C10, and C11 with a 22 μ F ceramic capacitor. The 22 μ F ±20%, 6.3V X5R (0805) Taiyo Yuden JMK212BJ226MD is recommended.

Evaluating Other Charge Currents

The maximum fast-charge current is selected with jumpers JU6, JU7, and JU8 (Table 3).

Disabling Regulator 2

If regulator 2 is not needed, disable it to reduce the quiescent current. To disable regulator 2, remove R11 and replace C9 with a 0Ω resistor. Although components L2, C10, R12, and R13 are not needed, they do not have to be removed for EV kit evaluation. For production circuits that do not need regulator 2, connect PV2, PG2, LX2, and FB2 to ground.

MAX8819A EV Kit Temperature Range The PCB and components of the MAX8819A EV kit allow for operation with ambient temperatures from -20°C to +70°C. Remove S1 to increase the ambient temperature operating range from -30°C to +85°C.

Table 3. Maximum Fast-ChargeCurrent Settings

JU6	JU7	JU8	MAXIMUM FAST-CHARGE CURRENT (mA)			
Short	Short	Short	1000			
Short	Short	Open	800			
Short	Open	Open	400			
Open	Open	Open	200			
ALTERNATE SETTINGS						
Open	Open	Short	400			
Open	Short	Open	600			
Open	Short	Short	800			
Short	Open	Short	600			

Figure 2. Battery Options for Evaluating the MAX8819 Charger

Figure 3. MAX8819A EV Kit Schematic

Figure 4. Pulse Circuit Schematic

Evaluates: MAX8819A-MAX8819D

Figure 5. MAX8819A EV Kit Component Placement Guide—Component Side

Figure 6. MAX8819A EV Kit PCB Layout—Component Side

Figure 7. MAX8819A EV Kit PCB Layout—SYS Layer 2

Figure 8. MAX8819A EV Kit PCB Layout—PGND Layer 3

Figure 9. MAX8819A EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

12

© 2008 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.