

MAX9266 Evaluation Kit Evaluates: MAX9265/MAX9266

General Description

Features

The MAX9266 evaluation kit (EV kit) provides a proven design to evaluate the MAX9266 high-bandwidth digital content protection (HDCP) gigabit multimedia serial link (GMSL) deserializer with LVDS system interfrace and spread spectrum and full-duplex control channel. The EV kit also includes Windows XP®-, Windows Vista®-, and Windows® 7-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX9266.

The MAX9266 EV kit comes with a MAX9266GCM/V+ installed.

For complete GMSL evaluation from LVDS inputs, order both the MAX9266 EV kit and its companion board, the MAX9265 EV kit.

For complete GMSL evaluation from CMOS parallel inputs, order both the MAX9266 EV kit and its companion board, the MAX9263 EV kit. For simplicity, this EV kit data sheet uses a MAX9265 EV kit serializer.

- ♦ Drives LVDS Video and I²S Audio
- ♦ On-Board LVDS-to-Parallel Conversion (MAX9249, MAX9260)
- ♦ On-Board I²S Audio DAC (MAX9850)
- ♦ On-Board Class D Audio Power Amplifier (MAX9701)
- ♦ Windows XP-, Windows Vista-, and Windows 7-Compatible Software
- **♦ USB-PC Connection (Cable Included)**
- **♦ USB Powered**
- **♦ Proven PCB Layout**
- **♦ Fully Assembled and Tested**

Ordering Information appears at end of data sheet.

Component List

DESIGNATION	QTY	DESCRIPTION
C1–C7, C301–C309, C401–C405	21	0.01µF ±10%, 25V X7R ceramic capacitors (0402) Murata GRM155R71E103K
C8-C14, C101-C105, C121, C131, C141, C151, C257, C258, C259, C291-C294, C310-C318, C406-C410	37	0.1µF ±10%, 16V X7R ceramic capacitors (0603) Murata GRM188R71C104K
C19, C20, C319, C320, C411, C412	6	0.22µF ±10%, 50V X7R ceramic capacitors (0805) Murata GRM21BR71H224K
C21, C321	2	4.7µF ±20%, 25V X7R ceramic capacitors (1206) Murata GCM31CR71E475M
C22, C24, C25, C26, C109, C322, C324	7	10µF ±20%, 16V X5R ceramic capacitors (1206) Murata GRM31CR61C106M
C23, C323	0	Not installed, ceramic capacitors (1206)

DESIGNATION QTY		DESCRIPTION	
C106, C107, C122, C123	4	22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J	
C108	1	1μF ±10%, 16V X5R ceramic capacitor (0603) TDK C1608X5R1C105K	
C110	1	0.033µF ±10%, 25V X7R ceramic capacitor (0603) Murata GRM188R71E333K	
C111	0	Not installed, ceramic capacitor (0603)	
C200, C203–C209, C216, C217	10	1μF ±10%, 6.3V X5R ceramic capacitors (0402) Murata GRM155R60J105K	
C201	1	2.2µF ±20%, 6.3V X5R ceramic capacitor (0603) TDK C1608X5R0J225M	
C202	1	0.47µF ±20%, 16V X7R ceramic capacitor (0603) TDK C1608X7R1C474M	

Windows, Windows XP, and Windows Vista are registered trademarks of Microsoft Corp.

MIXIM

Maxim Integrated Products 1

Evaluates: MAX9265/MAX9266

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
C210, C211	2	220µF ±20%, 6.3V low-ESR tantalum capacitors (2312) AVX TPSC227M006R0070	
C212, C213	0	Not installed, ceramic capacitors (2312)	
C214, C215	2	10µF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106M	
C250	1	100pF ±5%, 50V C0G ceramic capacitor (0603) TDK C1608C0G1H101J	
C251-C254	4	1μF ±10%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J105K	
C255	0	Not installed, ceramic capacitor (0805)	
C256	1	10µF ±10%, 6.3V X5R ceramic capacitor (0805) Murata GRM21BR60J106K	
H1	1	10-pin (2 x 5) header	
H20	1	8-pin header	
H37, H46	2	3-pin headers	
H38, H39, H47, H48, H49	5	4-pin headers	
H40	1	72-pin (2 x 36) header	
J1	1	High-speed automotive connector Rosenberger D4S20F-40MA5-Z	
J10	1	USB type-B right-angle female receptacle	
J201-J204	4	Phono jacks	
J206	1	Stereo headphone jack (3.5mm)	
JU1–JU6, JU11, JU121, JU122, JU151, JU152, JU206, JU252, JU253, JU254, JU290–JU293, JU306, SW1	21	3-pin headers	
JU7, JU8	2	4-pin headers	

DESIGNATION	QTY	DESCRIPTION
JU9, JU10, JU21, JU22, JU23, JU143, JU144, JU153, JU154, JU191–JU194, JU202–JU205, JU300, JU301, JU310, JU311, JU312, JU314, JUCNTL0, JUCNTL1, JUCNTL2	26	2-pin headers
JU101–JU108, JU141, JU142, JU255, JU256, JU294	0	Not installed. 2-pin headers—short (PC trace)
JU201	1	6-pin (2 x 3) header
JU251	1	5-pin header
L21, L22, L23, L101, L314	5	Ferrite beads (0603) TDK MMZ1608R301A
L251-L255	5	100Ω, 3A ferrite beads (0603) TDK MPZ1608S101A
LED1, LED3, LED4, LED120, LED127, LED151–LED158, LED301, LED401, LED403, LED404	17	Red LEDs (0805)
LED2, LED126, LED302, LED402 4		Green LEDs (0805)
Q1-Q5, Q301, Q302, Q401-Q405	12	n-channel MOSFETs (SOT23) Central Semi 2N7002
R0	1	0Ω ±5% resistor (0603)
R1, R2, R401, R402	4	49.9kΩ ±1% resistors (0603)
R3–R8, R305, R306, R307, R403–R406, R409, R410	15	2.2 k Ω ±5% resistors (0603)
R11–R15, R123, R126, R127, R151–R158, R201, R202, R308, R309, R411–R415	25	1k Ω ±5% resistors (0603)
R101, R102 2		27Ω ±5% resistors (0603)
R103	1	1.5kΩ ±5% resistor (0603)
R104	1	470Ω ±5% resistor (0603)
R111, R112	0	Not installed, resistors (0603)

Evaluates: MAX9265/MAX9266

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
R121	1	1.1kΩ ±5% resistor (0603)
R122	1	10kΩ ±5% resistor (0603)
R191, R192	2	4.7kΩ ±5% resistors (0603)
R251	1	49.9Ω ±1% resistor (0603)
R301, R302	2	45.3kΩ ±1% resistors (0603)
R303, R304	2	4.99kΩ ±1% resistors (0603)
RT100-RT104	0	Not installed, $100\Omega \pm 5\%$ resistors (0402)
SW122, SW150-SW157	9	Momentary pushbutton switches (6mm)
TP125	0	Not installed, multipurpose test point
U1	1	HDCP GMSL deserializer with LVDS outputs (48 TQFP-EP) Maxim MAX9266GCM/V+
U2	1	3.3V, 500mA LDO regulator (8 µMAX®-EP) Maxim MAX1792EUA33+ (Top Mark: AAAC)
U10	1	UART-to-USB converter (32 TQFP)
U11	0	Not installed, 93C46-type 3-wire EEPROM 16-bit architecture (8 SO)
U12	1	Ultra-high-speed microcontroller (44 TQFP) Maxim DS89C450-ENL+
U13	1	Quad three-state buffer (14 SO) Fairchild 74AC125SC_NL
U14	1	Level translator (14 TSSOP) Maxim MAX3378EEUD+
U15	1	I ² C I/O expander (24 QSOP) Maxim MAX7324AEG+
U19	1	Dual bidirectional level translator (8 SOT23) Maxim MAX3373EEKA+ (Top Mark: AAKS)

DESIGNATION	QTY	DESCRIPTION
U20	1	Stereo audio DAC with DirectDrive® headphone amplifier (28 TQFN-EP) Maxim MAX9850ETI+
U25	1	1.3W, filterless, stereo Class D audio power amplifier (24 TQFN-EP) Maxim MAX9701ETG+
U29	1	Multiple-output clock generator with dual PLLs and OTP (20 TQFN-EP) Maxim MAX9471ETP4X+
U30	1	GMSL serializer with LVDS inputs (48 TQFP-EP) Maxim MAX9249GCM/V+
U31	1	1.8V, 500mA LDO regulator (8 μMAX) Maxim MAX1792EUA18+
U40	1	GMSL deserializer (64 TQFP-EP) Maxim MAX9260GCB/V+
Y10	1	6MHz crystal (HCM49) Hong Kong X'tals SSL60000N1HK188F0-0
Y12	1	14.7456MHz crystal (HCM49) Hong Kong X'tals SSM1474518AFHHF0
_	1	Rosenberger cable (2m) MD Electronik PT1482
_	1	USB high-speed A-to-B cables, 6ft
_	42	Shunts
_	1	PCB: MAX9266 EVALUATION KIT

μΜΑΧ and DirectDrive are registered trademarks of Maxim Integrated Products, Inc.

Evaluates: MAX9265/MAX9266

Component Suppliers

SUPPLIER	PHONE	WEBSITE
AVX Corporation	843-946-0238	www.avxcorp.com
Central Semiconductor Corp.	631-435-1110	www.centralsemi.com
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
MD ELEKTRONIK GmbH	011-49-86-38-604-0	www.md-elektronik-gmbh.de
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Rosenberger Hochfrequenztechnik GmbH	011-49-86 84-18-0	www.rosenberger.de
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX9266 when contacting these component suppliers.

MAX9266 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX9266.EXE	Application program for both MAX9265 and MAX9266 devices
CDM20600.EXE	Installs the USB device driver
UNINSTALL.EXE	Uninstalls the EV kit software
USB_Driver_Help_200.PDF	USB driver installation help file

Quick Start

Required Equipment

- MAX9265 EV kit (USB cable included)
- MAX9266 EV kit (USB cable included)
- 2m Rosenberger cable assembly (included with the MAX9266 EV kit)
- Parallel data source (such as digital video)
- · Optional: Function generator (needed only if data lacks a pixel clock)
- Optional: Function generator (needed only if data lacks a VSYNC)
- Optional: I2S or S/PDIF audio source
- Optional: Pair of 8Ω speakers
- Optional: 3.5mm stereo headphones (16 Ω or greater)
- User-supplied Windows XP, Windows Vista, or Windows 7 PC with a spare USB port (direct 500mA connection required; do not use a hub)
- 5V DC, 1000mA power supply

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software, 9266Rxx. ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- 2) Install the EV kit software and USB driver on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows Start I Programs menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.
- 3) Verify that all jumpers are in their default positions, except for JU10, as shown in Table 1. Because USB will be connected to the MAX9266 EV kit instead of the MAX9265 EV kit, remove the shunt from JU10 on the MAX9266 EV kit and install a shunt on JU10 on the MAX9265 EV kit.
- 4) Connect the positive terminal of the power supply to the VIN PCB pad and the negative terminal to the nearest GND PCB pad.

- 5) Connect the Rosenberger cable from the MAX9265 EV kit connector J1 to the MAX9266 EV kit connector J1.
- 6) Connect the parallel data source to the MAX9265 EV kit header H1 (if using static data without a pixel clock, use external function generators to drive PCLK_IN and VSYNC).
- 7) Optional Audio Demo: Connect an S/PDIF audio source (such as DVD player digital output) to the MAX9265 EV kit J21, or connect an I2S audio source to header H1 and remove jumper JU210. Connect one speaker to the MAX9266 EV kit between SPKR_ L+ and SPKR L-. Connect the other speaker to the MAX9266 EV kit between SPKR R+ and SPKR R-, or plug headphones into the J206 headphone jack.
- 8) Turn on the DC power supply.
- 9) Connect the USB cable from the PC to the MAX9265 EV kit board. A Windows message appears when connecting the EV kit board to the PC for the first time. Each version of Windows has a slightly different message. If you see a Windows message stating **ready to use**, then proceed to the next step. Otherwise, open the USB_Driver_Help_200.PDF document in the Windows **Start I Programs** menu to verify that the USB driver was installed successfully.
- 10) Verify that MAX9265 EV kit LED120 lights up, indicating that the microcontroller is powered and enabled.
- 11) Verify that MAX9266 EV kit LED120 lights up, indicating that the microcontroller is powered and enabled.
- 12) Verify that MAX9266 EV kit LED2 lights up, indicating that the link has been successfully established. If LED2 is off or LED1 is on, double-check that the PCLK_IN signal is clocking data.
- 13) Optional Audio Demo: If I2S or S/PDIF audio was provided to the MAX9265 EV kit, audio should now be heard from the speakers or headphones previously connected to the MAX9266 EV kit.
- 14) Start the MAX9265 EV kit software by opening its icon in the Start I Programs menu. The EV kit software configuration window appears, as shown in Figure 8.
- 15) Press the **Connect** button and the configuration window disappears.
- 16) The EV kit software main window appears, as shown in Figure 1.
- 17) Press the **Read All** button to read all registers on the MAX9265 and MAX9266.
- 18) I2C Slave Device Demo: Make sure that the MAX9266 EV kit jumpers JU151-JU154 are in the 1-2 position.
- 19) In the software's MAX7324 tab sheet (Figure 4), press Search for MAX7324. Verify that the MAX7324 Device Address drop-down list shows 0xDA (JU151=1-2 JU152=1-2).

- 20) Press the **LED151-LED158 ON** button. Verify that MAX9266 EV kit LED151-LED158 turn on.
- 21) Press the LEDs Alternating button. Verify that MAX9266 EV kit LED151, LED153, LED156, and LED158 turn off.
- 22) GPIO Demo: In the software's MAX9266 tab sheet (Figure 3), scroll down to Register 0x06. Uncheck **GPIO10UT** and press Write. Verify that MAX9266 EV kit LED4 turns off.
- 23) Uncheck GPIO0OUT and press Write. Verify that MAX9266 EV kit LED3 turns off.
- 24) Check GPIO10UT and press Write. Verify that MAX9266 EV kit LED4 turns on.
- 25) Check **GPIO0OUT** and press **Write**. Verify that MAX9266 EV kit LED3 turns on.
- 26) INT Demo: Set the MAX9266 EV kit jumper JU11 (INT) to 1-2. Verify that MAX9265 EV kit LED1 turns on, indicating that the MAX9266 INT input is asserted.
- 27) In the software's MAX9266 tab sheet, scroll to Register 0x06 and press Read. Verify that INT is checked, indicating that the MAX9266 INT input is asserted.
- 28) Set MAX9266 EV kit jumper JU11 (INT) to 2-3. Verify that MAX9265 EV kit LED1 turns off, indicating that the MAX9266 INT input is not asserted.
- 29) In the software's MAX9266 tab sheet, scroll to Register 0x06 and press Read. Verify that INT is not checked, indicating that the MAX9266 INT input is not asserted.
- 30) HDCP Authentication Demo: Raise the HDCP tab sheet (Figure 7) and make sure that the Link Check drop-down list is set to V00: No Link Check.
- 31) Make sure the encryption button says Enable Encryption instead of Disable Encryption.
- 32) In Register 0x95 Actrl, check or uncheck EN INT **COMP** to choose internal or external comparison mode. Refer to the MAX9265 IC data sheet for more information.
- 33) Press the Authenticate button. On success, the green LED (LED126) turns on; otherwise, the red LED (LED127) turns on.
- 34) Verify that the same R0 value is shown in Register 0x85 on both the MAX9265 and MAX9266.
- 35) HDCP Encryption Demo: Press the Enable Encryption button. The Ri keys are updated approximately every 2s, assuming that the VSYNC input rate is 60Hz. The GUI polls the Ri and Pj registers if their corresponding Poll this register checkbox is checked.

Evaluates: MAX9265/MAX9266

- 36) In the Link Check drop-down list, select V80: Every 128 VSYNCs.
- 37) The firmware performs the link integrity check after every 128 VSYNC pulses, turning off the green LED (LED126) if the link check fails.
- 38) In the Link Check drop-down list, select V10: Every 16 VSYNCs.
- 39) The firmware performs the advanced link integrity check after every 16 VSYNC pulses, turning off the green LED (LED126) if the link check fails.

Quick Start for Repeater Demonstration

Required Equipment

- 5V DC, 2000mA power supply
- Digital video source (or two function generators, to drive PCLK and VSYNC)
- Digital video display
- Two MAX9265 EV kit boards
- Two MAX9266 EV kit boards
- Two Rosenberger cables (included with the MAX9266 EV kit boards)
- Wires to interconnect the boards

Optional Equipment for Software Verification

- User-supplied Windows computer with available **USB** port
- USB A-B cable (included with the MAX9265 EV kit boards)

Procedure

- 1) Label the boards for reference. See the Example Repeater Network—Two µCs section in the MAX9263/ MAX9264 and MAX9265 IC ata sheets.
 - 1.1) Designate one of the MAX9265 EV kit boards as Board #1 TX_B1.
 - 1.2) Designate one of the MAX9266 EV kit boards as Board #2 RX R1.
 - 1.3) Designate the other MAX9265 EV kit board as Board #3 TX_R1.
 - 1.4) Designate the other MAX9266 EV kit board as Board #4 RX D1.
- 2) Prepare the bulkhead MAX9265 EV kit TX_B1.
 - 2.1) Update Board #1 TX_B1 firmware:
 - 2.1.1) Start | Programs | Maxim EVKIT Software | MAX9266 | Repeater Firmware | MAX9265EVKIT Bulkhead **UC_B** Firmware Update.
 - 2.1.2) The firmware update batch file instructs you to Plug USB cable into Maxim

Evaluation Kit to begin firmware update... and Press any key to continue... After plugging in the USB cable, wait at least 5s to allow Windows to catch up. Press the Enter key to begin the firmware update. After approximately 1min, verify that the batch file reports Exit code = 0 EXIT_CODE_SUCCESS.

- 2.1.3) Diagnostic: Windows reports USB over current surge. Check if the USB connector is the type that has a separate back shield that can short across the USB signal pins. Pry off this back shield cover to clear the short.
- 2.1.4) Diagnostic: **EXIT_CODE_JTAG ABSENT**. The USB cable seems not to be connected, or possibly the USB device driver software not installed. Check setup using a known good unit. Verify that the 6MHz crystal is working. Visually inspect failed board FT232 chip connections.
- 2.1.5) Exit the firmware loader program.
- 2.1.6) Disconnect the USB cable from the MAX9265 EV kit Board #1 TX B1.
- 2.1.7) Replug the USB cable into the MAX9265 EV kit Board #1 TX B1.
- 2.2) Configure Board #1 TX B1 and UC B (MAX9265 EV kit) as follows:
 - 2.2.1) JU1 (CDS) = 2-3 to allow UC_B firmware to access the MAX9265 registers.
 - 2.2.2) JU10 = 1-2 to power UC_B microcontroller from repeater-provided 5V power.
 - 2.2.3) JU125 = 1-2 so UC_B can sense the VSYNC input.
 - 2.2.4) JU3 = 1-4 and JU11 = 1-4 to select device address 0x80.
- 3) Prepare the repeater board set MAX9266 EV kit RX_R1 plus MAX9265 EV kit TX_R1.
 - 3.1) Update Board #2 RX_R1 firmware:
 - 3.1.1) Remove the shunt from MAX9266 EV kit JU10. This reduces the load current on the USB port, allowing firmware update without an external power supply.
 - 3.1.2) Start | Programs | Maxim EVKIT Software │ MAX9266 │ Repeater Firmware | MAX9266EVKIT Repeater_ UC_R Firmware Update.
 - 3.1.3) The firmware update batch file instructs you to Plug USB cable into Maxim Evaluation Kit to begin firmware

Evaluates: MAX9265/MAX9266

update... and Press any key to continue... After plugging in the USB cable, wait at least 5s to allow Windows to catch up. Press the Enter key to begin the firmware update. After approximately 1min, verify that the batch file reports Exit code = 0 EXIT_CODE_SUCCESS.

- 3.1.4) Diagnostic: Windows reports **USB over** current surge. Check if the USB connector is the type that has a separate back shield that can short across the USB signal pins. Pry off this back shield cover to clear the short.
- 3.1.5) Diagnostic: EXIT CODE JTAG ABSENT. The USB cable seems not to be connected, or possibly the USB device driver software not installed. Check setup using a known good unit. Verify that the 6MHz crystal is working. Visually inspect failed board FT232 chip connections.
- 3.1.6) Exit the firmware loader program.
- 3.1.7) Disconnect the USB cable from the MAX9266 EV kit Board #2 RX_R1.
- 3.1.8) Reinstall the shunt on the MAX9266 EV kit jumper JU10.
- 3.1.9) Replug the USB cable into the MAX9266 EV kit Board #2 RX_R1.
- 3.2) Modify Board #3 TX_R1 (MAX9265 EV kit) as follows:
 - 3.2.1) Cut JU141 and JU142 open.
 - 3.2.2) Install pins at JU141, JU142, GND, VIN, and IOVDD.
- 3.3) Modify Board #2 RX_R1 and UC_R (MAX9266 EV kit) as follows:
 - 3.3.1) Install pins at JU143, JU144, GND, VIN, and IOVDD.
 - 3.3.2) Make sure RX_R1 JU143 and JU144 are
 - 3.3.3) Connect a wire between RX_R1 JU143 bottom pin (U14 level-translated U12 RXD0) and TX_R1 JU141 top pin (MAX9265 TX).
 - 3.3.4) Connect a wire between RX_R1 JU144 bottom pin (U14 level-translated U12 TXD0) and TX_R1 JU142 top pin (MAX9265 RX).
- 3.4) Configure Board #2 RX_R1 and UC_R (MAX9266 EV kit) as follows:

- 3.4.1) JU23 = open to disconnect IOVDD from the on-board 3.3V regulator U2.
- 3.4.2) JU1 (CDS) = 1-2 to allow UC_R firmware to access the MAX9266 registers.
- 3.4.3) JU7 = 1-4 and JU8 = 1-4 to select device address 0x90.
- 3.5) Connect Board #2 to Board #3 as follows:
 - 3.5.1) Connect Board #2 GND to Board #3 GND.
 - 3.5.2) Connect Board #2 VIN to Board #3 VIN.
 - 3.5.3) Connect Board #2 IOVDD to Board #3 IOVDD (powered by TX R1 board's 1.8V regulator U2)
 - 3.5.4) Connect RX_R1 header H40, pin 62 (PCLK) to TX R1 header H1, pin 62 (PCLK).
 - 3.5.5) Connect RX_R1 header H40, pin 40 (VSYNC) to TX_R1 header H1, pin 40 (VSYNC).
 - 3.5.6) Connect RX R1 header H40, pins 2-58 (D[0:28]) to TX_R1 header H1, pins 2-58 (D[0:28]).
- 3.6) Configure Board #3 TX_R1 (MAX9265 EV kit) as follows:
 - 3.6.1) JU10 = 1-2 to power FPGA U500.
 - 3.6.2) JU1 (CDS) = 2-3.
 - 3.6.3) JU3 = 1-4 and JU11 = 1-4 to select device address 0x80.
- 4) Connect the 5V power supply to Board #2 RX_R1 as follows (the USB does not provide sufficient current to power the EV kit demonstration):
 - 4.1) Set the 5V power-supply output voltage to 5V.
 - 4.2) Disable the power-supply output.
 - 4.3) Connect the power supply (+) to VIN.
 - 4.4) Connect the power supply (-) to GND.
- 5) Optional: Verify that the repeater passes power-on self-test without TX_B1 and RX_D1.
 - 5.1) Enable the 5V power supply.
 - 5.2) Board #2 UC R firmware verifies that the required devices are attached and that the required input signals are present. With no TX_B1 connection, the UC_R firmware should light LED127 and blink six red flashes on LED120 (to repeat the power-on test, press and release the reset button, SW122). If only four or five flashes on LED120, then RX_R1 is not connected correctly to TX_R1.

- 5.3) Disable the 5V power supply after verifying that UC_R reports the expected diagnostic code (six flashes).
- 6) Connect the authorized display MAX9266 EV kit RX_D1.
 - 6.1) Configure Board #4 RX_D1 (MAX9266 EV kit) as
 - 6.1.1) JU1 (CDS) = 2-3.
 - 6.1.2) JU10 = open (Board #4 RX_D1 microcontroller is not powered).
 - 6.1.3) JU7 = 1-4 and JU8 = 1-4 to select device address 0x90.
 - 7.2) Connect the digital video display to Board #4 to the H40 header.
- 7) Connect the digital video source (or function generators) to Board #1 TX_B1 as follows:
 - 7.1) Connect video data D[0:28] to header H1, evennumbered pins 2-58.
 - 7.2) Connect ground return to header H1, oddnumbered pins 1–71.
 - 7.3) Connect vertical sync VSYNC to H1, pin 40.
 - 7.4) Connect PCLK_IN to header H1, pin 62.
- 8) Connect a Rosenberger cable between Board #1 TX_B1 and Board #2 RX_R1 connector J1.
- 9) Connect a Rosenberger cable between Board #3 TX_R1 and Board #4 RX_D1 connector J1.
- 10) Set JU2 (BWS) and JU4 (DRS) for all four boards to the correct setting for the video signal PCLK frequency range. For example, if PCLK is between 8.33MHz and 16.7MHz, set JU2 (BWS) = 2-3 and JU4 (DRS) = 1-2. Refer to the MAX9266 IC data sheet for more details.
- 11) Enable the 5V power supply. Verify that Board #2 LED3 and LED4 are on. Verify that Board #3 LED120 is on. Verify that Board #4 LED3 and LED4 are on. No LEDs on Board #1.
- 12) Enable PCLK. Verify that Board #2 LED3 and LED4 are on. Board #2 LED2 may or may not be visible due to the reduced IOVDD voltage (the LED2 circuit is designed for 3.3V not 1.8V operation). Verify that Board #4 LED2, LED3, and LED4 are on.
- 13) Enable the video source (or function generator driving VSYNC).
- 14) The UC_R firmware performs a power-on self-test to verify that RX_R1 and TX_R1 are both accessible. The TX_B1-RX_R1 link is authenticated and then the TX_R1-RX_D1 link is authenticated. Encryption is enabled on both links. Finally, the KSV values are compiled and the SHA hash vector V is compared. The firmware reports success by lighting green

- LED126. If any part of the process fails, the firmware reports failure by lighting red LED127 while flashing diagnostic LED120. Table 3 lists the diagnostic LED codes for the repeater firmware (to repeat the poweron test, press and release the reset button, SW122).
- 15) Optional: Use the EV kit software to verify link authentication and encryption.
 - 15.1) Install the EV kit software and USB driver on your computer by running the INSTALL. EXE program inside the temporary folder. The program files are copied to your PC and icons are created in the Windows Start I Programs menu. During software installation, some versions of Windows may show a warning message indicating that this software is from an unknown publisher. This is not an error condition and it is safe to proceed with installation. Administrator privileges are required to install the USB device driver on Windows.
 - 15.2) Start the MAX9265 EV kit software by opening its icon in the Start I Programs menu. The EV kit software configuration window appears, as shown in Figure 8.
 - 15.3) Press the Connect button and the configuration window disappears. The software resets the bulkhead firmware, which in turn resets the repeater firmware. Authentication success is indicated by green-light LED126, or failure is indicated by red-light LED127.
 - 15.4) The EV kit software main window appears, as shown in Figure 1. When using the repeater firmware, the EV kit software tries to read the registers while the repeater firmware is busy authenticating the display, so initially the Figure 1 window may show failed reads. This is not an error.
 - 15.5) Press the Read All button to read all registers on the MAX9265 (Board #1 TX_B1) and MAX9266 (Board #2 RX R1).
 - 15.6) On the HDCP tab sheet (Figure 7), verify that HDCP authentication between Board #1 and Board #2 is successful. The corresponding Bksv and Aksv values should match, and the Ri keys should be updated with the same value.
 - 15.7) Verify that HDCP authentication between Board #3 and Board #4 is successful, by examining the KSV list (the software cannot directly access Board #3 or Board #4). The EV kit software does not have a KSV revocation list to search.

Evaluates: MAX9265/MAX9266

Procedure to Restore to Default Settings

After repeater evaluation is finished, follow the steps below to restore the EV kit boards to their original factory settings:

- 1) Restore the bulkhead MAX9265 EV kit TX_B1 with the standard EV kit firmware.
 - 1.1) Start menu | Programs | Maxim EVKIT Software | MAX9266 | Firmware Update | MAX9265EVKIT Firmware Update.
 - 1.2) The firmware update batch file instructs you to Plug USB cable into Maxim Evaluation Kit to begin firmware update... and Press any key to continue... After plugging in the USB cable, wait at least 5s to allow Windows to catch up. Press the Enter key to begin the firmware update. After approximately 1min, verify that the batch file reports Exit code = 0 EXIT CODE SUCCESS.
 - 1.3) Diagnostic: Windows reports **USB over current** surge. Check if the USB connector is the type that has a separate back shield that can short across the USB signal pins. Pry off this back shield cover to clear the short.
 - 1.4) Diagnostic: EXIT CODE JTAG ABSENT. The USB cable seems not to be connected, or possibly the USB device driver software not installed. Check setup using a known good unit. Verify that the 6MHz crystal is working. Visually inspect failed board FT232 chip connections.
 - 1.5) Exit the firmware loader program.
 - 1.6) Disconnect the USB cable from the MAX9265 EV kit Board #1 TX_B1 USB1.
 - 1.7) Replug the USB cable into the MAX9265 EV kit Board #1 TX_B1 USB1.
- 2) Configure Board #1 TX_B1 and UC_B (MAX9265 EV kit) as follows:
 - 2.1) JU1 (CDS) = 2-3 to allow UC_B firmware to access the MAX9265 registers.
 - 2.2) JU10 = 1-2 to power the UC_B microcontroller from repeater-provided 5V power.
 - 2.3) JU125 = 1-2 so UC_B can sense the VSYNC input.
- 3) Restore the repeater board set MAX9266 EV kit RX_R1 plus MAX9265 EV kit TX_R1 with the standard EV kit firmware.
 - 3.1) Remove the shunt from the MAX9266 EV kit jumper JU10. This reduces the load current on the USB port, allowing firmware update without an external power supply.

- 3.2) Start menu | Programs | Maxim EVKIT Software | MAX9266 | Firmware Update | MAX9266EVKIT Firmware Update.
- 3.3) The firmware update batch file instructs you to Plug USB cable into Maxim Evaluation Kit to begin firmware update... and Press any key to continue... After plugging in the USB cable, wait at least 5s to allow Windows to catch up. Press the Enter key to begin the firmware update. After approximately 1min, verify that the batch file reports Exit code = 0 EXIT_CODE_SUCCESS.
- 3.4) Diagnostic: Windows reports USB over current surge. Check if the USB connector is the type that has a separate back shield that can short across the USB signal pins. Pry off this back shield cover to clear the short.
- 3.5) Diagnostic: **EXIT_CODE_JTAG_ABSENT**. The USB cable seems not to be connected, or possibly the USB device driver software not installed. Check setup using a known good unit. Verify that the 6MHz crystal is working. Visually inspect failed board FT232 chip connections.
- 3.6) Exit the firmware loader program.
- 3.7) Disconnect the USB cable from the MAX9266 EV kit Board #2 RX_R1 USB1.
- 3.8) Reinstall the shunt on MAX9266 EV kit jumper JU10.
- 3.9) Replug the USB cable into the MAX9266 EV kit Board #2 RX R1 USB1.
- 3.10) Configure the Board #2 RX_R1 and UC_R (MAX9266 EV kit) as follows:
 - 3.10.1) JU23 = 1-2 to power IOVDD from the on-board 3.3V regulator U2.
 - 3.10.2) JU1 (CDS) = 2-3 to allow the deserializer board to drive the on-board MAX7324 slave device.

Detailed Description of Software

The main window of the evaluation software (Figure 1) shows a block diagram representing the MAX9265/ MAX9266 system. The left column shows the MAX9265 input data sources and the right column shows the MAX9266 output data sinks.

The **Change Configuration** button brings up the software Configuration window (Figure 8), allowing the software GUI to select which side of the link the USB cable should be plugged into. Controlling from the MAX9266 side requires changing some jumper settings, as described in this window. If the MAX9265 and MAX9266 device addresses have been previously changed from their

Evaluates: MAX9265/MAX9266

factory power-on-reset (POR) values, the new addresses must be specified in the software Configuration window to allow register access.

The Baud Rate drop-down list sets the communications baud rate. The USB link uses the same baud rate as the MAX9265/MAX9266. Note that the baud rate should only be changed one step at a time.

The Read All button reads all MAX9265 and MAX9266 device registers. The Reset to Default Values button restores recommended factory settings and the Write All button writes all the MAX9265 and MAX9266 device registers with the values shown in the GUI.

The MAX9265 tab sheet (Figure 2) provides direct access to all registers of the MAX9265, and the MAX9266 tab sheet (Figure 3) provides direct access to all registers of the MAX9266. Each register has its own Read and Write button. The small circle next to the Read button turns yellow to indicate an attempting read or write, red to indicate a failed read or write, or green to indicate a successful read or write operation.

The MAX7324 tab sheet (Figure 4) controls the I2C I/O expander on the remote side of the link. When the USB is plugged into the MAX9265 EV kit, the MAX7324 tab sheet controls the MAX7324 (U15) on the MAX9266 EV kit. Note that the MAX7324 actually has two device addresses, but for simplicity, the software GUI only displays the device address associated with MAX7324 outputs. For details refer to MAX7324 IC data sheet.

The **PRBS Test** tab sheet (Figure 5) performs a pseudorandom bit sequence (PRBS) error-rate test. Select the test duration (maximum 32767s = 9.1hrs) and press Start. The software GUI configures the MAX9266 to begin the PRBS test, counts down the specified delay time, and then reports the final value of the MAX9266 PRBSERR register.

The Interface History and Low Level Access tab sheet (Figure 6) shows the recent low-level communications activity between the software GUI and the MAX9265/ MAX9266 devices. The Register Access group box provides arbitrary device read/write control, supporting additional user-supplied devices besides the onboard MAX9265, MAX9266, and MAX7324. The Device Address. Register, and Data drop-down lists specify the device address and the register within the device, as well as one optional byte of data to be written. Pressing Write Register writes 1 byte of data to the specified device register. Pressing Read Register reads the specified device register and reports the result into the Interface History window. Devices that are not register-based (such as the MAX7324) are supported by **Send Data (no** register) and Receive Data (no register). User-supplied devices requiring other interface protocols must use Raw TX byte codes to communicate. Note that in bypass mode, raw data is passed to the user-supplied slave device directly without modification.

The **HDCP** tab sheet (Figure 7) shows the HDCP registers of both the MAX9265 serializer and the MAX9266 deserializer side-by-side. This tab sheet is removed if the device capabilities register does not indicate that the device supports HDCP, so if the software is used with the MAX9259, MAX9260, MAX9249, or MAX9268, this tab sheet is not visible. Many of the HDCP registers are displayed as multiple hexadecimal bytes, with a 0x prefix before each byte and spaces between bytes. The Authenticate button commands the firmware to perform HDCP authentication, using either internal or external comparison depending on the EN INT COMP bit in the Actrl register. The **Enable Encryption** button waits for a falling edge on VSYNC and then writes to the MAX9265 Actrl and MAX9266 Bctrl registers with the encryption enable bit set to 1. When the button caption changes to Disable Encryption, operation is the same except that the encryption enable bit is cleared to 0. After encryption is enabled, registers 0x85 and 0x87 are repeatedly polled as long as each register's Poll this register checkbox remains checked. The **Link Check** drop-down list configures the optional HDCP link integrity check and can be used to check the R values every 128 VSYNC falling edges or check the P values every 16 VSYNC falling edges.

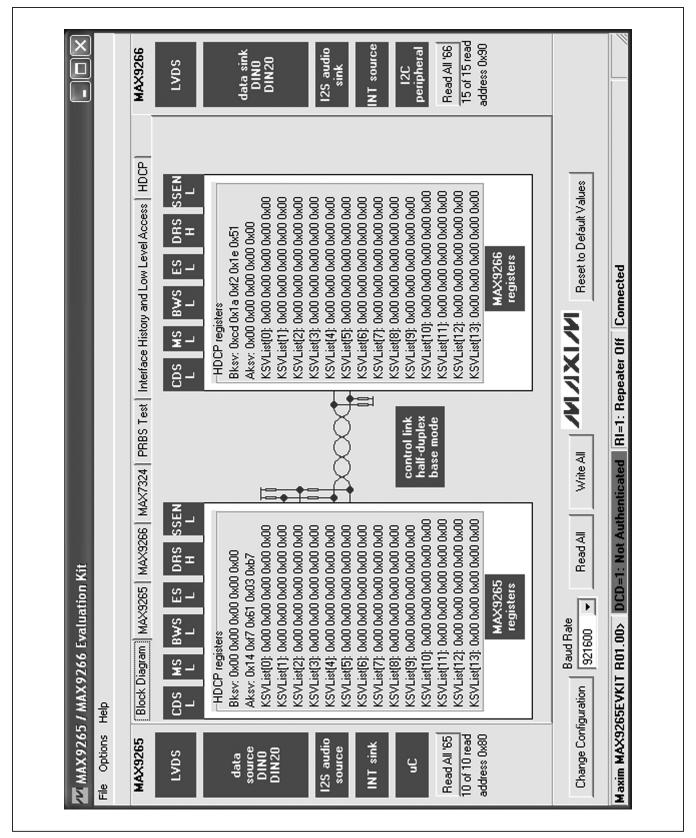


Figure 1. MAX9265/MAX9266 EV Kit Software Main Window (Block Diagram Tab)

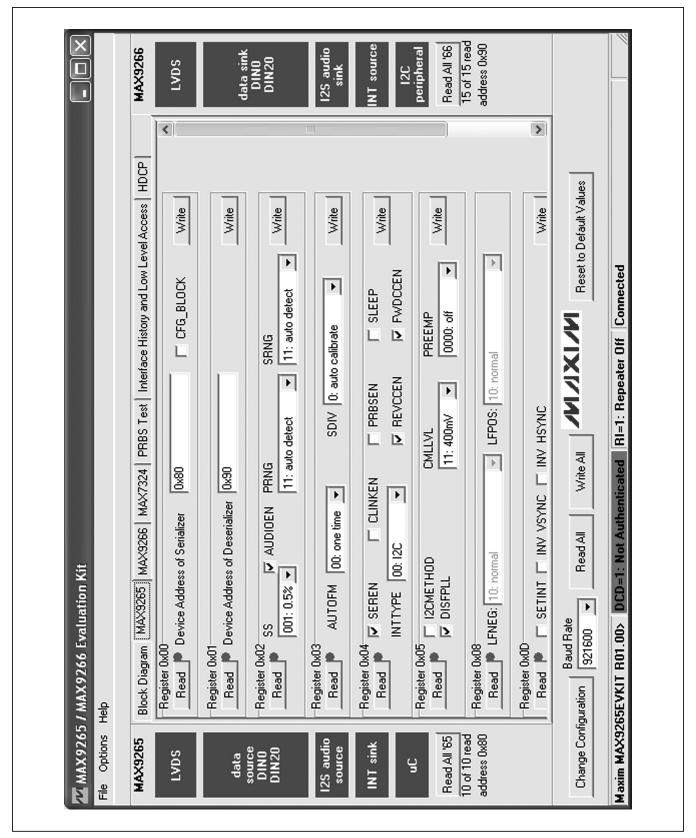


Figure 2. MAX9265/MAX9266 EV Kit Software Main Window (MAX9265 Tab)

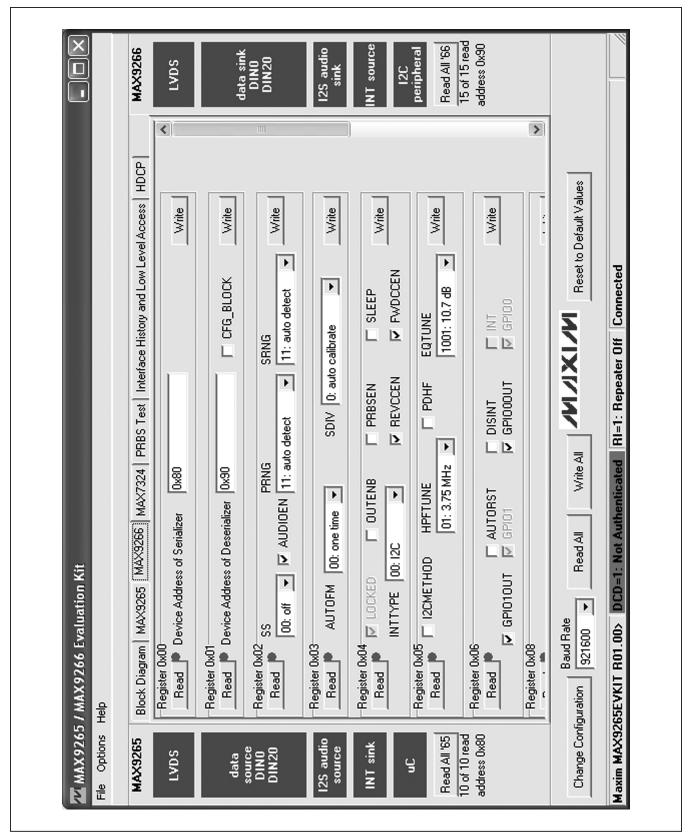


Figure 3. MAX9265/MAX9266 EV Kit Software Main Window (MAX9266 Tab)

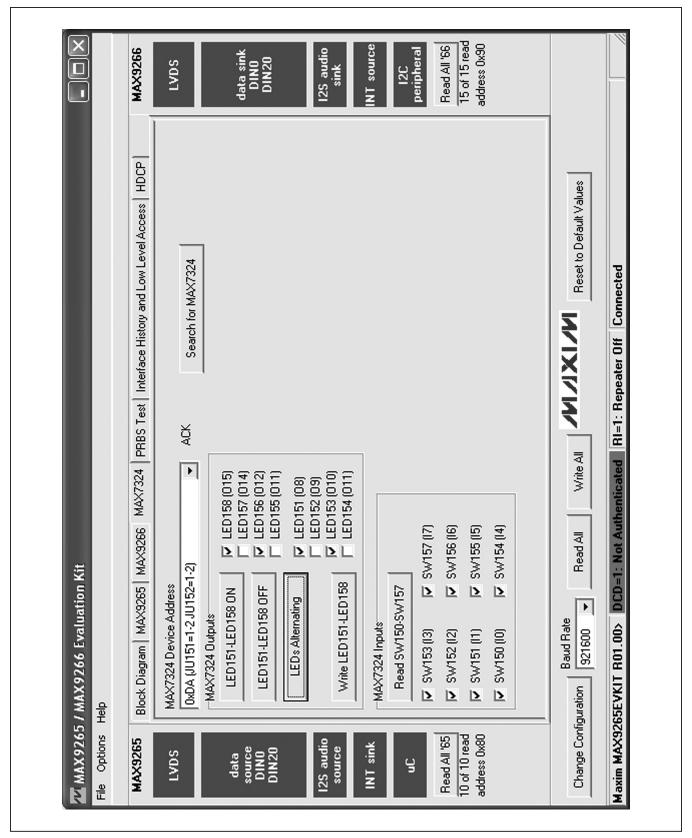


Figure 4. MAX9265/MAX9266 EV Kit Software Main Window (MAX7324 Tab)

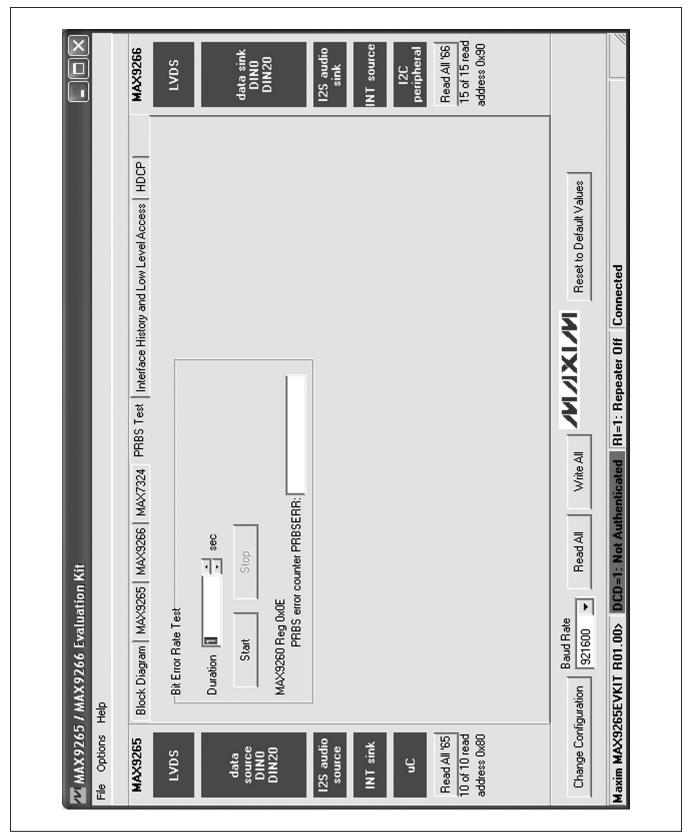


Figure 5. MAX9265/MAX9266 EV Kit Software Main Window (PRBS Test Tab)

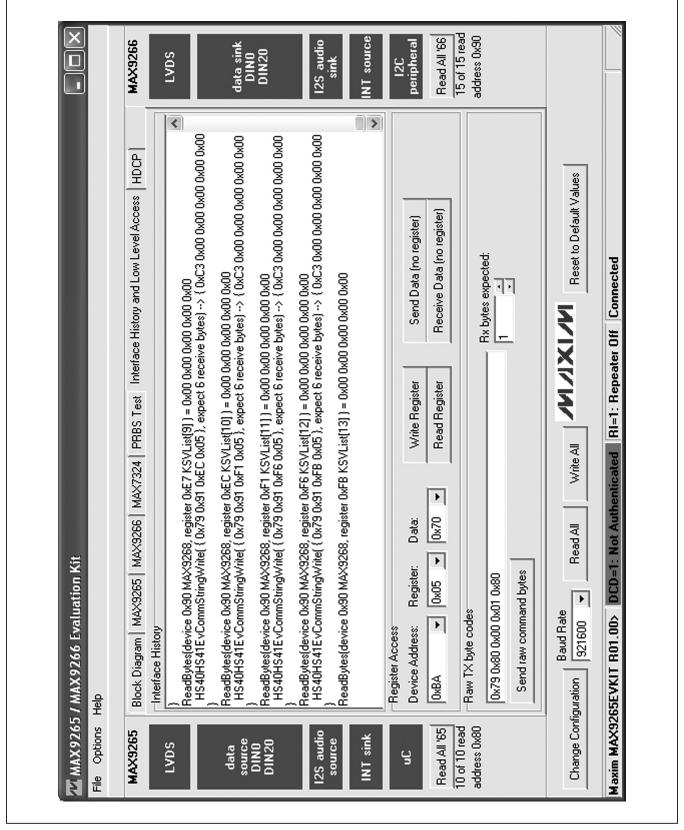


Figure 6. MAX9265/MAX9266 EV Kit Software Main Window (Interface History and Low Level Access Tab)

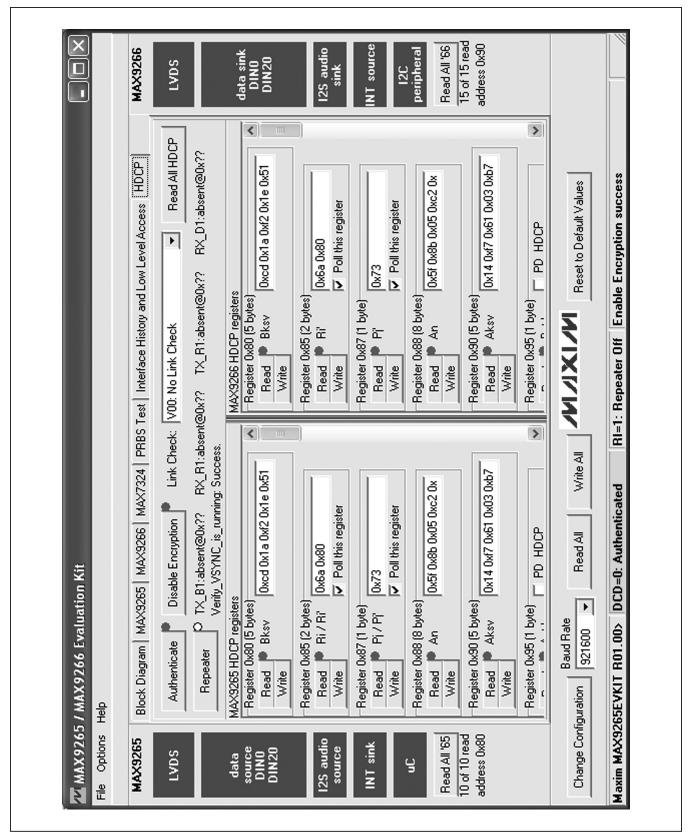


Figure 7. MAX9265/MAX9266 EV Kit Software Main Window (HDCP Tab)

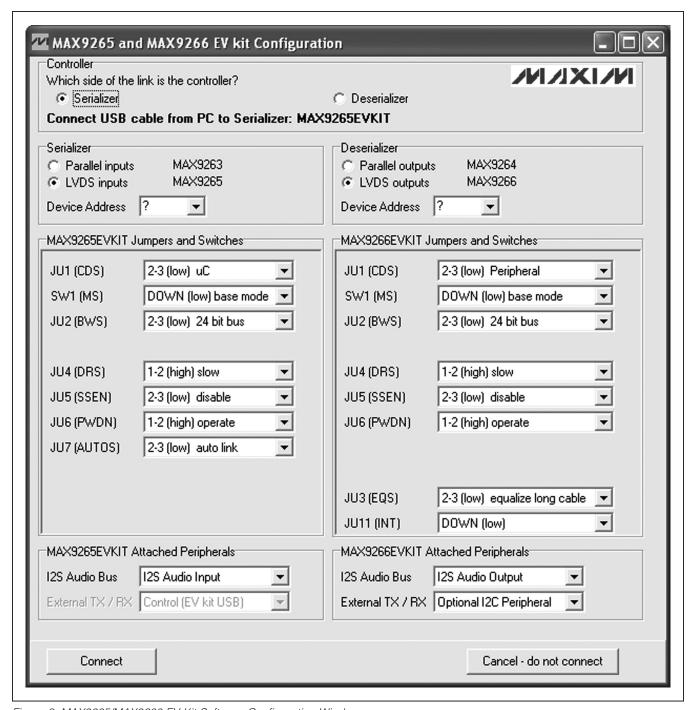


Figure 8. MAX9265/MAX9266 EV Kit Software Configuration Window

Evaluates: MAX9265/MAX9266

Detailed Description of Hardware

The MAX9266 EV kit provides a proven layout for the MAX9266 HDCP GMSL deserializer with LVDS system interface. On-board level translators, I2S stereo audio DAC, Class D power amplifier (PA), and easy-to-use USB-PC connection are included on the EV kit.

The MAX9266 EV kit board layout is divided into five principal sections.

From header H1 to connector J1 are the support components specific to the MAX9266. On-board LDO regulator U2 powers the AVDD, DVDD, and IOVDD supplies from VIN. Jumper JU9 optionally connects VIN to the link cable, powering the remote EV kit board.

Between header H1 and H40, the LVDS video outputs from the MAX9266 are reformatted to parallel outputs at header H40. The LVDS signals are serialized by the MAX9249 (U30) and deserialized by the MAX9260 (U40), driving parallel outputs at header H40. Jumper JU300 powers the 1.8V LDO regulator (U31) from the +3.3V supply, and jumper JU301 connects the IOVDD supplies. Jumper JU306 controls the power-down for U30 and U40.

Below header H40, the board layout has three sections: microcontroller (U10-U14), I2C slave device (U15), and audio (U20-U29). The microcontroller and I2C slave device sections are identical on the MAX9265 and MAX9266 EV kits, and are based on the MAX9263 and MAX9264 EV kits.

The audio section of the MAX9265 EV kit contains S/PDIF-to-I2S audio converter circuits (U20-U25), which can be disabled by JU210 for applications already having I2S audio.

The audio section of the MAX9266 EV kit contains an I2Sto-audio DAC circuit (U20) and a Class D stereo power amplifier (U25). The audio DAC circuit is similar to the MAX9850 EV kit, and the power amplifier (PA) circuit is similar to the MAX9701 EV kit.

The MAX9266 EV kit includes a MAX9471ETP4X+ phase-locked loop (U29) to regenerate the I2C audio master clock.

User-Supplied Control Interface

To use the MAX9266 EV kit with a user-supplied interface, first cut the PCB traces at jumpers JU141 and JU142. Next, apply your own TX/SCL signal at the U1 side of JU141 and RX/SDA at the U1 side of JU142. Refer to the MAX9266 IC data sheet for details about UART protocol for base mode, write data format, read data format, selecting base mode or bypass mode, and selecting a UART or I2C slave device.

User-Supplied Power Supply

The MAX9265 and MAX9266 EV kits are powered completely from the USB port by default. The 5V USB bus power is supplied to the remote EV kit over the link cable by default. Jumper JU10 powers the link cable VBUS from the 5V USB supply and jumper JU9 connects the link cable VBUS to the VIN power supply.

To provide external power to each EV kit's VIN, and still power both microcontrollers from the USB, remove the shunt from JU9 but leave the shunt at JU10 installed. The link cable carries the USB 5V bus power to the remote EV kit board, but external user-supplied VIN supplies are required to power the MAX9265 and the MAX9266.

To provide different power supplies to DVDD, AVDD, and IOVDD, remove the shunts from JU21, JU22, and JU23 and apply external user-supplied power at the DVDD, AVDD, and IOVDD oval pads.

The I2S audio link demonstration requires both the MAX9265 EV kit and MAX9266 EV kit microcontrollers (U12) to be powered; otherwise, the on-board S/PDIF-to-I2S converter or the I2S audio DAC is not initialized.

Detailed Description of Firmware

The DS89C450 microcontroller (U12) runs custom firmware that ensures that no breaks occur within register read/write commands. The firmware records 9-bit evenparity data received from the USB interface while RTS is set and plays back the 9-bit data with 1.5 stop bits timing when RTS is cleared. Data received from the MAX9265 is relayed to the USB immediately.

The audio chips are initialized by an I2C command sequence sent by the firmware when the microcontroller is reset. This initialization sequence covers both the S/PDIF-to-I2S converter and the MAX9850 I2S stereo audio DAC. Pressing SW122 resets the microcontroller, resending the audio I²C initialization commands.

The firmware also supports a small set of commands, available when RTS is clear. Since all register read/ write requests are sent with RTS set, there is no conflict between register data and firmware commands. These firmware commands are issued automatically by the MAX9265 EV kit software GUI. The following information is provided for reference only:

- Firmware command "?" prints the firmware version banner message and brief command list.
- · Firmware command "B" changes the baud rate by changing the internal TH1 baud-rate divisor. Refer to firmware help command "?" for details. Pressing SW122 resets the USB baud rate to 921600 baud. The software GUI automatically sends the baud-rate change command.

Evaluates: MAX9265/MAX9266

- Firmware command "T" supports waking up the MAX9265 from the MAX9266 side of the link. Command "T" performs a dummy read, followed by a delay on the order of 1ms to 8ms, and finally writes a register value. For example, send "T810504800483" to read from device address 0x81 register 0x05, delay 4ms, then write to device address 0x80 register 0x04 data 0x83. This is the MAX9265 wake-up sequence for the default device addresses. The software GUI automatically sends this command when the Wake Up MAX9265 button is pressed.
- Firmware commands "R" and "W" read and write device registers. The 8-bit device address, register address, length, and data are sent in hexadecimal. On success, the return code is "+" followed by the read data. On failure, the return code is "-".
- Some commands are used only during firmware development. Firmware command "S" simulates a dummy device using on-chip memory, instead of device registers, used during firmware development. Firmware command "~" prints a diagnostic trace dump used during firmware development. Firmware commands "1" and "2" perform HDCP link authentication-check operations, used during firmware development. In normal operation, these operations are triggered by the VSYNC interrupt handler.

MAX9265/MAX9266 Repeater **Demo (LED Error Codes)**

The bulkhead firmware (UC_B) and repeater firmware (UC_R) both perform a self-test at power-up and after reset. The firmware first verifies that the required devices are attached and that the required input signals are present. If any of these required resources are not found, the firmware turns on LED127 (red, error/unauthenticated) and blinks an error code on LED120 (red, diagnostic code). If all required resources are found, and the links are successfully authenticated, then the firmware turns on LED126 (green, authenticated) steady on and blinks LED120 three times.

The repeater demo firmware only supports the minimal repeater configuration (DEPTH = 1, DEVICE COUNT = 1). This is a limitation of the firmware and not a limitation of the MAX9265/MAX9266. DEPTH and DEVICE COUNT values may be different for different repeater configurations.

The RX_R1 LED2 led appears very dim, because the MAX9266 EV kit is designed to operate at IOVDD = 3.3V. However, in the repeater demo configuration, the MAX9266 IOVDD is powered from the MAX9265 EV kit board IOVDD, which is only 1.8V. Due to the lower interface supply voltage, green LED2 is very dim.

Table 1. MAX9266 EV Kit Jumper Descriptions

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JUCNTL0	JUCNTLO CNTLO	1-2	CNTL0 = GND.
JOCIVILO	CIVILO	Open*	CNTL0 = Unconnected.
JUCNTL1	CNTL1	1-2	CNTL1 = GND.
JOCIVILI	CIVILI	Open*	CNTL1 = Unconnected.
JUCNTL2	CNTL2	1-2	CNTL2 = GND.
JUCINILZ	CIVILZ	Open*	CNTL2 = Unconnected.
		1-2	CDS = High. Optional peripheral attached to the MAX9265.
JU1	JU1 CDS	2-3*	CDS = Low. ECU attached to MAX9265. Connect the USB to MAX9265EVKIT.
11.10	JU2 BWS	1-2	BWS = High.
302		2-3*	BWS = Low.
11.13	JU3 EQS	1-2	EQS = High.
303		2-3*	EQS = Low.
11.14	JU4 DRS	1-2*	DRS = High.
304		2-3	DRS = Low.
JU5	JU5 SSEN	1-2	SSEN = High.
JUD JOEN	2-3*	SSEN = Low.	
JU6	PWDN	1-2*	PWDN = High.
JOO PWDN	FVVDIN	2-3	PWDN = Low.

Table 1. MAX9266 EV Kit Jumper Descriptions (continued)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
		1-2	ADD1 = IOVDD.
JU7	JU7 ADD1	1-3	ADD1 = Unconnected.
		1-4*	ADD1 = GND.
		1-2	ADD0 = IOVDD.
JU8	ADD0	1-3	ADD0 = Unconnected.
		1-4*	ADD0 = GND.
		1-2*	J1 pin 1 connects to VIN.
JU9	Bus power	2-3	J1 pin 1 connects to GND.
		Open	J1 pin 1 unconnected.
11.110	D	1-2*	J1 pin 1 connects to USB+5V.
JU10	Bus power	Open	USB power is not connected to link cable power.
11.14.4	INIT	1-2	INT = High.
JU11	INT	2-3*	INT = Low.
11.104	AV/DD	1-2*	AVDD power from 3.3V LDO U2, powered by VIN.
JU21	AVDD	Open	AVDD must be provided from an external source.
11.100	DVDD	1-2*	DVDD power from 3.3V LDO U2, powered by VIN.
JU22	DVDD	Open	DVDD must be provided from an external source.
11.100	IOVIDID	1-2*	IOVDD power from 3.3V LDO U2, powered by VIN.
JU23	IOVDD	Open	IOVDD must be provided from an external source.
JU101	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU102	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU103	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU104	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU105	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU106	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU107	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU108	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU121	Reserved	Not installed*	Reserved for factory diagnostic tests.
JU122	Reserved	Pin 1 only*	Reserved for factory diagnostic tests.
JU141	TX/SCL	Not installed*	Connects U1 to U12 through level translator U14.
JU142	RX/SDA	Not installed*	Connects U1 to U12 through level translator U14.
JU143	U14 RXD0	Not installed*	When configured for repeater mode, connects U1 to off-board MAX9263/MAX9265 through level translator U14.
JU144	U14 TXD0	Not installed*	When configured for repeater mode, connects U1 to off-board MAX9263/MAX9265 through level translator U14.
	JU151 U15 AD2	1-2*	Selects U15 I ² C device address.
JU151		2-3	Selects U15 I ² C device address.
		Open	Reserved for factory diagnostic tests.
		1-2*	Selects U15 I ² C device address.
JU152	U15 AD0	2-3	Selects U15 I ² C device address.
		Open	Reserved for factory diagnostic tests.

Table 1. MAX9266 EV Kit Jumper Descriptions (continued)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
JU153	U15 SDA	1-2*	Connects U15 MAX7324 to I ² C bus. MS must be low (SW1) and CDS must be high (JU1 = 1-2 on both boards).
00100	Open	Disconnects U15 MAX7324 from I ² C bus. MS can be high (SW1	
JU154 U15 SCL	1-2*	Connects U15 MAX7324 to I ² C bus. MS must be low (SW1) and CDS must be high (JU1 = 1-2 on both boards).	
00104	013 302	Open	Disconnects U15 MAX7324 from I ² C bus. MS can be high (SW1
		1-2*	U12 sends I ² C initialization commands to audio chip U20.
JU191	AUDIO_SCL	Open	Disconnects audio I ² C bus pullup resistor.
		1-2*	U12 sends I ² C initialization commands to audio chip U20.
JU192	AUDIO_SDA	Open	Disconnects audio I ² C bus.
		1-2*	U12 sends I ² C initialization commands to audio chip U20.
JU193	AUDIO_SCL	Open	Disconnects audio I ² C bus pullup resistor.
		1-2*	U12 sends I ² C initialization commands to audio chip U20.
JU194	AUDIO_SDA	Open	Disconnects audio I ² C bus.
		1-2*	U20 ADD = GND. Selects U20 device address 0010 000x (0x20 (on audio I ² C bus).
JU201	U20 ADD	3-4	U20 ADD = IOVDD. Selects U20 device address 0010 001x (0x22) (on audio I ² C bus).
0201	5-6	U20 ADD = AUDIO_SDA. Selects U20 device address 0010 011 (0x26) (on audio I ² C bus).	
		Open	Reserved.
			U20 MAX9850 headphone sense controlled by the insertion of
JU202	HPS	1-2	headphones.
		Open*	U20 MAX9850 headphone sense switch forced open.
JU203	I ² S SD	1-2*	U1 I2S audio drives U20 MAX9850 audio DAC.
30203	1-2 2D	Open	Disconnects I ² S signals.
JU204	I ² S SCK	1-2*	U1 I2S audio drives U20 MAX9850 audio DAC.
JUZU4	1-3 30K	Open	Disconnects I ² S signals.
JU205	I ² S WS	1-2*	U1 I2S audio drives U20 MAX9850 audio DAC.
00203	1 3 4/3	Open	Disconnects I ² S signals.
JU206	MCLK	1-2	U20 MCLK = PCLK_OUT_MCLK from U29.
	WIGER	2-3*	U20 MCLK = CNTL2/MCLK from U1.
		1-2*	U25 operates in spread-spectrum mode with fosc = 1200kHz ±60kHz.
JU251 U25 SYNC		1-3	U25 operates in fixed-frequency mode with fosc = 1400kHz.
	U25 SYNC	1-4	U25 operates in fixed-frequency mode with fosc = external TTL-compatible clock frequency.
	1-5	U25 operates in fixed-frequency mode with fosc = 1100kHz.	
	Open	Reserved.	
JU252 U25 SHDN	1-2*	U25 SHDN = High, enable speaker driver.	
	2-3	U25 SHDN = low, disable speaker driver.	
	Open	Reserved.	
JU253 U25 GAIN2		1-2*	JU253 and JU254 set the gain of U25.
	U25 GAIN2	2-3	JU253 and JU254 set the gain of U25.
		Open	Reserved.

Table 1. MAX9266 EV Kit Jumper Descriptions (continued)

JUMPER	SIGNAL	SHUNT POSITION	DESCRIPTION
		1-2*	JU253 and JU254 set the gain of U25.
JU254 U25 GAIN1	2-3	JU253 and JU254 set the gain of U25.	
		open	Reserved.
JU255	U25 INL-	Not installed*	U25 input INL is ground referenced.
30255	025 INL-	open	Reserved
JU256	U25 INR-	Not installed*	U25 input INR is ground referenced.
30230	023 1111	Open	Reserved.
JU290	U29 FS0/SCL	1-2*	U29 frequency select FS0 = 1.
30290	029 F30/3CL	2-3	U29 frequency select FS0 = 0.
JU291	U29 FS1/SDA	1-2*	U29 frequency select FS1 = 1.
30291	029 F3 1/3DA	2-3	U29 frequency select FS1 = 0.
JU292	U29 FS2	1-2*	U29 frequency select FS2 = 1.
30292	029 F32	2-3	U29 frequency select FS2 = 0.
JU293	U29 PD	1-2*	U29 operates.
30293	029 PD	2-3	U29 shuts down.
JU294	U29 TUNE	Not installed*	U29 TUNE connects to ground.
30294	029 TOINE	Open	U29 TUNE floating or optional connection.
JU300	U30, U40 POWER	1-2*	U30 +3.3V from U2 powers LDO regulator U31.
30300		Open	U31 can be provided from an external source.
JU301	U30, U40 IOVDD	1-2*	U30 IOVDD from IOVDD.
30301	POWER	Open	U30/U40 IOVDD supply can be provided from an external source.
11.1000	1100 1140 70070	1-2*	U30/U40 PWDN = High (enables U30-U40 LVDS-to-parallel conversion circuit).
JU306	U30, U40 PWDN	2-3	U30/U40 PWDN = Low (disables U30–U40 LVDS-to-parallel conversion circuit).
JU310	U30 SD/CNTL0	Open*	Test point for U30 SD/CNTL0 input.
JU311	U30 CNTL1	Open*	Test point for U30 CNTL1 input.
JU312	U30 CNTL2	Open*	Test point for U30 CNTL2 input.
JU314	_	1-2*	U30 +1.8V from U31.
CW1	01/4	1-2	MS = High. Full-duplex bypass mode. Device registers not accessible.
SW1 MS	2-3*	MS = Low. Half-duplex base mode. Required when writing to device registers or when using external I ² C peripheral.	

^{*}Default position.

Evaluates: MAX9265/MAX9266

Table 2. MAX9265 EV Kit Address-Select Jumpers (JU7, JU8)

JU7		JU8		MAX9266 ADDRESS	
SHUNT POSITION	ADD1	SHUNT POSITION	ADD0	WAX9200 ADDRESS	
1-2	IOVDD	1-2	IOVDD	0xD4	
		1-3	N.C.	0xD8	
		1-4	GND	0xD0	
1-3	N.C.	1-2	IOVDD	0x54	
		1-3	N.C.	0x58	
		1-4	GND	0x50	
1-4*	GND	1-2	IOVDD	0x94	
		1-3	N.C.	0x98	
		1-4*	GND	0x90	

^{*}Device address is determined when power is applied.

Table 3. Diagnostic Error Codes from UC_B Bulkhead Firmware

LED120 FLASHES AFTER SELF-TEST	MEANING
3 green flashes LED120, while steady on LED126 (green)	Success: Authenticated bulkhead link TX_B1 to RX_R1; authenticated display link TX_R1 to RX_D1; enabled encryption; exchanged Binfo and KSVlist.
4 red flashes LED120	No PCLK IN signal received at TX_B1, or no RX_R1.
5 red flashes LED120	No UC_R TXD0/RXD0 connection to TX_R1. Check the JU143, JU144 wires from the RX_R1 board to the TX_R1 board.
6 red flashes LED120	No UC_B TXD1/RXD1 connection to TX_B1.
7 red flashes LED120	No PCLK IN signal received at TX_B1, or no RX_D1 attached to TX_R1.
8 red flashes LED120	No VSYNC IN to TX_B1.
9 red flashes LED120	No UC_R connection to RX_R1.
10 red flashes LED120	Bulkhead authentication failure between TX_B1 and RX_R1.
11 red flashes LED120	Display authentication failure between TX_R1 and RX_D1.
12 red flashes LED120	Encryption-enable failure.
13 red flashes LED120	Error building KSV list.

Table 4. Diagnostic Error Codes from UC_R Repeater Firmware

LED120 FLASHES AFTER SELF-TEST	MEANING		
3 green flashes LED120, while steady on LED126 (green)	Success.		
4 red flashes LED120	No UC_R TXD1/RXD1 connection to RX_R1 (check if the RX_R1 board JU1 CDS shunt is in the 1-2 position).		
5 red flashes LED120	No UC_R TXD0/RXD0 connection to TX_R1. Check the JU143, JU144 wires from the RX_R1 board to the TX_R1 board.		
6 red flashes LED120	No PCLK IN signal received at TX_B1, or no TX_B1 attached to RX_R1.		
7 red flashes LED120	No PCLK IN signal received at TX_B1, or no RX_D1 attached to TX_R1.		
8 red flashes LED120	No VSYNC IN signal received at TX_B1.		
11 red flashes LED120	Display authentication failure between TX_R1 and RX_D1.		
12 red flashes LED120	Encryption-enable failure.		
13 red flashes LED120	Error building KSV list.		

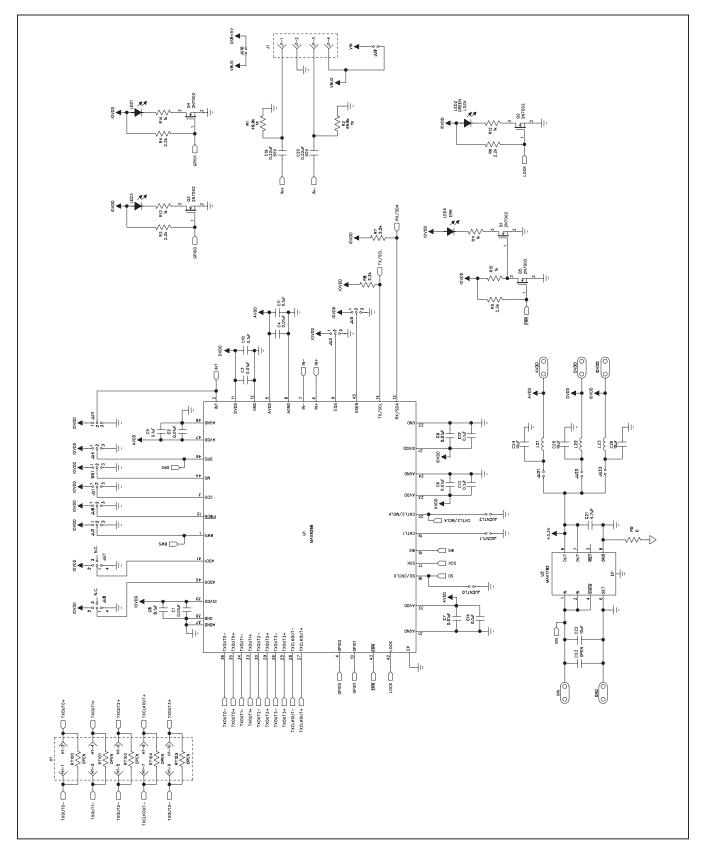


Figure 9a. MAX9266 EV Kit Schematic (Sheet 1 of 5)

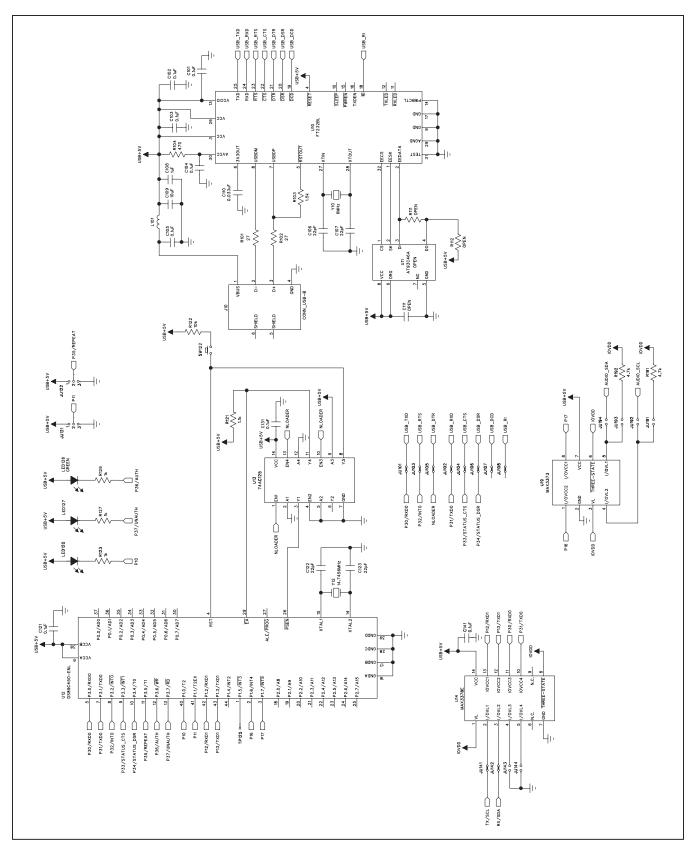


Figure 9b. MAX9266 EV Kit Schematic (Sheet 2 of 5)

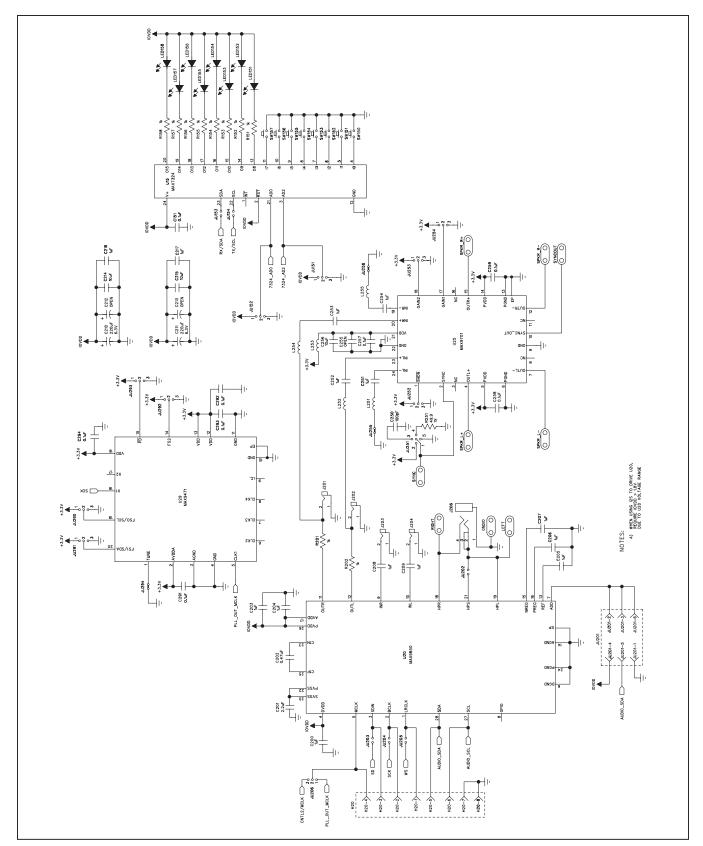


Figure 9c. MAX9266 EV Kit Schematic (Sheet 3 of 5)

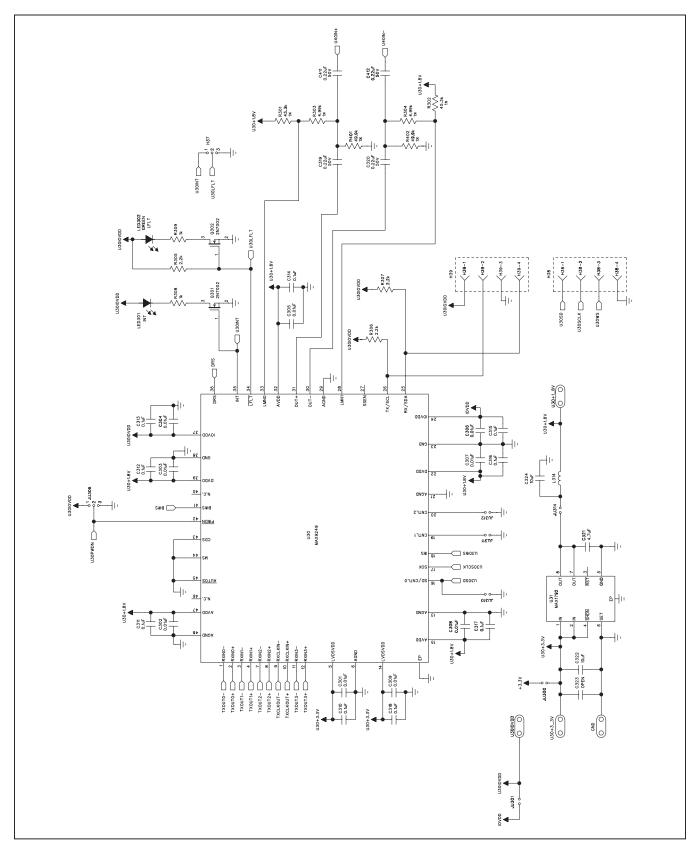


Figure 9d. MAX9266 EV Kit Schematic (Sheet 4 of 5)

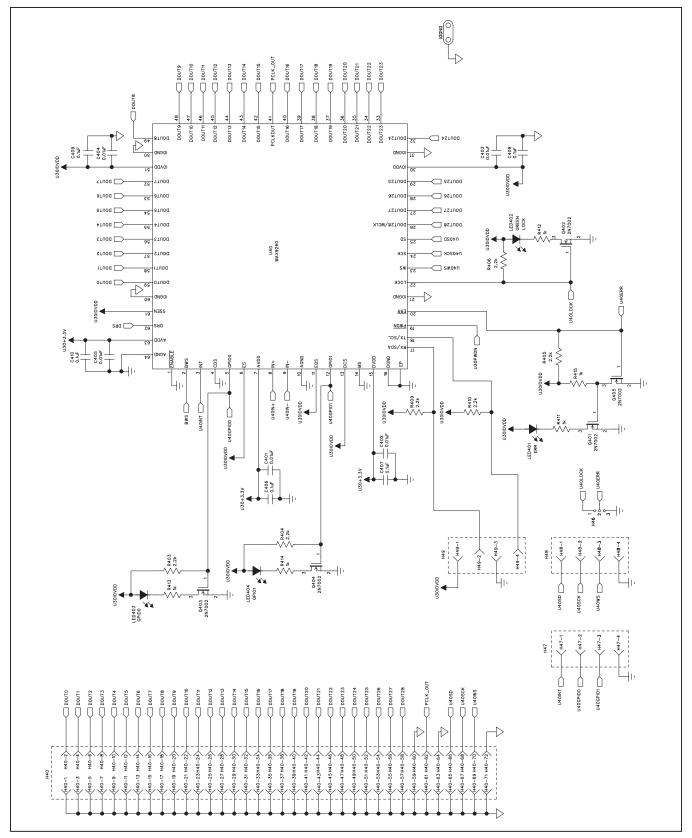


Figure 9e. MAX9266 EV Kit Schematic (Sheet 5 of 5)

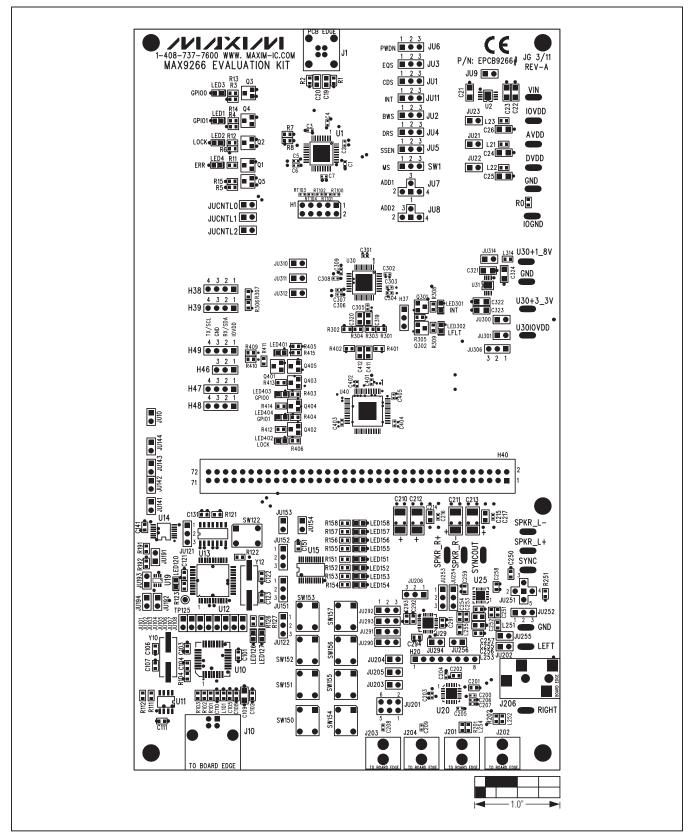


Figure 10. MAX9266 EV Kit Component Placement Guide—Component Side

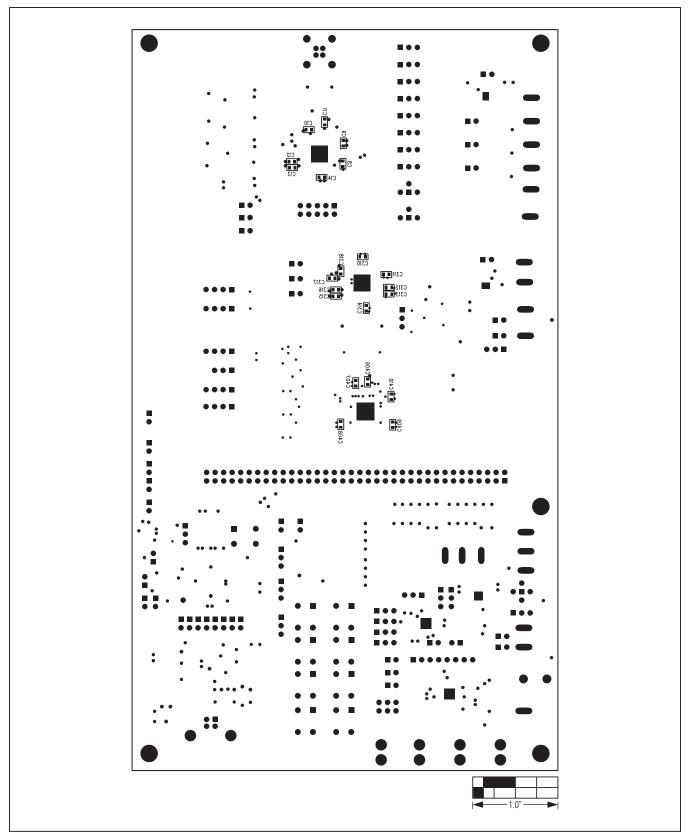


Figure 11. MAX9266 EV Kit Component Placement Guide—Solder Side

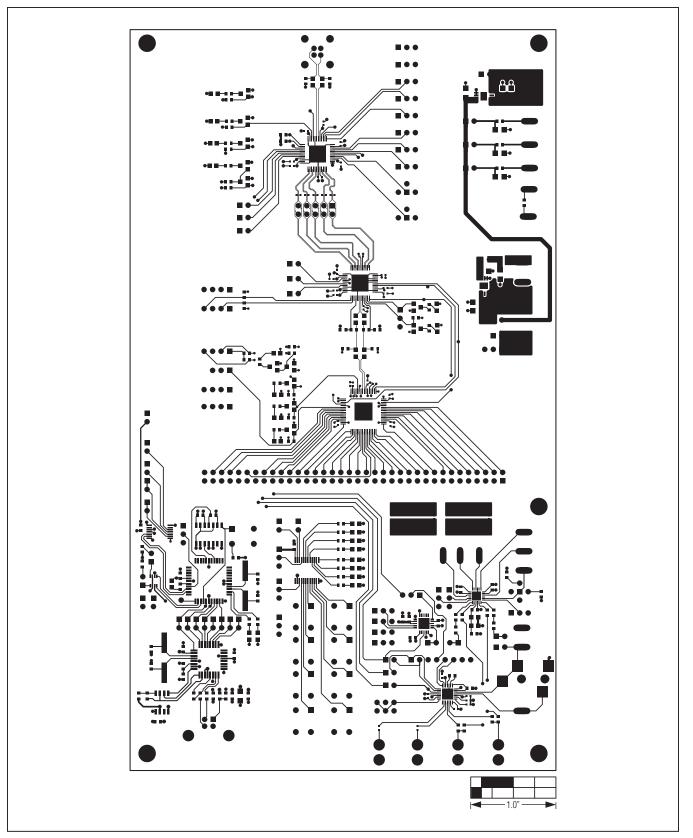


Figure 12. MAX9266 EV Kit PCB Layout—Component Side

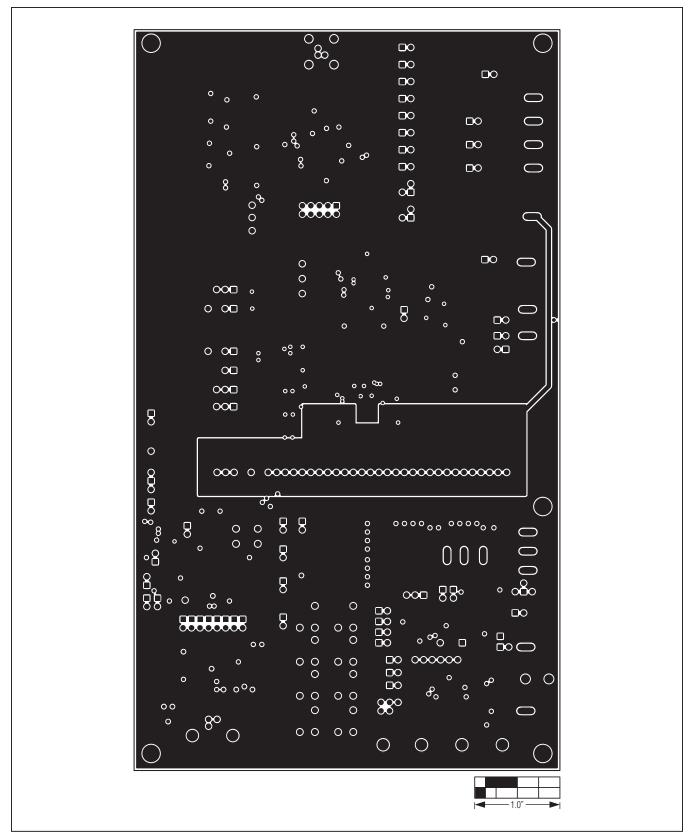


Figure 13. MAX9266 EV Kit PCB Layout—Ground Layer 2

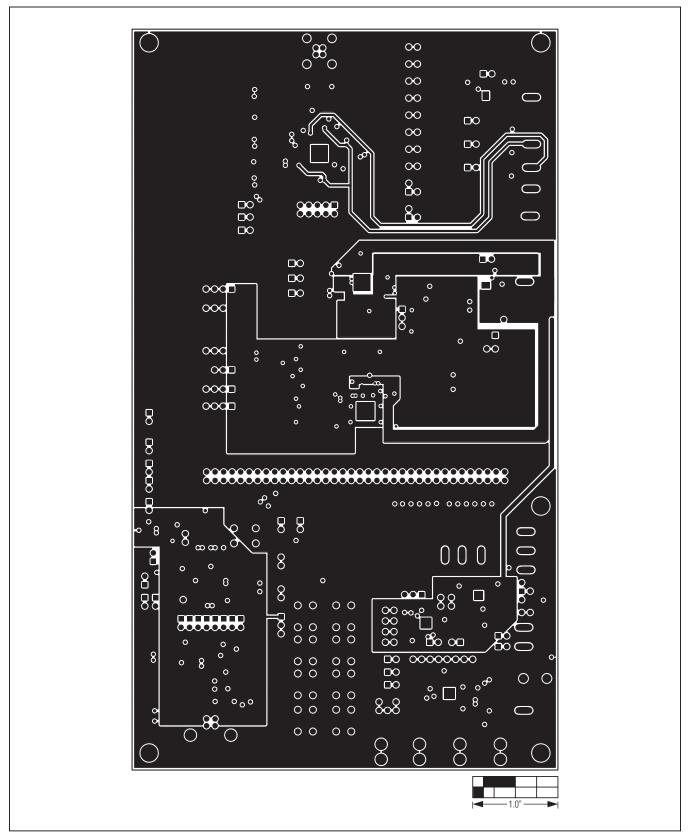


Figure 14. MAX9266 EV Kit PCB Layout—Power Layer 3

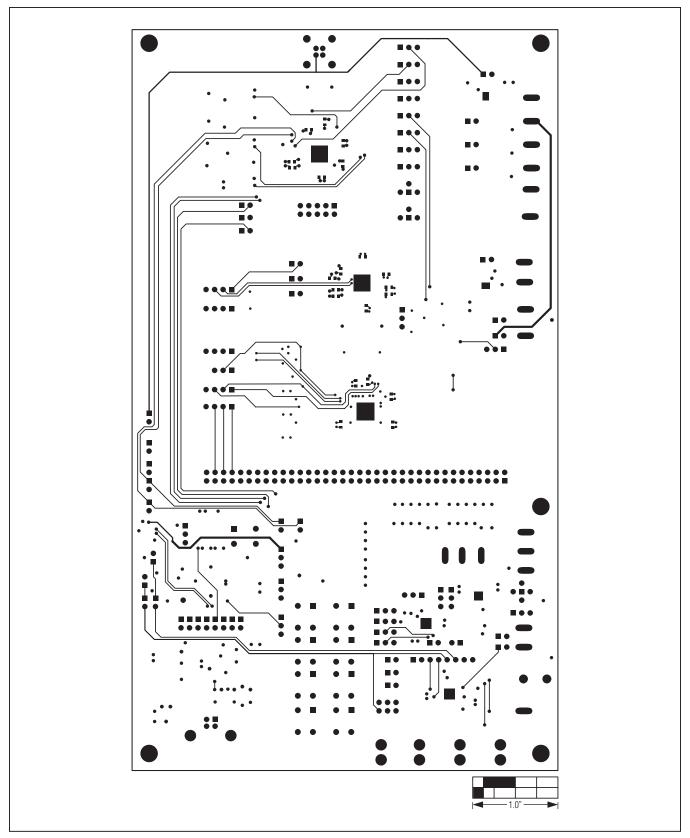


Figure 15. MAX9266 EV Kit PCB Layout—Solder Side

Evaluates: MAX9265/MAX9266

Ordering Information

PART	TYPE	
MAX9266EVKIT#	EV Kit	

#Denotes RoHS compliant.

Note: The MAX9266 EV kit should be ordered with its companion board, the MAX9265 EV kit.

Evaluates: MAX9265/MAX9266

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/11	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.