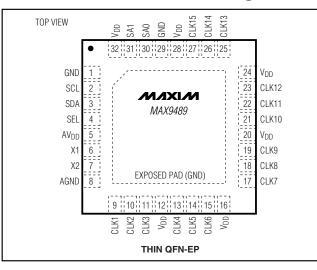


General Description

The MAX9489 clock generator provides multiple clock outputs, ideal for network routers. The MAX9489 provides 15 buffered clock outputs, each independently programmable to any of 10 individual frequencies: 133MHz, 125MHz, 100MHz, 83MHz, 80MHz, 66MHz, 62.5MHz, 50MHz, 33MHz, or 25MHz. All of the outputs are single-ended LVCMOS. The MAX9489 is controlled through its I²C interface.

At power-up, the frequency of output CLK1 is set by the tri-level input SEL to 100MHz, 125MHz, or 133MHz, while all other outputs are logic low. All outputs are then programmable to any available frequency through the I²C interface. Additionally, all output frequencies are adjustable up or down, by a margin of 5% or 10%, through the I²C interface.


The MAX9489 requires a 25MHz reference that can be either a crystal or an external clock signal. The MAX9489 requires a +3.0V to +3.6V power supply and is available in a 32-pin thin QFN package with an exposed pad for heat removal.

Applications

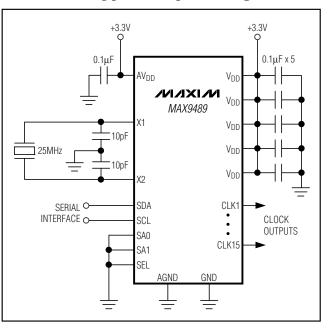
Network Routers

Telecom/Networking Equipment

Storage Area Networks/Network Attached Storage

Pin Configuration

_Features


- 15 LVCMOS Outputs with 10 Independently Programmable Frequencies: 133MHz, 125MHz, 100MHz, 83MHz, 80MHz, 66MHz, 62.5MHz, 50MHz, 33MHz, and 25MHz
- 25MHz Crystal or Clock Input Reference
- Programmable Through I²C Interface
- Programmable Output Frequency Margin of ±5% or ±10%
- Pin-Selectable Power-Up Frequency for CLK1 Output: 100MHz, 125MHz, or 133MHz
- Low Output Period Jitter: < 48psRMS</p>
- Output-to-Output Skew < 200ps
- Available in 32-Lead, 5mm x 5mm x 0.8mm, Thin QFN Package
- Operates from +3.0V to +3.6V Power Supply
- Power Dissipation 450mW (typ)
- Extended Temperature Range: -40°C to +85°C

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9489ETJ	-40°C to +85°C	32 Thin QFN-EP* 5mm x 5mm x 0.8mm

*EP = Exposed pad.

__Typical Operating Circuit

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +4.0V
AGND to GND	0.3V to +0.3V
All Other Pins to GND	0.3V to (V _{DD} + 0.3V)
Short-Circuit Duration for all CLK_ Out	putsContinuous
Continuous Power Dissipation (T _A = +	70°C)
32-Pin Thin QFN (derate 21.3mW/°C	above +70°C) 1702mW

Storage Temperature Range	65°C to +150°C
Maximum Junction Temperature	+150°C
Operating Temperature Range	
ESD Rating (Human Body Model)	±2kV
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = AV_{DD} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{DD} = AV_{DD} = +3.3V, T_A = +25^{\circ}\text{C}.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
CLOCK INPUT (X1)	·	·	·		
Input High Level	VIH1		2.0		V
Input Low Level	VIL1			0.8	V
Input Current	li∟1, liH1	$V_{X} = 0$ to V_{DD}	-5	+5	μA
CLOCK OUTPUTS (CLK_)	·				
	N/-	I _{OH} = -100μA	V _{DD} - 0.2		V
Output High Level	V _{OH}	$I_{OH} = -4mA$	2.4		V
		I _{OH} = -8mA	2.1		
		$I_{OL} = 100 \mu A$		0.2	
Output Low Level	Vol	$I_{OL} = 4mA$		0.4	V
		I _{OL} = 8mA		0.75	
Output Short-Circuit Current	I _{OS}	$CLK_ = V_{DD} \text{ or } GND$		45	mA
Output Capacitance	Co	(Note 2)		5	pF
TRI-LEVEL INPUTS (SEL, SA0	, SA1)				
Input High Level	V _{IH2}		2.5		V
Input Low Level	V _{IL2}			0.8	V
Input Open Level	V _{IO2}		1.35	1.90	V
Input Current	I _{IL2} , I _{IH2}	$V_{IL2} = 0 \text{ or } V_{IH2} = V_{DD}$	-10	+10	μA
SERIAL INTERFACE (SCL, SD	A) (Note 3)				
Input High Level	VIH		0.7 x V _{DD}	V _{DD}	V
Input Low Level	VIL		0	0.3 x V _{DD}	V
Input leakage Current	l _{IH} , liL		-1	+1	μA
Low-Level Output	Vol	I _{SINK} = 4mA	0	0.4	V
Input Capacitance	Ci	(Note 2)		10	рF

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = AV_{DD} = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{DD} = AV_{DD} = +3.3V, T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Digital Power-Supply Voltage	V _{DD}		3.0		3.6	V
Analog Power-Supply Voltage	AV _{DD}		3.0		3.6	V
Total Supply Current		$C_L = 10 pf$ (with all CLK_ outputs at 133MHz)		134	160	mA
Total Power-Down Current	IPD	All clock registers = 0x00		38	47	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = AV_{DD} = +3.0V \text{ to } +3.6V, C_L = 10\text{pF}, \text{ unless otherwise noted}.$ Typical values are at $V_{DD} = AV_{DD} = +3.3V$, $T_A = +25^{\circ}C$, with all CLK_ outputs at 133MHz.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OUTPUTS (CLK_)						
Crystal Frequency Tolerance	ΔfA		-50		+50	ppm
Output-to-Output Skew	tsko	Any two CLK_ outputs			200	ps
Rise Time	t _{R1}	20% V _{DD} to 80% V _{DD}		1.8	2.5	ns
Fall Time	t _{F1}	80% V _{DD} to 20% V _{DD}		1.8	2.5	ns
Duty Cycle			40		60	%
Output Period Jitter	JP	RMS		53		ps
Power-Up Time	tpo	V_{DD} > 2.8V to PLL lock		2		ms
PLL Lockup Time	t _{Lock}	PLL dividing ratio set to PLL lock		20		μs
Margin Accuracy		Select ±5% or ±10% margin	-1		+1	%

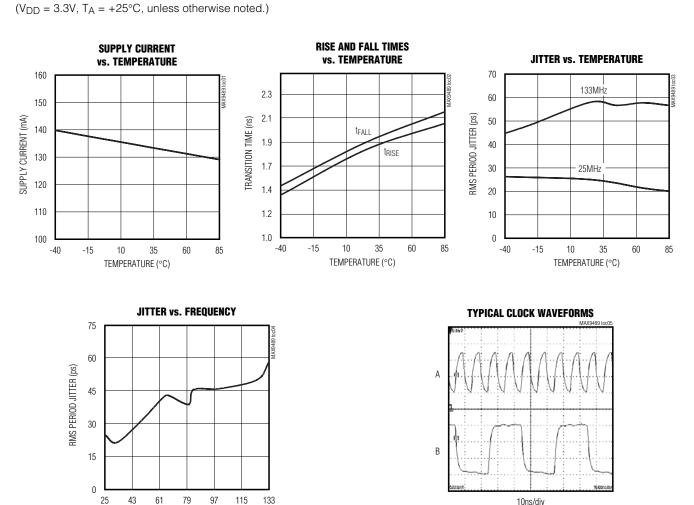
SERIAL INTERFACE TIMING

 $(V_{DD} = AV_{DD} = +3.3V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (Note 1, Figure 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial Clock	fscl				400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3			μs
Hold Time, Repeated START Condition	^t HD,STA		0.6			μs
Repeated START Condition Setup Time	^t SU,STA		0.6			μs
STOP Condition Setup Time	tsu,sto		0.6			μs
Data Hold Time Master	thd,dat	(Note 4)	15		900	ns
Data Hold Time Slave	thd,dat	(Note 4)	15		900	ns
Data Setup Time	tsu,dat		100			ns
SCL Clock Low Period	tLOW		1.3			μs
SCL Clock High Period	thigh		0.7			μs
Rise Time of SDA and SCL, Receiving	t _R	(Notes 2, 5)	20 + 0.1C _b		300	ns
Fall Time of SDA and SCL, Receiving	tF	(Notes 2, 5)	20 + 0.1Cb		300	ns
Fall Time of SDA, Transmitting	t _{F,TX}	(Notes 2, 5)	20 + 0.1Cb		250	ns
Pulse Width of Spike Suppressed	tsp	(Notes 2, 6)	0		50	ns
Capacitive Load for Each Bus Line	Cb	(Note 2)			400	pF

Note 1: All DC parameters tested at $T_A = +25^{\circ}$ C. Specifications over temperature are guaranteed by design.

Note 2: Guaranteed by design.


Note 3: No high output level is specified but only the output resistance to the bus. For I²C, the high-level voltage is provided by pullup resistors on the bus.

Note 4: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V_{IL} of the SCL signal) to bridge the undefined region of SCL's falling edge.

Note 5: Cb = total capacitance of one bus line in pF. tR and tF measured between 0.3(VDD) and 0.7(VDD).

Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.

Typical Operating Characteristics

10ns/div A: 100MHz. 100mV/div B: 25MHz, 100mV/div

MAX9489

25

61

79 97

FREQUENCY (MHz)

115 133

MAX9489

Pin Description

PIN	NAME	FUNCTION
1. 29	GND	Digital Ground
2	SCL	Serial Clock Input. Serial interface clock.
3	SDA	Serial Data I/O. Data I/O of serial interface.
4	SEL	Frequency Select for CLK1. Selects the frequency for CLK1 at power-up. SEL is a tri-level input. Force SEL high for CLK1 = 100MHz. Leave SEL open for CLK1 = 125MHz. Force SEL low for CLK1 = 133MHz.
5	AVDD	Power-Supply Input for Analog Circuits
6	X1	Crystal Connection or Clock Input. If using a 25MHz crystal, connect it to X1 and X2. If using a reference
7	X2	clock, connect the clock signal to X1, and leave X2 floating. See the Typical Operating Circuit.
8	AGND	Analog GND
9	CLK1	Clock 1 Output
10	CLK2	Clock 2 Output
11	CLK3	Clock 3 Output
12, 16, 20, 24, 28, 32	V _{DD}	Power-Supply Input for Digital Circuits
13	CLK4	Clock 4 Output
14	CLK5	Clock 5 Output
15	CLK6	Clock 6 Output
17	CLK7	Clock 7 Output
18	CLK8	Clock 8 Output
19	CLK9	Clock 9 Output
21	CLK10	Clock 10 Output
22	CLK11	Clock 11 Output
23	CLK12	Clock 12 Output
25	CLK13	Clock 13 Output
26	CLK14	Clock 14 Output
27	CLK15	Clock 15 Output
30	SA0	Address-Select Inputs for Serial Interface. SA0 and SA1 select the serial interface address, as shown in
31	SA1	Table 1. SA0 and SA1 are tri-level inputs, making nine possible address combinations.
EP	_	Exposed pad. Connect to GND.

Detailed Description

The MAX9489 clock generator produces 15 clock signals, CLK1 through CLK15. Each output is programmable through control registers to any of 10 individual frequencies: 133MHz, 125MHz, 100MHz, 83MHz, 80MHz, 66MHz, 62.5MHz, 50MHz, 33MHz, or 25MHz. Additionally, the frequency of all outputs can be changed $\pm 5\%$ or $\pm 10\%$ through the frequency-margin control register. At power-up, the frequency of CLK1 is pin programmable to 100MHz, 125MHz, or 133MHz, and all other CLK outputs are logic low. The required 25MHz input reference frequency can be either a crystal or an external clock signal. Figure 1 shows the MAX9489 functional block diagram.

The MAX9489 is programmed through its I²C serial interface. The I²C address is selected with two, tri-level inputs, allowing up to nine MAX9489 devices to share the same I²C bus. Power-supply and logic interface signals are +3.0V to +3.6V. The operating state of the MAX9489 is set by writing to the control registers, and read by reading the control registers.

Reference Frequency Input

A reference frequency is required for the MAX9489. The reference can be a 25MHz crystal or an external clock signal. If using a 25MHz crystal, connect it across X1 and X2, and connect 10pF capacitors from X1 and

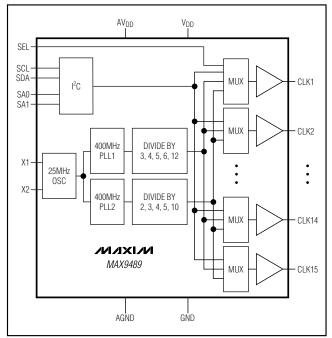


Figure 1. MAX9489 Functional Diagram

X2 to GND (see the *Typical Operating Circuit*). If using an external clock, connect the signal to X1 and leave X2 floating.

Serial Interface

The MAX9489 is programmed through its I²C serial interface. This interface has a clock, SCL, and a bidirectional data line, SDA. In an I²C system, a master, typically a microcontroller, initiates all data transfers to and from slave devices, and generates the clock to synchronize the data transfers.

The MAX9489 operates as a slave device. The timing of the SDA and SCL signals is detailed in Figure 2, the *Serial Interface Timing* diagram. SDA operates as both an input and an open-drain output. A pullup resistor, typically 4.7k Ω , is required on SDA. SCL operates only as an input. A pullup resistor, typically 4.7k Ω , is required on SCL if there are multiple masters on the 2-wire bus, or if the master in a single-master system has an open-drain SCL output.

Bit Transfer

One data bit is transferred during each SCL clock cycle. SDA must remain stable during the high period of SCL, because changes in SDA while SCL is high are START and STOP control signals. Both SDA and SCL idle high.

START and STOP Conditions

A master signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high (Figure 2). When communication is complete, a master issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission.

Acknowledge Bits

After each 8 bits transferred, the receiving device generates an acknowledge signal by pulling SDA low for the entire duration of the 9th clock pulse. If the receiving device does not pull SDA low, a not-acknowledge is indicated (Figure 3).

Device Address

The MAX9489 has a 7-bit device address, pin configured by the two tri-level address inputs SA1 and SA0. To select the device address, connect SA1 and SA0 to V_{DD} , GND, or leave open, as indicated in Table 1. The MAX9489 has nine possible addresses, allowing up to nine MAX9489 devices to share the same interface bus.

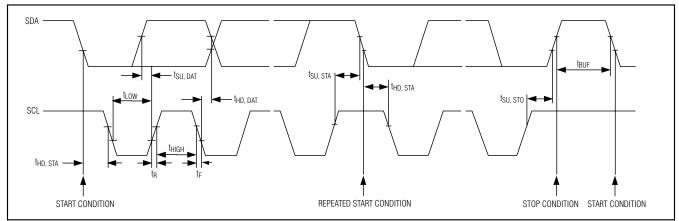


Figure 2. Serial Interface Timing

MAX9489

Table 1. Device I²C Address Selection

P	PIN		
SA1	SA0	ADDRESS	
Open	V _{DD}	110 0010	
Open	GND	110 0100	
Open	Open	110 1000	
GND	V _{DD}	111 0000	
GND	GND	110 1001	
GND	Open	110 1100	
V _{DD}	V _{DD}	111 0100	
V _{DD}	GND	111 0010	
V _{DD}	Open	111 0001	

Writing to the MAX9489

Writing to the MAX9489 begins with a START condition (Figures 3 and 4). Following the START condition, each pulse on SCL transfers 1 bit of data. The first 7 bits comprise the device address (see the Device Address section). The 8th bit is low to indicate a write operation. An acknowledge bit is then generated by the MAX9489, signaling that it recognizes its address. The next 8 bits form the register address byte (Table 2) and determine which control register will receive the following data byte. The MAX9489 then generates another acknowledge bit. The data byte is then written into the addressed register of the MAX9489. An acknowledge bit by the MAX9489 followed by a required STOP condition by the master complete the communication. To write to the device again, repeat the entire write procedure; I²C burst write mode is not supported by the MAX9489

Reading the MAX9489 Setup

Reading from the MAX9489 registers begins with a START condition and a device address with the write bit set low, then the register address that is to be read, followed by a repeated START condition and a device address with the write bit set high, and finally the data are shifted out (Figure 4). Following a START condition, the first 7 bits comprise the device address. The 8th bit is low to indicate a write operation (to write in the following register address). An acknowledge bit is then generated by the MAX9489, signaling that it recognizes its address. The next 8 bits form the register address, indicating the location of the data to be read, followed by another acknowledge, again generated by the MAX9489. The master then produces a repeated START condition and readdresses the device, this time with the R/W bit high to indicate a read operation (Figure 4). The MAX9489 generates an acknowledge bit, signaling that it recognizes its address. The data byte is then clocked out of the MAX9489. A final notacknowledge bit, generated by the master (not required), and a STOP condition, also generated by the master, complete the communication. To read from the device again, the entire read procedure is repeated; I²C burst read mode is not supported by the MAX9489.

Device Control Registers

The MAX9489 has 17 control registers. The register addresses and functions are shown in Table 2. The first 16 registers are used to set the 15 outputs, with register 0x00 controlling all outputs simultaneously and the rest mapped to individual outputs. Register 0x10 accesses the frequency-margin control. All other addresses are reserved and are not to be used.

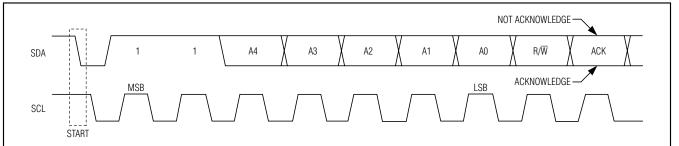


Figure 3. I²C Address and Acknowledge

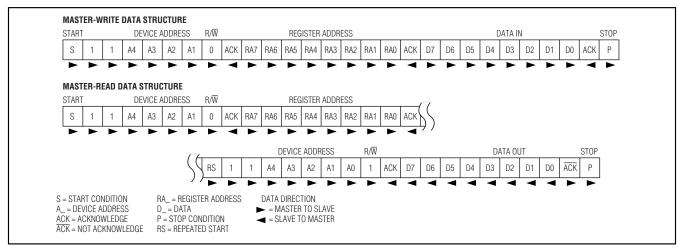


Figure 4. I²C Interface Data Structure

Setting the Clock Frequencies

Each CLK_ output has an associated control register. The contents of the registers determine the frequency of their associated outputs. Table 3 provides the frequency mapping for the registers.

Example: To program CLK3 to 80MHz, first address the device with R/\overline{W} low, then send register address byte 0x03 followed by data byte 0x05 (Figure 5).

Frequency Margin Control

Frequency margin is controlled through control register 0x10. Table 4 provides the mapping for the available margins. A selected margin applies to all outputs.

Example: To increase all clock outputs by 5%, address the device, then send register address byte 0x10 followed by data byte 0x01.

Power Supply

The MAX9489 uses a 3.0V to 3.6V power supply connected to VDD, and 3.0V to 3.6V connected to AVDD.

Bypass each V_{DD} at the device with a 0.1μ F capacitor. Also bypass AV_{DD} at the device with a 0.1μ F capacitor. Additionally, use a bulk bypass capacitor of 10μ F where power enters the circuit board.

Board Layout Considerations

As with all high-frequency devices, board layout is critical to proper operation. Place the crystal as close as possible to X1 and X2, and minimize parasitic capacitance around the crystal leads. Ensure that the exposed pad makes good contact with GND.

_Chip Information

TRANSISTOR COUNT: 15,219 PROCESS: CMOS

MAX9489

REGISTER ADDRESS BYTE	REGISTER FUNCTION
0x00	Broadcast to all CLK registers
0x01	CLK1
0x02	CLK2
0x03	CLK3
0x04	CLK4
0x05	CLK5
0x06	CLK6
0x07	CLK7
0x08	CLK8
0x09	CLK9
0x0A	CLK10
0x0B	CLK11
0x0C	CLK12
0x0D	CLK13
0x0E	CLK14
0x0F	CLK15
0x10	Frequency margin control
0x11 – 0xFF	Reserved, do not use

Table 2. Register Address Mapping

MAX9489

Table 3. Output Frequency Control

CLK_ REGISTER DATA BYTE	OUTPUT FREQUENCY (MHz)
0x00	Logic low*
0x01	133.3
0x02	125
0x03	100
0x04	83.3
0x05	80
0x06	66.6
0x07	62.5
0x08	50
0x09	33
0x0A	25

*Power-up default for CLK2 through CLK15.

Table 4. Output Frequency Margin Control

MARGIN REGISTER DATA BYTE	OUTPUT FREQUENCY (MHz)
0x00	0%
0x01	5%
0x02	10%
0x07	-5%
0x06	-10%

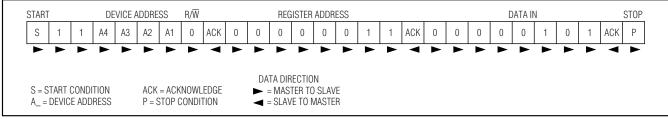
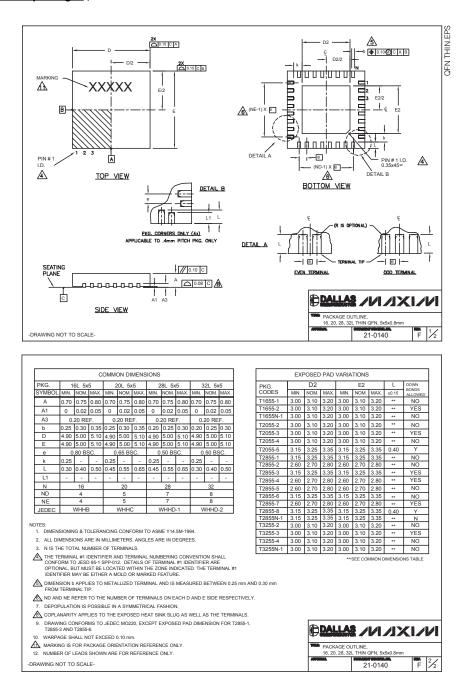



Figure 5. Example—Setting CLK3 to 80MHz

Package Information

MAX948

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_ 11

Printed USA is a registered trademark of Maxim Integrated Products.