

MAX9530

Quad NTSC/PAL Decoder and Quad Audio Codec

General Description

The MAX9530 is a quad-channel video decoder and audio codec for security & surveillance applications. The part is specially designed to serve as the front-end in multi-channel DVR (Digital Video Recorder) and DVS (Digital Video Streamer) systems. The architecture supports byte- or frame-interleaved digital video output for direct connection to a wide selection of multi-channel A/V media processors including Maxim's own H.264 codec family (i.e. MG3500 and later generations). The on-chip DDR2 memory controller enables output of frame-synchronized digital video from up to four asynchronous analog video inputs. Multiple devices can be configured to support an unlimited number of synchronized video streams. The use of external memory is optional. A memory bypass mode provides for output of up to four-channels of asynchronous video data in BT.656 digital component format.

The video signal path produces excellent video quality derived from four 54MHz/10-bit ADCs and a 5L comb filter bank. Differential or single-ended video and audio inputs are supported. The video input path includes a DC restore circuit, analog gain control, and anti-aliasing filter for each channel with no additional external components. Long cable connections are supported with the use of an adaptive equalizer block that automatically adjusts and compensates for high-frequency video signal losses in each channel independently. Each video channel can also be downscaled in high-quality for recording in lower resolution formats. All video capture operates from a unique "PLL-less" design, to ensure instant lock, and no loss of video content waiting for lock to occur with the incoming video.

In addition, four mono audio channels are captured in 16-bit precision with programmable sample rates from 16 to 48kHz. Three independent I2S interfaces provide digital audio input/output for record, playback, and mixing operations. A separate inter-chip Audio Link bus allows cascaded operation for multi-channel systems with 8/16/etc. channel inputs. Two analog audio outputs are also provided.

The digital I/Os can operate from 1.7 to 3.6V.

Applications

Security Surveillance/CCTV Systems Digital Video Recorders (DVRs) Digital Video Streamers (IP Streaming)

Features

- Video Features:
- 4-ch Analog Video Decoder NTSC (M,J,4.43) or PAL(B,G,H,I,D,N,M,60)
- 4-ch Frame-Interleaved Output Synchronizer (optional with external DDR2 memory).
- Programmable 2D Video Scalers
- Independent Auto Cable EQ per Video Channel
- Instant Lock System for Video Capture
- Multi-Line Adaptive Comb Filters.
- 4x Oversampled 54MHz/10-bit Video ADC
- Output formats Video - 4x8-bit non-interleaved or 2x2x8-bit / 1x4x8-bit interleaved
- DVR Multiplex Output: With DDR2 – Pixel or Frame Interleaved Without DDR2 – BT.656 Pixel Multiplex
- Audio Features:
- 4-ch Analog Audio Input (Mono)
- 48KHz/16 bit Audio ADC.
- 2-ch Analog Audio Output
- Differential or Single-Ended Analog Inputs
- I²C Interface
- 1400mW Typical Power Dissipation (w. DDR)
- ♦ 1.8V Analog Supply Voltage
- ♦ 1.8V Digital Core Supply Voltage
- 1.8V to 3.3V Digital I/O Voltage
- JTAG Support

Ordering Information

PART	INPUTS	PIN-PACKAGE
MAX9530CXV+	4 + 4	CSBGA 196

All devices specified over the 0°C to +70°C operating temperature range.

+ Denotes lead(Pb)-free/RoHS-compliant package.

1. BLOCK DIAGRAM

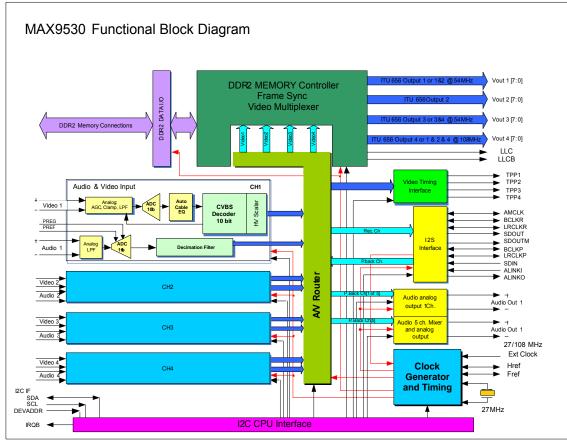


Figure 1: MAX9530 Block Diagram

2. TABLE OF CONTENTS

3. ABSOLUTE MAXIMUM RATINGS

Supply Voltages	
VDDA to GND	0.3V to +2V
VDDD to GND	0.3V to +2V
VDDIO to GND	0.3V to +3.6V
Outputs	
VOUT_<7:0>, PCLK_, TPP	0.3V to (VDDIO+0.3V)
AOUT	0.3V to (VDDA+0.3V)
PREG, REF, VCM	
IRQB, SDA, TDO	0.3V to +3.6V
Inputs	
· VIN_, AIN	0.3V to (VDDA+0.3V)
XTAL1, XTAL2	0.3V to (VDDA+0.3V)
SDIN	
SDA, SCL, DEVADDR<1:0>, TMS, TDI, TCK, JTAG_RST	0.3V to +3.6V
Input/Outputs	
LRCLK_, BCLK_, SDOUT	0.3V to (VDDIO+0.3V)
A<12:0>, DQ<15:0>, _DQS, RASB,	
CASB, WEB, CSB, _DM, CKE, CK_, ODT	0.3V to (VDDD+0.3V)
Continuous Current	

All Pins	. +/-50mA
Continuous Power Dissipation (TA = +70°C) 196 pin CSBGA Multilayer Board	
(derate 20.8mW/C above +70C)	1860mW

Operating Temperature Range	
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+260°C

Note A: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations see <u>www.maxim-ic.com/thermal-tutorial</u>

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

4. ELECTRICAL CHARACTERISTICS: EC TABLE

(VDDA = VDDD = +1.8V, VDDIO = +3.3V, GND = 0V, $T_A = 0^{\circ}C$ to 70°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		EC Table		UNITS
			MIN	TYP	MAX	
SUPPLIES						
Analog Supply Voltage Range	VDDA		1.7	1.8	1.9	V
Digital Supply Voltage Range	VDDD		1.7	1.8	1.9	V
Digital I/O Supply Voltage Range	VDDIO		1.7	3.3	3.45	V
Analog Supply Current		Normal Operation (Note 2)		152	250	mA
	IVDDA	Shutdown (XTAL=0Hz)		2	200	μA
Digital Supply Current		Normal Operation (Note 2)		344	490	mA
	IVDDD	Shutdown (XTAL=0Hz)		50	1000	μA
Digital I/O Supply Current		Normal Operation (Note 2). VDDIO=1.8V		52		mA
		Normal Operation (Note 2). VDDIO=3.3V		150		mA
		Shutdown. DVDD_IO=3.3V (T _A = 25°C)		10		μΑ
ANALOG VIDEO INPUT	•	•			•	
Video Input Reference (VREF)	VREF			775		mV
Video Input Resistance	RIN			2		MΩ
Video Input Capacitance	CIN			8		pF
Diff. Video Input CMRR	CMRRv	Freq. range 0 \rightarrow 5MHz		80		dBFS
Video Sync Level Adjust		Slow	2.1	3	3.9	
(Source and Sink Values)		Medium	4.2	6	7.8	
(Note 6)		Medium-Fast (default)	8	12	16	μA
DC Restore Current DAC Full Scale		Fast	16.4	24	32	
Range (Source and Sink)		1 431	10.4	24	52	
ANALOG INPUT FILTER AND ADC (No		1			1	
Video Passband Cutoff (3dB)	F _{3dB}			13		MHz
Video Passband Flatness		f < F _{PB} , V _{AIN} = 0.65V _{P-P} reference level is measured at 1MHz		0.25		dB
Video Stopband Cutoff	Fsb			53		MHz
Video Stopband Attenuation		$f > F_{SB}, V_{AIN} = 0.65V_{P-P}$ reference level is measured at 1MHz		36		dB

PARAMETER	SYMBOL	CONDITIO	ONS			EC Table		UNITS
				F	MIN	TYP	MAX	
Video Full-Scale Conversion		AGC Disabled, Gain Programmed		ADCGAIN=0x0	680		840	mV _{pp}
Single End Input		via I ² C,Referenced to VINx Gain Error=5%		ADCGAIN=0xF	280		340	mV_{pp}
Video Full-Scale Conversion Differential Input		AGC Disabled, Gain Programmed via I²C, Referenced to VINx		ADCGAIN=0x0	1370		1690	mV _{pp}
		Gain Error=5%		ADCGAIN=0xF	550		670	mV_{pp}
Video AGC Step Size						0.150		V/V
ADC Clock Rate	Fadc					54		MHz
ADC Resolution	ADCR					10		Bits
Video DC differential nonlinearity	DNL					±0.5		LSB
Video DC integral nonlinearity	INL					±1		LSB
Video Signal-to-RMS noise ratio								
(Includes filter + ADC + digital anti-aliasing filter)	SNR	Luminance Flat Field -50%	• •			56		dB
Video Power Supply Rejection	PSRV	ADCGAIN[3:0]=0x0 1 $T_A = +25^{\circ}C$ 1	1.7V<\ 1.7V<\	/ _{VDDA} <1.9V / _{VDDD} <1.9V / _{VDDIO} <3.45V	33			dBFS
Video Differential Phase	DP	5 step Modulated Staircase, f =3.58MHz or 4.43MHz			1.0		Deg.	
Video Differential Gain	DG	5 step Modulated Staircase, f =3.58MHz or 4.43MHz			1		%	
Video 2T Pulse Response		2T = 200ns 2T = 250ns			0.2		K%	
Crosstalk		Between video channels Between audio input chann	nels			70 90		dB
DECODED LUMINANCE and CHROMINAN	ICE							
Video Chrominance Bandwidth	BWc					1.0		MHz
Video Luminance Bandwidth	BW∟					5.5		MHz
Video Luminance Non-Linearity		5-step staircase				1.0		%
Chroma Amplitude error						1		%
Chroma Phase Error						+/- 1		deg
Video Horizontal Line Time Static Variation						1.5		%
Video Maximum Horizontal Line Time Jitter						8		μs
Video Input Signal Minimum Peak Signal to RMS Noise			3&W S Color S			12 18		dB
CLOCK GENERATOR								
Video Clock Jitter						400		ps _{p-p}
CRYSTAL OSCILLATOR (XTAL1, XTAL2)								
Frequency		Fundamental Mode Only				27.0000		MHz
XTAL1, XTAL2 Input Capacitance	Cxtal1, Cxtal2				4		pF	
Maximum Load Capacitor	C _{L1} , C _{L2}					45		pF
Frequency Accuracy	·					±50		ppm
Maximum Input Clock Jitter		External Clock				600		pspp
I ² C SERIAL INTERFACE (SDA, SCL)	1							1 1 44
Serial Clock Frequency	f _{SCL}				0		400	kHz
Bus Free Time Between STOP and	tBUF						100	
START Conditions	UUF				1.3			μs

PARAMETER	PARAMETER SYMBOL CONDITIONS			EC Table		UNITS	
			MIN	TYP	MAX		
Hold Time (repeated) START Condition.	thd,sta		0.6			μs	
SCL Pulse Width Low	tLOW		1.3			μs	
SCL Pulse Width High	thigh		0.6			μs	
Setup Time for a Repeated START	t _{SU,STA}						
Condition	100,017		0.6			μs	
Data Hold Time	thd,dat		0		900	ns	
Data Setup Time	tsu,dat		100			ns	
SDA and SCL Receiving Rise Time	tr	Note 3	20+0.1C _B		300	ns	
SDA and SCL Receiving Fall Time	tr	Note 3	20+0.1C _B		300	ns	
SDA Transmitting Fall Time	tr		20+0.1C _B		500	ns	
Setup Time for STOP Condition	t _{SU,STO}		0.6		000	μs	
Bus Capacitance	CB		0.0		400	pF	
Pulse Width of Suppressed Spike	t _{SP}		0		50		
	-		-		50	ns	
			JIO_AL)		0.4	V	
Output Low Voltage	Vol	$I_{OL} = 2mA, ODS = 01$			0.4	V	
Output High Voltage	Vон	I _{OH} = 2mA, ODS = 01	VDDIO – 0.4V			V	
Data to Clock Rising Edge Hold Time		VID_<7:0> to PCLK27, ODS = 01		32.41			
	tнD	VID_<7:0> to PCLK54, ODS = 01		13.89		ns	
		VID_<7:0> to PCLK108, ODS = 01		4.63			
Data to Clock Rising Edge Setup Time		VID_<7:0> to PCLK27, ODS = 01		4.63			
	tsu	VID_<7:0> to PCLK54, ODS = 01		4.63		ns	
		VID_<7:0> to PCLK108, ODS = 01		4.63			
Rise and Fall Time	T _r , T _f	CL=10pF, DVDD_IO=1.8V		3			
(20% to 80%)	1, 11	CL=25pF, DVDD_IO=3.3V		3		ns	
Output Leakage	IOH, IOL	Outputs in High-Z Mode	-3	±0.01	3	μA	
OPEN-DRAIN LOGIC OUTPUT (SDA)	TOH, TOL		-5	±0.01	5	μΑ	
Output Low Voltage	Vol				0.2 x		
Oulput Low Voltage	V OL	I _{OL} = 3mA, VDDIO = 1.8V			VDDIO		
		I _{OL} = 3mA, VDDIO = 3.3V			0.4	V	
Output High Current	L	$V_{\text{OUT}} = 3.3V$		±0.01	3		
		, LRCLK, SDIN, SDIO, FREF, HREF, TCK, TMI,			-	μA	
		, LRGEN, SDIN, SDIO, FREF, FIREF, TGN, TIVII,	TDS, JTAG	KST, KEFZ/I			
Logic Low Threshold	VIL				0.3 x DVDD_IO	V	
Logic High Threshold	VIH		0.7 x			V	
			VDDIO			v	
Input Leakage Current	I _{IH,} I _{IL}	(T _A = 25°C)	-3	±0.01	3	μA	
SDA/SCL Off Leakage	I _{IHI2C}	VDDA=VDDD=VDDIO=0V, SDA=SCL=3.6V	-3	±0.01	3	μA	
AUDIO LINE OUT							
Audia Output Cain E		Single ended output	-10	±1	10	0/	
Audio Output Gain Error	AOGE	Differential output	-10	±1	10	%	
	1050	0dB gain, single ended output	-	1	ž		
Audio Output Full Scale	AOFS	0dB gain, differential output		2		Vpp	
		Single ended output, Fs = 48kHz	80	90			
Audio Output Dynamic Range	DR	Differential output, Fs = 48kHz	80	90		dB	
Audio Output THD+N	THDN	Differential output, Fs = 48kHz	66	75		dB	
		1.7V <v<sub>VDDA<1.9V, 1.7V<v<sub>VDDD<1.9V,</v<sub></v<sub>					
Audio Output Power Supply Rejection		$1.7V < V_{VDDA} < 1.5V$, $1.7V < V_{VDDD} < 1.5V$, $1.7V < V_{VDDIO} < 3.45V$, single ended output		74 [80]			
Ratio	PSRA	$1.7V < V_{VDDA} < 1.9V$, $3.17V < V_{VDDD} < 1.9V$, $1.7V < V_{VDDD} < 1.9V$,				dB	
		1.7V <vvdda<1.9v, 1.7v<vvddd<1.9v,<br="">1.7V<vvddio<3.45v, differential="" output<="" td=""><td></td><td>74 [80]</td><td></td><td></td></vvddio<3.45v,></vvdda<1.9v,>		74 [80]			
Audio Output Capacitivo Drivo		$R_{L}=10k\Omega$, no sustained oscillations		100		pF	
				100		μг	
AUDIO DAC HIGHPASS DIGITAL FILTE					000	11-	
Audio Output Cutoff Frequency	f DHPPB	DACxHPF = 00			200	Hz	
,		DACxHPF = 01			100	1	

PARAMETER	SYMBOL	CONDITIONS		EC Table		UNITS	
			MIN	TYP	MAX		
		DACxHPF = 10			50		
		DACxHPF = 11			disabled	-	
AUDIO LINE IN							
	4105	Single ended input	-10	±1	10	0/	
Audio Input Gain Error	AIGE	Differential input	-10	±1	10	%	
	4150	Single ended Input		1.4			
Audio Input Full Scale	AIFS	Differential Input		2.8		Vpp	
	D D	Single ended input, Fs = 48kHz	66	80			
Audio Input Dynamic Range	DR	Differential input, Fs = 48 kHz	66.9	81		dB	
Audio Input THD+N	THD+N	Differential input, Fs = 48kHz	58	69		dB	
Audio Input Gain	GAIN	Differential input, ADCLEV from 0000 to 1111	-12		+3	dB	
Diff. Input CMRR	CMRRa	Freq. Range 0 → 20KHz		90		dBFS	
Audio Input Power Supply Rejection		1.7V <vvdda<1.9v, 1.7v<vvddd<1.9v,<="" td=""><td></td><td></td><td></td><td></td></vvdda<1.9v,>					
Ratio		1.7V <v<sub>VDDIO<3.45V, input referred, single</v<sub>		70			
		ended input					
	PSRD	1.7V <v<sub>VDDA<1.9V, 1.7V<v<sub>VDDD<1.9V,</v<sub></v<sub>				– dB	
		1.7V <v<sub>VDDIO<3.45V, input referred, differential</v<sub>		70			
		input					
Audio Input Total Harmonic Distortion	TUD	1kHz, 0dBFS, single ended input		-80			
·	THD	1kHz, 0dBFS, differential input		-80		dB	
Audio Input Signal to Noise Ratio		1kHz 0dBFS, single ended input		83			
	SNR	1kHz 0dBFS, differential input		83		dB	
Audio Input Resistance	RINA	Single-ended input	35				
·		Differential input	35			kΩ	
AUDIO ADC DIGITAL HIGHPASS FILTER	2		•				
		ADCHPF = 00			200		
		ADCHPF = 01			100	Hz d	
Audio Input Cutoff Frequency	f ahpsb	ADCHPF = 10			50		
		ADCHPF = 11			disabled		
DDR2 Interface (DQS,DQ<15:0>, DM, V	VEB, RASB	CASB, ODT, CKE, CK_, CSB, A<12:0>) Note	7			1	
Memory Clock Period	tск			6.2		ns	
SSTL18 Reference Voltage	VrefDC			0.5*VDDD		V	
SSTL18 Input High	VihDC	T _A = +25°C	V _{refDC} +125			mV	
1 5		$T_A = 0^{\circ}C$ to $70^{\circ}C$	V _{refDC} +200				
		~	V refDC +200				
SSTL18 Input Low	VilDC	$T_A = +25^{\circ}C$			V _{refDC} – 125	mV	
		T _A = 0°C to 70°C	1		V _{refDC} – 250	1	
SSTL18 Output High	VOHDDR2	Load = 13.4mA; VDDD=1.7V	1.2	1.5	200	V	
SSTL18 Output Low	VOLDDR2	Load = 13.4mA; VDDD=1.7V		0.18	0.3	V	
SSTL18 Input cross-point	VIXDDR2	Differential inputs		VrefDC		mV	
SSTL18 Output cross-point	VOXDDR2	Differential outputs		V _{refDC}		mV	
SSTL18 CM Output Voltage	VCM _{DDR2}	Differential outputs, differential termination		VrefDC		mV	
SSTL18 Output slew rate	OS _{DDR2}			3		V/ns	
DQS/DQ write skew	tDDR2DLY	Write mode (DQS/DQ are outputs)	1	1.55		ns	

Table 1: EC Table

Note 1: All devices are 100% production tested at TA=+25°C. Specifications over temperature limits are guaranteed by design. **Note 2:** NTSC 75% Color Bar signal applied to analog input. $C_L = 10$ pF on logic output pins (D7-D0 and PCLK27).

C_B is in pF. Note 3:

Note 4: Filter and ADC performance measured using ADC outputs prior to composite digital demodulation (decoding).

Note 5: Decoded Luminance and Chrominance specifications measured using entire signal path from analog input to digital component outputs.

Note 6: Internal test only. Digital core controls sync level adjust current to adjust offset in analog signal path. Adjust level is based on value of sync level as converted by ADC. Digital core switches sourcing or sinking current into AIN1 and AIN2 nodes. Speed of correction (value of current) is controlled through I²C.

Note 7: SSTL18 differential signals are UDQS/B, LDQS/B, and CK/B. All others are single ended. See reference JEDEC Std. 8-15A for detailed test information.

5. Typical Operating Characteristics (VAVDD = VDVDD = +1.8V, VDVDDIO = 3.3V, VAGND = VDGND = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = $+25^{\circ}C.$)

VIDEO ADC FULL-SCALE **CONVERSION RANGE**

GAIN CODE (Reg0x0A[3:0]) (DECIMAL) / FULL-SCALE INPUT RANGE (mVP-P)

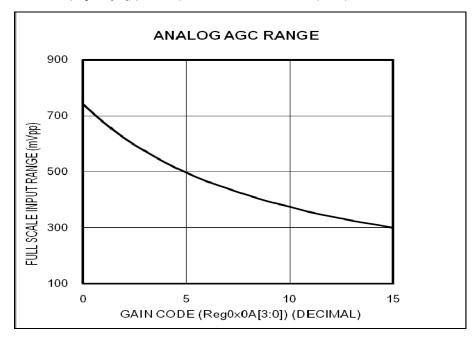


Figure 2: VIDEO ANALOG AGC RANGE

VIDEO ANALOG INPUT FILTER RESPONSE FREQUENCY (MHz) / AMPLITUDE (dB)

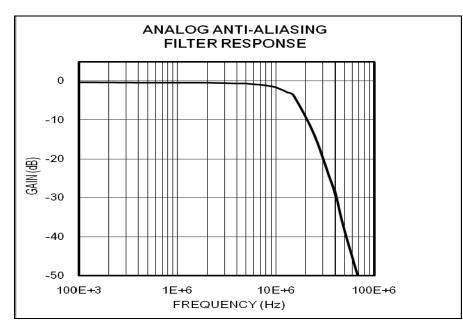


Figure 3: VIDEO ANALOG INPUT FILTER RESPONSE

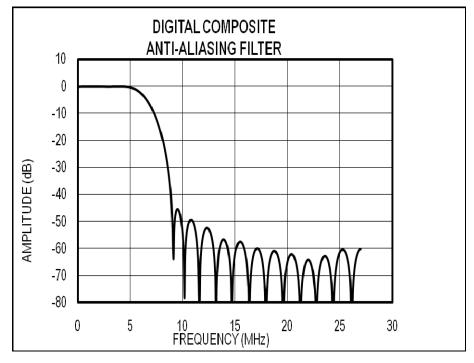


Figure 4: VIDEO DIGITAL COMPOSITE ANTI-ALIASING FILTER

VIDEO DIGITAL Y FILTER FREQUENCY (MHz) / AMPLITUDE (dB)

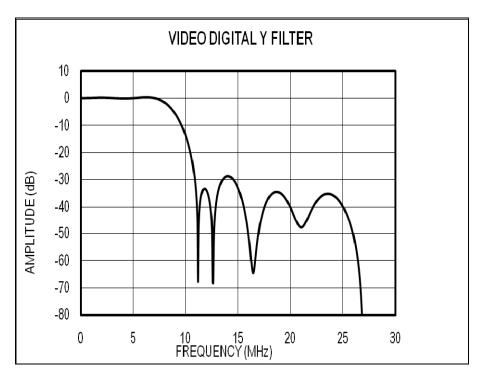


Figure 5: VIDEO DIGITAL Y FILTER

VIDEO DIGITAL Cb/Cr FILTER FREQUENCY (MHz) / AMPLITUDE (dB)

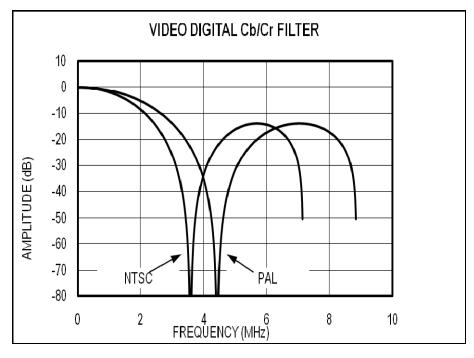


Figure 6: VIDEO DIGITAL Cb/Cr FILTER

VIDEO DIGITAL NOTCH FILTER FREQUENCY (MHz) / AMPLITUDE (dB)

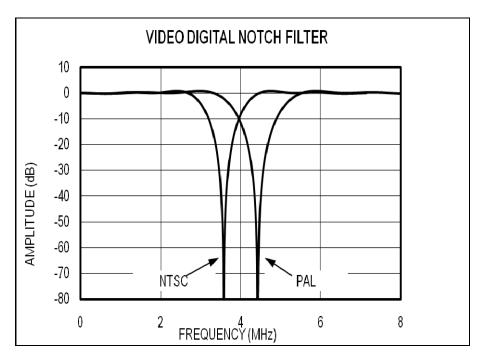


Figure 7: VIDEO DIGITAL NOTCH FILTER

VIDEO POWER SUPPLY REJECTION VS. FREQUENCY GAIN (dB) / FREQUENCY (Hz)

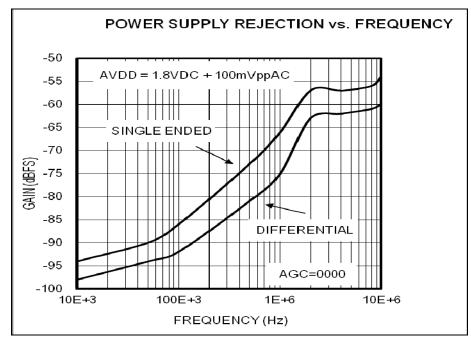
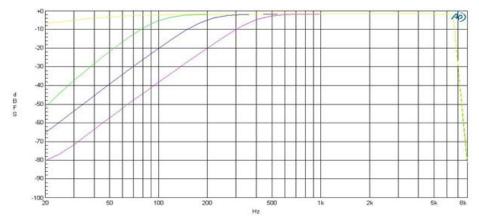
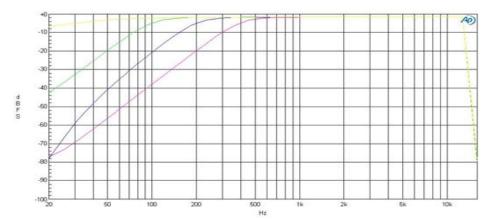
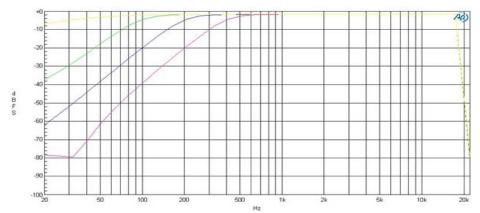
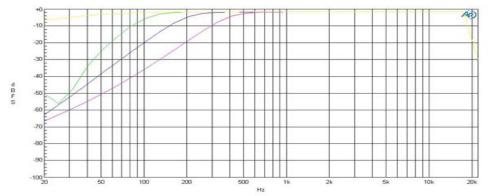




Figure 8: PWER SUPPLY REJECTION vs. FREQUENCY


Figure 9:

Sweep	Trace	Color	Comment
1	1	Magenta	AFRQ=16KHz, HPF=400Hz
2	1	Blue	AFRQ=16KHz, HPF=200Hz
3	1	Green	AFRQ=16KHz, HPF=100Hz
4	1	Yellow	AFRQ=16KHz, HPF=bypass


Figure 10:

Sweep	Trace	Color	Comment
1	1	Magenta	AFRQ=32KHz, HPF=400Hz
2	1	Blue	AFRQ=32KHz, HPF=200Hz
3	1	Green	AFRQ=32KHz, HPF=100Hz
4	1	Yellow	AFRQ=32KHz, HPF=bypass

Figure 11:

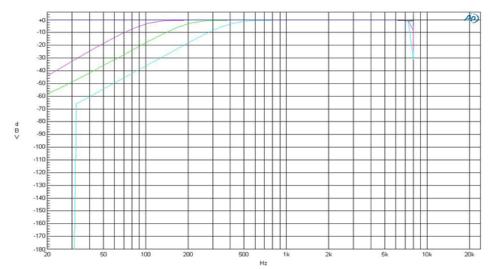
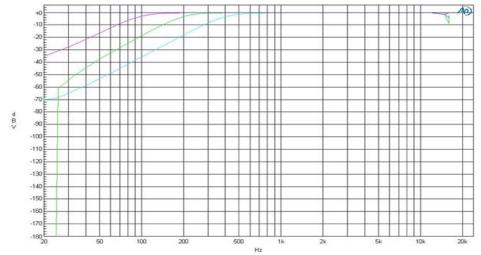
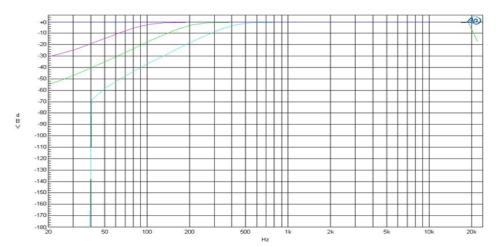

Sweep	Trace	Color	Comment
1	1	Magenta	AFRQ=44.1KHz, HPF=400Hz
2	1	Blue	AFRQ=44.1KHz, HPF=200Hz
3	1	Green	AFRQ=44.1KHz, HPF=100Hz
4	1	Yellow	AFRQ=44.1KHz, HPF=bypass

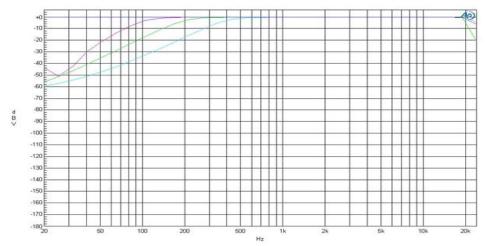
Figure 12:


Sweep	Trace	Color	Comment
1	1	Magenta	AFRQ=48KHz, HPF=400Hz
2	1	Blue	AFRQ=48KHz, HPF=200Hz
3	1	Green	AFRQ=48KHz, HPF=100Hz
4	1	Yellow	AFRQ=48KHz, HPF=bypass

AUDIO DIGITAL HIGH PASS FILTER [IHPF] vs. INPUT FREQUENCY GAIN(dBV) / Frequency (Khz)


Figure 13:

Sweep	Trace	Color	Comment
1	1	Cyan	AFRQ=16KHz, HPF=400Hz
2	1	Green	AFRQ=16KHz, HPF=200Hz
3	1	Magenta	AFRQ=16KHz, HPF=100Hz
4	1	Blue	AFRQ=16KHz, HPF=bypass


Figure 14:

Sweep	Trace	Color	Comment
1	1	Cyan	AFRQ=32KHz, HPF=400Hz
2	1	Green	AFRQ=32KHz, HPF=200Hz
3	1	Magenta	AFRQ=32KHz, HPF=100Hz
4	1	Blue	AFRQ=32KHz, HPF=bypass

Figure 15:

Sweep	Trace	Color	Comment
1	1	Cyan	AFRQ=44.1KHz, HPF=400Hz
2	1	Green	AFRQ=44.1KHz, HPF=200Hz
3	1	Magenta	AFRQ=44.1KHz, HPF=100Hz
4	1	Blue	AFRQ=44.1KHz, HPF=bypass

Figure 16:

Sweep	Trace	Color	Comment
1	1	Cyan	AFRQ=48KHz, HPF=400Hz
2	1	Green	AFRQ=48KHz, HPF=200Hz
3	1	Magenta	AFRQ=48KHz, HPF=100Hz
4	1	Blue	AFRQ=48KHz, HPF=bypass

6. Pin Configuration

L														R
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	SDIOA L	BCLK P	BCLK R	PCLK 108	PCLK 27	TPP1	VOUT 37	VOUT 36	VOUT 35	VOUT 34	VOUT 17	VOUT 16	VOUT 15	VOUT 14
В	BCLKA L	LRCLK P	LRCLK R	PCLK 108B	PCLK 27B	TPP2	VOUT 33	VOUT 32	VOUT 31	VOUT 30	VOUT 13	VOUT 12	VOUT 11	VOUT 10
С	LRCLK AL	SDIN	SDOUT	HREF	PCLK 54	TPP3	VOUT 47	VOUT 46	VOUT 45	VOUT 44	VOUT 27	VOUT 26	VOUT 25	VOUT 24
D	XTAL 1	SDOUT M	MCLK R	FREF	PCLK 54B	TPP4	VOUT 43	VOUT 42	VOUT 41	VOUT 40	VOUT 23	VOUT 22	VOUT 21	VOUT 20
Е	XTAL 2	REF 27O	REF 27I	GND	VDDA	GND	GND	VDD	VDD	VDDIO	A12	A11	A10	A9
F	GND	VIN1P	VIN1N	GND	VDDA	GND	GND	VDD	VDD	VDDIO	A8	A7	A6	A5
G	GND	GND	GND	GND	VDDA	GND	GND	VDD	VDD	VDDIO	A4	A3	A2	A1
н	GND	VIN2P	VIN2N	GND	VDDA	GND	GND	VDD	VDD	VDDIO	A0	BA1	BA0	CSB
J	GND	GND	GND	GND	VDDA	GND	GND	VDD	VDD	VDDIO	DQ15	DQ14	DQ13	DQ12
к	GND	VIN3P	VIN3N	GND	VDDA	GND	GND	VDD	VDD	VDDIO	DQ11	DQ10	DQ9	DQ8
L	GND	GND	GND	AUD GND	PREF	PREG	TMS	IRQB	CKE	RASB	UDM	UDQS	UDQSB	VREF
М	GND	VIN4P	VIN4N	VCM	AOUT 2P	AOUT 2N	тск	SDA	СК	CASB	DQ7	DQ6	DQ5	DQ4
N	AIN1P	AIN1N	AIN2P	AIN2N	AOUT 1P	AOUT 1N	TDO	SCL	СКВ	WEB	DQ3	DQ2	DQ1	DQ0
Р	AIN3P	AIN3N	AIN4P	AIN4N	GND	JTAG RST	TDI	DEV ADDR1	DEV ADDR0	RSTB	LDM	LDQS	LDQSB	ODT

Top View (Through Package)

Figure 17: MAX9530 pin configuration

7. Pin Description

Table 2:

Table 2:		-	
Ball	Ball Name	Туре	Pin Description
			Audio I/O
BCLKR	A3	I/O	Audio serial clock input/output of record.
LRCLKR	B3	I/O	Audio serial sync input/output of record.
MCLKR	D3	0	Audio master clock output of record.
SDOUT	C3	0	Audio serial data output of record.
SDOUTM	D2	0	Audio serial data output of mixing.
BCLKP	A2	I/O	Audio serial clock input/output of playback.
LRCLKP	B2	I/O	Audio serial sync input/output of playback.
SDIN	C2	I	Audio serial data input of playback.
BCLKAL	B1	I/O	Audio Multi-chip operation serial bit clock I/O
LRCLKAL	C1	I/O	Audio Multi-chip operation serial word clock I/O
SDIOAL	A1	I/O	Audio Multi-chip operation serial input/output
AIN1P, AIN1N	N1, N2	I	Audio input of channel 1.
AIN2P, AIN2N	N3, N4	I	Audio input of channel 2.
AIN3P, AIN3N	P1, P2	I	Audio input of channel 3.
AIN4P, AIN4N	P3, P4	1	Audio input of channel 4.
AUDGND	L4	А	Audio reference ground return.
AOUT1P,N	N5, N6	0	Analog audio output 1.
AOUT2P,N	M5, M6	0	Analog audio output 2.
PREG	L6	A	Audio regulator output.
PREF	L5	A	Audio reference output.
VCM	M4	A	Audio common mode reference.
	1014	~~~~	Video I/O
VIN1P, VIN1N	F2, F3	1	Composite video input of channel 1.
VIN2P, VIN2N	H2, H3	1	Composite video input of channel 2.
VIN3P, VIN3N	K2, K3	1	Composite video input of channel 3.
VIN3P, VIN3N VIN4P, VIN4N	M2, M3		Composite video input of channel 4.
VIIN4F, VIIN4IN	B14, B13, B12, B11,	0	
VOUT1[0:7]	A14, A13, A12, A11		Video data output of channel 1.
VOUT2[0:7]	D14, D13, D12, D11, C14, C13, C12, C11	0	Video data output of channel 2.
VOUT3[0:7]	B10, B9, B8, B7, A10, A9, A8, A7	0	Video data output of channel 3.
VOUT4[0:7]	D10, D9, D8, D7, C10, C9, C8, C7	0	Video data output of channel 4.
	,,, _		I2C Interface
SDA	M8	IO	Serial control data line.
SCL	N8	I	Serial control clock line.
DEVADDR[1:0]	P8, P9	I	Serial control address.
			JTAG
JTAGRST	P6	I	Active low
TMS	L7	I	
ТСК	M7		6MHz max
TDO	N7	0	
TDI	P7	-	
		•	DDR2 Memory Interface
CKE	L9	0	Clock enable
		5	

RASB, CASB, WEB	L10, M10, N10	0	Command inputs
CK, CKB	M9, N9	0	CK and nCK are differential clock inputs.
-			162 MHz, differential 100 ohm
DQ[0:15]	N14, N13, N12, N11, M14, M13, M12, M11, K14, K13, K12, K11, J14, J13, J12, J11	I/O	Data input/output - 50 Ohm
LDQS, LDQSB	P12, P13	I/O	Data strobe for lower byte
			162 MHz, differential 100 ohm
LDM, UDM	P11, L11	0	Input data mask
UDQS, UDQSB	L12, L13	I/O	Data strobe for upper byte
			162 MHz, differential 100 ohm
ODT	P14	0	On-die termination
CSB	H14	0	Chip select
VREF	L14		Vref
BA0, BA1	H13, H12	0	Bank address inputs
A[0:12]	H11, G14, G13, G12, G11, F14, F13, F12, F11, E14, E13, E12, E11	0	Address inputs
			Timing/IRQ/Reset
RSTB	P10		System reset.
IRQB	L8	0	Interrupt request output. This signal has positive logic and cannot be connected directly with other IRQs in the system. Pull-up resistor is still required.
XTAL1, XTAL2	D1, E1	I	27MHz Xtal or External 27
TPP1, TPP2, TPP3, TPP4	A6, B6, C6, D6	0	HS/VS/FLD/ACTIVE/NOVID of channel 1,2,3 & 4
PCLK27, PCLK27B	A5, B5	0	27 MHz clock output.
PCLK54, PCLK54B	C5, D5	0	54 MHz clock output.
PCLK108, PCLK108B	A4, B4	0	108 MHz clock output.
HREF, FREF	C4, D4	IO	External H and F Reference Input /Output
REF27O	E2	0	Reference Clock Output.
REF27I	E3	I	Reference Clock Input.
			Power and Ground Pins
VDDD		Р	1.8V Power for internal logic.
VDDIO		Р	3.3V Power for output driver.
GND		G	Global ground.
VDDA		Р	1.8V Power for analog audio.

8. DDR2 Memory Support

The MAX9530 supports DDR2 memory with the following characteristics:

Address space - Row/Column – 13[A0 - A12] or 14[A0 – A13] Number of Banks – 4 [BA0, BA2] Data Bus – 16 [DQ0 – DQ15] DQS – 2 [UDQS & LDQS] Differential Clock - Minimum 300MHz – Differential CAS latency – 3 or 4

The memory interface is programmable so users can connect memories of different speed grades and CAS/RAS latency settings. The basic I/O configuration must be of the type specified above. The MAX9530 default DDR2 controller configuration is based on the Micron MT47H16M16BG-3 256MB SDDR2 RAM. Similar memories can be found from Samsung, Elpida and Hynix. In most cases the default DDR2 controller configuration settings should be used without any changes. The MAX9530 operates with DDR2 in a mode where most DDR2 RAM brands are identical.

Before setting the DDR2 configuration, a clock must be available - internal or external. Maxim recommends first loading the desired configuration into segment 0 before loading segment 1. The following register settings must be loaded into segment 1:

Register load order must be preserved.

Reg.	Data								
0x00:	0x01	# Open	access t	o Segmen	t 1				
Reg.	Data	Reg.	Data	Reg.	Data	Reg.	Data	Reg.	Data
0x01:	0x01	0x1e:	0x01	0x3b:	0x0a	0x5e:	0x07	0x7a:	0x04
0x02:	0x00	0x1f:	0x00	0x3c:	0x08	0x5f:	0x02	0x7b:	0xe8
0x03:	0x00	0x20:	0x00	0x3d:	0x08	0x60:	0x0d	0x7c:	0x04
0x04:	0x00	0x21:	0x00	0x3e:	0x0f	0x61:	0x00	0x7d:	0x00
0x05:	0x01	0x22:	0x00	0x3f:	0x04	0x62:	0x00	0x7e:	0x00
0x06:	0x00	0x23:	0x01	0x40:	0x02	0x63:	0x00	0x7f:	0x00
0x07:	0x01	0x24:	0x01	0x43:	0x04	0x64:	0x00	0x80:	0x00
0x08:	0x01	0x25:	0x00	0x45:	0x06	0x67:	0x42	0x81:	0x41
0x09:	0x00	0x26:	0x00	0x47:	0x02	0x68:	0x04	0x82:	0x00
0x0b:	0x01	0x27:	0x01	0x49:	0x02	0x69:	0x40	0x83:	0xc8
0x0c:	0x00	0x28:	0x01	0x4a:	0x02	0хба:	0x00	0x84:	0x00
0x0d:	0x00	0x29:	0x01	0x4b:	0x02	0x6b:	0x00	0x85:	0x02
0x0e:	0x00	0x2a:	0x00	0x4c:	0x02	Охбс:	0x00	0x86:	0x00
0x0f:	0x01	0x2b:	0x00	0x4d:	0x03	0x6d:	0x00	0x87:	0x3f
0x10:	0x00	0x2d:	0x03	0x4e:	0x03	0хбе:	0x00	0x88:	0x2c
0x11:	0x01	0x2f:	0x00	0x4f:	0x00	0x6f:	0xe8	0x89:	0x0e
0x12:	0x00	0x30:	0x01	0x50:	0x00	0x70:	0x04	0x8a:	0×00
0x13:	0x01	0x31:	0x00	0x51:	0x00	0x71:	0xe8	0x8b:	0xc8
0x14:	0x00	0x32:	0x02	0x52:	0x02	0x72:	0x04	0x8c:	0×00
0x15:	0x00	0x33:	0x02	0x53:	0x03	0x73:	0xe8	0x8f:	0x21
0x16:	0x00	0x34:	0x03	0x54:	0x05	0x74:	0x04	0x90:	0x00
0x17:	0x00	0x35:	0x02	0x55:	0x02	0x75:	0xe8	0x91:	0×00
0x19:	0x00	0x36:	0x02	0x56:	0x03	0x76:	0x04	0x96:	0x00
0x1a:	0x01	0x37:	0x00	0x58:	0x00	0x77:	0xe8	0x97:	0x00
0x1b	0x00	0x38:	0x00	0x59:	0x09	0x78:	0x04	0x98:	0x00
0x1c:	0x01	0x39:	0x00	0x5c:	0x00	0x79:	0xe8	0x99:	0x00
0x1d:	0x00	0x3a:	0x0f	0x5d:	0x02	0x00:	0x01	0xa6:	0x00

Reg.	Data	Reg.	Data	Reg.	Data	Reg.	Data	Reg.	Data
0xa7:	0x00	0xb1:	0x00	0xc3:	0x11	0xcd:	0xe3	0xd7:	0x00
0xa8:	0x00	0xb2:	0x8b	0xc4:	0x0f	0xce:	0x01	0xd8:	0x00
0xa9:	0x00	0xb3:	0x32	0xc5:	0x00	0xcf:	0x01	0xd9:	0x00
0xaa:	0x14	0xb4:	0x0b	0xc6:	0x26	0xd0:	0xc0		
0xab:	0x8f	0xb5:	0x00	0xc7:	0x39	0xd1:	0x26		
0xac:	0x03	0xb6:	0x8b	0xc8:	0x00	0xd2:	0x01		
0xad:	0x00	0xb7:	0x32	0xc9:	0xe3	0xd3:	0x04		
0xae:	0x14	0xb8:	0x0b	0xca:	0x26	0xd4:	0xc0		
0xaf:	0x8f	0xb9:	0x00	0xcb:	0x39	0xd5:	0x26		
0xb0:	0x03	0xc2:	0x00	0xcc:	0x00	0xd6:	0x04		
	# Start	command	must be	set as	the last	command	to start	DDR2 su	lbsystem
Reg.	Data								
0x26:	0x01								
	# Releas	se segmer	nt 1						
Reg.	Data								
0x00:	0x00								

Table 3: DDR2 Setup Registers

9. VIDEO Sub System

9.1 Decoder

The MAX9530 is a Quad Channel Multi-Standard Video Decoder, which supports all common video formats as shown in Table 4.

	Fh	Fv	SubC.	BLC	Video Bandwidth
PAL					•
PAL – I	15.625k	50	4.43361875	0 IRE	5.5M
PAL -B,G,H	15.625k	50	4.43361875	0 IRE	5.0M
PAL – M	15.750k	59.94	3.57961149	7.5 IRE	4.2M
PAL – D	15.625k	50	4.43361875	0 IRE	6.0M
PAL – N	15.625k	50	4.43361875	7.5 IRE	5.0M
PAL – 60	15.625k	60	4.43361975	0 IRE	5.5M
NTSC					
NTSC – M	15.734k	59.94	3.579545	7.5 IRE	4.2M
NTSC – J	15.734k	59.94	3.579545	0 IRE	4.2M
NTSC - 4.43	15.734k	59.94	4.43361875	7.5 IRE	5.5M

Table 4: Video Input Formats Supported by the MAX9530

The MAX9530 will automatically switch between PAL - B, G, H, D and NTSC – M. All other standards must be selected manually through the I^2C interface. Manual register settings will override any auto setup at any time. The SECAM standard is not supported.

The MAX9530 has 4 identical and independent decoder blocks. Each decoder block is a simple video decoder that converts all modes of NTSC and PAL composite video signals to 8-bit YCbCr component video

compatible with the ITU-R BT.656 standard. The device powers up in a fully operational mode and automatically configures itself to standard NTSC or standard PAL. An internal 10-bit 54MHz analog-to-digital converter (ADC) samples at four times the sampling rate specified in ITU-R BT.601. The analog front-end of the MAX9530 features a DC restoration circuit, automatic gain control, and automatic offset correction. These blocks are controlled with digital processing to accurately optimize the full-scale range of the ADC. An integrated analog anti-aliasing filter eliminates the need for off-chip filtering. The system clock is generated with an external 27MHz crystal and an internal oscillator. Optionally, a 27MHz or 54MHz external clock can be connected to REF27I. An internal digital PLL is used to generate the 54MHz ADC sample clock. The MAX9530 decoder uses a 5-line adaptive comb filter to separate the luminance (Y) and chrominance (C) video components and reduce cross-chrominance and cross-luminance artifacts. The MAX9530 decoder operates with any type of standard composite video signal source including analog CCTV cameras, DVD players, navigation systems and VCRs.

9.1.1. Analog Front End (AFE)

The MAX9530 AFE implements DC restoration, automatic gain control (AGC), analog anti-aliasing filter (LPF), activity detection, channel selection, and analog-to-digital conversion.

The MAX9530 supports both differential and single-ended video input signals. I2C register 0x21/31/41/51 [1] is set to 1 for differential inputs and 0 for single-ended inputs. Figures 47 & 48 illustrate the schematic of analog inputs configured for differential and single-ended operation. Internally, differential signal paths are always used to process the analog video signal to minimize the effect of noise coupling.

For differential inputs the common-mode input voltage is set internally. The DC restore DAC sources/sinks current into both VINP and VINN pins to set the average differential voltage so that the optimal full scale range of the ADC is used.

For single ended applications an internal bias circuit sets the DC reference voltage (VREF) at the VINN pin to 850mV. This pin must be AC coupled externally to ground with a 0,1uF capacitor. The video signal must be attenuated externally with a 6dB resistive attenuator. The signals are converted to a fully differential signal by the analog AGC circuit.

See Figures 47 & 48 for an external schematic that supports both differential and single-ended applications.

9.1.2. DC Restoration DAC

The video inputs are AC-coupled to the MAX9530 with 0.1µF capacitors. The DC restoration circuit sets the sync level at the output of the ADC by sinking or sourcing current at the selected video input. In differential mode the DAC sources or sinks current in both AINP and AINN. In single-ended mode the DAC sources or sinks current in the AINP pin. A digital control at the ADC output is used to monitor the average sync level. An error signal is generated in the digital control block that is used by a current DAC to source or sink current to the AC-coupled input to restore the DC level. The DC restoration circuit also corrects the offset in the analog signal chain and sets the sync level at the ADC output to code 32 (decimal).

9.1.3. Analog Automatic Gain Control (Analog AGC)

The MAX9530 includes an analog variable gain amplifier with a digitally controlled gain for automatic gain control (AGC). The AGC uses the sync amplitude at the output of the ADC to control the gain. For signals without copy protection, the AGC adjusts the gain until the sync amplitude is 208 (decimal) codes at the ADC output. For inputs with copy protection, the AGC automatically compensates for the reduced sync amplitude on active lines. The analog AGC loop can be disabled and the gain is set manually to 1 of 16 values using the Gain Control register 0x0A. The range of analog gain is 3.5dB to 12dB.

9.1.4. Analog Low Pass Filter (LPF)

The MAX9530 includes a high-performance anti-aliasing analog low pass filter with a 3dB bandwidth of 13MHz (typ) and better than 0.25dB (typ) pass band flatness to 5MHz. This eliminates the need for external filtering on the video inputs. The filter typically provides 36dB attenuation at 53MHz (1MHz below ADC sample rate).

9.1.5. 54Msps Video ADC

A 10-bit 54Msps ADC converts the filtered analog composite video signal for digital signal processing (composite video demodulation).

9.1.6. Digital Filtering

Digital filtering at the ADC output removes any out of band interference and improves the signal-to-noise ratio before decoding. The signal path includes a digital anti-aliasing low pass filter that has 1dB of pass band flatness to 5.5MHz and a minimum of 45dB of stop band attenuation for frequencies greater than 9MHz.

9.1.7. Adaptive Equalizer and Analog Front End Control

The MAX9530 includes an automatic adaptive equalizer that detects dispersion in the channel due to cables and compensates for this attenuation. It compensates for the equivalent attenuation of approximately 300m of Category-5 cable. For longer cables it still improves the quality of the video.

Many video systems transport the CVBS (analog composite video) over coaxial and UTP (unshielded twisted pair) cables. Category 5 or higher cables are commonly used to wire office and home buildings. The Ethernet standards 10BaseT, 100BaseTX, 1000BaseT, and the most recent 10GBaseT standards transmit data at 10MBits/s, 100MB/s, 1GB/s and 10GB/s over twisted pair cables.

The MAX9530 is designed to greatly simplify the use of UTP cables carrying analog video. The analog frontend supports differential inputs eliminating the need for an external single-ended to differential converter. UTP cables have dispersion due to the losses in the wires. For this reason the MAX9530 includes an adaptive equalizer to compensate for the cable losses. In adaptive mode the equalizer automatically detects the amount of loss in the cable and corrects for the loss. The equalizer can also be manually programmed to a fixed equalization setting. Presence of the chrominance burst is mandatory for auto EQ to work correctly. If burst is not available the EQ block can be used in manual mode only.

Impedance	Summary
150 Ohms	IBM cable networks for Token-Ring. Rarely used now
100 Ohms	Supports 10BaseT and 100BaseT4 (rarely used)
100 Ohms	Not commonly found
100 Ohms	Used for 100BaseTX Ethernet. Some channels may support 1000BaseT Much better attenuation and crosstalk the cat-3
100 Ohms	Used for 100BaseTX Ethernet and 1000BaseT Ethernet. Similar Attenuation as cat-5 but better crosstalk.
	Better attenuation and crosstalk than cat-5e
	Best crosstalk and attenuation aimed at 10GbaseT.
	150 Ohms 100 Ohms 100 Ohms 100 Ohms

Table 5: Twisted Pair Cable Specification Summary

The equalizer was designed to support both CAT-5 (and higher) and coaxial cable.

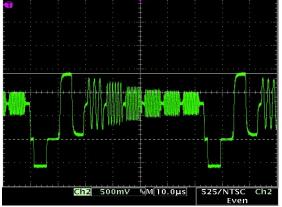


Figure 18: 300m CAT5 cable – no EQ

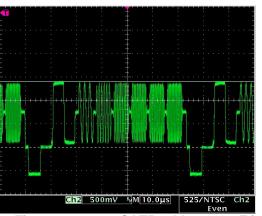


Figure 19: 300m CAT5 cable – auto EQ

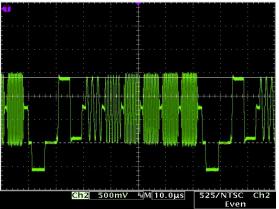


Figure 20: 300m CAT5 cable – manual max EQ

9.1.8. Crystal Oscillator/Clock Input

The MAX9530 includes a low-jitter crystal oscillator circuit optimized for use with an external 27MHz crystal. The device also accepts an external CMOS logic-level clock at either 27MHz or 54MHz.

9.1.9. Sync Processing

The sync processing block extracts the sync information and automatically detects 525 line or 625 line inputs.

9.1.10. Clock Generator and Asynchronous sampling

For asynchronous sampling, the sample clock frequency is generated by multiplying the crystal frequency by a factor of two and the video signal is sampled asynchronously with the 2x crystal clock. To eliminate artifacts, the MAX9530 uses an adaptive poly-phase filter to correct timing and phase errors introduced by the asynchronous sampling.

Each ITU output in bypass mode has the correct number of lines per frame and the correct number of pixels per line except on the first line of each field. The timing correction block uses this line to compensate for timing errors between the incoming video signal and the crystal. As a result, the first line of each field is longer or shorter for several pixels depending on the magnitude of the frequency difference between the incoming video signal and the local crystal. For example, a 100ppm frequency difference between the incoming video signal and the crystal results in approximately 23 extra or fewer pixels on the first line of each field. Line length errors on line one are of no consequence for most applications since it is in the vertical blanking interval and does not contain active video or any other type of data. If DDR2 memory is connected ITU output is precisely correct and the timing is generated from an internal generator unless the MAX9530 is in slave mode. In slave mode, MAX9530 will use external clock, H, and F references from the master device. This mode enables multiple devices to work synchronously.

9.1.11. Digital Composite Decoding

Figure 21 shows a block diagram of the digital composite decoder. This block converts the digitized composite video signal to digital component video.

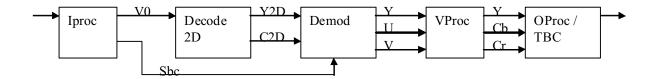


Figure 21: Digital Composite Decoder

9.1.12. Sync Level Correction and Sync Extraction

The sync extraction function extracts the raw sync signals from the video and the extracted sync information is sent to the sync processor. The sync level from the AFE is code 32 (decimal) on a 10-bit scale and the blanking level is approximately 208 (decimal) codes above the sync level. The sync slicer default threshold is set to approximately the middle of the sync pulse at decimal code 128. The sync slice level can optionally be manually adjusted using the slice bits in register 0x0F. The sync level correction block features an optional digital clamp that can be enabled in register 0x09. Enabling the digital clamp sets the sync level to code 0 (decimal) and gives higher frequency tracking of the input signals. When the digital clamp is enabled, the sync slice level in register 0x0F should be adjusted accordingly to provide equivalent noise rejection.

9.1.13. Sync Processor and Analog Copy Protection Detection

The sync processor extracts the horizontal sync and vertical sync signals. Field pulses and burst gate pulses are generated based on VSYNC and HSYNC, respectively. The sync processing block provides sync timing to measure the sync level and amplitude for the black level control and composite AGC. The sync processor also detects incoming video signal standards (525 line NTSC and 625 line PAL). Video standard information is available in Status register 0x01. The detected video standard is used to automatically configure the decoder. The MAX9530 detects the NTSC-M (standard NTSC) and PAL B/G/H/I/D (standard PAL) standards automatically. The sync processor block also detects analog copy protection. Extracted copy protection information is available in Status register 0x01.

9.1.14. Composite Automatic Gain Control (AGC)

In addition to the analog AGC that optimizes the ADC full-scale range, a digital AGC is used to more accurately set the video amplitude. The Composite AGC uses the amplitude of the sync signal to set the gain.

9.1.15. Adaptive Comb Filter

The MAX9530 uses a 5-line adaptive comb filter to separate luminance and chrominance components from a single composite channel. The adaptation algorithm does not require configuration. The adaptive comb filter adjusts based on the relationship and content of video data between neighboring lines. The filter automatically adapts the comb filter structure between a 5-line filter and a notch filter.

9.1.16. Chrominance Signal Demodulator

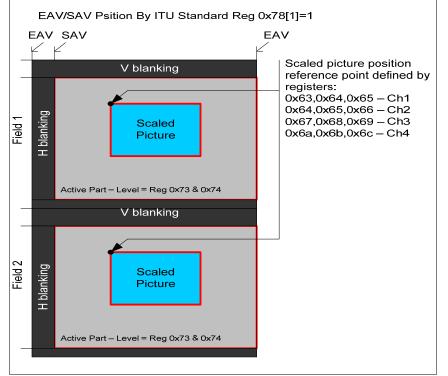
After luminance (Y) and chrominance (C) components are separated, the Y component passes through a delay line to compensate for the C component delay through the demodulator. The chrominance signal path contains an AGC before the signal demodulator. The chrominance AGC uses the color burst amplitude to set the gain. The chrominance is demodulated using a subcarrier signal locked to the burst. The demodulated chrominance signals, Cb and Cr, are low pass filtered to eliminate unwanted products of demodulation.

9.1.17. Image Enhancement and Color Correction

The MAX9530 provides contrast, brightness, hue, and saturation manual control registers.

9.1.18. Time Base Correction

The MAX9530 provides time base correction (TBC) to allow the decoder to properly process unstable and nonstandard video from sources such as a VCR. The time base correction minimizes the effect of sampling jitter to ensure that there are a correct number of pixels per active line.


9.1.19. Programmable 2D Scaler (per video input channel):

The MAX9530 features a programmable scaler. The scaler can downscale a standard definition stream up to 1:1/4. Inputs and outputs to the scaler are 8-bit multiplexed UYVYUYVY video. The scaler does not deinterlace input video.

The MAX9530 scaler supports CIF and QCIF video formats for PAL and NTSC. The horizontal scaling employs a dynamic 17-tap poly-phase interpolation filter for luminance and chrominance. The vertical scaling uses a simple line dropping algorithm after reducing the vertical bandwidth (3-tap FIR). Downscaling is achieved by programming the scaling ratio register. When outputting un-scaled video, the MAX9530 will output CCIR601 compatible 720 pixels per line at 13.5MHz. If the number of output pixels required is smaller than 720 in CCIR601, then compatible mode is used to reduce the output pixels to the desired number.

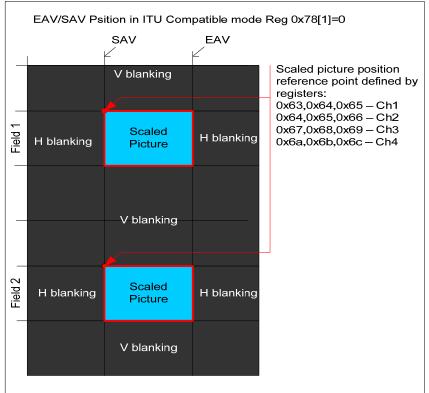

NTSC Input	Scaling	NTSC Output	Format Name
720x480	1:1	720x480	CCIR
720x480	1:1.125	640x480	SQ
720x480	1:2	360x240	CCIR[2:1]/CIF
720x480	1:2.25	320x240	SQ[2:1]/CIF
720x480	1:4	180x120	CCIR[4:1]/QCIF
720x480	1:4.5	160x120	SQ[4:1]/QCIF
PAL Input		PAL Output	
720x576	1:1	720x576	CCIR
720x576	1:2	360x288	CCIR[2:1]/CIF
720x576	1:1.875	384x288	SQ[2:1]/CIF
720x576	1:4	180x144	CCIR[4:1]/QCIF
720x576	1:3.75	192x144	SQ[4:1]/QCIF

 Table 6: Supported Screen Formats/Scaling Factors

Scaled picture positioning in memory mode (with DDR2 memory attached):

Figure 22: Scaled picture position in ITU mode – TRS (EAV.SAV are placed according to the ITU standard)

Scaled picture positioning in memory bypass mode:

Figure 23: Scaled picture position in the ITU compatible mode – TRS assigned only in the active part of the field

Video data for the scaled picture will contain SAV and EAV codes for each line with active video data for the scaled picture. All other lines will be assigned as H or V blanking. To acquire data for the scaled picture the user can program Tpp 1, 2, 3 or 4 to be a data valid signal or use EAV/SAV detection.

10. Frame Synchronization

The MAX9530 is a quad composite video and audio decoder with frame synchronization targeted at security applications.

Figure 24 shows the block diagram of the Frame Synchronizer. The outputs of the decoders are scaled by the scalers, and then enter the frame synchronizer. If the external frame buffer (DDR2) is enabled, the scaled video data from each channel is routed to the input FIFOs, and then written to the frame buffer. The frame synchronized video data from the frame buffer is then written to the output FIFOs, and sent out to the Output Formatting module which formats the outputs to the required output formats as defined in the I2C registers. A Timing Generator generates all the timing signals necessary for frame synchronized video on the four output lanes. These signals initiate and control the flow of data to the output FIFOs. The Frame synchronizer uses a double frame buffer per channel.

Frame synchronizer has two modes of operation:

1. Output is ITU compatible (correct number of lines per frame) – The Frame Synchronizer uses frame drop/repeat method for frame synchronization.

2. Output is not ITU compatible (one less line per frame) – In this case the output frame rate is faster than the input, so a frame will be repeated when necessary. This method avoids losing frames at any time. If external frame buffer is not enabled, the four video outputs will only be clock synchronous, and not frame synchronous. The DDR2 Bypass module formats the video data as required by the Output Formatting module.

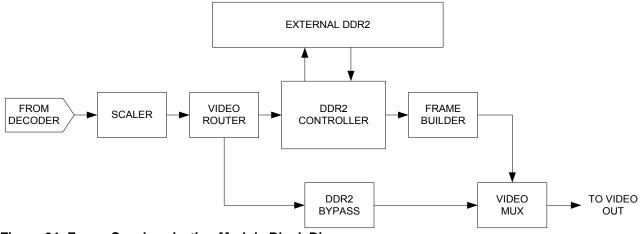


Figure 24: Frame Synchronization Module Block Diagram

10.1. Output Format

The MAX9530 supports a standard ITU-R BT.656 format. All video data and timing signals of four channels are synchronous with the appropriate clock pins LLC27/LLC54/LLC108 or LLCB27/LLCB54/LLCB108 signals without using the frame memory. With the use of frame memory, all four outputs will be synchronous with H, V, F and the corresponding clocks. Therefore, LLC or LLCB clocks with Href and Fref can be connected to four channel interfaces for synchronizing data.

The output formatting module receives video data from the Video Output FIFOs (if external DDR2 is used) or from the Video Input FIFOs (if DDR2 is bypassed). This module then formats and outputs the video data on the four video output ports, as per the I2C register settings.

The video output formats supported are described in the following sections.

10.1.1. ITU-R BT.656 Format:

In ITU-R BT.656 format, SAV and EAV sequences are inserted into the data stream to indicate the active video time. It is noted that without frame memory the number of pixels per active line is constant regardless of the actual incoming line length. In case that external memory is used the number of pixels per line will be constant (correct) for entire frame. The output timing is illustrated in Figure 4. The SAV and EAV sequences are shown in Table 4.

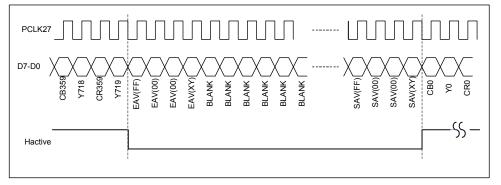


Figure 25: Output Timing Structure

Condition 656 FVH Value SAV/EAV Code Sequence										
Field	V time	Н	F	V	Н	First	Second	Third	Fourth	
		time								
EVEN	Blank	EAV	1	1	1	0xFF	0x00	0x00	0xF1	
EVEN	Blank	SAV	1	1	0	0xFF	0x00	0x00	0xEC	
EVEN	Active	EAV	1	0	1	0xFF	0x00	0x00	0xDA	
EVEN	Active	SAV	1	0	0	0xFF	0x00	0x00	0xC7	
ODD	Blank	EAV	0	1	1	0xFF	0x00	0x00	0xB6	
ODD	Blank	SAV	0	1	0	0xFF	0x00	0x00	0xAB	
ODD	Active	EAV	0	0	1	0xFF	0x00	0x00	0x9D	
ODD	Active	SAV	0	0	0	0xFF	0x00	0x00	0x80	
Table 7. ITU D DT CCC CAV and CAV Cade Convence										

Table 7: ITU-R BT.656 SAV and EAV Code Sequence

Channel	H Blanking Code with Channel ID						
	Y	Cb	Cr				
Ch1	8'h1 <mark>0</mark>	8'h8 <mark>0</mark>	8'h8 <mark>0</mark>				
Ch2	8'h11	8'h81	8'h81				
Ch3	8'h1 <mark>2</mark>	8'h8 <mark>2</mark>	8'h8 <mark>2</mark>				
Ch4	8'h1 <mark>3</mark>	8'h8 <mark>3</mark>	8'h8 <mark>3</mark>				

Table 8: Horizontal Blanking Code [signal levels] with Channel ID

Condition				6 F\	/H	Value SAV/EAV Code Sequence						
Field	V	Н	F	V	Н	First Secon Third		Fourth – TW Ch ID			D	
	time	time					d		Ch1	Ch2	Ch3	Ch4
EVEN	Blank	EAV	1	1	1	0xFF	0x00	0x00	0xF <mark>0</mark>	0xF1	0xF2	0xF <mark>3</mark>
EVEN	Blank	SAV	1	1	0	0xFF	0x00	0x00	0xE0	0xE1	0xE2	0xE3
EVEN	Active	EAV	1	0	1	0xFF	0x00	0x00	0xD <mark>0</mark>	0xD1	0xD2	0xD3
EVEN	Active	SAV	1	0	0	0xFF	0x00	0x00	0xC <mark>0</mark>	0xC1	0xC2	0xC3
ODD	Blank	EAV	0	1	1	0xFF	0x00	0x00	0xB0	0xB1	0xB2	0xB3
ODD	Blank	SAV	0	1	0	0xFF	0x00	0x00	0xA <mark>0</mark>	0xA1	0xA2	0xA3
ODD	Active	EAV	0	0	1	0xFF	0x00	0x00	0x9 <mark>0</mark>	0x91	0x9 <mark>2</mark>	0x9 <mark>3</mark>
ODD	Active	SAV	0	0	0	0xFF	0x00	0x00	0x8 <mark>0</mark>	0x81	0x8 <mark>2</mark>	0x8 <mark>3</mark>

Table 9: The Channel ID Format for 4 Ch Time-multiplexed Format with 54MHz or 108MHz

10.1.2. Output Video data timing:

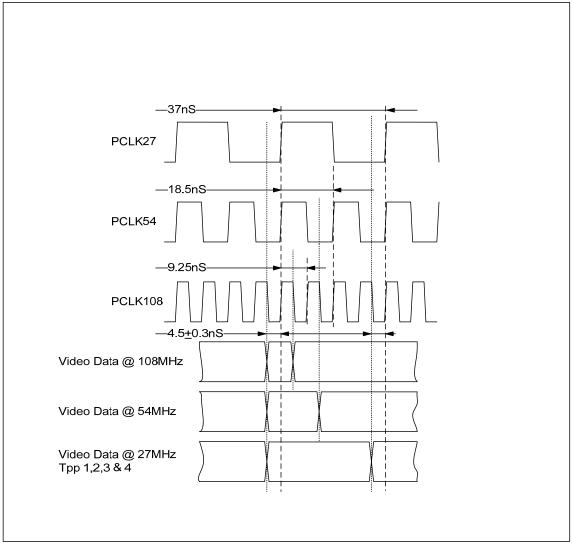
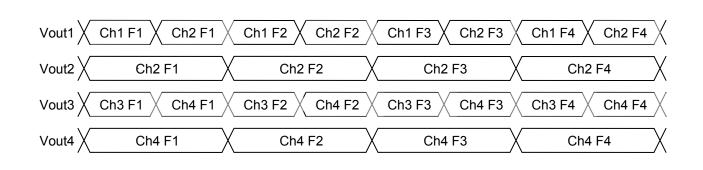



Figure 26: Output Timing

10.1.3. Output MPX options with and without frame sync memory attached:

Mode 1 [ILMODE=10; ILC=0; ILW=0]

Mode 2 [ILMODE=10; ILC=0; ILW=1]

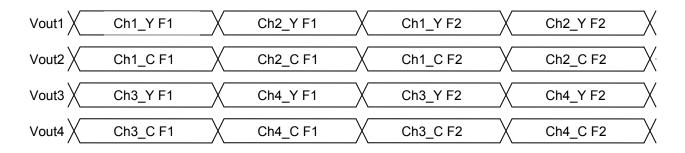


Figure 28: Data Format for 2 channel, frame interleaved, 16-bit output

Mode 3 [ILMODE=10; ILC=1; ILW=0]

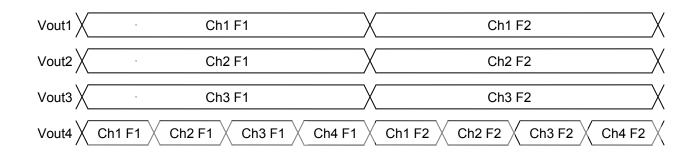


Figure 29: Data Format for 4 channel, frame interleaved, 8-bit output

Mode 4 [ILMODE=10; ILC=1; ILW=1]

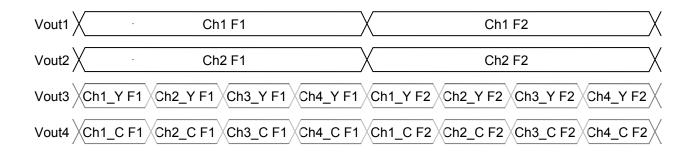


Figure 30: Data Format for 4 channel, frame interleaved, 16-bit output

Mode 5 [ILMODE=01; ILC=0; ILW=0]

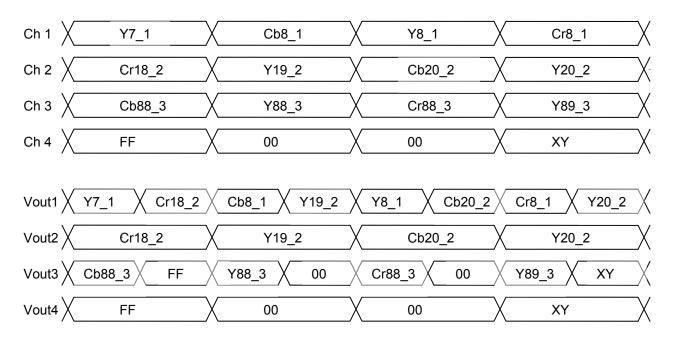
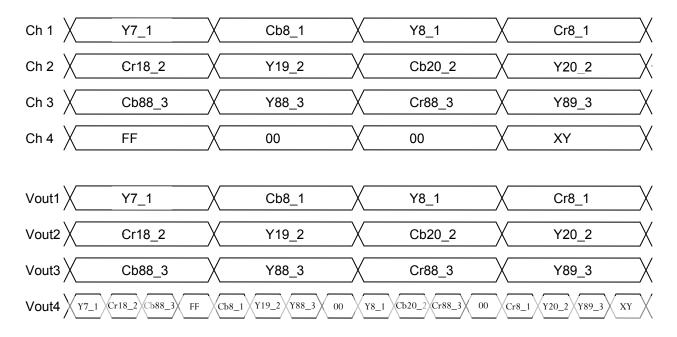



Figure 31: Data Format for 2 channel, pixel interleaved, 8-bit output

Mode 6 [ILMODE=01; ILC=0; ILW=1] → Not Implemented

Mode 7 [ILMODE=01; ILC=1; ILW=0]

Figure 32: Data Format for 4 channel, pixel interleaved, 8-bit output

10.1.4. Maxim MG3500 specific output MPX mode:

All 4 channels of the video are time multiplexed on single 16-bit port. The first 8-bit lanes always carries Luminance data, and the other 8-bit lane carries chrominance data. The data is clocked out at 54MHz single data rate.

The video output stream also carries the channel identification data so the MG3500 can identify which field belongs to the first video (Video 0) channel. Once the MG3500 finds the Video 0 data, it is able to capture four separate channels of video as four different video streams.

There is an additional active line at the bottom of the second field, and this line contains the channel identification. MG3500 interprets this channel identification data, and identifies the first channel. Once the first channel is found, it can correctly identify each channel of data. The MG3500 will continuously check this channel identification, and it will recapture the synchronization whenever the synchronization is lost.

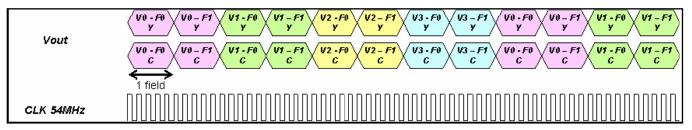


Figure 33: MG3500 Compatible Format

- EAV and SAV should be present on both the Y byte lane and the C byte lane.
- The line with channel ID embedded has less bytes compared to other lines. The total number of lines per frame is 524 plus 1 line for channel ID. This will cause the number of bytes per frame to be less than 525 * 858 bytes. This is done intentionally to avoid an overrun condition. Since the video input will run on its own clock, it is possible that the input 27MHz clock is slightly higher than video output 54MHz clock / 2. Having fewer bytes at output ensures that the output is always faster than the input. When the new input data has not been captured, the output will flag the NULL frame bit in channel ID.
- Channel ID is encoded as the number of EAV/SAV pairs and is placed in the active video pixels of the Channel ID line. This line starts with the regular EAV, HBI (Horizontal Blanking Interval), and SAV, and is followed by the EAV/SAV pairs. The line ends immediately after the pairs. The number of EAV/SAV pairs is interpreted as 3-bits of data described here:
 - 1. Start of Sequence. This flag is set for the first field/frame of the sequence (corresponding to a frame/field from stream 0). This is used by MG3500 to synchronize to the incoming multiplexed stream.
 - 2. NULL. Indicates that the field/frame is NULL and that MG3500 should discard it.
 - 3. Field. Indicates whether the field is a "top" field (flag=0) or a "bottom" field (flag=1).

The number of pairs is given by:

pairs = (field << 2) | (NULL << 1) | start_of_sequence

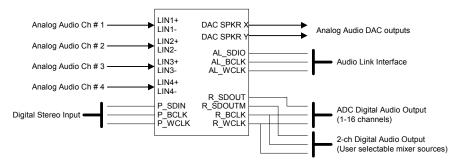
For example, if the 4 (100 in binary) pairs are observed in the active video pixels area, this means Field = 1 (bottom), Null =0 (not a null frame), start_of_sequence = 0 (not the 1_{st} channel of video)

Table 10:							Number of
Channel	Field	Vblank	EAV	HBI	SAV	Number of Lines	Byte/Line
		1	0xB6		0xAB	21 Lines	858 byte/line
	0	0	0x9D		0x80	240 Lines	858 byte/line
		1	0xB6		0xAB	1 Line	858 byte/line
0		1	0xF1		0xEC	21 Lines	858 byte/line
		0	0xDA		0xC7	240 Lines	858 byte/line
	1	0	0xDA		0xC7	5 additional EAV/SAV pairs	138 + 5*8 byte
		1	0xF1		0xEC	1 Line	858 byte/line
		1	0xB6		0xAB	21 Lines	858 byte/line
	0	0	0x9D		0x80	240 Lines	858 byte/line
		1	0xB6		0xAB	1 Line	858 byte/line
1		1	0xF1		0xEC	21 Lines	858 byte/line
		0	0xDA		0xC7	240 Lines	858 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	138 + 4*8 byte
		1	0xF1		0xEC	1 Line	858 byte/line
	0	1	0xB6		0xAB	21 Lines	858 byte/line
		0	0x9D		0x80	240 Lines	858 byte/line
		1	0xB6		0xAB	1 Line	858 byte/line
2		1	0xF1		0xEC	21 Lines	858 byte/line
		0	0xDA		0xC7	240 Lines	858 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	138 + 4*8 byte
		1	0xF1		0xEC	1 Line	858 byte/line
		1	0xB6		0xAB	21 Lines	858 byte/line
3	0	0	0x9D		0x80	240 Lines	858 byte/line
		1	0xB6		0xAB	1 Line	858 byte/line
		1	0xF1		0xEC	21 Lines	858 byte/line
		0	0xDA		0xC7	240 Lines	858 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	138 + 4*8 byte
		1	0xF1		0xEC	1 Line	858 byte/line

Table 10: NTSC

	Tak	ole 1	1:	PAL
--	-----	-------	----	-----

Channel	Field	Vblank	EAV	НВІ	SAV	Number of Lines	Number of Byte/Line
0		1	0xB6		0xAB	23 Lines	864 byte/line
	0	0	0x9D		0x80	288 Lines	864 byte/line
		1	0xB6		0xAB	1 Line	864 byte/line
0		1	0xF1		0xEC	23 Lines	864 byte/line
		0	0xDA		0xC7	288 Lines	864 byte/line
	1	0	0xDA		0xC7	5 additional EAV/SAV pairs	144 + 5*8 byte
		1	0xF1		0xEC	1 Line	864 byte/line
		1	0xB6		0xAB	23 Lines	864 byte/line
	0	0	0x9D		0x80	288 Lines	864 byte/line
		1	0xB6		0xAB	1 Line	864 byte/line
1		1	0xF1		0xEC	23 Lines	864 byte/line
		0	0xDA		0xC7	288 Lines	864 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	144 + 4*8 byte
		1	0xF1		0xEC	1 Line	864 byte/line
		1	0xB6		0xAB	23 Lines	864 byte/line
	0	0	0x9D		0x80	288 Lines	864 byte/line
		1	0xB6		0xAB	1 Line	864 byte/line
2		1	0xF1		0xEC	23 Lines	864 byte/line
		0	0xDA		0xC7	288 Lines	864 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	144 + 4*8 byte
		1	0xF1		0xEC	1 Line	864 byte/line
		1	0xB6		0xAB	23 Lines	864 byte/line
3	0	0	0x9D		0x80	288 Lines	864 byte/line
		1	0xB6		0xAB	1 Line	864 byte/line
		1	0xF1		0xEC	23 Lines	864 byte/line
		0	0xDA		0xC7	288 Lines	864 byte/line
	1	0	0xDA		0xC7	4 additional EAV/SAV pairs	144 + 4*8 byte
		1	0xF1		0xEC	1 Line	864 byte/line


10.2.Extra Sync Output:

The additional timing information such as syncs and field flag are also supported through the TPPx pins. The Hsync, Vsync and field flag timings are controlled by I²C registers and can be set to follow EAV/SAV information or to be "H_Valid or V_Valid". If the scaler is not active the two modes are identical. If the scaler is active "H_Valid and V_Valid" will point to the active part of the scaled picture. This is especially important if the MAX9530 is used in memory bypass mode because in bypass mode the scaled frame data are output in bursts (data output is not continuous).

11. Audio Subsystem

11.1. Single Device Operation

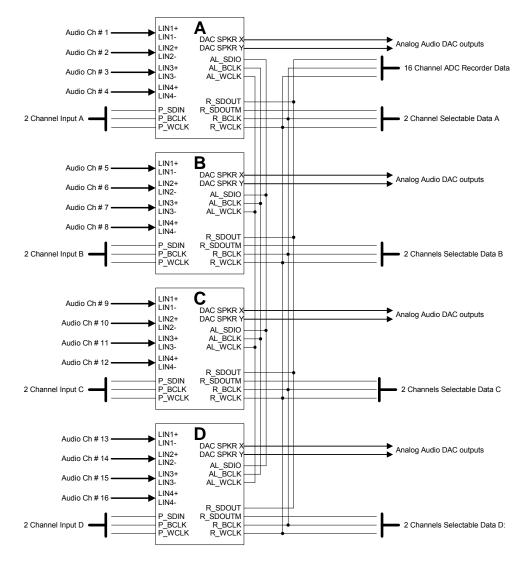
The Audio Subsystem of the MAX9530 accepts four (4) analog and one (1) stereo digital input signal sources, and outputs two (2) analog and multiple digital signals as shown in Figure 18 below:

Figure 34: MAX9530 Audio Subsystem

Analog audio input signals may be supplied by either single ended or differential sources. Each of the four (4) signals are converted using ADCs and have independent low and high pass filters, automatic gain adjust, low level audio quieting, and signal detection control circuitry.

The Playback digital audio interface accepts mono or stereo input signal data in a variety of different formats, including Left Justified, I2S compatible, or TDM (DSP) compatible modes. The Playback digital audio interface may function in either a synchronous master/slave or asynchronous slave mode. Digital Left and Right input signals may be independently selected prior to being processed in the mono digital input signal path.

The Record digital audio interface output may be used to send recorded ADC signal data to an external digital audio recorder, or other digital audio device. Any recorded ADC signal source may be routed to any of 16 channel slots. The Record digital audio interface also contains a 2nd serial output pin for outputting 2 channels of user selectable signal sources, either directly from the input signal sources or from the internal mixers within the MAX9530 audio subsystem. Digital output data may operate in a variety of different formats, including Left Justified, I2S compatible, or TDM (DSP) compatible modes. The Record digital audio interface may function in either a synchronous master/slave or asynchronous slave mode.


The MAX9530 contains two DACs for providing analog audio outputs for analog recording or monitoring signal sources. The user may select and route any mixed signal source combinations to be sent to the DAC analog audio outputs.

The Audio Link interface is used to provide a dedicated digital interface that allows up to four (4) MAX9530 devices to be used together as part of a larger audio subsystem. This interface is intended to be used only for

MAX9530 link operation, but could be utilized as an additional 16 channel TDM (DSP) interface if required in special instances.

11.2. Linked Multi-Device Operation

The MAX9530 Audio Link interface allows up to four (4) devices to be used together as a larger audio subsystem, shown in Figure 35:

Figure 35: Four MAX9530s using Audio Link.

When operating in a linked configuration, the digital Audio Link interface allows each device to share and monitor the internal local and global mixers, ADC inputs, digital signal inputs, and other information as necessary to work together. The record output data (SDOUT) pins may also be tied together to allow all 16 ADC channels to interface on a single interface to an external recorder device. Additionally, the 8 analog DAC outputs, and four stereo digital mixer outputs may each be programmed to be sourced as desired by the user.

11.3. Audio Subsystem Internal Signal Path Details

The MAX9530 audio subsystem contains all analog and digital audio interfaces, digital signal processing filtering, audio multiplexing and mixing, gain control, detection and status reporting, and format conversion to provide a complete audio processing system. The many signal sources for single and multi-chip use, are routed and managed on a time division multiplexed internal common bus as shown. The I²C register map descriptions provide a detailed operational explanation of user programmable configurability of the audio subsystem.

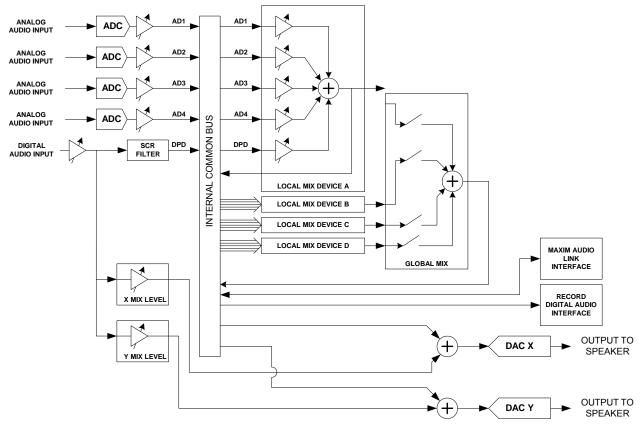


Figure 36: Audio Subsystem Signal Path

11.4. ADC Signal Path

The ADC signal path contains an analog anti-alias filter prior to the ADC. In addition to low pass decimation filters, a user programmable high pass filter may be used prior to applying gain control. A digital AGC (Automatic Gain Control) circuit may be enabled to allow automatic compensation of the signal level based on content or environment differences. Also, a digital low level audio quieting circuit may be enabled to make the noise floor less noticeable when little or no signal is present. A signal detection control circuit monitors the signal content and can be used to send an interrupt from the part when signals are present.

11.5. Playback Digital Input Signal Path

The MAX9530 Playback digital audio interface accepts a stereo signal, converts it as desired to a mono signal, and filters the signal for conversion or sample rate conversion. Sample rate conversion is required to convert the signal to the same rate used by the Internal Common Bus used by the rest of the audio subsystem. Independent gain controls are implemented when routing this signal to the DAC-X and DAC-Y playback paths.

11.6. Internal Mixers

There are two digital mixers connected to the Internal Common Bus. The first, Local Mixer, is dedicated to mixing the 5 local input signal sources using the I2C programmable level controls, and outputs the result back to the ICB so that it may be routed as desired by the user to the SDOUTM, or DAC X/Y outputs. The result is also sent to the Audio Link so it can be used by the other linked MAX9530 devices if required.

The second, Global Mixer, is only useful when using the Audio Link. It allows each linked device's Local Mixer output to be combined together. Although the user may control which local mixer signals are enabled to the global mixer, no additional level control is available. The Global Mixer may be routed as desired by the user to the SDOUTM, or DAC X/Y outputs. The result is also sent to the Audio Link so it can be routed to other devices outputs if required.

11.7. DAC-X and DAC-Y Signal Path

Any signal present on the Internal Common Bus may be independently selected for conversion in the DAC-X and DAC-Y outputs. The digital audio input from the Playback interface may be mixed with the selected signals.

11.8. Record and Mixer Digital Output

The Record digital audio interface contains two (2) serial output pins. The SDOUT is used to output up to 16 channels of recorded ADC signal data. The SDOUT is used to output 2 channels of selected signal sources from the Internal Common Bus, which includes the ADCs, Local and Global Mixers, and digital input signal source.

Signal data may be output in either an 8 or 16 bit format, and with or without A-law or u-Law companding.

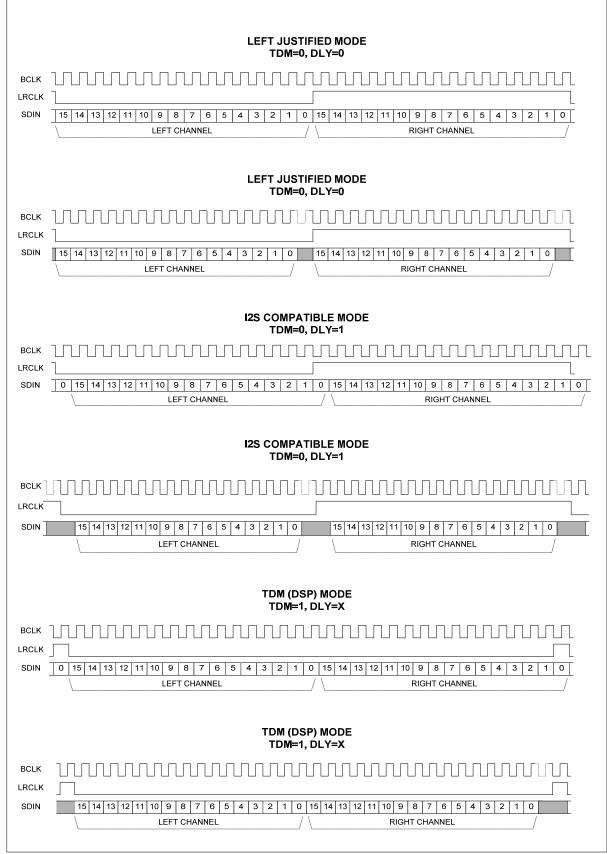
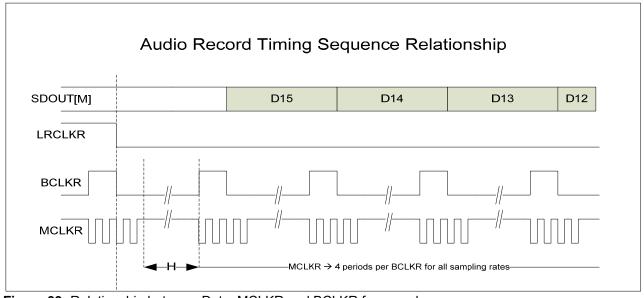
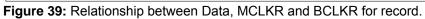




Figure 37: Different Audio Modes supported by MX9530

				Ľ	2S or L)M=0, I	DLY=x		Ουτρ	PUTS				
BCLKP							(with 1	• chai		015)						000000
LRCLKP																
SDOUT	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
SDOUTM	S0								S8							
					٦	FDM (C	OSP) M (with	TDN			PUTS					
BCLKP																00000
SDOUT	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
SDOUTM	SM0	SM1														

Figure 38: Input Playback and Output Record Digital Audio Interface Format

12. I2C Serial Interface

The MAX9530 features an I²C/SMBus[™]-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX9530 and the master at clock rates up to 400kHz. Figure 22 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX9530 by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX9530 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX9530 transmits the proper slave address followed by a series of nine SCL pulses. The MAX9530 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500Ω, is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500Ω, is required on SDA and SCL are optional. Series resistors protect the digital inputs of the MAX9530 from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

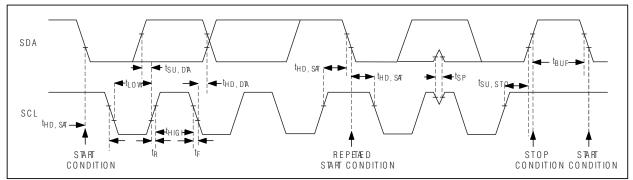


Figure 40: 2-Wire Interface Timing Diagram

12.1.

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section).

12.2.

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 23). A START condition from the master signals the beginning of a transmission to the MAX9530. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

12.3.

Early STOP Conditions

The MAX9530 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

12.4.

Slave Address

The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the MAX9530 the seven most significant bits are 0011000. Setting the read/write bit to 1 (slave address = 0x31) configures the MAX9530 for read mode. Setting the read/write bit to 0 (slave address = 0x30) configures the MAX9530 for write mode. The address is the first byte of information sent to the MAX9530 after the START condition.

12.5.

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the MAX9530 uses to handshake receipt each byte of data when in write mode (see Figure 42). The MAX9530 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master will retry communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX9530 is in read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX9530, followed by a STOP condition.

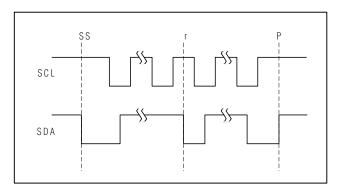


Figure 41: START, STOP, and REPEATED START Conditions

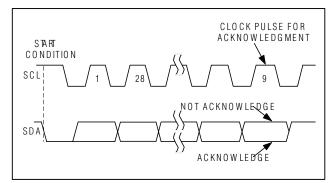
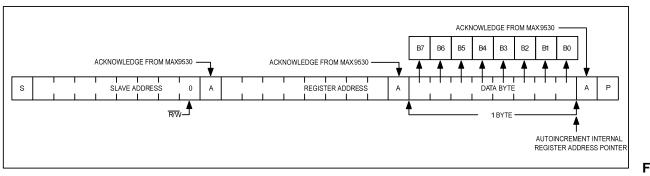


Figure 42: Acknowledge

12.6.


Write Data Format

A write to the MAX9530 includes transmission of a START condition, the slave address with the R//W\ bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 25 illustrates the proper frame format for writing one byte of data to the MAX9530. Figure 10 illustrates the frame format for writing n-bytes of data to the MAX9530.

The slave address with the R//W\ bit set to 0 indicates that the master intends to write data to the MAX9530. The MAX9530 acknowledges receipt of the address byte during the master-generated 9th SCL pulse.

The second byte transmitted from the master configures the MAX9530's internal register address pointer. The pointer tells the MAX9530 where to write the next byte of data. An acknowledge pulse is sent by the MAX9530 upon receipt of the address pointer data.

The third byte sent to the MAX9530 contains the data that will be written to the chosen register. An acknowledge pulse from the MAX9530 signals receipt of the data byte. The address pointer auto increments to the next register address after each received data byte. This auto-increment feature allows a master to write to sequential registers within one continuous frame. Figure 26 illustrates how to write to multiple registers with one frame. The master signals the end of transmission by issuing a STOP condition. Register addresses greater than 0x17 are reserved. Do not write to these addresses.

igure 43: Writing One Byte of Data to the MAX9530.

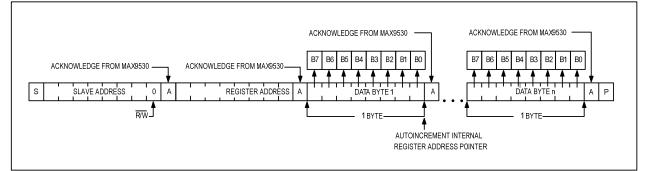


Figure 44: Writing n-Bytes of Data to the MAX9530

12.7.

Read Data Format

Send the slave address with the R//W\ bit set to 1 to initiate a read operation. The MAX9530 acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00.

The first byte transmitted from the MAX9530 will be the contents of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer auto-increments after each read data byte. This auto-increment feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read will be from register 0x00.

The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the MAX9530's slave address with the R//W\ bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R//W\ bit set to 1. The MAX9530 then transmits the contents of the specified register. The address pointer auto-increments after transmitting the first byte.

The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 27 illustrates the frame format for reading one byte from the MAX9530. Figure 28 illustrates the frame format for reading multiple bytes from the MAX9530.

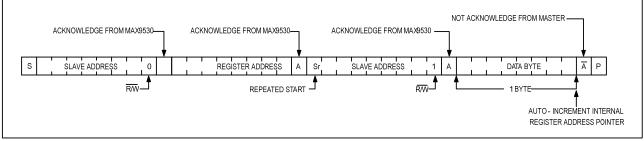


Figure 45: Reading One Byte of Data from the MAX9530

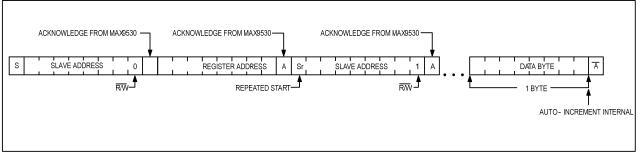


Figure 46: Reading n-Bytes of Data from the MAX9530

13. I2C Slave Address

The MAX9530 responds to the following slave addresses:

DEVADDR<1:0>	Write Address	Read Address
0_0	0x50	0x51
0_1	0x52	0x53
0_SDA	0x58	0x59
0_SCL	0x5A	0x5B
1_0	0x54	0x55
1_1	0x56	0x57
1_SDA	0x5C	0x5D
1_SCL	0x5E	0x5F
SDA_0	0x60	0x61
SDA_1	0x62	0x63
SDA_SDA	0x64	0x65
SDA_SCL	0x66	0x67
SCL_0	0x68	0x69
SCL_1	0x6A	0x6B
SCL_SDA	0x6C	0x6D
SCL_SCL	0x6E	0x6F

Table 12: Slave Addresses

14. SEGMENT = 0x00

14. SEGN										
REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
SEGMENT POINTER										
Segment Pointer (write-only)				SEG	MENT				0x00	0x00
STATUS										
Video Status 1 (read only)	LSLCK4	LSLCK3	LSLCK2	LSLCK1	VIDA4	VIDA3	VIDA2	VIDA1	0x01	
Video Status 2 (read only)	0	0	0	0	FERR4	FERR3	FERR2	FERR1	0x02	
Video Status 3 (read only)	0	0	0	0	CTHR4	CTHR3	CTHR2	CTHR1	0x03	
Video Status 4 (read only)	0	0	0	0	OVR4	OVR3	OVR2	OVR1	0x04	
Video Status 5 (read only)	0	0	0	0	NSTD4	NSTD3	NSTD2	NSTD1	0x05	
Video Status 6 (read only)	0	0	0	0	L525_4	L525_3	L525_2	L525_1	0x06	
Video Status 7 (read only)	0	0	0	0	ACP4	ACP3	ACP2	ACP1	0x07	
Audio Status 1 (read only)	0	0	0	0	AUDA4	AUDA3	AUDA2	AUDA1	0x08	
Audio Status 2 (read only)	0	0	0	0	CLDAD4	CLDAD3	CLDAD2	CLDAD1	0x09	
Audio Status 3 (read only)	CLDGM	UNLI	UNLR	DETSI	CLDLM	CLDDA2	CLDDA1	CLDSI	0x0A	
INTERRUPT MASKS										
Video IRQ Mask 1	IVID1	ILSLCK1	IFERR1	ICTHR1	IOVR1	INSTD1	IL5251	IACP1	0x0B	0x00
Video IRQ Mask 2	IVID2	ILSLCK2	IFERR2	ICTHR2	IOVR2	INSTD2	IL5252	IACP2	0x0C	0x00
Video IRQ Mask 3	IVID3	ILSLCK3	IFER3	ICTHR3	IOVR3	INSTD3	IL5253	IACP3	0x0D	0x00
Video IRQ Mask 4	IVID4	ILSLCK4	IFERR4	ICTHR4	IOVR4	INSTD4	IL5254	IACP4	0x0E	0x00
Audio IRQ Mask Global	ICLDGM	IUNLI	IUNLR	IDETSI	ICLDLM	ICLDDA2	ICLDDA1	ICLDSI	0x0F	0x00
Audio IRQ Mask 1	0	0	0	0	0	0	IAUDA1	ICLDAD1	0x10	0x00
Audio IRQ Mask 2	0	0	0	0	0	0	IAUDA2	ICLDAD2	0x11	0x00
Audio IRQ Mask 3	0	0	0	0	0	0	IAUDA3	ICLDAD3	0x12	0x00
Audio IRQ Mask 4	0	0	0	0	0	0	IAUDA4	ICLDAD4	0x13	0x00
SYSTEM CONTROL		-		-	-	-				
System Control	HRST	0	0	OS	GSHDN	0	SYS	CLK	0x14	0x00
Unused	0	0	0	0	0	0	0	0	0x15	0x00
Unused	0	0	0	0	0	0	0	0	0x16	0x00
Unused	0	0	0	0	0	0	0	0	0x17	0x00
Unused	0	0	0	0	0	0	0	0	0x18	0x00
Unused	0	0	0	0	0	0	0	0	0x19	0x00
Unused	0	0	0	0	0	0	0	0	0x1A	0x00
Unused	0	0	0	0	0	0	0	0	0x1R	0x00
Unused	0	0	0	0	0	0	0	0	0x1C	0x00
Unused	0	0	0	0	0	0	0	0	0x1D	0x00
Unused	0	0	0	0	0	0	0	0	0x1E	0x00
Unused	0	0	0	0	0	0	0	0	0x1E	0x00
VIDEO DECODER 1	v	v	v	v	v	Ŭ	v	Ũ	UX II	0,00
Standard Select and Shutdown		STDSEL		AUTOD	0	VH	SC	VIDEN	0x20	0x51
Video Control	0	0	0	0	0	0	VDIFF	VSRST	0x20	0x00
Output Scaler								LEV	0x21	0x00 0x00
Contrast	1111	BIO			NT	0	50F	\ V	0x22 0x23	0x00 0x80
Brightness	+				GHT				0x23 0x24	0x00 0x00
					JE					
Hue Seturation Ch									0x25	0x80
Saturation Cb	SATU SATV							0x26	0x88	
Saturation Cr	SATV						MD	0x27	0x88	
Clamp Mode	0 0 CLMODE						CL	MP	0x28	0x08

REGISTER	B7	B6	B5	B4	В3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Gain Control	0	0 CRAGC CMPAGC ADAGC ADCGAIN								0x02
Color Kill and Filter Select	BW	CKDIS	FIL	SEL		CKTH	IRSH		0x2A	0x23
Test Pattern	0	0	0	TGEN	TGTIM	TGSRC	CE	BAR	0x2B	0x00
Output clipping	0	0	0	0	0	0	0	CLIP	0x2C	0x01
Miscellaneous	0	0	S	YNCAMPAE)J	ACPOR	ACPST	DISAAFLT	0x2D	0x00
Equalizer	0	0 0 0 0 0 0 0 FRCEQ								0x00
Equalizer	ADJEQ FIXEQ							0x2F	0x70	
VIDEO DECODER 2										1
Standard Select and Shutdown		STDSEL		AUTOD	0	VH	SC	VIDEN	0x30	0x51
Video Control	0	0	0	0	0	0	VDIFF	VSRST	0x31	0x00
Output Scaler	INT	DROP		SCALEH		0	SCA	ALEV	0x32	0x00
Contrast				CC	NT				0x33	0x80
Brightness				BRI	GHT				0x34	0x00
Hue				н	JE				0x35	0x80
Saturation Cb				SA	TU				0x36	0x88
Saturation Cr				SA	TV				0x37	0x88
Clamp Mode	0	0		CLM	ODE		CL	.MP	0x38	0x08
Gain Control	0	CRAGC	CMPAGC	ADAGC		ADC	GAIN		0x39	0x02
Color Kill and Filter Select	BW CKDIS FILSEL CKTHRSH						0x3A	0x23		
Test Pattern	0	0	0	TGEN	TGTIM	TGSRC	CE	BAR	0x3B	0x00
Output clipping	0	0	0	0	0	0	0	CLIP	0x3C	0x01
Miscellaneous	0	0	S	YNCAMPAE)J	ACPOR	ACPST	DISAAFLT	0x3D	0x00
Equalizer	0	0	0	0	0	0	0	FRCEQ	0x3E	0x00
Equalizer		AD	JEQ			FIX	EQ		0x3F	0x70
VIDEO DECODER 3										11
Standard Select and Shutdown		STDSEL		AUTOD	0	VH	SC	VIDEN	0x40	0x51
Video Control	0	0	0	0	0	0	VDIFF	VSRST	0x41	0x00
Output Scaler	INT	DROP		SCALEH	1	0	SCA	ALEV	0x42	0x00
Contrast				CC	NT				0x43	0x80
Brightness				BRI	GHT				0x44	0x00
Hue				н	JE				0x45	0x80
Saturation Cb				SA					0x46	0x88
Saturation Cr				SA	TV				0x47	0x88
Clamp Mode	0	0			ODE		CL	.MP	0x48	0x08
Gain Control	0	CRAGC	CMPAGC	ADAGC		ADC	GAIN		0x49	0x02
Color Kill and Filter Select	BW	CKDIS		SEL		CKTH			0x4A	0x23
Test Pattern	0	0	0	TGEN	TGTIM	TGSRC		BAR	0x4B	0x00
Output clipping	0	0	0	0	0	0	0	CLIP	0x4C	0x01
Miscellaneous	0	0	S	YNCAMPAE)J	ACPOR	ACPST	DISAAFLT	0x4D	0x00
Equalizer	0	0	0	0	0	0	0	FRCEQ	0x4E	0x00
Equalizer		AD	JEQ			FIX	EQ		0x4F	0x70
VIDEO DECODER 4										
Standard Select and Shutdown		STDSEL		AUTOD	0	VH	SC	VIDEN	0x50	0x51
Video Control	0	0 0 0 0 0 VDIFF VSRST						0x51	0x00	
Output Scaler	INT	DROP		SCALEH	I	0		ALEV	0x52	0x00
Contrast		1	ı	CC	NT	1			0x53	0x80
Brightness					GHT				0x54	0x00
Hue	HUE								0x55	0x80

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Saturation Cb		•	•	SA	TU	•	•	•	0x56	0x88
Saturation Cr				SA	TV				0x57	0x88
Clamp Mode	0	0		CLN	ODE		CL	MP	0x58	0x08
Gain Control	0	CRAGC	CMPAGC	ADAGC		ADC	GAIN		0x59	0x02
Color Kill and Filter Select	BW CKDIS FILSEL CKTHRSH							0x5A	0x23	
Test Pattern	0	0	0	TGEN	TGTIM	TGSRC	CE	AR	0x5B	0x00
Output clipping	0	0	0	0	0	0	0	CLIP	0x5C	0x01
Miscellaneous	0	0	S	YNCAMPA	J	ACPOR	ACPST	DISAAFLT	0x5D	0x00
Equalizer	0	0	0	0	0	0	0	FRCEQ	0x5E	0x00
Equalizer		AD	JEQ			FIX	EQ		0x5F	0x70
A/V ROUTER										
FIFO Source	CH	l4R	CH	I3R	CH	I2R	CH	I1R	0x60	0x00
Unused	0	0	0	0	0	0	0	0	0x61	0x00
Unused	0	0	0	0	0	0	0	0	0x62	0x00
FRAME SYNC	1	1	1	I	1	I	I	1	1	1
Bank0 Write Screen Position	0	0	0	0	0	0	CH1X)	/[17:16]	0x63	0x00
Bank0 Write Screen Position			I	CH1X	Y[15:8]	l	l		0x64	0x00
Bank0 Write Screen Position					(Y[7:0]				0x65	0x00
Bank1 Write Screen Position	0	0	0	0	0	0	CH2X	/[17:16]	0x66	0x00
Bank1 Write Screen Position		-	-		Y[15:8]	-		[]	0x67	0x00
Bank1 Write Screen Position	CH2XY[15:8] CH2XY[7:0]								0x68	0x00
Bank2 Write Screen Position	0	0	0	0	0	0	CH3X)	/[17:16]	0x69	0x00
Bank2 Write Screen Position	Ŭ	ů	CH3XY[15:8]						0x6A	0x00
Bank2 Write Screen Position		CH3XY[7:0]						0x6R	0x00	
Bank3 Write Screen Position	0	0	0	0	0	0	CH4X)	/[17:16]	0x6C	0x00
Bank3 Write Screen Position	•	Ū	Ŭ	-	Y[15:8]	Ŭ	01147	[11.10]	0x6D	0x00
Bank3 Write Screen Position					(Y[7:0]				0x6E	0x00
Freeze Frame	СН	4FF	CH			2FF	СН	1FF	0x6E	0x00
Frame Memory Control	0	0	0	0	DDRIDLE	DDRDS	DDR512	FRMBYP	0x70	0x00
Time Base Correction	0	0	U	-	TBC	DDI(DO	DDIGIZ	TRIVIDITI	0x70	0x00
Unused	0	0	0	0	0	0	0	0	0x71	0x00
VIDEO OUTPUT	U	0	U	0	U	U	0	0	0/12	0,00
Y Reset				VE	ST				0x73	0x10
CbCr Reset					RST				0x73 0x74	0x10 0x7F
Vout Control	0	DISMSB		ODE CH		ODE	ILC	ILW	0x74 0x75	0x7F 0x00
Output Frame Rate	0	0	0		0	0			0x75 0x76	0x00 0x00
· · ·	0	0	0	0	U		INE	501		
Output line drop					0	1		CHMUY	0x77	0x01
EAV/SAV and Channel ID	0	0	0	0	0	0	TRSPOS		0x78	0x01
H & V Definition	-		-	0	0	0	0 	HV	0x79	0x00
TPP Control		P4		P3		P2		P1	0x7A	0x00
Output tri-state	0	VOUT4Z	VOUT3Z	VOUT2Z	VOUT1Z	PCK108Z	PCK54Z	PCK27Z	0x7B	0x00
Output clock inversion	0	0	0	0	0	PCK108I	PCK54I	PCK27I	0x7C	0x00
Unused	0	0	0	0	0	0	0	0	0x7D	0x00
Unused	0	0	0	0	0	0	0	0	0x7E	0x00
Unused	0	0	0	0	0	0	0	0	0x7F	0x00
AUDIO ANALOG IN 1		_			1					
ADC Control	ATEN DIFF ADCHPF ADCLEV						0x80	0x00		
ADC Control	NQE	NQFAS	DET	LPF		DET	OFS		0x81	0x00

REGISTER	В7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
ADC Control	ADCEN	0	0	AGCLP		AG	СТН		0x82	0x00
ADC Control	AD	CG	AGC	ATK	AGC	RLS	AGC	HLD	0x83	0x00
Unused	0	0	0	0	0	0	0	0	0x84	0x00
Unused	0	0	0	0	0	0	0	0	0x85	0x00
Unused	0	0	0	0	0	0	0	0	0x86	0x00
Unused	0	0	0	0	0	0	0	0	0x87	0x00
Unused	0	0	0	0	0	0	0	0	0x88	0x00
Unused	0	0	0	0	0	0	0	0	0x89	0x00
Unused	0	0	0	0	0	0	0	0	0x8A	0x00
Unused	0	0	0	0	0	0	0	0	0x8B	0x00
Unused	0	0	0	0	0	0	0	0	0x8C	0x00
Unused	0	0	0	0	0	0	0	0	0x8D	0x00
Unused	0	0	0	0	0	0	0	0	0x8E	0x00
Unused	0	0	0	0	0	0	0	0	0x8F	0x00
AUDIO ANALOG IN 2	ů	ů	•	Ŭ	•	Ŭ	Ŭ	ů	0,01	0,000
ADC Control	ATEN	DIFF	ADC	HPF			LEV		0x90	0x00
ADC Control	NQE	NQFAS		LPF		-	OFS		0x90	0x00
ADC Control	ADCEN	0	0	AGCLP					0x92	0x00
ADC Control		CG	-	ACCEN	AGCTH AGCRLS AGCHLD				0x93	0x00
Unused	0	0	0	0	0	0	0	0	0x93	0x00
Unused	0	0	0	0	0	0	0	0	0x94	0x00
Unused	0	0	0	0	0	0	0	0	0x95 0x96	0x00 0x00
	-	0	0	-	-	0	0	0		
Unused	0	0	0	0	0	0	0	0	0x97 0x98	0x00
Unused	-	0	0	-		0	-	-		0x00
Unused	0	0	0	0	0	0	0	0	0x99	0x00
Unused	0	0	0	0	0	0	0	0	0x9A	0x00 0x00
Unused	0	0	0	0	0	0	0	0	0x9B	
Unused	-	-	-	-	-	-	-	-	0x9C	0x00
Unused	0	0	0	0	0	0	0	0	0x9D	0x00
Unused	0	0	0	0	0	0	0	0	0x9E	0x00
	0	0	0	0	0	0	0	0	0x9F	0x00
AUDIO ANALOG IN 3	4751	DIFF							0.40	0.00
ADC Control	ATEN	DIFF		HPF					0xA0	0x00
ADC Control	NQE	NQFAS		LPF			OFS		0xA1	0x00
ADC Control	ADCEN	0	0	AGCLP			CTH		0xA2	0x00
ADC Control	AD			CATK	AGC	-		HLD	0xA3	0x00
Unused	0	0	0	0	0	0	0	0	0xA4	0x00
Unused	0	0	0	0	0	0	0	0	0xA5	0x00
Unused	0	0	0	0	0	0	0	0	0xA6	0x00
Unused	0	0	0	0	0	0	0	0	0xA7	0x00
Unused	0	0	0	0	0	0	0	0	0xA8	0x00
Unused	0	0	0	0	0	0	0	0	0xA9	0x00
Unused	0	0	0	0	0	0	0	0	0xAA	0x00
Unused	0	0	0	0	0	0	0	0	0xAB	0x00
Unused	0	0	0	0	0	0	0	0	0xAC	0x00
Unused	0	0	0	0	0	0	0	0	0xAD	0x00
Unused	0	0	0	0	0	0	0	0	0xAE	0x00
Unused	0	0	0	0	0	0	0	0	0xAF	0x00

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
AUDIO ANALOG IN 4			1		1				1	
ADC Control	ATEN	DIFF	ADC				CLEV		0xB0	0x00
ADC Control	NQE	NQFAS	DET	LPF			OFS		0xB1	0x00
ADC Control	ADCEN								0xB2	0x00
ADC Control	AD	CG	AGC	ATK	AGC	RLS	AGO	CHLD	0xB3	0x00
Unused	0	0 0 0 0 0 0 0							0xB4	0x00
Unused	0	0	0	0	0	0	0	0	0xB5	0x00
Unused	0	0	0	0	0	0	0	0	0xB6	0x00
Unused	0	0	0	0	0	0	0	0	0xB7	0x00
Unused	0	0	0	0	0	0	0	0	0xB8	0x00
Unused	0	0	0	0	0	0	0	0	0xB9	0x00
Unused	0	0	0	0	0	0	0	0	0xBA	0x00
Unused	0	0	0	0	0	0	0	0	0xBB	0x00
Unused	0	0	0	0	0	0	0	0	0xBC	0x00
Unused	0	0	0	0	0	0	0	0	0xBD	0x00
Unused	0	0	0	0	0	0	0	0	0xBE	0x00
Unused	0	0	0	0	0	0	0	0	0xBF	0x00
AUDIO DIGITAL IN									1	
Serial Input	IH	PF	ILENA	IRENA	DIEN		IFREQ		0xC0	0x00
Serial Input	0	0	0			ILEVEL		0xC1	0x00	
Serial Input	IMAS	0	ITDM	IBCI	IDLY		IBS		0xC2	0x00
AUDIO MIXERS				I		l				1
Mixer 1	AMEN	BMEN	CMEN	DMEN		MI	G0		0xC3	0x00
Mixer 1			G2				G1		0xC4	0x00
Mixer 1			G4				G3		0xC5	0x00
AUDIO DIGITAL OUT			•						UNCC.	0,000
Serial Output		ALSEL				MOSEL			0xC6	0x00
Serial Output	SMENA	SOENA	0			MISEL			0xC7	0x00
Serial Output	OINERV		SLOT	l			SLOT		0xC8	0x00
Serial Output			SLOT				SLOT		0xC9	0x00
Serial Output	SMHIZD	SM8		-MT	SOHIZD	SO8	-	FMT	0xCA	0x00
Serial Output	RMAS	0	RTDM	RBCI	RDLY	300	RBS		0xCA 0xCB	0x00
Unused	0	0	0	0	0	0	0	0	0xCC	0x00
	0	0	0	0	0	0	0	0	0xCC 0xCD	0x00
Unused	-			-						
Unused	0	0	0	0	0	0	0	0	0xCE	0x00
	0	0	0	0	0	0	0	0	0xCF	0x00
AUDIO ANALOG OUT	D/0		DAGIEN	[DAG40E			0.50	0.00
Audio Out 1	DAC	IHPF	DAC1EN			DAC1SEL			0xD0	0x00
Audio Out 1									0xD1 0xD2	0x00
Audio Out 1		DAC1MIXLEV DAC2HPF DAC2EN DAC2SEL								0x00
Audio Out 2	DAC	ZHPF	DAC2EN			DAC2SEL			0xD3	0x00
Audio Out 2									0xD4	0x00
Audio Out 2				DAC2	MIXLEV				0xD5	0x00
AUDIO CONTROL							1	1	1	,
Audio Global Enable	0	0	0	0	0	0	0	AUDEN	0xD6	0x00
AUDIO CLOCKS			1		1	1			1	,
Audio Clock Control	ALMAS	ALENA		IUM	0		AFREQ		0xD7	0x00
Unused	0	0	0	0	0	0	0	0	0xD8	0x00

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
JTAG									I	
JTAG1		JTAG	_VER			JTAG_P	N[15:12]		0xD9	(0x00)
JTAG2				JTAG_F	PN[11:4]	JTAG_			0xDA	(0x00)
JTAG3		JTAG_	0xDB	(0x61)						
JTAG4				JTAG_ID[6:0)]			1	0xDC	(0x97)
MISC		1		r	1	1	r	r	1	1
Unused	0	0	0	0	0	0	0	0	0xDE	0x00
Unused	0	0	0	0	0	0	0	0	0xDF	0x00
Unused	0	0	0	0	0	0	0	0	0xE0	0x00
Unused	0	0	0	0	0	0	0	0	0xE1	0x00
Unused	0	0	0	0	0	0	0	0	0xE2	0x00
Unused	0	0	0	0	0	0	0	0	0xE3	0x00
Unused	0	0	0	0	0	0	0	0	0xE4	0x00
Unused	0	0	0	0	0	0	0	0	0xE5	0x00
Unused	0	0	0	0	0	0	0	0	0xE6	0x00
Unused	0	0	0	0	0	0	0	0	0xE7	0x00
Unused	0	0	0	0	0	0	0	0	0xE8	0x00
Unused	0	0	0	0	0	0	0	0	0xE9	0x00
Unused	0	0	0	0	0	0	0	0	0xEA	0x00
Unused	0	0	0	0	0	0	0	0	0xEB	0x00
Unused	0	0	0	0	0	0	0	0	0xEC	0x00
Unused	0	0	0	0	0	0	0	0	0xED	0x00
Unused	0	0	0	0	0	0	0	0	0xEF	0x00
Unused	0	0	0	0	0	0	0	0	0xF0	0x00
Unused	0	0	0	0	0	0	0	0	0xF1	0x00
Unused	0	0	0	0	0	0	0	0	0xF2	0x00
Unused	0	0	0	0	0	0	0	0	0xF3	0x00
Unused	0	0	0	0	0	0	0	0	0xF4	0x00
Unused	0	0	0	0	0	0	0	0	0xF5	0x00
Unused	0	0	0	0	0	0	0	0	0xF6	0x00
Unused	0	0	0	0	0	0	0	0	0xF7	0x00
Unused	0	0	0	0	0	0	0	0	0xF8	0x00
Unused	0	0	0	0	0	0	0	0	0xF9	0x00
Unused	0	0	0	0	0	0	0	0	0xFA	0x00
Unused	0	0	0	0	0	0	0	0	0xFB	0x00
Unused	0	0	0	0	0	0	0	0	0xFC	0x00
Unused	0	0	0	0	0	0	0	0	0xFD	0x00
MEC Byte (undocumented)	0	0	0	0	0	0	0	0	0xFE	0x00
Revision		1			EV	1	1	1	0xFF	(0x01)

 Table 13: I²C Register Map (SEGMENT = 0x00)

14.1.

Segment Pointer

The first register 0x00 contains a pointer which defines the segment of I^2C register space. The register is read/write, and persists until re-written or the chip is reset. After being written, the user has access to all 255 bytes beyond the segment pointer. This page-based approach extends the MAX9530's addressable space to 64 kbytes.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Segment Pointer (write-only)				SEG	/IENT				0x00	0x00

Table 14: Segment Pointer Write

BITS	FUNCTION
SEGMENT	Segment Pointer. Defines I ² C map segment. SEGMENT[7:0]
SEGMENT	0x00: Audio and Video Subsystem Control Registers 0x01: DDR2 Memory Control Registers

Table 15: Segment Pointer Registers

14.2.

Device Status and Interrupt

Status registers 0x01 through 0x0A shows status bits for each video and audio input channel.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Video Status 1 (read only)	LSLCK4	LSLCK3	LSLCK2	LSLCK1	VIDA4	VIDA3	VIDA2	VIDA1	0x01	
Video Status 2 (read only)	0	0	0	0	FERR4	FERR3	FERR2	FERR1	0x02	
Video Status 3 (read only)	0	0	0	0	CTHR4	CTHR3	CTHR2	CTHR1	0x03	
Video Status 4 (read only)	0	0	0	0	OVR4	OVR3	OVR2	OVR1	0x04	
Video Status 5 (read only)	0	0	0	0	NSTD4	NSTD3	NSTD2	NSTD1	0x05	
Video Status 6 (read only)	0	0	0	0	L525_4	L525_3	L525_2	L525_1	0x06	
Video Status 7 (read only)	0	0	0	0	ACP4	ACP3	ACP2	ACP1	0x07	
Audio Status 1 (read only)	0	0	0	0	AUDA4	AUDA3	AUDA2	AUDA1	0x08	
Audio Status 2 (read only)	0	0	0	0	CLDAD4	CLDAD3	CLDAD2	CLDAD1	0x09	
Audio Status 3 (read only)	CLDGM	UNLI	UNLR	DETSI	CLDLM	CLDDA2	CLDDA1	CLDSI	0x0A	

Table 16: Status Registers

BITS	FUNCTION
LSLCKx	Decoder Lost Lock. Indicates that the composite video decoder has lost lock to the incoming video syncs.
LOLONX	 1 = Decoder has lost lock since last status register read 0 = Decoder has not lost lock since last status register read
	Video Activity Detected. Indicates that sync pulses are present.
VIDAx	1 = Video activity 0 = No video activity

Frame Rate Error. Indicates that the frame rate at the input differs from the frame
rate selected for the output. This is valid only with external memory in use. In the
bypass mode each channel can have different frame rate.
1 = Frame Rate Error detected
0 = Normal operation
Color Kill. Indicates that the color subcarrier has fallen below the specified threshold
since the last register read. Clears after register read.
1 = Color killed
0 = Normal operation
Video ADC Over-range. Indicates that the video ADC has been over-ranged since
the last register read. Clears after register read.
1 = ADC over-range
0 = Normal operation
Non-standard video. Indicates that non-standard video has been detected. A VCR
input will commonly trigger this bit. Generally a PAL or NTSC signal without the
correct relationship between horizontal frequency and subcarrier frequency will be
considered "non standard".
525 line video.
525 line video.
1 = 525 line video
0 = 625 line video
Analog Copy Protection.
1 = Analog Copy Protection detected
0 = No analog copy protection detected
Audio Detect. Indicates audio above a specified RMS level has been detected.
Latched at high level, cleared upon read. If the condition persists, it will be
immediately latched again.
1 = Audio activity
0 = No audio activity
Audio ADC Clip Detect. Indicates clipping in the audio ADC. Latched at high level,
cleared upon read. If the condition persists, it will be immediately latched again.
1 = Clipping
0 = Not clipping
Global Mixer Clipping. Indicates clipping in the global mixer. Latched at high level,
cleared upon read. If the condition persists, it will be immediately latched again.
1 = Clipping
0 = Not clipping
Audio Secondary PLL Unlock. Indicates secondary PLL for SDIN interface has
become unlocked. Latched at high level, cleared upon read. If the condition persists,
it will be immediately latched again.
1 = Unlocked
0 = Locked
Audio Main PLL Unlock. Indicates main PLL for ADC's, SDOUT, and AL-TDM
interfaces has become unlocked. Latched at high level, cleared upon read. If the
condition persists, it will be immediately latched again.
1 = Unlocked

DETSI	 SDIN Activity Detect. Indicates activity detected on SDIN interface. The signal detect on SDIN is triggered when an input amplitude sample exceeds -42dB of digital full scale. Latched at high level, cleared upon read. If the condition persists, it will be immediately latched again. 1 = SDIN Activity 0 = No activity
CLDLM	Local Mixer Clipping. Indicates clipping in the local mixer. Latched at high level, cleared upon read. If the condition persists, it will be immediately latched again.
	1 = Clipping
	0 = Not clipping
	DAC2 Clipping. Indicates clipping in the second audio DAC. Latched at high level,
	cleared upon read. If the condition persists, it will be immediately latched again.
CLDDA2	
	1 = Clipping
	0 = Not clipping DAC1 Clipping. Indicates clipping in the first audio DAC. Latched at high level,
	cleared upon read. If the condition persists, it will be immediately latched again.
CLDDA1	source aportroad. If the contrator periodo, it will be initioudally fatoriou again.
	1 = Clipping
	0 = Not clipping
	SDIN Clipping. Indicates clipping on the SDIN interface. Latched at high level,
	cleared upon read. If the condition persists, it will be immediately latched again.
CLDSI	
	1 = Clipping
<u> </u>	0 = Not clipping

Table 17: Status Bit Definitions

14.3.

Interrupt Masks

Registers 0x0B through 0x13 control the interrupt masking.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Video IRQ Mask 1	IVID1	ILSLCK1	IFERR1	ICTHR1	IOVR1	INSTD1	IL5251	IACP1	0x0B	0x00
Video IRQ Mask 2	IVID2	ILSLCK2	IFERR2	ICTHR2	IOVR2	INSTD2	IL5252	IACP2	0x0C	0x00
Video IRQ Mask 3	IVID3	ILSLCK3	IFER3	ICTHR3	IOVR3	INSTD3	IL5253	IACP3	0x0D	0x00
Video IRQ Mask 4	IVID4	ILSLCK4	IFERR4	ICTHR4	IOVR4	INSTD4	IL5254	IACP4	0x0E	0x00
Audio IRQ Mask Global	ICLDGM	IUNLI	IUNLR	IDETSI	ICLDLM	ICLDDA2	ICLDDA1	ICLDSI	0x0F	0x00
Audio IRQ Mask 1	0	0	0	0	0	0	IAUDA1	ICLDAD1	0x10	0x00
Audio IRQ Mask 2	0	0	0	0	0	0	IAUDA2	ICLDAD2	0x11	0x00
Audio IRQ Mask 3	0	0	0	0	0	0	IAUDA3	ICLDAD3	0x12	0x00
Audio IRQ Mask 4	0	0	0	0	0	0	IAUDA4	ICLDAD4	0x13	0x00

Table 18: Interrupt Registers

BITS	FUNCTION
ILSLCKx	Decoder Lost Lock Interrupt. Status change in LSLCK triggers hardware interrupt.
IVIDx	Video Activity Interrupt. Status change in VID triggers hardware interrupt.
IFERRx	Frame Rate Error Interrupt. High level in FRMERR triggers hardware interrupt.
ICTHRx	Color Kill Interrupt. High level in CTHR triggers hardware interrupt.

IOVRx	Video ADC Overrange Interrupt. High level in OVR triggers hardware interrupt.
INSTDx	Non-standard video Interrupt. High level in NSTD triggers hardware interrupt.
IL525x	525 line video Interrupt. Status change in L525 triggers hardware interrupt.
IACPx	Analog Copy Protection Interrupt. Status change in ACP triggers hardware interrupt.
ICLDGM	Audio Global Mixer Clip Interrupt. High level in CLDGM triggers hardware interrupt.
IUNLI	Audio Secondary PLL Unlock Interrupt. High level in UNLI triggers hardware interrupt.
INULR	Audio Main PLL Unlock Interrupt. High level in UNLR triggers hardware interrupt.
IDETSI	Audio SDIN Activity Interrupt. High level in DETSI triggers hardware interrupt.
ICLDLM	Audio Local Mixer Clip Interrupt. High level in CLDLM triggers hardware interrupt.
ICLDDA2	Audio DAC2 Clip Interrupt. High level in CLDDA2 triggers hardware interrupt.
ICLDDA1	Audio DAC1 Clip Interrupt. High level in CLDDA1 triggers hardware interrupt.
ICLDSI	Audio SDIN Clip Interrupt. High level in CLDSI triggers hardware interrupt.
IAUDAx	Audio Activity Interrupt. Status change in AUDAx triggers hardware interrupt.
ICLDADx	Audio ADC Clip Interrupt. High level in CLDADx triggers hardware interrupt.

Table 19: Interrupt Bit Definitions

14.4.

System Control

Register 0x14 controls important system parameters.

	REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Syst	em Control	HRST	0	O	DS	GSHDN	0	SYS	CLK	0x14	0x00

 Table 20: System Control Register

BITS	FUNCTION
UDOT	Global HARD Reset. This bit is self-clearing.
HRST	1 = Reset entire chip, including DDR2 memory setup and I2C registers
	Output Drive Strength. Programmable LVCMOS output driver strength. VOH/VOL driven at specified load currents (typical values).
	unven at specified load currents (typical values).
ODS	ODS[1:0]
003	00: 3.6 mA
	01: 7.0 mA
	10: 11.0 mA 11: unused
<u> </u>	Global Shutdown. Disables ALL functions, puts chip in 100% shutdown mode.
GSHDN	After exiting shutdown mode DDR2 subsystem requires register reload (segment
	0x01). This does not apply in memory bypass mode.

	System Clock Control. Selects mode of operation. FrameSync master implies that HREF and FREF pins are outputs. FrameSync slave implies that HREF and FREF pins are inputs. Only one chip may be programmed as FrameSync master. Failure to do so may result in permanent damage to one or more integrated circuits.
SYSCLK	SYSCLK[1:0]
	00: External clock @ 27 MHz, FrameSync slave
	01: External clock @ 27 MHz, FrameSync master
	10: Internal clock, FrameSync slave
	11: Internal clock, FrameSync master

Table 21: System Control Bit Definitions

14.5.

Video Decoder

Registers 0x20 through 0x2F contain control bits for the Channel 1 digital composite video decoder. Channels 2, 3, and 4 follow on 0x30-0x3F, 0x40-0x4F, and 0x50-0x5F respectively.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Standard Select and Shutdown		STDSEL		AUTOD	0	VH	SC	VIDEN	0x20	0x51
Video Control	0	0	0	0	0	0	VDIFF	VSRST	0x21	0x00
Output Scaler	INT	DROP		SCALEH		0	SCA	ALEV .	0x22	0x00
Contrast				CC	NT				0x23	0x80
Brightness				BRI	GHT				0x24	0x00
Hue				н	JE				0x25	0x80
Saturation Cb				SA	TU				0x26	0x88
Saturation Cr				SA	TV				0x27	0x88
Clamp Mode	0	0		CLM	ODE		CL	MP	0x28	0x08
Gain Control	0	CRAGC	CMPAGC	ADAGC		ADC	GAIN		0x29	0x02
Color Kill and Filter Select	BW	CKDIS	FILS	FILSEL CKTHRSH					0x2A	0x23
Test Pattern	0	0	0 TGEN TGTIM TGSRC CBAR				0x2B	0x00		
Output clipping	0	0	0	0	0	0	0	CLIP	0x2C	0x01
Miscellaneous	0	0	S	YNCAMPAD)J	ACPOR	ACPST	DISAAFLT	0x2D	0x00
Equalizer	0	0	0	0	0	0	0	FRCEQ	0x2E	0x00
Equalizer		AD	JEQ			FIX	EQ		0x2F	0x70

Table 22: Channel Control Registers

BITS FUNCTION

	Video Standard Select. Specifies the input video standard, or specifies auto detect.
	STDSEL[2]: 1 = NTSC J, PAL 60, NTSC 4.43
	0 = NTSC M, PAL M, PAL, PAL Combination N
	STDSEL[1]: 1 = 525 line
	0 = 625 line (or NTSC 4.43)
	**** STDSEL[1] is ignored in auto-detect mode *****
	STDSEL[0]: 1 = PAL Combination N, PAL M, NTSC 4.43, PAL 60
	0 = Conventional PAL or NTSC
STDSEL	
	STDSEL[2:0]
	000: PAL
	001: PAL Combination N
	010: NTSC 011: PAL M
	100: unused
	101: NTSC 4.43
	110: NTSC J
	111: PAL 60
	Auto Detect Video Standard.
	1 = Auto detect 525 vs 625 line video
AUTOD	0 = Manually program 525 vs 625 line video
	AUTOD is only used to distinguish between standard PAL and NTSC
	VHS Command. Specifies how the decoder treats VHS inputs.
	VHSC[1:0]
VHSC	
VISC	00: Auto detect VHS input 01: Auto detect VHS input
	10: Never treat input as VHS
	11: Always treat input as VHS
	Video Differential Input. Specifies whether analog video input is differential or
	single-ended.
VDIFF	
	1 = Differential input
	0 = Single ended input
VSRST	Video Soft Reset. Reset video decoder excluding I2C settings. This bit is self-
	clearing.
	Video Decoder Enable. Enable video decoder.
VIDEN	1 = Video decoder enabled
	0 = Video decoder disabled
	Interlaced. When scaler is in use - select interlaced or non-interlaced scaler output.
	This bit defines if vertical scaling will be done on single field or on both fields. This
	function does not de-interlace output video. Selecting single field option output will be
INT	still interlaced but reduced size.
	1 = 2 fields
	0 = single field
	Drop Field. If INT =0 then select which field to drop for vertical scaling.
DROP	
	1 = Field 1
	0 = Field 0

	Horizontal Output Scaling.
	SCALEH[2:0] 000: 1/1 720 pixel NTSC, 1/1 720 pixel PAL
	001: 1/1.25 640 pixel NTSC, not allowed for PAL
	010: 1/2 360 pixel NTSC, 1/2 360 pixel PAL
SCALEH	011: 1/2.25 320 pixel NTSC, not allowed for PAL
	100: not allowed for NTSC, 1/1.875 384 pixel PAL
	101: 1/4.5 180 pixel NTSC, 1/4 180 pixel PAL
	110: 1/4.5 160 pixel NTSC, not allowed for PAL
	111: not allowed for NTSC, 1/3.75 192 pixel PAL Note: Only valid selection H & V scaling will produce correct image, any other
	combination will output non scaled image.
	Vertical Output Scaling.
	SCALEV[1:0]
	00: 1/1 480 line NTSC, 576 line PAL
SCALEV	01: 1/2 240 line NTSC, 288 line PAL
	10: 1/4 120 line NTSC, 144 line PAL 11: not allowed
	Note: Only valid selection H & V scaling will produce correct image, any other
	combination will output non scaled image.
	Contrast Control. Note: If ACP is detected, 15 (decimal) is automatically subtracted
	from CONT.
CONT	CONT[7:0]
CONT	CONT[7:0] 0x00: Luminance gain is 0.
	0x80: Luminance gain is 1.
	0xFF: Luminance gain is 255/128 (1.9921875)
	Brightness Control. Brightness is a signed, eight-bit value added to the unsigned
	eight MSB's of Luminance. This value is clipped to the permitted range. To convert to
	IRE offset, divide signed register value by 128.
BRIGHT	BRIGHT[7:0]
	0x00: Luminance offset is 0 IRE
	0x7F: Luminance offset is +75.66 IRE
	0x80: Luminance offset is –76.22 IRE
	Hue Control. Hue is expressed in unsigned format. To convert to phase shift, divide
	signed register value by 128 and multiply by 45 degrees. The phase shift is with respect to the color burst with positive values being a phase delay.
	respect to the color burst with positive values being a phase delay.
HUE	HUE[7:0]
	0x00: Chrominance phase is –45 degrees w.r.t. color burst
	0x80: Chrominance phase is 0 degrees w.r.t color burst
	0xFF: Chrominance phase is +45 degress w.r.t. color burst
	Saturation Control (Cb).
	SATU[7:0]
_	0x00: Chrominance Cb gain is 0
SATU	0x80: Chrominance Cb gain is 1
	0xFF: Chrominance Cb gain is 255/128
	Note: SATU and SATV must be changed together unless user needs some special
	condition to process chrominance signal.

	Saturation Control (Cr).
	SATV[7:0]
SATV	0x00: Chrominance Cr gain is 0
	0x80: Chrominance Cr gain is 1 0xFF: Chrominance Cr gain is 255/128
	Note: SATU and SATV must be changed together unless user needs some special
	condition to process chrominance signal.
	Clamp Mode. Sets digital clamp mode.
	CLMODE[3:0]
CLMODE	0000: enable digital sync tip clamp
	0010: no digital clamp (default)
	all other value disallowed Analog clamp current. Sets LSB size of DC restoration DAC current.
	Analog clamp current. Sets LSB size of DC restoration DAC current.
	CLMP[1:0]
CLMP	10: Slow (+/- 1 µA)
	11: Medium Slow (+/- 2 μA) 00: Medium Fast (+/- 4 μA)
	01: Fast (+/- 8 μA)
	Disable Chrominance AGC.
CRAGC	1 = Disable Chrominance AGC
	0 = Enable Chrominance AGC
	Disable Composite Video AGC.
CMPAGC	1 - Dischle Composite ACC
	1 = Disable Composite AGC 0 = Enable Composite AGC
	Disable Analog AGC. The analog AGC is prior to the ADC and functions such that
45466	the ADC's full-scale range is used.
ADAGC	1 = Disable analog AGC
	0 = Enable analog AGC
	Manual Analog AGC. If ADAGC = 1, these bits manually set the gain of the analog
	AGC.
	ADCGAIN[3:0]
	0000: 0 dB
	0001: 0.84 dB
	0010: 1.62 dB 0011: 2.31 dB
	0100: 2.96 dB
ADCGAIN	0101: 3.56 dB
	0110: 4.12 dB 0111: 4.64 dB
	1000: 5.14 dB
	1001: 5.61 dB
	1010: 6.05 dB
	1011: 6.47 dB 1100: 6.87 dB
	1101: 7.26 dB
	1110: 7.63 dB
	1111: 7.99 dB

	Disal and Milita Fares black and other as a district and the
	Black and White. Force black and white operation.
BW	1 = Chrominance demodulator deactivated, output is black and white
	0 = Chrominance demodulator is active
	Disable Color Kill. This bit is overridden by BW.
CKDIS	
ONDIO	1 = Color Kill disabled
	0 = Color Kill enabled
	Chrominance Filter Select. Switch between filters for Y/C separation.
	FILSEL[1:0]
FILSEL	00: Comb filter enabled. Notch and low-pass disabled.
	01: Comb filter disabled. Notch and low-pass enabled.
	10: Adaptive filtering (auto switch notch/comb)
	11: Not allowed
	Color Kill Threshold.
	CKTHRSH[3:0]
	0000: disabled
	0001: 37 mV
	0010: unused
	0011: 50 mV
	0100: unused
CKTHRSH	0101: 57 mV 0110: unused
ORTHRON	0111: 62 mV
	1000: unused
	1001: 78 mV
	1010: unused
	1011: 82 mV
	1100: unused 1101: 91 mV
	1110: unused
	1111: 102 mV
	Test Generator Enable.
TGEN	
	 1 = Substitute test pattern in place of video output 0 = Output test pattern ONLY if no video is present at input
	Test Generator Timing.
TOTUL	
TGTIM	1 = 525 line, 59.95 Hz frame rate
	0 = 625 line, 50 Hz frame rate
	Test Generator Timing Source.
TGSRC	1 = Use incoming signal timing (if valid video is present)
	0 = Use internally generated timing (is valid video is present)
	Test Pattern Select.
0045	CBAR[1:0]
CBAR	00: Black screen
	01: Blue screen 10: 75% color bars
	11: 100% color bars
	ITU Clipping Level.
CLIP	
VLIP	1 = Clip ITU BT.656 Y output between 64-940 and CbCr between 64-960
	0 = Clip ITU BT.656 Y and CbCr outputs between 5-1019

	Sync Amplitude Adius	t. Sets the target sync amplitu	de for automatic gain control						
		C J I	, , , , , , , , , , , , , , , , , , ,						
	SYNCAMPADJ[2:0]	Amplitude with no ACP 208 mV	Amplitude with ACP						
	000	208 mV 216 mV	160 mV 168 mV						
SYNCAMPADJ	010	210 mV	176 mV						
	011	232 mV	184 mV						
	100	252 mV	200 mV						
	101	160 mV	128 mV						
	110	192 mV	144 mV						
	111	200 mV	152 mV						
	Analog Copy Protectio	on Override.							
40000	0 17								
ACPOR	1 = register 0x02[0] is se	et by ACPST							
		et automatically by decoder							
ACDET		on State. If ACPOR = 1, reg 02	v02[0] is not by this bit						
ACPST									
	Disable Anti-Allasing I	Filter. Control post-ADC digita	il anti-allasing filter.						
DISAAFLT									
	1 = Disable AA filter								
	0 = Enable AA filter								
	Force Cable Equalizat	on.							
FRCEQ	1 = Manually adjust equ	alizer for cable length (see FI)	XEQ)						
		equalizer for cable length							
			lization applied when the						
	Equalizer Target Adjust. Adjusts the amount of equalization applied when the equalizer is in automatic mode (ERCEQ=0). It adjusts the target amplitude of the								
	equalizer is in automatic mode (FRCEQ=0). It adjusts the target amplitude of the color burst at the equalizer output. When set to the default value of 0x7 the equalizer								
ADJEQ									
			0x7 the equalizer applies more						
		pelow 0x7 it applies less equa							
		gs. FRCEQ must be high. Adj							
	equalization applied who	en the adaptive equalizer is di	sabled. Boost is in dB @						
	3.58MHz		_						
	FIXEQ[3:0]								
	0000: 0								
	0001: 1.3								
	0010: 2.3								
	0011: 3.3								
	0100: 4.2								
FIXEQ	0101: 5.0								
	0110: 5.7								
	0111: 6.4								
	1000: 7.0								
	1000: 7.6								
	1010: 8.1								
	1011: 8.7								
	1100: 9.1								
	1101: 9.6								
	1110: 10.0								
		link reference not valid.							
T I I AA AI	Control Bit Definitions								

Table 23: Channel Control Bit Definitions

14.6.

A/V Router

Register 0x60 contains the control bits for video routing.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
FIFO Source	CH4R		CH3R		CH2R		CH	I1R	0x60	0x00

Table 24: Video Routing Register

BITS	FUNCTION
	Video Channel 4 Router. Frame memory FIFO4 source.
	CH1R[1:0]
CH4R	00: Vin1
	01: Vin2
	10: Vin3
	11: Vin4
	Video Channel 3 Router. Frame memory FIFO3 source.
CLIAD	CH1R[1:0]
CH3R	00: Vin1 01: Vin2
	10: Vin3
	11: Vin4
	Video Channel 2 Router. Frame memory FIFO2 source.
	CH1R[1:0]
CH2R	00: Vin1
	01: Vin2
	10: Vin3
	11: Vin4
	Video Channel 1 Router. Frame memory FIFO1 source.
	CH1R[1:0]
CH1R	00: Vin1
	01: Vin2
	10: Vin3
	11: Vin4

Table 25: Video Routing Bit Definitions

14.7.

Frame Sync

Registers 0x63 through 0x70 contain control bits for the frame synchronization.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Bank0 Write Screen Position							CH1X1	′[17:16]	0x63	0x00
Bank0 Write Screen Position		CH1XY[15:8]								0x00
Bank0 Write Screen Position		CH1XY[7:0]								0x00
Bank1 Write Screen Position							CH2X1	′[17:16]	0x66	0x00
Bank1 Write Screen Position				CH2X	Y[15:8]				0x67	0x00
Bank1 Write Screen Position				CH2X	Y[7:0]				0x68	0x00
Bank2 Write Screen Position		CH3XY[17:16]							0x69	0x00
Bank2 Write Screen Position	CH3XY[15:8]								0x6A	0x00
Bank2 Write Screen Position				CH3X	Y[7:0]				0x6B	0x00

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE	
Bank3 Write Screen Position							CH4XY[17:16]		0x6C	0x00	
Bank3 Write Screen Position		CH4XY[15:8]									
Bank3 Write Screen Position				CH4>	(Y[7:0]				0x6E	0x00	
Freeze Frame	CH	4FF	CH	3FF	CH2FF		CH1FF		0x6F	0x00	
Frame Memory Control	0	0	0	0	DDRIDLE	DDR2DS	DDR512	FRMBYP	0x70	0x00	
Time Base Correction	ADJTBC								0x71	0x00	

Table 26: Frame Sync Registers

BITS	FUNCTION
CH1XY	Channel 1 (Bank 0) Write Screen Position. Define position of the image upper left corner. CH1XY[17:10] Y position increment by 1 CH1XY[9:0] X position increment by DDR burst size (4 or 8)
CH2XY	Channel 2 (Bank 1) Write Screen Position. Define position of the image upper left corner. CH2XY[17:10] Y position increment by 1 CH2XY[9:0] X position increment by DDR burst size (4 or 8)
СНЗХҮ	Channel 3 (Bank 2) Write Screen Position. Define position of the image upper left corner. CH3XY[17:10] Y position increment by 1 CH3XY[9:0] X position increment by DDR burst size (4 or 8)
CH4XY	Channel 4 (Bank 3) Write Screen Position. Define position of the image upper left corner. CH3XY[17:10] Y position increment by 1 CH3XY[9:0] X position increment by DDR burst size (4 or 8)
CH4FF	Channel 4 Freeze Frame. CH4FF[1:0] 00: No freeze frame 01: Manual freeze frame 10: not allowed 11: Auto freeze last good frame
CH3FF	Channel 3 Freeze Frame. CH3FF[1:0] 00: No freeze frame 01: Manual freeze frame 10: not allowed 11: Auto freeze last good frame
CH2FF	Channel 2 Freeze Frame. CH2FF[1:0] 00: No freeze frame 01: Manual freeze frame 10: not allowed 11: Auto freeze last good frame

	Channel 1 Freeze Frame.
	CH1FF[1:0]
CH1FF	00: No freeze frame
	01: Manual freeze frame
	10: not allowed
	11: Auto freeze last good frame
	DDR2 Internal Interface Idle. Never set this bit under normal functional
	circumstances.
DDRIDLE	
	1 = Idle internal DDR2 memory controller interface (needed for BIST)
	0 = Normal operation
	DDR2 Drive Strength.
DDRDS	1 = Low power operation
	0 = Normal operation
	DDR2 512MB Select.
555546	
DDR512	1 = External DDR2 is 512 MB
	0 = External DDR2 is 256 MB
	Frame Memory Bypass.
FRMBYP	
	1 = Bypass frame memory
	0 = Normal operation
	Time Base Correction. Delays initial separation between read and write pointer at the start of each field in TBC block.
	Adjusting this register affects how much frequency offset is tolerated.
	Adjusting this register anects now much nequency onset is tolerated.
	The actual delay is :
	The actual delay is .
	startDly= 4*(mod(240+AdjTbcStDly,256))
ADJTBC	The TBCStartDelay must be changed when the Frame Sync is enabled or bypassed
1.00100	Recommended settings are:
	Frame Sync TBCStartDelay startDly
	bypass x40 d192
	Enabled x00 d960
	If startDly is too high in bypass mode the screen will shake up and down. If it is too
	low in frame sync mode then the 2nd field is delayed by one line.
Table 27: Frame S	Sync Bit Definitions

Table 27: Frame Sync Bit Definitions

14.8.

Video Output

Registers 0x73 through 0x7C contain control bits for the video output busses.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Y Reset	YRST									0x10
CbCr Reset				CHI	RST				0x74	0x7F
Vout Control	0	DISMSB	IDM	ODE	ILM	ODE	ILC	ILW	0x75	0x00
Output Frame Rate	0	0	0	0	0 0 FROUT		0x76	0x00		
Output line drop	0	0	0	0	NLINE				0x77	0x01
EAV/SAV and Channel ID	0	0	0	0	0	0	TRSPOS	CHMUX	0x78	0x01

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
H & V Definition	0	0	0	0	0	0	0	HV	0x79	0x00
TPP Control	TPP4		TP	P3	TP	P2	TP	P1	0x7A	0x00
Output tri-state	0	VOUT4Z	VOUT3Z	VOUT2Z	VOUT1Z	PCK108Z	PCK54Z	PCK27Z	0x7B	0x00
Output clock inversion	0	0	0	0	0	PCK108I	PCK54I	PCK27I	0x7C	0x00

Table 28: Video Output Bus Register

BITS	FUNCTION
YRST	Frame Memory Y Reset Value. 0x10 (default)
	When scaler is active define value for Y channel empty area if TRSPOS=1 ,
CHRST	Frame Memory Cb/Cr Reset Values. 0x7F (default) When scaler is active define value for CbCr channels empty area if TRSPOS=1,
DISMSB	Disable Channel ID MSB. If selected multiplex mode is 2ch(Ch1&Ch2) + 2ch(Ch3&Ch4) @ 54MHz with DISMSB=0 channel ID will be assigned as 1, 2, 3 & 4. For DISMSB=1 Chanel ID will be assigned as 1, 2 and 1, 2 per channel pair. 1 = Disable channel ID MSB 0 = Normal operation
	ID Mode. Controls insertion of channel ID into ITU data.
IDMODE	IDMODE[1:0] 00: None 01: Channel ID in EAV/SAV (P bits) only 10: Channel ID in H blank (Levels) only 11: Channel ID in EAV/SAV & H blank
	Interleave Mode. Controls interleaving of channels.
ILMODE	ILMODE[1:0] 00: None 01: Pixel interleave 10: Frame interleave 11: not allowed
	Interleave Channels. Valid only if ILMODE[1:0] != 00
ILC	1 = 4 channels 0 = 2 channels
	Interleave Width. Valid only if ILMODE[1:0] = 10
ILW	1 = 16 bits 0 = 8 bits
FROUT	Output Frame Rate. FROUT[1:0] 00: 60 Hz 01: 50 Hz 10: 60 Hz – n lines (see NLINE) 11: 50 Hz – n lines (see NLINE)
NLINE	Number of removed lines. Number of lines to remove to guarantee output rate is higher than input rate (frames are ALWAYS repeated). Default value is 0x01. Receiving device must take in account that number of lines will be less than standard requires. This function will be applied only to the vertical blanking area.

	EAV/SAV Position Control. Applies to all 4 channels.
TRSPOS	 1 = Position determined by ITU standard 0 = Position determined by scaling factor and active picture position, all other space is blanking
	Output Channel ID Coding. 1 = MG3500 mode ** 0 = Compatibility mode – Uses EAV/SAV protection bits for channel ID. ** This mode is specific for the MG3500.
СНМИХ	16bit/54MHz " ILW=1 " - Video outputs VOUT3 (Y) and VOUT4 (Cb/Cr) will be used for 16b operation. All settings from VOUT3CTRL and VOUT4CTRL will be ignored. VOUT2CTRL and VOUT1CTRL will be under normal operation. 8bit/108MHz " ILW=0 " - Video output VOUT4 (Cb/Y/Cr) will be used for 8b operation. All settings from VOUT4CTRL will be ignored. VOUT3CTRL, VOUT2CTRL and VOUT1CTRL will be under normal operation. All settings from VOUT4CTRL will be ignored. VOUT3CTRL, VOUT2CTRL and VOUT1CTRL will be under normal operation. All audio blocks will also switch to MG3500 mode.
нv	 H & V Timing Set. 1 = H & V are sync pulses 0 = H & V are data valid, defined by scaling factor
TPP4	TPP4 Control. TPP4[1:0] 00: H - see HV bit description 01: V - see HV bit description 10: F 14: Video measure
	11: Video present TPP3 Control.
TPP3	TPP3[1:0] 00: H – see HV bit description 01: V – see HV bit description 10: F 11: Video present
	TPP2 Control.
TPP2	TPP2[1:0] 00: H - see HV bit description 01: V - see HV bit description 10: F 11: Video present
TPP1	TPP1 Control. TPP1[1:0] 00: H - see HV bit description 01: V - see HV bit description 10: F 11: Video present
VOUT4Z	VOUT4 Control. 1 = VOUT4 and TTP4 are high impedance 0 = Normal operation

r	VOUTO Ocastral
	VOUT3 Control.
VOUT3Z	4 VOUTO and TTDD and high immediance
	1 = VOUT3 and TTP3 are high impedance
	0 = Normal operation
	VOUT2 Control.
VOUT2Z	
	1 = VOUT2 and TTP2 are high impedance
	0 = Normal operation
	VOUT1 Control.
VOUT1Z	
	1 = VOUT1 and TTP1 are high impedance
	0 = Normal operation
	Pixel Clock 108 Control.
PCK108Z	
	1 = PCK108/PCK108B are high impedance
	0 = Normal operation
	Pixel Clock 54 Control.
PCK54Z	A DOMEA/DOMEAD and bight increasing
	1 = PCK54/PCK54B are high impedance
	0 = Normal operation Pixel Clock 27 Control.
	Pixel Clock 27 Control.
PCK27Z	1 - DCK27/DCK27D are high impedance
	1 = PCK27/PCK27B are high impedance 0 = Normal operation
	Pixel Clock 108 Invert.
PCK108I	1 = PCK108/PCK108B are inverted
	0 = Normal operation
	Pixel Clock 54 Invert.
PCK54I	1 = PCK54/PCK54B are inverted
	0 = Normal operation
	Pixel Clock 27 Invert.
PCK27I	1 = PCK27/PCK27B are inverted
	0 = Normal operation
L	

Table 29: Video Output Buss Bit Definition

14.9. Audio Analog Input

Registers 0x80 through 0x83 contain control bits for the Channel 1 analog audio inputs. Channels 2, 3, and 4 follow on 0x90-0x93, 0xA0-0xA3, and 0xB0-0xB3 respectively.

The MAX9530 supports the following audio I²C changes on the fly with no glitches; ADCLEV, NQE, NQFAS, DETLPF, DETOFS, ADCEN, AGCLP, AGCATK, AGCRLS, AGCHLD, DIEN, ILEVEL, DAC1INLEV, DAC1EN, DAC2INLEV, DAC2EN.

For all other audio I²C settings, it is better to disable the corresponding signal path before making the changes to avoid glitches.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
ADC Control	ATEN	DIFF	ADC	HPF		ADC	LEV		0x80	0x00

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
ADC Control	NQE	NQFAS	DET	LPF		DET	OFS		0x81	0x00
ADC Control	ADCEN	0	0	AGCLP		AG	СТН		0x82	0x00
ADC Control	AD	CG	AGCATK		AGCRLS AGCHLD		0x83	0x00		

Table 30: Analog Audio Input Control Registers

BITS	FUNCTION
	Audio Input Attenuation. Controls analog input attenuator.
ATEN	1 = Audio inputs are attenuated by 1 dB. Input full scale voltage is 1.414 V_{pp} . 0 = Audio inputs are not attenuated. Input full scale voltage range is 1.587 V_{pp} .
DIFF	 Audio Differential Input Mode. Defines analog input mode. 1 = Audio inputs are differential 0 = Audio inputs are single-ended
ADCHPF	Audio ADC High Pass Filter Cutoff Frequency. It is recommended it mute the audio outputs during changes to this register. ADCHPF[1:0] 00: 400 Hz 01: 200 Hz 10: 100 Hz 11: HPF bypass (disabled)
ADCLEV	Audio ADC Output Level Adjust. ADCLEV[3:0] 0000: +3 dB 0001: +2 dB 0010: +1 dB 0100: -1 dB 0100: -1 dB 0101: -2 dB 0110: -3 dB 0111: -4 dB 1000: -5 dB 1001: -6 dB 1010: -7 dB 1011: -8 dB 1101: -10 dB 1110: -11 dB 1111: -12 dB

NQE	Noise Quiet Enable. If the signal drops below the detection threshold (see DETOFS), the signal from the audio ADC is quieted -12dB using the low level aud feature. Note that enabling/disabling the NQ feature entails a major mode change and therefore the ADC signal path must be disabled before enabling or disabling NC							
	1 = Noise quieting enabled 0 = Noise quieting disabled							
NQFAS								
	NQ/Signal Detect	Low-Pass Filter. Indic The behavior is listed for "RC" Time Constant						
	00	9.70ms	16Hz					
DETLPF	01	2.42ms	66Hz	1				
	10	0.60ms	267Hz	1				
	11	Filter Bypass	Filter Bypass	7				

DETOFS	detect threshold. If the AGC is enabled Example: if AGCTH= 20db-18db = -38db. ⁻ If AGC is disabled, th threshold indicates th reported as detected level. If noise quieting begins to occur, but of (+18db). Threshold values are the signal has the eff depending on the free If the corresponding of DETOFS[3:0] 0000: -6 dB 0001: -8 dB 0010: -10 dB 0101: -12 dB 0100: -14 dB 0101: -16 dB 0110: -18 dB 0111: -20 dB	d, the signal detect three -10db and DETOFS=-1 The -18db is the AGC a le signal detect thresho he level required to be re . The detection threshol g is enabled, this is the only if the AGC is also d e only accurate if DETLF ect of raising the thresh quency content of the ir	Id = (-17db+DETOFS). The signal deter eached before the input signal is Id is compared to the AGC adjusted level where low level audio quieting driving its coefficient to the max gain le PF is set to 2'b11 (filter bypass). Filterin hold from the levels listed below,	ect
	1000: -22 dB 1001: -24 dB 1010: -26 dB 1011: -28 dB 1100: -30 dB			
	110030 dB			
	1110: -34 dB			
	1111: -36 dB			
	Audio ADC Enable.			
ADCEN	1 = Enable audio AD	с		
	0 = Disable audio AD	-		
		ntrol Low-Pass Filter	Time Constant and Corner Frequen	cy,
	400125	"DO" The O	Comos Francisco	
AGCLP	AGCLPF 0	"RC" Time Constant 2.42ms	Corner Frequency 66Hz	
	1	Filter Bypass	Filter Bypass	
L				

	Automatic Gain Control Threshold. When AGC is enabled, the AGC loop attempts to adjust the output gain of the audio ADC so that it remains at the specified level using an 18 dB adjustment range.
	Threshold values are only accurate if AGCLPF is set to 1 (filter bypass). Filtering the signal has the effect of raising the threshold from the levels listed below, depending on the frequency content of the input.
	Note that enabling/disabling the AGC entails a major mode change and therefore the ADC signal path must be disabled before enabling or disabling the AGC.
	AGCTH[3:0]
A 0.0711	0000: AGC disabled
AGCTH	0001: -3 dB 0010: -4 dB
	0011: -5 dB
	0100: -6 dB
	0101: -7 dB 0110: -8 dB
	0111: -9 dB
	1000: -10 dB 1001: -11 dB
	1010: -12 dB
	1011: -13 dB
	1100: -14 dB 1101: -15 dB
	1110: -16 dB
	1111: -17 dB
	Audio ADC Gain. Optional gain for audio when using 8-bit companded modes.
	ADCG[1:0]
ADCG	00: 0 dB
	01: +6 dB 10: +12 dB
	11: +18 dB
	Automatic Gain Control Attack. Indicates the time it takes to reduce the AGC
	system gain from max (+18dB) back to unity after the input signal has exceeded the threshold level. If the required gain change is less than 18db, it will take less time
	than listed here.
AGCATK	
	AGCATK[1:0] 00: 3 ms
	01: 50 ms
	10: 100 ms
	11: 200 ms Automatic Gain Control Release. Indicates the time it takes to make the full +18db
	gain change after the input signal has fallen well below the threshold and the hold
	time has passed. If the required gain change is less than 18db, it will take less time than listed here.
AGCRLS	
	AGCRLS[1:0] 00: 0.078 s
	01: 0.5 s
	10: 5 s
	11: 10 s

	Automatic Gain Control Hold Time. Indicates the time to hold AGC gain adjustment at its current level after an attack before releasing it.
AGCHLD	AGCHLD[1:0] 00: 50 ms 01: 100 ms 10: 200 ms 11: 400 ms

Table 31: Analog Audio Input Control Bit Definitions

14.10. Audio Digital Input

Registers 0xC0 through 0xC2 contain control bits for the digital audio interfaces.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Serial Input	IHI	PF	ILENA	IRENA	DIEN		IFREQ		0xC0	0x00
Serial Input	0	0	0			ILEVEL			0xC1	0x00
Serial Input	IMAS	0	ITDM	IBCI IDLY IBS 0xC2				0x00		

Table 32: Digital Audio Input Control Registers

BITS	FUNCTION
	Audio Digital Input High Pass Filter Cutoff Frequency.
	IHPF[1:0]
IHPF	00: 400 Hz
	01: 200 Hz
	10: 100 Hz
	11: HPF bypass (disabled)
	Right Channel Input Select.
	{ILENA,IRENA}
ILENA,IRENA	00: None selected
	01: Right channel data to DAC
	10: Left channel data to DAC
	11: Mixed (right + left)/2 channel data to DAC
	Digital Input Enable.
DIEN	1 = Enable audio digital input
	0 = Disabel audio digital input
	Audio Digital Input (LRCLKP) Frequency.
	IFREQ[2:0]
	000: AFREQ specified
	001: Not supported.
IFREQ	010: 16 kHz
	011: 32 kHz
	100: 44.1 kHz
	101: 48 kHz 110: reserved
	111: reserved
<u>I</u>	

	Audio Digital Input Level for Playback Path. Applies specified gain to the audio
	digital input. Steps are in -1 dB increments with increasing ILEVEL value.
	ILEVEL[4:0]
ILEVEL	00000: 0 dB
	00001: -1 dB
	11110: -30 dB
	11111: Muted
	Audio Digital Input Master Clock Select.
IMAS	
	1 = BCLKP and LRCLKP are supplied by MAX9530
	0 = BCLKP and LRCLKP are supplied externally
	Input Time Division Multiplex Mode.
ITDM	1 = Input is TDM (or DSP)
	0 = Input is 12S
	Input BCLK Invert.
IBCI	1 = SDIN is accepted on the falling edge of BCLK.
	0 = SDIN is accepted on the rising edge of BCLK.
	Input MSB Delay.
IDLY	
	1 = Input MSB is delayed one clock edge after BCLKP
	0 = Input MSB is not delayed one clock edge after BCLKP
	BCLKP Frequency. When operating in master mode, the BCLKP signal is output as
	one of the following selections.
	<u>IBS[2:0]</u>
	000: off
IBS	001: 256 x LRCLKP
	010: 128 x LRCLKP
	011: 64 x LRCLKP 100: 32 x LRCLKP
	100. 32 X LROLKP 101: 13.5 MHz
	110: 6.75 MHz
Table 00. Divital	111: 3.375 MHz

Table 33: Digital Audio Control Bit Definitions

14.11. Audio Mixers

Registers 0xC3 through 0xC5 contain control bits for the audio mixers.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Mixer 1	AMEN	BMEN	CMEN	DMEN		MI	G0		0xC3	0x00
Mixer 1		MI	G2		MIG1			0xC4	0x00	
Mixer 1		MI	G4		MIG3				0xC5	0x00

Table 34: Audio Mixer Control Registers

BITS	FUNCTION					
	Global Mixer Input. Enables the output of another chip's mixer as an input to the global mixer.					
(A-D)MEN						
	1 = Enable chip (A,B,C,D) as a global mixer input 0 = Do not enable chip (A,B,C,D) as a global mixer input					
MICX	Mixer Input Gain. Apply specified gain to the local mixer inputs. MIG0 is the local SDIN interface. MIG4-1 are the local audio ADCs. Steps are in -1 dB increments with increasing MIGx value. MIGx[3:0]					
MIGx	0000: Mute					
	0001: 0 dB 0010: -1dB					
	1111: -14 dB					
Table 25: Audie M	ixer Control Bit Definitions					

 Table 35: Audio Mixer Control Bit Definitions

14.12. Audio Digital Out

Registers 0xC6 through 0xCB contain control bits for the digital audio output.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Serial Output	ALSEL					0xC6	0x00			
Serial Output	SMENA	SOENA	0	M1SEL					0xC7	0x00
Serial Output		AD2S	SLOT	AD1SLOT					0xC8	0x00
Serial Output	AD4SLOT				AD3SLOT			0xC9	0x00	
Serial Output	SMHIZD	SM8	SM	FMT	SOHIZD	SO8	SOFMT		0xCA	0x00
Serial Output	RMAS	0	RTDM	RBCI	RDLY	Y RBS			0xCB	0x00

 Table 36: Digital Audio Output Control Registers

BITS	FUNCTION
ALSEL	Audio 4 th Slot Data Select. A 4 th word can be selected for output using these bits as follows: ALSEL[2:0] 000: all zero data 001: SDIN 010: all zero data 010: all zero data 011: all zero data 100: Audio ADC1 data 101: Audio ADC2 data 110: Audio ADC3 data 111: Audio ADC4 data
SMENA	 SDOUTM Enable. Enables SDOUTM output. If shared between integrated circuits, only enable SDOUTM after all integrated circuits are properly configured via RTDM. Failure to do so may result in permanent damage to one or more integrated circuits. 1 = Normal operation 0 = Tri-state output

	ODOUT Frisklin Frisklin ODOUT sydered Kalended hat waar inter statistic in the intervention
SOENA	 SDOUT Enable. Enables SDOUT output. If shared between integrated circuits, only enable SDOUT after all integrated circuits are properly configured via RTDM. Failure to do so may result in permanent damage to one or more integrated circuits. 1 = Normal operation
	0 = Tri-state output
	Slot 0/1 Output Select. Controls the data source for SDOUTM transfers. Slot 0 immediately follows the WCLK frame start event. Slot 1 follows Slot 0 for TDM/DSP modes. MxSEL[4:0]
	0x01: Device D, Global Mixer 0x02: ADC 1 0x03: SELECT REG A 0x05: SELECT REG B
	0x06: STATUS 0x07: SELECT REG C 0x09: SELECT REG D 0x0A: ADC 2
MxSEL	0x0B: STATUS A 0x0D: STATUS B 0x0E: Local Mixer 0x0F: Status C 0x11: Status D 0x12: ADC 3
	0x12: ADC 3 0x13: Local Mixer A 0x15: Local Mixer B 0x16: Global Mixer 0x17: Local Mixer C
	0x19: Local Mixer D 0x1A: ADC4 0x1B: Global Mixer A 0x1D: Global Mixer B
	0x1E: SDIN 0x1F: Global Mixer C other settings: all 0's

	Audio ADC Slot Selection. Controls which of the 16 SDOUT channel slots contain
	audio ADC data. The ADxSLOT value indicates the slot number the the
	corresponding audio ADC should occupy. When multiple devices are linked together
	using the Audio Link (AL-TDM), the SDOUT pins of all devices may be connected
	together and data routed to the common SDOUT bus as desired.
	ADxSLOT[3:0]
	0000: ADCx to Slot 0
	0001: ADCx to Slot 1
	0010: ADCx to Slot 1
ADxSLOT	0011: ADCx to Slot 3
ADX3LUT	0100: ADCx to Slot 4
	0101: ADCx to Slot 5
	0110: ADCx to Slot 6
	0111: ADCx to Slot 7
	1000: ADCx to Slot 8
	1001: ADCx to Slot 9
	1010: ADCx to Slot 10
	1011: ADCx to Slot 11
	1100: ADCx to Slot 12
	1101: ADCx to Slot 13
	1110: ADCx to Slot 14
	1111: ADCx to Slot 15
	SDOUTM Tri-State Control.
011170	
SMHIZD	1 = SDOUTM does not tri-state between word outputs
	0 = SDOUTM tri-states between word outputs
	SDOUTM Data Width Selection.
SM8	1 = SDOUTM data is 8b wide
	0 = SDOUTM data is 16b wide
	SDOUTM Format Selection.
	SMFMT[1:0]
SMFMT	00: PCM Mode
	01: MSB Inverted
	10: A-Law
	11: μ-Law
	SDOUT Tri-State Control.
SOHIZD	
	1 = SDOUT does not tri-state between word outputs
	0 = SDOUT tri-states between word outputs
	SDOUT Data Width Selection.
SO8	
500	1 = SDOUT data is 8b wide
	0 = SDOUT data is 16b wide
	SDOUT Format Selection.
	SOFMT[1:0]
SOFMT	00: PCM Mode
	01: MSB Inverted
	10: A-Law
	11: µ-Law
	Audio Digital Output Master Clock Select.
	Audio Digital Output Master GIOCK Select.
RMAS	1 = BCLKR and LRCLKR are supplied by MAX9530
	0 = BCLKR and LRCLKR are supplied externally
1	

	Output Time Division Multiplex Mode.
RTDM	1 = Output is TDM (or DSP) 0 = Output is I2S
RBCI	Output Clock Edge. 1 = SDIN and LRCLKP are clocked out on the rising edge of BCLKP 0 = SDIN and LRCLKP are clocked out on the falling edge of BCLKP
RDLY	Output MSB Delay. 1 = Output MSB is delayed one clock edge after BCLKR 0 = Output MSB is not delayed one clock edge after BCLKR
RBS	BCLKR Frequency. When operating in master mode, the BCLKR signal is output as one of the following selections. RBS[2:0] 000: off 001: 256 x LRCLKR 010: 128 x LRCLKR 011: 64 x LRCLKR 100: 32 x LRCLKR 101: 13.5 MHz 110: 6.75 MHz 111: 3.375 MHz

Table 37: Digital Audio Output Control Bit Definitions

14.13. Audio Analog Out

Registers 0xD0 through 0xD5 contain control bits for analog audio output.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
Audio Out 1	DAC	1HPF	DAC1EN	AC1EN DAC1SEL						0x00
Audio Out 1		DAC1INLEV							0xD1	0x00
Audio Out 1	DAC1MIXLEV							0xD2	0x00	
Audio Out 2	DAC2HPF DAC2EN DAC2SEL						0xD3	0x00		
Audio Out 2	DAC2INLEV							0xD4	0x00	
Audio Out 2		DAC2MIXLEV							0xD5	0x00

Table 38: Analog Audio Output Control Registers

BITS	FUNCTION
	Audio DAC High Pass Filter Cutoff Frequency.
	DACxHPF[1:0]
DACxHPF	00: 400 Hz
	01: 200 Hz
	10: 100 Hz
	11: HPF bypass (disabled)
	Audio DAC Enabl;e.
DACXEN	
DAGALIN	1 = Enable audio DACx
	0 = Disable audio DACx

	And the DAO lower Only of Only of the later and have also from a little in the later
	Audio DAC Input Select. Selects the Internal bus slot from which playback data is to be picked.
	DACxSEL[4:0]
DACxSEL	0x01: Device D, Global Mixer 0x02: ADC 1 0x03: SELECT REG A 0x05: SELECT REG B 0x06: STATUS 0x07: SELECT REG C 0x09: SELECT REG D 0x0A: ADC 2 0x08: STATUS A 0x0D: STATUS B 0x0CE: Local Mixer 0x0F: Status C 0x11: Status D 0x12: ADC 3 0x13: Local Mixer A 0x15: Local Mixer B 0x16: Global Mixer C 0x17: Local Mixer C 0x19: Local Mixer A 0x18: Global Mixer A 0x19: Global Mixer B 0x16: Global Mixer B 0x16: Global Mixer C 0x19: Local Mixer C 0x19: Local Mixer C 0x19: Global Mixer C 0x110: Global Mixer C 0x110: Global Mixer C 0x110: Global Mixer C 0x110: Global Mixer C 0x111: SDIN 0x111: SDIN 0x111: Slobal Mixer C 0x112: Global Mixer C 0x112: Global Mixer C 0x113: Global Mixer C 0x114: ADC 4 0x115: Global Mixer C 0x115:
	Audio DAC Attenuation. Adjusts digital input levels for each audio data. INLEV specifies the attenuation to be applied to signals from the internal bus. MIXLEV specifies the attenuation to be applied to signals from the input signal path to be mixed at the input of the DACs. Steps are in increments of -1 dB with increasing
	INLEV/MIXLEV values.
DACxINLEV DACxMIXLEV	DACxINLEV/DACxMIXLEV[7:0] 0000_000x: +3 dB 0000_001x: +2 dB 0000_010x: +1 dB 0000_011x: 0 dB 0000_100x: -1 dB
	1011_110x: -75 dB all other settings = MUTE

Table 39: Analog Audio Control Bit Definitions

14.14. Audio Control

Register 0xD6 controls the global audio subsystem enable.

REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Audio Global Enable	0	0	0	0	0	0	0	AUDEN	0xD6	0x00

Table 40: Global Audio Subsystem Enable

BITS	FUNCTION						
AUDEN	Audio Subsystem Shutdown. 1 = allows the enabling of audio subsystem signal paths. 0 = holds the entire audio subsystem in reset						
Table 44. Clebel Audia Subayatam Dit Definition							

 Table 41: Global Audio Subsystem Bit Definition

14.15. Audio Clocks

Register 0xD7 controls audio system clocks.

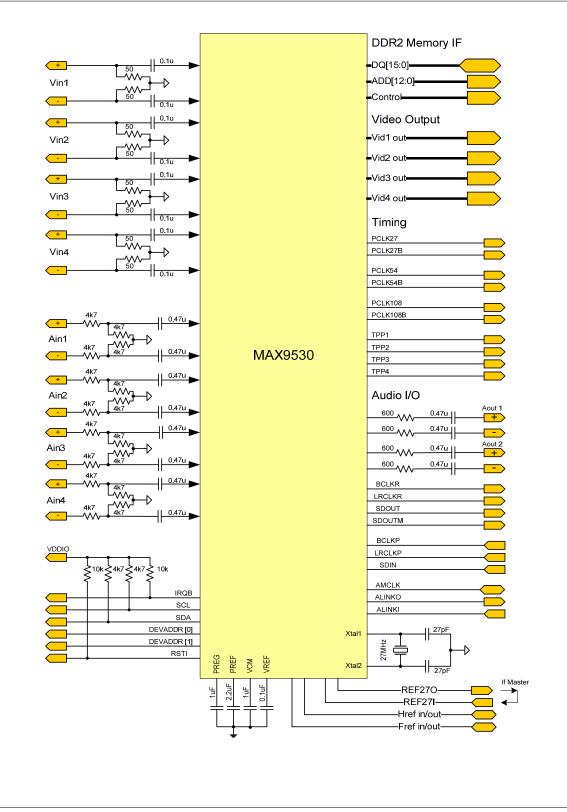
REGISTER	B7	B6	B5	B4	B3	B2	B1	B0	REGISTER ADDRESS	POWER- ON RESET STATE
Audio Clock Control	ALMAS	ALENA	IDN	UM	0		AFREQ		0xD7	0x00

Table 42: Audio System Clock Register

BITS	FUNCTION				
	Audio Link Master Mode. Only 1 part in a system should be configured as master.				
ALMAS 1 = Device acts as the master of the audio link (AL-TDM) interface, AL_BCLK and AL_WCLK signals to other devices sharing the bus 0 = Device is slave on the audio link (AL-TDM) interface. AL_BCLK and A are inputs.					
ALENA	 Audio Link Enable. Specifies whether the device's audio link is enabled. Only enable AudioLink after each integrated circuit is properly configured via ALMAS and IDNUM. Failure to do so may result in permanent damage to one or more integrated circuits. 1 = Audio link enabled (Pins SDIO_AL, BCLK_AL, and LRCLK_AL are per ALMAS) 0 = Audio link disabled (Pins SDIO_AL, BCLK_AL, and LRCLK_AL will be tri-stated) 				
IDNUM	ID Number. Specifies ID (A,B,C,D) for the device on the AL-TDM interface. Each part should have a unique ID. IDNUM[1:0] 00: Device A 01: Device B 10: Device C				
AFREQ	11: Device D Audio Link Frequency Setting. Indicates the sampling clock rate for the entire audio subsystem. The audio ADCs, record digital interfaces, and Audio Link (AL-TDM) will operate at this rate. The Audio Digital Input may be configured to a different sampling rate if desired. AFREQ[2:0] 000: Off 001: Not supported. 010: 16 kHz 100: 44.1 kHz 101: 48 kHz 111: reserved				

Table 43: Audio System Clock Bit Definition

15. JTAG


Registers 0xD9 through 0xDC correspond to JTAG requirements. These are informational only, in case a user wants to see JTAG IDCODE data via the I^2C interface.

REGISTER	B7	B6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER- ON RESET STATE
JTAG1	JTAG_VER			JTAG_PN[15:12]				0xD9	(0x00)	
JTAG2	JTAG_PN[11:4]				0xDA	(0x00)				
JTAG3	JTAG_PN[3:0]			JTAG_ID[10:7]			0xDB	(0x61)		
JTAG4	JTAG_ID[6:0] 1				1	0xDC	(0x97)			

Table 44: JTAG Registers, informational only.

BITS	FUNCTION			
JTAG_VER	JTAG Version. Version of the device (4b)			
JTAG_PN	JTAG Part Number. Manufacturer's part number (16b), assigned by Maxim.			
JTAG_ID	JTAG ID. Manufacturer's ID code (11b), assigned by JTAG.			

Table 45: JTAG Bit Definition, informational only.

16. TYPICAL OPERATING CIRCUIT

Figure 47: MAX9530 Typical application with differential inputs

+

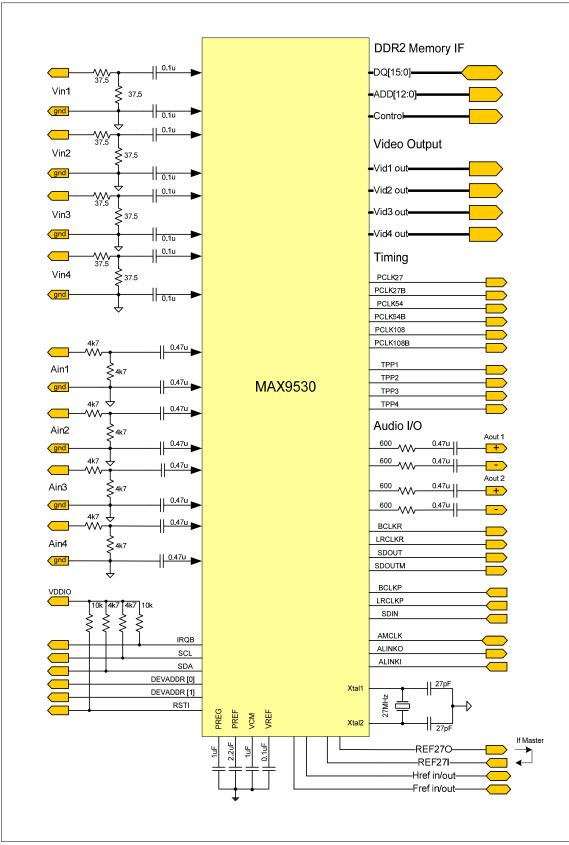


Figure 48: MAX9530 Typical application with single end inputs

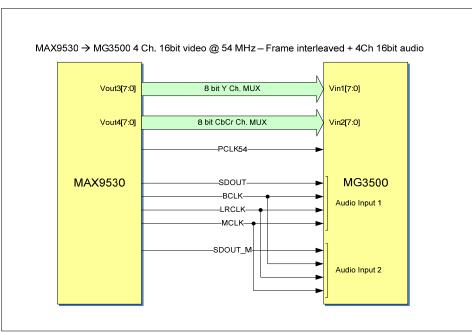


Figure 49: MAX9530 to MG3500 Interconnection [16bit Video @ 54MHz + 4 Ch.16bit audio]

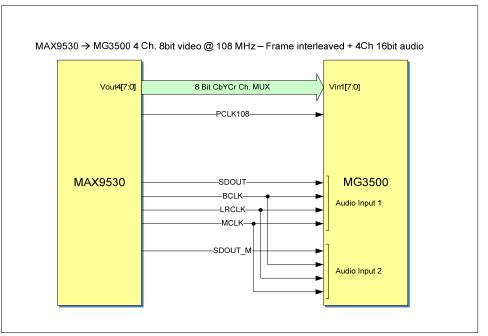


Figure 50: MAX9530 to MG3500 Interconnection [8bit Video @ 108MHz + 4 Ch.16bit audio]

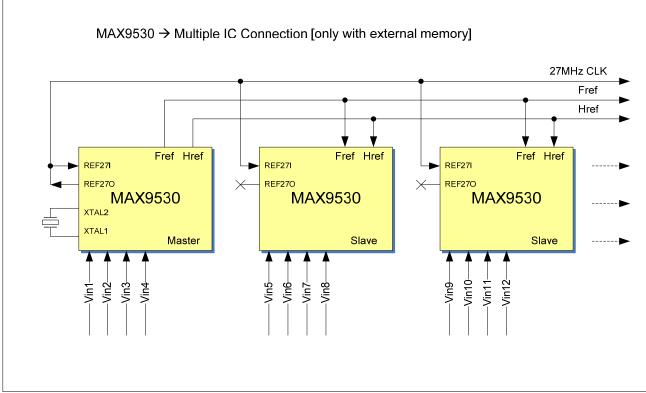


Figure 51: Video Multi-Chip Connection and GenLock.

17. Package Information

For the latest package outline information and land patterns, go to http://www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
196 CSBGA	X19622+1	21-0484

Table 46: Package Information