General Description

The USB2GPIOISO\# adapter board, shown in Figure 1, is designed to work with Maxim's USB2GPIO\# adapter board to provide galvanic isolation between the 'master' USB adapter board and a 'slave' EV kit or Pmod ${ }^{\text {TM }}$ board. Four MAX14483 6-channel digital isolators are used to provide $3.75 \mathrm{k} \mathrm{V}_{\mathrm{RMS}}$ isolation.
USB2GPIOISO\# block diagram is shown in Figure 2. The two power domains are on the 'master' side (VDD_M and GNDM), and the 'slave' side (VDD_S and GNDS). The two independent power supplies are provided from the master board and the slave board with each VDD_ between 1.71 V and 5.5 V . The two connectors on the 'master' side are male connectors and plug into the female connectors on the USB2GPIO\# adapter, as shown in Figure 3.

USB2GPIOISO\# is also designed to work with legacy USB2PMB1\# and USM2PMB2\# adapters; connectors XMA and XSA are 12-pin connectors which support either SPI with 4 GPIO pins and are fully compatible with previous adapters and low-pin count EV kit or Pmod boards. These connectors are controlled from the Munich GUI or relevant EV kit GUIs. Note that the isolator ICs have unidirectional channels (in or out). Full bidirectional ${ }^{2} \mathrm{C}$ communication is not supported by this board.
The other connectors, XMB and XSB, are 20-pin connectors supporting extra GPIO connections. These 20-pin connectors are NOT controlled by the Munich GUI but are for use with future EV kits and will be controlled by the relevant EV kit GUIs.
USB2GPIOISO\# adapter board can be used to enable isolated USB-to-SPI/GPIO interface for any Pmodcompatible plug-in peripheral modules such as the Maxim MAX14001PMB, and MAXREFDES12-Corona reference design.

Features

- 24 Isolated Channels with $3.75 \mathrm{kV} \mathrm{RMS}_{\text {Robust }}$ Galvanic Isolation
- Low Propagation Delay 10ns, Typical
- Flexible System Design with Wide 1.71V to 5.5V Voltage Range on Each Side
- Small PCB area
- Pmod-Compatible Form Factor

Ordering Information appears at end of data sheet.

Figure 1. USB2GPIOISO\# Board

Detailed Description of Hardware

Figure 2 shows the USB2GPIOISO\# connector block diagram (taken from the schematic). Note that the 'arrow' on each connector indicates the flow of data. For example, pin 1 on XMA shows that the signal (CS_AM) comes from the master, passes through the male connector, and onto USB2GPIOISO\# board to the isolator channel for CS. Then, on the slave side of the isolator, this signal routes to pin 1 on XSA connector (CS_ AS) and the 'arrow' shows the direction is from the isolator, through the female connector and to the slave board.
The two power domains are on the 'master' side (VDD_M and GNDM), and the 'slave' side (VDD_S and GNDS). The two independent power supplies are provided from the master board and the slave board with each VDD_ between 1.71 V and 5.5 V . The two connectors on the 'master' side are male connectors and plug into the female connectors on the USB2GPIO\# adapter, as shown in Figure 3.
MAX14483 has unidirectional data channels and USB2GPIOISO\# is configured in a $14 / 10$ mode rather than a bidirectional I/O mode, meaning there are 14 channels communicating from the master to the slave, and 10 channels communicating from the slave to the master. Refer to the USB2GPIOISO\# Adapter Board Schematic for each channel's communication direction. The digital channels on the slave Pmods or EV kits should follow the same communication directions as on the USB2GPIOISO\# board. The Munich GUI and the EV kit GUI automatically configure the channel directions based on this and no jumpers are required for configuration.

Figure 2. USB2GPIOISO\# Subsystem Block Diagram

Figure 3. USB2GPIOISO\# Board Connected with USB2GPIO\# Adapter

Master and Slave Connectors

The USB2GPIOISO\# is designed to receive power (VDD_M, GNDM and VDD_S, GNDS) from external boards through the connectors XMA, XMB, XSA and XSB. VDD_S is defined by the type of board connected to the slave connectors. When the user selects certain tab in the Munich GUI, VDD_M is automatically set to certain level, either $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 5.0 V . Note that USB2GPIOISO\# does NOT provide power using VDD_S to the Pmod or EV kit board, but instead expects to receive power from those boards. Test points VDD_S and GND are provided to allow powering the USB2GPIOISO\# slave side and Pmod or EV kit boards with external power supply.

Figure 4 shows the top view of the USB2GPIOISO\# board, with the different connectors and the pin 1 identifiers. Note there are no jumpers or shunts on this board, all configuration is done under software control. Care should be taken to only insert the boards in the correct way as the connectors are not keyed to avoid false insertions. Reversing the connections (by turning the Pmod board upside down for example) may result in damage to the USB2GPIOISO\# Pmod or EV kit board. Two LEDs are included to indicate if VDD_M and VDD_S are powered.

Figure 4. USB2GPIOISO\# Orientation and Pinouts

Ordering Information

PART	TYPE
USB2GPIOISO\#	Adapter Board

\#Denotes RoHS compliant

USB2GPIOISO\# Adapter Board Bill of Materials

USB2GPIOISO\# Adapter Board

USB2GPIOISO\# Adapter Board Schematic

USB2GPIOISO\# Adapter Board PCB Layout Diagrams

USB2GPIOISO\# Adapter Board—Top Silkscreen

USB2GPIOISO\# Adapter Board—Internal 2

USB2GPIOISO\# Adapter Board—Top

USB2GPIOISO\# Adapter Board—Internal 3

USB2GPIOISO\# Adapter Board PCB Layout Diagrams (continued)

USB2GPIOISO\# Adapter Board—Bottom Silkscreen

USB2GPIOISO\# Adapter Board—Bottom

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$04 / 18$	Initial release	-

