

ПО «Краснодарский ЗИП»

Техническое описание и инструкция по эксплуатации 6.348.148 TO

микровольтметр

В связи с постоянной работои по совершенствованию изделия, повышающей его технико — эксплуатационные параметры, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

I. BBEJEHME

Настоящее техническое описание и инструкция по эксплуатации (ТО) содержит сведения, необходимые для эксплуатации микровольтметра.

2. НАЗНАЧЕНИЕ

- 2.1. Микровольтметр предназначен для измерения напряжепий постоянного тока в составе компаратора напряжений типа РЗОІТ (далее — компаратор РЗОІТ).
- 2.2. Условия применения (рабочие):

 температура окружающего воздуха от 15 до 30 °C;

 относительная влажность воздуха 30-80%;

 напряжение питающей сети (220 ± 22) У при частоте

 (50 ± I) нг или (60 ± I,2) нг;

 рабочее положение горизонтальное ± I °;

 атмосферное давление 84-I06,7 кРа (630-800 mm нд).
- 3.1. Пределы измерения, предел допускаемой основной приведенной погрешности микровольтметра соответствует табл. І

З. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 3.2. Входное сопротивление и время установления показаний соответствуют табл. Г.
 - 3.3. Показатели помехозащищенности соответствуют табл.2
 - 3.4. Смещение нулей за 8 h, не более:

то напряжению ±3 лч;

по току \pm I nA .

Смещение нулей, вызванное изменением температуры окружающего воздуха, не более:

no напряжению \pm 0, I μ $V/^{\circ}C$; по току \pm 0, I $nA/^{\circ}C$.

- 3.5. Время установления рабочего режима I h.
- 3.6. Выдача информации о положении переключателей осуществляется замыканием соответствующих контактов разъема устройства вывода информации (см. приложение).
- 3.7. Потребление тока от питающей сети напряжением 220 ${\sf V}$ не более 30 ${\sf mA}$.

Таблица І

Характеристика		Значение характеристики						
I.Предел изме-	IO v	IV,	001 m v	™ V	I mV	I00 ۷ سر	10 بد۷	Ι juv
2.Предел до- пускаемой основной при- веденной пог- решности (верхняя шка- ла), %	±I,5	±I,5	<u>+</u> I,5	±1,5	±I.5	±2 ,5	≟3.∀	<u>±</u> 5
3. Входное сопротивление, Ω , не менее	108	₁₀ 8	108	108	10 ⁸	107	106	10 ⁵
4. Время уста- новления по- казаний, s,	4	4	4	4	4	4	4	5
не более, при сопротивлении источника сиг- нала kQ, не	100	100	100	100	100	Į O	10,	ja i
более				i degados.	į.	i i	James II	. 30 . s

- 3.8. Изоляция между изолированными по постоянному току электрическими цепями, доступ к которым возможен без вскрития микровольтметра, выдерживает в течение І шій действие испытательного напряжения переменного тока частотой 50(60)Нг, среднеквадратическое значение которого соответствует: 1,5 kV между вводом сетевого питания и соединенными вместе входными и выходными зажимами, разъемом вывода информации;
- 0,5 kV между корпусом и соединенными вместе входными и выходными зажимами, разъемом вывода информации, вводом сетевого питания;
- 0,5 kV между разъемом вывода информации и соединенными вместе входными и выходными зажимами, вводом сетевого питания, корпусом;

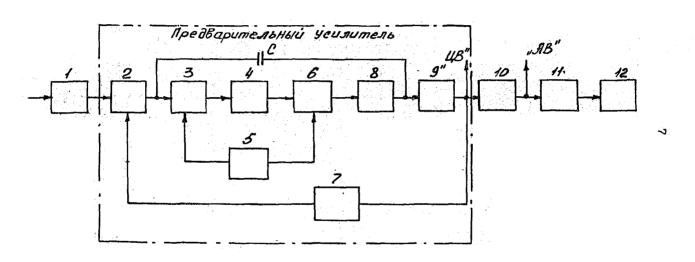
Таблица 2

Наименование показателей	Нормы на пределах							
in filosoficial de la companya de l La companya de la co	IO A	ΙV	100 mV	Væ OI	Vm I	٧٨ 001	Vα 01	IMV
Для дифференциального переменного напряжения частоты питающей сети:		L	÷					
коэффициент режекции, dB, не менее динамический диапазон (амплитудное	120	I30	120	IIO	IIO	110	100	100
эначение), mV Для синфазного переменного напря-	50	50	50	⁄ 50	50	20	01	5
кения частоты питающей сети:								
коэффициент режекции, dB , не менее пинамический диапазон (амплитудное	I60	I60	I60	160	160	160	160	160
значение), У	250	250	250	250	250	250	250	100
Для синфазного напряжения постоянного тока:								
коэффициент режекции, ав, не менее	I40	I40	140	140	I40	140	I40	I40
динамический диапазон, V	250	250	250	250	250	250	100	IO

- 0,5 kV между соединенными вместе зажимами входа и выкода и соединенными вместе корпусом, вводом сетевого питания, разъемом вывода информации.
- 3.9. Электрическое сопротивление между составными частями корпуса и зажимом для заземления не превышает $0.5~\Omega$.
- 3.10. Сопротивление изоляции, измеренное при напряжении 100 V, не менее:
- $10^{10}~\Omega$ между входными зажимами и соединенными вместе вводом сетевого питания, корпусом, разъемом вывода информации;
- 10⁸ Q между вводом сетевого питания и соединенными вместе корпусом и разъемом вывода информации;
 - 10^{8} Ω между корпусом и разъемом вывода информации;
- $10^{10}~\Omega$ между устройством вывода информации и, соединенными вместе, входными и выходными зажимами.
 - 3. II. Габаритные размеры не превышают 438x330xI56 mm.
 - 3.12. Масса микровольтметра не превышает 8,5 kg.

4. УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

4.I. Структурная схема микровольтметра приведена на рис.I.


Микровольтметр состоит из следующих устройств: предварительного усилителя, выполненного по схеме с параллельным каналом и охваченного глубойой отрицательной обратной связью (сумматор 2, модулятор 3, усилитель напряжения переменного тока 4, демодулятор 6, фильтр 8, усилитель постоян; ного тока 9, параллельный канал, образованный конденсатором С и входным сопротивлением усилителя 9, звено обратной связи 7, в цепи которого предусмотрен переключатель пределов (S_n- на схеме не показан);

усилителя напряжения IO, включенного последовательно с предварительным усилителем;

генератора управляющих импульсов 5;

переключателя II для смещения нуля (ОТСЧЕТ) и изменения полярности ("--+") показывающего прибора (S_O);

переключателя I рода работы (Sp); показывающего прибора I2.

Puc. I

Особенности работы предварительного усилителя определяются наличием глубской отрицательной обратной связи. Разность между измеренным напряжением и напряжением с выхода звена обратной связи преобразуется в напряжение переменного тока модулятором 3, усиливается усилителем 4 и после демодулятора 6 через фильтр 8 поступает на усилитель 9.

С выхода предварительного усилителя напряжение поступает на усилитель IO, основным назначением которого является получение нагрузочных характеристик, достаточных для обеспечения нормальной работы внешнего самопишущего прибора, подключаемого к выходу "АВ".

Помехозащищенность усилителя микровольтметра обеспечивается наличием RC-цепей в звеньях обратной связи.

Усилитель содержит также корректоры нулей по току "0_I" и напряжению "0_U", устройство подстройки пределов I,I0, IOO mV и устройство вывода информации о положении переключателей рода работы и пределов измерения, на схеме не показанные.

Схема электрическая принципиальная приведена в приложении.

4.2. Род работы микровольтметра (усилителя) устанавливается переключателем рода работы I ("U", " Q_U ", " Q_U ", " U_{\perp} "):

в положении " O_U " вход усилителя отсоединяется от зажимов ВХОД ("-" и "+"), замыкается накоротко и корректорами " O_U " (грубо и плавно) устанавливается нуль усилителя по напряжению;

в положении " $O_{\rm I}$ " вход усилителя микровольтметра отсоединяется от зажимов ВХОД ("-" и "+") и замыкается на сопротивление ${\rm IOOk}\,\Omega$, что позволяет выявить наличие тока смещения нуля усилителя и свести его к минимальному значению корректором " $O_{\rm I}$ ";

в положении " " производятся измерения;

в положении " $U_{\rm I}$ " последовательно с входом усилителя микровольтметра включается добавочное сопротивление, что защищает вход усилителя от повреждения при включении напряжения, превышающего $10~\rm V$.

5. PASMEDIEHNE N MOHTAR

5.1. При размещении прибора и монтаже внешних цепей следует соблюдать следующее:

температура в помещении должна выдерживаться в пределах требований п.2.2:

не рекомендуется установка прибора вблизи источников тепла или холода (батареи отопления, оконные проемы и т.д.);

монтаж внешних цепей должен выполняться кабелями, входяцими в комплект поставки, или медными свитыми экранированными проводниками,

корпус источника сигнала вместе с экраном кабеля должен быть соединен с корпусом микровольтметра;

во избежание возникновения электростатических помех не рекомендуется работать на приборе в одежде из легко электризующихся материалов, а также эксплуатировать его в помещении с полом, мебелью, покрытыми легко электризующимся материалом при низкой относительной влажности воздуха;

некомпактные электрические схемы рекомендуется размещать на соединенной с корпусом микровольтметра изолированной металлической поверхности, например, на изолированной стороне фольтированного стеклотекстолита;

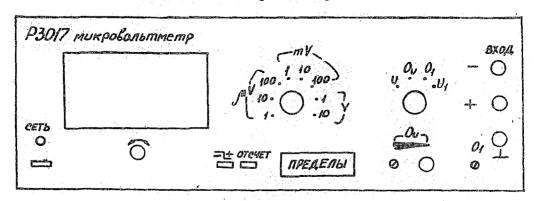
во избежание влияния магнитных полей не рекомендуется размещать прибор вблизи мощных источников изменяющихся токов.

5.2. При длительном пребывании прибора в среде с температурой воздуха ниже нуля или высокой влажностью (более 80%) перед включением его необходимо выдержать при рабочей температуре не менее 8 h.

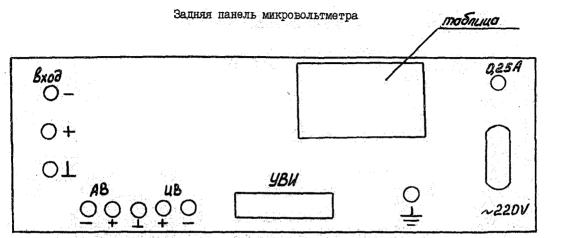
6. МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

- 6.I. Маркирование органов управления, присоединительчых зажимов, разъемов и т.д. соответствует указанному на рис.2,3.
- 6.2. Пломоирование корпуса микровольтметра при его выпуске производится ОТК предприятия-изготовителя и органом

Госстандарта, а в процессе эксплуатации органами Госстандарта или по их доверенности метрологическими службами предприятий-потребителей.


7. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 7.1. К работе с микровольтметрами допускаются лица, изучившие техническое описание и инструкцию по эксплуатации и прошедшие инструктаж по технике безопасности при работе с оборудованием, питающимся напряжением 220 у.
- 7.2. Перед началом работы заземлите корпус микровольтметра на измерительную землю, предназначенную для заземления только измерительной аппаратуры.


8. ПОЛГОТОВКА К РАБОТЕ

- 8.1. При коммутациях во внешних цепях микровольтметра во избежание перегрузок, а также в промежутках между измерениями, следует переключатель рода работи переводить в положение "Оu", а измерения начинать с включения предела измерения, номинальное напряжение которого превышает ожидаемое значение измеряемого напряжения.
- 8.2. При длительных перерывах в эксплуатации выполните несколько рабочих операций каждым переключателем кнопками, корректорами " 0_U " и " 0_{T} ".
- 8.3. Установите стрелку показивающего прибора на нулевую отметку его корректором в рабочем положении микровольтметра при выключенном сетевом питании (верхняя шкала).
- 8.4. Установите переключатель пределов в положение "10 V", переключатель рода работы в положение " 0_V ", все кнопки в отключенном состоянии.
- 8.5. Подключите прибор к сетевому питанию и нажмите кнопку СЕТЬ. При этом на передней панели должен загореться

Лицевая панель микровольтметра

СЕТЬ – кнопка включения сети; " \wedge " – корректор показивающего прибора; " \mathbb{I}_{NV} ... \mathbb{I}_{OV} " – переключатель пределов (Sn); " – \mathbb{I}_+ " – кнопка переключения полярности показивающего прибора; ОТСЧЕТ – кнопка установки стрелки показивающего прибора на нулевую отметку верхней шкали; ПРЕДЕЛЫ – крышка подстроечных резисторов; "U- O_U — O_I — U_I " – переключатель рода работы (Sp); ВХОД – входные зажимы: " O_U и " O_I " – корректоры нуля по напряжению и току.

72

ВХОД — входные зажимы (дублирующие); АВ — зажимы для присоединения внешнего аналогового вольтметра: ЦВ — зажимы для присоединения внешнего цифрового вольтметра; "ХІ" — — разъем устройства вывода информации; "___"—зажим заземления; "0,25 А"— предохранитель; "220 V"— сетевой ввод;

таблица - таблица с указанием значений предела допускаемой основной погрешности.

светодиод, а стрелка прибора должна установиться на нулевую отметку нижней шкалы.

Время установления рабочего режима микровольтметра I h .

- 8.6. Установите нуль микровольтметра по току. Для этого переведите переключатель рода работи в положение " $O_{\underline{I}}$ " и, повышая чувствительность микровольтметра, на пределе $100~\mu\text{V}$ установите корректором нуля по току " $O_{\underline{I}}$ " стрелку показывающего прибора на нулевую отметку нижней шкалы с отклонением не более \pm 5 μ V.
- 8.7. Установите нуль микровольтметра по напряжению. Для этого переведите переключатель рода работы в положение " O_U " и установите корректором нуля по напряжению " O_U " стрелку показывающего прибора на нулевую отметку нижней шкалы на пределе IO $_{A\!V}$ с отклонением не более \pm 0.2 $_{A\!V}$.

Периодичность и точность установки нулей по току и напряжению при конкретных измерениях определяется оператором.

8.8. При необходимости установки комплектного нуля (напряжение равное нулю в измерительной цепи) выполните следуршие операции:

обесточьте внешнюю измерительную цепь (регуляторы выхонда всех источников напряжений поставьте в положение, когда $V_{\rm BHX}=0$);

переключатель рода работы микровольтметра установите в положение " U ";

корректором " 0_U " микровольтметра установите стрелку показывающего прибора микровольтметра на нуль на пределе 10 AV с отклонением \pm 1 деление. Для этой цели могут быть использованы такие же корректоры других устройств, включенных в измерительную цепь.

9. ПОРЯПОК РАБОТЫ

- 9.1. Подключите ко входу микровольтметра источник измеряемого напряжения, используя кабель, входящий в комплект поставки.
- 9.2. Проверьте установку нуля по току и напряжению и при необходимости подстройте их.

9.3. Переведите переключатель рода работы в положение "U" и, повышая чувствительность микровольтметра, произведите отсчет результата измерений по одной из шкал показывающего прибора.

Следует иметь в виду, что погрешность измерения по нижней шкале на 0,5 % больше, чем по верхней.

9.4. При необходимости произвести отсчет результата измерений по верхней шкале, нажмите кнопку ОТСЧЕТ.

Если полярность измеряемого напряжения не соответствует полярности показывающего прибора, нажмите кнопку "-] +".

9.5. В микровольтметре предусмотрены зажимы "ЦЬ" (выкод предварительного усилителя) для подключения цифрового вольтметра и зажимы "АВ" (выход усилителя 10) пля подключечения аналогового самопишущего вольтметра.

Ориентировочные технические характеристики по выходам "ЦВ" и "АВ" приведены в табл.3.

- 9.6. Измерения напряжений с использованием цифрового и аналогового вольтметров.
- 9.6.1. Измерения с использованием цифрового вольтметра имеют слепующие особенности:

микровольтметр используется в качестве предварительного усилителя цифрового вольтметра;

установка нулей по напряжению и току осуществляется аналогично разделу 8 с использованием в качестве индикатора цифрового вольтметра;

на пределах I и IO V значения измеряемого напряжения и напряжения по выходу "ЦВ" совпадают;

на пределах $100 \, \text{дV} - 100 \, \text{mV}$ имфровой вольтметр должен быть включен на предел $1 \, \text{V}$. Фиксация положения запятой при отсчете производится оператором соответственно используемому пределу усиления;

выходное сопротивление микровольтметра на зажимах "ЦВ" $0.5~\Omega$, что должно учитываться при оценке погрешности, вносимой входным сопротивлением цифрового вольтметра.

Б целях повышения точности измерений в микровольтметре предусмотрена подстройка пределов усиления I;10;100 mV, кото рал производится следующим образом:

Предел усиле- ния (измерения)	Номинал значени коэфии усилени	е иента	ленимоН ондохиа эжлепен У	е	Предел допускаемой решности усилителя виях, му	Предел допускае- мого зна- нения не- линеинос- ти усили- теля, л. V	
	"ЦВ"	"AB"	"ЩВ"	"АБ"	"ЦВ"	"АБ"	"ЦВ"
IO A	I	I	10	- 14 (A) (A) (A) (A) (A)	±20	± (5V +0,5) 10 ³	± 20
ΙV	I,	IOI			± 5	1 (00 40,0) 10	± 5
100 mV	IOI	102			±(5 10 ³ V + 1)	±(10V +0,05) 10 ³	
10 mV	102	103	Ĭ	10		±(I0 ⁴ U +5)	
I mV	103	104			±(5 I0 ³ V +0,5)	±(IO ⁴ U +I)	± 0,5
۷۸ 100	10 ⁴	105			±(I0 ⁴ V +0,5)	±(15·10 ³ V +0,5)	
10 pg V		106				± 0,2	•
InV	-	107	-			± 0,05	

Примечание: V - измеряемое напряжение. V .

на вход микровольтметра подается напряжение I;I0; 100 mV от калибратора (П327):

- с помощью соответствующей поистройки устанавливают на цифровом вольтметре напряжение $I\ V\ c$ максимально возможной точностью.
- 9.6.2. Измерения с использованием самопишущего вольт-метра имеют следующие особенности:

самопишущий вольтметр присоединяется к выходу "АВ", его входное сопротивление должно быть не менее 2 k Ω ;

установка нуля усилителя микровольтметра по току и напряжению производится в соответствии с разделом 8;

положение кнопок ОТСЧЕТ и изменения полярности показивающего присора "- 1 +" должны быть выбраны таким образом, чтобы шкалы показывающего прибора микровольтметра и самопищиего вольтметра совпадали по полярности и положению нулевых отметок.

10. УКАЗАНИЯ ПО ПОВЕРКЕ

- 10.1. Настоящий раздел устанавливает методы и средства первичной и периодической поверок микровольтметра. Межповерочный интервал I год.
 - 10.2. Операции поверки

При проведении поверки должны выполняться операции, указанные в табл. 4.

Таблица 4

Наименование операций	Номера пунктов ТО	Обязательно ведения опе при:		
		випуске из производст- ва и ремон- те		
Внешний осмотр Определение основной приведен-	10.5.2 10.5.2	Да Да	Ja Ja	
ной погрешности Определение сопротивления изоляпии	10.5.3	Да	Нет	
Проверка электрической проч- ности изоляции	10.5.4	Ia	Her	

10.3. Средства поверки

При проведении поверки должны применяться следующие средства поверки:

калибратор напряжений ПЗ27, выходное напряжение до IO v; тераомметр E6-I3A, предел измерений ${\rm IO}^{II}$ Ω ;

установка для испытаний электрической прочности изоляции, мощность на стороне высокого напряжения не менее $0,25\ kV\cdot A$, диапазон выходного напряжения не менее $(0-1,5\ kV)$;

термометр для контроля температуры окружающего воздуха с ценой деления I $^{\mathrm{O}}\mathrm{C}_{2}^{\ast}$

вольтметр переменного тока для контроля напряжения сети класса точности 2.5.

Взамен калибратора ПЗ27 и тераомметра Е6-ІЗА допускается применение другой аппаратуры, сбеспечивающей требуемую точность.

10.4. Условия поверки и подготовка к ней

При проведении поверки должны соблюдаться рабочие условия, указанные в п.2.2.

Микровольтметр выдерживается в рабочих условиях применения не менее 24 h.

Схема поверки указана на рис.4.

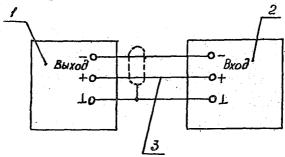
BEMUID.

Схему расположите на металлизированной изолированной поверхности, соединив корпуса приборов с металлом в одной точке Заземление схемы допускается только на измерительную

Подготовьте аппаратуру к работе в соответствии с ее ТО. 10.5. Проведение поверки

10.5.1. При внешнем осмотре должны быть установлены: исправность контактных зажимов:

надежность закрепления отдельных частей микровольтметра; соответствие маркировки микровольтметра требованиям раздела 6;


соответствие комплектности микровольтметра (кроме запасных частей) требованиям ФО.

10.5.2. Определение основной приведенной погрешности микровольтметра производится по верхней шкале (кнопка ОТСЧЕТ нажата):

на пределе 100 mV - на всех числовых отметках шкалы;

на остальных пределах измерения, кроме предела I μV - на крайней отметке шкали;

на пределе I $_{\text{NN}}$ - по девятой числовой отметке. Схема поверки .

- I калибратор ПЗ27;
- 2 поверяемый микровольтметр:
- 3 соещинительный кабель.

Рис. 4

Установка комплектного нуля схемы корректорами "0 $_U$ " микровольтметра и калибратора при определении погрешности микровольтметра на пределах I; 10; 100 $_{\Lambda}V$ обязательна.

Измерения производятся с исключением влияния шума посредством усреднения показаний (визуально).

Определение погрещности микровольтметра на пределе IOO mV производится следующим образом:

установите переключатели в положения: пределов калибратора – "100mV", декады калибратора – "0"; пределов микровольтметра – "100mV", рода работы микровольтметра – "U";

переводя переключатель декады калибратора в положения "I" - "IO", определите погрешность микровольтметра в делениях по верхней шкале.

Аналогично произведите определения погрешности микро-вольтметра на остальных пределах.

Предел допускаемой основной приведенной погрешности мик-ровольтметра указан в табл.5.

Таблица 5

Предел измерения	10	I	100	IO.	I	100	IO	I
	÷ .	٧	νīα			J	ńΛ	
Числовая отметка шкалы	10	10	IIO	10	10	IO	10	9
Предел допускаемой основной приведен- ной погрешности, делений	. 4	I , 5	jā			±2,5	±3	±5

10.5.3. Определение сопротивления изоляции производите тераомметром на постоянном токе при напряжении до 100 V по истечении I min после приложения напряжения.

Сопротивление изоляции должно измеряться при нажатой кнопке СКТЬ.

IO.5.4. Проверку электрической прочности изоляции произволите в соответствии с ГОСТ 22261-82.

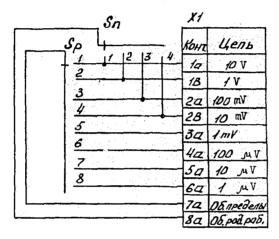
Мощность установки $0,25\ kV\cdot A$ на стороне высокого напряжения.

- 10.6. Оформление результатов поверки
- 10.6.1. Положительные результаты государственной поверки должны оформляться путем клеймения микровольтметра и записи результатся поверки в формуляре, заверенной поверителем, с нанесением оттиска поверительного клейма.
- 10.6.2. Положительные результаты периодической ведомственной поверки оформляются в порядке, установленном ведомственной метрологической службой.
- 10.6.3. Микровольтметры, прошедшие поверку с отрицательными результатами, к выпуску в обращение не допускают, имеющиеся на них клейма гасят и владельцу выдают извещение о непригодност и микровольтметра с указанием причин.

- II. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ
- II.I. Микровольтметр в процессе эксплуатации подвергается мелкому (текущему) ремонту. Средний и капитальный ремонт производит ПО "Краснодарский ЗИП".
- II.2. Наиболее часто встречающиеся неполадки в работе микровольтметра и способы их устранения приведены в табл.6.
- II.3. Нарушение клейм микровольтметра в течение гарантийного срока не допускается. Указанное нарушение лишает потребителя права на гарантийный ремонт.

12. ПРАВИЛА ХРАНЕНИЯ

- 12.1. Микровольтметр должен храниться в упаковке предприятия-изготовителя при температуре окружающего воздуха от 5 до 40° С и относительной влажности 80% при температуре 25° С.
- 12.2. Хранение микровольтметра без упаковки следует про-изводить при температуре окружающего воздуха от 10 до 35° С и относительной влажности 80% при температуре 25° С.
- 12.3. В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных приме сей, вызывающих коррозию.


13. ТРАНСПОРТИРОВАНИЕ

- 13. I. Микровольтметр, предварительно обернутий в бумагу, вместе с селикагелем укладивается в полиэтиленовий чехол, который запаивается и помещается в картонную коробку. Коробка укладивается в ящик. Пространство между стенками ящика и коробкой должно бить заполнено древесной стружкой или другим амортизационным материалом.
- 13.2. Микровольтметр, упакованний в транспортную тару, может транспортироваться в закрытом транспорте любого вида. При транспортировании самолетом он должен быть размещен в герметизированном отсеке, водным транспортом в трюмах.
 - 13.3. Условия транспортирования: температура окружающего воздуха от минус 60 до $60^{\circ}\mathrm{C}$; относительная влажность воздуха 95% при температуре $40^{\circ}\mathrm{C}$.
- 13.4.После транспортирования перед вводом в эксплуата цию микровольтметр необходимо выдержать в нормальных услови-ях применения не менее 24 h .
- 13.5. Дата консервации совпадает с датой упаковивания.
 Срок защитн без переконсервации I год.

Внешнее проявление неисправности	Признаки неисправности	Возможная причина	Способ устранения
I. На микровольтметр не поступает напряжение питания при нажатой кнопке СЕТЬ	Не горит сигнальная точка При включении на чувст- вительные пределы изме- рения стрелка покази- вающего прибора не отклоняется	нитель	Проверьте и замени- те предохранитель; проверьте и отремон- тируйте кабель сете- вого питания
2. На чувствительных пределах измерений микровольтметра наблюдается неустойчивость положения стрелки показывающето прибора 3. Повышенное смещение нуля усилителя	Стрелка совершает неупо- рядоченные колебания от- носительно нуля; невозможно установить стрелку прибора на нуль Нестабильность нуля усилителя	приборов; отсутствует необходи- мое экранирование це- пей входа; синтетическая одежда оператора	Соедините корпуса приборов между собой; выполните экранирова— ние цепей входа микро- вольтметра; смените одежду опера— тора Проверьте и устрани— те влияние источни—
микровольтметра во времени	усилителя	тепла или холода (ба- тареи отопления, откры- тые форточки и т.д.)	ков тепла или холода

Внешнее проявление неисправности	Признаки неисправности	Возможная причина	Способ устранения
4. Питание от сети с мощными импульсными нагрузками	Непериодические выбросы стрелки показывающего прибора микровольтметра	ность сетевого пита-	Перейдите на питание от измерительной се- ти, при ее отсутствии используйте ферроре- зонансный стабилиза- тор
5. После присоединения измерителя выхода воз- никает нестабильность микровольтметра 6. Отсутствие или нес- тебильность контакта в переключателях, кнопках, корректорах	1	рителя выхода относи- тельно питающей сети	Включите питание из- мерителя выхода через разделительный экра- нированный трансформа- тор Энергично поработайте соответствующими устройствами
7. "Залипание" стрелки показивающего присора на чувствительном пределе микровольтметра	Стрелка находится у одного из упоров	Перегрузка	Переключателем преце- лов уменьшите чувстви- тельность прибора

Схема УВИ

Принятие сокращения:

Od. - общий;

раб. - работы;

конт.- контакты.

24

СОДЕРЖАНИЕ

		Lact
ı.	Введение	· 3
2.	Назначение	3
	Технические данные	3
4.	Устройство и работа изделия	6
	Размещение и монтаж	9
6.	Маркирование и пломоирование	9
7.	Указания мер безопасности	10
8.	Подготовка к работе	10
9.	Порядок работы	13
0.	Указания по поверка	16
u.	Возможные неисправности и способы	
	ях устраненяя	20
[2.	Правила хранения	20
[3.	Транспортирование	20
	ennexonnqII	23