VRoHS

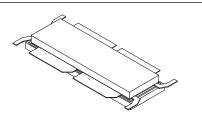
RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

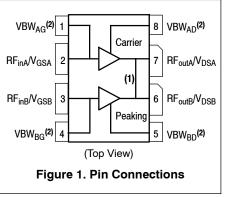
This 89 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 1805 to 1880 MHz.

1800 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: V_{DD} = 30 Vdc, I_{DQA} = 800 mA, V_{GSB} = 0.9 Vdc, P_{out} = 89 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.


Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
1805 MHz	16.6	47.1	7.9	-31.4
1840 MHz	16.7	47.5	8.0	-32.9
1880 MHz	16.5	47.7	7.9	-38.8

Features


- Advanced High Performance In-Package Doherty
- · Designed for Wide Instantaneous Bandwidth Applications
- Greater Negative Gate-Source Voltage Range for Improved Class C
 Operation
- Able to Withstand Extremely High Output VSWR and Broadband Operating Conditions
- Designed for Digital Predistortion Error Correction Systems

1805–1880 MHz, 89 W AVG., 30 V AIRFAST RF POWER LDMOS TRANSISTOR

- 1. Pin connections 6 and 7 are DC coupled and RF independent.
- 2. Device cannot operate with the V_{DD} current supplied through pins 1, 4, 5, and 8.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +125	°C
Operating Junction Temperature Range ^(1,2)	TJ	-40 to +225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 73°C, 89 W Avg., W-CDMA, 30 Vdc, I _{DQA} = 800 mA, V _{GSB} = 0.9 Vdc, 1840 MHz	$R_{ heta JC}$	0.27	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

	,				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					-
Zero Gate Voltage Drain Leakage Current ($V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V_{DS} = 32 Vdc, V_{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current ⁽⁴⁾ (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 200 μ Adc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage $(V_{DD} = 30 \text{ Vdc}, I_{DA} = 800 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GSA(Q)}	1.6	1.8	1.9	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.0 Adc)	V _{DS(on)}	0.05	0.15	0.3	Vdc
On Characteristics - Side B, Peaking			÷	•	
Gate Threshold Voltage	Vcc(th)	0.8	12	1.6	Vdc

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 360 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.6 Adc)	V _{DS(on)}	0.05	0.15	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Each side of device measured separately.

(continued)

A2T18H450W19SR6

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
					0.01/1

Functional Tests - 1805 MHz (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQA} = 800 mA, V_{GSB} = 0.9 Vdc, P_{out} = 89 W Avg., f = 1805 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	15.5	16.6	18.5	dB
Drain Efficiency	ηD	45.0	47.1	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.5	7.9	—	dB
Adjacent Channel Power Ratio	ACPR	—	-31.4	-30.0	dBc

Functional Tests - 1880 MHz (1,2,3) (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQA} = 800 mA, V_{GSB} = 0.9 Vdc, P_{out} = 89 W Avg., f = 1880 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	15.5	16.5	18.5	dB
Drain Efficiency	η _D	45.0	47.7	—	%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.5	7.9	—	dB
Adjacent Channel Power Ratio	ACPR	—	-33.8	-30.0	dBc

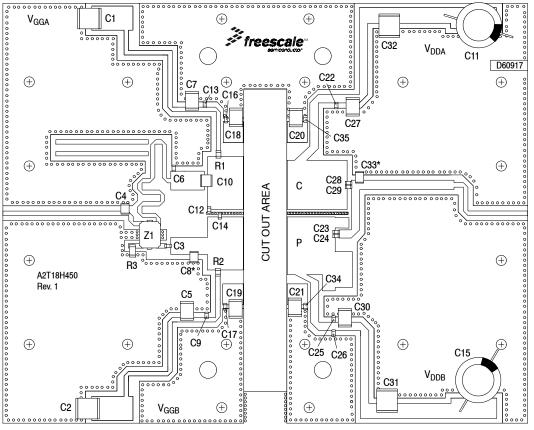
Load Mismatch ⁽³⁾ (In Freescale Doherty Test Fixture, 50 ohm system) I_{DQA} = 800 mA, V_{GSB} = 0.9 Vdc, f = 1840 MHz, 12 μsec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 420 W Pulsed CW Output Power	No Device Degradation	
(3 dB Input Overdrive from 250 W Pulsed CW Rated Power)		

Typical Performance ⁽³⁾ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQA} = 800 mA, V_{GSB} = 0.9 Vdc, 1805–1880 MHz Bandwidth

Pout @ 1 dB Compression Point, CW	P1dB	—	199	—	W
Pout @ 3 dB Compression Point (4)	P3dB	—	550	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 1805–1880 MHz frequency range)	Φ	—	-20	—	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		140	—	MHz
Gain Flatness in 75 MHz Bandwidth @ P _{out} = 89 W Avg.	G _F	—	0.4	—	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.008	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	_	0.027	_	dB/°C

Table 5. Ordering Information


Device	Tape and Reel Information	Package
A2T18H450W19SR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	NI-1230S-4S4S

1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurements made with device in an asymmetrical Doherty configuration.

4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

^{*}C8 and C33 are mounted vertically.


Note: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

Figure 2. A2T18H450W19SR6 Test Circuit Component Layout

Part	Description	Part Number	Manufacturer	
C1, C2, C31, C32	10 μF Chip Capacitors	C5750X7R1H106M230KB	TDK	
C3, C9, C13, C16, C17, C22, C23, C24, C25, C26, C34, C35	22 pF Chip Capacitors	ATC600S220JT250XT	ATC	
C4	0.4 pF Chip Capacitor	ATC		
C5, C7, C18, C19, C20, C21, C27, C30	4.7 μ F Chip Capacitors	TDK		
C6	0.2 pF Chip Capacitor	ATC		
C8	1.8 pF Chip Capacitor	ATC100B1R8BT500XT	ATC	
C10	22 pF Chip Capacitor ATC100B220GT500XT		ATC	
C11, C15	470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26-F		Multicomp	
C12	3 pF Chip Capacitor ATC600S3R0BT250XT		ATC	
C14	2.4 pF Chip Capacitor ATC600S2R4BT250X		ATC	
C28, C29	4.7 pF Chip Capacitors ATC600S4R7CT250XT		ATC	
C33	0.2 pF Chip Capacitor ATC100B0R2BT500XT		ATC	
R1	4.7 Ω, 1/8 W Chip Resistor WCR0805-4R7F		Welwyn	
R2	2.2 Ω, 1/8 W Chip Resistor WCR0805-2R2F		Welwyn	
R3	50 Ω, 10 W Chip Termination	060120A25X50-2	Anaren	
Z1	1700–2000 MHz Band, 90°, 5 dB Directional Coupler	X3C19P1-05S	05S Anaren	
PCB	Rogers RO4350B, 0.020", $\epsilon_r = 3.66$	D60917 MTL		

A2T18H450W19SR6

PACKAGE DIMENSIONS

NOTES:

- 1.0 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2.0 CONTROLLING DIMENSION: INCH
- 3.0 DIMENSION H1 AND H2 ARE MEASURED .030 (0.762 MM) AWAY FROM FLANGE TO CLEAR EPOXY FLOW OUT PARALLEL TO DATUM B. H1 APPLIES TO PINS 2,3,6,7. H2 APPLIES TO PINS 1,4,5,8.
- 4.0 -DELETED-

	IN	INCH MILLIMETER INCH		MILLIMETER					
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.265	1.275	32.13	32.39	N	1.218	1.242	30.94	31.55
BB	.397	.403	10.08	10.24	R	.365	.375	9.27	9.53
СС	.150	.200	3.81	5.08	S	.365	.375	9.27	9.53
D	.455	.465	11.56	11.81	U	.035	.045	0.89	1.14
E	.062	.066	1.57	1.68	V1	1.320	1.330	33.53	33.78
F	.004	.007	0.10	0.18	Т3	DELETED		DELETED	
H1	.082	.090	2.08	2.29	W1	.225	.235	5.72	5.97
H2	.078	.094	1.98	2.39	W2	.431	.441	10.95	10.20
К	.117	.137	2.97	3.48	W3	.491	.501	12.47	12.73
L	L .540 BSC		13.72 BSC		Y	1.390 BSC		35.31 BSC	
М	1.219	1.241	30.96	31.52	Z		R.040		R1.02
					aaa	.005 0.1		13	
					bbb	.010		0.25	
					ccc		.020	0.	.51
	ALL RIGHTS RESERVED MECHANICAL OU				TLINE PRINT VERSION NOT TO SCALE				
TITLE:	TITLE:					DOCUMENT NO: 98ASA00155D REV: D			
NI-1230S-4S4S					STANDARD: NON-JEDEC				
					SOT1795-1 31 MAY 20		MAY 2016		

A2T18H450W19SR6

PRODUCT DOCUMENTATION AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Development Tools

Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Sept. 2016	Initial release of data sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2016 Freescale Semiconductor, Inc.

